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1. INTRODUCTION

Decision-making is a significant activity for picking the ideal option from a set of schemes based on the data acquired from specialists. We
are confronted with numerous decision-making issues in different life circumstances [1], vulnerability and ambiguity should be considered.
For adapting such sorts of issues, the theory of fuzzy set (FS) was presented by Zadeh [2] which can express the fuzzy information by the
truth grade. But main problem of the FS is that it deals only with truth grade. Further, Atanassov [3] propounded the intuitionistic FS (IFS),
which contains the truth and falsity grades, whose sum is belonging to the unit interval. Under this theory, a lot of scholars has explored
their theories [4]. However, when a decision-maker (DM) gives the information in the form of pair (0.6,0.5) for truth and falsity grades,
the condition of IFS is exceeded from unit interval. For coping with this kind of information, Yager [5] modified the IFS, and proposed the
Pythagorean FS (PFS) with a condition that the sum of squares of the truth grade and falsity grade is not exceeded from unit interval. PFS
has received more attention [6]. But there was still a problem, when a DM gives the information in the form of pair (0.9, 0.8) for truth and
falsity grades, then the condition of IFS and the condition of PFS are exceeded from unit interval. For coping this kind of information, Yager
[7] again modified the PFS, and explored the q-rung orthopair FS (q-ROFS) with a condition that the sum of q-powers of the truth grade
and falsity grade is not exceeded from unit interval. Because there is an extensive information expression, since it was set up, it has been
used in some fields of aggregation operators, similarity measures (SM), hybrid aggregation operators, and so on [8,9].

In real decision-making, DMs may offer their feelings with more responses for a decision index, such as positive, negative, neutral, and
abstinence. In order to express this information, Cuong [10] investigated the picture FS (PFS) which contains positive, abstinence, and
negative grades, whose sum is bounded to [0, 1]. However, in some cases, for a DM, it is very difficult to face some limitations. So, the
spherical FS (SFS) was established by Mahmood et al. [11], which is more powerful compared to IFS and PFS. However, the constraint of
SES is that the sum of squares of positive, abstinence, and negative grades belongs to [0, 1]. When a DM gives 0.9 for positive grade, 0.85 for
abstinence grade, and 0.8 for negative grade, then the PFS and SFS are not able to cope it. So, the idea of T-spherical fuzzy set (TSFS) was
established by Mahmood et al. [11], in which the sum of g-powers of positive, abstinence, and negative grades belongs to [0, 1]. The TSFS
is more powerful compared to PFS and SFS, and since it was established, it has received the attention of many researchers and it is utilized
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in the environment of aggregation operators, SMs, hybrid aggregation operators, and so on. The various existing works based on PFS, SFS,
and TSFS are elaborated as follow as:

1. Operators based Approaches. Many scholars have successfully discussed the aggregation operators in the environment of PFS, SFS,
TSES. For instance, Ullah et al. [12] evaluated investment policy based on interval-valued T-SFES. Ullah et al. [13] explored geometric
aggregation operator based on T-SFS. Guleria and Bajaj [14] explored the novel of T-spherical fuzzy soft set with their aggregation
operators. Quek et al. [15] presented the generalized T-spherical fuzzy weighted aggregation operators. Ullah et al. [16] proposed the
notion of the averaging aggregation operators based on T-SFS. Ullah et al. [17] presented the evaluation of investment performance
based on T-spherical fuzzy Hamacher aggregation operators.

2.  Measures based Approaches. SM is a proficient technique to accurately examine the degree between any two objects. Many scholars
have developed some SMs for the different FSs. For example, Ullah et al. [18] explored the correlation co-efficient based on T-SFS and
their application in medical diagnosis. The SMsbased on T-SFS was presented by Ullah et al. [19].

3. Hybrid Operators based Approaches. To find the interrelationships between two objects, the hybrid aggregation operators play an
essential role in the environment of realistic decision-making. Some scholars explored different hybrid aggregation operators using the
T-SFSs. For example, Liu et al. [20] explored the power Muirhead mean (MM) operators, Munir et al. [21] explored the Einstein hybrid
aggregation operators, and Zeng et al. [22] presented the Probabilistic interactive aggregation operators based on T-SESs.

The above studies are based on FS, IFS, PFS, QROFS, and all parts of them are expressed by real numbers. In order to process the complex
situations, Ramot et al. [23] proposed complex fuzzy set (CFS), which contains complex-valued truth grade in the form of polar coordinates
belonging to unit disc in a complex plane. But in some situations, the CFS cannot process the complicated and awkward information
effectively. To resolve this kind of problems, Alkouri and Salleh [24] developed the complex IFS (CIFS), characterized by the complex-valued
truth grade and complex-valued falsity grade with a condition that the sum of the real parts (also for the imaginary part) of the truth and
falsity grades is bounded to the unit interval. Now, CIFS has received extensively attractions. For instance, Garg and Rani [25] established
a new generalized Bonferroni mean aggregation operators for CIFS based on Archimedean t-norm and t-conorm. Rani and Garg [26]
developed the distance measures for CIFSs and applied them to multi-attribute decision making (MADM) Process. When a DM gives the
information in the form of pair (0.6¢"27%¢,0.5¢"27%3) for complex-valued truth and complex-valued falsity grades, the conditions of CIFS is
exceeded from unit interval. For coping these kinds of problems, Ullah et al. [27] modified the CIFES to explore the complex PES (CPFES) with
conditions that the sum of squares of the real part (also for the imaginary part) of the truth grade and the real part (also for the imaginary
part) of the falsity grade is not exceeded from unit interval. CPES has received more attention [28]. But there was still a problem, when a
DM gives the information in the form of pair (0.9¢27%9,0.8¢"27%8) for truth and falsity grades, the conditions of CIFS and the conditions
of CPFS are exceeded from unit interval. For coping these kinds of problems, Liu et al. [29,30] modified the CPFS to explore the complex
q-ROFS (Cq-ROFS) with a condition that the sum of q-powers of the real part (also for imaginary part) of the truth grade and the real part
(also for imaginary part) of the falsity grade are not exceeded from unit interval, and now Cq-ROFS has received more attention [31].

Linguistic variable (LV) proposed by Zadeh [32] is an important tool to express the qualitative information, and many specialists have
investigated the linguistic MADM issues, including linguistic approximation [33], uncertain LV [34], and linguistic 2-tuple information [35],
and so on. In some practical problems, the single linguistic term set cannot be involved in those cases which contains two terms like truth
and falsity grades. For dealing with such kinds of problems, Wang and Li [36] established the intuitionistic linguistic number (ILN), which
contains a linguistic term, truth grade, and falsity grade. The ILN is more powerful idea to cope with uncertainty and vagueness. Further, Liu
and Chen [37] explored the intuitionistic 2-tuple linguistic terms set, Peng and Yang [38] established Pythagorean fuzzy linguistic set, Wei
et al. [39] explored the Pythagorean 2-tuple linguistic aggregation operators, Li et al. [40] proposed q-rung orthopair linguistic Heronian
mean operators, Ju et al. [41] explored the q-rung orthopair fuzzy 2-tuple linguistic MM operators.

The interrelationship among the different attributes in real decision-making is ever-present. Muirhead [42] explored the MM operator, as
an effective method to evaluate perfectly the interrelationship among the attributes, then its extensions for the different FSs were made. For
instance, Liu and Li [43] explored the intuitionistic fuzzy MM operators. Zhu and Li [44] presented the Pythagorean fuzzy MM operators,
Wang et al. [45] established q-rung orthopair fuzzy MM operators. On addition, there are some general aggregation operators for g-ROFS,
such as the averaging aggregation operator based on q-ROFS [8], Partitioned Bonferroni mean operator (BMO) based on q-ROFS [46], and
Maclaurin symmetric mean operator (MSMO) based on q-ROFS [47]. These operators are useful in genuine choice hypothesis. But, the two-
dimensional information in a single set cannot be discussed in IFS, PyFS, q-ROFS, PES, and TSFS, and only is discussed in the environment
of CIFS, CPyFS, and Cq-ROFS, but these notions cannot contain the neutral grade, which is used in many real-life scenarios. For example,

when a DM provides < <s< ), 0.03 | , (0.5670:3,0.4¢7270-5 0.3¢2770-4) ) , for linguistic term, truth, abstinence, and falsity grades, the

Sar-3)
existing notions cannot deal with such kind of problems. So, we need to propose a new concept, that is, complex spherical fuzzy 2-tuple

linguistic set. We can see that 0.5% + 0.42 + 0.3% = 0.25 4 0.16 + 0.09 = 0.49 < 1,and 0.3% + 0.52 + 0.4% = 0.09 + 0.25+ 0.16 = 0.49 < 1.
But, there is one other complication, when a DM gives <<5(s ), 0.03> , (O.9ei2”0-8, 0.8¢2707 O.7ei2”0-6) >) for linguistic term, truth,
(LT-3)

abstinence, and falsity grades, the existing notions cannot deal with such kind of problems. For addressing with sun kind of issues, we
explore the idea of complex T-spherical fuzzy 2-tuple linguistic sets (CTSF2-TLSs) with a condition that the sum of q-powers of the real
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parts of the truth, abstinence, and falsity grades is not exceeded form unit interval. So, for g = 7, the above problem is solved effectively.
Considering the intricacy in the real circumstances and maintaining the benefits of the MM operators and CTSF2-TLSs, the goals of this
research are shown as follows.

1. To investigate the novel concept of CTSF2-TLSs and furthermore depict their operational laws.
2. To develop the MM operator and dual MM (DMM) operator based on the CTSF2-TLSs, and discuss some properties and special cases.

3. To investigate the MADM method utilizing the complex T-spherical fuzzy 2-tuple linguistic Muirhead mean (CTSF2-TLMM) operator
and complex T-spherical fuzzy 2-tuple linguistic dual Muirhead mean (CTSF2-TLDMM) operator.

4. To show the advantages of the proposed method by some examples.

So we give the following structure. In Section 2, we review some concepts of FSs, CFSs, q-ROFSs, Tuple linguistic function (2-TLFs), inverse
2-TLFs, q-ROF2-TLSs and their operational laws. Further, the MM operator and DMM operator are also discussed. In Section 3, the notion
of CTSF2-TLS using CFS, TSFS, and 2-tulpe linguistic variable set (2-TLVS) is defined. In Section 4, based on the established operational
laws and comparison methods for CTSF2-TLSs, the CTSF2-TLMM aggregation operator and CTSF2-TLDMM aggregation operator are
explored. Some special cases and the desirable properties are also studied. In Section 5, we establish a method to solve the multi-attribute
group decision-making (MAGDM) problems, in which the evaluation information is expressed as CTSF2-TLSs. Finally, some numerical
examples are given to explain the effectiveness and superiority of the explored method by comparing with other methods. The conclusion
of this paper is discussed in Section 6.

2. PRELIMINARIES

In this part, we concisely review some useful notions of 2-TLF [35], inverse 2-TLF [35], TSFS [11] and their operational laws. Further, the
MM operator and DMM operator are also discussed. The symbols Uyyy, 4, & and 7 are represented the universal, the grade of truth, the
grade of abstinence, and the grade of falsity. Where agc, 85¢, gsc > 1.

