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1. INTRODUCTION

Intuitionistic fuzzy set (IFS) was explored by Atanssove [1] as a modified notion of the fuzzy set (FS) [2], and it contains two functions called
as truth grade and falsity grade, whose sum is not exceeded to the unit interval. IES is an effective tool to describe the complicated fuzzy
information, and it has received extensive attention. For example, Garg and Kumar [3] explored a novel exponential distance and TOPSIS
methods for interval-valued IFS; Garg and Kaur [4] investigated the extended TOPSIS method using cubic IFS and applied it to multi-
attribute group decision-making (MAGDM) problem; Joshi [5] examined a new decision-making method based on IFS and applied it to
fault detection in a machine; Kumar [6] explored intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation
problem; Alcantud et al. [7] aggregated the finite chains of IFSs to deal with temporal IFSs; Kumar [8] evaluated the models for examining
the optimization problems using IFSs. Yue [9] applied a projection-based approach based on IFSs to software quality evaluation.

However, the scope of the IFS is narrow because it should satisfy the condition that the sum of truth and falsity grades is bounded to the unit
interval. If some decision makers (DMs) provide such kind of information whose sum is not limited to the unit interval, IFS cannot express
it. For example, considering the pair (0.6, 0.5) represents the truth grade and the falsity grade which cannot hold the condition of IFS i.e.,
0.6 + 0.5 = 1.1 £ 1, the pair (0.6,0.5) cannot be described by IFS. In order to process these issues, Yager [10] explored pythagorean FS
(PYFS) which contains two functions called as truth and falsity grades, whose sum of squares is not exceeded to the unit interval. PYFS is an
effective tool to describe the complicated fuzzy information, and it has received extensive attention. For example, Fei and Deng [11] explored
pythagorean fuzzy decision-making; Akram et al. [12] developed an ELECTRE-1 method for pythagorean fuzzy information; Zhou et al.
[13] gave a new diverge measure for PYFSs based on belief function and applied it to medical diagnosis; Oztaysi et al. [14] and Song et al.
[15] developed a AHP method for PYFS; Guleria and Bajaj [16] developed pythagorean fuzzy (R, S)-norm discriminant measure.

However, the scope of the PYFS is still narrow because it should satisfy the condition that the sum of squares of truth and falsity grades is
bounded to the unit interval. If some DMs provide such kind of information whose sum of squares is not limited to the unit interval, PYFS
cannot deal with it. For example, considering the pair (0.9, 0.8) represents the truth grade and the falsity grade, obviously, it cannot hold
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the condition 0.9 + 0.8% = 0.81 + 0.64 = 1.45 £ 1. Therefore, in order to deal with these issues, q-rung orthopair fuzzy set (QROFFS)
was explored by Yager [17], which contains two functions called as truth and falsity grades, whose sum of g-powers is not exceeded to the
unit interval (g = 1). QROEFS is an effective tools to describe the complicated fuzzy information, and it has received extensive attention. For
example, Garg and Chen [18] developed neutrality aggregation operators for QROFS; Senapati and Yager [19] restricted the QROFS and
gave the Fermatean FS; Darko and Liang [20] established some hamacher aggregation operators for QROFS. Recently, Verma [21] gave the
ordered a-diverges and entropy measures for QROFS. Zhang et al. [22] explored multiplicative consistency for QROEFS. Figure 1 shows the
relations of IFS, PYFS, and QROFS.

Further, complex IFS (CIFS) was explored by Alkouri and Salleh [23], as a modified notion of the complex FS (CFS) [24], which contains
two functions called as truth and falsity grades by the form of complex numbers from unit disc in a complex plane, whose sum of real parts
(Also imaginary parts) is not exceeded to the unit interval. CIFS is an effective tool to describe two-dimensional information in a single set,
and it has received extensive attention. For example, Ngan et al. [25] represented the CIES by quaternion numbers; Garg and Rani [26,27]
established new generalized Bonferroni mean (BM) operators and robust averaging-geometric operators for CIFS.

However, the scope of the CIFES is narrow because it should satisfy the condition that the sum of the real part (also imaginary part) of truth
and the real part (also imaginary part) of the falsity grades is bounded to the unit interval. If some DMs provide such kind of information
whose sum of real parts (also imaginary parts) is not limited to the unit interval, CIFS cannot describe it. For example, considering the pair
(0.6€211061) 0 5¢1211(05)) represents the truth grade and the falsity grade which cannot hold the condition of CIFS 0.640.5 = 1.1 £ 1 and
0.61+0.51 = 1.12 £ 1. Therefore, in order to deal with these issues, Ullah et al. [28] explored complex PYFS (CPYFS), which contains two
functions called as truth and falsity grades by the form of complex numbers from unit disc in a complex plane, whose sum of squares in real
parts (also imaginary parts) is not exceeded to the unit interval. CPYFS is an effective tool to describe the complicated fuzzy information,
and it has received extensive attention. Akram and Naz [29] explored the complex pythagorean fuzzy graphs.

However, the scope of the CPYFS is narrow because it should satisfy the condition that the sum of squares of the real part (Also imaginary
part) of truth and the real part (also imaginary part) of the falsity grades is bounded to the unit interval. If some DMs provide such kind of
information whose sum of squares in the real part (also imaginary part) of truth and the real part (also imaginary part) is not limited to the
unit interval, the CPYFS will not deal with it. For example, considering the pair (0.9ei2n(0‘9l), O.SeiZH(O'SD) represents the truth grade and
the falsity grade which cannot hold the condition of CPYFS 0.92 + 0.8% = 0.81 + 0.64 = 1.45 £ 1 and 0.912 + 0.81% = 0.8281 + 0.6561 =
1.4842 £ 1. Therefore, in order to deal with these issues, complex g-rung orthopair fuzzy set (CQROFES) was explored by Liu et al. [30,31],
which contains two functions called as truth and falsity grades in the form of complex numbers from unit disc in a complex plane, whose
sum of q-powers of the real parts (also imaginary parts) is not exceeded to the unit interval. CQROEFS is an effective tool to describe the
complicated fuzzy information. The comparison of the established work with existing methods [32-36] are also discussed, to examine the
reliability and effectiveness of the explored work.

In some real-life decisions, the interrelationships between the attributes are common. For example, in decision-making process of buying
a laptop, laptop’s performance and its hardware are related. For taking the responsible decision, it is necessary to choose the interrelation-
ships between the attributes. For coping such kind of problems, the BM operators are playing a key role in examining the interrelationships
between the attributes, then Xu and Yager [37] explored the intuitionistic fuzzy BM operators; Liang et al. [38] established the pythagorean
fuzzy BM operators and their application in MAGDM. Liu and Liu [32] explored the q-rung orthopair fuzzy BM operators and their appli-
cation in MAGDM problems. Further, because the constraint of CQROEFS is that the sum of q-powers of the real part (also for imaginary
part) of the truth and real part (also for imaginary part) of the falsity grades is limited to the unit interval, the CQROFS can provide a wide
range to decision information. From the above discussions, it is clear that the CQROFS is more versatile and more superior to CIFS and
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Figure 1 Geometrical interpretation of the
intuitionistic fuzzy set (IFS), pythagorean fuzzy set

(PYFS), and complex q-rung orthopair fuzzy
set (QROFS).
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CPFS to describe awkward and complication information in real-decision. In addition, the BM operators based on CQROFS have not been
established yet. So the goals and motivations of this article are explained as follows:

1. The BM operators based on QROFS [32] is not able to deal with two-dimensional information in a single set. For coping such type
of issues, the BM operator based on CQROFS is an important and meaningful concept to examine the interrelationships between the
different attributes and can easily cope with two-dimensional information in a single set. So the goals of this article are to establish the
complex q-rung orthopair fuzzy BM (CQROFBM) operator, complex q-rung orthopair fuzzy weighted BM (CQROFWBM) operator,
complex g-rung orthopair fuzzy geometric BM (CQROFGBM) operator, and complex q-rung orthopair fuzzy weighted geometric BM
(CQROFWGBM) operator and to discuss their properties.

2. Further, we will propose a MAGDM method based on the established operators, which can consider the advantages of BM operators,
i.e., considering the interrelationships between the attributes.

3. Moreover, to examine the feasibility and consistency of the established method, we solve some numerical examples to verify the ratio-
nality of the explored operators. The advantages, graphical interpretation, and comparative analysis of the established work are also
discussed.

