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A b s t r a c t

Introduction: In coronary artery bypass (CABG) surgery, the common com-
plications are the need for reintubation, prolonged mechanical ventilation 
(PMV) and death. Thus, a  reliable model for the prognostic evaluation of 
those particular outcomes is a  worthwhile pursuit. The existence of such 
a  system would lead to better resource planning, cost reductions and an 
increased ability to guide preventive strategies. The aim of this study was 
to compare different methods – logistic regression (LR) and artificial neural 
networks (ANNs) – in accomplishing this goal. 
Material and methods: Subjects undergoing CABG (n = 1315) were divided 
into training (n = 1053) and validation (n = 262) groups. The set of indepen-
dent variables consisted of age, gender, weight, height, body mass index, 
diabetes, creatinine level, cardiopulmonary bypass, presence of preserved 
ventricular function, moderate and severe ventricular dysfunction and total 
number of grafts. The PMV was also an input for the prediction of death. The 
ability of ANN to discriminate outcomes was assessed using receiver-op-
erating characteristic (ROC) analysis and the results were compared using 
a multivariate LR. 
Results: The ROC curve areas for LR and ANN models, respectively, were: for 
reintubation 0.62 (CI: 0.50–0.75) and 0.65 (CI: 0.53–0.77); for PMV 0.67 (CI: 
0.57–0.78) and 0.72 (CI: 0.64–0.81); and for death 0.86 (CI: 0.79–0.93) and 
0.85 (CI: 0.80–0.91). No differences were observed between models.
Conclusions: The ANN has similar discriminating power in predicting reintu-
bation, PMV and death outcomes. Thus, both models may be applicable as 
a predictor for these outcomes in subjects undergoing CABG. 

Key words: coronary artery bypass grafts, outcomes, postoperative care, 
computer applications.
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Introduction

Coronary artery bypass graft (CABG) surgery 
is a proven and effective mode of treatment for 
coronary artery disease. It relieves symptoms, re-
duces myocardial ischemia and increases overall 
survival. However, complications associated with 
CABG lead to increased morbidity and mortality 
[1]. Some complications in this context include the 
need for prolonged mechanical ventilation (PMV), 
need for reintubation and death [1–3].

These complications are known to result in 
higher morbidity (sepsis, pneumonia, mediastini-
tis) and higher mortality, which are associated with 
an increased length of stay in intensive care units, 
decreased hospital bed availability, and increased 
overall costs associated with hospitalization [4]. 
Recently, some authors have shown that late extu-
bation of patients after CABG surgery also increas-
es the incidence of postoperative atrial fibrillation 
[5]. Predicting the risk for post-CABG complications 
is thus of major interest in order to improve not 
only resource allocation and management, but to 
enhance the patients’ recovery by guiding mainly 
preventive physiotherapy and medical strategies.

Logistic regression (LR) modeling is a powerful 
and well-established method both in statistics 
and biomedical fields with straightforward inter-
pretability and ubiquitous availability in tradition-
al statistical analysis packages. The LR is a  gen-
eralized linear model and, as such, assumes the 
outcome variable to be a  linear combination of 
input variables applied to a non-linear link func-
tion. Although LR is widely used, true linear rela-
tionships rarely exist in epidemiology; this can be 
interpreted as either a  blessing (as it allows for 
easier interpretation of the model) or as a curse 
(as many important problems cannot be appropri-
ately solved using linear predictions) [6–9].

Artificial neural networks (ANNs), on the oth-
er hand, are not limited to linear predictive rules. 
These models have the ability to “learn” complex 
relationships between input and output variables, 
and have been regarded as universal function 
approximations. However, they have traditionally 
been seen as black-box models which are often 
difficult to interpret. As their name implies, ANNs 
have been created in an effort to model the work-
ings of the human brain. In reality however, ANNs 
can be seen as simple parametric mathematical 
functions, which have to be estimated from data 
or other sources just as any other popular statisti-
cal models [10, 11]. 

