Academia.eduAcademia.edu
Zootaxa 4846 (1): 001–093 https://www.mapress.com/j/zt/ Copyright © 2020 Magnolia Press ISSN 1175-5326 (print edition) Monograph ZOOTAXA ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4846.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:6F6EBF63-5598-416C-8694-14C4A8687693 ZOOTAXA 4846 Systematics of big-eyed bats, genus Chiroderma Peters, 1860 (Chiroptera: Phyllostomidae) GUILHERME S. T. GARBINO1*, BURTON K. LIM2 & VALÉRIA DA C. TAVARES1,3 1 Pós-graduação, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil 2 Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada � [email protected], https://orcid.org/0000-0002-0884-0421 3 Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, CCEN/DSE, Universidade Federal da Paraíba, Campus I, 58059-900 João Pessoa, Paraíba, Brazil. � [email protected], http://orcid.org/0000-0003-0966-0139 * Corresponding author. � [email protected]; http://orcid.org/0000-0003-1701-5930 Magnolia Press Auckland, New Zealand Accepted by P. Velazco: 17 Jul. 2020; published: 7 Sept. 2020 GUILHERME S. T. GARBINO, BURTON K. LIM & VALÉRIA DA C. TAVARES Systematics of big-eyed bats, genus Chiroderma Peters, 1860 (Chiroptera: Phyllostomidae) (Zootaxa 4846) 93 pp.; 30 cm. 7 Sept. 2020 ISBN 978-1-77688-040-9 (paperback) ISBN 978-1-77688-041-6 (Online edition) FIRST PUBLISHED IN 2020 BY Magnolia Press P.O. Box 41-383 Auckland 1041 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2020 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Genus Chiroderma Peters, 1860. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chiroderma salvini Dobson, 1878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chiroderma scopaeum Handley, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chiroderma doriae Thomas, 1891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 C. d. doriae Thomas, 1891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 C. d. vizottoi Taddei and Lim, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chiroderma trinitatum Goodwin, 1958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chiroderma gorgasi Handley, 1960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chiroderma improvisum Baker and Genoways, 1976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chiroderma villosum Peters, 1860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 C. v. villosum Peters, 1860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 C. v. jesupi Allen, 1900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Key to the species and subspecies of genus Chiroderma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Literature cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abstract We present a revision of the Neotropical bat genus Chiroderma, commonly known as big-eyed bats. Although species of Chiroderma have a wide distribution from western México to southern Brazil, species limits within Chiroderma are not clearly defined, as attested by identification errors in the literature, and there is no comprehensive revision of the genus that includes morphological and molecular data. Our review is based on phylogenetic analyses of two mitochondrial (COI and CYTB) and two nuclear (RAG2 and DBY) genes, coalescence analyses of mitochondrial genes, and morphological analyses including type specimens of all named taxa. We recognize seven species in three clades: the first clade includes (1) C. scopaeum Handley, 1966, endemic to western México and previously considered a subspecies of C. salvini; and (2) C. salvini Dobson, 1878, a taxon associated with montane forests, distributed from México to Bolivia; the second clade includes (3) C. improvisum Baker and Genoways, 1976, endemic to the Lesser Antilles, and (4) C. villosum Peters, 1860, widely distributed on the continental mainland and polytypic, with subspecies C. v. villosum and C. v. jesupi; and the third clade includes (5) the polytypic C. doriae Thomas, 1891, with C. d. doriae distributed in eastern