Definition 1. [35] For a linguistic term set S; = {ss”_o I ssLT_g} with Bgc € [0, 1], the 2-tuple linguistic function A; 7 is given by:

1 1
ALT : [0, 1] g SSLT—]' X [_2_ga Z_g} (1)
SS,1 j = round (,Bsc,g)
Apr (Bse) = (55”_j,asc> with j 11 @
asc = Bsc — § sc € [_2_8’ Z_g}

The 2-tuple linguistic inverse function A7} is given by:

-1 . 1 1
AT ¢ S, X [_Zg’z_g - [0,1] 3)
-1 _ _
Arr (SSLT_j’ “sc) =3 + asc = Bsc (4)
Definition 2. [11] A TSES is given by
S = {(l«lsm(u), €5, Mg, (W) T u€ UUNI} (5)

S1s S1s S1s

where g, © Upn = [0,1], 85, @ Uyny — [0,1] and g, : Uyyy = [0, 1], with a condition: 0 < UEC () 4+ EBC (1) + nEC (u) < 1.
1

Moreover, {g, (4) =1 — (/,Lgf;“s(u) + f%‘;;(u) + 77%‘;5 (u)) asc is called refusal grade, the T-spherical fuzzy number (TSEN) is represented by

Srs = (Mg, (W), €5, (W), g, (1))

Definition 3. [11] For any two TSFNs Sr5_1 = (Ug,,_, ), &g, , 0,05, (W) and Srs_ = (Ug,,_, W), g, , (), 0g,._,()), then

1

L Srs1 Ors Spsz = (/Jgf;_l(u) + M%S;_z () — M?f;_l(u)ﬂ??;_z(u)) s, Eg s, W85, , (W, Mg, (g, (W) |
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1

q qsc dsc dsc
Msrs_l(u)#sm_z(u),( o W +EFE W) - 35;3_1(“)§§;s—z(”))q“c ,
2. 51 Qrs Sz = 1 >
( dsc + dsc P Nol dsc )qsc
NS5 (u) nsTs—z(u) NS5 (u)nsTs—z(u)
1 1
Ser Ser o Ssc\ g o Ssc\ o
3. SR =|uge ), (1 —(1-£&3 W) “)qsc ,(1 —(1-7g_ W) “)m :

1

8sc\ g 6 s
4. 65cSrs-1 = (1 -(1 —#?f;_l(u)) Sc>qsc g Whngls (W]

Definition 4. [11] For any two TSFNs JS7g_; = (/“‘Srs_l(”)’ 5,0, (W), ngm_l(u)) and Sy = (:“Grs_z(“)’ €500, (Wi M50, (u)), the score
and accuracy function are given by:

S (Sr5-1) = UEC (1) — EE° () — &C (w) (6)
H(Sys_1) = pige. (u) + E5° (u) + ng’ (u) (7)

Based on the above two notions, the compassion between two TSENs is given by:

I IfS(Srs_1) > S(Srs_z), then Spg_1 > Srs_s;

2. IES(Sys_1) = S(Srs_p), then:
(@) IfH(Srs-1) > H(S15-2), then Spsq > Srs—o;
(b) IfH(Sps-1) = H(S15-2), then Spg_y = Sy

Definition 5. [42] Choose the family of positive numbers STS_j(j = 1,2,3,..,n) with the vector of parameters typ =
{typ_1, typ_2, - typ_,} € R", the MM operator is given by:

1

n

1 typ—j i=1
MMV (S 1s_1, S1s—2s wons ST520) = Pl Z STS—19(;‘) ! (8)
" B(esge—, j=1

The DMM is given by:
1

1 n n!
DMM"v? (1515 S15-25 s S15n) = — ( 11 > tVP—jSTS—S(j)> &)
S(j)Essc— =1

2 tve-

=1

where 8(j), j = 1,2, 3, ..., n) is an n permutation and the set of all permutation of 1 to n is denoted by Sgc_,,.

2.1. Complex T-Spherical Fuzzy 2-Tuple Linguistic Sets

In this part, we propose the novel concept of CTSF2-TLS, which is the mixture of CFS, TSFS, and 2-TLS. Some important fundamental
operational laws of the CTSF2-TLS are also established.

Definition 6. A CTSF2-TLS is given by:

Scrs = {((SSLT(M)’ aSC) ’ (MSCTS(U), gscrs(z”)’"75575(1”))) NS UUNI} (10)
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RIW, RIW, 27w,

1 t5, S L
wglere M s } ,uskmeq Korn, £ S~ S and g, Nown€ o, with a condition: 0 <
SC SC SC Ne SC SC : s
UG W) + g, (W) + 15, ) < 1,0 < W‘ZLSIPTL(u) + quslm(u) + ”sz(u) < 1 and the pair (sSLT(u),aSC) is

L ) ) 11 2rW,_
called 2-tulpe linguistic variable with agc € [_Zg’Z_g} and s5, ) € Sppo Moreover, {g () = (g, e Ssp. =

1 .
q a . — 12n<1—<wfj§ WHWEC  @+wye u>>‘“c

(1- (ﬂssfm(u) +&g., () + ng}fm(u))) asc ¢ SiprL SiprL StprL is called refusal grade, the complex T-spherical

fuzzy 2-tuple linguistic number (CTSF2-TLN) is represented by:

Scrs = ((SSLT(M)’ uSC) ’ ('usc*rs(u)’ gscx‘s(u)’ 778crs(u))) or

i2
e

i2

W, W, P27TW.
=3 — Hg és ng
Sers = ((SSLT’ aSC) ’ <MSRP'I‘L SIPTL, gsRPTLe PP ), € R >> ’

An example of CTSF2-TLS is given as follows:

((ss,,_,-0.01), (0.8¢2708 01270, 0.3¢2703))

((SSLT_Z , 002) , (0_186i271'(0.81)’ 0_1lei271'(0.11)’ O_3lei271'(0.31))) ,

( <55LT_3 , 0.03) , (0.81¢27018) [0,01¢270-D) 0,03¢727(0-3)) ) ,

( <55LT_3 , 0.04) , (0.018¢/270-081) 0 01127011, 0,031¢727(03D)) >

Moreover, we can give some special cases. If we ignore the terms of 2-tuple linguistic sets, complex-valued abstinence, and complex-
valued nonmembership, then the CTSF2-TLS (Eq. (10)) will be converted to CFS, similarly, if we ignore the terms of 2-tuple linguistic sets
and the imaginary parts of the complex-valued membership, complex-valued abstinence, and complex-valued nonmembership, then the
CTSF2-TLS (Eq. (10)) will be converted to TSFSs. Finally, if we ignore the complex-valued membership, complex-valued abstinence, and
complex-valued nonmembership, then the idea of CTSF2-TLS (Eq. (10)) will be converted to 2-tuple linguistic sets.
27w, 27w,
Definition 7. For any two CTSF2-TLNs J¢yg_1 = <(SSLT—1’ aSC—l) , <M3’Rm—1e e e
P27TW,
M-z, gSRPTL—Z

S 1P
[PTL=L gSRPTL—l €

- 2TWy
SIPTL-1 | USRPTL_le SIPTL-1
P27TW,

NS1pri—2 )>, then

i2

W,
~ _ 3 prr_
and Jcrs—2 = ((SSLT—Z’ aSC—Z) ’ (’uSRPTL—Ze e P2 DS rpr—2 €

—1 -1
Ay (AT (Ss,lT_l sasc—1) + ALt (Ss”_z, asc=2)) »
1
! ( asc asc asc asc ) e
(o [ — . — 2w\ W +W -W w asc .
L Scrs-1 @ers Scrs—2 = (,ugfc + ,Lt%sc - qu}“ qu.jsc )‘isc e HSprr—1 HSpri—2 HSprio1 HSpri-z N E
RPTL-1 RPTL—2 RPTL—1/"SRPTL—2
i271'<W§s WES ) 1’271'<W7)3 W’?S >
1PTL—1 PTL—2 PTL—1 PTL—2
gsRPTL—l gSRPTL—Z € NS o111 1S ppr1—2©
27T\ W, w,
-1 -1 ! ( Mg o1 MSpri— )
ALT (ALT (SSLT—I 5 aSC—l) X ALT (SSLT—Z’ aSC—Z)) 5 ’usRPTL—l’uSRPTL—Ze IPTL—1 IPTL-2/ |
1
1
—_ sC quc _wisc quc asc
2. e S, = i27T <Wq + > .
crs-1 Qcrs Scrs—2 ( gSISPTL_l \Z;RCPTL—Z — gSRCPTL—l g}fPTL_Z) dsc e Spri-1 Spr—2 SSpro1 Sz NN
1
! ( 4sc Asc Asc Asc ) s
— 2w\ W) +W.° —-W >~ w > asc
(”%fm_l + ng}fpn—z - ngsspn_lné‘}fpn_z) asc e "Spri-1 MSppriez "Swpri-1 "Sipri-2
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. Ssc
S Ser P2TW

—1 SC sC HKG o

ALT (ALT (SSLT—I’ asc_l) > ”uSRPTL—le SIPTL—1 ,

1

SrerL-1 ’

1 osc asc
~Bsc So— 127 1-<1-qu€ )
3. Scrs-1 = <1 _ (1 _ gisc ) 5C>qsc e $sipri-1 ;

1 Ssc
q Ssc\ i27t<1—<1—wf755 ) >qsc
<1 _ (1 -7 sc ) )qsc e SipTI-1

SrpTI-1

1

1 Ssc
. a5 Seo\ 27 1—(1—wfjf ) sc
—_— S —_
4. 85cScrs—1 = | Arr (Sse X ALE (S5, > dsc-1)) » (1 -(1- ) >qSC e e

HSrpri—1 |
) 23S rwise
Ssc e S pO5c e NS prr-1
Sreri-1 NS ppri-1
P27TW, P27TW, i27TW,
e ~ _ M & N
Definition 8. For any two CTSF2-TLNs Scrg_1 = <(55LT_1 , asc_l) , <M5RPTL_1 e SiprL-1 fSRPTL_l e SIPTL=1, N1 € Sipr-1 ))
P2TW,, P2TWe P2TW, .
and Scrs—a = ((Ss”_z, asc-z) ) (MSRPTL_ZE K-z, Eg e SSipn2, Nopppn€ T2 ) ), the score and accuracy function are
given by:
-1 dsc sc _ g9sc sc _4sc sc
- Arr (SSLT—I’ aSC—l) X <1 tHg, qulslpn_l Srs-1 W‘éswn—l 03154 Wz)s“,n_l )
SSBers-1) = 7} (11)

-1 dsc sc dsc sc dsc sc
Arr (SSLT_I’aSC—l) X <’u5Ts_1 + W:Z‘SIPTL—I + gSTS—l + WZ‘SIPTL—I + NS 151 + Wf?ﬁ[PTL—l)
H(Scrs-1) =

7 (12)

Based on the above two notions, the compassion between two CTSF2-TLNs is given by:

L IES(Bcers-1) > S(Scrs—2)> then Sers—1 > Sers—2
2. IS(Scrs—1) = S(Scrs—), then:
(@) IfH(Scrs-1) > H(Scrs—2)s then Scrs—1 > Sers—2
(b) IfH(Scrs—1) = H(Scrs—2), then Sers—1 = Sers—z-
Example 1. For any two CTSF2-TLNs Scrs.p = ((ss,,,0.01),(0.8¢270®,0.1¢270D 03¢270)) and s, =
((ss”_4, —0.02), (0.9¢72709,0.1£2701) 022702 ), and for ggc = §gc = 2. Then

o3 o3
L. Scrs—1 Ders Scrs—2

Apr (ATT (ss,,,,0.01) + A7f (55, ,,—0.02)),

SSir4
((0.82 4092 — 082 x 0.92)0/2) ei27‘r(0.82+0.92—0482><0.92)(1/2)’ (0.1 X 0.1)e27O1X0D) (0.3 % 0.2)6i27r(0.3x0.2)>

= (Apr ((2 +0.01) + (3 —0.02)), (0965262709652 00127001, 0,06¢™27009)))

= (Ap(1.49), (0.9652¢27(09652) 00127001, 0,06¢27(0:09)) )

=

(ss,,_,»0:49), (096522709652 0,01£27(00) 0,06¢27(000)) )
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(3 (a3
2. Scers—1 Ocrs Scrs—2

(08 X 0.9)ei27f(0.8><0.9)’

(1/2)

Apr (A7} (ss,,_,, 001) X ATH (s5,,_,» —0.02)), | (0.12 4+ 0.12 = 0.12 x 0.12) 1'? 27(0174017-0.12x0.1%)

(0.3 +022 - 0.3% x 0.22)(1@ £27(0.3240.22-032x0.22) ¥

(Apr ((2 +0.01) x (3 —0.02)), (0.72627072,0.1¢27O0-), 0.36¢27(036)) )

= (A11(0.4998), (07262707, 012701, 0.36¢27(036)) )

= (55,4, 01665, (0.72677072), 016270, 0,36¢27030)) )

(1/2)

0.82¢27(0.8%) <1 (- 0_12)2>(1/2) eiZﬂ(l—(l—OJZ)Z)

s

— 2
5. s = | Aur (A7 (s5,,.,,001)°),

<1 — (1 -0 32)2>(1/2) eizn(l_(l_0'32)2)(1/2)
2)(1/2)

