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ABSTRACT
As a modification of the q-rung orthopair fuzzy sets (QROFSs), complex QROFSs (CQROFSs) can describe the inaccurate
information by complex-valued truth grades with an additional term, named as phase term. Cosine similarity measures (CSMs)
and distancemeasures (DMs) are important tools to verify the grades of discrimination between the two sets. In this manuscript,
we develop someCSMs andDMs forCQROFSs. Firstly, theCSMs andEuclideanDMs (EDMs) forCQROFSs and their properties
are investigated. Because the CSMs do not keep the axiom of similaritymeasure (SM), we investigate a technique to develop other
SMs based on CQROFSs, and they meet the axiom of the SMs. Moreover, we propose a cosine DM (CDM) based on CQROFSs
by considering the interrelationship among the SMs and DMs, then we propose an extended TOPSIS method to solve the multi-
attribute decision-making problems. Finally, we provide some sensible examples to demonstrate the practicality and efficiency
of the suggested procedure, at the same time, the graphical representations of the developed measures are also utilized in this
manuscript.

© 2021 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

For a real example, when an institute chooses whether to enroll a tutoring team, a ten-representative committee of authorities evaluated the
selected persons, seven of them approved to employ these persons, two of them gave negative opinion, and the additional one did not give
any judgment. To characterize this result, an intuitionistic fuzzy set (IFS) was presented by Atanassov [1] to express this kind of information
by including a falsity grade based on the fuzzy set (FS) [2] The truth and the falsity in IFS meet a rule that the sum of both of them is
restricted to [0, 1]. Now IFS has received extensive attentions frommany scholars and has been widely utilized in the different decision areas
[3–7]. Due to some complications of decision environment, sometimes, it is difficult for IFS to describe some daily life issues, for instance,
if a person gives 0.6 for truth grade and 0.5 for falsity, then the sum of both values is beyond the scope of [0, 1], the IFS is not able to express
this type of information accurately. Therefore, Yager [8] proposed the Pythagorean FS (PFS) which is a proficient and capable technique
to express complex information for the decision-making problems. The truth and falsity in PFS meet a rule that the sum of the squares of
them is in [0, 1]. The PFS has been widely utilized in the different decision making areas [9–14]. Similarly, if a person gives 0.9 for truth
grade and 0.8 for falsity, then the sum of the squares of both values is not in [0, 1], the PFS is not able to express this type of information
accurately. Therefore, Yager [15] proposed the q-rung orthopair FS (QROFS) to solve this issue. The truth and falsity in QROFSmeet a rule
that the sum of the q-powers of them is restricted to [0, 1]. Now the QROFS has received extensive attentions from many scholars and has
been widely utilized in the different areas [16–19].

To process complex fuzzy information, the truth and falsity degrees are modified from a real subset to the unit disc of the complex plane,
and then Alkouri and Salleh [20] established the complex IFS (CIFS) by including the complex-valued falsity on the basis of complex FS
(CFS) [21] to handle complex information. The truth and falsity in CIFS meet the rule that the sum of the real parts (also for imaginary
parts) of them is restricted to [0, 1]. The CIFS has received extensive attentions from many scholars and has been widely utilized in the
different areas [22–25]. However, the CIFS is not able to process some problems, for instance, if a person gives 0.6𝑒𝑖2𝜋(7) for truth grade and
0.5𝑒𝑖2𝜋(6) for falsity, then the sum of the real parts (also for imaginary parts) of both values is beyond the scope of [0, 1]. Therefore, Ullah
et al. [26] proposed the complex PFS (CPFS) in which the truth and falsity meet the rule that the sum of the squares of the real parts (also
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for imaginary parts) of them is restricted to [0, 1]. The CPFS has received extensive attentions from scholars and has been widely utilized in
the different areas [27]. Similarly, if a person gives 0.9𝑒𝑖2𝜋(8) for truth grade and 0.8𝑒𝑖2𝜋(7) for falsity, then the sum of the squares of the real
parts (also for imaginary parts) of them is beyond the scope of [0, 1], the CPFS is not able to describe this type of information accurately.
Therefore, Liu et al. [28,29] proposed the complex QROFS (CQROFS) in which the truth and falsity meet the rule that the sum of the q-
powers of the real parts (also for imaginary parts) of them is restricted to [0, 1]. The CQROFS has received extensive attentions frommany
scholars and has been widely utilized in the different areas [30–36].

In real decision problems, we go over numerous circumstances where we need tomeasure the vulnerability existing in the information to get
one ideal choice.Datameasures are significant tools for taking care of uncertain information presented in our day‐to‐day life issues.Different
measures of information, such as similarity, distance, entropy, and inclusion, can process the uncertain information and facilitate us to reach
some conclusions. Recently, these measures have gainedmuch attention frommany scholars due to their wide applications in various fields,
such as pattern recognition, medical diagnosis, clustering analysis, and image segment. All the prevailing approaches of decision-making,
based on information measures for PFS and QROFS, can only deal with the real-valued truth and falsity grades. In CQROFS, truth and
falsity grades are complex-values and are represented in polar coordinates. The amplitudes corresponding to truth and falsity degrees give
the extents of membership and nonmembership of an object in a CQROFS with a rule that the sum of the q-powers of the real and unreal
parts of both grades is restricted to the unit interval. The phase parts are novel parameters of the truth and falsity degrees added from
traditional QROFS. QROFS can deal with only one dimension at a time, which results in information loss in some instances. However, in
real life, we come across complex natural phenomena where only one dimensional information cannot express fully the evaluation value,
and the second dimensional information is needed to express the truth and falsity grades. By adding the second dimension, the complete
information can be projected in one set, and hence, loss of information can be avoided. To illustrate the significance of the phase term, we
give an example. AssumeXYZorganization chooses to set up biometric‐based participation gadgets (BBPGs) in the entirety of its workplaces
spread everywhere in the country. For this, the organization counsels a specialist who gives the data concerning (i) demonstrates of BBPGs
and (ii) creation dates of BBPGs. The organization needs to choose the most ideal model of BBPGs with its creation date all the while. Here,
this issue is two-dimensional, to be specific, the model of BBPGs and the creation date of BBPGs. This kind of issue cannot be expressed
precisely by the conventional QROFS. The most ideal approach to address this problem is by utilizing the CQROFS. The amplitudes in
CQROFS might be utilized to give the organization’s choice regarding the model of BBPGs and the phase parts might be utilized to address
the organization’s judgment concerning the creation date of BBPGs.

In addition, cosine similarity is one of the most important measures, which can not only compare one data entity with others but also show
the extents of association between them and their direction. Also, CQROFSs have a powerful ability to model the imprecise and ambiguous
information in real-world applications than the existing information expressions such as CFSs, CIFSs, CPFSs. Besides, the SM is a valid
tool to examine the interrelationships among any number of CQROFSs, and it has been utilized to different areas [34]. Rani and Garg [23]
investigated the distance similarity by using CIFS. Garg and Rani [37] proposed some information measures based on CIFS. Garg and Rani
[24] developed the robust correlation coefficient based on CIFS. But up to date, the SMs for CQROFSs have not been investigated. Because
the CQROFSs are a reliable technique to express complex fuzzy information, and the SM is an important tool for decision-making problems,
it is necessary to develop some SMs for CQROFSs. Therefore, keeping the advantages of SMs and CQROFSs, the main investigations of this
manuscript are summarized as follows:

1. The cosine similarity measures (CSMs) and Euclidean distance measures (EDMs) for CQROFSs and their properties are investigated.

2. Considering that the CSMs do not meet the axiom of similarity measure (SM), some new SMs based on CQROFSs using the explored
CSMs and EDMs are developed, which meets the axiom of the SMs.