Brazil and Paraguay, and C. d. vizottoi, occurring in northeastern Brazil; (6) C. trinitatum Goodwin, 1958, distributed from Trinidad to Amazonia; and (7) C. gorgasi Handley, 1960, distributed from Honduras to trans-Andean South America, previously considered a subspecies of C. trinitatum. Key words: Chiroderma gorgasi, Chiroderma scopaeum, species delimitation, taxonomy, Vampyressina Resumen Presentamos una revisión del género de murciélagos neotropicales Chiroderma, comúnmente conocidos como murciélagos de ojos grandes. No obstante la amplia distribución de las especies de Chiroderma, los límites específicos dentro del género no están claramente definidos, como lo demuestran los errores de identificación que se encuentran en la literatura. Tampoco existe hasta el presente, una revisión exhaustiva del género basada en datos morfológicos y moleculares. Nuestra revisión se basa en análisis filogenéticos de dos genes mitocondriales (COI y CYTB) y dos nucleares (RAG2 y DBY), en análisis de coalescencia de genes mitocondriales y en análisis morfológicos que incluyen los holotipos de todos los taxones nombrados históricamente en el género. Como resultado de nuestra revisión reconocemos siete especies de Chiroderma agrupados en tres clados: el primer clado incluye (1) C. scopaeum Handley, 1966, especie endémica del oeste de México, anteriormente fue considerada como una subespecie de C. salvini; (2) C. salvini Dobson, 1878, un taxón asociado a bosques montanos, distribuida desde México hasta Bolivia; el segundo (3) C. improvisum Baker y Genoways, SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 3 1976, especie endémica de las Antillas Menores; (4) C. villosum Peters, 1860, especie politípica distribuida en Centro y Suramérica, con las subespecies C. v. villosum y C. v. jesupi; y el tercer clado incluye (5) la politípica C. doriae Thomas, 1891, con C. d. doriae distribuido en el este de Brasil y Paraguay, y C. d. vizottoi que ocurre en el noreste de Brasil; (6) C. trinitatum Goodwin, 1958 distribuido en Trinidad y en la Amazonia; y (7) C. gorgasi Handley, 1960, especie distribuida desde Honduras hacia la región transandina de Suramérica, considerada anteriormente como una subespecie de C. trinitatum. Palabras clave: Chiroderma gorgasi, Chiroderma scopaeum, delimitación de especies, taxonomía, Vampyressina Resumo Apresentamos uma revisão taxonômica do gênero de morcegos neotropicais Chiroderma, comumente denominados “bigeyed bats” (morcegos de olhos grandes). Embora as espécies de Chiroderma tenham uma ampla distribuição, ocorrendo desde o oeste do México ao sudeste do Brasil, a caracterização das mesmas e os limites interespecíficos entre elas não estavam claramente definidos, como demonstram os erros de identificação que encontramos na literatura. Até o presente, tampouco havia sido feita uma revisão robusta do gênero, levando em conta dados morfológicos e moleculares. Nossa revisão baseia-se em análises filogenéticas de dois genes mitocondriais (COI e CYTB) e dois genes nucleares (RAG2 e DBY), em análises de coalescência dos genes mitocondriais e em análises morfológicas, incluindo os espécimes-tipo de todos os táxons já nomeados historicamente. Em conclusão, nós reconhecemos sete espécies distribuídas em três clados: o primeiro clado inclui (1) C. scopaeum Handley, 1966, endêmico a região oeste do México e previamente considerado uma subespécie de C. salvini; (2) C. salvini Dobson, 1878, um táxon associado a florestas de altitude, com distribuição desde o México até a Bolivia; o segundo clado inclui (3) C. improvisum Baker e Genoways, 1976, endêmico às Antilhas Menores; (4) C. villosum Peters, 1860, amplamente distribuído no continente centro e sul americano e politípico, representado pelas subespécies C. v. villosum e C. v. jesupi; o terceiro clado inclui (5) o táxon politípico C. doriae Thomas, 1891, sendo que C. d. doriae ocorre no leste brasileiro e no Paraguai e C. d. vizottoi ocorre no nordeste do Brasil; (6) C. trinitatum