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Abstract

In practical decision-making, we prefer to characterize the uncertain problems with the hybrid data, which
consists of various types of data, e.g., categorical data, numerical dada, interval-valued data and set-valued
data. The extended rough sets can deal with single type of data based on specific binary relation, including
the equivalence relation, neighborhood relation, partial order relation, tolerance relation, etc. However,
the fusion of these relations is a significant challenge task in such composite information table. To tackle
this issue, this paper proposes the intersection and union composite relation, and further introduces a
quantitative composite decision-theoretic rough set model. Subsequently, we present a novel matrix-based
approach to compute the upper and lower approximations in proposed model. Moreover, we propose the
incremental updating mechanisms and algorithms under the addition and deletion of attributes. Finally,
experimental valuations are conducted to illustrate the efficiency of proposed method and algorithms.

Keywords: Composite information table, Decision-theoretic rough set, Quantitative composite relation,
Matrix, Incremental updating

1. Introduction

The information table may involve various types of
data, e.g., categorical data, numerical data, interval-
valued data, set-valued data, etc. As a useful tool to
describe the uncertain problems, the theory of rough
sets can be utilized to tackle the different types of
data by different binary relations. For instance, the
traditional rough set model was proposed by Pawlak
based on the equivalence relation to address the cat-
egorical dada 23. Hu et al. presented the neighbor-
hood relation to characterize the similarity of two

objects with numerical data 5. Guan et al. discussed
the set-valued information systems with the toler-
ance relation 3. Qian et al. proposed the interval
ordered information systems for attribute reduction
and ordering rules extraction 24. However, most ex-
isting studies focus on single type of data with a sim-
ple binary relation under the static information table.

Decision-theoretic rough set (DTRS) is a general
probabilistic rough set model 32. By considering
the misclassification cost, DTRS model provides a
mathematical interpretation of thresholds based on
Bayesian decision procedure. Recently, there are
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many interesting works in decision-making model
1,22,9,10,31,14,13,17,15,16,40,41,18. The original DTRS
model only can handle categorical data. Recently,
many extended DTRS models are proposed to solve
different types of data. Li et al. presented a neigh-
borhood based on DTRS model with numerical data
and discussed the minimum cost attribute reduction
in proposed model 12. To directly deal with real-
valued and interval-valued data, Zhao et al. intro-
duced fuzzy and interval-valued fuzzy DTRS model
39. Yang et al. studied weighted mean, optimistic
and pessimistic multigranulation DTRS in incom-
plete information table 27. Qian et al. proposed
multigranulation DTRS 25 for the fusion of differ-
ent relations. However, these studies don’t con-
sider the composite information table in DTRS. Ac-
tually, it is significant to characterize the objects
in practical problem solving with the hybrid data.
Moveover, multiple types of data may be changed in
dynamic information environment, e.g., the addition
and deletion of attributes or objects.

Recently, the incremental updating strate-
gies have been widely researched in rough sets
7,6,19,21,20,30,4,26,38,8. To efficiently obtain the useful
acknowledge under the change of information sys-
tem, we can propose the incremental updating meth-
ods to reduce the computational time in the theory of
rough sets. Li et al. introduced the novel model to
incrementally update the lower and upper approx-
imations based on the characteristic relation under
the change of attributes 11. Zheng et al. developed
a rough set and rule tree based incremental knowl-
edge acquisition algorithm42. Yang et al. presented
a unified framework of dynamic probabilistic rough
sets, which can incrementally update three regions
under fifteen situations of change 29, further they
proposed a unified model of sequential three-way
decisions and multilevel incremental processing 28.
Furthermore, the hybrid data should be considered
in real-world applications and it may vary in an in-
formation table. Zhang et al. investigated the defini-
tion of composite information table and proposed a
composite rough set model to deal with the different
types of data simultaneously 36. Then, they further
provided a parallel matrix-based approach for com-
puting composite rough set approximations 37. Chen

et al. proposed the distribution attribute reduction
method under probabilistic composite rough set 2.
However, the composite relation defined by the in-
tersection operation of relations is too strict for clas-
sification problems. In this paper, we define a novel
quantitative composite relation w.r.t. multiple types
of data. We provide the matrix-based method to
compute lower and upper approximations. Further-
more, we propose the incremental approach for up-
dating approximations when the attributes are added
or deleted in composite information table. Experi-
ments on four datasets show that the incremental al-
gorithms can efficiently improve the performance of
approximations update.

The rest of this paper is organized as follows.
Section 2 briefly reviews some basic notions and
concepts of DTRS model. In Section 3, we propose
a quantitative composite DTRS model based on the
quantitative composite relation and further introduce
a novel matrix-based approach for the calculation of
approximations. Section 4 presents the incremental
updating mechanisms and algorithms with compos-
ite DTRS model when the attributes are added or
deleted in composite information table. Finally, ex-
periments are conducted in Section 5 and Section 6
concludes the paper and elaborates on further works.

2. Decision-theoretic rough sets

Based on well-known Bayesian decision theory,
DTRS model provides a mathematical approach for
computing thresholds in probabilistic rough sets un-
der the minimum decision risk or cost. In this sec-
tion, we briefly review the basic concepts and no-
tions of DTRS model 32,34.

Definition 1. Let SS = (U,A =C
∪

D,V, f ) be a sin-
gle information table, where U is a nonempty finite
set of objects; A is also a nonempty finite set, called
the attributes of objects, C denotes the condition at-
tributes set, which consists of a single type data, D
denotes decision attribute set, C

∩
D =∅; V is a do-

main of the attributes, V =
∪

a∈AVa, f =U ×A →V
is an information function; f (xi,al) denotes the at-
tribute value of object xi under al , i = 1,2, · · · , |U |,
l = 1,2, · · · , |A|.

