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Abstract

Lü Q., Tang M.-j., Cai J.-r., Zhao J.-w., Vittayapadung S. (2011): Vis/NIR hyperspectral imaging 
for detection of hidden bruises on kiwifruits. Czech J. Food Sci., 29: 595–602.

It is necessary to develop a non-destructive technique for kiwifruit quality analysis because the machine injury could 
lower the quality of fruit and incur economic losses. Bruises are not visible externally owing to the special physical 
properties of kiwifruit peel.We proposed the hyperspectral imaging technique to inspect the hidden bruises on kiwifruit. 
The Vis/NIR (408–1117 nm) hyperspectral image data was collected. Multiple optimal wavelength (682, 723, 744, 810, 
and 852 nm) images were obtained using principal component analysis on the high dimension spectral image data 
(wavelength range from 600 nm to 900 nm). The bruise regions were extracted from the component images of the five 
waveband images using RBF-SVM classification. The experimental results showed that the error of hidden bruises de-
tection on fruits by means of hyperspectral imaging was 12.5%. It was concluded that the multiple optimal waveband 
images could be used to constructs a multispectral detection system for hidden bruises on kiwifruits.
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Kiwifruit, which is nutritious and sweet in fla-
vour, is one of the most favourite fruits for the 
population. However, excessive mechanical load-
ing and stress cause injuries to kiwifruits during 
the processes of harvest, transport, handling, 
and storage. Severely injured fruits (i.e. broken, 
and smashed) are easily identified and removed. 
However, some injuries often cause internal physi-
cal hidden bruises under the kiwifruit peel. The 
bruises lower the quality of the fruits and cause 
significant economic losses because such fruits 
easily ferment, rot, or get mildewed, and infect 
other normal fruits during the storage. Bruised 

kiwifruits have become a great and growing con-
cern to the kiwifruit industry. So, it is necessary to 
develop a detection technique for distinguishing 
the bruised kiwifruits from the normal fruits.

In the past two decades, a number of tech-
niques have been researched for an automated 
non-destructive detection of fruits and vegeta-
bles quality. Computer vision (visible imaging) 
has been used for many tasks such as the shape 
classification, defect detection, quality grading, 
and variety classification (Leemans et al. 1998; 
Cao et al. 1999; Paulus et al. 1999; Brosnan et 
al. 2004; Throop et al. 2005). X-ray imaging has 
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been used to inspect internal quality, such as water 
core, bruise of apple (Shahin et al. 1999, 2002b; 
Kim et al. 2000), weevil-infested mango (Thomas 
& Kannan 1995), and rotten onion (Shahin et 
al. 2002a), etc. 

In the recent years, hyperspectral imaging has 
been investigated for the estimation of quality 
and safety of poultry (Liu et al. 2003; Park et 
al. 2006, 2007), fruits (Lu et al. 1999; Lu 2003; 
Mehl et al. 2004; Xing & Baerdemaeker 2005; 
Xing et al. 2005, 2007; Noh & Lu 2007; Qin et al. 
2009), vegetables (Liu et al. 2005; Ariana et al. 
2006), and milk (Qin & Lu 2007). Lu et al. (1999) 
have studied hyperspectral imaging for detecting 
bruises on three cultivars of apples in the spectral 
region between 450 nm and 900 nm. Lu (2003) has 
studied NIR (900–1700 nm) hyperspectral imaging 
for identifying and segregating both new and old 
bruises on the normal tissue of apple with InGaAs 
detector. This study has shown that the spectral 
region of 1000–1340 nm is the most appropriate 
for the apple bruises detection.

To our knowledge, no research has been con-
ducted for the non-destructive detection of hidden 
bruises on kiwifruits. Because of the toughness 
and taupe of kiwifruit peel, the bruise can not be 
expressed on the peel. It is difficult to be detected 
by human inspectors or visible imaging. The fruit 
juice quickly gathers in the bruise regions after 
the fruit tissue has been damaged. Because the 
water content of kiwifruit is high, the qualitative 
difference between the bruise regions and normal 
regions is not sufficient to distinguish the defec-
tive fruits using X-ray imaging.

The hyperspectral imaging combines conven-
tional spectroscopy and imaging techniques to 
acquire both spectral and spatial information 
from the object examined. The overall objective 
of this research was to investigate the potential of 
using hyperspectral imaging in visible and near-
infrared (Vis/NIR) regions (408–1117 nm) for the 
detection of bruises on kiwifruits. The specific 
objectives were to: 
– Develop a Vis/NIR hyperspectral imaging sys-

tem covering the spectral region from 408 nm 
to 1117 nm for the bruise detection.