_ (ALT (0'512) ) (0_6461’271(0.64), (1 —a- 0.01)2)(1@ ¢i27(1~(1-0.01)

= (A17(0.2601), (0.64¢27(069,0,14¢27(014), 0. 42,27(042)) )

, (1 -(1- 0.09)2)(1/2) ei27f(1—(1—0.09)2)(1/2) ))

= ((ss,,,,0.0101) , (0.64¢7(064,0,14¢270 1D, 0.42,27(042)) )

)(1/2)

N2 (1 1-082) , .
4. 2XScrse1 = (ALT (2 X AZ% (SSLT_Z’O'Ol)) , <(1 _ (1 _ 0.82) ) ezn(l (1-0.8%) ’0.1261271(0.1)2’0.3261271(0.3)2

- <ALT(2 X 051)’ <(1 _ (1 _ 0.64)2)(1/2) ei27‘[(1—(1—0.64)2)(1/2) , 0.0161‘27{(0401), 0.0gei27T(0.09) ))
= (A17(1.02), (0.9330¢27(095330), 0012700 0,09¢/27(009) )
= ((s5,,,,0.02) , (0.9330£727(09330) 0,01¢27(001), 0,09¢27(0:09) ) ,

Further, we examine the interrelationship between two CTSF2-TLNs based on the score functions, such that

S(Bcrs-1) = (Arf (ss,,,001) X (1+0.8% +0.82 —0.12 = 0.1> =032 = 0.3%)) /4 = ((0.51) X (2.08))/4 = 0.2652, S(Scrs—2) =
(D77 (ss,,_,»—0.02) X (140.92 +0.92 — 0.1 — 0.1 — 0.2 — 0.2%) ) /4 = ((0.98) X (2.52))/4 = 0.6174,

S0, S(Scrs—2) = S(Scers—1)-

3. MM AGGREGATION OPERATORS FOR CTSF2-TLSs

In this part, we investigate the MM and DMM operators based on a CTSF2-TLS, and they are called CTSF2-TLMM operator and CTSF2-
TLDMM operator. Their advantages are that they are more generalized than averaging operator (AO), geometric operator (GO), BMO, and
MSMO which are the special cases of the explored operators.

. . ~ z‘27rWMs ) i271'W§S ) 1‘27'L'W,)S )
Definition 9. Choose the family of CTSF2-TLNs J¢y5_; = (SSLT—j’ aSC—j) o L P g€ I ) S epry, € IPTL—j ,

(j =1,2,3,..,n) with vector of parameters typ = {typ_1, typ_2, ..., typ_n} € R", the CTSF2-TLMM operator is given by:

=l
1

n
CTSF2 — TLMM"? (Scrs—15 Scrs—zs o Scrs—n) = (ﬁ 9®CTS (®CTS <ST‘:—_J‘90)>> >J:1 (13)
P 9()Essc—y \ J=1

where 8(j), j = 1,2, 3, ..., n) is an n permutation and the set of all permutation of 1 to n is denoted by Sgc_,,.

Based on the operational laws, we establish the following result.
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Theorem 1. Suppose the family of CTSF2-TLNs is Scrs—j = < (ssLT_j, asc—j) > | MSper
CTSF2-TLN, and

CTSFZ - TLMMtVP (SCTS—I’ SCTS—Z’ eeey SCTS—H)

—i

i2
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7'1'W’,'45 izﬂ'Wgs 1'277.'W7]S
IPTL—j IPTL—j 1PTL—j
e ’ gsRPTL—je ’ 775RPTL—]‘ e ’

G = 1,2,3,..,n) with vector of parameters typ = {typ_1,typ_p,...typ_n} € R". Then the aggregated value of CTSF2-TLNs is again a

1
n
1 n X o | ltvp—j
- - J=
Arr al z H (ALT <SSLT—9(;')’ aSC—S(i))> ’
S(essc_, j=1
1
1\«
l' dsc ZtVP—j
n n! j=1
1 9sctvp—j
1\ 27| 1- H 1- W,;f '
- k . SIPTL—-9()
1y Zt ) S(i)Essc—n j=1
n il ~ VP—j
dsctvp—j J=
1= H (1 - MSRP’I‘L—S(}')) € ’
B(Esscn j=1
1
1 —
— )4sc
1 n
n typ_; nl Z tVP_j
_ _ _ _ #4sc — j=1
1 1 H <1 <1 SRPTL—S(]‘)) >
S(essc_ j=1
1
= ; qsc
1 n
n tvp—j n! Z typ
27 1-| 1— H 1-— <1 — WZ;““ > =1
S(essc_y j=1 SIPTL-90)
e )
1
1 -
— )4sc
1 n
_ _ _ _ 4sc 7 j=1
1 1 H 1 <1 nSRPTL—S(j))
S(Essc_n j=1
1
_ dsc
1 n
n toei\ |7l ZtVP—j
27 1| 1— H 1- (1 - nsg _ ) j=1
S(Esscn j=1 =20
e
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Proof: Using the Definition 7, we have

n
Ocrs Ocrs S
S(essc—, j=1

n
QcrsS
j=1

typ_j _
CTS—9G) =

. fvp—j
A | ATE (s a AW e Sip1L-80)
LT \ LT \ SSpr_gg)° ASC—8() ’MSRPTL—S(ﬁ ’
1
IVP_
1 isc "4sc
v typ q_ 27| 1— 1—W§
21 = qsc - s¢ SipTL-9¢
g _ _ IPTL—9(j)
(] <1 (1 sRPTL—&(}') ) ) ¢ ’
1
1 typ—j
pi\ e i2ﬂ<1-<1‘wfff > ) e
1-(1- nisc dsc e SIPTL-9()
~SRPTL—8()
" ¢
n | T
o v ; -9G)
. - o = IPTL
NT I | AT <551_T—190)’ aSC—S(j)) ’ SreTL-5() ’
=1 =t
1
n tve-j|q
1 SC
typ—j n t w H (1 B Wq;c >
Crs—9G) = B _ plsc ve—j \ s =1 SIPTL=8()
1 1-¢4 e
S RPTL—8() ’
j=1
1
n tve—j | q
1 SC
) — i27r1—H I—szf
] typ; \ dsc o SIPTL—9()
1-JT (1-nke e U7
~NSRPTL—S()
j=1
n . typ_j
Al > 1 <ALT (SSLT—SW aSC‘90)>) ’
S(essc_, =1
" t
q -
1 i2xf|1- 1- Wuss "
= ) . IPTL—9()
n dsct dsc B(Essc—n j=1 ’
sclvp—;
1 H 1 : SRPTL—S(/) ¢
S(Essc_y j=1
1 n
. ; i27] 1- (1 - qusc
dse tupj sc S, =1 SIPTL-9()
1-— 1-— 3 ) €
J RPTL—8(j)
S()Esscn j=1
1 n
\ N\ = IT (1= (1—W‘3i§
g _ ! 1PTL—9(
H 1- H 1-— nisc e e B8()Esscn j=1 v
‘ J ~SRPTL—8()
S()Essc_r j=1

dsc

> typ—j
> typ—j

qsc

303
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1 " typ—j
= @crs (®CTS (5 & )) =
(”! e, \ =1 T
1 L e
Arr ﬁ Z H (ALT <SSLT—\9(;‘)’ uSC—S(i)) ) ’

" S(Essen i=1

1
n!

n
dsctyp—j
1\ 27|[1- | | 1- Wﬂsfvp’
- K . SIPTL—-9()
S(PEsscn j=1

L q
= )4sc
n . n!
qsctvp—j
1 H 1 H SreTL-9() €
S(Esscn j=1
1
1\—
0 ] dsc
typ—j
I1 (1— (1-¢%,.) )
RPTL—9(j)
S()Esscn j=1

n
|| ] 1—H<1—W‘§C
G ssen =1 Sip11-8¢

j=
e

1

dsc

1
n n!
too
dsc VP
H (1 - ] (1 - nsRPTL—S(j)) )
J

e

qsc

1 1

1 n
— |4sc
tvei\ \ 7! z , tvp—j
) =
)

|-
[AY
[%)
a
M=
-
3
L

n typj ! ~

. _ _ SC =
2 T (1-11 <1 Wésm_s(_)
B()Essc—n j=1 ’
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1
n
VP—j =1
— Ders <®CTS <STS—19(/))> !
m SGresscon \ j=1
1
n
1 n . o | 1tVP—j
— - . =
Arr n! Z H <ALT <SSLT—19(/'>’aSC_’9(I)>) ’
S(essc—n j=1
1
1 n
1gsc ZtVP—j
‘ dsctve—j ! =1
o el T (- TTwe
1IN — SG)sse, al IPTL—S())
) LYo Z tVP—j (DEssc j
9sctvp—j j=1
1- H <1_H SRPTL—SU)) e ’
S(Esscn j=1
1
- ! dsc
1
n . n! ZtVP—j
_ _ _ _ #isc VP j=1
1 1 H < 1 ( 1 gSRPTL—S(j) ) )
S(eEssc_y j=1
1
= ; dsc
1 n
" tor\ |72l ZtVP—j
27 1-{1— H 1— <1 - Wq;c > =1
B(Esscn j=1 PIPTL=5()
e )
1
1 -
dsc
1 n
n ‘ nl Etvp_j
dsc VP j=1
el () )
S(Essc_y j=1
1
1 dsc
1 n
n typ—j nl thVP—j
. _ _ wisc j=
27| 1-| 1— H 1 <1 melm_&)
S()Essc_n j=1 J
e
Hence, the result is proved.
Example 2. For any three CTSF2-TLNs Scrs_; = ((ssLT_Z,O.Ol),(O.8ei2”(0~8),0_0ei2ﬂ'(0~0),0.6ei2ﬂ(0.6)))’ Serey =

((ssLH,o.os) , (0.7ei2”<°-7>,0.1e"2”(°-1>,0.5e"2”<0-5>)), and Scrsoz = ((ss,,_,,—0.02),(0.9¢2709,0,01£2700D 0.4¢27O0D)), and

their linguistic term set S;7 = {SSLT—O’ 88,117 58, " sSLT_3,55LT_4} with the value of parameter typ = (1,2, 1) for g = 2. Then by CTSF2-
TLMM operator, we get
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-1
1+2+1

3
1 . typ-j
drlz % TT(a7 (s asc-s0)))

" 9(PESsc_3 j=1

+

+

+ (AZ% ((SSLT—4’
— A7 (0.7649) = ((55”_

)):

1
T

,001)))" x (Az} <(ssn_3,0.05)))2 x (A7h
(8 ((55,1,001))) " x (a7} (s, =002)))x (71 ((55,.,.005) ) )

1
<sSLT_3,0.05) ) X (A7

((ss,,.,-0.01)))" x
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((ss,,_,»—002)))"

2

~0.02)))" x (a7} ((55,,.,,005) ) ) x (AZ} ((ss,,.,-001)))"

Further, we calculate the value of the complex-valued truth grade of the CTSF2-TLMM operator, as follows:

1 on{]1-
1\2 .
2z S()Essc—n

1
3 , 6
dsctvp—j
1 H Srp1L-9G) €
j=1

-1 II
S()Essc_n

o=

(1—0.821 x 0.7%2 x 0.9%1)
% (1 —0.8%%1 x 0.92%2 x 0.72¥1
x (1 —0.72%1 x 0.8%%2 x 0.92X1

% (1 —0.92%1 x 0.72%2 x 0.82¥1

( )
( )
X (1 —0.721 x 0.9%2 x 0.82x1)
( )
( )

% (1 —=0.92%1 x 0.82%2 x 0.7%¥1

— 0.798381’277(07983);

NI =

[T

X (1—

1-

(
(
(1-
(
(

X

IN
X

X (11—

X (1—

(-1

(1-0

N =

dsctvp—;

)

HSprr—96)

821 % 0.7%% x 0.9%)

0. 82)(1 % 0. 92)(2 % 0. 72><1

72><l X O.82X2 % 0.92><1

92><1 X 0_72><2 X 0.82X1

)
)
0. 72)(1 % 0. 92)(2 % 0. 82)(1)
)
0. 92)(1 % 0. 82)(2 X 0. 72)(1)