In a single information table, the type of data
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with respect to the condition attributes is same. The
traditional rough sets commonly deal with such data.
Given an approximation space (U,R). R is an equiv-
alence relation on U , B ⊆ C, RB = {(x,y) ∈ U ×
U |∀b ∈ B, f (x,b) = f (y,b)}. U/R denotes a parti-
tion of U induced by the equivalence relation R. In
Pawlak rough sets model, for X ∈ U , the lower and
upper approximations can be denoted as:

apr(X) = {x ∈U | [x]⊆ X},
apr(X) = {x ∈U | [x]∩X ̸= /0},

(1)

where [x] denotes the equivalence class, [x] = {y ∈
U |(x,y) ∈ R}. There are another representation
and interpretation of approximations. According
to the theory of three-way decisions 33, one of the
mainly task is dividing the universe U into three
pair-wise disjoint regions. We can obtain positive re-
gion (acceptance decisions), boundary region (non-
commitment decisions), negative region (rejection
decisions) as follows:

POS(X) = apr(X),

BND(X) = apr(X)−apr(X),

NEG(X) =U −apr(X).

(2)

In order to accept the tolerable errors in rough sets, a
series of probabilistic rough sets are proposed in the
past two decades. Particularly, DTRS presented by
Yao 34 is a general probabilistic model, which can
obtain a reasonable pair of thresholds. In the fol-
lowing, the decision procedure of DTRS model is
described as follows:

Based on bayesian decisions rules, we usually
make the optimized decisions with the minimum
risk. For simplicity, we consider two states and three
actions in a binary classification problem. The set
of states is given by Ω = {X ,XC} indicating that
an element is in X and not in X , respectively. Un-
der two opposite states, the set of actions is given
by AC = {aP,aB,aN}, where aP,aB,aN represent
the three actions in classifying an object, deciding
POS(X), deciding BND(X) and deciding NEG(X).
For cost-sensitive learning, the loss function con-
tained six parameters is presented as the matrix L3×2
shown in Table 1.

Table 1. The loss function

X(P) XC(N)

aP λPP λPN

aB λBP λBN

aN λNP λNN

In the matrix, λPP, λBP and λNP denote the losses
incurred for taking actions of aP, aB and aN , respec-
tively, when an object belongs to X . Similarly, λPN ,
λBN and λNN denote the losses incurred for taking
the same actions when the object belongs to XC. The
expected losses associated with taking the three ac-
tions can be expressed as:

R(aP|[x]) = λPPPr(X |[x])+λPNPr(XC|[x]),
R(aB|[x]) = λBPPr(X |[x])+λBNPr(XC|[x]),
R(aN |[x]) = λNPPr(X |[x])+λNNPr(XC|[x]),

(3)

where Pr(X |[x]) = |X
∩
[x]|

|[x]| is the condition probabil-
ity, | ∗ | denotes the cardinality of a set.

Based on minimum-cost decision rules in the
Bayesian decision procedure, the (α,β ) lower and
upper approximations of DTRS model can be de-
fined by:

R(α, β )(X) = {x ∈U | Pr(X |[x])> α},
R(α, β )(X) = {x ∈U | Pr(X |[x])> β},

(4)

where the parameters α , β satisfied 0 6 β < α 6 1
can be calculated as:

α =
(λPN −λBN)

(λPN −λBN)+(λBP −λPP)
,

β =
(λBN −λNN)

(λBN −λNN)+(λNP −λBP)
.

(5)

The detailed derivation of thresholds can reference
literature 32,34. The original three-way decisions de-
rive from DTRS model 33. Compared with two way
decisions, we consider the delay option in three-way
decisions when the information is insufficient for
supporting definite decisions. The (α,β ) probabilis-
tic three regions are given as follows:

POS(X) = {x ∈U | Pr(X |[x])> α},
BND(X) = {x ∈U | β < Pr(X |[x])< α},
NEG(X) = {x ∈U | Pr(X |[x])6 β}.

(6)
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Three regions, namely, positive region, boundary re-
gion, negative region, provide three direction of de-
cisions: the first is the acceptance decisions when
Pr(X |[x]) > α; the second is the non-commitment
decisions when β 6 Pr(X |[x]) 6 α; the third is the
rejection decisions when Pr(X |[x])6 β .

3. Composite decision-theoretic rough sets and
matrix representation of approximations

3.1. Quantitative composite DTRS model

In general, the previous DTRS model can deal with
the single data type in a single information table.
However, hybrid data types usually appear in a com-
posite information table, which contains categori-
cal data, numerical data , set-valued data, interval-
valued data, etc. We can utilize different binary re-
lations to handle different types of data. In what fol-
lows, we introduce the definition of composite in-
formation table, and present the composite binary
relation by fusion strategy in DTRS model.

Definition 2. Let CS = (U,A = C
∪

D,V, f ) be a
composite information table, where U is a nonempty
finite set of objects; A is also a nonempty finite set,
called the attributes of objects, C denotes the con-
dition attributes set consisted of hybrid type data,
C =

∪
Ck,k = 1,2, . . . ,m, where Ck is a subset of

C with the same data type and m denotes the num-
ber of data types, D denotes decision attribute set,
C
∩

D = ∅; V is a domain of the attributes, V =∪
a∈AVa, f =U ×A →V is an information function;

f (xi,al) denotes the attribute value of object xi under
al , i = 1,2, · · · , |U |, l = 1,2, · · · , |A|.