For better understanding, we have drawn the flowchart for the proposed approaches, which is shown in Figure 2.

Form Figure 2, it clear that, we propose the BM operator based on CQROEFS, which is called complex q-rung orthopair fuzzy BM operator,
and discuss its special cases. The proposed technique is more powerful than some other existing operators based on IFS, PFS, QROFS, CIFS,
and CPFS. Because the sum of q-powers of the realm parts (also for imaginary parts) of the truth and falsity grades in the CQROFS is not
exceeded form unit interval, if we choose the value of parameter q = 1, then the presented work is converted to complex intuitionistic fuzzy
BM operator. Similarly if we choose the value of parameter q = 2, then the presented work is converted to complex pythagorean fuzzy BM
operator. At the same time, all these operators consider the relationship between two inputs.

The rest of this manuscript is shown as follows: In Section 2, the QROFS, CQROFS, and their operational laws are discussed. In
Section 3, the CQROFBM operator, CQROFWBM operator, CQROFGBM operator, and CQROFWGBM operator are explored. In
Section 4, we develop the MAGDM method based on the CQROFWGBM operator, and some numerical examples are given to verify the
rationality of the explored method. In Section 5, we give the conclusion of this manuscript.

2. PRELIMINARIES

This section is to review some existing notions like QROFSs, CQROFSs, and their operational laws. In this article, we use UJ . to
represent the fix set. Further, and suppose the symbols keep scq, tcg > 0, Qoo 2 1.

Definition 1: [17] A QROFS is stated by

Cy= {<u,q>go (),8, (W) s ue UUnin} (1)
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Figure 2 Graphical interpretation of the presented work in this article.
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where @}, o and & , is called truth and falsity grades with a condition: 0 < @, 0 oo (w) + &, Qch (w) < 1. Further, the symbol He, () =

(1 - <<I>é Qch (w) + & Qch (u)))@ represents the hesitancy grade. The g-rung orthopair fuzzy number (QROFN) is denoted by

Cq = (Dh, (), &, ().
Definition 2: [30,31] A CQROFES is stated by

Cag = { (1 @by (1), By () 1 € Uy} @

i2ITW ny . . . 1
where CID’@CQ e e Ter and geCQ = EGRP % is called truth and falsity grades in the form of complex number from unit disc

in a complex plane with conditions 0 < @eiﬁ (w) + §gf§ (w) <land0 < W;fsm (w) + 1}‘25)0 () £ 1. Further, the symbol HG(:Q (w) =

g

(Q (u)+ dcq
1
— 21| 1

9 q
‘Deii W+ e

20w Ee (w)

Megp€ bep =11 — e
decq
geRP (w)

number (CQROEFN) is denoted by Ccq = <<I>/GCQ (w), §/@CQ (u)) = (@eRPeiZH‘P'i’elp , geRPeiZHlyielp ) .

represents the hesitancy grade. The complex q-rung orthopair fuzzy

i i2ITY,
Definition 3: [30,31] For any CQROFS € = (‘I’eRPelzan)eﬂ’,'g'eRPe1 ferp ), the score function Sgr and accuracy function H,y is
stated by

Ssr (Ccq) = % ((‘DGRP — &) + (‘I’%,P - ‘Psem» ©)

Hyr (Cq) = % ((‘I’GRP +&e,,) + (‘P%,P + ‘PEe,P>> (4)

where Sgr (C’CQ) s Harp ((?CQ) € [-1,1]. A comparison between CQROFNs Crq_; and C¢q_; is stated by

1. IfSer (Cogo1) > Ssr (Ccg—2) » then Cogo1 > Ceoz

2. IfSg (Ceoo1) = Ssr (Cco—z) , then €cg_1 = Ccg_zs then
i IfHup (Cogo1) > Har (Ceo—z2) » then Cogoq > Ceg—2
ii. IfHap(Cogo1) = Har (Ccg—2) > then Cogoy = Cegz-

Definition 4: [30,31] For any two CQROFNs C¢o_; and Ccq_; with scg, the operational laws is stated by
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Definition 5: [32] For any non-negative numbers Cj,j = 1,2,3, .., m, we define the BM operators by

1

1 m ScQ plo eattae
BMcar'@ (@1, Gy, .., Cpp) = m Zj,k:l G’j ‘Q(?k‘Q (5)
j#k

Definition 6: [32] For any nonnegative numbers C;,j = 1,2, 3, .., m, we define the GBM operators by

1

m(m-—1)
1 m
GBMc@'@ (@, G, .., C ) = ———— | |j,k:1 scoC; + tooC (6)
1> L2 m sca + teg " (CQ j e k)

3. BM OPERATORS BASED ON CQROFSs

The purpose of this section is to explore the notions of BM, WBM, geometric BM, and weighted geometric BM operators based on CQROFSs.
Further, the special cases of the established operators are also discussed by some remarks.

Definition 7: For any CQROFN Cc¢q_j,j = 1,2,3, .., m, we define the CQROFBM operator by

_j,

1

1 sco tco scotteq
1 k=1 (@CQ—j ® CCQ—k> 7)

CQROFBM™*?'@ (€Ccq-1, Cogzs > Coqom) = <m(T
j#k

Based on the operational laws in Definition 4 for CQROFBMs, we explore the following results.
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Theorem 1: The aggregation result from Definition 7 is still a CQROFN such that
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Then we have
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The proof of the above theorem has been completed.
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qCQ

scottc
m(m-—1 QreQ
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Further, we explore some properties of CQROFBM?®c2’'®¢ gperator, including idempotency, monotonicity, and boundedness.

Theorem 2: For any CQROFN (i’CQ_j,j =1,2,3,..,
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Theorem 3: For any two CQROFNs Ccq; = De,,_e i ,’éeRP_je i) and Cogusk = | Pepp
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1

9eo(scattcn)

P2ITY
£ L ) .
Eorp . Crpsk ) , (], k=1,2,., m), with conditions ®pp_; > DPrp—sks Vo, = Yo, .. Erp—j < Erp—ik and We,  <We, then

CQROFBM* @' (€cq_1, Cog-zs > Cogom) = CQROFBM "2 (€1, Cgoszs > Ccgorm)
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Proof: Let CQROFBM*@'@ (Ccq-1, Ccqezs s Coqum) = (w, v) and CQROFBM*@"'@ (€1, Coqosas s Coqsm) = (', v’) . The
proof of the truth grade, whose real part is as follows: t" < . If ®,pp_; > Ppp_i Vo 2 Yo, Eirp—j < Erp—k and Weg, S W,

then we have

. 211 \PSCQ tcqQ oIl ‘IJSCQ thCQ
Scq  plca i2 ( Epp_i * S0 +tcQ e Ve
@, jp—j P rp_si® 17 k) < DpplPrpoge 10—~ Spk /)
; dcqQ
. SCQ tcQ
v e ey en((w v ) )
(1 - (q)*QRQP—jq)*C}SP—*k> ) e S sk
q or(1-(wee wieo )
ScQ g lcQ cQ ! “\ Fepo T
2 (1 - (q)RP—j(DRP—k e R ,
== 1
m(m-—1) ‘ m ScQ tco eq m(m-—1)
m i2II k=1 1 — (¥ £ £
ScQ tcq deq ik *GIp—j  FSIP—sk
H - (D*RP—jq)*RP—*k €
k=1
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- 1
m(m-—1) \q m(m—1)
m izH[H;E:l ( 1— (TSCQ lpth ) CQ)]
e

s t 9o . & Eipx
> [ TT (1 - (@sei) ™) e
j,k=1
itk
1 1 1
- +t
1 qCQ(ScQ+th) ‘ m sc teo 9 | m(m-1) ch(SCQ Q)
m(m—1) 21 1 Hj’kzl 1- lp*EIP—jIP*EIP—*k
m 1—- jitk
II e
1-— scq < lco deq
jk=1 ( ((D*RP—jq)*RP—*k>
ik
1
— deq(scattca)
1 ch(SCQ‘HCQ) . m 1 lIJSCQ 1PtCQ dcq m(m-1) | Q
m(m—1) 21} 1= H)’k_l T\ T B
< m 1— x j#k
e
—|111- sco wtca @
j,lk_:II < (q)RP—j(DRP—k)
j#k
Hence v’ < w. Similarly, v/ > v, for falsity grade. Thus, the final result is shown as
CQROFBMSCQ’tCQ (GCQ—I’ eCQ_29 .y GCQ_m) Z CQROFBMSCQ’tCQ (GCQ—*I’ GCQ—*Z’ .y eCQ—*m) .
+ 211 m;lell(pelp__ ) i2I1 mjin IIJEC,IP_Y _ .
Theorem 4: For any two CQROFNs Cooj = m;lx @ekp_je 7, m]_m E@Rp_je 1) and Cooj = m]m lD@RP_j