Previous studies suggest that ANNs are superi-
or to traditional regression methods for outcome 
prediction [12] while other author suggests ANNs 
are not superior to LR analysis [13]. However, to 
our knowledge no previous studies have compared 
these models to predict PMV, reintubation and 

death following CABG. Thus, the purpose of this 
study was to compare the performance of ANNs 
and LR models for prediction of PMV, reintubation 
and death post-CABG surgery. We hypothesized 
that ANNs would be a better predictive instrument 
for identifying subjects at increased risk for ad-
verse outcomes post-CABG compared with LR.

Material and methods

Subjects and data collection

Subjects in this study were gathered through 
a joint partnership between the Federal University 
of São Carlos and the Hospital de Base of São José 
do Rio Preto, Brazil. The data set contains mea-
surements from 1315 subjects who underwent 
CABG surgery. Subjects were specifically asked to 
participate in the study and expressed their will-
ingness through informed written consent. Stan-
dard preoperative and postoperative management 
was performed in all subjects. A human subject’s 
investigation committee approved the study pro-
tocol (197/2005). On-pump or off-pump CABG 
was performed through a  median sternotomy. 
Anesthesia, body temperature and cardioplegia 
during the procedure were standardized. 

Inclusion was based on the availability of all 
the following possible predictive pre-operative 
variables: age, gender, weight, height, body mass 
index, diabetes, creatinine, preserved (left ven-
tricular ejection fraction – LVEF ≥ 50%), moderate 
(LVEF 31–49%) and significant ventricular dysfunc-
tion (LVEF ≤ 30%) and operative variables: cardio-
pulmonary bypass and total number of grafts. The 
need for PMV was also considered as an input for 
the prediction of death. Variables were collected 
by research assistants and maintained in a com-
puter database.

Outcome measurements

Three dichotomous (binary) variables were 
chosen as outcomes: PMV, reintubation and death 
after CABG. The PMV was defined as any mechan-
ical ventilation of more than 24 h and the duration 
of mechanical ventilation was standardized as the 
time from arrival at the intensive critical unit to 
the time of extubation [14]. The outcome reintu-
bation was defined as the need to reinstitute the 
artificial airway after extubation. Death occurring 
within 30 days of CABG was considered an event.

The decision to extubate was made on a  pa-
tient-by-patient basis and was a  joint decision 
made between the physician and physiotherapist 
of the coronary unit. Criteria for extubation includ-
ed: 1) awake subjects (with minimal or no sedative 
agents), 2) hemodynamically stable with mean ar-
terial pressure ≥ 60 mm Hg (without vasopressors 
or with minimum vasopressor support, e.g. ≤ 5 μg/
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kg/min), 3) no evidence of excessive bleeding or 
fever, 4) partial pressure of oxygen ≥ 60 mm Hg, 
with a  fraction of inspired oxygen ≤ 0.40, partial 
pressure of carbon dioxide < 50 mm Hg, pH > 7.30 
and a respiratory rate < 30 breaths/min. 

The decision to reintubate was also a joint de-
cision between the treating physician and phy
siotherapist. Criteria included signs of distress 
during spontaneous breathing, defined as heart 
rate > 140 bpm or 20% heart rate increase, systol-
ic blood pressure > 180 mm Hg, signs of increased 
respiratory work, oxygen saturation < 90%, frac-
tion of inspired oxygen > 0.40, respiratory rate  
> 35 breaths/min, somnolence, anxiety, agitation 
and increased sweating. 

For documentation of death we also considered 
the need for PMV (death considering PMV). We 
considered the presence of this variable as import-
ant in assessing the likelihood of a possible death. 

Data analysis 

Two classes of prediction models were created, 
LR and ANNs. For each outcome we created an LR 
and several ANNs with a varying number of hid-
den neurons. We computed ROC areas to compare 
predicted values against the truth. The predictive 
pre-operative and intra-operative data presented 
in Table I were used as the independent variables 

and the outcomes PMV, reintubation and death 
post-CABG surgery were the dependent variables. 
Gender, diabetes, ventricular dysfunction and car-
diopulmonary bypass use were dichotomous vari-
ables.