Example 1. In Table 2, there are four types
of data in a composite information table CS =
(U,A =C

∪
D,V, f ). Let B =C = ∪Bk,k = 1,2,3,4,

where B1 = {bcategorical},B2 = {bnumerical},B3 =
{binterval−valued},B4 = {bset−valued},D= {dcategorical},
denote categorical data, numerical data, interval-
valued data, set-valued data, categorical data, re-
spectively.

For classification and decisions in such informa-
tion table, the key issue is the fusion of different bi-
nary relations. Based on existing studies 36, we in-

troduce three approaches to define the composite re-
lation, namely, the intersect composite relation, the
union composite relation, and the quantitative com-
posite relation.

Definition 3. Let CS = (U,A =C
∪

D,V, f )
be a composite information table, where U =
{x1,x2, . . . ,xn}, X be a subset of U . B = ∪Bk ⊆
C, Bk ⊆ Ck. The characteristic matrix EX

n×1 =
[e1,e2, . . . ,en]

T is defined as follows:

ei =

{
1, xi ∈ X ;

0, xi /∈ X .
(7)

where i = 1,2, . . . ,n and T denotes the transpose op-
eration.

Definition 4. Let CS = (U,A = C
∪

D,V, f )
be a composite information table, where U =
{x1,x2, . . . ,xn}, B = ∪Bk ⊆C, Bk ⊆Ck. The relation
matrix MRBk

= (mi j)n×n can be defined as follows:

MRBk
= (mi j)n×n =

{
1, (xi,x j) ∈ RBk ;

0, (xi,x j) /∈ RBk .
(8)

Definition 5. 36 (The intersect composite relation)
Given a composite information table CS = (U,A =
C
∪

D,V, f ). Let x,y ∈U and B =∪Bk ⊆C,Bk ⊆Ck,
the intersect composite relation CR∩

B is defined as:

CR∩
B =

{
(x,y) | (x,y) ∈

∩
Bk⊆B

RBk

}
, (9)

where RBk ⊆ U ×U is a binary relation defined for
one type of data on the attribute set Bk. For simplic-
ity, we give a intuitive presentation as follows:

CR∩
B = RB1 ∧RB2 ∧ . . .∧RBm . (10)

Furthermore, the relation matrix MCR∩
B
= (mCR∩

B
i j )n×n

based on the intersect composite relation CR∩
B can

be given by:

MCR∩
B
= MRB1

∧MRB2
∧ . . .∧MRBm

, (11)

where mCR∩
B

i j = m
RB1
i j ∧m

RB2
i j ∧ . . .∧mRBm

i j .
Similarly, we can define the union composite re-

lation as follows.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 355–370
___________________________________________________________________________________________________________

358



Table 2. A composite information table

U bcategorical bnumerical binterval−valued bset−valued dcategorical

x1 1 0.4 [1.2 1.5] {1, 2} 1

x2 1 0.2 [1.4 1.8] {0, 1, 2} 1

x3 2 0.2 [1.5 2.2] {1} 0

x4 1 0.5 [1.6 2.1] {1, 3 } 1

x5 2 0.2 [1.4 1.7] {1, 2, 3} 0

x6 1 0.4 [2.2 2.5] {3} 1

Definition 6. (The union composite relation) Given
a composite information table CS = (U,A =
C
∪

D,V, f ). Let x,y ∈U and B =∪Bk ⊆C,Bk ⊆Ck,
the union composite relation CR∪

B is defined as:

CR∪
B =

{
(x,y) | (x,y) ∈

∪
Bk⊆B

RBk

}
, (12)

where RBk ⊆ U ×U is a binary relation defined for
one type of data on the attribute set Bk. For simplic-
ity, we give a intuitive presentation as follows:

CR∪
B = RB1 ∨RB2 ∨ . . .∨RBm . (13)

Furthermore, the relation matrix MCR∪
B
= (mCR∪

B
i j )n×n

based on the union composite relation CR∪
B can be

given by:

MCR∪
B
= MRB1

∨MRB2
∨ . . .∨MRBm

, (14)

where mCR∪
B

i j = m
RB1
i j ∨m

RB2
i j ∨ . . .∨mRBm

i j .
In a composite information table, we present the

intersection composite relation CR∩
B and the union

composite relation CR∪
B . The former is the strict re-

lation which needs to satisfy every binary relation
with respect to hybrid type data between two ob-
jects. It leads to obtain the finer granules. The lat-
ter is the relaxed relation which needs to satisfy at
least one binary relation with respect to hybrid type
data between two objects. Conversely, it leads to the
coarser granules. Obviously, two are not our best
choice. Therefore, we propose the quantitative com-
posite relation as follows.

Definition 7. (The quantitative composite relation)
Given a composite information table CS = (U,A =

C
∪

D,V, f ). Let x,y ∈ U and B = ∪Bk ⊆ C,Bk ⊆
Ck,k = 1,2, . . . ,m. Suppose threshold θ satisfied
06 θ < 1, the quantitative composite relation QCRB
is defined as:

QCRB =

{
(x,y) | |{RBk : (x,y) ∈ RBk}|

m
> θ

}
, (15)

where m is the total number of binary relations,
|{RBk : (x,y) ∈ RBk}| is the number of the satisfied
binary relations. The quantitative composite relation
matrix MQCRB = (mQCRB

i j )n×n can be given by:

mQCRB
i j =

1,
∑m

k=1 MRBk

m
> θ ;

0, else.
(16)

The quantitative composite relation QCRB is reflex-
ive, but not symmetric and transitive. The intersec-
tion composite relation and the union composite re-
lation can drive from the quantitative composite re-
lation. When m−1

m 6 θ < 1, the quantitative com-
posite relation becomes the intersection composite
relation; when 0 6 θ < 1

m , the quantitative compos-
ite relation becomes the union composite relation.
Hence, we can control the threshold θ to establish
different model to deal with the hybrid data.

