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Abstract

R-implications are studied on Ln(U) con-
sidering the conditions under which main
properties are preserved, and their repre-
sentability from U to Ln(U) is also presented.
Some results in the class of n-dimensional
R-implications obtained from t-representable
norms on Ln(U) are discussed.

Keywords: n-dimensional fuzzy sets, fuzzy
implications, n-dimensional R-implications.

1 Introduction

In [27], the notion of an n-dimensional fuzzy set (n-DS)
on Ln-fuzzy set theory was introduced by Shang et. al.
as a special class of L-fuzzy set theory, generalizing the
theories underlying many other multivalued fuzzy log-
ics: the interval-valued fuzzy set theory (IVFS) [26],
the Atanassov’s intuitionistic fuzzy set [2] (A-IFS) and
its interval-valued approach [3]. In Ln-fuzzy set the-
ory, the n-dimensional fuzzy sets membership values
are n-tuples of real numbers in U = [0, 1], ordered in
increasing order, called n-dimensional intervals. In ad-
dition, even when the repetition of elements of n-tuples
on the membership degrees is not considered, they can
be defined as a (Typical) Hesitant Fuzzy Sets (HFS)
[10, 28]. A historical and hierarchical analysis of this
approach and other important extensions of the fuzzy
set (FS) theory can be found in [12].

As the main idea, an n-DS considers several un-
certainty levels in its membership functions, adding
degrees of freedom making it possible to directly
model uncertainties in computational systems based
on FS [8]. Such uncertainties are frequently associ-
ated to many causes see, e.g. n-ary operators mod-
elling imprecise parameters in time-varying systems
or n distinct expert knowledge possibly obtained from
questionnaires including uncertain words from natural
language.

This work focuses on mathematical description of re-
lated R-implications in the logical approach of n-
DS mainly related to fuzzy implications. According
to [11], the class of R-implications plays an important
role in FL. In a broad sense, it is frequently applied
to fuzzy control, analysis of vagueness in natural lan-
guage and techniques of soft-computing as well as in
the narrow sense, contributing to a branch of many
valued logic enabling the investigation of deep logical
questions [1].

1.1 Main Contribution

As the main contribution, this paper introduces the
definition of n-dimensional fuzzy R-implications (R-
n-DI) in order to show that the main properties of
R-implications on U can be preserved on Ln(U). By
considering projection functions and degenerate ele-
ments, the conjugation in the class of R-implications
is presented. The ordering and neutrality properties
are extended from U to Ln(U). Our results use con-
cepts and intrinsic properties as the identity and ex-
change principles from R-implications on U to R-n-DI
on Ln(U).

Aggregating functions, in particular t-norms along
with fuzzy negations, are related to notions for n-
dimensional intervals. Theoretical results from R-
implications to their n-dimensional fuzzy approach are
obtained. Focusing on the R-implication class, rep-
resentable n-dimensional t-norms in conjunction with
representable n-dimensional fuzzy negations and their
interrelationship with the n-DSs are studied.

By using admissible order on Ln(U) obtained by
aggregation-sequences,  Lukasiewicz R-n-DI and the
minimum operator on Ln(U), we are able to compare
multiple alternatives, contributing to a decision mak-
ing problem based on multiple attributes related to a
selection of the best CIM software systems based on
three decision maker evaluations.
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1.2 Related Papers

Stretching the seminal studies of n-DS [27], main re-
lated papers exploring logical properties of correspond-
ing fuzzy connectives in theoretical research (TR) ar-
eas providing support to applications in decision mak-
ing problems (DMP) are summarized in Table 1.

Following the reported research, this paper studies
the possibility of dealing with main properties n-
dimensional R-implications on Ln(U), exploring their
application to solve DMP.

1.3 Outline of the Paper

This paper is organized as follows. In Preliminaries,
we report the main characteristics of n-dimensional in-
tervals and n-dimensional fuzzy negations are briefly
discussed based on [8]. In Section 3, n-dimensional t-
norms are studied including main properties, dual and
conjugate constructions. In Section 4, the concepts
and reasonable properties of n-dimensional fuzzy im-
plications on Ln(U) are also studied, as well as evi-
dence on properties assuring their representability ex-
pressions. In Section 5, properties of R-implications
are extended to n-dimensional fuzzy approach, main
characteristics, duality and action of n-dimensional
automorphisms. The conclusion section highlights
main results and briefly comments on further work.

2 Preliminaries

In this section, we will briefly review some basic con-
cepts of FL, concerned with the study of n-dimensional
intervals, which can be found in [7, 9].

2.1 n-Dimensional Fuzzy Sets

Let X 6= ∅, U = [0, 1] and n ∈ N+ = N−{0}. By [27],
an n-dimensional fuzzy set A over X is given as

A = {(x, µA1
(x), . . . , µAn(x)) : x ∈ X},

when, for i = 1, . . . , n, the i-th membership degree
of A denoted as µAi : X → U verifies the condition
µA1

(x) ≤ . . . ≤ µAn(x).

In [7], the n-dimensional upper simplex, is given as

Ln(U)={x=(x1, . . . , xn) ∈ Un : x1 ≤ . . . ≤ xn}, (1)

and its elements are called n-dimensional intervals.
For i = 1, . . . , n, the i-th projection of Ln(U) is the
function πi : Ln(U)→U given by πi(x1, . . . , xn)=xi.

1n-dimensional Fuzzy Preference Relations
2Multi Expert Decision Making
3Multiple Attribute Group Decision Making Problem

A degenerate element x ∈ Ln(U) verifies the condition

πi(x) = πj(x), for each i, j = 1, . . . , n, (2)

and will be denoted by /x/, for x ∈ U .

