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ABSTRACT
A single machine scheduling problem with periodic maintenance is studied in this paper. Due to many uncertainties in reality,
the processing time is recognized as an uncertain variable. The aim is to minimize the makespan at a confidence level. An
uncertain chance-constrained programming model is developed to delve into the impact of uncertainties on decision variables,
and an algorithm for calculating the objective function is proposed. According to the theoretical analysis, a novel method named
longest shortest processing time (LSPT) rule is proposed. Subsequently, an improved genetic algorithm (GA-M) combined with
LSPT rule is proposed. Numerical experiments are used to verify the feasibility of this model and algorithm.
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1. INTRODUCTION

Most studies on scheduling problems assume that the machine is
always available. However, this assumption does not hold in reality.
If the machine runs constantly, it is prone to failure. To reduce the
wastage and expand life expectancy of a machine, preventive main-
tenance activities are essential. During the process of maintenance,
jobs need to stop and wait. This is due to a lack of coordination
between job scheduling and machine maintenance. The purpose of
this study is to coordinate their relationship.

Themachinemaintenance is often treated as an unavailability inter-
val in the literature. Lee [1] studied several scheduling problems
where each machine has only one unavailability interval, and car-
ried out theoretical analysis under each scenario. Low et al. [2]
studied a singlemachine scheduling problemswith availability con-
straints, and a flexible model and heuristic algorithms were pro-
posed. Lee and Kim [3] considered a single machine scheduling
problemwith periodicmaintenance and a two-phase heuristic algo-
rithm modified from Moore’s algorithm was developed. A single
machine scheduling problem with periodic maintenance was stud-
ied by Benmansour et al. [4], and two mixed integer linear mod-
els were developed. Four single-machine scheduling problems with
a variable machine maintenance were investigated by Ying et al.
[5] and polynomial-time exact algorithms were proposed. A sin-
gle machine scheduling problem with flexible periodic mainte-
nances was studied by Cui and Lu [6], and an effective heuristic was
developed to solve the non-resumable case. Two machine-related
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periodic maintenance scheduling models were established by Li
et al. [7], and two improved heuristic algorithms were proposed.
A single machine scheduling problem with periodic maintenance
and sequence-dependent set-up times was analyzed by Pacheco
et al. [8], and an efficient variable neighborhood search approach
with memory was proposed. Nesello et al. [9] proposed new arc-
time index formulations for scheduling with periodicmaintenances
and given a simple iterative exact algorithm. Perez-Gonzalez and
Framinan [10] developed single machine scheduling models with
cyclical machine availability periods, and proposed new heuristics
based on bin packing assignment rules. Wang et al. [11] studied
a single machine scheduling problem with deteriorating jobs and
flexible periodic maintenance. Two integer programming formula-
tions and a branch-and-price algorithm were proposed.

Most of the mentioned scheduling problems were investigated in a
deterministic scenario. Since human behaviors are involved in the
process, the decisionmaker has to take into account all of the possi-
ble events during the planning horizon. Frequency is a factual prop-
erty of indeterminate quantity and does not change with our state
of knowledge and preference.When the sample size is large enough
and no emergency (e.g. war, flood, earthquake, accident and even
rumor) arises, it is likely for us to find a distribution function that is
sufficiently close enough to the frequency. In this case, the probabil-
ity theory is undoubtedly the only legitimatemethod to address our
problem. But, when statistics are unreliable or unavailable, proba-
bility theory is not the best choice. Due to the absence of data for
these variables, experts should be invited to assess the belief degree
that an uncertain event will occur. To deal with the involved human
uncertainty, the uncertainty theory was founded by Liu [12] in 2007
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and refined it in 2010 [13]. The uncertainty theory is a branch of
axiomaticmathematics formodeling human uncertainty, which has
been deeply developed in many fields such as uncertain program-
ming [14–16], uncertain scheduling [17–22], uncertain risk analysis
[23–25], uncertain calculus [26–28] and uncertain optimal control
[29–34].

In this paper, a single machine scheduling problem with periodic
maintenance and non-preemptive jobs is studied. There are many
uncertainties in the real workshop environment, which cannot be
described by random variables. For example, in mold processing,
due tomachine failures, operational errors, order changes andmany
other uncertainties, workers usually draw on their past experience
to assess the processing time. Therefore, the processing time is con-
sidered an uncertain variable owing to the lack of historical data. To
address uncertain variables in the problem, a chance-constrained
model is established. The aim is to minimize the makespan at a
pre-given confidence level. The equivalent form of the uncertain
model is obtained in accordance with uncertainty theory. Accord-
ingly, a new algorithm for solving the objective function is pro-
posed. Furthermore, to improve the efficiency of solving themodel,
an improved genetic algorithm (GA-M) combined with longest
shortest processing time (LSPT) rule is proposed. Numerical exper-
iments are made to verify the feasibility of the proposed model and
methods.

