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Abstract 
The portfolio optimization model, initially proposed 
by Markowitz in 1952 and known as mean-variance 
model (MV model), is applied to find the optimized 
allocation among assets to get higher investment 
return and lower investment risk. However, the MV 
model did not consider some practical limitations of 
financial market, including: (1) transaction cost and (2) 
minimal transaction lots. While these constraints are 
not considered in the model, the practicability of the 
model will be restrained. But when they are included 
in the model, the model will become an NP hard 
problem, which cannot obtain global optimal solution 
by traditional mathematics programming techniques. 
In this research, besides proposing various models to 
include afore-mentioned consideration in the MV 
model, genetic algorithms are applied to solve these 
models. Empirical tests in the Taiwan stock market are 
provided to prove the applicability of the techniques. 

Keywords: portfolio, mean-variance model, genetic 
algorithms. 

1. Introduction 
The portfolio selection problem, initially proposed by 
Markowitz in 1952, applies mathematical 
programming method to find the optimal investment 
portfolio which can maximize the portfolio return and 
minimize the portfolio risk at the same time. However, 
the mean variance model (MV model) proposed by 
Markowitz has not taken some realistic transaction 
problems in account, for example, minimal transaction 
lot and transaction cost. After these two problems are 
formulated in the MV model, the problem will turn to 
be a mixed integer mathematical problem, which is 
hard to find the global optimal solution by traditional 
linear programming method. In this paper, the genetic 
algorithm (GA) is applied to solve the extended MV 
model, which includes constraints of minimal 
transaction lot and transaction cost. Empirical test in 
the Taiwan stock market are conducted to show the 
capability of the technique. 

 
2. Models Development  
 

The mean variance model can be formulated as 
shown in Model (1), which is a quadratic 
programming (QP) problem. 
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Where, n  represents the number of different invested 
assets; 

i
w  represents the invested weight for asset i, 

which is the decision variable of the model; 
p
r  

represents the expected return of the portfolio; 
i
r  

represents the expected return of asset i; 2
p

!  represents 

the expected risk of the portfolio; ij
!  represents 

covariance between asset i and asset j. 
Given aspired portfolio return, Model (1) can 

minimize the portfolio risk to find an efficient 
portfolio which will locate on the efficient frontier of 
the feasible solution space. Taking the portfolio 
expected return as another criterion in the objective 
function, Model (1) can be reformulated as shown in 
Model (2) 
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Here, !  represent the risk aversion parameter, 
0� ! � 1. 



Based on Model (2), three extended model can be 
developed to consider the realistic transaction problem. 
The second model as shown in Model (3) take the 
minimal trasaction lot-size problem into account; The 
third model as shown in Model (4) take the transaction 
cost into account; The forth model as shown in Model 
(5) take the minimal trasaction lot-size problem and 
trasaction cost into account.     
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where,

iii
pNc=  represents the minimal lot-size of asset i; 

i
N  represents the minimal transaction unit for asset i; 

i
p  represents the price of asset i. 
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where 1t,i
w

+  represents the invested weight for asset i 

at time period t+1; t,i
w  represents the invested weight 

for asset i at time period t; 
1t,i

r
+

 represents the expected 

return for asset i at time period t+1; 
1, +tij!  represents 

the covariance between asset i and asset j at time 
period t+1. 
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Where, 

t,i
x  represents the invested unit for asset i at 

time period t; 
1t,i

x
+

 represents the invested unit for 

asset i at time period t+1; 
1t

I
+

 represents the invested 
upper bound at time period t+1; 

1t,i
c

+
 represents the 

minimal lot-size of asset i at time period t+1. 
 
3. Genetic Algorithm Design 
 

For solving Model (3) ~ (5), the genetic algorithm 
proposed by Holland (1975) is applied to solve the 
mixed integer problems. Mechanism designs of the 
genetic algorithm for solving different models are 
described in this section. 

 
3.1 Parameter setting 

As Srinivas and Lalit (1994) stated that there is no 
perfect way for parameters setting in GA except for 
experimental training. After multiple tests, in this 
paper, the population crossover rate, mutation rate and 
generations are set to be 100, 1.0, 0.03 and 3000, 
respectively.  

 
3.2 Encoding 

In this research, Model (2) is solved by 
mathematical programming. As to Model (3) and 
Model (5), the encoding method is shown as follows: 
( Nx

i
! ) 

 

 
 
The encoding method Model (4) is shown as follows: 
Rw

i
!  

 

 
 
3.3 Fitness function 

Since the ”Roulette-wheel” selection is adopted for 
selection, the output value of the fitness function 
should be greater than or equal to 0. The eU  function 
is selected as the fitness function where U  represents 
the objective function of the models. 

 
3.4 Initialization   

100 chromosomes are created by random at the 
initial stage. Each chromosome keeps as many 
numbers of genes as those of invested assets.  

For Model (4), the value of genes locate between 0 
and 1. As to Model (3) and Model (5), since the lot-



size constraint, the decision variable must be an 
integer. The gene value can be calculated by:  

 
 

Gene value of  i �  f (          ) 
 
 
where, f(x) will generate an integer smaller than x. 
Normalization is necessary for Model (3) ~ (5).  
 
3.5 Selection 

Roulette-wheel method is adopted for selection. 
 

3.6 Crossover 
Single-point crossover method is adopted for 

crossover process. 
 

3.7 Mutation 
The mutation rate is set to be 0.03 in this research. 

 
4. Empirical Studies 
 

The data from the Taiwan stock market is selected 
for empirical tests. For performance comparison 
among different proposed models, we select 
representative 42 assets in Taiwan stock market and 
find the efficient frontiers for various models   

Empirical test results show that Model (3) can select 
stocks by lot-size. From the comparison between 
Model (2) and Model (3), we find that the Sharpe 
ratios of efficient portfolio, averaged 11.15953, in 
Model (2) are superior to those, averaged 10.1618, in 
Model (3). It is reasonable because the constraint of 
lot-size investment shrinks the feasible solution space. 
Efficient frontier comparison between Model (2) and 
Model (2) is shown in Figure 1.  
 

 
Fig. 1: Efficient frontier comparison between Model 
(2) and Model (3) 

 
 

When comparing Model (2) to Model (4), efficient 
frontiers of two models are almost the same. The 
Sharpe ratios of efficient portfolio, averaged 22.66175, 
in Model (2) are still superior to those, averaged 
22.20108, in Model (4) due to the consideration of 

transaction cost. Efficient frontier comparison between 
Model (2) and Model (2) is shown in Figure 2. 
 

 
Fig. 2: Efficient frontier comparison between Model 
(2) and Model (4) 
 

When comparing Model (2) to Model (5), it can be 
found that the Sharpe ratios of efficient portfolio in 
Model (2) are superior to those in Model (5) due to the 
consideration of lot-size investment and transaction 
cost.  
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