Remark 1. By extending the ≤-order on U to higher
dimensions, for x,y ∈ Ln(U), it holds that:

x ≤ y iff πi(x) ≤ πi(y) for each i = 1, . . . , n. (3)

Thus (Ln(U),≤) is a lattice. Additionally, for all
x,y ∈ Ln(U) the following relation is also considered

x � y⇔ x = y, (4)

this is the same as saying that πn(x) ≤ π1(y).

Moreover, it is related to partial orders on Ln(U), one
can easily observe that � is more restrictive than ≤,
meaning that x � y⇒ x ≤ y.

By [17], Ln(U) = (Ln(U),∨,∧, /0/, /1/) is a distribu-
tive complete lattice, which is continuous, with /0/
and /1/ being their bottom and top element, respec-
tively. By [7], for all x,y ∈ Ln(U), the supremum and
infimum on Ln(U) is given as:

x∨y=(max(π1(x),π1(y)), . . . ,max(πn(x),πn(y))) (5)

x∧y=(min(π1(x),π1(y)), . . . ,min(πn(x), πn(y))). (6)

Observe that L1(U) = U and L2(U) reduces to the
usual lattice of all the closed subintervals on U .

2.2 Fuzzy Negations on Ln(U)

As conceived in [8], the notion of fuzzy negation was
extended to Ln(U) and main concepts reported below.

Definition 1. A function N : Ln(U) → Ln(U) is an
n-dimensional fuzzy negation (n-DN) if it satisfies:

N1: N (/0/) = /1/ and N (/1/) = /0/;

N2: If x ≤ y then N (x) ≥ N (y).

In addition, if N is an involutive function,

N3: N (N (x)) = x;

then N is a strong n-DN.

According to [8, Prop. 3.1], if N1, . . . , Nn are fuzzy

negations such that N1 ≤ . . . ≤ Nn, then ˜N1 . . . Nn :
Ln(U)→ Ln(U) is a n-DN given by

˜N1 . . . Nn(x) = (N1(πn(x)), . . . , Nn(π1(x))). (7)

And, when N = N1 = . . . = Nn, ˜N1 . . . Nn is denoted
as Ñ .

Example 1. Consider ND1, ND2 : U → U as fuzzy
negations respectively given as follows:

ND1(x)=

{
1, if x = 0,
0, otherwise;

ND2(x)=

{
0, if x = 1,
1, otherwise;
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Technique Contribution Class

n-Dimensional Intervals and Fuzzy S-
implications [31]

Study main properties characterizing the class of S-
implications on Ln(U)

TR

Towards the study of main properties of
n-Dimensional QL-implicators [32]

n-dimensional QL-implicators are studied considering du-
ality and conjugation operators.

TR

Equilibrium Point of Representable
Moore Continuous n-Dimensional Inter-
val Fuzzy Negations [18]

Studies some conditions that guarantee the existence of equi-
librium point in classes of representable (Moore continuous)
n-dimensional interval fuzzy negations.

TR

Moore Continuous n-Dimensional Inter-
val Fuzzy Negations [21]

Characterizing the notion of (continuous) n-dimensional inter-
val Moore metric using the definitions of (continuous) Moore
metric and n-dimensional interval fuzzy negations.

TR

n-Dimensional Fuzzy Negations [9] Presenting n-representable fuzzy negations on Ln(U), an-
alyzing main classes such as continuous and monotone by part.

DMP

Natural n-dimensional fuzzy nega-
tions for n-dimensional t-norms and
t-conorms [19]

Studying n-dimensional fuzzy negations, applying these
studies mainly on natural n-dimensional fuzzy negations for n-
dimensional triangular norms and triangular conorms.

TR

An algorithm for MCDM using n-
DFS, admissible orders and OWA oper-
ators [15]

Introduces the concept of admissible order for n-DS pre-
senting a construction method for those orders and studying
OWA operators for aggregating tuples.

DMP

On n-dimensional strict fuzzy nega-
tions [20]

Investigate the class of representable n-dimensional strict
fuzzy negations.

TR

A class of fuzzy multisets with a fixed
number of memberships [8]

Define a generalization of Atanassov’s operators for n-
dimensional fuzzy values (called n-dimensional intervals).

DMP

Characterization Theorem for t-
Representable n-Dimensional Triangular
Norms [7]

Generalization of the notion of t-representability for n-
dimensional t-norms and provide a characterization theo-
rem for that class of n-dimensional t-norms.

TR

The n-dimensional fuzzy sets and Zadeh
fuzzy sets based on the finite valued
fuzzy sets [27]

Definition of cut set on n-dimensional fuzzy sets studying
the decomposition and representation theorems of n-DS.

TR

Table 1: Distribution of papers based on n-dimensional fuzzy sets

and, NS , NK , NR : U → U given as NS(x) = 1 − x,
NK(x) = 1−

√
x and NR(x) = 1− x2. It follows from

Eq.(7) that:

(i) ˜ND1, NR, NS , NK , ND2 : Ln(U)→ Ln(U) is a rep-
resentable n-DN;
(ii) ÑD1, ÑS , ÑK , ÑR, ÑD2 : Ln(U) → Ln(U) are the
n-dimensional interval extensions of the above fuzzy
negations.