3. Cosine DMs (CDMs) based on CQROFSs by considering the interrelationship among the SM and DMs are proposed and an extended
TOPSIS method is developed.

4. Some examples are given to demonstrate the practicality and efficiency of the suggested procedure.

5. The graphical representations of the developed measures are also given in this manuscript.

This manuscript is summarized as follows: In Section 2, we briefly recall the concept of CIFSs, CPFSs, CQROFSs, and their fundamental
laws. In Section 3, we develop the CSMs and DMs by using CQROFNs. In Section 4, we develop the TOPSIS method based on the investi-
gated measures. In Section 5, we give a comparative analysis of the proposed work with some existing approaches. The conclusion of this
manuscript is discussed in Section 6.

2. PRELIMINARIES

In this work, we recall the main ideas of CIFSs, CPFSs, CQROFSs, and their fundamental laws. We use the symbol ⏞𝒪 for universal
sets and the truth and falsity degrees are shown by 𝔐ℭ𝐶𝑄 and 𝔑ℭ𝐶𝑄 , where 𝔐ℭ𝐶𝑄 (⏞ℴ) = 𝔐ℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(𝔐ℭ𝐼𝑃 (⏞ℴ)) and 𝔑ℭ𝐶𝑄 (⏞ℴ) =
𝔑ℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃 (⏞ℴ)).
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Definition 1. [20] A CIFS ℭ𝐶𝑄 is demonstrated by

ℭ𝐶𝑄 = {(𝔐ℭ𝐶𝑄 (⏞ℴ) ,𝔑ℭ𝐶𝑄 (⏞ℴ)) ∶ ⏞ℴ ∈ ⏞𝒪} (1)

where 𝔐ℭ𝐶𝑄 (⏞ℴ) = 𝔐ℭ𝑅𝑃 (⏞ℴ) 𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃 (⏞ℴ)) and 𝔑ℭ𝐶𝑄 (⏞ℴ) = 𝔑ℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃 (⏞ℴ)) express the truth degree and the falsity degree
with 0 ≤ 𝔐ℭ𝑅𝑃 (⏞ℴ) + 𝔑ℭ𝑅𝑃 (⏞ℴ) ≤ 1 and 0 ≤ 𝔐ℭ𝐼𝑃 (⏞ℴ) + 𝔑ℭ𝐼𝑃 (⏞ℴ) ≤ 1. Moreover, the term ℐℭ𝐶𝑄 (⏞ℴ) = ℐℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(ℐℭ𝐼𝑃 ) =
(1 −𝔐ℭ𝑅𝑃 (⏞ℴ) − 𝔑ℭ𝑅𝑃 (⏞ℴ)) 𝑒

𝑖2𝜋(1−𝔐ℭ𝐼𝑃 (⏞ℴ)−𝔑ℭ𝐼𝑃 (⏞ℴ)) expresses the degree of indeterminacy.

Definition 2. [26] A CPFS ℭ𝐶𝑄 is demonstrated by

ℭ𝐶𝑄 = {(𝔐ℭ𝐶𝑄 (⏞ℴ) ,𝔑ℭ𝐶𝑄 (⏞ℴ)) ∶ ⏞ℴ ∈ ⏞𝒪} (2)

where 𝔐ℭ𝐶𝑄 (⏞ℴ) = 𝔐ℭ𝑅𝑃 (⏞ℴ) 𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃 (⏞ℴ)) and 𝔑ℭ𝐶𝑄 (⏞ℴ) = 𝔑ℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃 (⏞ℴ)) express the truth degree and the falsity degree
with 0 ≤ 𝔐2

ℭ𝑅𝑃 (⏞ℴ) + 𝔑2
ℭ𝑅𝑃 (⏞ℴ) ≤ 1 and 0 ≤ 𝔐2

ℭ𝐼𝑃 (⏞ℴ) + 𝔑2
ℭ𝐼𝑃 (⏞ℴ) ≤ 1. Moreover, the term ℐℭ𝐶𝑄 (⏞ℴ) = ℐℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(ℐℭ𝐼𝑃 ) =

(
1 −𝔐2

ℭ𝑅𝑃 (⏞ℴ)−
𝔑2
ℭ𝑅𝑃 (⏞ℴ)

)
1
2
𝑒𝑖2𝜋(1−𝔐

2
ℭ𝐼𝑃 (⏞ℴ)−𝔑

2
ℭ𝐼𝑃 (⏞ℴ))

1
2
expresses the degree of indeterminacy.

Definition 3. [28,29] A CQROFS ℭ𝐶𝑄 is demonstrated by

ℭ𝐶𝑄 = {(𝔐ℭ𝐶𝑄 (⏞ℴ) ,𝔑ℭ𝐶𝑄 (⏞ℴ)) ∶ ⏞ℴ ∈ ⏞𝒪} (3)

where𝔐ℭ𝐶𝑄 (⏞ℴ) = 𝔐ℭ𝑅𝑃 (⏞ℴ) 𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃 (⏞ℴ)) and 𝔑ℭ𝐶𝑄 (⏞ℴ) = 𝔑ℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃 (⏞ℴ)) express the truth degree and the falsity degree with
0 ≤ 𝔐𝓆𝐶𝑄

ℭ𝑅𝑃 (⏞ℴ) + 𝔑𝓆𝐶𝑄
ℭ𝑅𝑃 (⏞ℴ) ≤ 1 and 0 ≤ 𝔐𝓆𝐶𝑄

ℭ𝐼𝑃 (⏞ℴ) + 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃 (⏞ℴ) ≤ 1,𝓆𝐶𝑄 ≥ 1. Moreover, the term ℐℭ𝐶𝑄 (⏞ℴ) = ℐℭ𝑅𝑃 (⏞ℴ) 𝑒

𝑖2𝜋(ℐℭ𝐼𝑃 ) =

(
1 −𝔐𝓆𝐶𝑄

ℭ𝑅𝑃 (⏞ℴ)−
𝔑𝓆𝐶𝑄
ℭ𝑅𝑃 (⏞ℴ)

)

1
𝓆𝐶𝑄

𝑒𝑖2𝜋(1−𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃 (⏞ℴ)−𝔑

𝓆𝐶𝑄
ℭ𝐼𝑃 (⏞ℴ))

1
𝓆𝐶𝑄

expresses the degree of indeterminacy. Throughout, this manuscript, the complex

q-rung orthopair fuzzy numbers (CQROFNs) are shown by ℭ𝐶𝑄 = (𝔐ℭ𝑅𝑃𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃 ), 𝔑ℭ𝑅𝑃𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃 )). Further, we define the score and
accuracy values such that

𝔖𝐶𝑄 (ℭ𝐶𝑄) =
1
2 (𝔐

𝓆𝐶𝑄
ℭ𝑅𝑃 +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃 −𝔑𝓆𝐶𝑄
ℭ𝑅𝑃 −𝔑𝓆𝐶𝑄

ℭ𝐼𝑃 ) ,𝔖𝐶𝑄 (ℭ𝐶𝑄) ∈ [−1, 1] (4)

ℌ𝐶𝑄 (ℭ𝐶𝑄) =
1
2 (𝔐

𝓆𝐶𝑄
ℭ𝑅𝑃 +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃 +𝔑𝓆𝐶𝑄
ℭ𝑅𝑃 +𝔑𝓆𝐶𝑄

ℭ𝐼𝑃 ) ,ℌ𝐶𝑄 (ℭ𝐶𝑄) ∈ [0, 1] (5)

To find the relationships between any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃−1 ), 𝔑ℭ𝑅𝑃−1𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃−1 )) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2𝑒