Definition 8. Let CS = (U,A = C
∪

D,V, f ) be a
composite information table, QCRB be a quantita-
tive composite relation. Suppose X ⊆U , the (α,β )
lower and upper approximations of concept X in
composite DTRS model can be defined by:

RQCRB
(α , β )(X) = {x ∈U | Pr(X |QCRB(x))> α},

RQCRB
(α , β )(X) = {x ∈U | Pr(X |QCRB(x))> β}.

(17)
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The (α,β ) probabilistic three regions are given as
follows:

POS(X) = {x ∈U | Pr(X |QCRB(x))> α},
BND(X) = {x ∈U | β < Pr(X |QCRB(x))< α},
NEG(X) = {x ∈U | Pr(X |QCRB(x))6 β}.

(18)

Definition 9. Let CS = (U,A = C
∪

D,V, f ) be
a composite information table, QCRB be a
quantitative composite relation. Let U/D =
{D1,D2, . . . ,Di, . . . ,Ds} be a partition of U based
on the decision attribute d. Then the (α,β ) lower
and upper approximations of the decision class Di
in composite DTRS model can be defined by:

RQCRB
(α, β )(Di) = {x ∈U | Pr(Di|QCRB(x))> α},

RQCRB
(α, β )(Di) = {x ∈U | Pr(Di|QCRB(x))> β}.

(19)

Example 2. (Continuation of Example 1) In table 2,
to deal with four types of data, four binary relations,
namely, the equivalence relation, the neighborhood
relation, the partial order relation, and the tolerance
relation are given as follows:

1. The equivalence relation (see definition in
Section 2)

2. The neighborhood relation

RN
Bk

=
{
(x,y) | y ∈U,bi

k ∈ Bk,∆B(x,y)6 δ
}
, (20)

where

∆B(x,y) =

(
|Bk|

∑
i=1

| f (x,bi
k)− f (y,bi

k)|2
)1/2

.

3. The partial order relation

RP
Bk

= {(x,y) | y ∈U,bi
k ∈ Bk, f L(y,bi

k)>
f L(x,bi

k), f U(y,bi
k)> f U(x,bi

k)}.
(21)

4. The tolerance relation

RT
Bk

= {(x,y) | y ∈U,∀bi
k ∈ Bk, f (x,bi

k)

∩ f (y,bi
k) ̸= /0}.

(22)

Suppose neighborhood threshold δ = 0.1. Accord-
ing to four definitions of binary relations, we can
calculate four relation matrices with respect to four
types of data respectively on U as follows:

MRE
B1
=



1 1 0 1 0 1
1 1 0 1 0 1
0 0 1 0 1 0
1 1 0 1 0 1
0 0 1 0 1 0
1 1 0 1 0 1

 ,

MRN
B2
=



1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1

 ,

MRP
B3
=



1 1 1 1 1 1
0 1 1 1 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 1 1 1 1 1
0 0 0 0 0 1

 ,

MRT
B4
=



1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 1 1 1

 .

According to Definition 5 and Definition 6, the in-
tersection composite relation matrix and the union
composite relation matrix can be calculated as:

MCR∩
B
= MRE

B1
∧MRN

B2
∧MRP

B3
∧MRT

B4

=



1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 0 0 0 1

 ,
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MCR∪
B
= MRE

B1
∨MRN

B2
∨MRP

B3
∨MRT

B4

=



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 0 1 1 1

 .

Suppose the quantitative threshold θ = 0.7, then the
quantitative composite relation matrix can be calcu-
lated as:

MQCRB =



1 1 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 0 0 1 0 1

 .

3.2. Matrix representation of approximations

In order to propose a fast matrix-based approach
for updating approximations under the change of at-
tributes, another representation of approximations 35

in DTRS model is given as follows.

Definition 10. Let CS = (U,A = C
∪

D,V, f ) be a
composite information table, QCRB be a quantita-
tive composite relation. Suppose X ⊆U , the (α ′,β ′)
lower and upper approximations of concept X in
composite DTRS model can be defined by:

RQCRB
(α, β )(X) =

{
x ∈U | |X ∩QCRB(x)|

|XC ∩QCRB(x)|
> α ′

}
,

RQCRB
(α, β )(X) =

{
x ∈U | |X ∩QCRB(x)|

|XC ∩QCRB(x)|
> β ′

}
,

(23)

where a pair of thresholds (α, β ) can be calculated
as:

α ′ =
α

1−α
=

λPN −λBN

λBP −λPP
,

β ′ =
β

1−β
=

λBN −λNN

λNP −λBP
.

(24)

When |XC∩QCRB(x)|= 0, we define that the value
of |X

∩
QCRB(x)|

|XC∩QCRB(x)| equals to infinity, denoted as the
symbol ∞.

Definition 11. Let Mn×1 be a matrix. The cut matri-
ces of M↓ and M↑ are defined respectively as:

M↓ =

{
1, M(i)> α ′;

0, else.
(25)

M↑ =

{
1, M(i)> β ′;

0, else.
(26)

where i = 1,2, . . . ,n.