Proposition 1. [9] Let N be an n-DN. Then, a func-
tion Ni : U → U is a fuzzy negation defined by

Ni(x) = πi(N (x)),∀i = 1, . . . , n, x ∈ U. (8)

According to [9, Definition 29] and [23], an n-
dimensional automorphism on L(U) is reported below:

Definition 2. A function ϕ : Ln(U) → Ln(U) is an
n-dimensional automorphism if ϕ is bijective and the
following condition is satisfied

x ≤ y⇔ ϕ(x) ≤ ϕ(y),∀x,y ∈ Ln(U). (9)

3 Triangular Norms on Ln(U)

By [9], a function A : Ln(U)k → Ln(U) is an n-
dimensional aggregation (n-DA) if the following con-

ditions are verified:

A1. A(/0/, . . . , /0/)=/0/ and A(/1/, . . . , /1/)= /1/;
A2. (xi≤yi)i∈{1...k} ⇒A(x1,. . .,xk)≤A(y1,. . .,yk),

∀(x1, . . . ,xk), (y1, . . . ,yk) ∈ Ln(U)k.

Example 2. By Eq.(6), the minimum aggregation op-
erator F∧ : Ln(U)k→Ln(U) is given as:

F∧(x1, . . . ,xk)= (∧(xi1, . . . ,xik))i∈{1,...,n} (10)

when xik = πi(xk).

According to [15], a linear order v on Ln(U) is called
admissible if for all x,y ∈ Ln(U) it satisfies: x ≤ y⇒
x v y, meaning that v refines ≤.

By [15, Definition 5], let A = (A1, . . . , Ak) be a se-
quence of n aggregation functions Ai : Un → U . For
x,y ∈ Ln(U), the following holds:
1. x @ y iff there exists k ∈ {1, . . . , n} such that
Aj(x)=Aj(y), ∀j ∈ {1, . . . k−1} and Ak(x)<Ak(y);
2. x v y iff x @ y or x = y.

In addition, let A = (A1, . . . , An) be an aggregation-
sequence of functions Ai : Un → U . Based on [15,
Propositon 1], the order relation v on Ln(U) is ad-
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missible iff for each x,y ∈ Ln(U), the following holds:

Ai(x) = Ai(y),∀i ∈ {1, . . . n} ⇔ x = y.

Proposition 2. [15, Prop.2] Let A = (A1, . . . , An)
be an aggregation-sequence such that Ai : Un → U is
given by: Ai(x) = (αi1(π1(x)), . . . , αin(πn(x))), when-
ever αi1+. . .+αin = 1 and 0 ≤ αij ≤ 1, for 1≤ i, j≤n.
The v[A]-order on Ln(U) is admissible iff the corre-
sponding matrix [A] = (αij)n×n is regular.

Example 3. Consider the aggregation-sequence
A1, A2, A3 : U3 → U where

A1(x) = 0.1x1 + 0.5x2 + 0.4x3;

A2(x) = 0.3x1 + 0.4x2 + 0.3x3;

A3(x) = 0.2x1 + 0.4x2 + 0.4x3.

Under the conditions of Proposition 2, [A] = (αij)3×3
is a regular matrix. Therefore, Ai(x) = Ai(y),∀i ∈
{1, 2, 3} ⇔ x = y means that x v[A] y.

In [19], the notion of t-norms on U was extended to
Ln(U), and their main properties are reported below.

Definition 3. [8, Def.3.4] A function T : Ln(U)2 →
Ln(U) is an n-dimensional t-norm (n-DT) if it is com-
mutative, associative, monotonic w.r.t. the product or-
der and has /1/ as its neutral element.

Let T be n-DT. The natural n-DN T is the function
NT : Ln(U)2 → Ln(U) given as

NT (x) = sup{z ∈ Ln(U) : T (x, z) = /0/} (11)

According to [8], the conditions under which an n-DT
on Ln can be obtained from a finite subset of t-norm
on U are reported as follows.

Theorem 1. [19, Theorem 3.3] If there exist t-norms
T1, . . . , Tn such that T1 ≤ . . . ≤ Tn then T : Ln(U)2 →
Ln(U) is a t-representable n-DT defined by

˜T1. . . Tn(x,y)=(T1(π1(x),π1(y)), . . . , Tn(πn(x),πn(y))).

By Theorem 1, a t-representable n-DT is expressed as

˜T1 . . . Tn(x1,x2)=(T1(x11, x21), . . . , Tn(x1n, x2n)). (12)

In addition, if T1 = . . . = Tn = T , ˜T1 . . . Tn in Eq.
(12) is denoted by T̃ . See additional studies in [19].

Example 4. Considering the t-norms on U given as:

TD(x, y)=

{
0, if x, y ∈ U,
min(x, y), otherwise;

TP (x, y)=xy;

TLK(x, y) = max(x+ y − 1, 0); TM (x, y)=min(x, y).

1. By Eq.(11), the natural n-DN and its n-DT are

given as (T̃D, ÑD2), (T̃P , ÑS), (T̃LK , ÑS), (T̃M , ÑS).

2. By Eq.(12), ˜TM , TP , TLK , TWB : Ln(U)2 → Ln(U)
is an example of t-representable n-DT.

Proposition 3. [8, Theorem 3.6] Let T be a n-DT
and ϕ be a n-DA. Then T ϕ : Ln(U)2 → Ln(U) is an
n-DT given as

Tϕ(x,y) = ϕ−1(T (ϕ(x), ϕ(y))). (13)

4 Fuzzy Implications on Ln(U)

Studies on n-dimensional fuzzy implications on lat-
tice (Ln(U),≤) were carried out, extending the pre-
liminary studies on representability of fuzzy implica-
tions [14,16] preserving their main properties. And, if
n = 2, n-dimensional fuzzy implications can be seen as
extensions of interval-valued fuzzy implications. Thus,
their properties on U can also be investigated in an n-
dimensional sense in Ln(U).