𝑖2𝜋(𝔐ℭ𝐼𝑃−2 ), 𝔑ℭ𝑅𝑃−2𝑒
𝑖2𝜋(𝔑ℭ𝐼𝑃−2 )), we use the following rules:

1. If𝔖𝐶𝑄 (ℭ𝐶𝑄−1) > 𝔖𝐶𝑄 (ℭ𝐶𝑄−2) ⇒ ℭ𝐶𝑄−1 > ℭ𝐶𝑄−2;

2. If𝔖𝐶𝑄 (ℭ𝐶𝑄−1) < 𝔖𝐶𝑄 (ℭ𝐶𝑄−2) ⇒ ℭ𝐶𝑄−1 < ℭ𝐶𝑄−2;

3. If𝔖𝐶𝑄 (ℭ𝐶𝑄−1) = 𝔖𝐶𝑄 (ℭ𝐶𝑄−2) ⇒;

1) Ifℌ𝐶𝑄 (ℭ𝐶𝑄−1) > ℌ𝐶𝑄 (ℭ𝐶𝑄−2) ⇒ ℭ𝐶𝑄−1 > ℭ𝐶𝑄−2;

2) Ifℌ𝐶𝑄 (ℭ𝐶𝑄−1) < ℌ𝐶𝑄 (ℭ𝐶𝑄−2) ⇒ ℭ𝐶𝑄−1 < ℭ𝐶𝑄−2.

3. CSMs AND DMs BETWEEN CQROFSs

In this part, some CSMs and DMs for CQROFSs are proposed.
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Definition 4. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the CSM
𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is demonstrated by

𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1
̃𝑛 ∑

̃𝑛
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(6)

Theorem 1. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the CSM
𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following conditions:

1. 0 ≤ 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 if ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 .

Proof: Based on Definition 4, conditions (1) and (2) are straightforward. Moreover, if we choose the ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2, that is,𝔐ℭ𝑅𝑃−1 =
𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 , then

𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1
̃𝑛

̃𝑛
∑
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 1
̃𝑛

̃𝑛
∑
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 1
̃𝑛

̃𝑛
∑
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎝

(
𝔐2𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

+𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)
)

((𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖))
1
2+

1
2 )

⎞
⎟
⎟
⎟
⎟
⎠

= 1.

Hence, we obtain 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1.

By using the weight vectorΩ𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} with∑
̃𝑛
𝑖=1

Ω𝑊𝑉−𝑖 = 1,Ω𝑊𝑉−𝑖 ∈ [0, 1], then the WCSM is given by

Definition 5. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the WCSM
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𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is defined by

𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = ∑ ̃𝑛
𝑖=1

Ω𝑊𝑉−𝑖

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(7)

For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪, if we choose the weight vector
Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} = ( 1̃𝑛 ,

1
̃𝑛 ,… ,

1
̃𝑛 ), then the𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is reduced to 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2).

Theorem 2. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the WCSM
𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following conditions:

1. 0 ≤ 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 if ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 .

Proof: All are omitted.

Example 1.

Based on the universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, ⏞ℴ3, ⏞ℴ4, ⏞ℴ5}, two CQROFNs are

ℭ𝐶𝑄−1 = {
(⏞ℴ1, (0.2𝑒𝑖2𝜋(0.21), 0.5𝑒𝑖2𝜋(0.51))) , (⏞ℴ2, (0.4𝑒𝑖2𝜋(0.41), 0.2𝑒𝑖2𝜋(0.21))) , (⏞ℴ3, (0.5𝑒𝑖2𝜋(0.51), 0.4𝑒𝑖2𝜋(0.41))) ,

(⏞ℴ4, (0.3𝑒𝑖2𝜋(0.31), 0.3𝑒𝑖2𝜋(0.31))) , (⏞ℴ5, (0.7𝑒𝑖2𝜋(0.71), 0.1𝑒𝑖2𝜋(0.11)))
} andℭ𝐶𝑄−2 =

{
(⏞ℴ1, (0.2𝑒𝑖2𝜋(0.21), 0.7𝑒𝑖2𝜋(0.71))) , (⏞ℴ2, (0.6𝑒𝑖2𝜋(0.61), 0.3𝑒𝑖2𝜋(0.31))) , (⏞ℴ3, (0.4𝑒𝑖2𝜋(0.41), 0.3𝑒𝑖2𝜋(0.31))) ,

(⏞ℴ4, (0.4𝑒𝑖2𝜋(0.41), 0.4𝑒𝑖2𝜋(0.41))) , (⏞ℴ5, (0.6𝑒𝑖2𝜋(0.61), 0.1𝑒𝑖2𝜋(0.11)))
}, further, suppose 𝓆𝐶𝑄 = 3, and

Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, Ω𝑊𝑉−3, Ω𝑊𝑉−4, Ω𝑊𝑉−5} = (0.35, 0.2, 0.1, 0.15, 0.2), then we can get𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0.99938. If
we ignore the imaginary parts in all the above information, then we get𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0.999438, which is discussed in Ref.
[38]. When an SM holds the conditions of SMs, then it is called the original SM.

Lemma 1. For any two FSs ℭ𝐶𝑄−1 and ℭ𝐶𝑄−2, if an SM 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following axioms:

1. 0 ≤ 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 if ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2.

Then, we say that the 𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is called the original SM. Where the DM is given by 𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 −
𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) based on SM. Moreover, we develop the EDM 𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2), which is demonstrated below.

Definition 6. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the EDM
𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is defined by

𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = ( 1
4 ̃𝑛 ∑

⏞ℴ𝑖∈⏞𝒪
(
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2

+||𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 + ||𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 ))

1
2

(8)
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By using the weight vector Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} meeting ∑ ̃𝑛
𝑖=1

Ω𝑊𝑉−𝑖 = 1,Ω𝑊𝑉−𝑖 ∈ [0, 1], then the WEDM
𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is defined below.

𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = (14 ∑
⏞ℴ𝑖∈⏞𝒪

Ω𝑊𝑉−𝑖 (
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2

+||𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 + ||𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 ))

1
2

(9)

Theorem 3. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the
𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following conditions:

1. 0 ≤ 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0 if ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 .

Proof:

1. Based on Definition 6, we know that 0 ≤ 𝔐ℭ𝑅𝑃−1 ,𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 ,𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 , 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 , 𝔑ℭ𝐼𝑃−2 ≤ 1 and the parameter
𝓆𝐶𝑄 > 0, then 0 ≤ ||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 ≤ 1, 0 ≤ ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2 ≤ 1, 0 ≤ ||𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 ≤

1 and 0 ≤ ||𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2 ≤ 1. Therefore, 0 ≤ 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ ( 14)

1
2 (4 ∑

⏞ℴ𝑖∈⏞𝒪
Ω𝑊𝑉−𝑖)

1
2
= 1.

2. By using Definition 6, we easily obtain the𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1).

3. 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0 ⇔ ||𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 = 0, ||𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 =
0, ||𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 = 0, ||𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2 = 0 that is 𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 =

𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 ⇔ ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2.

Definition 7. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the new SM
𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is demonstrated by

𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) + 1 − 𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2)

2 (10)

where

𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1
̃𝑛

̃𝑛
∑
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = ( 1
4 ̃𝑛 ∑

⏞ℴ𝑖∈⏞𝒪
(
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2

+||𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 + ||𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 ))

1
2

By using the weight vector Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} meeting∑ ̃𝑛
𝑖=1

Ω𝑊𝑉−𝑖 = 1,Ω𝑊𝑉−𝑖 ∈ [0, 1], then the weighted new SM
𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is defined as follows.
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Definition 8. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the
𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is demonstrated by

𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) + 1 −𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2)

2 (11)

where

𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
̃𝑛

∑
𝑖=1

Ω𝑊𝑉−𝑖

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = (14 ∑
⏞ℴ𝑖∈⏞𝒪

Ω𝑊𝑉−𝑖 (
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + (𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖))
2+

(𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖))
2 + (𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖))

2 ))

1
2

If we choose the vector Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} = ( 1̃𝑛 ,
1
̃𝑛 ,… ,

1
̃𝑛 ), then the 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is reduced to

𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2).