Definition 12. Let CS = (U,AT =C
∪

D,V, f ) be a
composite information table, QCRB be a quantitative
composite relation, where U = {x1,x2, . . . ,xn}. EX

n×n
is the characteristic matrix, MQCRB is the quantita-
tive composite relation matrix. Then the character-
istic matrices of lower and upper approximations in
composite DTRS model can be defined respectively
as follows:

E
RQCRB
(α, β )(X)

= ((MQCRB ∗E)./(MQCRB ∗ (∼ E)))↓,

E
RQCRB
(α, β )(X)

= ((MQCRB ∗E)./(MQCRB ∗ (∼ E)))↑.
(27)

The matrix-based algorithm for computing approx-
imations in composite DTRS model is outlined in
Algorithm 1. Step 1 is to construct the characteris-
tic matrix, whose time complexity is O(|U |). Step
2 is to compute the equivalence relation matrix, the
neighborhood relation matrix, the partial order rela-
tion matrix, and the tolerance relation matrix, whose
time complexity is O(|U ||B1|), O(|U ||log|U |B2|),
O(|U ||B3|2), O(|U ||B4|2). Step 3 is to compute
the quantitative composite relation matrix, whose
time complexity is O(|U |2). Step 4 is to compute
the intersection matrix and non-intersection matrix,
whose time complexity is O(|U |2). Step 5 and Step
6 are to compute the characteristic matrix of lower
and upper approximations, whose time complexity
is O(|U |). In the following, we illustrate the pro-
posed matrix-based method with an numerical ex-
ample.
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Algorithm 1 (NCDTRS) The matrix-based algorithm for
computing approximations in composite DTRS model.
Input: A composite information table CS = (U,A =
C
∪

D,V, f ), the concept X(X ⊆U), and the loss function
L3×2.
Output: The characteristic matrices of lower and upper
approximations E

RQCRB
(α, β )(X)

,E
RQCRB
(α, β )(X)

.

Step 1: Construct the characteristic matrix EX
n×1 with

respect to the concept X ;
Step 2: Compute the equivalence relation matrix MRE

B2
,

the neighborhood relation matrix MRN
B2

, the partial order

relation matrix MRP
B2

, and the tolerance relation matrix

MRT
B2

, respectively;

Step 3: Compute the quantitative composite relation ma-
trix MQCRB according to Definition 7;
Step 4: Compute the intersection matrix W = (wi)n×1 =
MQCRB ∗ E and the non-intersection matrix W ′ =
(w′

i)n×1 = MQCRB ∗ (∼ E)
Step 5: Compute the characteristic matrix of lower ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↓;

Step 6: Compute the characteristic matrix of upper ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↑ ;

Example 3. (Continuation of Example 2) Suppose
the loss function L = [0 6;1 3;5 0]. Then we have
α ′ = 3,β ′ = 0.75. The lower approximation of com-
posite DTRS model based on the matrix approach
can be calculated as:

E
RQCRB
(α, β )(X)

= ((MQCRB ∗E)./(MQCRB ∗ (∼ E)))↓

=





1 1 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 0 0 1 0 1


∗



1
1
0
1
0
1




1 1 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 0 0 1 0 1


∗



0
0
1
0
1
0





↓

=





4
2
0
3
1
2

 ./


0
1
2
0
2
0





↓

=





∞
2
0
∞

0.5
∞





↓

=



1
0
0
1
0
1

 .

Similarity, the upper approximation of compos-
ite DTRS model based on the matrix approach can
be calculated as:

E
RQCRB
(α, β )(X)

= ((MQCRB ∗E)./(MQCRB ∗ (∼ E)))↑,

=





∞
2
0
∞

0.5
∞





↑

=



1
1
0
1
0
1

 .

Then we can obtain the lower and upper approxima-
tions of composite DTRS model as follows:

E
RQCRB
(α, β )(X)

= {x1,x4,x6},

E
RQCRB
(α, β )(X)

= {x1,x2,x4,x6}.

4. The approach for incremental updating
approximations under the change of
attributes

In an dynamic composite information table, the
change of attributes have two situations. One is the
addition of attributes and another is the deletion of
attributes. To achieve a fast calculate process, incre-
mental updating the quantitative composite relation
matrix and the characteristic matrices of approxima-
tions are two importance tasks. In this section, we
introduce the incremental updating of matrix-based
strategy in composite DTRS model.

4.1. updating the quantitative composite relation
matrix and the characteristic matrices of
approximations when adding attributes

In this subsection, the incremental update of
approximations is considered as from time t
to t + 1. Let CSt = (U t ,At =Ct∪Dt ,V t , f t)
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be the composite information table at time t,
where U = {x1,x2, . . . ,xn}. The composite in-
formation table CSt = (U t ,At =Ct∪Dt ,V t , f t) at
time t only contains four types of data, where
Ct = Bt

1
∪

Bt
2
∪

Bt
3
∪

Bt
4, Bt

1 denotes categorical
data, Bt

2 denotes numerical data, Bt
3 denotes set-

valued data, Bt
4 denotes interval-valued data. Let

CSt+1 =
(
U t+1,At+1 =Ct+1∪Dt+1,V t+1, f t+1

)
be

the composite information table at time t + 1,
where U = {x1,x2, . . . ,xn}. At time t + 1, a
set of attributes ∆C are added into CSt+1 =(
U t+1,At+1 =Ct+1∪Dt+1,V t+1, f t+1

)
, ∆C =

∆B1
∪

∆B2
∪

∆B3
∪

∆B4, Ct+1 =Ct∪∆C.
From time t to t + 1, there are two steps to up-

date the quantitative composite relation matrix. Step
1 is updating the equivalence relation matrix MRE

B2
,

the neighborhood relation matrix MRN
B2

, the partial
order relation matrix MRP

B2
, and the tolerance rela-

tion matrix MRT
B2

, respectively. Step 2 is updating
the quantitative composite relation matrix.