Definition 4. [31, Def.7] A function I : Ln(U)2→
Ln(U) is a n-dimensional fuzzy implicator (n-DI) if I
meets the boundary conditions:

I0(a): I(/1/, /1/)= I(/0/, /1/)=I(/0/, /0/) = /1/;

I0(b): I(/1/, /0/)=/0/.

Other properties of an implicator I are as follows:

I1: x ≤ z→ I(x,y) ≥ I(z,y);

I2: y ≤ z→ I(x,y) ≤ I(x, z);

I3: I(/1/,y) = y;

I4: I(/x/, /x/) = /1/;

I5 I(x, /0/) = N (x);

I6: I(x, I(y, z)) = I(y, I(x, z));

I7: I(x,y) = /1/⇔ x ≤ y.

Proposition 4. Let φ : Ln(U)→ Ln(U) be an n-DA
and I : Ln(U)2 → Ln(U) be an n-DI. Properties from
I0 to I7 are invariant under the conjugate-operator
Iφ : Ln(U)2 → Ln(U) given by

Iφ(x,y) = φ−1 (I(φ(x), φ(y)) . (14)

Proof. Let I be an n-DI verifying properties from I0
to I7. For x,x1,x2,y ∈ Ln(U) the following holds:
I0 : For z ∈ Ln(U), we have the boundary conditions:

Iφ(/0/,/0/)=φ−1(I(φ(/0/,φ(/0/)))=φ−1(/1/)=/1/;

Iφ(/0/,/1/)=φ−1(I(φ(/0/,φ(/1/)))=φ−1(/1/)=/1/;

Iφ(/1/,/1/)=φ−1(I(φ(/1/,φ(/1/)))=φ−1(/1/)=/1/;

Iφ(/1/,/0/)=φ−1(I(φ(/1/,φ(/0/)))=φ−1(/0/)=/0/.

I1 : Consider x1 ≤ x2. By the monotonic-
ity of bijection φ, we obtain the following ex-
pression: Iφ(x1,y) = φ−1 (I(φ(x1), φ(y))) ≤
φ−1 (I(φ(x2), φ(y))) = Iφ(x1,y)
I2 : Analogous to I1.
I3 : Iφ(/1/,y)=φ−1 (I(/1/, φ(y)))=φ−1(/1/)=/1/.
I4 : Iφ(x,x)=φ−1 (I(φ(x), φ(x)))=φ−1(/1/)=/1/.
I5 : Iφ(x, /0/)=φ−1 (I(φ(x), /0/))=φ−1(/1/)=/1/.
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I6 : Since I satisfies exchange principle, we have that

Iφ(x, Iφ(y, z)) = Iφ(x, φ−1(I(φ(y), φ(z))))

= φ−1(I(φ(x), I(φ(y), φ(z))))

= φ−1(I(φ(y), I(φ(x), φ(z))))

= Iφ(y, φ−1(I(φ(x), φ(z)))) = Iφ(y, Iφ(x, z)).

I7 : Since I verifies I7, we obtain the next result:

Iφ(x,y) = /1/⇔ φ−1 (I(φ(x), φ(y))) = /1/

⇔ (I(φ(x), φ(y))) = /1/⇔ φ(x) ≤ φ(y)⇔ x ≤ y.

Concluding, Proposition 4 holds.

An n-DI I which also satisfies I1 and I2 is called an
n-dimensional fuzzy implication or fuzzy implication
on Ln(U).

Proposition 5. [31, Prop 5] Let I1, . . . , In :U2→U
be functions such that I1 ≤ . . . ≤ In. Then, for x,y ∈
Ln(U), a function ˜I1 . . . In: Ln(U)2→Ln(U) given by

˜I1 . . . In(x,y)=(I1(πn(x),π1(y)),. . . ,In(π1(x),πn(y))), (15)

is an n-DI iff I1, . . . , In are also fuzzy implicators.

By Proposition 5, I is called a representable n-DI if
there exist fuzzy implications I1 ≤ . . . ≤ In such that

I = ˜I1 . . . In. When I1 = . . . = In = I, expression
˜I1 . . . In in (15) is denoted by Ĩ.

Remark 2. Let I(Ln(U)) be the family of all n-DIs.

For x,y∈Ln(U), ˜I1 . . . In∈I(Ln(U)) and i=1, . . . , n,
the following holds:

1. πi( ˜I1 . . . In(x,y))=Ii(πn+1−i(x), πi(y));

2. πi( ˜I1 . . . In(/x/, /y/)) = Ii(x, y);

3. πi(Ĩ(/x/, /y/)) = I(x, y).

Let N be a strong fuzzy negation. According to [31,

Proposition 7], the Ñ -dual of ˜I1 . . . In ∈ I(Ln(U)) is

the function ˜I1 . . . InÑ : Ln(U)2 → Ln(U) given as

˜I1 . . . InÑ (x,y) = ˜InN . . . I1N (x,y). (16)

Proposition 6. [31, Prop 8] An n-DI ˜I1 . . . In ∈
I(Ln(U)) is a n-dimensional fuzzy implication iff
I1 . . . In are also fuzzy implications on U .

Other main properties of fuzzy implications on U are
preserved by the representable n-DI on Ln(U).