The outcomes PMV, reintubation and death af-
ter CABG were dichotomous variables expressed 
as 1 and 0 for presence and absence, respec-
tively. From the whole dataset, 80% of the data 
were randomly assigned to the training group for 
developing the ANN and LR models, and the re-
maining 20% were randomly assigned to a testing 
group. Thus, 1053 subjects were used for training, 
and 262 were used for validation of both models  
(Table I).

Modeling tools

A feed-forward multi-layer neural network was 
trained using the Levenberg-Marquardt learning 
algorithm with the aid of Bayesian regularization. 
All networks were created using a  single hidden 
layer with a  varying number of hidden neurons 
and a single output neuron, trained until conver-
gence of the error function. In a study by Souza 
et al. [15], the complexity of the networks was 
controlled using early stopping. Early stopping can 
be considered a  form of regularization of com-
plexity control. In this study, instead of controlling 
complexity through early stopping, we controlled 
complexity by determining a  suitable number of 
hidden neurons. The use of Bayesian regulariza-
tion also permitted the networks to automatically 
adjust their number of free parameters, further 
avoiding over-fitting and allowing for increased 
generalization. 

Prior to training, all inputs were scaled into the 
centered unit interval, with training data balanced 
among the target classes. The final model can be 
seen in Figure 1.

The LR is a generalized linear model. As such, it 
is based on a link function to produce non-linear 
outputs from an otherwise linear combination of its 
inputs. The LR model can be written as: y = g (q · x),  
in which q is a  parameter vector, x is the input 
vector and is the logistic sigmoid function given 
by g (z) = 1/1 + e–z.

All computations were performed using the Ac-
cord.NET Framework 2.8.2 for scientific comput-
ing, a tool used in computer vision [16, 17], data-
mining [18] and in the medical sciences.

Statistical analysis

Data are expressed as mean ± SD or as a per-
centage. The ANNs and LR analyses were com-
pared by receiver operating characteristic (ROC) 
curve and the common measures of discrimina-
tion sensitivity, specificity and accuracy. The sen-
sitivity of a clinical test refers to the ability of the 

Table I. Comparison of clinical features between 
training and validation groups

Variable Training set
(n = 1053)

Validation set
(n = 262)

Age [years] 60.4 (9.6) 61.1 (9.8)

Gender male  715 (67.9%) 183 (69.8%)

Weight [kg] 73.5 (13.8) 73.7 (14.4)

Height [m] 1.64 (0.08) 1.64 (0.09)

Body mass index 
[kg/m2]

27.0 (4.2) 27.1 (4.5)

Creatinine [mg/dl] 1.22 (0.6) 1.22 (0.7)

Total number  
of grafts

2.48 (0.8) 2.5 (0.8)

Cardiopulmonary 
bypass

786 (74.6%) 196 (74.8%)

Diabetes mellitus 353 (33.5%) 72 (27.5%)

Preserved 
ventricular function

814 (77.3%) 192 (73.2%)

Moderate ventricular 
dysfunction

147 (13.9%) 48 (18.3%)

Severe ventricular 
dysfunction

91 (8.6%) 22 (8.4%)

Data are mean (SD) or numbers (%), LVEF – left ventricular ejection 
fraction; preserved ventricular function: left ventricular ejection 
fraction (LVEF) ≥ 50%; moderate ventricular dysfunction: LVEF 
31–49%; severe ventricular dysfunction: LVEF ≤ 30%.
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test to correctly identify the patients with the dis-
ease whereas the specificity refers to the ability to 
correctly identify the patients without the disease. 
Accuracy is the proportion of true results, either 
true positive or true negative, in a population. The 
area under the ROC curve (AUC) was calculated 
as an overall measure of the discrimination abil-
ities of the prediction models and represents the 
probability that the model predicted for a  ran-
domly chosen positive case will exceed the result 
for a randomly chosen negative case [19, 20]. The 
ROC curve was obtained by plotting sensitivity 
against 1-specificity for all possible cut-off points. 

