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Marines with Marine Corps Forces Cyberspace Command observe 
computer operations 5 February 2020 in the cyber operations cen-
ter at Lasswell Hall, Fort Meade, Maryland. Marines conduct offensive 
and defensive cyber operations in support of U.S. Cyber Command 
and operate, secure, and defend the Marine Corps Enterprise Net-
work. (Original photo by Staff Sgt. Jacob Osborne, U.S. Marines. Photo 
has been modified.)

Conflict can be won or lost based on military 
offsets, or means with which defense units can 
asymmetrically combat adversarial advantages. 

With great-power competition, adversarial technology 
overmatch, and ever-expanding theaters, conventional 
offsets are often augmented by artificial intelligence 
(AI).1 Yet, the Department of Defense’s (DOD) ability to 
operationalize AI is nascent.2 Initial AI programs adopt-
ed by the Pentagon focus on the transfer of commercial 
capabilities to the defense sector, thus highlighting tech-
nical performance and deemphasizing mission-oriented 
function.3 As a result, initial pilot projects have failed to 
move into real-world operational environments (OE).

Operationalizing 
Artificial Intelligence

Operationalization hinges on the understanding that 
AI is not an end state but rather one way of achieving a 
military advantage. To that end, the technical execution 
of AI-related methodologies must be married to the OE. 
This consideration diverges from traditional thought be-
cause AI solutions are typically developed to achieve a cer-
tain statistical threshold (e.g., recall, precision), rather than 
a military objective (e.g., increased standoff distance).4

This dynamic is confounded by the term “algorithmic 
warfare,” which currently conflates technical and military 
characterizations. Algorithmic warfare intends to reduce 
the number of warfighters in harm’s way, increase deci-
sion speed in time-critical operations, and operate when 
and where humans are unable to operate.5 Yet, none 
of those objectives speak to mathematics or computer 
science; they are grounded squarely in military end states. 
The problem is that the bridge between science, technolo-
gy, engineering, and mathematics disciplines and military 
end states was never established before the Pentagon 
embarked on its AI trajectory.

The desired bridge is a framework for guiding and 
assessing AI operationalization, with algorithm perfor-
mance on one side and mission utility on the other. Such 
a combination ensures that mathematical equations can 
prove or numerically validate an AI system while qual-
itative benchmarks guarantee practical application. The 
result is algorithmic warfare based not just on statistics 
but a broader architecture for operational relevancy. That 
relevancy is couched in five requirements:
•  minimum viability,
•  the ability to adapt to unknown and unknowable 

scenarios,
•  the prioritization of insight over information,
•  the requisite level of autonomy for the application, and
•  battlefield readiness.
For the first time, such requirements lay the foundation 
for assessing military AI programs and defining success.



July-August 2020 MILITARY REVIEW44

Marrying Technical Methodologies 
and Defense Doctrine

Developing measures of effectiveness (MOE) for 
military AI programs necessitates mapping research 
and technical methodologies (e.g., grounded theory) to 
DOD doctrine.6 Without that mapping, algorithmic 
warfare is reduced to the process of algorithm develop-
ment rather than operational deployment. For exam-
ple, a computer vision algorithm designed to detect 
objects in a video (e.g., geospatial intelligence analysis) 
is reduced to the number of vehicles the model finds 
or how accurately it finds those vehicles. Success, then, 
is something to the effect of the algorithm correctly finds 
vehicles 85 percent of the time.

But what use is detecting vehicles 85 percent of the 
time to a military campaign? This is where preserv-
ing doctrinal integrity introduces context. Taking the 
example from above, the same algorithm is assessed 
not for how frequently it detects vehicles correctly 
but rather its impact to the mission: analysts identify a 
vehicle of interest 95 percent faster because of the model. 
Such an approach associates how well the algorithm 
was designed with its mission deployment. While this 
seems like common sense, and the relationship may 

even be represented 
ambiguously in project 
documentation, there 
is no single standard 
for one representation 
anywhere in the DOD.

Assessment criteria 
still need to remain 
solution independent 
(i.e., the criteria apply 
regardless of the type 
of intelligence, algo-
rithm used, opera-
tional environment 
deployed to, or mission 
requirements). Thus, 
for this research, AI 
principles were codi-
fied into quantifiable 
properties and indica-
tors that were system 
and program agnostic. 
Assessment criteria 

were also couched in a go-no-go fashion to create a 
logical, top-down hierarchy synonymous with relevant 
joint publications. The result is a baseline for regulat-
ing, monitoring, and evaluating DOD AI systems.