Proposition 7. Let i ∈ Nn and k = 3, . . . , 7. An n-DI
˜I1 . . . In : Ln(U)2 → Ln(U) w.r.t. a n-DN ˜N1 . . . Nn

verifies the property Ik iff each FI Ii : U2 → U w.r.t.
to Nn−i+1, for i = 1 . . . n, verifies the corresponding
property Ik.

Proof. (⇒) Firstly, let I1, . . . , In ∈ I(L1(U)) fuzzy im-
plications satisfying properties from I3 to I7. For
˜I1 . . . In ∈ I(Ln(U)) given by Eq.(15) and x,y ∈
Ln(U), the following holds:

I3 : ˜I1 . . . In(/1/,y) = (I1(1, y1), . . . , In(1, yn))
= (y1, . . . , yn) = y (by Eq.(15) and I3)

I4 : ˜I1 . . . In(/x/, /x/) = (I1(x, x), . . . , In(x, x))
= (1, . . . , 1) = /1/ (by Eq.(15) and I4)

I5 : ˜I1 . . . In(x, /0/) = (I1(xn, 0), . . . , In(x1, 0)
= (N1(xn), . . . , Nn(x1)) = N (x) (by Eq.(15) and I5)

I6 : ˜I1 . . . In(x, ˜I1 . . . In(y, z))

= ˜I1 . . . In(x, (I1(yn, z1), . . . , In(y1, zn)) (by Eq.(15))
= (I1(xn, I1(yn, z1)), . . . , In(x1, In(y1, zn))) (by Eq.(15))
= (I1(yn, I1(xn, z1)), . . . , In(y1, In(x1, zn))) (by I5)

= ˜I1 . . . In(y, (I1(xn, z1), . . . , In(x1, zn)) (by Eq.(15))

= ˜I1 . . . In(y, ˜I1 . . . In(x, z)) (by Eq.(15)).

I7 : ˜I1 . . . In(x,y) = /1/
⇔ (I1(xn, y1), . . . , In(x1, yn)) = /1/ (by Eq.(15))
⇔ I1(xn, y1) = 1, . . . , In(x1, yn) = 1 (by I7)
⇔ x1 ≤ . . . ≤ xn ≤ y1 ≤ . . . ≤ yn ⇔ x ≤ y. (⇐)

Let ˜I1, . . . , In ∈ I(Ln(U)) given by Eq.(15) and verify
properties Ik, for k = 3, . . . , 7. Based on projections
πi, for each i = 1, . . . , n, the following holds:

I3: By I3, ˜I1 . . . In(/1/, /y/)=/y/ implies Ii(1, y)=y.

I4: By I4, ˜I1 . . . In(/x/, /x/)=/1/ implies Ii(x, x)=1.

I5: By I5, if ˜I1 . . . In(/x/, /0/)= Ñ(/x/) then it im-
plies Ii(x, 0)=N(x).

I6: By I6, ˜I1 . . . In(/x/, ˜I1 . . . In(/(/y/, /z/)) =
˜I1 . . . In(/y/, ˜I1 . . . In(/x/z/)). Then, it holds that
Ii(x, Ii(y, z)) = Ii(y, Ii(x, z)).

I7: By I7, ˜I1 . . . In(/x/, /y/) = /1/ ⇒ /x/ ≤ /y/.
Then, the following is verified: Ii(x, y)=1⇒ x ≤ y.

5 R-Implications on Ln(U)

The definition and the main properties of R-
implications extended from U to Ln(U) are discussed
below.

Definition 5. A function IT : Ln(U)2 → Ln(U)
is called an n-dimensional R-implication (R-n-DI) if
there exists n-DT T : Ln(U)2 → Ln(U) for x,y, z ∈
Ln(U), such that

IT (x,y) = sup{z ∈ Ln(U) : T (x, z) ≤ y}. (17)

The next proposition extends results from [5, Theorem
5.5].

Proposition 8. If T is an n-DT then IT ∈ I(Ln(U)).
Moreover, it verifies I0, I1, I2, I3 and I4. In addi-
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tion, it also verifies I5, meaning that its natural nega-
tion NI coincides with the NT given in Eq.(11).

Proof. Let T be an n-DT and IT be a function defined
by Eq.(17). Let x,y, z ∈ Ln(U).
I0: The boundary conditions hold:

IT (/1/, /1/)=sup{z ∈ Ln(U) : T (/1/, z)=z ≤ /1/}=/1/;
IT (/0/, /1/)=sup{z ∈ Ln(U) : T (/0/, z)=z ≤ /1/}=/1/;
IT (/0/, /0/)=sup{z ∈ Ln(U) : T (/0/, z)=z ≤ /0/}=/1/;
IT (/1/, /0/)=sup{z ∈ Ln(U) : T (/1/, z)=z ≤ /0/}=/0/.

I1: Let x1,x2 ∈ Ln(U). Based on monotonicity of T ,
when x1 ≤ x2, taking z ∈ Ln(U) such that T (x2, z) ≤
y we should have that T (x1, z) ≤ y. Then, we obtain
the inclusion:

{z ∈ Ln(U) :T (x1, z)≤y}⊃{z ∈ Ln(U) :T (x2, z)≤y}.

Then, IT (x1,y) = sup{z ∈ Ln(U): T (x1, z) ≤ y}
and so, IT (x1,y) ≥ sup{z ∈ Ln(U) : T (x2, z) ≤ y}.
Therefore, IT (x1,y)≥IT (x2,y).
I2: Let y1,y2 ∈ Ln(U), are arbitrarily fixed and
y1 ≤ y2. Analogous to I1.
I3: IT (/1/,y)=sup{z∈Ln(U): T (/1/, z)=z≤y}=y.
I4: IT (/x/, /x/)=sup{z∈Ln(U) :T (/x/, z)≤/x/}=/1/.
I5: IT (x, /0/) = sup{z ∈ Ln(U) : T (x, z) ≤ /0/} =
NT (x), by Eq.(11).