Proposition 1. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRE

B1
is the equivalence relation ma-

trix on U. Suppose ∆C = ∆B1, Ct+1 = Ct∪∆C, the
equivalence relation matrix MRE

B1
by adding ∆C to C

from time t to t +1 can be updated as:

(m
RB1
i j )t+1

n×n =

{
0, mt

i j = 0∨ (xi,x j)
t+1 /∈ RE

∆C;

1, else.
(28)

Proposition 2. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRN

B2
is the neighborhood relation

matrix on U. Suppose ∆C = ∆B2, Ct+1 = Ct∪∆C,
the neighborhood relation matrix MRN

B2
by adding

∆C to C from time t to t +1 can be updated as:

(m
RB2
i j )t+1

n×n =

{
1, mt

i j = 1∧ (xi,x j)
t+1 ∈ RN

Ct+1 ;

0, else.
(29)

Proposition 3. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =

{x1,x2, . . . ,xn}. MRP
B3

is the interval-valued relation

matrix on U. Suppose ∆C = ∆B3, Ct+1 = Ct∪∆C,
the interval-valued relation matrix MRP

B3
by adding

∆C to C from time t to t +1 can be updated as:

(m
RB3
i j )t+1

n×n =

{
0, mt

i j = 0∨ (xi,x j)
t+1 /∈ RP

∆C;

1, else.
(30)

Proposition 4. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRT

B4
is the set-valued relation ma-

trix on U. Suppose ∆C = ∆B4, Ct+1 = Ct∪∆C, the
set-valued relation matrix MRT

B4
by adding ∆C to C

from time t to t +1 can be updated as:

(m
RB4
i j )t+1

n×n =

{
0, mt

i j = 0∨ (xi,x j)
t+1 /∈ RT

∆C;

1, else.
(31)

Proposition 5. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MQRCB is the quantitative com-
posite relation matrix on U. Suppose ∆C =
∆B1

∪
∆B2

∪
∆B3

∪
∆B4, Ct+1 = Ct∪∆C, the quan-

titative composite relation matrix MQRCB by adding
∆C to C from time t to t +1 can be updated as:

(mQRCB
i j )t+1

n×n =

{
1, mt

i j = 1∧ (xi,x j)
t+1 ∈ QCRCt+1 ;

0, else.
(32)

Proposition 6. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MQRCB is the quantitative compos-
ite relation matrix on U. W = (wi)n×1 = MQCRB ∗
E is the intersection matrix, and W ′ = (w′

i)n×1 =
MQCRB ∗ (∼ E) is the non-intersection matrix, i =
1,2, . . . ,n. Suppose ∆C = ∆B1

∪
∆B2

∪
∆B3

∪
∆B4,

Ct+1 = Ct∪∆C. The intersection matrix W =
(wi)n×1 = MQCRB ∗E can be updated as:

(wi)
t+1
n×1 =

{
wt

i −1, mt
i j = 1∧mt+1

i j = 0∧ et
j = 1;

wt
i, else.

(33)
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Similarity, the non-intersection matrix W ′ =
(w′

i)n×1 = MQCRB ∗ (∼ E) can be updated as the
same way.

The incremental algorithm for computing ap-
proximations in composite DTRS model based on
matrix when adding attributes is outlined in Algo-
rithm 2. Step 1 is to update four relation matrices
according to Proposition 1-4, whose time complex-
ity is O(|U |2). Step 2 is to updating quantitative re-
lation matrix according to Proposition 5, whose time
complexity is O(|U |2). Step 3 is to update W and W ′

according to Proposition 6, whose time complexity
is O(|U |2). Step 4 and Step 5 are to compute the
characteristic matrices of lower and upper approxi-
mations, whose time complexity is O(|U |).

Algorithm 2 (ICDTRS-AA) The incremental algorithm
for computing approximations in composite DTRS model
based on matrix when adding attributes.
Input: At time t, a composite information table CSt =
(U t ,At =Ct∪Dt ,V t , f t) , the loss function L3×2, the
characteristic matrix EX

n×1, the equivalence relation ma-
trix MRE

B2
, the neighborhood relation matrix MRN

B2
, the

partial order relation matrix MRP
B2

, and the tolerance

relation matrix MRT
B2

, the quantitative composite rela-

tion matrix MQCRB , the intersection matrix W , the non-
intersection matrix W ′. From time t to t + 1, ∆C is
the addition of attributes, ∆C = ∆B1

∪
∆B2

∪
∆B3

∪
∆B4,

Ct+1 =Ct∪∆C.
Output: The characteristic matrices of lower and upper
approximations Et+1

RQCRB
(α, β )(X)

,Et+1
RQCRB
(α, β )(X)

at time t +1.

Step 1: Updating MRE
B2

, MRN
B2

, MRP
B2

, MRT
B2

according to

Proposition 1-4;
Step 2: Updating MQCRB according to Proposition 5;
Step 3: Updating W and W ′ according to Proposition 6;
Step 4: Compute the characteristic matrix of lower ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↓;

Step 5: Compute the characteristic matrix of upper ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↑ ;

4.2. updating the quantitative composite relation
matrix and the characteristic matrices of
approximations when deleting attributes

In this subsection, the incremental update of
approximations is considered as from time t

to t + 1. Let CSt = (U t ,At =Ct∪Dt ,V t , f t)
be the composite information table at time t,
where U = {x1,x2, . . . ,xn}. The composite in-
formation table CSt = (U t ,At =Ct∪Dt ,V t , f t) at
time t only contains four types of data, where
Ct = Bt

1
∪

Bt
2
∪

Bt
3
∪

Bt
4, Bt

1 denotes categorical
data, Bt

2 denotes numerical data, Bt
3 denotes set-

valued data, Bt
4 denotes interval-valued data. Let

CSt+1 =
(
U t+1,At+1 =Ct+1∪Dt+1,V t+1, f t+1

)
be

the composite information table at time t + 1,
where U = {x1,x2, . . . ,xn}. At time t + 1, a
set of attributes ∆C are deleted from CSt+1 =(
U t+1,At+1 =Ct+1∪Dt+1,V t+1, f t+1

)
, ∆C =

∆B1
∪

∆B2
∪

∆B3
∪

∆B4, Ct+1 =Ct −∆C.

