
A Pattern-based Model Transformation Approach to
Enhance Design Quality

Yong-Yi Fanjiang1 Nien-Lin Hsueh2 Jonathan Lee3
1Department of Computer and Information Science, National Taichung University

2Department of Information Engineering and Computer Science, Feng Chia University
3 Software Engineering Institute, National Central University

Abstract
Recently, the impact of design patterns on software
quality has attracted a gradual attention since design
patterns encapsulate valuable knowledge to resolve
design problems and improve design quality. As an
attempt towards the investigation of applying goals
and design patterns to realize the model transformation,
we proposed, in this paper, a goal-driven model
transformation by applying design patterns to
transform an analysis model into its corresponding
design model with an emphasis on the non-functional
requirements. The use of goals makes it easier to
transform the functional and non-functional
requirements into the software models, and derives the
candidate design patterns to help satisfy non-
functional requirements for resolving the design
problems and improving software quality.

Keywords: Design patterns, model transformation,
design quality, nonfunctional requirements.

1. Introduction
The software quality has long been recognized as

an important topic since the early days of software
engineering. In the past, researchers and practitioners
alike have examined how systems can meet specific
software quality requirements. Therefore, a growing
number of practitioners have shown great interests in
using design patterns towards high-quality software,
since design patterns represent high-level abstractions
that reflect the experiences of no other than skilled
practitioners themselves. Design patterns have become
a popular means to encapsulate object-oriented design
knowledge. They capture successful solutions to
recurring problems that arise when building software
systems.

In this paper, we adopt the goal-driven use case
(GDUC) [14] and fuzzy object-oriented modeling
(FOOM) [15] served as the formal specifications to

capture and specify imprecise requirements, and
provide a set of pattern-based transformation rules to

Figure 1: An overview of our proposed approach

deal with the software quality issues (see Fig. 1 for an
overview). In Fig. 1, the designer constructs the goals
hierarchy based on goals analysis and goals interaction.
Before applying the design pattern transformation
rules, the designer selects a suitable design pattern
from the candidate design patterns through matching
the non-functional goals and intents of design patterns,
and then transforms the analysis model into design
model by applying the transformation rules
incrementally. Our proposed approach has the
following features:
• Goal-driven use cases and goals hierarchy are built

according to the goals and use cases analyzing. The
analysis model is constructed based on the goals
hierarchy by using the FOOM notations and
semantics to specify various alternative models.

• Design patterns serve as a supporting design
knowledge base to help the development of a system.
A goal-driven method is provided to facilitating the
selection of candidate design patterns from the
analysis model, and the design pattern
transformation rules are used to helping the
enhancement of non-functional requirements and
improve the software quality.

goals hierarchy

 analysis
model

1

1..*

specified by

realized by
1

1..*

 user
requirements 1 1

analyzed by

 transformation strategy

 transformati
on

use
 design patterns

Using the GDUC
and GAAM
 notation

Addressing the software
quality attribute

Using the FOOM
notation

design
model

The organization of this paper is as follow. We
first briefly describe the background knowledge about
model transformation and applying design patterns to
model transformation in the next section. The
relationship between design patterns and non-
functional issues is depicted in section 3, and the
section 4 provides the transformation rules. A meeting
scheduling system is provided as an example to
illustrate our approach in section 5, and some
concluding remarks are given in section 6.

2. Background
A number of researches in the area of model

transformation and pattern based model transformation
have made their marks on our goal-driven pattern-
based model transformation method.

2.1. Model transformation
approaches

Graph transformation. Varró et al [16] describe a
system for model transformation based on Graph
Transformations. This style of transformation is based
on the application of an ordered set of rules. Operators
available include transitive closure, and repeated
application. Rules identify sub-graphs which define
before and after states, and may refer to source and
target model elements and introduce associations
between.
Relational transformation. The basic idea is to state
the source and target element type of a relation and
specify it using constraints. Gerber et al. [9] explore
the application of logic programming to implement
transformations.
Model transformation through high-level
programming language. Implementing a model
transformation can be carried out by using a general
programming language with a specific API. Indeed,
nowadays, repositories such as dMOF [4] can be used
to save models and metamodels that are MOF
compliant. These tools allow an API to be generated
and its basic implementation for each contained
metamodels.
Model transformation based on transformation
metamodel. Engineers build models to better
understand the systems that are being developed. In a
similar way, to understand existing models we may
provide models of these as well. This activity is called
meta-modeling. K. Duddy et al. [5] defined a
transformation metamodel of which instances will be
input parameters of a generator, which transforms a
model into a program that implements the
transformation process described by this model.