Concluding, Propoposition 8 is verified.

The next proposition extends results from [4,
Prop.2.5.10].

Proposition 9. If IT : Ln(U)2 → Ln(U) is an R-
n-DI generated from an n-DT T : Ln(U)2 → Ln(U)

then its φ-conjugate IφT : Ln(U)2 → Ln(U) is also
an R-n-DI generated from a φ-conjugate n-DT T φ :
Ln(U)2 → Ln(U), and the following is verified:

IφT (x,y) = IT φ(x,y), ∀x,y ∈ Ln(U). (18)

Proof. From Prop. 3, T φ : Ln(U)2 → Ln(U) is an
n-DT implying that ITφ : Ln(U)2 → Ln(U) is an R-
n-DI. Based on the continuity of bijection φ, the fol-
lowing holds:

IφT (x,y) = φ−1(IT (φ(x), φ(y))

= φ−1 (sup{z ∈ Ln(U) : T (φ(x), z) ≤ φ(y)})
= sup{φ−1(z) ∈ Ln(U) : φ−1(T (φ(x), z)) ≤ y}
= sup{z ∈ Ln(U) : φ−1(T (φ(x), φ(z))) ≤ y}
= sup{z ∈ Ln(U) : T φ(x, z) ≤ φ(y)} = IT φ(x,y)

Therefore, Proposition 9 is verified.

Corollary 1. Let φ : Ln(U) → Ln(U) be an n-DA
and IT : Ln(U)2 → Ln(U) be an R-n-DI. Proper-
ties I3, I5 and I7 are invariant under the conjugate-
operator IφT : Ln(U)2 → Ln(U).

Proof. It follows from Propositions 4, 8 and 9.

Example 5. Let ILK : U2 → U be the  Lukasiewicz
fuzzy implication, ILK(x, y) = max(1, 1− x+ y). The
function ILK : L2

n(U)→ Ln(U) given as ILK(x,y) =
(
∧

(/1/, /1/−x+y)) is an R-n-DI obtained by taking
T in Eq.(17) as TLK , see Example 4. In addition, we

have that ILK = ĨLK .

6 Application on DMP

This section extents the application described in [29,
Example 1] based on CIM (Computer-Integrated Man-
ufacturing) software plays, from HFS to n-DS.

The triangle product C : Ln(U)2 → Ln(U) is given as

C ≡ F∧ ◦ ĨLK , taking ĨLK : Ln(U)2 → Ln(U) as the
 Lukasiewicz R-n-DI in Example 5 and F∧ : Ln(U)4 →
Ln(U) as the minimum operator given in Eq.(10).

Taking k, j ∈ {1, . . . , n2} and i ∈ {1, . . . , n1}, the ac-
tion of C-operator can be given by n1×n2-matrix whose
elements zk,j =C(xki,xji), are given as follows:

zk,l=

{(
F∧◦ ĨLK (xki,xli)(i=1...4)

)
(k,j=1...7)

,if k 6=j

(1.0, 1.0, 1.0), otherwise.
(19)

It enables us to compare multiple alternatives in or-
der to solve the following DMP. To help the user in
the selection of seven kinds of CIM software systems
filled in nowadays market, a data processing company
aims to clarify differences of such systems [13]. The
evaluations expressed by n-DS are shown in Table 2.

Let A = {A1, A2, . . . , A7} (n2 = 7) be the set of CIM
software alternatives and X be the set of 4 attributes
related to functionality (a1), usability (a2), portability
(a3) and maturity (a4) (n1 = 4).

Selecting opinions of 3 decision makers (DM) to pro-
vide their evaluations with values between 0 and 1 for
all alternative Ai w.r.t. each attribute are expressed as
3-dimensional intervals xij and contained in the ma-
trix [D]7×4=(xki)k=1...7,i=1...4. Applying Eq.(19), the
resulting matrix L7×7=(zkj)k,j=1...7 is given in Table 3.

Consider 1st and 2nd lines (alternatives A1 and A2)
in Table 2. For a component z21 = F(yi)i=1...4, yi =

ĨLK(x2i,x1i) = (∧(1, 1−x2i+x1i))i=1...4, it holds that:
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y1=ĨLK(x21,x11)=ĨLK((0.85, 0.85, 0.9), (0.8, 0.85, 0.95))

=(∧(1,1−0.9+0.8),∧(1,1−0.8+0.85),∧(1,1−0.95+0.95))

=(0.9, 1.0, 1.0)

y2=ĨLK(x22,x12) = ĨLK((0.6, 0.7, 0.8), (0.7, 0.75, 0.8))

=(∧(1, 1−0.8+0.7),∧(1, 1−0.7+0.75),∧(1, 1−0.6+0.8))

=(0.9, 1.0, 1.0)

y3=ĨLK(x23,x13)=ĨLK((0.2, 0.2, 0.2), (0.65, 0.65, 0.8)

=(∧(1,1−0.2+0.65),∧(1,1−0.2+0.65),∧(1,1− 0.2+0.8))

=(1.0, 1.0, 1.0)

y4=ĨLK(x24,x14)=ĨLK((0.15, 0.15, 0.15), (0.3, 0.3, 0.35))

=(∧(1,1−0.15+0.3),∧(1,1−0.15+0.3),∧(1,1−0.15+0.35))

=(1.0, 1.0, 1.0).