The rest of this paper is structured as follows. In Section 2, basic def-
initions and properties about uncertainty theory are introduced. In
Section 3, we analyze the problem under an uncertain scenario and
built a chance-constrained model. Besides, according to the dom-
inating property, an algorithm is proposed to calculate the objec-
tive function. In Section 4, an evolutionary algorithm base on the
genetic algorithm (GA) is proposed. In Section 5, numerical exper-
iments are given.

2. PRELIMINARIES OF UNCERTAINTY
THEORY

The uncertainty theory is founded by Liu [12] in 2007 and refined
by Liu [13] in 2010 as a branch of axiomatic mathematics for mod-
eling human uncertainty. Let Γ be a nonempty set,  a 𝜎-algebra
over Γ and each element Λ in  is called an event. Uncertain mea-
sure is defined as a function from to [0, 1]. In detail, Liu [12] gives
the concept of uncertain measure as follows:

A set function from  to [0, 1] is called an uncertain measure if
it satisfies{Γ} = 1 for the universal set Γ;{Λ}+{Λc} = 1 for

any eventΛ; {
∞

⋃
i=1

Λi} ≤
∞
∑
i=1

{Λi} for every countable sequence

of events Λ1, Λ2,⋯ .

Besides, the product uncertainmeasure on the product 𝜎-algebra
was defined by Liu [35] as follows: Let (Γk,k,k) be uncertainty
spaces for k = 1, 2,⋯ . The product uncertain measure  is an

uncertain measure satisfying {
∞
∏
i=1

Λk} =
∞
∧
i=1

k{Λk}, where Λk

are arbitrarily chosen events from k for k = 1, 2,⋯ , respectively.
Uncertain measure has following two useful properties: (i) for any
events Λ1 ⊂ Λ2, we have{Λ1} ≤ {Λ2}; (ii) for any events Λ1
and Λ2, we have

{Λ1} +{Λ2} – 1 ≤ {Λ1 ∩ Λ2} ≤ {Λ1} ∧{Λ2}. (1)

The uncertain distribution Φ of an uncertain variable 𝜉 is defined
by Φ(x) = {𝜉 ≤ x} for any real number x. Let 𝜉 be an uncertain
variable with continuous uncertainty distribution Φ. Then for any
real number x, we have{𝜉 ≤ x} = Φ(x),{𝜉 ≥ x} = 1 – Φ(x).
The uncertain variables 𝜉1, 𝜉2,⋯ , 𝜉m are said to be independent
(Liu [35]) if

 {
m

⋂
i=1

(𝜉i ∈ Bi)} = min
1≤i≤m

{𝜉i ∈ Bi}

for any Borel sets B1,B2,⋯ ,Bn of real numbers.

Example 1. An uncertain variable 𝜉 is called normal if it has a nor-
mal uncertainty distribution

Φ(x) =
(
1 + exp

(
𝜋(e – x)
√3𝜎

))–1

, x ∈ ℜ

denoted by (e, 𝜎) where e and 𝜎 are real numbers with 𝜎 > 0.
Definition 1. [12] An uncertain distribution Φ(x) is said to be
regular if its inverse function Φ–1(x) exists and is unique for each
𝛼 ∈ (0, 1). Then the inverse function Φ–1 is called the inverse
uncertainty distribution of 𝜉.
Example 2. The inverse uncertainty distribution of normal uncer-
tain variable (e, 𝜎) is

Φ–1(𝛼) = e + 𝜎√3
𝜋 ln 𝛼

1 – 𝛼 .

Theorem 1. [13] Let 𝜉1, 𝜉2,⋯ , 𝜉n be independent regular uncer-
tain variables with uncertainty distributions Φ1, Φ2,⋯ ,Φn, respec-
tively. If function f (x1,⋯ , xm, xm+1,⋯ , xn) is strictly increasing
with respect to x1, x2,⋯ , xm, and strictly decreasing with respect to
xm+1, xm+2,⋯ , xn, then

𝜉 = f (𝜉1, 𝜉2,⋯ , 𝜉n)

is an uncertain variable with inverse uncertainty distribution

Ψ–1(𝛼) = f (Φ–1
1 (𝛼),⋯ ,Φ–1

m (𝛼), Φ–1
m+1(1 – 𝛼),⋯ ,Φ–1

n (1 – 𝛼)).