2.2. Pattern-based model
transformation approaches

Work in a number of fields has made their marks
on the pattern-based approach. These researches are
organized into following categories: automatic
application of design patterns, quality improvement by
design patterns, pattern-based development
methodology, and others. The first category of
researches [1, 12] focuses on automatic pattern
application and ignores the usage of design patterns.
The second category of researches [3, 11, 13] focuses
on how to restructure a legacy system to be more
qualified for the assistance of pattern-based
transformation skills. The third category [2, 8]
attempts to providing a methodology to serve as a
bridge between users’ requirements and design pattern
technology. They put efforts on analysis of user needs
rather than automation of pattern application.

3. Design patterns and non-
functional requirements
Non-functional requirements are not easy to

handle because they are subjective (they can be
interpreted differently by different people), relative
(their importance is depending on the system being
considered) and interacting (their achievement may
impair or help that of others) [6]. Design patterns [7]
provide a possible way to deal with non-functional
requirements since they provide solutions to satisfy
functional requirements as well as better solutions to
meet non-functional requirements. In particular,
besides providing a basic, functional solution to a
problem, a design pattern offers a qualified, non-
functional improvement to that solution. For example,
considering the original intent described in Observer
design pattern:

Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically.

By elaborating the intent, we can understand the

design pattern is designed to resolve the
communication between a subject objects and its
related observer objects. Viewing from the functional
aspect, it requires the subject to notify all observers
when the subject changes its state. Viewing from the
non-functional aspect, it requires the notification
should work automatically without knowing types of
observers. In other words, Observer design pattern has
a FR-intent (functional requirement intent) to address
functional problems and an NFR-intent (nonfunctional
requirement intent) to improve non-functional quality
requirements. We thus transform a design pattern's

intent into functional-intent (FR-intent) and non-
functional intent (NFR-intent) to highlight the quality
contribution of the pattern.

The structure distributes the object model to achieve
the goal described in the intent property. With respective to
the FR-intent and NFR-intent, FR-structure and NFR-
structure are developed respectively. The major difference
of NFR-structure to FR-structure is it applies object
techniques to resolve problems. These techniques, such as
polymorphism, abstraction, encapsulation, delegation,
dynamic binding and inheritance are keys to make object-
oriented system more reusable, extensible and
maintainable. More details about the relationships between
intent and structure of FR and NFR please see [10].

4. Transformation Rule Schema
Each refinement process is based on the

application of a design pattern. A transformation is
described graphically by a schema called
transformation rule schema. A transformation rule
schema is parameterized by model elements to be
specified by the designer, and is composed of two
compartments. The first compartment describes the
source model of the design while the second
compartment shows its corresponding target model
after application of a design pattern. Fig. 2 shows the
transformation rule schema that we have defined for
the Observer pattern.

After establishing the goals hierarchy for
obtaining alternative models and constructing stable
kernel and alternatives, the designer must specify the
analysis model based on the goals hierarchy in an
incremental fashion. Initially a goal in goals hierarchy
is chosen that will serve as a start point for the design
pattern transformation applying under our proposed
approach.

Fig. 2: Transformation rule schema of Observer pattern

According to the functional and non-functional
aspects of the chosen goal, we can match one or more
design patterns to deal with this goal's non-functional
requirement. Designer can choose one of these design

patterns suitable to match the non-functional requirement,
and apply transformation rules defined with this design
pattern to satisfy the non-functional goal.

5. Meeting scheduling example
In this section, we use an example - meeting

scheduling system to demonstrate the idea of our
approach. Goals are identified based on the proposed
verb-based classification scheme. In this example, we
have identified five goals and formed a goal-driven
use case model (see Fig. 3).

Fig. 3: Goal-driven use case model for the meeting scheduling system
• Schedule: [initiator, meeting date and location,

initiator, participants, ψ, rigid] (GMS)
• Handle: [system, plan meetings, initiator, ψ, in

distributed, rigid] (GMHID)
• Support: [initiator, meeting date and location,

initiator, participants, reusable schedule, soft] (GSRS)
• Support: [system, meeting date, initiator, participants,

support flexible and consistent date format , soft]
(GSFC)

• Provide: [system, performance, ψ, ψ, an
appropriate level, soft] (GAP)

An initial analysis model is obtained from the
goals hierarchy and the construction of the design
model is proceeded based on stable kernel in an
incremental fashion from GMS to GSFC. Since the
GMHID represents the system can be scheduled and
handled in distributed manner, the designer chooses
the remote proxy pattern to support the distributed
management. By considering the GSRS and GSFC to
realize the goal SupportReusableSchedule and the goal
SupportVariousDataFormat, the abstract factory
pattern and the observer pattern are chosen to enhance
the reusable scheduling and support various data
format, respectively.