) (873 (59, -002))'
(55”_3 s 0-05> ) )1 X (AZ% ( (SSLT_4’ _0'02) ) )2 X (AZ% ( (SSLT—Z’ 0'01) ) ) '
(87} (55,10 002))) (87} ((s5,,-001)))* x (a7 ((s5,,-005) ) )

-

Bl

s
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Next, we get the value of the complex-valued abstinence grade of the CTSF2-TLMM operator, such that

1
1\2
13
n typ—j g
s 2m1-{1- H 1- l_J:(l—W?C )
1al’ Sisen \ =1 Swm—8
3 tw,_j 3!
1- 1_[ H (1_1_[(1_ gﬁfpn—&(})) >] ¢
S(NEssc_y j=1
1
1\
1)\4
(1-(1-00?) x (1-022)*x (1-001%)") }*
x (1= (1-00%)" x (1-002)" x (1-022)")
x(1-(1-012)" x (1-00%)" x (1-0012)")
=lhi-|1-
x(1-(1-012)" x (1-0012)* x (1-002)")
x(1-(1-001) x (1-00?)" x (1-022)")
x(1-(1-0012) x (1-0.2)" x (1-0.02)")
1
1\2
14
(1-(1-00%) x (1-02)*x (1-0012)" ) |*
x (1= (1-00%)" x (1-002)" x (1-0.22)")
x(1-(1-012)" x (1-00%)° x (1-001)")
27t 1—| 1—
x (1= (1-0.12)" x (1-0012)" x (1-002)")
x(1-(1-0012)" x (1-00%)° x (1-02)")
x(1-(1-001)" x (1-0.2)" x (1-002)")
e
— 0.0ei27r(0.0)
In last, we obtain the value of the complex-valued falsity grade of the CTSF2-TLMM operator, such that
1
12
1y

H - W tye—i \ | 3!
1 px|1-|1- 1-— <1 _ ss >
1 411 2 S()Esscr =1 NS 1pr1-s80)
3 ; 31
dsc VP—j
1— 1_ H (1_H< 77‘;RP1L_190)> ) e

B(Essc—n j=1
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B =
I
ol

(1 B (1 B 0.62)1 % (1 _ 0'52)2 x (1 — 0.42)1>

x(1-(1-06)" x (1-042)" x (1-05?)")
x(1-(1-05)" x (1-062) x (1-04)")
1 27| 1—| 1—
32 x(1-(1-05)" x (1-042) x (1-06?)")
1-(1-062)" x (1-052)" x (1-04)") |7
(1= ) )l ) x(1-(1-04)" x (1-062)" x (1-05?)")
x(1-(1-06)" x (1-042)° x (1-05?)") . .
x (1= (1-04)" x (1-05)"x (1-06)")
x(1-(1-05)" x (1-062)"x (1-04)")
=|1—1]1-— 1 1 e
x(l—(l—O.SZ) x (1-042)* x (1-0.62) )
x(1-(1-04) x (1-06)"x (1-05%)")
x(1-(1-02)" x (1-052)"x (1-06?)")
— 0.509581‘2”(0‘5095);
!
h 1 3 tVP_J (+2+D) — 49 8 i277(0.7983) i277(0.0) 9 i277(0.5095)
then jsgaem ?—CITS (dTS_90)> = <<SSLT_3’0-01 ),(0.79 3e ,0.0e ,0.5095¢ )).
S$C—n -

If we set zero to the imaginary parts of the complex-valued truth and falsity grades, then the Example 2 is converted for T-spherical fuzzy
2-tuple linguistic variables, which is a special case of the established operator.

» RIW, RIWe, AW,
Theorem 2. Suppose the families of two CTSF2-TLNs are S crs_j = <55LT_J_, ﬂsc—j) o\ MSpprni€ Sy gSRPTL—je Sy Mo, SIpTLj

P27TW,
Ng . .
SIPTL—%j ,G =1,2,3,.,n)

i2TW
%’SIPTL—*j

P2TW
a3 _ HSpTL—si
1,2,3,.,n) and Scrs_yj = <<55LT_*j,ﬂsc—*j> , (MSRPTL_*]-@ IPTL=] | Eskm_*je gm0y

with vector of parameters typ = {typ_1, typ_2, .., typ_n} € R". Then the idempotency, monotonicity, and boundedness are shown as follows:

i27TW, i27TW i27TW,
L IfSers—i=1|1(s ase—i ), (pug. e O £ $Sipr Ng. € ST (= 1,2,3,.,n) all are equal if and
: CTS—j Spr—j?> #8C=j ) > \ FSreri—j > SSrprI-j > IS rpr1—j > > 45 D500y q

Only lfsCTs_j = SCTS’ then
CTSF2 — TLMM"? (S crs—1> Scrs—2s -0 Scrs—n) = Scrs

2. IJ(<SSLT—j’aSC_j) Z (SSLT—j’aSC_j> ’#SRPTL—j 2 ’MSRPTL—j’ W”SIPTL—)' 2 WMSIPM_J" gSRPTL—j < gSRPTL—]’ W§SIPTL_}' < Wgﬁlpn_j’ and

nSRPTL—j < nsRPTL—j’ W’?SIPTL_j < W’)SIPT,__j’ then
CTSFZ - TLMMtVP (SCTS—I’ SCTS—Z’ ceey SCTS—H) Z CTSFZ - TLMMtVP (SCTS—I’ SCTS—Z’ ceey SCTS—TI)'

3. I(s_ ag, ,)=min(s a_-) <s+ at ,)—mx<s a_)
if Spr—j” SC=j 1<j<n Spr—y? #8C=i )2 \ 784 FsC—j 1<% Sur—; ASC—j

+ i27T W,u i27 1max Wﬂ“S i27rW;le i27 1min Wll"
SIPTL—j — <js<n IPTL—j SIPTL—j — i <jgn - FSIpTL—j
‘MSRPTL—j 1n<lja<n HMSppry }e ’MSRPTL—je lmsjlgnn 'uSRPTL—je ’
i2m i277 max 2TW, i277 min W,
+ gﬁ i 1<j< 5‘, _ - s _ 1<j< 135] —i
IPTL~j = max e j<n PTL=j IPTL-j = min %’ e j<n PTL—j

- ) .
SRPTL—j 1<j<n SrpTL—j SRPTLj 1<]<n SRPTL—j



27TWy
SIPTL-j = max

+
Ns RPTL—j

+
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i27T max W,
Ng e 1<j<n "JIPTL—]‘
S oprr s
1<j<n RPTL=)

P e
Mg RPTL—j

i27TW,

T ,;(_
SIPTL-j = min

27

NS rpri—;
1<j<n RPTL—j

1min W773
<j<i —i
<j<n IPTL=j | then

P2TW,

i27TW,,
e §SIPTL—j Ng e NS 1prr—j
? JSRPTL—j

"27TW;_45
— - = PTI—j £=
(SSLT_j’ aSC—j) ’ MSRPTL—je ’ gSRPTL—j

S CTSFZ - TLMMtVP (SCTS—l’ SCTS—Z’ eeey SCTS—?I)

nawt 2rwt +
s gt ,Lli e Ksipri—j gt $S1pr1— ni NS1prr—j
Sir—” 7SC=i )’ ~SRPTL—j ? 3 SRPTL—j >/ SRPTL—j
Proof: The proofs of the above three properties are shown as follows:
1. CTSF2 — TLMM"P (B g1, Bcrs—2s v SCT82m) =
1
n
n g typ—j
1 -1 =i\ j=1
Arr| o H (ALT <55LT_19®» “sc—S(j))) )
B()Essc_p j=1
1
1 n
=
X 1 " | asc Z tvp—
n dsctyp—; P
1\ o Zt i2n{|1- 1- WﬁfsC VP =1
n t e j=1 P BS()Esscn j=1 1PTL=5G)
qsctvp—j -
1- H 1- ] SrerL-9G) € ’
S(Essc—y j=1
1
1 -
T dsc
1
_ _ _ _ #lsc VP j=1
=11 H 1 H (1 SRPY’L—SU))
B(Esscn j=1
1
. ~
e 9
1
n typoi\ | Z typ—j
27 1-{1- 1-— <1 - W‘?G > j=1
S(DEsscn j=1 SIPTL=5()
e )
1
1 -
Er— dsc
2
nl typ_;
1-|1 1 - 1—pke V- j=1 -
N H - H ( - USRPTL—S(j))
B()Essc—n j=1
1
. ~
T
LA
n typ—i \ | Z VP—j
eri-i-| [T (1- <1 - Wy > =1
Sicsc, \ =1 s
e
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1

.
> >t

n
1 -1 typ—j | j=1
ALT(m 2 T (ss0a50)) " )
B(essc_, j=1
1
_r n m
1 dsctype;
1\ it i2n||1- H 1-— le;v“
n ¢ " i=1 e B()Essc—n j=1 o
dsctvp—j =
1- H 1- SrerL ) €
B(i)Essc—n j=1
1
1 —
— \isc
1 n
. | D tve—
11 = _ _ gldsc e j=1
1 1 H 1 (1 SRPTL)
S(Essc—n j=1
1
= n
1
" typ\ | ZtVP—j
] T 1_H(1_w§c ) =
S(Esscn j=1 IPTL
e
1
1 -
m dsc
1
n n! Ztvp_j
11 _ _ _ asc \fvej j=1
1 1 H <1 H(l 77SRPTL) )
B(i)Essc—n j=1
1
n
1
n o\ ) thP—j
/- =
-l TT (1-TT(1-wi, ) =1
—
B()Esscn j=1 i
e

i27'[W,uS i27'[We§S i27'rW,75 ~
= (SSLT’ aSC) s\ Mg € IPTL %'SRPTLe IPTL , 1) oy € IPTL =Scrs

Hence, CTSF2 — TLMM*ve (SCTS—I’ SCTS—Z’ veey SCTS—I’I) = SCTS'
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2. We know that

CTSF2 — TLMMve (SCTS—I’ SCTS—Z! ey SCTS—n) = SCTS—j

1
n
1 “ typ tvp—j
_ -1 P i=1
Arr al Z H(ALT (SSLT_S(J-)’“SC—S(;')>> ,
S(j)Essc—, j=1
1
1\
1) gsc ZtVP—j
_ . sctvr—j nl =1
1\ el T (1= 1T W,
1 q_ Zt ) S(Esscn j=1 J
n | 1s¢ ] VP—j
dsctvr—j j=
1= H (1 - H 'uSRPTL—SU)> €
S(j)Essc—n j=1
1
1 —
- dsc
1
n ¢ n! Ztvp_j
—11= _ __ #lsc VP =1
1 1 H (1 (1 SRPTL—SU)) )
F(Essc—n j=1
1
- _r dsc
1 n
n tvr—i\ \ 71! ZtVP—j
27| 1-[ 1— H 1— <1 _ W?C ) =1
S()esscn j=1 S1p1L-9¢)
e
1
v N4
1 n
n . | D tve—
1= _ __dsc VP j=1
[ (1T
S()Essc_p j=1
1
1 dsc
1 n
n typ—j nl z typ —j
2m|1-|1- 1— <1 — Wi | > =1
S()e SsCmn =1 IPTL—8(j)
e
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CTSF2 — TLMM've (SCTS—I’ SCTS—Z’ ey SCTS—n) = §CTS—j

1
n
1 - VP Z fvej
-1 (A 7 |i=1
ALT m Z H <ALT <SSLT—8(j)’aSC_‘90))> J P
" S(Essen =1
n
1 ) dsctvp—j
= N S(ies <1 B i=1 Whsim-a
) <\ asc Z tVP—j SC—n
dsctvp—j j=1
1= H (1 - H 'MSRPTL—S(]')> €
S(Essc_n j=1
1
Y Ve
1 n
n , nl Z typ—j
I B _ _ #lsc VP j=1
1 1 H (1 H (1 SRPTL—SU)) >
B(Esscn j=1
1
= N
n tor\ |72l Z typ—j
27| 1-{1- H 1-— <1 - Wq;C > j=1
S()Esse, i=1 SIPTL—()
e
1
1 —
— }4sc
1 n
. t | tye—
11 _ _ 4dsc VB j=1
=11 H (1 H <1 USRPTL—S()')) )
B(Esscn j=1
1
1 n
n e\ \n! Z typ-j
eai-i- JT (1- 1— wic j=1
N3 1p71-9¢)
S(j)essc_n j=1
e