Definition 2. [13] Let 𝜉1 and 𝜉2 be independent normal uncertain
variables  (e1, 𝜎1) and  (e2, 𝜎2), respectively. 𝜎1 and 𝜎2 denote
the standard deviation of normal uncertainty distribution. Then the
sum 𝜉1+𝜉2 is also a normal uncertain variable (e1+ e2, 𝜎1+𝜎2),
i.e.,

 (e1, 𝜎1) + (e2, 𝜎2) =  (e1 + e2, 𝜎1 + 𝜎2),

where 𝜎1 > 0 and 𝜎2 > 0 are real numbers. The product of a nor-
mal uncertain variable (e, 𝜎) and a scalar number k > 0 is also a
normal uncertain variable (ke, k𝜎), i.e.,

k ⋅ (e, 𝜎) =  (ke, k𝜎),

where 𝜎 is a real number with 𝜎 > 0 and 𝜎 denotes the standard
deviation of normal uncertainty distribution.
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Definition 3. [12] Let 𝜉 be an uncertain variable, and 𝛼 ∈ (0, 1].
Then

𝜉sup(𝛼) = sup{r ∣ {𝜉 ≥ r} ≥ 𝛼}

is called the optimistic value to 𝜉, and

𝜉inf (𝛼) = inf {r ∣  {𝜉 ≤ r} ≥ 𝛼}

is called the pessimistic value to 𝜉.
Uncertain programming is a type of mathematical programming
involving uncertain variables. Assume that x is a decision vector, 𝜉
is an uncertain vector, f (x, 𝜉) is an objective function, and gj(x, 𝜉)
are constraint functions, j = 1, 2,⋯ , p. To obtain a decision with
minimum objective value subject to chance constraints, Liu [36]
proposed the following uncertain programming model.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min
x

f

subject to ∶

{ f (x, 𝜉) ≤ f } ≥ 𝛽

{ gj(x, 𝜉) ≤ 0} ≥ 𝛼j, j = 1, 2,⋯ , p,

where 𝛼j and 𝛽 are specified confidence levels for j = 1, 2,⋯ , p,
and min f is the pessimistic value.

A key problem is how to solve the above model. Under the frame-
work of uncertainty theory, an uncertain programming model
can be transformed into a crisp one if the related functions are
monotone [13].

3. MODEL UNDER UNCERTAIN
ENVIRONMENT

There are n independent non-resumable jobs J1, J2, … , Jn to be pro-
cessed on a singlemachine. The processing timeof job Ji is 𝜉i. Let the
length of each availability interval beT and the length of eachmain-
tenance interval be t. max

1≤i≤n
𝜉i ≤ T, otherwise there is trivially no fea-

sible schedule. Moreover, the machine is available at time zero. The
processing time of a job is often considered a deterministic parame-
ter in the literature. In fact, the processing time has a great relation-
ship with the experience of workers who assess approximate time
based on personal experience. Therefore, it is reasonable to treat the
processing time of a job as an uncertain variable. Since the uncer-
tain variables cannot be directly compared in size, we rank them at
a confidence level. 𝜉 ≤ 𝜂 if and only if {𝜉 ≤ 𝜂} ≥ 𝛼 for two
uncertain variables 𝜉, 𝜂 and a confidence level 𝛼. According to the
definition of uncertainty distribution, we have Φ𝜉–𝜂(0) ≥ 𝛼, where
Φ𝜉–𝜂 denotes the uncertainty distribution of 𝜉 – 𝜂. Without loss of
generality, assume thatM availability intervals are used. The objec-
tive function is

f = (M – 1)(T + t) + SumM, (2)

where SumM denotes the total processing time of jobs at the Mth
availability interval.

In practice, the decision maker always consider the impact of risks
and emergencies, and find a boundary as a reference for the opti-
mal schedule. In this scenario, the concept of chance-constrained
[37] can be adopted to address this problem. The decision maker
has to assess a value in advance, such that there exists an optimistic
solution x satisfying { f(x) ≤ f } ≥ 𝛼, where 𝛼 ∈ (0, 1) is a prede-
termined confidence level. For instance, set 𝛼 = 0.9, the decision
maker needs to determine a target f and search a solution x to sat-
isfy  { f(x) ≤ f } ≥ 0.9. This suggests that if the decision maker

takes a solution x, the target aim value should be less than f with
confidence level at least 90 %.