20 minWe, 2l maxWy, =~ :
e 7 Crp—j , qugﬁ’gp_je j §G1P—J > s (] =12,., m), then
J
Cog—j < CQROFBM@'@ (€1, Cogs s Ccoom) < Clo

Proof: Based on monotonicity, we get

CQROFBM’c@’'c@ (Cgq_1, Cog_zs -» Cogom) < CQROFBM*@'ca (Ccq-1, Coq—zs -» Ccqom)

< CQROFBM'@’'ca (€t 1, Co s s Clgom)

By idempotency, we get
CQROFBMc@'c@ (€541, Cog2s - Ccqem) = Ccg-j and CQROFBM @' (CEy_1, Cqs s Cqom) = Clo-;
Then

C‘EQ_]- < CQROFBMSCQ’tCQ (eCQ—l; ecQ_z, . eCQ—m) < C'E-Q—j

The proof of the above theorem has been completed.

Further, the special cases of the CQROFBM?c@’'ce operator are shown as
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Remark 1: When ¢, = 0 in Definition 7, then

CQROFBM*“@® (Ccq-1, Ccqzs > Ccqm )
1

1

1

— s q m(m-D |’

m ﬁ deqscq  i2ll 1_<an <1 - <lpq§0 ) CQ>> ( )
scg \dc@ j=1 C1P=j

-] (1 - (cb@RP_j) ) e

j=1

= 1

1
— |4ca

1
EE— )
m dcq ScQ m(m-1) |
1_<Hj:1 (1 N (1 -v (-?IP—1> )) ]

1

1
— }4cq i2II) 1—

1 sco

m g sca m(m-—1)
1-|1- H(l—(l— eRf,Q_j) ) Xe

j=1

Remark 2: When s¢ = 1, t¢q = 0 in Definition 7, then

CQROFBM1’0 (GCQ_I, @CQ—Z’ ey eCQ—m)
1

1

1
1 ) m qcq m(m-1) dcq
m . mm-D |1 'ZH[1_<HJ-=1 <1 - <lP<I>GIP—j> )) ]
1-— <1 - (q)eRp_j) CQ) e

1
1

m — . m < dc0 ) TogmGm=T)
(H (geZ;Q_)>QCQm(m )ezzl'I(Hj:l lpgmp_j
-

j=1

Remark 3: When s¢, = 0 in Definition 7, then

CQROFBMOJCQ (GCQ—I’ eCQ—Z’ ey eCQ—m)
1

1
————= |4cqlcq
m foq dcq m(m-—1)
1_(IIk=1 (1 - (%ew—k> >> ;

1

1 )
m , dce m(m=1) deqfeq i2I1
1- H(l—(q:e;f_k) ) X e

k=1

1

1
— |4cqQ

1
— |
m _ _ dco Scq m(m-1) | Q
1_<Hk:1<1 (1 lPeRP—k) )) ]

1

i dcq i2II{ 1—

tcq

1
m g teo m(m-—1)
1-|1- H<1—<1— @R;Q_k> ) Xe
k=

1




834

Remark 4: When s¢y = 0, o = 1 in Definition 7, then

C‘QR()FBMO’1 (GCQ—I’ (?CQ_Z, ey @CQ_m)

1

— L Vo
m m(m-—1)
1- <H (1- ((DCRP—k)qCQ)>
= k=1
1
m qCQm(m—l)
dcq
IT (&)
k=1

Remark 5: When s¢ = tcq = 1 in Definition 7, then

CQROFBM"! (€1, Ccq-2: > Ccqum)

1
1 cho

o (I
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1

Q

1
—— |4c
dcq m(m-—1)
-1 (1 - (lpq’mp—k) ))

1
dcqQ )) doqm(m—T)

g(‘?IP—k

eiZl'I (H:; (‘P

1
i2IT

1- (H;:kzl ( 1= (‘I’q>@IP_j‘I’¢,€IP_k>qCQ)>m

j#£k=1

m m(m—1)
1- H (1- (q’eRP—j(DeRP—k)qCQ)) ¢

1 3 dcqQ
B - q q q q mm=D
CcQ cQ CcQ cQ
1-(1-{ ] (EC’RP—j + Eerpk — SerpL (‘}RP—k) X
i#k=1
1
L—
1 5 |9ca
, m dcq dcq dcq dcq ) m(m-—1)
200 1| 1— p -
! <Hj¢k:1< Eerp—j Eerp—k Eerr—j  Eerp—k
e

1

2qcq

Further, we define the CQROFWBM operator. Suppose weight vector is GD,, = ((Dy—_1, Dyy_25 .., Dy_mm) > meets Zml ®,,_j=1and
]:

®,_; €[0,1],(j=1,2,..,m).

Definition 8: For any CQROFN Cco-j» (j =1,2,3,.., m), we define the CQROFWBM operator by

CQROFWBMSCQ’tCQ (GCQ_ly GCQ—Z’
_ 1
“"\m@m-1)

Based on the operational laws in Definition 4, we give the following

s Ccoem)
1

m ScQ teq et
k=1 ((G:)w—jeCQ—j) ® (@y-kCoo-+) )
jk

results.

®)
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Theorem 5: The aggregation result from Definition 8 is still a CQROFN such that

CQROFWBM@'? (o1, Ccgazs s Cogum) =

1

m dc ®,_;\ ‘@ dco ®,_;\ fce
1= T (- 1—<1—q’em_j) (1—<1—‘1’6Rp_k)

jok=1
j#k

1

m(m-1) |9cQ <3co+fco)

j#k
e
1
! Yo
; S(‘Q+t(‘Q qLQ
0@,,_i\ fcQ ®,,_; \ fca m(m-1) | *% *
m | 2-(1-l) T - (1) -
1—-]1- X
1,11;[1 1 (1= ) ) (12 (1= gloa®er)
itk Crp—j Crp—k
1
™
1
\ fcQ t mm=1) scqttcq
ey ( ‘ZCQGDw—k> @
2—-(1-V¥ —-|1-¥ -
m ( geIP—j > geIP—k
1| 1-{1- Hj,k:l - t
j (Dw—' G:)W— @
U (1— <1—1P§CQ ’) > <1— (1—\P§CQ k) >
Crp—j Crp—k
e
Proof: For any two CQROEFN:S, it is clear that
1
1 4 I
i \Pvr\ 700 izn<1—<1—w;§ ) )ch
GD,,—;Coo-; = (1 - (1 - q’eﬁ;) > “e " ,| and

21 (W
G, el Eepp_j
Crp—j

) — 211 1—(1_\11ch )mw_k dcq
@y Crok = <1—(1—c1>’“‘0 ) ”"‘)‘“Q ¢ Pk
— =

Crp—k
p @k
gCDW"‘ ezZH (\pgem—k >
Crp—k

1

N B
m qcq @, fcQ qcq @D,k foq \ | m(m=1) fca <SCQ+tCQ>
anfiA =t (1= (1= (1- lpq,cm_) 1- (1-wg? )

835



836 P, Liu et al. / International Journal of Computational Intelligence Systems 13(1) 822-851

then ((Dw—jCCQ—j ) *cQ

1

[co
o\ D i2H(1—(1—'¥f§Q ) )qCQ NS\ g i2H(1—<
(1- (-t o) TN gy,

and (GD,,—xCcq—x) fo - 1

Based on Definition 4, we have

(®y—iCog—) @ ® (GDy—iCrgmt)

SCQ

)

5cQ

- C':)w—' - - (Dw—
(1- (-t )™7) e (1= (1=l ) ™) e e

_ dcQ
(DGIP—]'

21 <1 - (1

) 4cQ@ - e 4cQDw—k feq 40D *Q
an 2 - (1- = (=) (- (1w 1-(1-w
e Crp—j Crp—k geIP—j
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m