A Framework to Operationalize 
Defense Artificial Intelligence

As previously stated, operationalized AI is AI 
defined by five aspects of mission utility: minimum via-
bility, the ability to adapt to unknown and unknowable 
scenarios, the prioritization of insight over information, 
the requisite level of autonomy for the application, and 
battlefield readiness. Each of these MOEs is fundamen-
tal to algorithmic warfare.7 Analysis of this information 
results in a comprehensive framework of indicators and 
effects for each of those MOEs. The entire framework 
is underpinned by doctrinal definitions and procedures.

Measuring Effectiveness
The military process for measuring effectiveness re-

lies on a go-no-go, top-down architecture. This means 
that a measure exists only if every single indicator of 
that measure also exists. Similarly, an indicator is pres-
ent only if all effects of that indicator are also present.8 
It is a binary, all-or-nothing process that can be applied 
to AI as readily as conventional military activity.

In the conventional case of high-value target 
(HVT) pattern-of-life analysis, an MOE would define 
one desired result of a military campaign (e.g., the HVT 
moves out of the area of responsibility [AOR]). All 
defined indicators of that MOE must be met so that 
success cannot be called arbitrarily or selectively. For 
example, intelligence should indicate that (a) the HVT 
is detected in a new AOR, (b) known HVT associates 
are detected in the new AOR, and (c) the HVT ac-
quires basic life support systems (e.g., housing, trans-
portation) in the new AOR. Subsequent effects follow 
the same process: effects that support indicator “a” may 
include identification of known physical signatures and 
detection of communication signals.

So, while conventional and AI MOEs differ in 
their tactical execution, the underlying system for de-
cision-making validation is the same. AI MOEs can 
only be validated if there is a baseline understanding 
of the AI domain, much in the same way that MOEs 
developed by the intel branch could not be validated 
by combat arms.
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Describing Effectiveness– 
a Technical Wave Top

Algorithmic warfare is warfare conducted through 
artificially intelligent means. Artificially intelligent 
means are those that are not only intelligent (collecting 
and applying insight) but also artificial (acting on intel-
ligence in a way that humans cannot). Without human 
intervention, systems must learn how to represent data 
for themselves.9 Another term for this is called machine 
learning. There are different types of machine learn-
ing, but when it comes to the battlefield, unsupervised 
machine learning will become the gold standard due 
to its flexibility and capacity to derive outputs from 
unknown and unstructured information.10 Within 
this gold standard, a specific methodology called deep 
learning is unique in its ability to represent complex 

problems more precisely.11 Given the dynamic nature of 
the battlefield, the ability to represent complex prob-
lems more precisely is paramount.

Thus, algorithmic warfare can only be enabled by 
(a) working systems (minimally viable) capable of (b) 
learning on their own from unknown and unknow-
able scenarios (unsupervised) while (c) converting a 
complex battlefield environment into a useful insight 
(deep-learning enabled) (d) with little to no guidance 

A display demonstrates a vehicle and person recognition system for 
law enforcement 1 November 2017 during the NVIDIA GPU Tech-
nology Conference in Washington, D.C. The conference showcased 
artificial intelligence, deep learning, virtual reality, and autonomous 
machines. (Photo by Saul Loeb, Agence France-Presse)
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(autonomous) and (e) in a live mission environment 
(battlefield ready). These MOEs and the architecture 
in the figure are the first steps in operationalizing AI; 
they lay the groundwork for how to coalesce technical 
and operational factors while also standardizing “suc-
cess” across any AI program.

Operational Artificial 
Intelligence has to Work

Minimum viability tests whether algorithmic 
warfare positively changes the operational environ-
ment. “Positively changing the OE” means that there 
exists a competitive advantage and performance 
improvement justifying AI deployment. That jus-
tification comes from industry metrics (technical 
factors), ranking against similar systems, and utility 
to the human operator.

In the example of translation, a natural language 
processing algorithm would be minimally viable if (1) 
industry metrics confirmed that it accurately translated 
ground truth data from and into the correct languages, 
(2) the algorithm outperformed other available algo-
rithms in the same technical class and OE, and (3) the 
machine translation outperformed a human.

The competitive advantage and performance im-
provement factors associated with minimum viability 
are necessary because without them, nonalgorithmi-
cally derived warfare would be more effective—thus, 
negating the need for operationalized AI.