The AUC can be considered the probability that 
a  subject randomly selected from the morbidi-
ty group will have a diagnostic marker indicating 
greater risk than a randomly selected subject from 
the normal course group [21]. According to the 
AUC ROC values, discrimination was categorized as 
“perfect” (AUC, 1), “good” (AUC, > 0.8), “moderate” 
(AUC, 0.6–0.8), or “poor” (AUC, < 0.6) [22]. The com-

parison of the ROC curves was performed using the 
method of DeLong. This is one of the most com-
monly used nonparametric methods for comparing 
correlated ROC curves which is also able to account 
for correlation among the studied variables [23].

Results

The clinical features between training and 
validation groups are summarized in Table I. The 
event rates for the study population (n = 1315) 
were 8.6%, 8.6% and 8.3% for reintubation, PMV 
and death, respectively. The reintubation, PMV 
and death rates in the training set (n = 1053) 
were 8.6%, 9.8%, 8.3% and in the validation set 
(n = 262) were 8.4%, 9.5% and 8.3%, respectively. 
Table II summarizes predictive accuracy, sensitiv-
ity, and specificity using ANN and LR models for 
predicting reintubation, PMV and death. Table III 
shows the area under the ROC curve analyses for 
the diagnostic performance of ANN and LR for 

Figure 1. Schematic representation of artificial neural network (ANN) for reintubation outcome

Creatinine
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Table II. Performance comparison of artificial neural network and logistic regression models for predicting reintu-
bation, prolonged mechanical ventilation and death

Outcomes Accuracy Sensitivity Specificity AUC AUC p-value

Reintubation:

Artificial neural network 0.63 0.64 0.63 0.65 (0.53–0.77) 0.013

Logistic regression 0.60 0.64 0.60 0.62 (0.50–0.75) 0.049

Prolonged mechanical ventilation:

Artificial neural network 0.63 0.76 0.62 0.72 (0.64–0.81) 7.11 × 10–7

Logistic regression 0.63 0.64 0.63 0.67 (0.57–0.78) 0.0016

Death (considering PMV):

Artificial neural network 0.77 0.91 0.76 0.85 (0.80–0.91) 0

Logistic regression 0.77 0.82 0.77 0.86 (0.79–0.93) 0

AUC – area under the receiver operating characteristic (ROC) curve, PMV – prolonged mechanical ventilation
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outcomes, and the statistical significance of the 
difference comparing two ROC curves is also pre-
sented. Table IV indicates the odds ratio and con-
fidence interval of independent variables in LR for 
reintubation, prolonged mechanical ventilation 
and death models.

For the validation group, Figure 2 shows the 
ROC curves for the outcomes constructed using 
LR and ANN models. The LR versus ANN model 
provided the following ROC curve values: 62% vs. 
65%, 67% vs. 72% and 86% vs. 85% for reintuba-
tion, PMV and death, respectively. 

Discussion

The present study was undertaken to com-
pare the performance of ANNs and LR models for 
three important outcomes: reintubation, PMV and 
death prediction post-CABG surgery on the same 
predictor dataset. The results obtained show that 
both the LR and ANN prognostic models demon-
strate comparable accuracy for prediction of rein-
tubation, PMV and death in subjects undergoing 
CABG. Although risk stratification following car-
diac surgery has gained increasing importance in 

recent years, to our knowledge there are current-
ly no data comparing ANN and LR for prediction 
of CABG-related outcomes. Previous prognostic 
studies involving cardiac surgery have evaluat-
ed outcomes such as prolonged length of stay in 
the intensive care unit [24], mortality and general 
complications [25, 26]. 

Reintubation and PMV increase are associate 
with airway and lung trauma increased morbidity 
(ventilator-associated pneumonia, intensive care 
unit length of stay, resource utilization and health 
care costs) and mortality [14, 15, 27]. In this con-
text, the greatest difficulty for health care profes-
sionals is to predict the risk for adverse events 
early in the process. Thus, improved prognostic 
models may result in more efficient strategies to 
optimize clinical management of these subjects 
with better resource allocation. 