– Develop computer algorithms to identify and 
segregate the bruised tissue fom the normal 
tissue of kiwifruit.

– Identify several important wavelengths that can 
be utilised for the future solution of detecting 
bruise in real time by multispectral imaging.

MATERIAL AND METHODS

Sample preparation. The tested kiwifruit cv. 
Zhonghua was produced in Zhouzhi County, 
Shaanxi Province, China. Two hundred non-bruised 
kiwifruits were manually selected through visual 
and touch inspection, and purchased from a lo-
cal Zhenjiang supermarket in October, 2008. The 
kiwifruits were randomly divided into two groups 
of 100 samples each. The first group was used as 
control (normal kiwifruits); another one contained 
bruised kiwifruits damaged artificially. The samples 
of both groups were stored at room temperature 
(25 ± 1°C) for 24 h before the measurement. There 
were no obvious bruise features on the kiwifruits 
surfaces detected by visual inspection. When hy-
perspectral image data were collected, all fruits 
were peeled to detect the presence of bruises. 
Colour images of bruised kiwifruits before and 
after peeling are shown in Figure 1.

Hyperspectral image data acquisition. The 
scheme of the hyperspectral imaging system, de-
veloped for this study, is shown in Figure 2. The 
system is composed of three major units. The 
imaging unit consists of a complementary metal 
oxide semiconductor (CMOS) camera (BCi4-U-
M-20-LP, Vector International, Leuven, Belgium), 
and an imaging spectrograph (ImSpector V10E, 
Specim Spectral Image Ltd., Oulu, Finland) coupled 
with a 23 mm focal length C-Mount zoom lens. 
The ImSpector spectrograph contains a fixed-
size internal slit to define the field of view for 
the spatial line and a prism-grating-prism (PGP) 
system for the separation of the spectra along the 
spatial line. The lighting unit is a DC regulated 
light source from a 150W tungsten halogen lamp 
(DC-950A, Dolan-Jenner Industries Inc., Boxbor-
ough, USA) delivered through dual fiber optic light 
lines (QDF3948, Dolan-Jenner Industries Inc., 
Boxborough, USA). The conveyer unit consists of 
a motorised translation stage (TSA200-A, Zolix 
Instruments Co., Beijing, China), and a motion 
controller (SC300-1A, Zolix Instruments Co., 
Beijing, China). 

The hyperspectral imaging system is a push 
broom and line-scan based imaging system. The 
kiwifruit is put on the translation stage in this 
system to begin the data acquisition. The CMOS 
camera is a linear array detector with a 1280 by 
1 pixel resolution in a scanned line. The camera 
and spectrograph have been used to scan the fruit 
line-by-line as the translation stage moved the fruit 
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through the field of view of the optical system. 
The spectral range of the hyperspectral camera 
is from 408 nm to 1117 nm with 0.69 nm spectral 
intervals, which has resulted in 1024 spectral bands. 
After finishing the scans on one entire kiwifruit, 
the spatial-by-spectral matrices are combined to 
construct a three-dimensional (3D, 1280 × 500 × 
1024) spatial and spectral data space.

Image calibration. The hyperspectral images of 
the kiwifruits were first calibrated with a white and 
a dark references using the following equation:

R =
  I – B		  (1) 

      W – B

where:
R  – relative corrected reflectance image
I  – original hyperspectral image of kiwifruit
B  – dark image (approximately 0% reflectance) recorded 

by turning off all light sources and covering the lens 
with a black cap

W  – white image obtained by a reference panel (Spec-
tralon, Labsphere Inc., North Sutton, USA) with 
approximately 99% reflectance

The representative calibrated reflectance spectra 
(408–1117 nm), which were obtained from this 

hyperspectral imaging system, are demonstrated 
in Figure 3.

Data reduction. Figure 3 shows the average 
spectral profiles of different regions (50 × 50 pixels, 
three normal regions (No. 1–3), and three bruise 
regions (No. 4–6)) of a single sample. According 
to Figure 3, the spectral profiles of kiwifruit were 
very close to one another in the spectral regions 
below 600 nm and over 900 nm, and there was 
a high noise level over 1000 nm. Therefore, the 
spectral region of 600–900 nm was used in the 
next analysis, thus providing 580 spectral bands 
in the spectral region.