So, the result component in Table 3(shown in bold row-
2;column-1)is a 3-dimensional interval z21 given as:

z21 = C(x2i,x1i) = F∧◦ ĨLK (x2i,x1i)(i=1...4)

=(∧(0.95,1.0,1.0,1.0),∧(1.0,1.0,1.0,1.0),∧(1.0,1.0,1.0,1.0))

=(0.90, 1.0, 1.0)

By observing, the value related to the i-th component
of zkl ∈ L3(U) results from action of C-operator over
data provided by evaluations from the i-th DM.

Moreover, considering the results from Proposition 2
and taking the aggregation-sequence given in Exam-
ple 3, we can compare the 3-dimensional intervals in
Table 3 using the admissible v[A]-order.

See the comparison results in the following, where
@[A]≡@ and A[A]≡A are used by reducing notation:

Z21AZ12 Z12@Z21 Z13@Z31 Z14@Z41 Z15@Z51 Z16@Z61 Z17@Z71
Z31AZ13 Z32@Z23 Z23AZ32 Z24AZ42 Z25@Z52 Z26@Z62 Z27AZ72
Z41AZ14 Z42@Z24 Z43AZ34 Z34@Z43 Z35@Z53 Z36@Z63 Z37@Z73
Z51AZ15 Z52AZ25 Z53AZ35 Z54@Z45 Z45AZ54 Z46AZ64 Z47@Z74
Z61AZ16 Z62AZ26 Z63AZ36 Z64@Z46 Z65@Z56 Z56AZ65 Z57@Z75
Z71AZ17 Z72@Z27 Z73AZ37 Z74AZ47 Z75AZ57 Z76@Z67 Z67AZ76

Since zi1 A z1i, for i ∈ {1, . . . , 7}, then A1 is the su-
perior CIM software alternative by comparing it with
other alternatives. The same analysis can be per-
formed to other alternatives.

7 Conclusion

This work discusses n-dimensional R-implications,
considering φ-conjugation under R-implications from
U to Ln(U). As main contribution, properties charac-
terizing the class of R-implications on Ln(U) are stud-
ied. An illustration on solving a DMP applied to a
CIM software is discussed.

In sequence, this study considers the discussion of such
extension of fuzzy connectives on Ln(U) related to
other special classes of fuzzy implications: Dishkant-

and Yager-implications [6,24,25,30] also considers the
(T,N)-implications [22]. Since inherent ordering re-
lated to n-dimensional intervals, further work consid-
ers admissible linear orders contributing with solutions
for DMP on multi-attributes and multi-specialists.

Acknowledgement

This work was supported by CAPES/Brasil, Brazil-
ian Funding Agency CAPES, MCTI/CNPQ Univer-
sal (448766/ 2014-0) and PQ(310106/ 2016-8) and
PqG/FAPERGS 02/2017(17/2551-0001207-0).

References

[1] C. Alcalde, A. Burusco, R. Fuentes-González, A con-
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[5] M. Baczyński, B. Jayaram, (S, N)-and R-implications:
a state-of-the-art survey, Fuzzy Sets and Systems
159 (14) (2008) 1836–1859.

[6] J. Balasubramaniam, Yagers new class of implications
jf and some classical tautologies, Information Sciences
177 (3) (2007) 930–946.

[7] B. Bedregal, G. Beliakov, H. Bustince, T. Calvo,
J. Fernández, R. Mesiar, A characterization theorem
for t-representable n-dimensional triangular norms, in:
Eurofuse 2011, Springer, 2011, pp. 103–112.

[8] B. Bedregal, G. Beliakov, H. Bustince, T. Calvo,
R. Mesiar, D. Paternain, A class of fuzzy multisets
with a fixed number of memberships, Information Sci-
ences 189 (2012) 1–17.

[9] B. Bedregal, I. Mezzomo, R. Reiser, n-dimensional
fuzzy negations, IEEE Trans. Fuzzy Systems 26 (6)
(2018) 3660–3672.

[10] B. Bedregal, R. Reiser, H. Bustince, C. Lopez-Molina,
V. Torra, Aggregation functions for typical hesitant
fuzzy elements and the action of automorphisms, In-
formation Sciences 255 (2014) 82–99.

[11] B. Bedregal, R. Santiago, R. Reiser, G. Dimuro, The
best interval representation of fuzzy S-implications
and automorphisms, in: 2007 IEEE Intl Fuzzy Sys-
tems Conf, IEEE, 2007, pp. 1–6.

[12] H. Bustince, E. Barrenechea, M. Pagola, J. Fernandez,
Z. Xu, B. Bedregal, J. Montero, H. Hagras, F. Herrera,
B. De Baets, A historical account of types of fuzzy sets
and their relationships, IEEE Transactions on Fuzzy
Systems 24 (1) (2016) 179–194.