Proposition 7. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRE

B1
is the equivalence relation ma-

trix on U. Suppose ∆C = ∆B1, Ct+1 = Ct −∆C, the
equivalence relation matrix MRE

B1
from time t to t+1

can be updated as:

(m
RB1
i j )t+1

n×n =

{
0, mt

i j = 0∧ (xi,x j)
t+1 /∈ RE

∆C;

1, else.
(34)

Proposition 8. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRN

B2
is the neighborhood relation

matrix on U. Suppose ∆C = ∆B2, Ct+1 = Ct −∆C,
the neighborhood relation matrix MRN

B2
by adding

∆C to C from time t to t +1 can be updated as:

(m
RB2
i j )t+1

n×n =

{
0, mt

i j = 0∨ (xi,x j)
t+1 ∈ RN

Ct+1 ;

1, else.
(35)

Proposition 9. Let CS = (U,A =C
∪

D,V, f ) be
a composite information system, where U =
{x1,x2, . . . ,xn}. MRP

B3
is the interval-valued relation

matrix on U. Suppose ∆C = ∆B3, Ct+1 = Ct −∆C,
the interval-valued relation matrix MRP

B3
by adding
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∆C to C from time t to t +1 can be updated as:

(m
RB3
i j )t+1

n×n =

{
0, mt

i j = 0∧ (xi,x j)
t+1 /∈ RP

∆C;

1, else.
(36)

Proposition 10. Let CS = (U,A =C
∪

D,V, f )
be a composite information system, where U =
{x1,x2, . . . ,xn}. MRT

B4
is the set-valued relation ma-

trix on U. Suppose ∆C = ∆B4, Ct+1 = Ct −∆C, the
set-valued relation matrix MRT

B4
by adding ∆C to C

from time t to t +1 can be updated as:

(m
RB4
i j )t+1

n×n =

{
0, mt

i j = 0∧ (xi,x j)
t+1 /∈ RT

∆C;

1, else.
(37)

Proposition 11. Let CS = (U,A =C
∪

D,V, f )
be a composite information system, where U =
{x1,x2, . . . ,xn}. MQRCB is the quantitative com-
posite relation matrix on U. Suppose ∆C =
∆B1

∪
∆B2

∪
∆B3

∪
∆B4, Ct+1 = Ct −∆C, the quan-

titative composite relation matrix MQRCB by adding
∆C to C from time t to t +1 can be updated as:

(mQRCB
i j )t+1

n×n =

{
0, mt

i j = 0∧ (xi,x j)
t+1 /∈ QCRCt+1 ;

1, else.
(38)

Proposition 12. Let CS = (U,A =C
∪

D,V, f )
be a composite information system, where U =
{x1,x2, . . . ,xn}. MQRCB is the quantitative composite
relation matrix on U. W = (wi)n×1 = MQCRB ∗E is
the intersection matrix, and W ′ =(w′

i)n×1 =MQCRB ∗
(∼ E) is the non-intersection matrix, i = 1,2, . . . ,n.
Suppose ∆C = ∆B1

∪
∆B2

∪
∆B3

∪
∆B4, Ct+1 =Ct −

∆C. The intersection matrix W = (wi)n×1 =MQCRB ∗
E can be updated as:

(wi)
t+1
n×1 =

{
wt

i −1, mt
i j = 1∧mt+1

i j = 0∧ et
j = 1;

wt
i, else.

(39)
Similarity, the non-intersection matrix W ′ =
(w′

i)n×1 = MQCRB ∗ (∼ E) can be updated as the
same way.

The incremental algorithm for computing ap-
proximations in composite DTRS model based on
matrix when deleting attributes is outlined in Algo-
rithm 3. Step 1 is to update four relation matrices
according to Proposition 5-8, whose time complex-
ity is O(|U |2). Step 2 is to updating quantitative re-
lation matrix according to Proposition 9, whose time
complexity is O(|U |2). Step 3 is to update W and W ′

according to Proposition 10, whose time complexity
is O(|U |2). Step 4 and Step 5 are to compute the
characteristic matrices of lower and upper approxi-
mations, whose time complexity is O(|U |).
Algorithm 3 (ICDTRS-DA) The incremental algorithm
for computing approximations in composite DTRS model
based on matrix when deleting attributes.
Input: At time t, a composite information table CSt =
(U t ,At =Ct∪Dt ,V t , f t) , the loss function L3×2, the
characteristic matrix EX

n×1, the equivalence relation ma-
trix MRE

B2
, the neighborhood relation matrix MRN

B2
, the

partial order relation matrix MRP
B2

, and the tolerance

relation matrix MRT
B2

, the quantitative composite rela-

tion matrix MQCRB , the intersection matrix W , the non-
intersection matrix W ′. From time t to t + 1, ∆C is
the addition of attributes, ∆C = ∆B1

∪
∆B2

∪
∆B3

∪
∆B4,

Ct+1 =Ct −∆C.
Output: The characteristic matrices of lower and upper
approximations Et+1

RQCRB
(α, β )(X)

,Et+1
RQCRB
(α, β )(X)

at time t +1.