Theorem 4. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the WNSM
𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following conditions:

1. 0 ≤ 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 iff ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 .

Proof:

1. Based on Definition 8 and Theorem 2, we know that 0 ≤ 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1 for the parameter 𝓆𝐶𝑄 > 0, then 0 ≤
𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1, then by using Lemma 1, we obtain 0 ≤ 𝑊𝐶𝑆𝑀𝐶𝑄(ℭ𝐶𝑄−1,ℭ𝐶𝑄−2)+1−𝑊𝐸𝐷𝑀𝐶𝑄(ℭ𝐶𝑄−1 ,ℭ𝐶𝑄−2)

2 ≤ 1 which
implies that 0 ≤ 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1.

2. By using Definition 6, Theorem 2, and Theorem 3, we easily obtain the𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1).
3. When ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2, we know that 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 and 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0, then

𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1. In contrast, we have 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1, then 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) + 1 −
𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1+1−0 = 2, such that 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1−𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2). For all CQROFNs
0 ≤ 𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1 and 0 ≤ 𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1 exists continuously, then𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1 and𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0, by using Theorem 3, if𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 0, then it is obviously ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2.
Hence𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 iff ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 =
𝔑ℭ𝐼𝑃−2 .

Definition 9. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the weighted
DM𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is expressed by:

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 −𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1 −𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) +𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2)

2 (12)
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where

𝑊𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
̃𝑛

∑
𝑖=1

Ω𝑊𝑉−𝑖

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝑊𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = (14 ∑
⏞ℴ𝑖∈⏞𝒪

Ω𝑊𝑉−𝑖 (
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2

+||𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 + ||𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 ))

1
2

If we choose the weight vector Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛} = ( 1̃𝑛 ,
1
̃𝑛 ,… ,

1
̃𝑛 ), then the 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is reduced to

𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2).

Definition 10. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the weighted
DM𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) is defined by

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 − 𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1 − 𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) + 𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2)

2 (13)

where

𝐶𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) =
1
̃𝑛

̃𝑛
∑
𝑖=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔐
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

+𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖)𝔑

𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)𝔑
𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)

)

( √𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖)

×√𝔐2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) +𝔐2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) + 𝔑2𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝐸𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = ( 1
4 ̃𝑛 ∑

⏞ℴ𝑖∈⏞𝒪
(
||𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄
ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||

2 + ||𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) −𝔐𝓆𝐶𝑄

ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||
2

+||𝔑𝓆𝐶𝑄
ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄

ℭ𝑅𝑃−2 ( ⏞ℴ𝑖)||
2 + ||𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−1 ( ⏞ℴ𝑖) − 𝔑𝓆𝐶𝑄
ℭ𝐼𝑃−2 ( ⏞ℴ𝑖)||

2 ))

1
2

Theorem 5. For any two CQROFNs ℭ𝐶𝑄−1 = (𝔐ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−1 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−1 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−1 (⏞ℴ𝑖))) and ℭ𝐶𝑄−2 =
(𝔐ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔐ℭ𝐼𝑃−2 (⏞ℴ𝑖)), 𝔑ℭ𝑅𝑃−2 ( ⏞ℴ𝑖) 𝑒𝑖2𝜋(𝔑ℭ𝐼𝑃−2 (⏞ℴ𝑖))) , 𝑖 = 1, 2, , ..., ̃𝑛, based on a universal set ⏞𝒪 = {⏞ℴ1, ⏞ℴ2, … , ⏞ℴ ̃𝑛}, then the
𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) holds the following conditions:

1. 0 ≤ 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) ≤ 1;
2. 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−2, ℭ𝐶𝑄−1);
3. 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 iff ℭ𝐶𝑄−1 = ℭ𝐶𝑄−2 that is𝔐ℭ𝑅𝑃−1 = 𝔐ℭ𝑅𝑃−2 ,𝔐ℭ𝐼𝑃−1 = 𝔐ℭ𝐼𝑃−2𝔑ℭ𝑅𝑃−1 = 𝔑ℭ𝑅𝑃−2 , 𝔑ℭ𝐼𝑃−1 = 𝔑ℭ𝐼𝑃−2 .

Proof: Based on Theorem 4, we obtain𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2) = 1 − 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, ℭ𝐶𝑄−2), by Theorem 4, we easily obtain the
proof of Theorem 5.

4. EXTENDED TOPSIS METHOD WITH CQROFSs

TOPSISmethod is a useful tool forMADMproblems, andmany researches on extended TOPSIS for the different FSs are done, for example,
Chen et al. [39] proposed an extended TOPSIS method for PHFLTS; Chen et al. [40] proposed a proportional interval type-2 hesitant fuzzy
TOPSIS approach based on Hamacher aggregation operators and andness optimization models. Now there are no extensions of TOPSIS for
CQROFSs, so it is necessary to develop TOPSIS method for CQROFSs.
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In this part, we develop the extended TOPSIS method for CQROFSs. Suppose the family of alternatives is𝔈𝐴𝑙 = {𝔈𝐴𝑙−1, 𝔈𝐴𝑙−2, … ,𝔈𝐴𝑙−𝑚̃},
which is evaluated by the decision-maker concerning the attributes 𝔓𝐴𝑡 = {𝔓𝐴𝑡−1, 𝔓𝐴𝑡−2, … ,𝔓𝐴𝑡− ̃𝑛} by using CQROFNs. ℭ𝐶𝑄−𝑖𝑗 =
(𝔐ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 ), 𝔑ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 )) is an evaluation value of alternative𝔈𝐴𝑙−𝑖 for attribute𝔓𝐴𝑡−𝑗 meeting 0 ≤ 𝔐𝓆𝐶𝑄

ℭ𝑅𝑃−𝑖𝑗+𝔑
𝓆𝐶𝑄
ℭ𝑅𝑃−𝑖𝑗 ≤ 1

and 0 ≤ 𝔐𝓆𝐶𝑄
ℭ𝐼𝑃−𝑖𝑗 + 𝔑𝓆𝐶𝑄

ℭ𝐼𝑃−𝑖𝑗 ≤ 1,𝓆𝐶𝑄 ≥ 1 with Ω𝑊𝑉 = {Ω𝑊𝑉−1, Ω𝑊𝑉−2, … ,Ω𝑊𝑉− ̃𝑛}. Then the complex q-rung orthopair fuzzy decision

matrix (CQROFDM) 𝒬𝐷𝑀 = (𝔈𝐴𝑙−𝑖𝑗)𝑚̃× ̃𝑛 = (𝔐ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 ), 𝔑ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 ))
𝑚̃× ̃𝑛

is expressed as follows:

𝒬𝐷𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝔈𝐴𝑙−11 𝔈𝐴𝑙−12 𝔈𝐴𝑙−12 … 𝔈𝐴𝑙−1 ̃𝑛

𝔈𝐴𝑙−21 𝔈𝐴𝑙−22 𝔈𝐴𝑙−23 … 𝔈𝐴𝑙−2 ̃𝑛

𝔈𝐴𝑙−31 𝔈𝐴𝑙−32 𝔈𝐴𝑙−33 … 𝔈𝐴𝑙−3 ̃𝑛
… … … … …
𝔈𝐴𝑙−𝑚̃1 𝔈𝐴𝑙−𝑚̃2 𝔈𝐴𝑙−𝑚̃3 … 𝔈𝐴𝑙−𝑚̃ ̃𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Based on the investigated CSMs, the steps of the developed decision-making procedure are as follows:

Step 1: The CQROFDM 𝒬𝐷𝑀 = (𝔈𝐴𝑙−𝑖𝑗)𝑚̃× ̃𝑛 = (𝔐ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 ), 𝔑ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 ))
𝑚̃× ̃𝑛

is normalized. If all criteria are benefits,

then we cannot do anything, but, if one criterion is cost type, then we convert the cost criteria into benefits, by

̃𝔈𝐴𝑙−𝑖𝑗 = (𝔐̃ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔐̃ℭ𝐼𝑃−𝑖𝑗 ), 𝔑̃ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔑̃ℭ𝐼𝑃−𝑖𝑗 ))

=
⎧
⎨
⎩

(𝔐ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 ), 𝔑ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 )) for benefit types

(𝔑ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 ),𝔐ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 )) for cost types

(14)

Step 2: the positive ideal solution (PIS) 𝔈+
𝐴𝑙 = {𝔈+

𝐴𝑙−1, 𝔈+
𝐴𝑙−2, … ,𝔈+

𝐴𝑙− ̃𝑛} and negative ideal solution (NIS) 𝔈−
𝐴𝑙 = {𝔈−

𝐴𝑙−1, 𝔈−
𝐴𝑙−2, … ,𝔈−

𝐴𝑙− ̃𝑛}
are obtained by score values, which are shown as

𝔈+
𝐴𝑙−𝑗 = max {𝔖𝐶𝑄 (𝔈𝐴𝑙−1𝑗) ,𝔖𝐶𝑄 (𝔈𝐴𝑙−2𝑗) , … .,𝔖𝐶𝑄 (𝔈𝐴𝑙−𝑚̃𝑗)} , 𝑗 = 1, 2, … , ̃𝑛 (15)

𝔈−
𝐴𝑙−𝑗 = min {𝔖𝐶𝑄 (𝔈𝐴𝑙−1𝑗) ,𝔖𝐶𝑄 (𝔈𝐴𝑙−2𝑗) , … .,𝔖𝐶𝑄 (𝔈𝐴𝑙−𝑚̃𝑗)} , 𝑗 = 1, 2, … , ̃𝑛 (16)

Step 3: the closeness indexes Ψ𝐶𝐼−𝑖 andΨ′
𝐶𝐼−𝑖 , can be calculated by

Ψ𝐶𝐼−𝑖 =
𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+

𝐴𝑙)
𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+

𝐴𝑙) +𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈−
𝐴𝑙)

, 𝑖 = 1, 2, … , 𝑚̃ (17)

Ψ′
𝐶𝐼−𝑖 =

𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+
𝐴𝑙)

𝑊𝑁𝑠𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+
𝐴𝑙) +𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈−

𝐴𝑙)
, 𝑖 = 1, 2, … , 𝑚̃ (18)

Step 3: rank all alternatives by the closeness indexes Ψ𝐶𝐼−𝑖 andΨ′
𝐶𝐼−𝑖 .

Because the DM between the alternative 𝔈𝐴𝑙−𝑖 and PIS 𝔈+
𝐴𝑙 is smaller and the CM between the alternative 𝔈𝐴𝑙−𝑖 and PIS 𝔈+

𝐴𝑙 is bigger, the
alternative𝔈𝐴𝑙−𝑖 is better. So we can rank the Ψ𝐶𝐼−𝑖 from smallest to biggest, or rank the Ψ′

𝐶𝐼−𝑖 from biggest to smallest, and we can get the
ranking orders of all alternatives from the best to worst.

Example 2.

To show the application of the investigated method, we choose the real MADM example from Ref. [38]. To increase monthly income, an
enterprise wants to invest money in the market. For this, we choose four potential companies denoted by {ℭ𝐶𝑄−1, ℭ𝐶𝑄−2, ℭ𝐶𝑄−3, ℭ𝐶𝑄−4} as
alternatives, which are evaluated by the family of attributes shown as follows:

𝔓𝐴𝑡−1: Risk analysis.

𝔓𝐴𝑡−2: Growth analysis.
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Table 1 Orignal decision matrix by complex q-rung orthopair fuzzy numbers.

Alternatives\Attributes 𝔓𝐴𝑡−1 𝔓𝐴𝑡−2 𝔓𝐴𝑡−3 𝔓𝐴𝑡−4

ℭ𝑪𝑸−1 (
0.7𝑒𝑖2𝜋(0.6),

0.9𝑒𝑖2𝜋(0.8)
) (

0.91𝑒𝑖2𝜋(0.81),

0.71𝑒𝑖2𝜋(0.61)
) (

0.92𝑒𝑖2𝜋(0.82),

0.72𝑒𝑖2𝜋(0.62)
) (

0.93𝑒𝑖2𝜋(0.83),

0.73𝑒𝑖2𝜋(0.63)
)

ℭ𝑪𝑸−2 (
0.8𝑒𝑖2𝜋(0.7),

0.85𝑒𝑖2𝜋(0.89)
) (

0.86𝑒𝑖2𝜋(0.9),

0.81𝑒𝑖2𝜋(0.71)
) (

0.87𝑒𝑖2𝜋(0.91),

0.82𝑒𝑖2𝜋(0.72)
) (

0.88𝑒𝑖2𝜋(0.92),

0.83𝑒𝑖2𝜋(0.73)
)

ℭ𝑪𝑸−3 (
0.6𝑒𝑖2𝜋(0.9),

0.7𝑒𝑖2𝜋(0.8)
) (

0.71𝑒𝑖2𝜋(0.81),

0.61𝑒𝑖2𝜋(0.91)
) (

0.72𝑒𝑖2𝜋(0.82),

0.62𝑒𝑖2𝜋(0.92)
) (

0.73𝑒𝑖2𝜋(0.83),

0.63𝑒𝑖2𝜋(0.93)
)

ℭ𝑪𝑸−4 (
0.81𝑒𝑖2𝜋(0.61),

0.85𝑒𝑖2𝜋(0.7)
) (

0.86𝑒𝑖2𝜋(0.71),

0.82𝑒𝑖2𝜋(0.62)
) (

0.87𝑒𝑖2𝜋(0.72),

0.83𝑒𝑖2𝜋(0.63)
) (

0.88𝑒𝑖2𝜋(0.73),

0.84𝑒𝑖2𝜋(0.64)
)

Table 2 Normalized decision matrix.