1
1 n
1gse ZtVP—j
n! j=1
1
qsc
1
qsc
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where (SSLT—j’ asc_j> > <SSLT—j N asc_j>

21 typ—j Z1 /(A typ—j
= (ALT (55”_ 50 ﬂsc-s(j))) z (ALT <SsLT_ 50 aSC—S(j)))
1 1

B —
2 tve-

n n
typ—j \ 4 typ—j \ 4
1 -1 U j=1 1 -1 (A 7 j=
s 3 3 TT(oF (sssasc-00)) >0 ( 2 3 TT(A7 (S5 asc-s0) )
SU)GSSC_” j=1 90)685(;_” j=1

n
typ—;
! Further,

we check the real part of the complex-valued truth grade, such that Mgy 2 MSgprs

dsctvp—j ~dsclvp—;
s Srerr-sG) = M SreTI-9()
z t z t
qsctvr—j dsctvr—j

=>1- 5. o <1-— o

RPTL—9(j) ~SRPTL—9(j)

j=1 j=1
1 1
1 n 1 n
1\ 1\
n e [t n 2o |
P =1

dsctvp—j j= 9sctve—j
- - o >|1-| ] 1] es
= 1 H 1 H H ~SRPTL—8(j) - 1 1 M ~SRPTL—8(j)
j=1 j=1

S()essen B()Essc—n

Similarly we can prove the imaginary part of the complex-valued truth grade, real and imaginary parts of the complex-valued abstinence
and falsity grades, such that

’MSIPTL—j 2 W”SIPTL—j ’ gSRPTL—J' = gsRPTL—J" W§51P’1‘L—j = WgslPTL—j) and 77SR“’TL—J' = ﬁSRPTL—J" WnSIPTL—j = WnSIPTL—j’ then it is clear that If
S (SCTS—]') >§ (SCTS—;‘) = SCTs—j > Sers—js
If S (SCTS_J-) =S (SCTS_J-), then we also use the accuracy function, such that if H (SCTS_J-) > H (SCTS_]-) = Sers—j > Sers—j if
H (SCTS—]‘) =H (SCTS—]') = Scrs—j = Scrs—j- Hence the inequality is holds true.

CTSF2 — TLMM'vr (SCTS—l’ SCTS—Z’ ors SCTS—H) > CTSF2 — TLMM've (SCTS—l’ SCTS—Z? ees SCTS—H) .

The results has been completed.

By using the result 1 and result 2, we get the following result, such that

RAW, o 7AW 27T Wy
- - b PTL—j £~ PTL—j 1= IPTL—j
<SSLT_J-’ aSC—j) ’ 'MSRPTL—je ’ gsRPTL—je ’ 775RPTL—je

< CTSF2 — TLMM?ve (SCTS—I’ SCTS—Z’ ey SCTS—n)
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and
CTSF2 — TLMM'> (S cps—1 Sers—2s o Scrsen)
< (S; ’“;c_-)’ 7o ,eiZﬂWZSIPTL-J,f%' " veimwgm"“‘j,ﬂg . _eiZHW;‘""PTL—J'
L1 -j RPTL—j RPTL—j RPTL—j
then

RTWy 2Ty Wy,
S S 3 IPTL—j e IPTL—j p= IPTL—j
(SSLT—]" aSC_j) \ Hsen—© » SSrprr—; € 2 NS pri— €

S CTSFZ - TLMMtVP (SCTS—l’ SCTS—Z’ aeey SCTS—n)

2rwt i

27w} 27
+ + + HSpr i g+ SSpr_i ot
= (S a > ’ ¢ B g € P, 77«“S'RPTL—]‘e

+
) ut + S 1prL—j
Spr—j’ "SC—j ~SRPTL—j ~SRPTL—j

Hence the result is proved.
Further, the special cases of the explored operator is discussed based on typ.

Case 1: If we choose typ = (1,0,0, ....,0), then the CTSF2-TLMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic
arithmetic averaging operator shown as

CTSF2 - TLAAtVP (SCTS—I’ SCTS—Z’ eeey SCTS—H)

n
1
— -1
= |Arr Z <; X Arr <55LT_90.)a ﬂsc—9<;>)> )
=
1
" 1 dsc
n
. L oafi- (1 — Wit >
n ~ |dsc j=1 IPTL=5()
_ _ ,,9sc n
1 (1 K 5RPTL—9(;‘)> € ’
=1
1 1
n - n -
1 ex [Tl W] 1 er [T Wik
" - i=1 gﬁwu—&g) e - i=1 SIPTL=9()
H gSRPTL—SQ) ¢ > nSRPTL—SU)
i=1 j=1
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Case 2: If we choose typ = (1,1,0, ....,0), then the CTSF2-TLMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic

BMO given by:

CTSF2 — TLBM'vp (SCTS—I’ SCTS—Z’ ooy SCTS—n)

1 n
ALT(n(n -1 Z

j#k=1

n

1- I (1—y

j#k=1

(o

(o

1
2
-1 -1
(ALT <SsLT_ 50 ﬂsc—S(;)) X ALt (55LT_ s’ aSC—S(k))) ,

1
n —1 qsc
-1
Loanle T (1-wie  xowi n(n—1)
1\2 . H SIPTL-5() HSp11—900
1 — j#Ek=1
g g =y qsc
sc sc n(n—
Sre1L-9() X u SRPTL—S(k)) €
1
1 % dsc
4 4 n(n—1)
sC sc
(1 - (1 - SRPTL—SU)) X (1 - gﬁmn-sw ))
I
1 3 dsc
n B - n(n—1)
i27[1-{1- <1—<1—WqM >><<1—WqSL >>
i=1 gsmn—sm S
e b
1
1 % dsc
q q n(n—1)
sC sC
(1 - (1 - nsRPTL—S(j)) X (1 = DSweri—sq ))
1
1 —
1 3 dsc

. n(n—1)
pH- )
j=1 IPTL=8() 5’711>7'L—.9(k>

N =
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n n—k

Case 3: If we choose typ =|1,11,1,1,....,0,0,0,0 |, then the CTSF2-TLMM operator is reduced to the complex T-spherical fuzzy 2-tuple

linguistic MSMO given by:

CTSF2 — TLMSM'v> (S crs—1, Sers—2s o Scrsen)

1
1 " 1 k
Avr| = 2 II (ALT <SSLT_9(k)’aSC—~9(k))> ,
Co 1<), o <..jy<n k=1
1
L \k
i dsc
: m_(-Trwe, )|°
. SC
1\~ 27| | 1— 1-— i
1y— |* < <SS k=1 TSk
n g dsc
dsc n
1- < H <1 - H HSRPTL—SU{))) € R
Sjlsjzﬁmfjkfn k=1
1
—
=
i X SC
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— — _ - Ne n
1 1 ( H (1 (1 SrP1L-9(K) > ) )
<) Sjp S Sir<n k=1
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a1 ] 1_H<1_quc ) n [i=1
<1< S<n k=1 e
e 9
1
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l B SC
n ck
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1
1 qsc
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2 1-{1— 1-— (1 - quf ) n
SjlstSHSij“ 1;1_[1 PSipr—s09
e
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Case 4: If we choose typ = (1,1, 1, ..., 1), then the CTSF2-TLMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic
geometric AO is given by:

CTSFZ - TLGAtVP (SCTS—l’ SCTS—Z’ veey SCTS—?I)

1

n -
1 n
- 27 w
n . n n l ]Ijl: MSIPTL—S(;‘)
— - I | n =

= ALT <ALT (SSLT—SU) ) asc_90)> > ) MSRPTL—SU) e 5

j=1 j=1

1
" 1)gsc
n
L o[ (1-w
n 1)q . §SIPTI—19‘
— |4sc j=1 L—3(j)
_ _ glsc n
1 (1 5RPTL—8(;‘)> € >
j=1
1
" 1)gsc
n
L 2A- 1— whe
n 1 dsc j=1 nJIPTL_eU)
_ _ ,dsc n
1 <1 nSRPTL—eu))
j=1

Further, we investigate the DMM operator based on a CTSF2-TLS which is called CTSF2-TLDMM operator.

27w, 2
Definition 10. Choose the family of CTSF2-TLNs S¢rg; = <<SSLT—j’aSC_j)’ <’usRPTL—je “«swn-j,gswn_}e

W,
gSIPTL—j
9

i2
NSpprr_ @ "S1pr1-) )) s (] =1,2,3,., n) with vector of parameters typ = {typ_1, typ_2, ... typ_,} € R", the CTSF2-TLDMM operator is
given by:

1
1 n z
CTSF2 — TLDMM"? (S crs—1, Sers—2s - Scrs—n) = — Qcrs <€BCTS (tVP—jsTS—S(j)>> (14)
S(essc_y \ j=1
2 v
=1

where 8(j), (j = 1,2, 3, ..., n) is n permutation, and the set of all permutation of 1 to n is denoted by Sgc_,,.

Based on the above analysis related to operational laws and Definition 10, we establish the following results.

. 2TWy. ) 2AWe ) 2TWy )
Theorem 3. Suppose the family of CTSF2-TLNs ¢y = (SSLT " ﬂsc—j) o\ S ST € o ; ST ) S e ; SIpTL-j
- - - -

(G = 1,2,3,..,n) with vector of parameters typ = {typ_1,typ_2, ..., typ_n} € R". Then the aggregated value of CTSF2-TLNs is a CTSF2-TLN,
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and

CTSF2 — TLDMM"? (S crs—15 Scrs—25 -+ Scrs—n)

1
o
1 - -1 typ—
Al — I X (ALT (55”_90),asc—9(j))) ,
B(essc_, j=1
2 tve
j=1
1
1 Vae
1 n
n \ tre n! thVP—j
— — — — SC =
1 1 H 1 H(l s SRPTL—S(/’))
S(HEssc_p j=1
1
; dsc
1 n
n typ—j ﬁ Z tvp —j
: |1 _ _ sc j=1
i27[1-|1 H 1 <1 Wz‘ﬁlm_sm>
S(Essc_p j=1
= e b
1
1\ x
l' dsc ZtVP—j
n n! j=1
1 dsctvp—j
S HE P B <1_ Wi
1\ S()Esscn =1 UIPTL=3G)
) L\ ase ZtVP—j (NEssc. j
dsctvp—j j=1
1= H (1 - gsRPTL—S(j)) € ’
S()Essc_p j=1
1
1\ nx
1)gsc ZtVP—j
“ dsctve—j n! =1
1\ i27|| 1~ -] W, 7
- SGjes =1 SIPTL-9()
) ) asc ZtVP—j SC—n
dsctvp—j =1
1- H (1_ nsRPTL—S(j)) €
S(essc_y j=1

Proof: Straightforward. (The proof of this theorem is similar to Theorem 1).