480



D-matrix x1 x2 x3 x4

A1 (0.80, 0.85, 0.95) (0.70, 0.75, 0.80) (0.65, 0.65, 0.80) (0.30, 0.30, 0.35)
A2 (0.85, 0.85, 0.90) (0.60, 0.70, 0.80) (0.20, 0.20, 0.20) (0.15, 0.15, 0.15)
A3 (0.20, 0.30, 0.40) (0.40, 0.40, 0.50) (0.90, 0.90, 1.00) (0.45, 0.50, 0.65)
A4 (0.80, 0.95, 1.00) (0.10, 0.15, 0.20) (0.20, 0.20, 0.30) (0.60, 0.70, 0.80)
A5 (0.35, 0.40, 0.50) (0.70, 0.90,1.00) (0.40, 0.40, 0.40) (0.20, 0.30, 0.35)
A6 (0.50, 0.60, 0.70) (0.80, 0.80, 0.90) (0.40, 0.40, 0.60) (0.10, 0.10, 0.20)
A7 (0.80, 0.80, 1.00) (0.15, 0.20, 0.35) (0.10, 0.10, 0.20) (0.70, 0.70, 0.85)

Table 2: n-dimensional interval information

A1 A2 A3 A4 A5 A6 A7

A1 (1.00,1.00,1.00) (0.40,0.55,0.55) (0.25,0.45,0.60) (0.30,0.40,0.50) (0.40,0.55,0.70) (0.55,0.75,0.90) (0.30,0.45,0.55)
A2 (0.90,1.00,1.00) (1.00,1.00,1.00) (0.30,0.45,0.55) (0.30,0.45,0.60) (0.45,0.55,0.65) (0.60,0.75,0.85) (0.35,0.50,0.75)
A3 (0.65,0.80,0.90) (0.20,0.30,0.30) (1.00,1.00,1.00) (0.20,0.30,0.40) (0.40,0.50,0.50) (0.40,0.50,0.70) (0.10,0.20,0.30)
A4 (0.50,0.60,0.75) (0.35,0.45,0.55) (0.20,0.35,0.60) (1.00,1.00,1.00) (0.35,0.45,0.70) (0.30,0.40,0.60) (0.80,0.90,1.00)
A5 (0.70,0.85,1.00) (0.60,0.80,1.00) (0.40,0.50,0.80) (0.10,0.25,0.50) (1.00,1.00,1.00) (0.75,0.80,1.00) (0.15,0.30,0.65)
A6 (0.80,0.95,1.00) (0.60,0.80,0.80) (0.50,0.60,0.70) (0.20,0.35,0.40) (0.65,0.80,1.00) (1.00,1.00,1.00) (0.25,0.40,0.55)
A7 (0.45,0.60,0.65) (0.30,0.45,0.45) (0.20,0.50,0.60) (0.75,0.95,1.00) (0.35,0.60,0.70) (0.25,0.40,0.50) (1.00,1.00,1.00)

Table 3: Action of C-operator in n-dimensional intervals

[13] N. Chen, Z. Xu, M. Xia, Correlation coefficients of
hesitant fuzzy sets and their applications to cluster-
ing analysis, Applied Mathematical Modelling 37 (4)
(2013) 2197–2211.

[14] C. Cornelis, G. Deschrijver, E. Kerre, Implication in
intuitionistic fuzzy and interval-valued fuzzy set the-
ory: construction, classification, application, Intl. J.
of Approximate Reasoning 35 (1) (2004) 55 – 95.

[15] L. De Miguel, M. Sesma-Sara, M. Elkano, M. Asiain,
H. Bustince, An algorithm for group decision making
using n-dimensional fuzzy sets, admissible orders and
OWA operators, Information Fusion 37 (2017) 126–
131.

[16] G. Deschrijver, C. Cornelis, E. E. Kerre, On the
representation of intuitionistic fuzzy t-norms and t-
conorms, IEEE transactions on fuzzy systems 12 (1)
(2004) 45–61.

[17] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mis-
love, D. Scott, Continuous Lattices and Domains,
Vol. 93, Cambridge University Press, 2003.

[18] I. Mezzomo, B. Bedregal, T. Milfont, Equilib-
rium point of representable moore continuous n-
dimensional interval fuzzy negations, in: North Amer-
ican Fuzzy Information Processing Society Annual
Conf, Springer, 2018, pp. 265–277.

[19] I. Mezzomo, B. Bedregal, R. Reiser, Natural n-
dimensional fuzzy negations for n-dimensional t-
norms and t-conorms, in: 2017 IEEE Intl. Conf on
Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6.

[20] I. Mezzomo, B. Bedregal, R. Reiser, H. Bustince,
D. Paternain, On n-dimensional strict fuzzy nega-
tions, in: Fuzzy Systems (FUZZ-IEEE), 2016 IEEE
Intl Conf on, IEEE, 2016, pp. 301–307.

[21] I. Mezzomo, T. R. Milfont, B. Bedregal, Moore con-
tinuous n-dimensional interval fuzzy negations, in:
2018 IEEE Intl Conf on Fuzzy Systems (FUZZ-IEEE),
IEEE, 2018, pp. 1–6.

[22] J. Pinheiro, B. Bedregal, R. H. Santiago, H. Santos, A
study of (T, N)-implications and its use to construct a

new class of fuzzy subsethood measure, International
Journal of Approximate Reasoning 97 (2018) 1–16.

[23] R. Reiser, B. Bedregal, Correlation in interval-valued
Atanassov’s intuitionistic fuzzy sets - conjugate and
negation operators, Intl. J. of Uncentainty Fuzzyness
and Knowledge-Based Systems 25 (2017) 787–819.

[24] R. Reiser, B. Bedregal, R. Santiago, M. Amaral,
Canonical representation of the Yagers classes of fuzzy
implications, Computational and Applied Mathemat-
ics 32 (3) (2013) 401–412.

[25] R. H. Reiser, B. Bedregal, R. Santiago, G. P. Dimuro,
Interval valued D-implications, Trends in Applied and
Computational Mathematics 10 (1) (2009) 63–74.

[26] R. Sambuc, Fonctions and Floues: Application a l’aide
au Diagnostic en Pathologie Thyroidienne, Faculté de
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