Alternatives\Attributes 𝔓𝐴𝑡−1 𝔓𝐴𝑡−2 𝔓𝐴𝑡−3 𝔓𝐴𝑡−4

ℭ𝑪𝑸−1 (
0.9𝑒𝑖2𝜋(0.8),

0.7𝑒𝑖2𝜋(0.6)
) (

0.91𝑒𝑖2𝜋(0.81),

0.71𝑒𝑖2𝜋(0.61)
) (

0.92𝑒𝑖2𝜋(0.82),

0.72𝑒𝑖2𝜋(0.62)
) (

0.93𝑒𝑖2𝜋(0.83),

0.73𝑒𝑖2𝜋(0.63)
)

ℭ𝑪𝑸−2 (
0.85𝑒𝑖2𝜋(0.89),

0.8𝑒𝑖2𝜋(0.7)
) (

0.86𝑒𝑖2𝜋(0.9),

0.81𝑒𝑖2𝜋(0.71)
) (

0.87𝑒𝑖2𝜋(0.91),

0.82𝑒𝑖2𝜋(0.72)
) (

0.88𝑒𝑖2𝜋(0.92),

0.83𝑒𝑖2𝜋(0.73)
)

ℭ𝑪𝑸−3 (
0.7𝑒𝑖2𝜋(0.8),

0.6𝑒𝑖2𝜋(0.9)
) (

0.71𝑒𝑖2𝜋(0.81),

0.61𝑒𝑖2𝜋(0.91)
) (

0.72𝑒𝑖2𝜋(0.82),

0.62𝑒𝑖2𝜋(0.92)
) (

0.73𝑒𝑖2𝜋(0.83),

0.63𝑒𝑖2𝜋(0.93)
)

ℭ𝑪𝑸−4 (
0.85𝑒𝑖2𝜋(0.7),

0.81𝑒𝑖2𝜋(0.61)
) (

0.86𝑒𝑖2𝜋(0.71),

0.82𝑒𝑖2𝜋(0.62)
) (

0.87𝑒𝑖2𝜋(0.72),

0.83𝑒𝑖2𝜋(0.63)
) (

0.88𝑒𝑖2𝜋(0.73),

0.84𝑒𝑖2𝜋(0.64)
)

𝔓𝐴𝑡−3: Social Impact.

𝔓𝐴𝑡−4: Environment Impact.

where𝔓𝐴𝑡−1 is cost type, and the others are benefit types. To solve this example, suppose the weight vector of the attributes is
(0.4, 0.3, 0.2, 0.1)𝑇 , then the CQROFDM is expressed shown in Table 1.

The steps of the extended TOPSIS method are shown as follows:

Step 1: The CQROFDM 𝒬𝐷𝑀 = (𝔈𝐴𝑙−𝑖𝑗)4̃×4̃ = (𝔐ℭ𝑅𝑃−𝑖𝑗𝑒
𝑖2𝜋(𝔐ℭ𝐼𝑃−𝑖𝑗 ), 𝔑ℭ𝑅𝑃−𝑖𝑗𝑒

𝑖2𝜋(𝔑ℭ𝐼𝑃−𝑖𝑗 ))
4̃×4̃

is normalized which is shown in Table 2.

(only convert the attribute𝔓𝐴𝑡−1).

Step 2: The PIS 𝔈+
𝐴𝑙 = {𝔈+

𝐴𝑙−1, 𝔈+
𝐴𝑙−2, … ,𝔈+

𝐴𝑙− ̃𝑛} and NIS 𝔈−
𝐴𝑙 = {𝔈−

𝐴𝑙−1, 𝔈−
𝐴𝑙−2, … ,𝔈−

𝐴𝑙− ̃𝑛} are obtained as follows:

𝔈+
𝐴𝑙−𝑗 = {

(0.93𝑒𝑖2𝜋(0.83), 0.73𝑒𝑖2𝜋(0.63)) , (0.88𝑒𝑖2𝜋(0.92), 0.83𝑒𝑖2𝜋(0.73)) ,
(0.7𝑒𝑖2𝜋(0.8), 0.6𝑒𝑖2𝜋(0.9)) , (0.88𝑒𝑖2𝜋(0.73), 0.84𝑒𝑖2𝜋(0.64))

}

𝔈−
𝐴𝑙−𝑗 = {

(0.9𝑒𝑖2𝜋(0.8), 0.7𝑒𝑖2𝜋(0.6)) , (0.85𝑒𝑖2𝜋(0.89), 0.8𝑒𝑖2𝜋(0.7)) ,
(0.73𝑒𝑖2𝜋(0.83), 0.63𝑒𝑖2𝜋(0.93)) , (0.85𝑒𝑖2𝜋(0.7), 0.81𝑒𝑖2𝜋(0.61))

}

Step 3: 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+
𝐴𝑙), 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈+

𝐴𝑙) and 𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈−
𝐴𝑙), 𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−𝑖 , 𝔈−

𝐴𝑙) are calculated shown as
(𝓆𝐶𝑄 = 6).

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, 𝔈+
𝐴𝑙) = 0.5871𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−1, 𝔈−

𝐴𝑙) = 0.5871

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−2, 𝔈+
𝐴𝑙) = 0.5835𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−2, 𝔈−

𝐴𝑙) = 0.5867

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−3, 𝔈+
𝐴𝑙) = 0.649𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−3, 𝔈−

𝐴𝑙) = 0.6326
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Figure 1 Geometrical expressions of the Example 2.

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−4, 𝔈+
𝐴𝑙) = 0.6037𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−4, 𝔈−

𝐴𝑙) = 0.5963

and

𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, 𝔈+
𝐴𝑙) = 0.4129𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−1, 𝔈−

𝐴𝑙) = 0.4129

𝑊𝑁𝑠𝑀𝐶𝑄 (ℭ𝐶𝑄−2, 𝔈+
𝐴𝑙) = 0.4165𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−2, 𝔈−

𝐴𝑙) = 0.4133

𝑊𝐷𝑀𝐶𝑄 (ℭ𝐶𝑄−3, 𝔈+
𝐴𝑙) = 0.351𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−3, 𝔈−

𝐴𝑙) = 0.3674

𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−4, 𝔈+
𝐴𝑙) = 0.3963𝑊𝑁𝑆𝑀𝐶𝑄 (ℭ𝐶𝑄−4, 𝔈−

𝐴𝑙) = 0.4037

Then the closeness indexes Ψ𝐶𝐼−𝑖 andΨ′
𝐶𝐼−𝑖 are gotten as follows:

Ψ𝐶𝐼−1 = 0.5, Ψ𝐶𝐼−2 = 0.4986, Ψ𝐶𝐼−3 = 0.5064, Ψ𝐶𝐼−4 = 0.5031

Ψ̂′𝐶𝐼−1𝐶𝐼 − 1 = 0.5, Ψ̂′𝐶𝐼−2 = 0.5019, Ψ̂′𝐶𝐼−3 = 0.4886, Ψ̂′𝐶𝐼−4 = 0.4954

The graphical shows the closeness indexes in Figure 1.

Step 3: The ranking results can be obtained as follows:

Because

Ψ𝐶𝐼−3 > Ψ𝐶𝐼−4 > Ψ𝐶𝐼−1 > Ψ𝐶𝐼−2

Ψ̂′𝐶𝐼−2 > Ψ̂′
𝐶𝐼−1 > Ψ̂′𝐶𝐼−4 > Ψ̂′

𝐶𝐼−3

So we can get the ranking orders of four alternatives shown as ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−3.

From this ranking result, the TOPSIS based onWDM andWNSM obtained the same ranking result. In Example 2, the CQROFNs are used
to express the evaluation information.Moreover, we choose the complex Pythagorean fuzzy information (CPFIs) and complex intuitionistic
fuzzy information (CIFIs) to solve it by using the investigated measures. To discuss the above issues, we use the following examples.
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Figure 2 Geometrical expressions of Example 3.

Example 3.

To show the application of the investigated procedure in the environment of the MADM technique, we choose the real MADM example
from Ref. [38]. Moreover, the needed information is discussed in Example 2. To resolve the above issue, we considered the weight vector for
the attributes is demonstrated by: (0.4, 0.3, 0.2, 0.1)𝑇 , then the CPFIs are expressed shown in Table 3 (which are normalized). Based on the
proposed TOPSIS, the steps of the developed decision-making procedure are given as follows.