¥ (©0iCooy) ™ ® (Cy—iCrgi) ™
jrk=1

jitk

1

.\ fcQ
q w—j qcq
m 1—<1—<1—d>@f§_]_) ) 211
e
J';lk_;[l dcQ @, @
1-(1-282,)

dcq
cp@lp—j

H;=1<1—<1_(1—1p

acQ@y—j ) Q 0@y | '@
2- <l_g€RP—j J) - <1_£(§£—k k)

@, \*cQ
(1- (1= 7)) ‘
@ A\
<1 - (1 - gqef:;—k W_k) CQ)

211 Hm

=

s
o~
1
—

tcq

fcq 1 @y a
deo \ Pk g 21 1—(1—'11%0 > o
1— <1_(I>e(Q ) > cQ e P—k
RP—k
. \'cQ\ g
— I 1—(1—\11209 W"‘) dcq
e Crp—k

@,,_;\ @ @, \ @,,_\cQ ®,,_
(2= (=) = (=) = (- (=)™ (1= (-

CRrp—k

S,
@, \
2— <1 N W‘f) - (1 -
Crp—j
— S,
k=1 3 1 (1- lquQc,gw_j cQ - <1 B lpqcoGDW—k>tCQ
Eﬁ’[p_j Eelp_k

1-¥

1

ch(DW_j>SCQ> dco

Cip—j

s

tCQ
1 — gl Dok qcq
Peppy
L
)“))-
L
AcQ®—t ) feq dcqQ
geIP—k
1

[

Aco@,,—k \ 'CQ

lPECQ W k)
Crp—k
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Further,
1 m o e scQ ® e teq
m(m_l)‘gl( w—j CQ—j) ®( w—k CQ—k)
)K=
j#k
1
= dcq Wi\ "2 dco @, e\ mm-=1) |~
1- H <1—(1—<I>ekp_,-> > <1—(1—q>@RP_k> ) %
jyk=1
1 bl
Ty | e
) @ @ fcQ\ m(m—1)
. m _ _ dcq w=j _ _ dco w—k
- 1_[Hj’k=1 <1 <1 lpq)@”’—l) ) (1 <1 lp(b@lp—k) ) ]
e
S,
2 1_]{Jq(JQCDW_J CQ_<1_quCQCDw_k
Serp-) Eerp i
_1 m doq@,ei )X
1 i2IT _ _ X w—j
2 (1 quQﬁ)w—j>s(:Q (1 quQCOW_k>tCQ m(m+1) 2 Hj,k:l (1 <1 lpgcn)_j > )
o Crp—; Crp—k 1 1 quCQCDW_k tco
o) TN Ve
H 1-{1- EGRP—]' e
jok=1 — .
1 C{)w— @
(1-(-e2)")
1
SCQ'HCQ
1 - ,
sco o
m(m — 1) 'kz1 (GDW-J'CCQ-J') ® (Gow—keco—k)
Jok=
j#k
1
1 - -
D) ) dealscotica)
3 @) * @, ‘e
{1 (- (= o)™ ) " (1= (-a) ™)) »
jok=1
j#k
L s
1 - -
m q @, @ q ®,_;\ fca \ | mm-1) qCQ<SCQ+tCQ>
(R R N (R
j#k IP—j IP—k
e
L
—1 Naeo
= s , —m(m—l) SCQ+tCQ
c@y-j | '@ dc@ i \ 0
o 2= (1-g) - (-8 )
1—-11-— { . «
4cQ®u-j | *CQ Aco@,—k \ R
| (1- () ) (- (-8
jitk
L
! qdcqQ
ScqQ ‘o m SCQ‘HCQ
COW—' N Q’)w_ cQ
2_<1_q’§m ]> —(1—1112LQ k) _
k= CIp—j Crp—k
i211| 1-{ 1- Hj,k_1 ™\ leq .
j#k 1— l_q;qCQ w—j 1_<1_qﬂCQCOw—k> Q
ge“’" Eerpo
e

The proof of the above theorem has been completed.
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Further, we explore some properties of the CQROFWBM operator including idempotency, monotonicity, and boundedness.

Theorem 6: For any CQROFN Ccq_;,j = 1,2,3,..,m, then

—j»

CQROFWBM’c'ce (GCQ—l’ Cog-2s > eCQ—m) = Ccq

Proof: Straightforward.

iznly@(flp—*k
b

2M%q, PRIWg,
Theorem 7: For any two CQROFNs Cgq_; = <1>@Rp_je ‘”’—J,ECRP_je i) and Cogewi = <®GRP—*ke

i2IT¥
g@RP_*kez Serpuk ) . (jk =1,2,..,m), with conditions ®pp_; > DPrpsks Yoo, 2 Yo, Erp—j < Epposik and Wy, < Wy, then
CQROFWBM*@'@ (Ccq1, Ceg—zs > Cogom) = CQROFWBM @' (Crq_.1, Cogmszs > Cgmsm)

Proof: Straightforward.

Proof: According to monotonicity, we get

CQROFWBM*@*'ca (€51, Coq_2s-» Ccgom)

IA

CQROFWBMSCQ’[CQ (GCQ—l’ GCQ—Z’ .y eCQ—m)

IA

CQROFWBM'@’'ca (€ 1, Co s s Clgom)

By idempotency, we get
CQROFWBM’c@'@ (€1, Cogozs s Cogem) = Cio—j and CQROFWBMc@'cq (1, Cqzs > Cqem) = Cloj
Then

(:’EQ_j < CQROFWBMSCQJCQ (GCQ—ly GCQ—Z’ s eCQ—m) < GZQ_j.

The proof of the above theorem has been completed.

Definition 9: For any CQROFN Cc¢q_;,j = 1,2,3, .., m, we define the CQROFGBM operator by

_j,

CQROFGBMCQ’tCQ (GCQ—l’ GCQ—Z’ ey eCQ—m) (9)
1

1 m(m-—1)
=\ o5 @kt (scQCca—; ® tcoCoq-k)
QT

Based on the operational laws in Definition 4, we give the following result.
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Theorem 9: The aggregation result of the CQROFGBM®@"'? operator is still a CQROEN such that

CQROFGBM’@'? (€1, Cog-2s -» Cogom)

1
1 - @
scqttcq
sca teo m(m-—1
m 2—(1-0! )7 — (1- ol -
1 1 H Crp—j Crp—k
-1- sco e X
i (1= (1=l ) ™) (1- (1-0k2,)™)
j#k
R
1 : cQ
cQ feq (m—T1) “aatieq
_ 9cq _ _ 9cqQ _ m(m—
= ol 1] 1 an 1 2_<1 IP(I)@IP—]) <1 lpd)@n)—k)
1 i k= Se te
. dcq cQ _ i Q
Aol (- ) ) (- (- L))
e
1 1 1
1 ———— 4 (scottcq)
dgq(scattcn) 40\ \mem=1 | 1ce
m(m-1I) . m_ _ [ gfe i
. q i21f 1- Hj;fk_l <1 <W§em_jq‘§em_k> >
ScQ  gleq cQ
1- H (1_(§@RP—j£eRP—k> ) €
jsk=1
j#k

Proof: Straightforward.
Further, we explore some properties of the CQROFGBM®c*'c@ operator, such as idempotency, monotonicity, and boundedness.

Theorem 10: For any CQROFN Coo-jpj=1,2,3,..,m, then
CQROFGBM’@'@ (€ -1, Cog2, s Ccomm) = Cco-
Proof: Straightforward.
2%, 20%,,
Theorem 11: For any two CQROFNs Cgq; = Dey,_e IP—J,’g'@RP_je i) and Cogsr = <<I>@RP_ e

P2 TP
§@RP_*kel Serp ) , (j, k=1,2,., m), with conditions ®gp_; > Prpsks Yo, 2 Yo, Erp—j < Epp—sk and ‘Pglp_j < W, . then

xk
CQROFGBM’@'@ (€ -1, Cog2s s Ccgom) = CQROFGBM @' (€1, Cogszs - Ccomwm )
Proof: Straightforward.
. i2IT m[ax‘lJ@elP__ . i2IT mjin ‘IJECIP—‘ _ .
Theorem 12: For any two CQROFNs Cfo_; = m]ax CD@RP_je 7, mjm §@Rp_je 1) and Coo; = mjm (DeRp_j
20T minWe, 2l maxWeo :
e =3 m}qx §@RP—je i i) (] =12,., m), then

(?EQ_]- < CQROFGBMSCQJCQ (GCQ—I’ @C‘Q—Z, “ eCQ—m) < GEQ_]-.