The ANN modeling is a technique that is gain-
ing increasing application in clinical research. An 
advantage over traditional LR modeling is the 
ability of ANNs to use information from data re-
cords that are incomplete. Given the fact that 
incomplete data in clinical practice are common, 

Table III. Pairwise comparison of area under the receiver operating characteristic curves (AUC) analysis between 
artificial neural network and logistic regression model for predicting prolonged mechanical ventilation, reintuba-
tion and death

Variable Difference 
between 

AUCs

Standard 
error

95% CI Value of p

Lower Upper 

Reintubation –0.028 0.022 –0.073 0.016 0.21

Prolonged mechanical ventilation –0.049 0.037 –0.122 0.023 0.18

Death (considering PMV) 0.003 0.0221 –0.039 0.047 0.87

AUC – area under the receiver operating characteristic curve, CI – confidence interval

Table IV. Odds ratio and confidence interval of independent variables in logistic regression for reintubation, pro-
longed mechanical ventilation and death models

Independent variable Reintubation PMV Death

OR 95% CI OR 95% CI OR 95% CI

Age [years] 1.06 1.05–1.08 1.06 1.05–1.07 1.05 1.03–1.06

Gender male 1.15 0.83–1.61 0.16 0.60–1.11 2.69 1.84–3.95

Weight [kg] 1.11 1.01–1.23 0.04 1.02–1.19 1.02 0.92–1.14

Height [m] 8.92 × 10–7 1.39 × 
10–10–0.005

3.56 4.47 × 
10–8–0.05

3.09 × 10–5 1.32 × 
10–9–0.72

Body mass index [kg/m2] 0.72 0.55–0.93 0.10 0.64–0.97 0.89 0.67–1.20

Creatinine [mg/dl] 2.56 2.07–3.17 0.11 2.11–3.27 2.31 1.90–2.80

Total number of grafts 1.29 1.11–1.50 0.07 0.95–1.24 1.15 0.98–1.35

Diabetes mellitus 1.56 1.22–1.98 0.11 1.35–2.01 1.04 0.80–1.35

Preserved VE function 3.26 2.29–4.62 0.15 1.80–3.20 3.74 2.53–5.53

PMV – – – – 22.3 15.67–31.67

CI – confidence interval, OR – odds ratio, PMV – prolonged mechanical ventilation, VE – ventricular
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the ability to incorporate and use more informa-
tion allows ANNs to create models that more ac-
curately represent the clinical scenario under in-
vestigation [6]. However, in our study, prognostic 
performance was similar between the LR and ANN 
models and did not include subjects with missing 
data because of the nature of the comparison. 
In a clinical context, another advantage of ANNs 
should be emphasized. The ANNs have the ca-
pacity to train themselves without human inter-
vention. Once trained, ANNs could reside in the 
background of clinical information systems and 
could be continuously improved as more patients 
are accumulated [26]. 

Although we highlight some advantages of 
ANNs, our results demonstrate similar perfor-
mance between ANN and LR prediction models. 
This could be explained in part by the class im-
balance (for instance, high imbalance between 
the numbers of subjects that were reintubated 
in comparison with those that were not) and the 
absence of complex relationships in the dataset. 
Moreover, because of the direct relationship be-
tween single neuron ANNs and the LR, what we 
have found is that simpler models (as in ANNs 
with low neuron counts) can learn the data bet-
ter than complex models, which are more prone 
to overfitting. This is an issue because the data 
we are most interested in (post-surgery compli-
cations) only represent a relatively small fraction 
of the dataset. Thus, more complex models would 
not have sufficient data to learn the problem well, 
and may not lead to good generalization.

Orr [28], Tu et al. [29] and Lippmann and Sha-
hian [30] showed that an ANN could be used to 
predict cardiac surgical mortality, and according 
to our results the performance was equivalent to 
that of LR. The latter authors also attribute their 
results to the absence of a complex nonlinear rela-
tionship among the independent variables.