Example 3. Based on the information in Example 2, we can get the aggregated value by the CTSF2-TLDMM operator, such that

n!
1 " | , ,
— ( ®crs (EDCTS (tvp_jSTS_s(,-))>) = (55,00 0.0118 ), (0816562051651, 0,062700), 0.4966¢2704966)) )

- S(esse_y \ j=1
2 v
j: 1

If we set to zero to the imaginary parts of the complex-valued truth and falsity grades, then the Example 3 is converted to T-spherical fuzzy
2-tuple linguistic variables, which is the special cases of the established operator.

i27TW,
5511»11—;
b

27w
1. M pr i
Theorem 4. Suppose the families of two CTSF2-TLNs are Scrs_; = <<SSLT—j’aSC_j> , <'“5Rm_je IPTL J,g‘sRm_je

i27TW, i2TW
HS1prL—sj %‘c, e %’SIPTL—*j
> S SRPTL—xj ’

i27TW,
NS pri—j : — o =
NS o€ "’”1)>,(J = 1,2,3,.,n) and Scrs—yy = <<55LT_*j,asc_*j>5 HSppr—.i€
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27w,
NS ppri— IS1p1L—i ,(G = 1,2,3,..,n) with vector of parameters typ = {typ_1, typ_z, ... typ_,} € R". Then the idempotency, mono-

tonicity, and boundedness are shown as follows:

~ i271'W”s 1‘271'W¢§S z‘27rWns
= IPTL—j IPTL—j IPTL—j T 3
L IfSers—j = (SSLT—j’ aSC—j) o\ Hsppri€ i ,§5Rm_je T NS prsi€ g ,(G=1,2,3,..,n) are all equal if and

only if Scrs—; = Scrs, then CTSF2 — TLDMM™? (S crs—15 Scrs—2s - Scrs—n) = Scrs

2 I-f<sSLT aSC—]) Z (SSLT—j’aSC_j) > M 2 HSpprs—j» WMSU)TL_j 2 WHSU,TL_j’ §SRPTL—}' = gsRPTL—j’ Wgsmn_j < Wgsmn_j’ and NSperi— <

n‘jRPTL Wndlpn—] - WnSIPTL—jJ then
CTSF2 — TLDMM"ve (SCTS—D SCTS—Z’ vy SCTS—n) > CTSF2 — TLDMM"v» (SCTS—I’ SCTS—Z’ ey SCTS—n)'

3. I( )-ml (s a_) (s+ at ,>=max(s a_.>
If (s Sy’ c—] 1<j<n Spr—j? #8C=j Spr—j® SC=j 1<j<n Spr—j? #8C=j ) »

+ ;_ i27 Joax W/‘G i27z'W;_ i27T 11211? W#,;
SIPTL—j — <jsn IPTL—j SIPTL~j = mi <j<n IPTL=j
< e = maXx Ug (4 = . = min Ug e
’uJRPTL—; 1<j<n Iu\SRpTL—j ’ #.JRPTL_J 1<j<n M\SRPTL_}
+ 127TW§ 277 max Wy 2rwW, 27 min We_
P ) SIPTL—j — max &g ) 1<j<n IPTL—j | P e SIPTL—j — min 55 e 1gj<n PTL—j |
RPTL—j 1<j<n ~ ORPTL=] RPTL—j 1<j<n ~ ORPTL=j
. + . . -
i i27T max W, i27TW, i27T min W,
g ; X g g ; . NGy
77% . SIPTL-j = max Ng e sz PTL—j N3 . ST~ = min 5 e 1w= TSriethey
RPTL—j 1<j<n ~NSRPTL—j RPTL—j 1<j<n | ORPIL~j

R2TW), 127TW§J 2w,
- - - IPTL—j IPTL—j = IPTL—j
(SSLT_j’ aSC—j) ’ ’uSRPTL—je gSRPTL—je nSRPTL—je

< CTSF2 — TLDMMtVP (SCTS—I’ SCTS—Z’ veey "“CTS n)
2nwW 2wt

+ + + 2 Wy + £ + g
< ) SIPTL—j SIPTL—j SIPTL—j
= SSLT_j’ aSC—] ’ ’MSRPTL—je ’ SRPTL—je > nSRPTL—] €

Proof: Straightforward. (The proof of this theorem is similar to the Theorem 2).
Further, the special cases of the explored operator is discussed based on the value of typ.

Case 1: If we choose typ = (0,0,0, ...., 0), then the CTSF2-TLDMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic
geometric AO given by:

CTSF2 — TLGA'v (SCTS—I’ SCTS—Z’ ey SCTS—n)

1
l 1 i27T H /Zlv
n n n = SIPTL—-S()
— -1 n
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_ sc n
1 < nURPTL—S(]) ) €
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Case 2: If we choose typ = (1,1, 0, ....,0), then the CTSF2-TLDMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic

geometric BMO given by:

CTSF2 — TLGBM"* (S ¢rs—1> Scrs—2s s Scrs—n)

n

IT (it

JjFk=1
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n
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1- I (1—

j#k=1

n

jFk=1

Case 3: If we choose typ =
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k n—k

1,1,1,1,1,1,....,0,0,0,0,0,0 |, then the CTSF2-TLDMM operator is reduced to the complex T-spherical
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fuzzy 2-tuple linguistic geometric MSMO given by:

CTSF2 — TLGMSM'vp (SCTS—I’ SCTS—Z’ ey SCTS—n)

1 . <
Arr (% H Z (AL% (SSLT—S(k) > aSC—S(k)) )) ’
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1% sc
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Case 4: If we choose typ = (1,1, 1, ...., 1), then the CTSF2-TLDMM operator is reduced to the complex T-spherical fuzzy 2-tuple linguistic
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arithmetic AO given by:

CTSF2 — TLAA" (Scrs—15 Scrs—25 -+ Scrs—n)

1
" 1 dsc
o n
. L a1 <1 — Wi >
"o n . - |4sc i=1 IPTL=5()
— -1 _ _ ,sc n
= |Awr ; <E X Arr <SSLT—90)’aSC_‘9(i))) 1k <1 MSRML—&U)) € ’
j=1 j=1
1 1
n —_ n —
1 i27rH ng 1 i27'[H W:]/le
" - i=1 Sipri-sg) | 2 - =1 SIPTL-8()
H gsRPTL—SU) € ’ nSRPTL—S(j) €
j=1 j=1

4. MADM METHOD BASED ON COMPLEX T-SPHERICAL FUZZY 2-TUPLE LINGUISTIC
INFORMATION

For a MADM problem based on complex T-spherical fuzzy 2-tuple linguistic information, we consider the families of the alternatives and

attributes, which are stated as: Ay, = {As1_1,A41-2> - Aui_mb Car = {Car—1, Car—2, - Car—,}> and then construct the decision-making

i27TW, i27T i27TW,

T W
e ) ts . N ..
SIPTL—jk | gSRPTL—jke SIPTL—jk e SIPTL—jk is in the

matrix Ry, = (r.k> , where T = <55LT_jk,asc_jk>, MG ppri—in

mxn

form of CTSF2-TLNs for alternative Ay;_;(j = 1,2, 3, ...,m) under the attribute Cyr_i(k = 1,2, 3, ..., n), then the steps of this MADM
problem based on CTSF2-TLNs are as follow:

Mg RPTL—jk

1. By CTSF2-TLMM operator or CTSF2-TLDMM operator to get the aggregated result.
2. By Definition 4, we get the score values of the aggregated values.
3. By Definition 4, we get the ranking results, and then obtain the best one alternative.

4. Theend.

Example 4. The purpose of this example is to select the emergency alternative. Suppose there are four alternatives shown as:
Ay = {Au1,Au_2,Ax_3,Ax_4s} and there are four attributes which are explained as C,r_; = Preparing Capacity, Cyr_p =
Rescuing Capacity, C47_3 = Recovering Capacity, and C,r_4 = Responding Time. Further, the linguistic term set S;; =

{55“,_0 = very — poor,ss, = poor,ss . = fair,ss . = good,ss . =very— good} is adopted, and the decision matrix R, = Ck)
4x4

is build up which is in the form CTSF2-TLNs shown in the Table 1. The steps are shown as follows:

1. By the CTSF2-TLMM operator, we can get the aggregated values for four alternatives, where, we select the parameter t» = (1,1,1,1)

and ggc = 3, then
Ap-1 = CTSF2 — TLMM"? (Cyj—1,a7—1> Car—1,a7—2> Cai1,a7—3> Cai—1,a7—4)

= ((ss,,._,»0.097669, (0.0005125¢27(0-0005125) 0 37¢27(0.32) ) 23,27(023)) ) ;
Ap_p = CTSF2 — TLMM"? (Cpj—p a—1, Cat—2,a7—2> Cai—2,a7—3> Cai—2,47-4)

- ((S 0.22658 (0 Oei277.'(0.0) 0 16ei2ﬂ(0.16) 0 36ei27'l.'(0.36))) .

Spr_1? " ) . s U. s V. )

A3 = CTSF2 — TLMM"» (Cpi—3,a7-1> Ca=3,a7—2> Cai—3,47—3> Cai—3,47-4)

= ((ss,,_,»0.94927, (0.0e%700,0.22¢27(022) .18¢27019)) ) ;
Ayj—g = CTSF2 — TLMM"v» (Cpi—a,a7—15 Car—a,a7-2> Cal—a,a7—3» Cai—a,a7-4)

= ((ss,,_,50.24592, (0.0¢2709,0.184¢27O018%) 0,144¢270144)) )

2. By Definition 4, we get the score values of the aggregated values as follows.
S(Agq) = —0.22135,S (As_s) = —0.167, S (A_3) = —0.160, S (A4y_4) = —0.4385.



3. By Definition 4, we obtain the ranking result and the best one alternative.
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Agimz > Apa > Apm1 > Aypeg
and then A,;_; is the best alternative for emergency preplan.

4. Theend.

4.1. Further Discussion
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To evaluate the influence of the parameter t, based on the Example 4, we set the different values to the parameter typ in the established
approaches, that is, based on CTSF2-TLMM operator and CTSF2-TLDMM operator, then the ranking results are shown in Table 2.

Table 1 Decision matrix in the form of complex picture fuzzy 2-tuple linguistic numbers.

Symbols Car-1 Car—2 Car-3 CaT-4
(55,7.5-0.03), (s5,74-013), (s5,75-011) (55,74-0:01),
A= 0161271'(01)’ 00121277.'(001), 016127[(01), 026127((02),
0.2£127(0.2) 0.01¢/27(0.01) 0.1£271(0.1) 0.230127(0.23)
(s505-0:01), (s5,450014) (5545-013), (55,05-0:02)
Ay 0.51¢127(051), 0.6¢i271(06), 0.4¢i271(04) 0.366127(0.36)
A= 0.11¢127(0.11) 0.11¢1270.11) 0.227(02), 0.32703),
(55,7.-0:0101) (s5,75-015) (55,7.4-0.06) (s5,75-015)
s 072707 0.19¢i277(0.19) 0.3¢i271(0.3) 0.19¢277(0.19)
A= 0.1¢12701), 0.26127(0.2) 0.2¢1271(0:2) 0.26127(02),
0.1£27(0.1) 0.2£127(0.2) 0.12¢27(0.12) 0.2¢27(0.2)
(55055012, (55450016, (5545,005), (55,45-016),
AAI . 076127((07), 0386127'((038)’ 0.2881277:(028), 0.38@1277:(038),
- 0.2¢127(0.2), 0.13¢27(0.13) 0.227(02), 0.13¢127(0.13),
Table 2 Ranking results for different value of parameter typ.
Parameter Vector Operators Score Values Ranking Result
¢ =1,1,1,1) MM S(AAL—I) = —0.22135,S(AAL_2) = —-0.167, AAZ—3 > AAZ—Z > AAl—l > AAl—4
VP 1D S(Apr—3) = —0.160,S(A,;_4) = —0.4385
DMM S(Apr—1) = —0.135,8(A41—2) = —0.127, Apj—3 > Ap1—2 > Ay—1 > Apl—g
S(Aa[—3) = —0.110,S(A [ _4) = —0.246
typ = (1,0,0,0) MM S(Agr—1) = —0.1395,8(A 41 —32) = —0.137, Apj—3 > Ap1—2 > Ay—1 > Apl—a
VP P S(Aar—3) = —0.130,5(As;—4q) = —0.285
DMM S(Apr-1) = —0.235,5(A41—2) = —0.178, Apl-3 > Apl-2 > Apj-1 > Apj-4
S(Agr—3) = —0.170,S(As;—4) = —0.453
tvp = (1,1,0,0) MM S(App-1) = —0.254,5(A 1 —2) = —0.247, Apl-3 > Aplm2 > Apj-1 > Apl-4
vp A S(Apr—3) = —0.240,S(Ay1—4) = —0.558
DMM S(Apr—1) = —0.227,8(As1—2) = —0.169, Apl-3 > Aplm2 > Apj-1 > Apl-4
S(AAL—S') = —0.164, S(AAL—4) = —0.445
tvp = (1,1,1,0) MM S(Apr—1) = —0.223,8(A41—2) = —0.168, Apl-3 > Apl—2 > Apl-1 > Apl-4
VP i S(Apr—3) = —0.161,5(A ;—4) = —0.4402
DMM S(Apr—1) = —0.221,8(A41—2) = —0.173, Apl-3 > Apl—2 > Apl-1 > Apl-4
S(Apl—3) = —0.163,S(A4;—4) = —0.438
fop = (2,2,2,2) MM S(Apr-1) = —0.203,8(A4—2) = —0.147, Apl-3 > Apjl-2 > Apj-1 > Apl-4
VP i S(Aar—3) = —0.135,8(As1—4) = —0.425
DMM S(Apr-1) = —0.214, 5441 —2) = —0.154, Apl-3 > Aplm2 > Apj-1 > Apl-4
S(Agr—3) = —0.134,5(A,;_4) = —0.430
fop = (3,3,3,3) MM S(Apr-1) = —0.189,8(A41—2) = —0.1137, Apl-3 > Apl-2 > Apj-1 > Apl-4
vp T S(AAL_3) = —0.113,S(AAL_4) = —0.378
DMM S(Apr—1) = —0.188,5(A41—2) = —0.127, Apl-3 > Apl-2 > Apj-1 > Apl-4

S(Agr—3) = —0.117,8(Agp—4) = —0.376

DMM, dual Muirhead mean; MM, Muirhead mean.
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From the Table 1, we get the ranking results from the both methods with different values of the parameters, obviously, there is the same
ranking result, and the best alternative is A 5;_3. When we change the value of parameter typ, the result is still remain same result.