Flexible and Adaptable Systems
Remember that unsupervised algorithms are ideal for 

live missions due to their flexibility and ability to derive in-
sight even in unknown scenarios.12 In short, unsupervised 
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systems can operate without predetermined information 
and learn as new information becomes available.

A conventional equivalent can be drawn from an 
enemy engagement example. For instance, deployed 
service members do not know how a firefight will 
unfold until after it is over. Yet, they are expected to 
respond appropriately to enemy fire without warning 
and draw relevant conclusions about novel adversarial 
movement and activity.

Successful algorithmic warfare programs will need 
to exhibit the same adaptability of service members in 
their tactical execution and ability to learn over time.

Reducing Mission Complexity
Recall that deep learning reduces complexity.13 

Complexity reduction in a live mission is about how 

information is represented and understood. Just as with 
humans, effective algorithmic warfare is predicated on 
pattern detection, reasoning, and problem-solving.

Pattern detection is essentially acquiring knowledge 
that can then be generalized to predict future, un-
known scenarios. Suppose that a nonaviation-branch 
service member deployed to an airfield sees a helicop-
ter fly overhead. That person notices the helicopter’s 
unique physical features, such as the overall size or a 
tandem rotor. The unique features differentiate the 
helicopter from other variations, and over time, the 
service member can down select the correct helicop-
ter within an entire fleet using the learned visual cues. 
AI recognizes visual patterns much in the same way; 
helicopter characteristics are learned repetitively with 
subsequent sightings. Then those characteristics are 
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generalized to differentiate one helicopter from anoth-
er or a helicopter from a nonhelicopter.

Reasoning refines that knowledge acquisition in 
order to detect subtleties in the environment and to 
logically associate those subtleties. For example, if he-
licopters are never seen with certain weather patterns, 
reasoning would deduce that weather (a secondary 

element of the OE) influences flyability. With AI, poor 
weather would add secondary confirmation that a fly-
ing object without a rotor was not a helicopter.

Finally, sequential problem-solving breaks a large 
problem (i.e., how to fly a helicopter) into smaller 
problems (i.e., what is the flight path, how much fuel 
is available, how many pilots are needed, etc.). Thus, 
without complexity reduction, algorithm warfare 
would lack the ability to convert information to insight.

Operating with Little 
to No Guidance

Since algorithmic warfare assumes that oth-
er-than-human means are leveraged, AI must inde-
pendently compose and adjudicate courses of action. 
And AI has to complete that adjudication based on 
its own decision-making, responsiveness, and situa-
tional awareness.

Decision-making is a matter of developing and 
resolving choices within the environment. In a con-
vention setting, a commander faced with conflicting 
intelligence, surveillance, and reconnaissance flight 
paths would develop an asset prioritization matrix and 
then deconflict based on those requirements. This is 
not a matter exclusively of producing viable options 
but also figuring out which of those options is most 
beneficial to the overall mission. In order to do that, 
the system must be able to fuse decision criteria (e.g., 
number of assets, collection requirements, flight times, 
etc.). Sensors must be present to define decision criteria 
(e.g., aircraft fuel gauges or human/verbal cues). Then, 
all available options have to be pruned. Finally, the 

system has to recognize changes in the current state 
and respond to new information generated by that 
change (i.e., an aerial asset’s time on station is ending so 
deconfliction is no longer needed).

Responsiveness complements decisiveness. That is, 
can the system respond appropriately to a scenario it 
has never seen before on the timeline required? To do 

so, the system has to have the requisite functions for sit-
uational awareness: ingestion, processing, iteration, and 
action. All indicators together ensure that operational-
ized AI improves decision timelines, not inhibits them.

Moving Artificial Intelligence 
into the Real World

Battlefield readiness is a measure of whether the 
system can function in live mission spaces. Since 
mission constraints are vast, AI cannot be developed 
in a laboratory without forethought on how it will 
operate in the real world. To be clear, the limita-
tions of laboratory AI are not circumvented by the 
battlefield; they are amplified. Open architectures 
are restricted by military infrastructure. Agnostic 
pipelines are bogged by siloed, legacy systems. 
Pervasive, high-speed networking becomes sporad-
ic or intermittent once deployed forward. And the 
uncleared experts universal to the commercial sector 
are replaced by access-limited user communities 
with little to no AI expertise.