Proof: According to monotonicity, we get

CQROFGBM @' (C5o_1, Cog2s » Ccqem)

IA

CQROFGBMc@a (Ccq_1, Ccqzs -» Ccqom)

IA

CQROFGBM c@'ca (Cy_1, Cq s s Cqorm)
By idempotency, we get
CQROFGBM’c@’'q (€1, €z > Cogom) = Co—j and CQROFGBM @' (C¢y_1, Cgs s Cigem) = Clo-i
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Then
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eEQ—j < CQROFGBMSCQ’ICQ (GCQ—I’ eCQ—Zy . eCQ—m) < GEQ—]“

The proof of the above theorem has been completed.

Further, the special cases of the CQROFGBM®c"'@ operator are shown as

Remark 6: When t¢q = 0 in Definition 9, then

CQROFWGBM*@®(Ccq1, Ceqzs -+ Cogm)

—1 S,
m(m-1) |
— m 40a sco
1-[1-|]] <1—<1—c1>@RP_j) )

jk=1

jtk

1
dcqscQ

Xe

1
m S dcq m(m-1)
(I - ()))
itk

Remark 7: When s¢q = 1, t¢q = 0 in Definition 9, then

CQROFWGBMI’O (GCQ—I . eCQ_z, ey eCQ—m )

dcQ

j#k
Xe

1
. dcQ\ \m@m=1) |1ce’cQ
211 1— | |fﬁ:1 1- (v
Eerp
o j

lpl

gffn)—j

1

4 m_ dco 50Q m(m-—1)
211 1- 1—[H],k—1 (1 - (1 —1P¢,elp_j> >]

1

1
>qco>]m Acq

L m(m-—1) Aca
1 . m dcq
1 dcq i2I1| 1— 1_[H”k=l Yy ]
1 ’ erp—;
1 1 ‘n1:—1 q)q(,Q mm=l j#k "
N Hj;&k_ Crp—j €
2 m
_m(l’:l—l) dcg 211 1_[Hi’k=1 (1 - <
m 1 dcq j#k
- Il (1- (&)™) e
Remark 8: When s, = 0 in Definition 9, then
CQROFGBM®c@ (€1, Cogozs - Ccgom)
1
1\—
qc
1 T “Qam - o
m(m-1) 1-(ID*=
1 — t ¢ s
- dcq | R
1-|T1 (1—<1—‘DeRp_j> )
k=1
= ik
1
1
deolcq dcQ m(m—1)
m (m — 1) 21— T <1 - <lptg‘? ) >
m ‘. qCQ R j#k CIP—j
1-11 <1_ <§éfp—i> )
k=1
j#k

ScqQ

1

dcq
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Remark 9: When s¢y = 0, g = 1 in Definition 9, then

CQROFGBM®! (€cq-1,Ccq-2: > Ccqom)

B x
1 4cq
1 1 dce\ \ m(m — 1)
q Hj,k_ < ( geIP > )
m 1 qcq m(m—1) e
~(ITh= (1= (&,.)™)
j#k
Remark 10: When s¢q = tco = 1 in Definition 9, then
CQROFGBM"! (€cq-1,Ccq-2s > Ccqm)
1
—
1 5 |9cQ
1 L qcq dcqQ m(m-—1)
D @
Lz |% enfi|iA [ k=] g
_ m(m-—1) j#k _IP(DGIP—]' ®o, |
= - ,
dcq dcq qcQ 1 9cQ
I-11- 11:[1 (q)ekp )+CDGRP k_(peRP 1¢)6RP k) xe
jok=
itk

1

24cq

1
l
4\ | m(m—1)
1 2T 1— k=1 (1 - (‘P ) )
2o D 2‘1cQ 2111 1 [Hj;&k Eep_ - 5@11, X
l IJ’k 1 (1 - (geRP—JEGRP k) ) €

itk

Further, we explore the CQROFWGBM operator. Suppose the weight vector is stated by @, = (®,,_1, Dy_3, --» Oy’ Zml @, =
]:

land ®,_; €[0,1],(j =1,2,..,m).

Definition 10: For any CQROFN C¢q-j,j = 1,2, 3, .., m, we define the CQROFWGBM operator by

CQROFWGBMSCQ’tCQ (@CQ_l, eCQ—Z’ s eCQ—m) (10)
1
1 m(m-—1)
= (i O (senbed @ tcat)
)

Based on the operational laws in Definition 4, we give the following result.
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Theorem 13: The aggregation result of CQROFWGBM®c@’'c@ operator is still a CQROFN such that

CQROFWGBM®*c2'@ (€1, Cog-2s > Cogmm)

) 1 Vo
. , —m(m—l) SCQ'HCQ
90Q®y—j \ R 90Q®w—r | R
1-|1 ﬁ " <1_q)e”-f ) - (1‘®@Rp—k -
—|1- X
; d0q®y—; \ @ GoQ@y—k feq
k=1 <1— (1-@5 ) > <1— (1- 0
j#k
L
! 4cq
; Scottc
9 (1 _ IPQCQCOW—)')SCQ _ (1 _ 1quQCOw—k>th _ m(m-=T) [T
om| 1| 1| [ [ik=1 e Pers
’ Ry @,,_\cQ ® teq
ik <1-(1—Wf§f J) ><1—<1—Wf§f W‘k>
CIP—j CIp—k
e

m(nl'l—l) 9cqQ (SCQ'HCQ)

AT e

jrk=1
#k
1
1 - -
@, *cQ @, \ ‘o | =D GCQ(SCQHCQ)
m w—,
i [=1 (1-( 1- <1—W§ZQ ) (1—(1—4@? > )
ik 1P—j P—k

e

Proof: Straightforward.
Further, we explore some properties of CQROFWGBM?®ca’'/@ operator, such as idempotency, monotonicity, and boundedness.

Theorem 14: For any CQROFN (?CQ_j,j =1,2,3,..,m, then

CQROFWGBM’@'? (€1, Cog-2 -» Ccgom) = Cco-

Proof: Straightforward.
Th . C o e ‘ _ iZH‘IJq)C,IP_j iZH‘PEGIP_j d e _
eorem 15: For any two QROFNs co—j <I>@Rp_je ’gfpr-je an CQ—sk

i2ITY,
e Ly . L
<<I>@RP_*ke *,Eo € Clp—sk ) , (],k = 1,2,..,m), with conditions ®pp_; > Prp—sk> Yo, 2 Yo, .o5rr—j < Erp—wk and
qjglp—] < qjgw—*k’ then

iZH‘I’q)CIP

CQROFWGBM?*@'@ (€1, Ceg—zs > Ccoom)

> CQROFWGBM*@'Q (Cro_s1, Coganzs s Cogosmm) -

Proof: Straightforward.
+ 2l maxWo, . 21T min Wy, _
Theorem 16: For any two CQROFNs Cgo; = m]axCI)@RP_je i “"f,rrem §@Rp_je 7o) and Coplp =

. i De, 12ng1x‘11§e ) .
m]m <I>@RP_]e 7 p=j m]qx ieRp_je j P, (] =1,2,., m), then

(?EQ_]' < CQROFWGBMSCQ’tCQ (GCQ—I’ eCQ—Z’ ey eCQ—m) < G}'Q_j
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Proof: Based on monotonicity, we get

CQROFWGBM @' (Cgo_1, €S2 -» Coqem)

IA

CQROFWGBM @@ (Ccq1, Ccqzs -» €cqem)

IA

CQROFWGBMc@’'ca (C¢o_1,CEq s Cqem)

By idempotency, we get
CQROFWGBM@'c@ (C5q_1, Cog2, > Ccqm) = Cog—j and CQROFWGBMc@'ce (CE,_y, Cq_z, - Claom) = Clqo-
Then

Cco—j £ CQROFWGBM’ 2@ (€cq-1, Ccqezs s Coqem) < Céo—ir

The proof of the above theorem has been completed.

4. MULTI-ATTRIBUTE GROUP DECISION MAGDM METHOD BASED ON ESTABLISHED
OPERATORS

The purpose of this section is to utilize the established operators to solve the MAGDM problems.