It is noted that the aim of this paper is to minimize makespan at a
pre-given confidence level, which means to find the supremum of
the maximum completion time (makespan). It corresponds to the
definition of pessimism value (Definition 3). Therefore, we build a
chance-constrained model in the sense of pessimism.

⎧⎪
⎨⎪
⎩

min
x

f

subject to ∶

{ f ≤ f } ≥ 𝛼,

(3)

where x denotes the order of jobs and it is the decision variable.

According to the definition of the pessimistic value (Definition 3),
the model is equivalent to a crisp one. The equivalent objective
function is:

min
x
Ψ–1

f (𝛼), (4)

where the Ψ–1
f denotes the inverse uncertainty distribution of f.

According to Theorem 1, it yields

Ψ–1
f (𝛼) = (M – 1)(T + t) + Φ–1

SumM
(𝛼). (5)

Likewise, to obtain the value of Ψ–1
f (𝛼), we should calculate values

of Φ–1
SumM

(𝛼) and (M – 1)(T + t). Note that we need to know which
jobs in the last occupied availability interval and how many avail-
ability intervals are occupied. It indicates that how to obtain the
value of M and which jobs in the last availability interval are two
critical problems. Subsequently, an algorithm named Algorithm 1
for the two critical problems is proposed. Since the decision vari-
able is the order of jobs, the order of the jobs has been drawn after
using heuristic algorithms. The order is 𝜉i1 , 𝜉i2 , … , 𝜉in .
Algorithm 1:

• Start to inspect from the first available interval. Because each
availability interval can accommodate at least one job, we take
turns to examine whether the following conditions can be
satisfied: {𝜉i1 + 𝜉i2 ≤ T } ≥ 𝛼, {𝜉i1 + 𝜉i2 + 𝜉i3 ≤ T } ≥ 𝛼,
…, {𝜉i1 + 𝜉i2 + 𝜉i3 +⋯+ 𝜉in ≤ T } ≥ 𝛼.
If all of the above n – 1 conditions are satisfied, we haveM = 1.
If {𝜉i1 + 𝜉i2 ≤ T } ≥ 𝛼,… , {𝜉i1 + 𝜉i2 +⋯+ 𝜉ij ≤ T }≥ 𝛼,
 {𝜉i1 + 𝜉i2 +⋯+ 𝜉ij + 𝜉ij+1 ≤ T } < 𝛼, then assign jobs
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Ji1 , … , Jij to the first available interval. It indicates that these
jobs will be processed in the first available interval.

• Repeat the above operation on the remaining jobs Jij+1 , … , Jin
from the following available intervals until all jobs are arranged
to available intervals. Finally, we can know which jobs in the
last availability interval and obtain the value ofM.

A dominant property for two adjacent jobs (i and j) is derived. The
processing time of the two jobs are 𝜉i and 𝜉j. Let I and I′ be two
schedules where the difference between I and I′ is a pairwise inter-
change of jobs i and j, i.e., I = (𝜋ij𝜋′) and I′ = (𝜋ji𝜋′) where
𝜋 and 𝜋′ denote the partial sequences. Let Cmax and C′max denote
the makespan of schedule I and I′, respectively. If job i and j are
in the same interval, the exchange of their location has no effect
on the makespan. We just need to consider them in different inter-
vals. In schedule I, job i and j are in kth and (k+1)th available inter-
val, respectively. Assume that total processing time of jobs in the
kth and (k + 1)th available interval are A and B, respectively. 𝛼 is a
given confidence level.

Three scenarios for the relationship between job i and j are shown
below.

1. {𝜉i > 𝜉j} ≥ 𝛼. After exchanging the position of job i and j,
there are two cases.
• {B – 𝜉j + 𝜉i > T} ≥ 𝛼. Since

{Cmax ≤ C′max} ⊇ {𝜉i > 𝜉j} ∩ {B – 𝜉j + 𝜉i > T } ,

it yields

 {Cmax ≤ C′max} ≥  {𝜉i > 𝜉j}
+ {B – 𝜉j + 𝜉i > T} – 1 ≥ 2𝛼 – 1

by Eq. (1).