Then by the investigated measures, the closeness indexes Ψ𝐶𝐼−𝑖 andΨ′
𝐶𝐼−𝑖 are obtained as follows:

Ψ𝐶𝐼−1 = 0.5009, Ψ𝐶𝐼−2 = 0.4995, Ψ𝐶𝐼−3 = 0.5052, Ψ𝐶𝐼−4 = 0.5046

Ψ̂′
𝐶𝐼−1 = 0.4994, Ψ̂′𝐶𝐼−2 = 0.5003, Ψ̂′𝐶𝐼−3 = 0.4961, Ψ̂′

𝐶𝐼−4 = 0.4968

The calculated values are demonstrated in Figure 2. fig 2

Next, the ranking results can be obtained as follows:

Because

Ψ𝐶𝐼−3 > Ψ𝐶𝐼−4 > Ψ𝐶𝐼−1 > Ψ𝐶𝐼−2

Ψ̂′𝐶𝐼−2 > Ψ̂′
𝐶𝐼−1 > Ψ̂′𝐶𝐼−4 > Ψ̂′

𝐶𝐼−3

So we can get the ranking orders of four alternatives shown as

ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−3

There are the same ranking results byWDM andWNSM, and the best alternative isℭ𝐶𝑄−2. In Example 3, we used the CPFIs to resolve this
problem by investigated measures. Moreover, we choose the complex intuitionistic fuzzy information (CIFIs) to resolve this problem.

Table 3 Normalized decision matrix with CPFIs.

Alternatives\Attributes 𝔓𝐴𝑡−1 𝔓𝐴𝑡−2 𝔓𝐴𝑡−3 𝔓𝐴𝑡−4

ℭ𝑪𝑸−1 (
0.9𝑒𝑖2𝜋(0.8),

0.1𝑒𝑖2𝜋(0.2)
) (

0.91𝑒𝑖2𝜋(0.81),

0.11𝑒𝑖2𝜋(0.21)
) (

0.92𝑒𝑖2𝜋(0.82),

0.12𝑒𝑖2𝜋(0.22)
) (

0.93𝑒𝑖2𝜋(0.83),

0.13𝑒𝑖2𝜋(0.23)
)

ℭ𝑪𝑸−2 (
0.85𝑒𝑖2𝜋(0.89),

0.2𝑒𝑖2𝜋(0.1)
) (

0.86𝑒𝑖2𝜋(0.9),

0.21𝑒𝑖2𝜋(0.11)
) (

0.87𝑒𝑖2𝜋(0.91),

0.22𝑒𝑖2𝜋(0.12)
) (

0.88𝑒𝑖2𝜋(0.92),

0.23𝑒𝑖2𝜋(0.13)
)

ℭ𝑪𝑸−3 (
0.7𝑒𝑖2𝜋(0.8),

0.3𝑒𝑖2𝜋(0.3)
) (

0.71𝑒𝑖2𝜋(0.81),

0.31𝑒𝑖2𝜋(0.31)
) (

0.72𝑒𝑖2𝜋(0.82),

0.32𝑒𝑖2𝜋(0.32)
) (

0.73𝑒𝑖2𝜋(0.83),

0.33𝑒𝑖2𝜋(0.33)
)

ℭ𝑪𝑸−4 (
0.85𝑒𝑖2𝜋(0.7),

0.2𝑒𝑖2𝜋(0.3)
) (

0.86𝑒𝑖2𝜋(0.71),

0.22𝑒𝑖2𝜋(0.32)
) (

0.87𝑒𝑖2𝜋(0.72),

0.23𝑒𝑖2𝜋(0.33)
) (

0.88𝑒𝑖2𝜋(0.73),

0.24𝑒𝑖2𝜋(0.34)
)
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Figure 3 Graphical expressions of Example 4.

Example 4.

To show the application of the investigated procedure in the environment of the MADM technique, we choose the real MADM example
from Ref. [38]. Moreover, the needed information is discussed in Example 2. To resolve this problem, we considered the weight vector for
the attributes is (0.4, 0.3, 0.2, 0.1)𝑇 , then the CIFIs are expressed shown in Table 4 (which are normalized). Based on the proposed TOPSIS,
the steps of the developed decision-making procedure are given as follows.

The calculated values are demonstrated in Figure 3.

Then by the investigated measures, the closeness indexes Ψ𝐶𝐼−𝑖 andΨ′
𝐶𝐼−𝑖 are obtained as follows.

Ψ𝐶𝐼−1 = 0.5051, Ψ𝐶𝐼−2 = 0.4981, Ψ𝐶𝐼−3 = 0.4937, Ψ𝐶𝐼−4 = 0.4973

Ψ̂′𝐶𝐼−1 = 0.4996, Ψ̂′
𝐶𝐼−2 = 0.5002, Ψ̂′𝐶𝐼−3 = 0.5007, Ψ̂′𝐶𝐼−4 = 0.5003

Then the ranking results can be obtained as follows:

Because

Ψ𝐶𝐼−1 > Ψ𝐶𝐼−2 > Ψ𝐶𝐼−4 > Ψ𝐶𝐼−3

Ψ̂′𝐶𝐼−3 > Ψ̂′
𝐶𝐼−4 > Ψ̂′𝐶𝐼−2 > Ψ̂′

𝐶𝐼−1

So we can get the ranking orders of four alternatives shown as

ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1

There are the same ranking results by WDM andWNSM, and the best alternative is ℭ𝐶𝑄−3. Therefore, the investigated measures based on
CQROFSs are extensively useful to process complex data.

Table 4 Normalized decision matrix with CIFIs.

Alternatives\Attributes 𝔓𝐴𝑡−1 𝔓𝐴𝑡−2 𝔓𝐴𝑡−3 𝔓𝐴𝑡−4

ℭ𝑪𝑸−1 (
0.7𝑒𝑖2𝜋(0.6),

0.1𝑒𝑖2𝜋(0.2)
) (

0.71𝑒𝑖2𝜋(0.61),

0.11𝑒𝑖2𝜋(0.21)
) (

0.72𝑒𝑖2𝜋(0.62),

0.12𝑒𝑖2𝜋(0.22)
) (

0.73𝑒𝑖2𝜋(0.63),

0.13𝑒𝑖2𝜋(0.23)
)

ℭ𝑪𝑸−2 (
0.6𝑒𝑖2𝜋(0.8),

0.2𝑒𝑖2𝜋(0.1)
) (

0.61𝑒𝑖2𝜋(0.81),

0.21𝑒𝑖2𝜋(0.11)
) (

0.62𝑒𝑖2𝜋(0.82),

0.22𝑒𝑖2𝜋(0.12)
) (

0.63𝑒𝑖2𝜋(0.83),

0.23𝑒𝑖2𝜋(0.13)
)

ℭ𝑪𝑸−3 (
0.5𝑒𝑖2𝜋(0.5),

0.3𝑒𝑖2𝜋(0.3)
) (

0.51𝑒𝑖2𝜋(0.51),

0.31𝑒𝑖2𝜋(0.31)
) (

0.52𝑒𝑖2𝜋(0.52),

0.32𝑒𝑖2𝜋(0.32)
) (

0.53𝑒𝑖2𝜋(0.53),

0.33𝑒𝑖2𝜋(0.33)
)

ℭ𝑪𝑸−4 (
0.7𝑒𝑖2𝜋(0.4),

0.2𝑒𝑖2𝜋(0.3)
) (

0.71𝑒𝑖2𝜋(0.41),

0.22𝑒𝑖2𝜋(0.32)
) (

0.72𝑒𝑖2𝜋(0.42),

0.23𝑒𝑖2𝜋(0.33)
) (

0.73𝑒𝑖2𝜋(0.43),

0.24𝑒𝑖2𝜋(0.34)
)



1666 P. Liu et al. / International Journal of Computational Intelligence Systems 14(1) 1653–1671

Table 5 Comparative analysis of the proposed and existing distance measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Ullah et al. [27] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Proposed
WDM

Ψ𝐶𝐼−1 = 0.5, Ψ𝐶𝐼−2 = 0.4986, Ψ𝐶𝐼−3 = 0.5064, Ψ𝐶𝐼−4 = 0.5031 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3

Figure 4 Geometrical expressions of Table 5.