In order to remove the noise and redundant data, 
the average of every five pixels after calibration in 
the spectral dimension was used in the subsequent 
analyses. 520 pixels from 281 to 800 were selected 
in the horizontal (X-axis) direction to ensure the 
kiwifruit image integration, thus the 3D data cube 
was 520 × 500 × 88, which greatly decreased the 
dataset. Before further data processing, the back-
ground of the image was removed by the simple 
thresholding method. A mask was built from the 
image at 650 nm when the threshold was set at 
0.09. The mask was applied to obtain the area of 
kiwifruit from the hyperspectral image data. The 
resultant images were further processed by the 
principal components analysis (PCA) and support 
vector machine (SVM).

Principal component analysis. PCA is a very ef-
fective data reduction technique for spectroscopic 
data. It summarises the data by forming new vari-
ables, which are linear composites of the original 
variables. In this study, PCA was performed to 
reduce spectral dimensionality and enhance image 
features. A large amount of hyperspectral images 
was obtained, so PCA was used to find several 
dominant spectral band images (i.e. optimal band 

Figure 2. Sketch of the hyperspectral 
imaging system

Figure 1. Colour images of bruised kiwifruit obtained 
before (a) and after (b) peeling of skin

(a)	 (b)
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images) in order to minimise the amount of the 
data without sacrificing the detection results.

Support vector machine. Support vector ma-
chine (SVM) is based on statistical learning theory 
(SLT) as proposed by Vapnik and Chervonenkis 
(Vapnik 1998). The main idea of SVM is to sepa-
rate the classes with a hyperplane surface so as 
to maximise the margin between them. Following 
the structural risk minimisation (SRM) principle, 
SVM can effectively overcome over-fitting and 
under-fitting problems and provides a greater 
generalisation ability (Byun & Lee 2002; Guo 
et al. 2006; Qian et al. 2010). In this study, the 
radial basic function SVM (RBF-SVM) classifier 
(Guo et al. 2006) was used to segment the bruise 
region on kiwifruit.

Software. For hyperspectral image acquisition, 
SpectralCube (AutoVision Inc., Mojave, USA) 
was used. All data processing and analysis pro-
cedures described above were performed using 

the Environment for Visualizing Images (ENVI) 
V.4.5 (Research Systems Inc., Fort Collins, USA) 
and MVTec Halcon 8.0 (MVTec Software GmbH, 
Munich, Germany) for Windows XP.

RESULTS AND DISCUSSION

PCA on the hyperspectral data

Firstly, the hyperspectral data were preprocessed 
as described above: reflectance calibration, data 
reduction, and background removal. Afterwards, 
PCA was performed on the hyperspectral data 
(600–900 nm) of each kiwifruit, and hence the 
large amount of hyperspectral data of each fruit 
was represented by several principal component 
images. The top five principal component images 
(PC1 to PC5) are shown in Figure 4. According to 
the visual inspection, the PC1 mainly represents 

Figure 4. Principal component score images based on the wavelength region of 600–900 nm
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Figure 3. Spectral profiles (408–1117 nm) of kiwifruit sample
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the grey value of the kiwifruit, while the PC2 dem-
onstrates a more extensive volume of information 
about the fruit quality. The bruise region could 
be clearly identified in the PC2 image.

PCA at selected optimal wavebands

The main purpose of the study was to select sev-
eral most suitable wavelengths for discriminating 
bruises from normal tissue using a multi-spectral 
imaging system. Based on the results obtained from 
the hyperspectral images, a set of wavelengths can 
be selected for multispectral imaging system. To 
get five principal components, at least five original 
variables are needed. Therefore, according to the 
loadings of PC2 (Figure 5), five wavelengths 682 nm, 
723 nm, 744 nm, 810 nm, and 852 nm were selected, 
respectively. The images obtained at five optimal 
wavelengths are shown in Figure 6. The PCA pro-
cedure was then performed at the selected optimal 
wavelengths instead of the spectral images ranged 
from 600–900 nm. The resultant multispectral PCA 
images (Figure 7) gave results similar to those ob-
tained from the whole selected wavelength region. 