4.1. Description of MAGDM Problems

The purpose of the MAGDM Problems is to select the best one from the family of alternatives. Suppose ® = {D1,D,,..,D;}, U =

{Ul s Us s Um} and A = {A,, A,, .., A,} respectively represent the families of DMs, alternatives and their attributes. Moreover, we use the
»

P2l ing 73
Gk | *g'gRP_jke =ik ) to express the evaluation value of the alternative Uj under the attribute AP

CQROFN €/ = (@é’RP_jke

given by the DM 9y, then get the matrices A = [Cji - The weight vector of experts is O,,_; = (Oy,_1, Oy_2, -, U, Zt ) O, =
mXn j=

1and O,_; € [0,1], (] =12,. ,t) and the weight vector of attributes is GD,,_; = (Qy_1, Oy—2; -, GDW_n)T,Z;:l ®,_; = 1and

@,,_; €[0,1], (] =12,.., n). Based on the above data, the steps of the algorithm are stated by

w—j

4.2. Procedure of the Algorithm

1. Based on Subsection 4.1, we give the decision matrix.

p p
Ty = <@co—jk’ C’)/CQ—jkp> ()

rb‘-.

» 2110, P PIW{
IP—jk IP—jk )
q)eRP—jk ! ’geRp_jke J for benefit
2IIw? 2IIw?
e [ P
<§p e ik, @ e efP‘”‘) for cost

2. Based on Eq. (12), we can obtain the comprehensive value of each alternative from each DM

p P
7= (ef.epr) (12)
= CQROFWBM’c’'ca <G£Q—j1’ egQ—jz, s e&)—jn)

3. Based on Eq. (13), we can get the comprehensive value of each alternative.

p p
7= (ef ) (13)
= CQROFWGBMc'ca (CEQ-]-D egQ—jz, - C’gQ—jn)

4. Based on score function, we calculate the score functions of above aggregated values.
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5.  Rank the score values and examine the best one.

6. Theend.

For more clarity, we make flowchart for the above algorithm which is shown in Figure 3.

4.3. lllustrated Numerical Examples

The purpose of this section is to show the reliability and proficiency of the proposed method by some numerical examples.

Example 1: To examine the feasibility and validity of the explored method in this manuscript, we use an investment problem to explain it.
In order to select one suitable investment alternative from five companies |J = {Ul s WUgs s US} which are explained as follows:

U, is a car company

1), is a laptop company
1J, is a mobile company
U, isa food company

U isa furniture company

Further, these companies are evaluated by four attributes A = {4, Aj, .., A4}, which are explained in Table 1, and three experts ® =
{D1,D,, D3} give the evaluation information stated in Tables 2—4. Moreover, the weight vector of experts is U,,_3 = (0.5, 0.35, O.IS)T and
the weight vector of attributes is G,,_4 = (0.35,0.22,0.29, 0.14)T. The goal is to give a best choice for investment.

For solving this kind of decision problems, the presented approach is better than existing approaches based on the structure of the CQROFS.
The CQROFS meets a condition that the sum of g-powers of the real parts (also for imaginary parts) of the truth and falsity grades is
not exceeded form unit interval, and it is more general than QROFS, PES, CPFS, IFS, CIFS, and etc. Because the BM operators are more
generalized than various existing operators like weighted averaging, weighted geometric based on some existing notion like QROFS, PFS,
CPFS, IFS, CIFS, and etc. Keeping the advantages of the BM operator based on CQROFS, we solve this problem to check the reliability and
effectiveness of the explored method.

The decision procedure is shown as follows:

Based On Eq. (11), we
construct a decision
matrix.

Based on Eqg. (12) and Eq.
(13), we aggregated the
decision matrix.

Based on Score function,
Rank the score values and we examine the score
examine the best one. values of the aggregated
values.

Figure 3 Graphical interpretation for the procedure of the algorithm of 4.2.

Table 1 Information about attributes and their representations.

Ay A A3 Ay

Risk analysis Growth analysis Social-political Environmental
impact analysis impact analysis
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Data Ay Ay Aj Ay
Representation
(0.6) ei21‘[(0.6)’ (0.67) ei21‘[(0.76)’ (0.76) ei2H(0.87)’ (0.58) ei2H(0.89)’
Ul (0.5) ei2H(0.54) (0.78) eiZH(O.S) (0.83) ei2H(0.74) (0.87) eiZH(O.77)
(0.8) 211067 (0.7) 211067 (0.67) £211(055) (0.67) 211056
Y, (0.77) ¢211(0.85) (0.81) ¢211(0.85) (0.8) ¢2110.9) (0.8) ¢i2T1(087)
(0.86) ei2H(0.78)’ (0.73) ei2H(0.68), (0.68) ei2H(0.66), (0.56) eiZH(O.45)’
U3 0.7) eiZH(O‘6S) (0.82) ei21'[(0.86) (0.78) ei2H(0‘89) (0.88) eiZH(0.9)
(0.82) ¢211(0.76) (0.6) ¢2T1(0.69) (0.57) £21100.78), (0.77) £211055),
U4 (0.72) ei2H(0.86) (0.9) ei2r[(0.87) (0.8) eiZl_I(O.79) (0.89) ei2H(0.91)
(0.86) ei2H(0‘72)’ (0.67) ei2H(0A7)’ (0.59) ei2H(0.54)’ (0.6) ei2H(0‘56)’
Ys (0.73) £211(08) (0.84) ¢i2T1(0.88) (0.88) ¢211(0.87) (0.93) ¢i211(0.92)
Table 3 Complex q-rung orthopair fuzzy decision matrix 72 given by D5.
Data Ay Ay As Ay
Representation
(0.78) ei21'[(0‘76)’ (0.76) ei21'[(0.87)’ (0.76) eiZH(O.SQ)’ (0.87) eiZl'I(O.83),
Y (0.67) 211(054) (0.83) 211(0.74) (0.87) £/211(0.77) (0.74) ¢211(0.76)
(0.81) ei21‘[(0467), (0.67) eiZH(O.SS)’ (0.67) ei21‘[(0.56)’ (0.55) eiZH(O.S)’
Uz 0.7) eiZH(O‘SS) 0.8) ei21'[(0.9) 0.8) eiZH(O.87) (0.9) ei21'[(0.67)
(0.82) ¢2T1(0.68) (0.68) ¢i2T1(0.66) (0.68) ¢i2T1(0:45) (0.66) ¢2110.78)
Ys (0.73) £/211(0.65) (0.78) ¢211(0.89) (0.88) ¢211(09) (0.89) ¢211(0.68)
(0.9) ei2H(0.69), (0.57) ei2H(0.78)’ (0.57) ei2H(0.55)’ (0.78) eiZH(O.S),
U4 (0.6) ei2H(0.86) (0.8) eiZl'I(O.79) (0.89) ei2H(0.91) (0.79) ei2H(0‘57)
(0.84) ¢2T10.7), (0.59) ¢2T1(0.54) (0.59) ¢211(0.56) (0.54) ¢i2T1(0.88)
US (0.67) eiZH(O.S) (0.88) ei2H(O.87) (0.93) ei2H(0,92) (0.87) ei2H(0.59)
Table4 Complex q-rung orthopair fuzzy decision matrix 73 given by D3.
Data Ay Ay Aj Ay
Representation
(0.87) 211(0.76) (0.5) ¢211(0.6) (0.87) 211(0.83) (0.87) 2110.78)
Ul (0.54) ei2H(0.83) (0.6) ei2H(0.77) (0.8) ei2H(0.76) (0.74) ei2H(0.87)
(0.85) ei21'[(0.67), (0.8) ei2H(O.67), (0.55) ei21‘[(0.8), (0.55) eiZH(O.S)’
Y, (0.55) ¢211(0.8) (0.77) £2T1(0.87) (0.85) ¢/2T1(0.67) (0.9) ¢211(0.8)
(0.65) ei2H(0.68)’ 0.7) ei2H(0.78)’ (0.66) ei2H(O.78)’ (0.66) ei2H(0.78)’
U?’ (0.64) ei2H(0.78) (0.86) eiZH(O‘67) (0.86) eiZH(OﬁS) (0.89) eiZH(O.SS)
(0.86) £2T1057) (0.72) £2110.76) (0.78) £2110.8) (0.78) £2110.7)
Uy (0.78) £/211(0.8) (0.82) ¢211(0.89) (0.87) ¢211(0.57) (0.79) ¢211(0.89)
(0.8) ei2H(0.59)’ (0.73) eiZH(O.72)’ (0.54) eiZH(O.SS)’ (0.54) ei2H(0.56)’
Ys (0.54) ¢2T1(088) (0.86) ¢i211(0.92) (0.88) ¢211(0.59) (0.87) ¢i211(0.89)
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1. Based on Eq. (11), we get the normalized decision matrix. The measured information is same, which is not necessary to require the
normalization.