It is noteworthy that in contrast to other stud-
ies, variable selection was performed without 
stepwise testing in the present study. The vari-
ables included in the present models have pre-
viously been applied in other studies [4, 27, 31]. 
We used age, gender, weight, height, body mass 
index, diabetes, creatinine level, cardiopulmonary 
bypass, status of left ventricular function (i.e. pre-
served or moderate to severely impaired) and the 
total number of grafts as independent variables. 
These variables have previously been documented 
as predictors of these outcomes, and are readily 
available in subjects undergoing cardiac surgery. 
Thus similar models could be applied in many sur-
gical centers. However, the number of variables 
optimally included in risk models following cardiac 
surgery has not been adequately explored. 

Given that respiratory complications are com-
mon in these subjects, we felt that it was import-

Figure 2. Receiver-operating characteristic (ROC) 
curves for the artificial neural network (ANN) and 
logistic regression (LR) model for predicting rein-
tubation (A), prolonged mechanical ventilation (B) 
and death (C). The difference was not significant. 
Area under the ROC (AUC) for (A) LR model = 0.62, 
ANN model = 0.65; (B) LR model = 0.67, ANN model 
= 0.72; and (C) LR model = 0.86, ANN model = 0.85
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ant to consider PMV as an additional independent 
factor that could influence death as an endpoint. 
The incidence of PMV at our institution is compa-
rable to that in previous reports. Kern et al. [32] re-
ported an incidence of PMV of 9.0%. Légaré et al. 
[14] studied a series of 1829 subjects and reported 
a  PMV rate of 8.6%, which was associated with 
significantly higher mortality as compared to sub-
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jects who did not require ventilation > 24 h. The 
current and previous findings suggest that PMV 
identifies subjects at increased risk of morbidity 
and mortality following CABG.

The definition of PMV should be mentioned. As 
in other studies [6, 33], we defined PMV as greater 
than 24 h, established as the time from arrival at 
the intensive care unit to the time of extubation. 
However, no consensus exists in terms of a stan-
dardized definition and cutoff points selected, po-
tentially leading to conflicting results. In addition, 
patients are currently extubated within 6 h after 
cardiovascular surgery due to the respiratory and 
cardiovascular benefits of such an approach [34]. 
We opted for 24 h based on the concept that this 
time is sufficient for hemodynamic stabilization 
and to offset the deleterious effects of surgery 
and cardiopulmonary bypass if used [33]. 

The authors would like to emphasize that in 
this study, specifically for models that consid-
ered PMV as one of the independent variables, 
we found a higher occurrence of multicollinearity. 
However, since one can note that multicollineari-
ty does not adversely affect the regression model 
when the goal is to predict the outcome of the de-
pendent variable, we chose not to exclude those 
variables from our model in order to provide direct 
and complete comparisons between the LR and 
the ANN models.

For mortality, our study demonstrated higher 
rates (approximately 8%) when compared to the 
literature (approximately 3%) [35]. However, we 
did not evaluate mortality alone but took into 
consideration the coexistence of prolonged me-
chanical ventilation in patients who died, which 
may explain the difference in our results. 

It is worth mentioning that the bootstrapping 
technique is indeed very useful to compare dif-
ferent prediction models. However, neural net-
works often do not scale very well with the boot-
strapping method, as both neural networks and 
the bootstrapping method are quite expensive 
to compute. The use of neural networks also in-
volves a  non-convex learning process which can 
require several weight re-initializations, increasing 
the computational effort even further. In order to 
provide a trade-off between comparison accuracy 
and efficiency, we chose to stick with a split-set 
validation based on development and testing sets 
for the neural networks. In order to keep results 
between neural networks and the logistic model 
comparable, the logistic models were also created 
following this same methodology.

There are some limitations to the current study. 
The database was drawn from one center only. 
Data sets collected from multiple centers would 
provide more general information for risk strati-
fication in subjects undergoing CABG. Thus, the 
model developed herein requires prospective vali-

dation, preferably at multiple centers. In addition, 
only variables that already existed in the database 
were applied in the models. Other variables that 
may be associated with reintubation, PMV and 
death (such as diagnosis of COPD and neurolog-
ical complications) were not evaluated. 

In conclusion, these results suggest that an 
ANN had similar discriminating power in predict-
ing reintubation, PMV and death as conventional 
LR among subjects undergoing CABG. Thus, both 
models may be applicable for predicting outcomes 
following CABG. 
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