•  {B – 𝜉j + 𝜉i ≤ T } ≥ 𝛼. Since

{Cmax = C′max} ⊇ {𝜉i > 𝜉j} ∩ {B – 𝜉j + 𝜉i ≤ T } ,

it yields {Cmax = C′max} ≥ 2𝛼 – 1.
2. {𝜉i = 𝜉j} ≥ 𝛼. After exchanging the position of job i and j,

it yields

 {Cmax = C′max} ≥ 𝛼

because {Cmax = C′max} ⊇ {𝜉i = 𝜉j}.
3. {𝜉i < 𝜉j} ≥ 𝛼. After exchanging the position of job i and j,

there are two cases.
•  {A – 𝜉i + 𝜉j > T } ≥ 𝛼, then job i and j are at the same

available interval. If{B + 𝜉i ≥ T} ≥ 𝛼, and according to

{Cmax ≤ C′max} ⊇ {𝜉i < 𝜉j} ∩ {A – 𝜉i + 𝜉j > T}
∩ {B + 𝜉i ≥ T }

it yields {Cmax ≤ C′max} ≥ 3𝛼 – 2.
If {B + 𝜉i < T } ≥ 𝛼, we have {Cmax = C′max} ≥ 3𝛼 – 2.

•  {A – 𝜉i + 𝜉j ≤ T } ≥ 𝛼. Since

{Cmax ≥ C′max} ⊇ {B – 𝜉j + 𝜉i ≤ T } ⊇ {𝜉i < 𝜉j}
∩ {A – 𝜉i + 𝜉j ≤ T } ,

it yields {Cmax ≥ C′max} ≥ 2𝛼 – 1.

Based on the above discussion, a domination property under an
uncertain scenario can be deduced.

Property 1. In schedule I, for two adjacent job i and j, if {𝜉i <
𝜉j} ≥ 𝛼 and {A – 𝜉i + 𝜉j ≤ T } ≥ 𝛼, then schedule I′ is better than
schedule I under confidence level 2𝛼–1,where 𝛼 is a given confidence
level.

4. HEURISTIC METHOD

The longest processing time (LPT) rule is often used to solve the
scheduling problem with minimal makespan [6,38–41]. The short-
est processing time (SPT) rule is often used to solve the scheduling
problem with minimal the total completion time [42–45].

The LPT and SPT rules are described as follows:

LPT: Reorder all the jobs in non-increasing order of their process-
ing times, and process them consecutively as early as possible.

SPT: Reorder all the jobs in non-decreasing order of their process-
ing times, and process them consecutively as early as possible.

After integrating LPT and SPT, the LSPT rule is described as
follows:

First, we sort the jobs in descending order of processing time. Then,
the jobs are arranged to the first available interval in sequence. The
first two steps are to arrange the jobs according to the LPT rule.
If the remaining space of the first available interval cannot arrange
jobs in accordance with LPT rule, then arrange the jobs with the
shortest processing time in the remaining interval of the first avail-
able interval. If there is still a free position in the first available inter-
val, continue to arrange the jobs in ascending order of processing
time. The next two steps are similar to the SPT rule. In each subse-
quent available interval, first use the LPT rule to arrange the jobs. If
the remaining space cannot continue to arrange them, use the SPT
rule. Each available interval is arranged in this way until all the jobs
are arranged.

The main idea of the LSPT rule is to make the total processing time
of jobs within a availability interval close to T as far as possible.
Therefore, LSPT rule is better than that of LPT rule.

The GA had been widely used for solving scheduling problems in
recent years [46–50]. It has been proven to be suitable for different
types of scheduling problems, and various improved GAs had been
proposed to speed up the convergence speed and reduce errors.
In general, the initial solutions are randomly generated in GA,
which reduces the execution efficiency of the algorithm. Some lit-
erature have shown that the better solution can be found quickly by
seeding the initial solution with heuristic rules in an artificial intel-
ligence algorithm [51–53]. Therefore, we use the LSPT rule and
Property 1 improve accuracy and efficiency of the initial solution.
An improved algorithm named GA-M is proposed.
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Algorithm GA-M:

• Step 1: Representation
The algorithm imitates the process of natural evolution in a
population of chromosomes with the objective of largely
preserving those individuals who are most adaptive to the
environment. The chromosome is constructed based on a n
character string [a1, a2, … , an], where ai denotes the index of
job i. It represents the sequence of jobs on the machine. This
encoding means that any solution is feasible.

• Step 2: Initialization
Let the population size be pop_size, and the crossover
probability be Pc and the mutation probability be Pm. The LSPT
rule is used to obtain an initial chromosome. Since the
processing time of each job is an uncertain variable, jobs cannot
be sorted directly based on the processing times. We may sort
jobs according to Φ–1

𝜉i (𝛼) which is the inverse uncertainty
distribution of 𝜉i and 𝛼 is a given confidence level. The other
chromosomes are randomly generated by exchanging two
genes of the initial chromosome. Repeat this process for
pop_size – 1 times and we obtain pop_size chromosomes. The
Property 1 is used to adjust the initial solution. After the
initial solution is generated, determine whether the initial
solution satisfies property 1. If the condition of Property 1 is
satisfied, the position of the two adjacent jobs are
exchanged.