2. Based on Eq. (12), we obtain the comprehensive value of each alternative from each DM (suppose gcq = 4,50q = tcg = 1)

1=

(0.05) ei21'[(0.12)’ (085) eiZH(O.76) 1’21 — (007) ei2H(0.04)’ (088) ei2H(0.87) .

—

(008) ei2r[(0406)’ (088) ei2n(0.86) 7‘41_ (007) eiZH(0.08)’ (090) ei2n(0.87) .

\
I

(0.07) eiZH(0.0S)’ (091) e1'21'[(0.88) r

%
Il

‘
Il

)-ry =

)-ra =

). 2 = ((0.11) 211016 (0,88) ¢2I10.75)),
(0.07) eiZH(0.0S)’ (0.88) eiZH(0.80)). r32 (

). 12 = ((0.06) e2©06) (0 92) ¢i2I10.79))

)-ry =

)-ra =

)
)
)
(0.08) e2110:09) (0,90) 2110 79)),
)
)
)

4 = r’s =
1’13 — (014) eiZH(0.0Q)’ (080) ei2H(0.84) 7’23 — (008) eiZH(0.0S)’ (087) eiZH(O.Sl) .
7,33 (005) ei21'[(0.09)’ (090) e1'21'1(0.84) rj — (012) ei21'[(0.07), (090) e1‘21'1(0.84) .

(
(
(
(
r2 = ((0.08) 211007 (0 87) ¢21(078)
(
(
S =(

(0.06) e211(0.08) (() 89) ¢i211(0.86) )

3. Based on Eq. (13), we get the comprehensive value of each alternative (qcq = 4, scq = tcq = D).
= ((014) eiZH(O.IS)’ (021) eiZH(O.l?:))_ ry = ((009) ei2H(0.08)’ (025) ei21'[(0.18)).
r3 = ((008) eiZH(0.0S)’ (026) ei2n(0.17))' 4= ((012) ei2n(0409)’ (026) eiZH(O.lQ)) .

rs = ((0.08) e11098) (0 30) ¢211(0:20))
4. Based on score function, we calculate the score functions of above aggregated values.

S(ry) = —0.00064, S (r,) = —0.002333, S(r3) = —0.00287, S (r4) = —0.00293, S(r5) = —0.00465.
5. Rank the score values and examine the best one company for investment.

U220, 20,20, 20
6. Consequently, U, is the best one in the above five companies, which is car company.

7. End.

Now we can compare the established method with existing methods in expressing the different fuzzy information, and the results are shown
in Table 5.

4.4. Influence on Decision Results for the Different Parameters

The parameters in the developed operators play a key role in the final ranking results. In order to show their influence on decision results,
the ranking results for the different parameters are shown in the Tables 6-8.

From Tables 6 and 7, we can know these ranking results are changed for the different values of parameters. However, the best one is still U, .

Table 5 Comparison method between the proposed and existing methods.

Methods Score Function Ranking Best
Alternatives

Garg and Rani [33] Cannot be calculated Cannot be calculated No
Rani and Garg [34] Cannot be calculated Cannot be calculated No
CPYFS for deq = 2in Cannot be calculated Cannot be calculated No

this article
Cq-ROFS proposed in S(ry) = —0.00064, S (r;) = —0.002333, U, 22U, >0, >0, > U U,

this article S(r3) = —0.00287, $ (r4) = —0.00293,

S(rs) = —0.00465.
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From Table 8, it is shown the developed operators based on CQROFS is more general then existing notions due to its constraint, i.e., the
sum of g-powers of the real part (also for imaginary part) of the truth and the falsity grades is not exceed from unit interval.

4.5. Comparison of the Established Operators with Some Existing Operators

The explored operators based on CQROFEFS in this paper is more general than some existing operators due to its constraint, i.e., the sum of
g-powers of the real part (also for imaginary part) of the truth and the falsity grades is not exceed from unit interval. Based on comparison

between the established method with existing ones, we examine the advantages and superiority of the explored work which is shown in
Table 9.

From Table 9, it is clear that the existing operators in [32] are not able to evaluate our considered kinds of information in the form of two-
dimension in a single set, and the established operators in this paper are more valuable than existing operators.

To moreover examine the superiority of the explored approach in the MADM environment, we solve a numerical example based on estab-
lished operator and also for existing operators to show the effectiveness of the explored work. The existing methods were established by Garg
and Rani [33], Rani and Garg [34], and Liu et al. [30,31] with different kinds of aggregation operators established for CIFSs and CQROFSs.

Table 6 Ranking values for constant parameter f = 1 and variable parameter s.

Parameters Score Values Ranking
scQ =tcg =1 S(r1) = 0.177,8(rp) = 0.114, Uy 20, >0, >0, > U
S(r3) = 0.110, S (r4) = 0.126,
S(rs) = 0.095.
scQ = 2, S(r1) = 0.223,5(rp) = 0.171, Uy 20, 20, >0, >
tcq =1 S(r3) = 0.174,8 (r4) = 0.186,
S(rs) = 0.163.
scQ = 5, S(ry) = 0.186,S(rp) = 0.147, Uy 20, >0 >0 > U
tcq =1 S(r3) = 0.152,8(r4) = 0.161,
S(rs) = 0.145.
scq = 10, S(ry) = 0.143,5(rp) = 0.117, U, 2U, 20y >0, > U
tcq =1 S(r3) = 0.123,8 (r4) = 0.128,
S(rs) = 0.116.
scQ = 15, S(ry) = 0.118,8(rp) = 0.099, Uy 20,203 >0, > U,
tcq =1 S(r3) = 0.105,8(rq) = 0.109,
S(rs) = 0.098.
scq = 20, S(ry) = 0.100,S(ry) = 0.088, Uy 20, 20320, > U
tcq = S(r3) = 0.093,8 (r4) = 0.095,
S(rs) = 0.087.

Table 7 Ranking values for constant parameter s = 1 and variable parameter t.

Parameters Score Values Ranking
scQ =tcg =1 S(r) = 0.177,8(r) = 0.114, U, 20,20, >0, >0
S(r3) = 0.110,S(rq) = 0.126,
S(rs) = 0.095.
scQ =1, S(r1) = 0.226,8(rz) = 0.173, Uy 20, >0 >0, >,
tcQq =2 S(r3) = 0.176,5 (r4) = 0.189,
S(rs) = 0.167.
scQ=1, S(ry) = 0.196,S(rp) = 0.147, Uy 20,2020 > U
tcQq =5 S(r3) = 0.154,5 (r4) = 0.164,
S(rs) = 0.145.
scQ =1, S(ry) = 0.166, S (rp) = 0.126, U, 22U, 22Uy 27, > U
toq = 10 S(r3) = 0.133,8(r4) = 0.140,
S(rs) = 0.124.
scQq=1, S(r1) = 0.146,8(rz) = 0.113, Uy 20, >0 >0, > U,
tcq =15 S(r3) = 0.121,S(rq) = 0.126,
S(rs) = 0.112.
scQ=1, S(ry) = 0.133,5(ry) = 0.104, Uy 20,20 >0, > U
tcq = 20 S(r3) = 0.112,8(r4) = 0.117,

S(rs) = 0.104.
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Table 8 Ranking values for parameter g.

Parameters Score Values Ranking

doq =3 S(r1) = —0.014,S(ry) = —0.019, Uy 20,20, >0, > U
S(r3) = —0.022, S (r4) = —0.021,
S(rs) = —0.026.

dog =3 S(ry) = —0.0046, S (r) = —0.0073, U 20, >0, >0, > U
S(r3) = —0.0089, S (r4) = —0.0088,
S(rs) = —0.012.

doq = 8 S(ry) = —0.0013, S (r;) = —0.0023, Uy 20U, >0, 20, > U
S(r3) = —0.00302, S (r4) = —0.003,
S(rs) = —0.004.

4o = 10 S(ry) = —0.0005, S (r;) = —0.0012, Uy 20U, >0, >0, > U
S(r3) = —0.0016, S (r4) = —0.0016,
S(rs) = —0.025.

dog =15 S(ry) = —0.0000000098, S (r5) = —0.00026, Uy 22U, 20U, 22Uy > U
S(r3) = —0.00039, S (r4) = —0.00039,
$(rs) = —0.00072.