The GSFC represents the meeting scheduling
system could support various data format and keep
consistence between different data views, i.e., a
change on one data view must make the same change
on the others. To resolve the inconsistency problem,

MeetingScheduled

MeetingHandle
InDistributed

SupportReusable
Schedule

Appropriate
Performance

SupportVarious
DataFormat

Schedule
a meeting

Keep
appropriate

performance
Schedule in
Distributed

Support
flexible

and consistent
data format

Support
reusable
schedule

«extend» «extend» «extend» «extend»

achieve

achieve

optimize achieve achieve

<R, A, F>

<S, A, N> <S, A, N> <S, A, N> <S, A, F>

R: rigid
A: actor-specific
F: functional

S: soft
Y: system-specific
N: nonfunctional

the Observer design pattern is recommended and used.
Observer pattern is used to resolve the inconsistency
problem between a set of objects (said observers)
which have a common interest on subject. By
requiring the observers to register on the subject
before operating, observers can be notified for keeping
consistency whenever the subject changes its status.

 Fig. 4 represents the final design model after
applying the design patterns through our proposed
approach.

Fig. 4: Goals considered: {GMS, GMHID, GSRS, GSFC} after
applying Observer pattern

6. Conclusion
In this paper, we propose an approach to

providing a goal-driven method to transform the
analysis model into design model for dealing with the
software quality issues based on design patterns. With
the aid of design patterns, in our approach, a goal can
be achieved by a well-specified transformation rules,
recovered by a proven solution, and enhanced by a
known skill.

Acknowledge
This work was supported by the Ministry of

Economic Affair (Taiwan) under grant 95-EC-17-A-
02-S1-029

References
[1] F. Budinsky, M.Finie, J.Vlisdes, and P.Yu.

Automatic code genration from design patterns.
Object Technology, 35(2):172-191, 1996.

[2] L. Chung, K. Cooper, and A. Yi. Developing
adaptable software architectures using design
patterns: an NFR approach. Computer Standards
and Interfaces, 23:253-260, 2003.

[3] M.O. Cinneide. Automated refactoring to
introduce design patterns. In Proceedings of the

International Conference on Software
Engineering, 2000.

[4] dMOF user guide (1.1 release). Distributed
Systems Technology Center (DSTC), Australia,
July 2000.

[5] K. Duddy, A. Gerber, M. Lawley, K. Raymond,
and J. Steel. Declarative transformation for
object-oriented models. Transformation of
Knowledge, Information and Data: Theory and
Application, Idea Group, 2004.

[6] C. Ebert. Putting requirement management into
praxis: dealing with nonfunctional requirements.
Information and Software Technology, 40:175-
185, 1998.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of reusable object-
oriented software, Reading, MA: Addison-Wesley,
1994.

[8] E. Gross and E. Yu. From non-functional
requirements to design through patterns.
Requirements Engineering, 6:18-36, 2001.

[9] A. Gerber, M. Lawley, K. Raymond, J. Steel, A.
Wood. Transformation: The Missing Link of
MDA, In A. Corradini, H. Ehrig, H.-J. Kreowski,
G. Rozenberg (Eds.): Graph Transformation:
First International Conference (ICGT 2002),
2002.

[10] N.-L. Hsueh and W.-H. Shen. Handling
Nonfunctional and Conflicting Requirements with
Design Patterns. In the proceedings of the 11th
Asia-Pacific Software Engineering Conference,
Page(s):608 – 615, 2004.

[11] B. Huston. The efforts of design pattern
application on metric scores. The Journal of
Systems and Software, 58:261-269, 2001.

[12] S. Jeon, J. Lee, and D. Bae. An automated
refactoring approach to design pattern-based
program transformations in Java programs. In the
proceedings of the Ninth Asia Pacific Conference
of Software Engineering, pages 337-345, 2002.

[13] L. Khriss, R.K. Keller, and I. Hamid. Pattern-
based refinement schemas for design knowledge
transfer. Knowledge-Based Systems, 13:403-415,
2000.

[14] J. Lee and N.L Xue. July/August 1999. Analyzing
user requirements by use cases: A goal-driven
approach. IEEE Software, 16 (4):92-101.

[15] J. Lee, N.L. Xue, K.H. Hsu and S.J.H. Yang. 1999.
Modeling imprecise requirements with fuzzy
objects. Information Sciences, 118:101-119.

[16] D.V.G. Varró and A. Pataricza. Designing the
automatic transformation of visual languages.
Journal of Science and Computer Programming,
44: 205-227, 2002.