Table 6 Comparative analysis of the proposed and existing ideas for similarity measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

.. 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Ullah et al. [27] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Proposed
WNSM

Ψ̂′𝐶𝐼−1 = 0.5, Ψ̂′𝐶𝐼−2 = 0.5019, Ψ̂′𝐶𝐼−3 = 0.4886, Ψ̂′𝐶𝐼−4 = 0.4954 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3

5. COMPARATIVE ANALYSIS

To show the validity and capability of the presented approach, we can compare it with some existing methods discussed as follows: Ye [41]
developed CSMs based on IFSs, Mohd and Abdullah [42] explored CSMs for PFS, Liu et al. [38] presented CSMs for QROFSs, Garg and
Rani [37] investigated the SMs for CIFSs, and Ullah et al. [27] explored DMs for CPFSs. By Example 2, the comparative analysis is shown
in Tables 5 and 6.

The calculated values in Tables 5 and 6 are demonstrated in Figures 4 and 5.

Figures 4 and 5 contain graphical expressions of six different types of measures, and each measure contains four alternatives.

Based on the information of Example 3, the comparative analysis of the presentedmethod with some existingmethods is discussed in Tables
7 and 8.

For the existing measures, we choose another set: ℭ𝐶𝑄 = {
(1𝑒𝑖2𝜋(1), 0.0𝑒𝑖2𝜋(0.0)) , (1𝑒𝑖2𝜋(1), 0.0𝑒𝑖2𝜋(0.0)) ,
(1𝑒𝑖2𝜋(1), 0.0𝑒𝑖2𝜋(0.0)) , (1𝑒𝑖2𝜋(1), 0.0𝑒𝑖2𝜋(0.0))

}, then

The calculated values in Table 7 are demonstrated in Figure 6.

The calculated values in Table 8 are demonstrated in Figure 7.
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Figure 5 Geometrical expressions of Table 6.

Table 7 Comparative analysis of the proposed and existing distance measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Ullah et al. [27] Ψ𝐶𝐼−1 = 0.6171, Ψ𝐶𝐼−2 = 0.6003, Ψ𝐶𝐼−3 = 0.6278, Ψ𝐶𝐼−4 = 0.6189 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3

Proposed
WDM

Ψ𝐶𝐼−1 = 0.5009, Ψ𝐶𝐼−2 = 0.4995, Ψ𝐶𝐼−3 = 0.5052, Ψ𝐶𝐼−4 = 0.5046 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3

Figure 6 Graphical expressions of Table 7.

Table 8 Comparative analysis of the proposed and existing ideas for similarity measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Ullah et al. [27] Ψ̂𝐶𝐼−1 = 0.3829, Ψ̂𝐶𝐼−2 = 0.3997, Ψ̂𝐶𝐼−3 = 0.3722, Ψ̂𝐶𝐼−4 = 0.3811 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3

Proposed
WNSM

Ψ̂′𝐶𝐼−1 = 0.4994, Ψ̂′𝐶𝐼−2 = 0.5003, Ψ̂′𝐶𝐼−3 = 0.4961, Ψ̂′𝐶𝐼−4 = 0.4968 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−1 > ℭ𝐶𝑄−4 >
ℭ𝐶𝑄−3
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Figure 7 Graphical expression of Table 8.

Table 9 Comparative analysis of the proposed and existing distance measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

Ψ̂𝐶𝐼−1 = 0.5038, Ψ̂𝐶𝐼−2 = 0.4978, Ψ̂𝐶𝐼−3 = 0.3926, Ψ̂𝐶𝐼−4 = 0.4955 ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 >
ℭ𝐶𝑄−1

Ullah et al. [27] Ψ̂𝐶𝐼−1 = 0.5115, Ψ̂𝐶𝐼−2 = 0.4991, Ψ̂𝐶𝐼−3 = 0.5043, Ψ̂𝐶𝐼−4 = 0.5025 ℭ𝐶𝑄−2 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−3 >
ℭ𝐶𝑄−1

Proposed
WDM

Ψ𝐶𝐼−1 = 0.5051, Ψ𝐶𝐼−2 = 0.4981, Ψ𝐶𝐼−3 = 0.4937, Ψ𝐶𝐼−4 = 0.4973 ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 >
ℭ𝐶𝑄−1

Table 10 Comparative analysis of the proposed and existing similarity measures.

Methods Score Values/Measures Values Ranking Values
Ye [41] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Mohd and
Abdullah [42]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡

Liu et al. [38] 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡 𝐶𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑖𝑡
Garg and Rani
[37]

Ψ̂𝐶𝐼−1 = 0.4985, Ψ̂𝐶𝐼−2 = 0.4991, Ψ̂𝐶𝐼−3 = 0.4998, Ψ̂𝐶𝐼−4 = 0.4993 ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 >
ℭ𝐶𝑄−1

Ullah et al. [27] Ψ̂𝐶𝐼−1 = 0.4991, Ψ̂𝐶𝐼−2 = 0.4997, Ψ̂𝐶𝐼−3 = 0.5002, Ψ̂𝐶𝐼−4 = 0.4999 ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 >
ℭ𝐶𝑄−1

Proposed
WNSM

Ψ̂′𝐶𝐼−1 = 0.4996, Ψ̂′𝐶𝐼−2 = 0.5001, Ψ̂′ = 0.5007, Ψ̂𝐶𝐼−4 = 0.5003 ℭ𝐶𝑄−3 > ℭ𝐶𝑄−4 > ℭ𝐶𝑄−2 >
ℭ𝐶𝑄−1

Figures 6 and 7 contain graphical expressions of six different types of measures, and each measure contains four alternatives.

Based on the information of Example 4, the comparative analysis of the presented method with some existing methods is discussed in
Tables 9 and 10.

The ranking order produced by Ullah et al. [27] is different from the others.

The calculated values in Tables 9 and 10 are demonstrated in Figures 8 and 9.

Figures 8 and 9 contain graphical expressions of six different types of measures, and each measure contains four alternatives.

From the above discussions, we obtain that if we choose the CQRIFIs, then the existing measures based on CIFSs, CPFSs are their special
cases based on Tables 5–10. Therefore, the investigated measures based on CQROFSs are more general and useful to solve the MADM
problem with complex uncertain information.
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Figure 8 Geometrical expressions of Table 9.

Figure 9 Geometrical expressions of Table 10.

6. CONCLUSION

As a modification of the QROFSs, CQROFSs are an important and useful tool to describe the complex inaccurate information by complex-
valued truth gradeswith an additional term, named as phase term. CSMs andDMs are an important tool to verify the grades of similarity and
discrimination between the two sets. In this manuscript, we develop some CSMs and DMs for CQROFSs. Then based on CSMs and EDMs
of CQROFSs, we propose an extended TOPSIS method to solve the MADM problems. Finally, we provide some examples to demonstrate
the practicality and efficiency of the suggested procedure. The graphical representations of the developed measures are also utilized in this
manuscript.

The proposed work is more powerful than the existing ones such as IFSs, CIFSs, PFSs, CPFSs, and QROFSs. In the future, In the future, we
will also extend some ideas [39,40,43,44] for complex QROFSs, or for some consensus-based extensions, we will extend the proposed ideas
to complex spherical FSs [45] and complex T-spherical FS [46]. We will also develop some new MADM methods based on the proposed
CSMs and EDMs for CQROFSs.
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