Goodwin, 1958, distribuído em Trinidad e na Amazônia; e (7) C. gorgasi Handley, 1960, que ocorre desde Honduras até a América do sul transandina, considerado anteriormente como uma subespécies de C. trinitatum. Palavras chave: Chiroderma gorgasi, Chiroderma scopaeum, delimitação de espécies, taxonomia, Vampyressina Introduction Species of Chiroderma, commonly known as “big-eyed bats”, are granivorous–frugivorous bats that occur from western México to southern Brazil, and the Lesser Antilles (Nogueira & Peracchi 2003; Gardner 2008a). Chiroderma commonly have two pairs of facial stripes (Figs. 1, 2) and a dorsal stripe, markings shared by most of its closely related genera (subtribe Vampyressina: Platyrrhinus, Mesophylla, Uroderma, Vampyressa, Vampyriscus and Vampyrodes—Cirranello et al. 2016). Cranially, species of Chiroderma differ from other Phyllostomidae mainly by the presence of a conspicuous notch in the region of the nasal bones, which are extremely shortened (Straney 1984). Chiroderma is further diagnosed by the presence of two upper and two lower molars with the last lower molar large and bearing five distinct cusps. Peters (1860) described the genus Chiroderma and species C. villosum as distinct from every other bat known at the time by having the last molars, lower (m2) and upper (M2), significantly larger than the preceding teeth (m1 and M1). He also mentioned the nasal notch as a nasal fissure extending towards the interorbital region. In a subsequent publication, Peters (1866) included Phyllostoma pusillum Wagner, 1843 in Chiroderma, suggesting that the notch in the nasal region was fused in this adult specimen. Dobson (1878) described two other species for the genus, Chiroderma salvini and Chiroderma bidens. Thomas (1889), however, considered the nasal notch to be a diagnostic character of Chiroderma, not an ontogenetic feature as assumed by Peters (1866), and transferred C. bidens and C. pusillum to the genus Vampyrops, now a junior synonym of Platyrrhinus. Between 1890 and 1920, three new species of Chiroderma were described: Chiroderma doriae from Brazil (Thomas 1891), Chiroderma jesupi from Colombia (Allen 1900), and Chiroderma isthmicum from Panamá (Miller 1912). During the second half of the 20th century, four additional forms were described: Chiroderma trinitatus [sic] from the island of Trinidad (Goodwin 1958), Chiroderma gorgasi from Panamá (Handley 1960), Chiroderma salvini scopaeum from western México (Handley 1966a), and Chiroderma improvisum from the Lesser Antilles (Baker & Genoways 1976). 4 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 1. Adult male Chiroderma trinitatum captured in Santana do Araguaia, Pará, Brazil, in February 2017 (MZUSP 36012). Note the conspicuous facial stripes and ears with whitish margins. FIGURE 2. Adult female Chiroderma villosum captured in Puerto Maldonado, Madre de Dios, Perú, in August 2016 (ROM F63087). Note the faint facial stripes, the long guard hairs on the head, and the noseleaf with notched tip. The following five species of Chiroderma are recognized in most of the recent literature: C. doriae, C. improvisum, C. salvini, C. trinitatum, and C. villosum, including gorgasi, jesupi and scopaeum as subspecies, and isthmicum as a junior synonym of jesupi (Jones & Carter 1976; Honacki et al. 1982; Koopman 1994; Simmons 2005; Gardner 2008b). Recently, a new species, Chiroderma vizottoi, was described from the Caatinga of Piauí, northeastern Bra- SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 5 zil, based on morphological characters (Taddei & Lim 2010; Solari et al. 2019), and the subspecies Chiroderma trinitatum gorgasi was recognized as a full species (Lim et al. 2020). There are 10 available names in Chiroderma (Table 1), but there are no recent phylogenetic analyses or systematic revisions that test the validity of these nominal taxa, or that indicate the existence of unnamed lineages. Previous descriptions of new taxa of big-eyed