Segmentation of bruise region

In the reports of Mehl et al. (2004), Xing et 
al. (2005, 2007), Ariana et al. (2006), and Qin et 
al. (2008, 2009), owing to the obvious differences 
between the abnormality (i.e. bruise, rot, scab, 
canker, greasy spot, insect damage) regions and 
those of normal tissue of fruit (i.e. apple, cucum-
ber, citrus) at some selected wavelength images, 
the former regions were segmented from these 
images using some appropriate methods. The 
waveband images of kiwifruit (Figure 6) revealed 
no obvious contrast between the bruise region 
and normal tissue. It was difficult to segment 
the bruise regions from the images using com-
mon image segmentation methods. Therefore, 
the bruise region was segmented using SVM 
based on the PCA images (Figure 7) obtained 
from the selected multiple wavelengths in the 
next processing.

In order to select the optimum classifier using 
SVM algorithm for identifying the bruise region 
of kiwifruit, regions of interest (ROIs) were gen-
erated from the bruise area and normal area, and 
their corresponding spectra of each ROI were 

Figure 5. PCA loading plot of 
PC2 in the region of 600–900 
nm

Figure 6. Images obtained at the selected wavelengths
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obtained. In this sample, 100 pixels were observed 
as bruise, 100 pixels (50 pixels in the serious re-
flection area and 50 pixels in the other area) as 
normal. The pixels of these regions were used as 
the training set for SVM classifier. In this work, 
RBF kernel function was used for SVM. According 
to the principle of SVM, it is critical to determine 
the penalty parameter C and parameter γ of the 
kernel function, which impact directly on the fi-
nal identification results. The best parameters of 
the training experiments (C = 100, γ = 0.3) were 
selected for RBF-SVM classification based on 
comparing the test results obtained for different 
values of the parameters.

In order to obtain a good performance, it is 
critical to determine the classification probabil-
ity threshold, which impacts directly on the final 
identification results. After trying several op-
tions, some of the bruise region pixels remained 
unclassified when the classification probability 
threshold of 0.9 was used, but normal region pixels 
were classified correctly in this case. When the 
classification probability threshold was decreased 
to 0.7–0.6, almost all pixels of the bruise region 
were classified correctly. However, a number of 
normal region pixels were defined as the bruise 
region. The classification probability threshold 

of around 0.8 led to satisfactory classification re-
sults, although there were still a few normal region 
pixels. Consequently, the classification probabil-
ity threshold of 0.8 was chosen as the threshold 
of SVM. The binary images of the bruise region 
obtained using SVM classifying and morphology 
processing such as hole filling and size filtering 
are shown in Figure 8.

Bruise detection

The proposed system (including the hardware and 
algorithm) was used to test kiwifruits cv. Zhong-
hua. The results obtained are given in Table 1. The 
total error rate reached 12.5% occurring mostly in 
the bruise group, the positive error (normal fruits 
were classified as bruised fruits) was 15.6%, and 
the false error (bruised fruits were classified as 
normal fruits) was 8.8%. The transmission and 
reflection of the peel were inconsistent because 
of the existence of spots and rust on the surfaces 
of kiwifruits. So the rust and spot areas were seg-
mented as bruise, which was the main reason for 
the positive error, and the main reason for the false 
error was the artificial injury on kiwifruit that was 
too moderate to allow segmentation.

Table 1. The results of hidden bruises detection on 
kiwifruits

Sample
Detection results

normal  
(91 fruits)

bruise  
(109 fruits)

Normal (100 fruits) 83 17

Bruise (100 fruits) 8 92

Classification error (%) 8.8 15.6

Global error (%) 12.5

Figure 7. Principal component images obtained at the selected multiple wavelengths

Figure 8. Results after (a) SVM classifying and (b) mor-
phology processing

(a)	 (b)

PC1	 PC2	 PC3	 PC4	 PC5
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CONCLUSIONS

A Vis/NIR hyperspectral imaging system was 
developed to detect hidden bruises on kiwifruits in 
the wavelength range from 408 nm and 1117 nm. 
This system can acquire both spatial and spectral 
information from an object simultaneously. With 
the use of PCA, the high dimension spectral im-
age data (wavelength range 600–900 nm) were 
reduced to images obtained at multiple optimal 
wavelengths of 682, 723, 744, 810, and 852 nm. 
An image processing algorithm using SVM for the 
component images of multiple waveband images 
was developed for determining whether kiwifruit 
was normal or bruised. The total detection error 
rate was 12.5%.

This study laid a foundation for further develop-
ment of a computer vision system for the bruise 
detection on kiwifruits. Further research will fo-
cus on developing a more efficient multispectral 
imaging system, including a better classification 
algorithm and speeding up the data processing 
procedures to fulfill the goal of the real-time hid-
den bruise detection on kiwifruit.
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