• Step 3: Fitness
The fitness of an individual is defined as the possibility that an
individual is likely to stay during the selection process. The
objective functions of all chromosomes are calculated as their
fitness values. Algorithm 1 is the key to obtain the value of the
objective function.

• Step 4: Selection process
Chromosomes are selected by spinning the roulette wheel.
These percentage fitness values can be used to configure
roulette. Each time the wheel stops this gives the fitter
individuals the greatest chance of being selected for the next
generation and subsequent mating pool.

• Step 5: Crossover
The crossover operation uses two-point crossover method: two
crossover point are selected, binary string from beginning of
chromosome to the first crossover point is copied from one
parent, the part from the first to the second crossover point is
copied from the second parent and the rest is copied from
the first parent. Select two chromosomes randomly and
generate a random number rc. If rc is smaller than Pc, then
crossover is applied to this pair; otherwise, no crossover is
performed.

• Step 6: Mutation
The purpose of mutation operation is to maintain diversity in
the population as well as to prevent the seek process from
getting fall into a local optima. The mutation operation selects
two positions in a chromosome randomly and interchange the
two positions. In the mutation step, two chromosomes are
randomly selected and a random number rm is generated first.
If rm is smaller than Pm, then mutation is applied to this pair;
otherwise, no mutation is performed.

• Step 7: Iteration
When the maximum number of iterations is reached, the
process is terminated; otherwise, circulate from the selection
process.

5. NUMERICAL EXPERIMENT

Numerical experiments are conducted to assess the performance of
the proposed chance-constrainedmodel and hybrid algorithm. Par-
ticle swarm optimization (PSO) algorithm provides flexible, high
performance mathematical programming solvers for linear pro-
gramming, mixed integer programming, quadratic programming,
and quadratically constrained programming problems. Since the
problem in the literature [54] is similar to the problem in this paper,
we can use PSO-M in the literature [54] to solve themodel. Low [54]
applied the “job-to-position” represent the particles and embed-
ded a restarting strategy and three stopping criteria. The experi-
mental results reveal that the performances of the PSO-M is quite
satisfactory on both solution accuracy and efficiency. GA, GA-M
and PSO-M [54] are used to solve three instances, respectively. GA
denotes that initial solutions are randomly generated and without
using Property 1.

Run GA, GA-M and PSO-M five times in each instance, respec-
tively. All numerical experiments are performed on a computer
with a i7 processor with a speed of 4.0 GHz and 16GB RAM.
“No” column lists running index of algorithm. “GA” column lists
objective function values obtained by the GA. “GA-M” column
lists objective function values obtained by the heuristic method in
Section 4. “PSO-M” column lists objective function values obtained
by the modified PSO. “time” column lists the CPU time.

Assume that the number of job is 10. Processing time of job i is
considered a normal uncertain variable: 𝜉i ∼  (i, 1) for i =
1, 2,⋯ , 10. Maintenance time is 1. Length of each availability inter-
val is 12. Confidence levels 𝛼 = 0.8. Population size of GA is
50. In GA, crossover rate is 0.75. Mutation rate is 0.25. Maximum
iteration number is 300. In PSO-M, the learning factors are set as
c1 = c2 = 2.0, inertia weight wmax = 0.9, wmin = 0.4 and
Vmax = 4.0. The rand1 and rand2 are random variables between
0 and 1. Maximum iteration number is 300.
Assume that the number of job is 20. Processing time of job i is
considered a normal uncertain variable: 𝜉i ∼  (i, 1) for i =
1, 2,⋯ , 20. Maintenance time is 5. Length of each availability inter-
val is 25. Confidence levels 𝛼 = 0.8. Population size of GA is 50. In
GA, crossover rate is 0.8. Mutation rate is 0.2. Maximum iteration
number is 200. In PSO-M, the learning factors are set as c1 = c2 =
2.0, inertia weight wmax = 0.9, wmin = 0.4 and Vmax = 4.0. The
rand1 and rand2 are random variables between 0 and 1. Maximum
iteration number is 200.
Assume that the number of job is 50. Processing time of job i is
considered a normal uncertain variable: 𝜉i ∼  (i, 1) for i =
1, 2,⋯ , 50. Maintenance time is 10. Length of each availability
interval is 55. Confidence levels 𝛼 = 0.8. Population size of GA
is 50. In GA, crossover rate is 0.7. Mutation rate is 0.3. Maximum
iteration number is 200. In PSO-M, the learning factors are set as
c1 = c2 = 2.0, inertia weight wmax = 0.9, wmin = 0.4 and
Vmax = 4.0. The rand1 and rand2 are random variables between
0 and 1. Maximum iteration number is 200.
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In addition, we give an example about the operation process of
Algorithm 1. If the measure is less than 𝛼, the job arrangement can-
not be adopted.