4.2. Comparative Analysis

The purpose of this sub-section is to prove that the established operators in this manuscript are effective, based on Example 4, we make a
comparison between explored operators with existing operators, such as averaging aggregation operator, geometric aggregation operator,
geometric BMO, geometric MSMO based on the complex T-spherical fuzzy 2-tuple linguistic information, complex spherical fuzzy 2-tuple
linguistic information, and complex picture fuzzy 2-tuple linguistic information. The comparisons between established operators with some
existing operators are discussed in Table 3.

From the Table 3, we obtain that some existing methods [48,49] cannot deal with this decision-making problem and the proposed method
get the same ranking result A,;_3 > Ay 5 > Ay > Ap_4 and the best alternative is A,;_3. Obviously, the proposed method is more
general than the methods [48,49]. The graphical interpretation based on Table 3 is shown in Figure 1.

In the Figure 1, we have discussed four different series, which denote the alternatives A 4;_1 to A,;_4. From the Figure 1, it is clear that the
series 3 gives greater values compared to other values in different series.

Example 5. In this example, the meanings of alternatives and attributes are the same as Example 4, we only consider the complex spherical
fuzzy 2-tuple linguistic information, which is shown in Table 4. The explored operators are compared with some existing operators to
examine the reliability and proficiency of the established operators.

Table 3 Comparative analysis between established operators with existing operators by using Example 4.

Methods Operators Score Values Ranking Values
MM Cannot be classified -
. WMM Cannot be classified -
Wei et al. [48] DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
WMM Cannot be classified -
Juet al. [49] DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
. L . WMM Cannot be classified -
Spherical fuzzy 2-tuple linguistic variables DMM Cannot be dlassified B
WDMM Cannot be classified -
MM Cannot be classified -
. R . WMM Cannot be classified -
T-spherical fuzzy 2-tuple linguistic variables DMM Cannot be dassified _
WDMM Cannot be classified -
MM S(Apr—1) = —0.235,8(As1—2) = —0.157, Apl=3 > Apl—2 > Ap-1 > Apl—a
~ S(Aar—3) = —0.150,8(A,;_4) = —0.385
Proposed method (q =1) WMM S(Apr—1) = —0.271,8(As1—5) = —0.172, Apl_3 > Ao > Apgi1 > Al
S(Aar—3) = —0.156,S(A;_q) = —0.431
DMM S(Aar-1) = —0.205,5(A41—2) = —0.137, ApI-3 > Apl—2 > Apl-1 > Apl-4
S(Agr—3) = —0.118,S(A,;_4) = —0.296
WDMM S(App-1) = —0.143,8(A,;—2) = —0.132, ApI-3 > Apl-2 > Apj—1 > Apl-4
S(Aar—3) = —0.107,S(A4;—4) = —0.253
MM S(App-1) = —0.243,8(A5—2) = —0.127, Apl-3 > Apl-2 > Apj-1 > Apl-4
_ S(AAL_3) = —0.107,S(AAL_4) = —0.345
Proposed method (q =2) WMM S(Aal_1) = 0271, 8(Ax; ) = —0.122,  Ag3 > Az > Aui1 > Axig
S(Apr—3) = —0.102,5(A41—4) = —0.337
DMM S(Apr—1) = —0.144,S(Ap; ) = —0.113, Apl-3 > Apl-2 > Apj-1 > Apl-4
S(Aa;—3) = —0.102,S(A4;—4) = —0.346
WDMM S(AAL—I) = —0.143, S(AAL—Z) = —0.114, AAI—3 > AAI—Z > AAl—l > AAl—4
S(Aa;—3) = —0.104, S(A4]—4) = —0.363
MM S(Agr—1) = —0.22135,8(A41—2) = —0.167, Apj—3 > Apj—2 > Ay—1 > Apl—a
~ S(Aur—3) = —0.160,8(As1_q) = —0.438
Proposed method (q = 3) WMM S(Ayp_1) = —02371, S(Ay; ) = —0.1662,  Aai_z > Aara > Axi1 > Aarg
S(Aar—3) = —0.152,S(Ag—q) = —0.437
DMM S(Apr-1) = —0.135,8(A51—2) = —0.127, Apl-3 > Apl-2 > Apj-1 > Apl-4
S(Apr—3) = —0.110,S(A4;—4) = —0.246
WDMM S(AAL—I) = —0.133, S(AAL—Z) = —0.128, AAZ—3 > AAZ—Z > AAl—l > AAl—4

S(Aar—3) = —0.104,S(A4[—4) = —0.263

DMM, dual Muirhead mean; MM, Muirhead mean: WDMM, weighted dual Muirhead mean; WMM, weighted Muirhead mean.
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Figure 1. Geometrical representation from Table 3.

Table 4 Decision matrix in the form of complex spherical fuzzy 2-tuple linguistic numbers.

Symbols Car—1 Car—2 Car-3 CaT-1
(55”_3,0.03), (s5“1_4,0.13), (ssu,_3,o.11), (55”_4,0.01),
A 05@127-[(05), 0.93127-[(09), 088127[(08), 0.19@12ﬂ(019),
A1 0.4€i2ﬂ(0'4), 0.13'277(0'1), Ollei271'(0.1)’ 0.2€i2”(0'2),
(ssLT_3,0.01), (sSLT_3,0.14), (ssLT_3,0.13>, (ssLT_Z,o.oz),
0 516i271'(0.51) 0 6ei27T(0.6) 0 7ei27T(0.7) 0 3681'271'(0.36)
Aar . N . N . ’ . N
0.12€i2”(0'12) 0.156i2ﬂ(0'15) O.2€i2ﬂ(0'2) 0.1361'271'(0.13)
(s5,7.-0:0101) (s5,95-015) (55,7.4-0:06) (s5,05-015) 5
A . N . s . ) . )
Al=3 0.33127T(03) 0.2612ﬂ(02) 028127‘[(02) 0.26127-[(02)
(s505-012), (55,55,016), (5544,005), (55,55,016),
0 7ei27T(0.7) 0 38ei271'(0.38) 0 Sei2ﬂ(0.8) 0 38ei2ﬂ(0.38)
A . N . ) . s . )
Al=4 0.461'27'[(0.4) 0.13ei2ﬂ(0.13) 0161‘27‘1’(0.1) 0.13ei2ﬂ(0.13)

By using the above steps of the algorithm, the comparison results between the established approach and some existing operators are shown
in Table 5 and Figure 2.

From the Table 5, we can see that some existing methods [48,49] cannot deal with this decision-making problem and the proposed method
get the same ranking result A;_3 > Ay, > Ay_1 > Au_4 and the best alternative is A,;_3. Obviously, the proposed method is more
general than the methods [48,49]. The graphical interpretation based on Table 5 is shown in Figure 2.

Example 6. In this example, the meanings of alternatives and attributes are the same as Example 4, we only consider the complex T-spherical
fuzzy 2-tuple linguistic information which is shown in Table 6, and then the explored operators are compared with some existing operators
to show the reliability and proficiency of the established operators.

By using the above steps of the algorithm, the comparison results between the established operators and some existing operators are shown
in Table 7 and Figure 3.

From the Table 7, we can see that some existing methods [48,49] cannot deal with this decision-making problem and the proposed method
get the same ranking result A,;_3 > Ay_> > A1 > Au_4 and the best alternative is A,;_3. Obviously, the proposed method is more
general than the methods [48,49]. The graphical interpretation based on Table 7 is shown in Figure 3.

Example 7. In this example, the meanings of alternatives and attributes are the same as Example 4, we only consider the picture fuzzy 2-
tuple linguistic information which is shown in Table 8, and then the explored operators are compared with some existing operators to show
the validity of the established operators.
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Table 5 Comparative analysis between established operators with existing operators by using Example 5.

Methods Operators Score Values Ranking Values
MM Cannot be classified -
. WMM Cannot be classified -
Wei et al. [45] DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
WMM Cannot be classified -
Juetal. [49] DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
. L . WMM Cannot be classified -
Spherical fuzzy 2-tuple linguistic variables DMM Cannot be lassified _
WDMM Cannot be classified -
MM Cannot be classified -
. o . WMM Cannot be classified -
T-spherical fuzzy 2-tuple linguistic variables DMM Cannot be lassified _
WDMM Cannot be classified -
MM Cannot be classified -
_ WMM Cannot be classified -
Proposed method (q = 1) DMM Cannot be classified -
WDMM Cannot be classified -
MM S(Apr—1) = —0.354,5(A41—2) = —0.204, Apl-3 > Apl-2 > Apj-1 > Apl-4
~ S(Aar—3) = —0.172,S(As[—q) = —0.554
Proposed method (q =2) WMM S(Aal_1) = —0371L,8(Aa;_2) = 0222,  Ap3> A2 > Au_1 > Axg
S(Aar—3) = —0.187,S(A4[—q) = —0.537
DMM S(Agr—1) = —0.251,8(A41—2) = —0.178, Apl—3 > Apj—p > Apl-1 > Ayl-a
S(Al—3) = —0.142, S(As;_4) = —0.343
WDMM S(AAL—I) = —0.255, S(AAL—Z) = —-0.174, AAI—3 > AAI—Z > AAl—l > AAl—4
S(Aar—3) = —0.144,S(A4;_4) = —0.353
MM S(Apr—1) = —0.322,8(A 1 —2) = —0.184, Apj—3 > Apj—2 > Ap—1 > Apl—a
~ S(Aar—3) = —0.163,8(As;_4) = —0.424
Proposed method (q = 3) WMM S(Aa1_1) = —0.321,8(Aa;2) = —0.192,  Ag3 > Agia > Ayl > Axig
S(AAL—3) = —0.167, S(AAL—4) = —0.437
DMM S(Apr—1) = —0.351,8(Asr—2) = —0.188, Apl-3 > Apl-2 > Apj-1 > Apl-4
S(Apr—3) = —0.148,5(A41—4) = —0.356
WDMM S(AAL—I) = —0.349, S(AAL—Z) = —0.164, AAZ—3 > AAZ—Z > AAl—l > AAl—4

S(Agr—3) = —0.143,8(A4_4) = —0.361

DMM, dual Muirhead mean; MM, Muirhead mean.

Table 6 Decision matrix in the form of complex T-spherical fuzzy 2-tuple linguistic numbers.