Table9 Characteristic comparison between the proposed method and existing methods.

Aggregation Operators Operator Capture the A Parameter Vector Exists to Contain Two-Dimension
Interrelation between the Manipulate the Ranking Information
Cq-ROFNs Results
q-ROFWA [35] No No No
q-ROFWG [35] No No No
q-ROFHM [36] Yes Yes No
q-ROFWHM [36] Yes Yes No
q-ROFBM [32] Yes Yes No
q-ROFWBM [32] Yes Yes No
q-ROFGBM [32] Yes Yes No
q-ROFWGBM [32] Yes Yes No
Cq-ROFBM Yes Yes Yes
Cq-ROFWBM Yes Yes Yes
Cq-ROFGBM Yes Yes Yes
Cq-ROFWGBM Yes Yes Yes

Note: -ROFWA, q-rung orthopair weighted averaging; q-ROFWG, q-rung orthopair fuzzy weighted geometric; -ROFHM, q-rung orthopair fuzzy Heronian mean;
q-ROFWHM, q-rung orthopair fuzzy weighted Heronian mean; q-ROFBM, q-rung orthopair fuzzy Bonferroni mean; -ROFWBM, q-rung orthopair fuzzy weighted
Bonferroni mean; g-ROFGBM, q-rung orthopair fuzzy geometric Bonferroni mean; q-ROFWGBM, q-rung orthopair fuzzy weighted geometric Bonferroni mean;
Cq-ROFBM, complex q-rung orthopair fuzzy Bonferroni mean; Cq-ROFWBM, complex q-rung orthopair fuzzy weighted Bonferroni mean; Cq-ROFGBM, complex
q-rung orthopair fuzzy geometric Bonferroni mean; Cq-ROFWGBM, complex q-rung orthopair fuzzy weighted geometric Bonferroni mean.

Example 2: The information related to this example is given in Example 1. We consider complex pythagorean kinds of information and
evaluated the validity and reliability of the established operators in this manuscript, we solve a numerical example whose information is
shown in Table 10 and the weight vector of the attributes is GD,,_, = (0.35,0.22,0.29, 0.14)T.

The evaluated results are listed in Table 11.
From Table 11, we can see that the proposed method is better than the existing ones in expressing the fuzzy information.

Example 3: The information related to this example is given in Example 1. We consider complex intuitionistic kinds of information and
evaluated the validity and reliability of the established operators in this manuscript, we solve a numerical example whose information is
shown in Table 12 and the weight vector of the attributes is G,,_4 = (0.35,0.22,0.29, 0.14)".

The evaluated results are listed in Table 13.

From Table 13, it is clear that the all existing operators in [32] are able to evaluate our considered kinds of information for gc = 1, and
they are a special case of the proposed operators.

To give a large space for expressing the fuzzy information and to consider the relationship between attributes, we established some BM
operators using CQROFSs. It is clear that the CIFS and CPYFS are a special case of the established CQROFSs. When we set g = 1, then
the CQROFS is reduced to CIFS, and similarly when we set gcq = 2, then it is reduced to CPYFS. Hence the established operators based on
CQROFS are more powerful and more efficient than some existing operators due to its condition and its parameters.
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Table 10 Complex pythagorean fuzzy decision matrix for Example 2.

Data Representation Ay Ay Asj Ay
(0.6) ¢i211(0.6). (0.67) ¢211024) (0.6) ¢i211(05) (0.58) 211(0.5)
Ul (0.5)6i2n(0'54) (0.28)6121—1(022) (0.43)81'21_[(0,24) (0.47)61'21_[(0,17)
(0.86) ei2H(0.3)’ (0.73) ei2r[(0.23), (0.68) eiZH(O.S)’ (0.56) ei2H(0.4S)’
U3 (0.24)‘31’21'[(0.4) (0.32)ei21'[(0.23) (0.28)‘31'21'[(0.3) (0.37)61'21_1(0.19)
Ys (0.22)e211(0.24) (0.5)¢i211(0.11) (0.5)¢i211(0.21) (0.29)¢/211(0.11)
(0.86) ei2H(0,22)’ (0.67) eiZH(O.S), (0.59) eiZH(O.S)’ (0.6) eiZH(O.S)’
Table 11 Comparison methods between the proposed and existing methods from Example 2.
Methods Score Function Ranking
Garg and Rani [33] Cannot be calculated Cannot be calculated
Rani and Garg [34] Cannot be calculated Cannot be calculated
Cq-ROFBM proposed in this S (rl) = —0416,S (rz) = —0.375, Us2U,2Us 20U, 207,

article gcq = 2

Cq-ROFBM proposed in this

article gcq = 3

S(r3) = —0.351, S (r4)
S(rs) = —0.337.

—0.130.

$(r3)
S (rs)

S(rl) = —0.193,8(rp) = —0.158,
—0.130, S (r4) = —0.139,

= —0.342,

Us2Uz 20,20, 21,

Table 12 Complex intuitio

nistic fuzzy decision matrix for Example 3.

Data Representation

v < (0.4)e i2I1(0. 3) > < 0.7) ¢ i211(0. 24) ) (0.36) ¢ i2I1(0. 5) > < (0.58) ¢ i2I1(0. 5) )
1 (0.5)¢2T1(0.54) (0.28)¢211(022) (0.43)¢211(0.24) (0.27)¢211(017)
(0.4) 21106 (0.57) ¢2110:33), (0.37) ¢211(0.55) (0.67)¢21105),

Y2 < (0.6)¢211(0:3) ) < (0.31)e”2110.21) ) (0.28)¢i211(0.25) > < (0.18)¢211(0.07) >
U ( (0.6) ¢21103), ) < (0.53) ¢211(023) ) (0.38) 21105 > < (0.56) ¢2T1(045), )
3 (0.24)¢2110-4) (0.32)¢211(0.23) (0.28)¢211(03) (0.17)¢211(0.19)

(0.45) ¢21103), (0.36) ¢211(0.6) (0.37) ¢21105) (0.77) €i211(0.25)
U, < (0.22)¢i211(024) > < (0.5)¢i2T1(0.11) ) (0.5)¢211(0.21) > ( (0.19)el2110.11) )
(0.56) ¢211(0-22), (0.37) 211005, (0.39) ¢i211(0.5) (0.6)e21105),
Us < (0.13)i211(024) ) < (0.34)e211(0.19) > ( (0.51)i2T102) ) < (0.23)i21100. 12) )

Table 13 Comparison methods between the proposed and existing methods from Example 3.

Methods Score Function Ranking

Garg and Rani [33] S (rl) = —0.570,S(r3) = —0.557, Us2U, 22U 20U, 207,
S(r3) = —0.534,S(r4) = —0.547,
S(r5) = —0.533.

Rani and Garg [34] S(r1) = —0.704,S(rp) = —0.672, US > U4 > U3 > U2 > Ul

S(r3) = —0.667, S (r4) = —0.658,

S(r5) = —0.651.
Cq-ROFBM proposed in S(r1) = —0.397,S(rp) = —0.350, US > U4 > U3 > Uz > Ul
this article 9 = 2 S(r3) = —0.328,S(r4) = —0.328,
S(rs) = —0.315.
Cq-ROFBM proposed in S(r1) = —0.171,S(rp) = —0.133, Us2Uz 22U, 20U, 20,

S(r3) = —0.111, S (r4) = —0.125,

this article 9 = 3
S(r5) = —0.109.
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5. CONCLUSION

Recently, Liu et al. [30,31] explored the novel approach of CQROFS, which is the mixture of the two notions like QROFS and CFS. The CIFS
and CPEFS are a good tool to the express the fuzzy information. However, CQROFS is more general, to cope with awkward and complicated
information due to its outstanding feature that the sum of q-powers of the real part (also for imaginary part) of the truth and real part (also
for imaginary part) of the falsity grades is limited to the unit interval. BM operator is an important and meaningful concept to examine the
interrelationships between the different attributes. The aims of this manuscript explored the CQROFBM operator, CQROFWBM operator,
CQROFGBM operator,and CQROFWGBM operator, and proposed the decision-making method based on the developed operators. Finally,
we have used the practical cases to illustrate the feasibility and superiority of the proposed method by comparative analysis with the other
existing methods.

In the future, we will extend the proposed approach to the different environment and then apply to the fields of the similarity measures,
aggregation operators [39-46].
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