The schedule result obtained by the LPT rule is

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)(sequence of jobs)

for small scale (10 jobs). T = 12 and t = 1. Algorithm 1 is the key
to obtain the result. Detailed procedure is as follows.

 {𝜉10 ≤ T } = Φ(T ) ≈ 0.95 > 𝛼 = 0.8

and

 {𝜉10 + 𝜉9 ≤ T } = Φ(T ) ≈ 0 < 𝛼

where T = 12. Subsequently, job 10 will be arranged to the first
availability interval.

Since

 {𝜉9 + 𝜉8 ≤ T } = Φ(T ) ≈ 0.002 < 𝛼,

job 9 will be arranged to the second availability interval.

Likewise,

 {𝜉8 + 𝜉7 ≤ T } = Φ(T ) ≈ 0.06 < 𝛼,

job 8 will be arranged to the third availability interval.

The job 7 will be arranged to the forth availability interval by

 {𝜉7 + 𝜉6 ≤ T } = Φ(T ) ≈ 0.29 < 𝛼.

The job 6 will be arranged to the fifth availability interval by

 {𝜉6 + 𝜉5 ≤ T } = Φ(T ) ≈ 0.71 < 𝛼.

The jobs 5 and 4will be arranged to the sixth availability interval by

 {𝜉5 + 𝜉4 ≤ T } = Φ(T ) ≈ 0.95 > 𝛼,

and

 {𝜉5 + 𝜉4 + 𝜉3 ≤ T } = Φ(T ) = 0.5 < 𝛼.

The jobs 3, 2 and 1will be arranged to the seventh availability inter-
val by

 {𝜉3 + 𝜉2 ≤ T } = Φ(T ) ≈ 0.999 > 𝛼,

and

 {𝜉3 + 𝜉2 + 𝜉1 ≤ T } = Φ(T ) ≈ 0.97 > 𝛼.

According to the above discussion, it yields M = 7 and SumM =
𝜉3 + 𝜉2 + 𝜉1. And according to the Definition 3, it yields 𝜉3 + 𝜉2 +
𝜉1 ∼  (6, 3). Then according to Example 2, it yields Φ–1

SumM
(𝛼) =

6 + 3√3
𝜋 ln 0.8

1–0.8 ≈ 8.3. It implies that the total processing time of
jobs in theMth availability interval is 8.3 at the confidence level 0.8.
According to Eq. (5), it yieldsΨ–1

f (𝛼) = (7–1)(12+1)+8.3 = 86.3
and it implies that the makespan is 86.3 under confidence level 0.8.

The schedule result obtained by the LSPT rule is

(10, 9, 1, 8, 2, 7, 3, 6, 4, 5)(sequence of jobs).

 {𝜉10 ≤ T } = Φ(T ) ≈ 0.95 > 𝛼 = 0.8,

 {𝜉10 + 𝜉9 ≤ T } = Φ(T ) ≈ 0 < 𝛼,

 {𝜉10 + 𝜉1 ≤ T } = Φ(T ) ≈ 0.71 < 𝛼,

and job 10 will be arranged to the first availability interval.

Since

 {𝜉9 + 𝜉8 ≤ T } = Φ(T ) ≈ 0.002 < 𝛼,

 {𝜉9 + 𝜉1 ≤ T } = Φ(T ) ≈ 0.86 > 𝛼,

 {𝜉9 + 𝜉1 + 𝜉2 ≤ T } = Φ(T ) = 0.5 < 𝛼,

jobs 9 and 1 will be arranged to the second availability interval.

Likewise, jobs 8 and 2will be arranged to the third availability inter-
val by

 {𝜉8 + 𝜉7 ≤ T } = Φ(T ) ≈ 0.06 < 𝛼,

 {𝜉8 + 𝜉2 ≤ T } = Φ(T ) ≈ 0.86 > 𝛼,

 {𝜉8 + 𝜉2 + 𝜉3 ≤ T } = Φ(T ) ≈ 0.35 < 𝛼.