Symbols Car-1 Car—2 Car—3 Car—4
(5544-003), (s5,7-4013), (55450011, (s5.5-0001),
0.8i277(0.5) 0.9¢i277(0.9) 0 8i277(0.8) 0.0¢i27(0.19)
A _1 . 5 . N . , 3 s
Al 0.7£27(0.1) 0.9¢i277(0.01) 0.79¢277(0.1) 0.2¢271(0.2)
(s5,7.5-001), (s5,05-014), (s5,75-013) (s5,75-002),
Al=2
0.12¢/27(0.12) 0.15¢127(0.15) 0.82¢i27(0.2) 0 13277(0.13)
(55,4 00101), (55,75-015), (55,14-0.06), (5545-015),
0.76/271(0.7) 0.89¢/271(0.19) 0.3£27(03) 0.19¢127(0.19)
Apl-3 : ’ : ’ . , ) ,
0.66270.1), 0.72¢1270.2), 0.262702) 0.262702),
(s5,75-012) 5 (55,75-016), (55,715,005, (55,75-016),
0.7£i27(0.7) 0 88¢i27(0.38) 0.28¢i271(0.28) 0.38¢i277(0.38)
Apl—4 ’ ’ . ’ : ) . ,
0.71¢/277(0.01) 0.39,i27(0.3) 022i27(0.22) 0.3i270(0.3)
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Figure 2 Geometrical interpretation from Table 5.

Table 7 Comparative analysis between established operators with existing operators by using Example 6.

Methods Operators Score Values Ranking Values
MM Cannot be classified -
. WMM Cannot be classified -
Wei et al. [45] DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
WMM Cannot be classified -
Juetal. [49] DMM Cannot be classified —
WDMM Cannot be classified -
MM Cannot be classified -
. o . WMM Cannot be classified -
Spherical fuzzy 2-tuple linguistic variables DMM Cannot be dlassified _
WDMM Cannot be classified -
MM Cannot be classified -
. S . WMM Cannot be classified -
T-spherical fuzzy 2-tuple linguistic variables DMM Cannot be dlassified _
WDMM Cannot be classified -
MM Cannot be classified -
_ WMM Cannot be classified -
Proposed method (q =1) DMM Cannot be classified -
WDMM Cannot be classified -
MM Cannot be classified -
_ WMM Cannot be classified -
Proposed method (q = 2) DMM Cannot be classified -
WDMM Cannot be classified -
MM S(AAL—I) = —0.955,S(AAL_2) = —0.857, AAl—S > AAl—Z > AAl—l > AAl—4
~ S(Aaj—3) = —0.781,8(A4;—4) = —0.985
Proposed method (q = 12) WMM S(Aar-1) = —0.975,8(A41—2) = —0.853, Apl-3 > Apjl-2 > Apj—1 > Apl-4
S(Aar—3) = —0.762,8(As;_4) = —0.982
DMM S(Apr-1) = —0.948,8(A5—2) = —0.849, Apl-3 > Aplm2 > Apj—1 > Apj-4
S(Apr—3) = —0.734,S(A s —q) = —0.978
WDMM S(AAL—I) = —0.955, S(AAL—Z) = —0.851, AAl—3 > AAZ—Z > AAl—l > AAl—4

S(AAL—3) = —O.799,S(AAL_4) = —0.984

DMM, dual Muirhead mean; MM, Muirhead mean.
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Figure 3 Geometrical interpretation from Table 7.
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Table 8 Decision matrix in the form of picture fuzzy 2-tuple linguistic numbers.

Symbols Car—1 Car—2 Car-3 Car-4
(55,55,0:03), (s5,4-4013), (55450011, (s5,4_0001),
A 0.5¢271(0.0). 0.9¢27(0.0) 0.8¢27(0.0). 0.19¢2770.0)
Al-1
0.1ei2ﬂ(0'0), O.OIeiZH(O'O), 0181‘271'(0.0), 0.26i2ﬂ(0'0),
0‘261271'(00) 0‘018127'[(00) 0.151277:(00) 0.236127[(00)
(s544-001), (s5,75-0.14), (s5,75-013) (s5,75-002),
A 05161271'(00)’ 0661271'(00)’ 04612”(00), 0368127T(00),
Al-2
0116127[(00), 0116127'[(00), 0261271(00), 036127[(00),
0.128i2ﬂ(0'0) 0'156i271'(0.0) 0.2€i2ﬂ(0'0) 0.136127[(0'0)
(554> 00101), (s5,05-015), (55,14,0.06), (55,45-015),
A 0'761'271'(0.0)’ 01981271'(00)’ 033127T(00), 0‘1931‘27[(01)),
Al-3
0.1/2710.0) 0.2¢1271(0.0) 0.2¢/271(0.0) 0.2¢/271(0.0)
(s544-012), (55,75-016), (55,715,005, (55,15-016),
A 0.7ei27l'(0.0)’ 0.386i27r(0'0), 0.28€i2ﬂ(0'0), 0.386127[(0'0),
Al-4
0261277(00), 0136127[(00), 026127[(00), 01361271'(00)’
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Figure 4 Geometrical interpretation from Table 9.

By using the above steps of the algorithm, the comparison results between the established operators and some existing operators are shown
in Table 9 and Figure 4.

From the Table 9 and Figure 4, we can see that all methods get the same ranking result A,;_3 > A,_, > A,y > A4 and the best
alternative is A 4;_3. Obviously, this can explain the validity of the proposed method.

4.3. Advantages

The explored MM operator and DMM operator using the novel concept of CTSF2-TLSs are more powerful and more superior than existing
operators which are discussed in Tables 3, 5, and 7, based on the complex picture fuzzy 2-tuple linguistic information and complex spherical
fuzzy 2-tuple linguistic information. So the established approaches in this manuscript is more reliable and more efficient than existing
methods [48,49].

5. CONCLUSIONS

CTSF2-TLS combined from CFS, TSFS, and 2-TLVS is a proficient technique to express uncertain and awkward information in real decision-
making, which contains 2-tuple linguistic variable, truth, abstinence, and falsity grades, and gives more extensive freedom than some exist-
ing information expressions due to its constraint that the sum of q-powers of the real parts of the truth, abstinence, and falsity grades is not
exceeded form unit interval. Based on the established operational laws and comparison methods for CTSF2-TLSs, the CTSF2-TLMM aggre-
gation operator and CTSF2-TLDMM aggregation operator are explored. Some special cases and the desirable properties of the explored
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Table 9 Comparative analysis between established operators with existing operators by using Example 7.

Methods Operators Score Values Ranking Values
MM EEQAL—I; = —ggi?ggﬁu—z; = —82;%, Apl—3 > Apj—p > Apl-1 > Agl-a
Wei et al. [48] WMM S(A41_1) = —0.433,S(Ant_2) = —0338,  Au3 > Ana > Aut > Anis
S(Aar—3) = —0.311,8(A4;—q) = —0.653
DMM S(App-1) = —0.237,8(A41—2) = —0.127, Apl-3 > Apl-2 > Apj—1 > Apj-4
S(Aar—3) = —0.113,8(A4_4) = —0.336
WDMM S(A41—1) = —0.235,8(A ;) = —0.128, Apjez > Apjez > Apje1 > Aaj—a
S(App-3) = —0.120,8(Ap;—4) = —0.353
MM S(Apr—1) = —0.439,8(Asr—2) = —0.340, Apl-3 > Aplm2 > Apj-1 > Apl-4
et al. [49] S(Aj[—3) = —0.312,8(A4;—q) = —0.634
' WMM S(Axr—1) = —0.431,5(A41—2) = —0.335, Apl-3 > Apl—2 > Apl-1 > Apl-4
S(Aar—3) = —0.311,8(A4;—q) = —0.650
DMM S(Aar—1) = —0.239,8(A 1 —2) = —0.130, Apj—3 > Ap1—2 > Ap—1 > Apl—a
S(Aa;—3) = —0.118,8(A4;_4) = —0.340
WDMM S(Apr-1) = —0.239,8(A41—2) = —0.127, Apl-3 > Apjl-2 > Apj-1 > Apl-4
S(Aar—3) = —0.123,8(A4;_4) = —0.349
MM EEAAL—I; = _8~225:§(AAL—2)) = —g-zgi, Apl-3 > Aplm2 > Apj—1 > Apj-4
. . L . Apr—3) = —0.247,S(Ap1—4) = —0.5
Spherical fuzzy 2-tuple linguistic variables WMM S( Aﬁi—i) — —0.389, §( Aii—g) = —0272, Aps > Apry > Ax1 > Ala
S(Aar-3) = —0.240,8(A41—4) = —0.527
DMM S(Axr—1) = —0.391,8(A ;) = —0.279, Apl-3 > Aplm2 > Apj-1 > Apl-4
S(Aar-3) = —0.249,8(A51—4) = —0.530
WDMM S(AAL—I) = —0.390, S(AAL—Z) = —0.279, AAZ—3 > AAZ—Z > AAl—l > AAl—4
S(Agl—3) = —0.245,8(As;_4) = —0.531
MM gEiAL—I; = —gg;‘s’r, gégAL—Z; = —gg‘l‘g, Apl—3 > Apj—p > Apl-1 > Ayl-a
T-spherical fuzzy 2-tuple linguistic variables WMM S(Af]:_i) _ —0.271,S(A§]i_‘2‘) = 0243, Apies > Agla > Ayl > Axia
S(Aar—3) = —0.227,8(As1—4) = —0.307
DMM S(Apr-1) = —0.281,8(A41—2) = —0.254, Apl-3 > Apl-2 > Apj-1 > Apj-4
S(Aar—3) = —0.221,8(As1—4) = —0.310
WDMM S(Apr—1) = —0.276,S(A4]—2) = —0.249, Apjez > Aplez > Apje1 > Aaj—a
S(AAL—3) = —0.217,S(AAL_4) = —0.198
MM EEIIZ‘AL—I; = —g-gig,ggﬁu—zg = —8213, Apl-3 > Apl2 > Agi-1 > Apjg
Proposed method (q = 1) WMM S(Aar_1) = 0433, S(Asr_3) = —0338,  Aw3 > Aua > Aut > Au_g
S(A4j—3) = —0.311,8(A4;—4) = —0.653
DMM S(Apr—1) = —0.237,S(As1—2) = —0.127, Apj—3 > Apj—2 > Ay—1 > Apl—a
S(A4—3) = —0.113,8(A4;—4) = —0.336
WDMM S(App-1) = —0.235,8(A41—2) = —0.128, Apl-3 > Apjl—2 > Apj-1 > Apl-4
S(Aa7—3) = —0.120,S(A;_4) = —0.353
MM SEAAL—I; = _8~225,§(AAL—2)) = —3-223, Apl—3 > Ap2 > Api-1 > Apa
Apr—3) = —0.247,S(Ap1—4) = —0.5
Proposed method (q = 2) WMM SAar ) = —0.389.SA\ T3 = —0272,  Ags > Agrn > Agt > Agrd
S(Aar-3) = —0.240,S(A41—4) = —0.527
DMM S(Axr—1) = —0.391,8(A41—2) = —0.279, Apl-3 > Aplm2 > Apj-1 > Apl-4
S(Apr-3) = —0.249,8(A51—4) = —0.530
WDMM S(AAL—I) = —0.390, S(AAL—Z) = —0.279, AAZ—3 > AAZ—Z > AAl—l > AAl—4
S(A—3) = —0.245,8(As;—_4) = —0.531
MM gEiAL—I; = —gg;‘s’r, gégAL—Z; = —gg‘l‘g, Apl—3 > Apj—p > Apl-1 > Ayl-a
Proposed method (q = 3) WMM SAnr_1) = 027084y 2) = 0243, Az > Az > Adit > Apieg
S(Aar—3) = —0.227,8(As1—4) = —0.307
DMM S(Apr-1) = —0.281,8(A41—2) = —0.254, Apl-3 > Aplm2 > Apj-1 > Apj-4
S(Aar—3) = —0.221,8(As;—4) = —0.310
WDMM S(Apr—1) = —0.276,S(A ;) = —0.249, Apjez > Apjez > Apje1 > Aaj—a

DMM, dual Muirhead mean; MM, Muirhead mean.

operators are also established and studied. Moreover, we establish a method to solve the MADM problems, in which the evaluation infor-
mation is expressed by CTSF2-TLNs. Finally, we solve some numerical examples to explain the validity and advantaged of the explored
method by comparing with some other methods. In a word, the proposed operators are a generalization of some existing operators such as
averaging aggregation operator, geometric aggregation operator, geometric BMO, geometric MSMO based on the complex picture fuzzy
2-tuple linguistic information. In the future researches, we will explore some real applications based on the proposed operators, or some
new operators based on CTSF2-TLNs.
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