Step 1: Updating MRE
B2

, MRN
B2

, MRP
B2

, MRT
B2

according to

Proposition 5-8;
Step 2: Updating MQCRB according to Proposition 9;
Step 3: Updating W and W ′ according to Proposition 10;
Step 4: Compute the characteristic matrix of lower ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↓;

Step 5: Compute the characteristic matrix of upper ap-
proximations E

RQCRB
(α, β )

(X) = (W./W ′)↑ ;

5. Experimental evaluations

In this section, we conduct the comparative experi-
ments to verify the performance of the proposed al-
gorithms for incremental updating approximations
in composite DTRS model when the attributes are
changed. We elect two datasets from the machine
learning data repository, University of California
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Table 3. The description of datasets

Datesets Objects Class
Attributes

Categorical Numerical Set-valued Interval-valued Total

Chess (King-Rock vs.King-Pawn) 3196 2 36 0 0 0 36

Musk (Version 2) 6598 2 0 168 0 0 168

CDATA1 3000 2 10 10 10 10 40

CDATA2 6000 2 20 20 20 20 80
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Fig. 1. Comparison of non-incremental and incremental al-
gorithms versus adding different ratios of attributes.

Table 4. The incremental speedup versus adding the different
radios of attributes

Datesets
The added ratios of attributes

20% 40% 60% 80% 100%

Chess (King-Rock vs.King-Pawn) 10.1067 10.5190 9.7336 10.2247 10.0106

Musk (Version 2 13.4140 14.1118 16.2100 17.0289 18.1688

CDATA1 10.2584 10.9947 11.1742 12.1243 12.8600

CDATA2 12.5924 13.6767 14.9453 15.9917 16.8302

at Irvine (UCI) (http://archive.ics.uci.edu/
ml/). One is the categorical data and another is
the numerical data. Moreover, we generate two

composite datasets, which contain four data types,
namely, categorical data, numerical data, set-valued
data, interval-valued data. The detailed datasets are
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shown in Table . All experiments were performed
on a computer with Microsoft Windows 10, Inter (R)
Core (TM) i5-4210U CUP @ 2.40 GHz and 12.0 GB
of memory and the programming language is MAT-
LAB R2016a.

5.1. A comparison of experiments when adding
attributes

We divide four datasets into ten equal size of sub-
sets respectively according to the number of at-
tributes. At each datasets, the first five subsets
is the original dataset, and the rest five subsets is
the added datasets. We set five ratios for adding
datasets, namely, 20%,40%,60%,80%,100%. The
comparison of experimental results between Algo-
rithm NCDTRS and Algorithm ICDTRS-AA are
shown in Figure 1.

In Figure 1, we can observe that the computa-
tional time with respect to Algorithm NCDTRS and
Algorithm ICDTRS-AA all increase with addition
of attributes. However, it is easy to see that the
computational time of incremental algorithm is less
than the one of non-incremental algorithm in each

sub-figure of figure 1. Furthermore, the bigger the
datasets, more efficient the performance of incre-
mental algorithm will be.

To further show the advantage of the incremental
algorithm ICDTRS-AA, we calculate the incremen-
tal speedup, which denotes the ratios between the
computational time of non-incremental algorithm
and the one of incremental algorithm in Table 4. It
is easy to see that the incremental speedup of four
datasets in Table 3 is greater than one.

5.2. A comparison of experiments when deleting
attributes

Similarly to the experimental methods in subsection
5.1, we also divide each dataset into ten equal size of
subsets respectively according to the number of at-
tributes. At each datasets, all ten subsets is the origi-
nal dataset. We delete one subsets step by step from
the original datasets. We set five ratios for deleting
datasets, namely, 10%,20%,30%,40%,50%. The
comparison of experimental results between Algo-
rithm NCDTRS and Algorithm ICDTRS-DA are
shown in Figure 2.
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Fig. 2. Comparison of non-incremental and incremental al-
gorithms versus deleting different ratios of attributes.
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Table 5. The incremental speedup versus deleting the different
radios of attributes

Datesets
The deleted ratios of attributes

10% 20% 30% 40% 50%

Chess (King-Rock vs.King-Pawn) 10.0012 9.9005 9.8218 9.7104 9.8074

Musk (Version 2 18.1741 18.1528 18.1931 18.1667 17.2593

CDATA1 12.5081 11.5049 11.0677 10.8165 10.5514

CDATA1 16.9251 17.1266 17.4265 15.3336 15.5728

In Figure 2, it is observed that the computational
time with respect to Algorithm NCDTRS and Al-
gorithm ICDTRS-DA all decrease with deletion of
attributes. However, we can find that the computa-
tional time of incremental algorithm is less than the
one of non-incremental algorithm in each sub-figure
of figure 2. To further show the advantage of the in-
cremental algorithm ICDTRS-DA, we calculate the
incremental speedup, which denotes the ratios be-
tween the computational time of non-incremental al-
gorithm and the one of incremental algorithm in Ta-
ble 5. It is easy to see that the incremental speedup
of four datasets in Table 3 is greater than one.

6. Conclusions

In this paper, we investigated the composite in-
formation table, which contains various types of
data. We proposed the quantitative composite rela-
tion for fusion of multiple binary relations. Based
on such composite relation, we introduced a quanti-
tative composite DTRS model and provided a novel
matrix-based approach to compute approximations.
Moreover, to reduce running time w.r.t. the com-
putation of the upper and lower approximations, the
increase learning methods based on matrix updat-
ing strategy are presented in composite DTRS model
versus the addition and deletion of attributes respec-
tively. Experiment results show that the incremental
algorithms are more efficient and effective to update
approximations in composite DTRS model. Our fu-
ture work will focus on the incremental updating
mechanisms when objects are added or deleted in
the composite information system.
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