The jobs 7 and 3will be arranged to the forth availability interval by

 {𝜉7 + 𝜉6 ≤ T } = Φ(T ) ≈ 0.29 < 𝛼,

 {𝜉7 + 𝜉3 ≤ T } = Φ(T ) ≈ 0.86 > 𝛼.

The jobs 6 and 4will be arranged to the fifth availability interval by

 {𝜉6 + 𝜉5 ≤ T } = Φ(T ) ≈ 0.71 < 𝛼,

 {𝜉6 + 𝜉4 ≤ T } = Φ(T ) ≈ 0.86 > 𝛼.

At last, job 5 will be arranged to the fifth availability interval.

According to the above discussion, it yieldsM = 6 and SumM = 𝜉5.
Since 𝜉5 ∼  (5, 1), and according to Example 2, it yields
Φ–1

SumM
(𝛼) = 5 + √3

𝜋 ln 0.8
1–0.8 ≈ 5.76. It reveals that the total

processing time of jobs in the Mth availability interval is 5.76 at
the confidence level 0.8. According to Eq. (5), it yields Ψ–1

f (𝛼) =
(6 – 1)(12 + 1) + 5.76 = 70.76 and it reveals that the makespan is
70.76 under confidence level 0.8.
Tables 1 and 2 indicate that three algorithms can solve the model
effectively. Table 3 indicates that the time required for GA-M are
significantly less than the other two algorithms at large scale. The
results obtained by GA-M are better than the other two algorithms.
It reveals that LSPT and Property 1 play significant roles in the effi-
ciency of the algorithm. In addition, the example of Algorithm 1
reveals that the LSPT outperforms LPT in the case of small scale
obviously. The result suggests that LSPT can effectively reduce the
amount of occupied availability interval.
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Table 1 Results for 10 jobs.

No GA Time (s) GA-M Time (s) PSO-M Time (s)

1 71.9 15 67.5 15 71.6 13
2 72.7 13 66.1 17 70.1 15
3 71.5 12 67.8 15 70.4 19
4 70.7 15 70.3 19 72.7 12
5 69.4 10 68.9 13 71.0 17
GA, genetic algorithm; GA-M, improved genetic algorithm; PSO, particle swarm
optimization.

Table 2 Results for 20 jobs.

No GA Time (s) GA-M Time (s) PSO-M Time (s)

1 253.5 20 245.3 26 251.3 23
2 251.7 22 247.5 25 253.2 25
3 258.8 26 245.5 25 251.7 25
4 253.3 26 247.1 24 255.9 26
5 254.5 28 243.4 25 258.3 26
GA, genetic algorithm; GA-M, improved genetic algorithm; PSO, particle swarm
optimization.

Table 3 Results for 50 jobs.

No GA Time (s) GA-M Time (s) PSO-M Time (s)

1 1389.3 73 1330.2 68 1387.3 75
2 1385.5 79 1328.7 69 1389.8 74
3 1397.1 72 1330.6 69 1386.2 73
4 1392.2 69 1328.9 65 1397.4 75
5 1389.1 73 1325.1 68 1380.1 75
GA, genetic algorithm; GA-M, improved genetic algorithm; PSO, particle swarm
optimization.

6. CONCLUSIONS

In this paper, a single machine scheduling problem with periodic
maintenance was studied. To achieve the more accurate right deci-
sion in the turbulent and complex modern society, the uncertain
factors were considered in the study. The processing time was con-
sidered an uncertain variable due to numerous practical histor-
ical data are unavailable or untrustworthy. To study the effects
of uncertain variables on the scheduling problem, an uncertain
chance-constrained model was proposed. In the model, pessimistic
value was adopted to solve the imprecise objective function, and
the chance-constrained programming method was adopted to reg-
ulate the confidence level of imprecise constraint satisfaction. Based
on the uncertainty theory, the equivalent form of the chance-
constrained model was obtained. Besides, a key algorithm for
solving the model was also proposed. An efficient rule called LSPT
combining the advantages of both LPT and SPT was proposed. To
solve this model effectively, an algorithm GA-M combining the
LSPT rule and Property 1 was proposed. Numerical experiments
suggested that the proposed GA-M algorithm performs well.

For future work, it would be interesting to develop an improved
method to obtain better solution for the problem. Future research
will focus also on different shop environment (flow shop, job shop
and open shop). In addition, other performance measures, for
example total completion time, total weighted completion time and
tardiness of jobs would also be considered.
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