bats that included comparisons among the other valid species used only morphological characters (Handley 1966a; Baker & Genoways 1976; Taddei & Lim 2010). The only studies that employed DNA nucleotide sequences to estimate the phylogenetic relationships within Chiroderma used sequences of the mitochondrial gene cytochrome b (Baker et al. 1994), or of the mitochondrial gene cytochrome c oxidase subunit 1 combined with cytochrome b (Lim et al. 2020). TABLE 1. Species-group names associated with Chiroderma. Nomen Type Type locality doriae Thomas, 1891 BMNH 44.9.2.6 a Brazil: Minas Gerais gorgasi Handley, 1960 USNM 309903 Panamá: Darién, Tacarcuna Village improvisum Baker and Genoways, 1976 TTU 19900 Guadeloupe: Basse-Terre, Baie-Mahault isthmicum Miller, 1912 USNM 173834 Panamá: Panamá, Cabima jesupi Allen, 1900 AMNH 14574 Colombia: Magdalena, Cagualito salvini Dobson, 1878 BMNH 68.8.16.2 Costa Rica scopaeum Handley, 1966 USNM 338711 México: Colima, Pueblo Juaréz trinitatum Goodwin, 1958 AMNH 175325 Trinidad and Tobago: Trinidad, Cumaca b villosum Peters, 1860 ZMB 408 Brazil vizottoi Taddei and Lim, 2010 DZSJRP 18054 Brazil: Piauí, Teresina a The skull and mandible have the voucher number BMNH 49.8.16.29. b Lectotype, selected by Thomas (1891). In this report, we review the systematics of Chiroderma across its entire distributional range, including specimens representing all of the named taxa. Based on phylogenetic and coalescent analyses of the largest mitochondrial DNA dataset yet assembled for the genus, complemented by nuclear DNA sequences and morphological analyses, we define the species limits within the genus and provide a revised taxonomy for Chiroderma. Materials and methods Material analyzed. The specimens examined morphologically in this study are deposited in the following collections: ALP (Adriano Lúcio Peracchi, Universidade Federal Rural do Rio de Janeiro), Seropédica; AMNH (American Museum of Natural History), New York; BMNH (Natural History Museum), London; CMUFLA (Universidade Federal de Lavras), Lavras; CMUFS (Universidade Federal de Sergipe), Aracaju; DZSJRP (Departamento de Zoologia da Universidade Estadual Paulista), São José do Rio Preto; IAvH-M (Instituto Alexander von Humboldt), Villa de Leyva; LMUSP (Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo), Piracicaba; LSUMZ (Museum of Natural Science, Louisiana State University), Baton Rouge; MCN-MQ (Museu de Ciências Naturais da Pontifícia Universidade Católica), Belo Horizonte; MUSM (Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos), Lima; MZUSP (Museu de Zoologia da Universidade de São Paulo), São Paulo; ROM (Royal Ontario Museum), Toronto; TTU (Museum of Texas Tech University), Lubbock; UFMT (Universidade Federal de Mato Grosso), Cuiabá; UFPB (Universidade Federal da Paraíba), João Pessoa; UFMG (Universidade Federal de Minas Gerais), Belo Horizonte; USNM (National Museum of Natural History, Smithsonian Institution), Washington D.C.; ZMB (Museum für Naturkunde), Berlin; ZUEC (Museu de Zoologia da Universidade Estadual de Campinas), Campinas; and ZUFMS (Universidade Federal de Mato Grosso do Sul), Campo Grande. We obtained tissue samples from the following collections: AMNH; CMUFLA; FMNH (Field Museum of Natural History), Chicago; IDSM (Instituto de Desenvolvimento Sustentável Mamirauá), Tefé; LSUMZ; MPEG (Museu Paraense Emílio Goeldi), Belém; MSB (Museum of Southwestern Biology, University of New Mexico), Albuquerque; MZUC (Museo de Zoologia, Universidad de Carabobo), Valencia; MZFC (Museo de Zoología Al- 6 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. fonso L. Herrera), México City; ROM; TTU; UFMG; UFPB; and UFES (Universidade Federal do Espírito Santo), Vitória. The collecting localities of the specimens and their geographical coordinates are compiled in the gazetteer (Appendix 1). Tissue samples. We obtained DNA sequences from 252 specimens of Chiroderma representing every known phenotype of Chiroderma and spanning the entire