In short, AI must complement, rather than confuse, 
ongoing operations. Addressing mission constraints from 
the onset must then include integration and communica-
tion with existing systems. Additionally, that integration 
should be tested or qualified so utility, and the left/right 
limits of that utility, is proven prior to deployment. This 
would occur much in the same way that military person-
nel are range qualified for deployability, or conversely, how 
poor fitness testing can result in nondeployability.

Together, the five MOEs for operationalized AI rep-
resent standard thresholds for initial and full operating 

Since mission constraints are vast, artificial intelligence 
cannot be developed in a laboratory without fore-
thought on how it will operate in the real world.



49MILITARY REVIEW July-August 2020

OPERATIONALIZING ARTIFICIAL INTELLIGENCE

capabilities (IOC/FOC). IOC/FOC determinations 
made using the decision gates in the MOE framework 
will accelerate AI adoption and improve the United 
States’ positioning in the algorithmic warfare domain.

Recommendations
Without a framework for operationalizing AI 

in support of algorithmic warfare, current DOD 
programs will fail. The framework presented in this 
article is the first to define success within the defense 
AI space and will provide necessary accountability 
measures for government oversight.

While the intent of this article is an agnostic 
solution to algorithmic warfare, additional research 
is necessary. Funding should be earmarked for cas-
cading this framework to specific systems, disciplines, 
and programs. In support of that effort, access to both 
classified materials and quantitative experimentation 
of classified systems will be critical. Quantitative 

experimentation would not only serve to validate 
the premise of this article but also begin creating a 
network to compare and improve defense AI testing 
and evaluation. That is, continued, consistent use of 
the MOE architecture across multiple environments, 
systems, and problem sets would align AI projects un-
der a single, common assessment framework. To that 
end, the MOE architecture presented in this article 
supports two functions: (1) to realize a more effective 
system by iteratively improving go-no-go decision 
gate results and (2) to decide between various systems 
by comparing respective MOEs.

Strategically, the architecture outlined in the figure 
(on pages 46–47) should be integrated into DOD 
acquisition, technology, and logistics processes. Current 
paradigms are not built for the exponential growth 
and nontraditional nature of AI programs. Calibrating 
current and future DOD AI solutions around prevail-
ing evaluation criteria will enable standardization while 

One objective of the development of military artificial intelligence is to network soldiers directly with unmanned vehicles on the battlefield 
in human-intelligent agent teams that will speed the collection of intelligence, identification of targets, and execution of fire missions. (Illus-
tration courtesy of the U.S. Army)
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speeding up time-consuming acquisition processes. 
Further, organizations responsible for enterprise AI ac-
tivities should standardize the framework across their 
efforts for more rapid transition of applied research and 
development into operational use.

Organizational efforts should not stop at policy 
though. Currently, the DOD has no mechanism for le-
veraging military personnel for AI activities. Specifically, 
there is no military occupational specialty (MOS) re-
lated to artificial intelligence and also no official system 
for identifying and assigning skilled personnel to AI 
programs. The result is a lack of available hybrid talent; 
that is, personnel versed in both AI and the mission. 
Standing up a data science or AI-oriented MOS, similar 
to what occurred in the cyber domain, would make the 
operationalization of AI capabilities more sustainable. It 
would also augment the small pool of cleared AI profes-
sionals with an increasing number of qualified military 
personnel. Alternatively, the traditional MOS could 
adapt to the modern characteristics of warfare. For 
example, discipline-specific intelligence analysts may not 
be relevant in a world where multi-intelligence fusion is 
pervasive. Modifying or adding AI skills identifiers or 
specializations would curb MOS relevancy decline.

Tactically, the Pentagon’s push for AI needs to 
be accompanied by a ground-up movement so that 
adopting organizations are not simply handed a 
capability without context. Instead, they should have 
an active voice in the offsets they bring to the fight. 
Grassroots efforts may include conducting impact 
analyses and stress tests at the unit level prior to 
IOC/FOC design plans to understand vulnerabilities 
and prioritize requirements.

Conclusion
Operationalizing AI is an inherently mission-cen-

tric endeavor that must make sense tactically for there 
to be any strategic impact. Until there is tangible return 
on investment for units on the ground, widespread 
hesitation around the value of algorithmic warfare will 
persist; as a result, adversarial overmatch will become 
an increasingly unwinnable reality.

The DOD cannot continue to execute AI programs 
without a framework for operationalizing those pro-
grams.14 The architecture presented in this article does 
just that by accelerating and standardizing the govern-
ment’s efforts to develop AI capabilities through highly 
inventive, operationally appealing technology.15   
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