geographic distribution of the genus (Hall 1981; Gardner 2008a). The associated tissue collection of the specimens, GenBank accession numbers, and base-pair length are listed in Table S1 (Appendix 2) and Table 2. TABLE 2. Specimens of Chiroderma and the outgroup sequenced for the concatenated molecular analyses. The GenBank accession numbers are given under the columns of each loci. COI = cytochrome c oxidase subunit 1; CYTB = cytochrome b; RAG2 = recombination activating gene 2; DBY = DEAD box RNA helicase Y. Taxon Voucher Tissue COI CYTB RAG2 DBY Chiroderma doriae TTU 99569 TK 64800 MN814079 MN823703 MN814190 MN814199 Chiroderma doriae ROM 111114 or 111149 TK 16379 ― AY169958 ― MN814198 Chiroderma gorgasi ROM 104342 F 38196 MN714901 MN714902 MN814210 ― Chiroderma improvisum ROM 126002 F 59453 MN714893 ― MN814211 MN814200 Chiroderma improvisum TTU 31403 TK 15713 MN814080 L28938 MN814191 ― Chiroderma salvini FMNH 174645 BDP 4069 MN814098 MN823704 KM362058 ― Chiroderma salvini LSUMZ 25470 M 521 MN814104 ― MN814192 MN814202 Chiroderma salvini TTU 62462 TK 34858b MN814083 MN823712 MN814196 ― Chiroderma salvini TTU 34309 TK 9031 MN814085 MN823708 MN814197 MN814201 Chiroderma scopaeum TTU 109703 TK 148769 MN814082 MN823707 MN814195 ― Chiroderma scopaeum TTU 110649 TK 148371 MN814081 MN823706 MN814194 ― Chiroderma trinitatum ROM 120168 F 52956 HQ545629 ― MN814214 MN814204 Chiroderma trinitatum ROM 125124 F 58815 MN714882 ― MN814212 MN814203 Chiroderma villosum ROM 101245 F 35423 JF446499 ― MN814217 MN814206 Chiroderma villosum ROM 105361 F 37690 JF448825 ― MN814216 MN814205 Chiroderma villosum ROM 104352 F 38209 JF447405 ― MN814221 MN814208 Chiroderma villosum ROM 108219 F 43260 JF454564 ― MN814218 MN814207 Chiroderma villosum ROM 120239 F 53027 HQ545445 ― MN814222 MN814209 Vampyressa thyone Not located TK 70533 ― AY157050 AF316493 ― Vampyriscus bidens Not located TK 55322 ― AY157045 AF316492 ― Vampyriscus brocki ROM 112094 TK 11496 JF448145 AY157043 ― ― DNA amplification and sequencing. Genomic DNA was extracted from skeletal muscle or internal organs stored in ethanol or frozen in liquid nitrogen, using the DNeasy Tissue Kit (QIAGEN, Inc.) following their suggested protocol. Four loci were amplified using the Polymerase Chain Reaction (PCR) method: the mitochondrial cytochrome c oxidase subunit 1 (COI) and cytochrome b (CYTB), the nuclear exon recombination-activating gene 2 (RAG2), and the chromosome Y-linked intron, DEAD box RNA helicase Y (DBY). Primers used and the PCR protocols are described in Baker et al. (2000), Clare et al. (2007), Lim et al. (2008), and Lim (2017). For example, the PCR mix for COI consisted of 8.92 μL of distilled deionized water, 1.25 μL of buffer EH, 0.5 μL of each primer at a concentration of 10 μM, 0.28 μL of dNTP’s (Invitrogen) at a concentration of 10 mM, 0.05 μL of 1 U Platinum Taq polimerase (Invitrogen), and 1 μL of standard DNA. The PCR products were sequenced using 4 μL and a mix of 11 μL composed of 3.5 μL of distilled deionized water, 1 μL of primers, 2 μL of 5x sequencing buffer 5´ (Applied Biosystems), 0.5 μL of BigDye® v. 3.1 (Applied Biosystems). The amplification reactions were carried out in a 1-minute cycle at 96 °C followed by 30 cycles of 10 seconds at 96 °C, 5 seconds at 50 °C, 4 minutes at 60 °C, and 5 minutes at 60 °C. The reactions products were purified using a precipitation protocol of EDTA/NaOAc/Ethanol, and the nucleotides of both strands were sequenced in an ABI PRISM 3730 Genetic Analyzer® sequencer, using the protocols of Applied Biosystems. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 7 Resulting chromatograms were edited and aligned in Sequencher™ v. 4.8 (Gene Codes Corporation, Ann Arbor, Michigan). Genetic distances between pairs of species were calculated for the COI dataset using the Kimura 2-parameter substitution model (Kumar et al. 2016). Phylogenetic analyses. The best-fit nucleotide substitution models, as well as the best partitioning scheme were selected using the Bayesian information criterion (BIC) and a greedy search algorithm, as implemented in PartitionFinder2 (Lanfear et al. 2016). Phylogenetic analyses were carried out using maximum likelihood and Bayesian inference on three datasets: (1) a matrix containing the partial sequences of COI for 252 specimens of Chiroderma and 6 specimens of the outgroup (see Table S1 in Appendix 2), (2) a matrix with concatenated data of four sequenced mitochondrial and nuclear loci (COI, CYTB, RAG2, and DBY), and (3) a third matrix with concatenated data from three loci (COI, RAG2, and DBY). We excluded CYTB sequences from the third dataset because several specimens sequenced for the nuclear loci lacked sequences for this mitochondrial gene, and because CYTB has a similar and linked inheritance mode as COI. We trimmed out part of the RAG2 and DBY sequences, for the analyses including the three genes, by excluding regions in which several individuals had missing data after the alignment. After trimming, the length of RAG2 sequences was 840 bp (from the original 876 bp), and DBY was 460 bp (reduced from 484 bp). Length of the COI fragment was 657 bp. Bayesian inference analyses were conducted in MrBayes v.3.2.6 (Ronquist et al. 2012). For the three analyses, i.e. the analysis including only COI sequences, the analysis with the three genes, and the analysis with four genes, we used the partitioning schemes suggested by PartitionFinder2. For the three phylogenetic inferences, two independent Markov Chain Monte Carlo (MCMC) analyses were run for 30,000,000 generations each, sampling at every 2,000 generations. We used four independent chains and a burn-in of 25%. Two phylogenetic analyses using maximum likelihood were conducted in IQ-TREE, as implemented in the online platform W-IQ-TREE (Nguyen et al. 2014; Trifinopoulos et al. 2016). One analysis included only the COI dataset, and the other one included the three-gene dataset used in the Bayesian inference (COI, RAG, and DBY). The partitioning schemes were used in both maximum likelihood analyses (Chernomor et al. 2016). Branch support estimation was inferred using the ultrafast bootstrap (UFBoot), as implemented in IQ-TREE, using 1,000 replicates (Hoang et al. 2017). Delimitation of putative species was based on the COI phylogeny, using the Multi-rate Poisson Tree Process (mPTP) algorithm, as implemented in Kapli et al. (2017). This coalescence-based species delimitation method uses rooted, non-ultrametric, gene trees and heuristic algorithms to infer speciation events based on the nucleotide substitution rates (Zhang et al. 2013; Kapli et al. 2017). The tree used in the delimitation test was estimated in MrBayes, and included only unique haplotypes (155 terminals). To estimate support in the delimitations, we carried out a MCMC analysis with 1,000,000 generations. The MrBayes and PartitionFinder2 analyses were carried out in the CIPRES Science Gateway online platform (Miller et al. 2010). We used the R packages Ape (Paradis et al. 2004) and Phytools (Revell 2012) to plot the concatenated cladograms. Morphological analyses. We have examined 1063 specimens of Chiroderma. External and osteological characters were based on Handley (1966a), Velazco (2005), Tavares (2008), and Tavares et al. (2014). Dental nomenclature followed Miller (1907) and Garbino & Tavares (2018a). We took measurements of the skull, dentition, and external characters with digital calipers (to the nearest 0.01 mm) and calculated descriptive statistics (mean, range, and standard deviation) for each sample. We also collected information from specimen labels or collection catalogues of body mass (in grams), head and body length (TL), foot length (HF), ear length (E), and tibia length, but these values were used for only descriptive assessments, not for statistical analyses. Statistical analyses were carried out in SPSS 19 for Windows and in Past3 (Hammer et al. 2001). The following measurements were taken (Fig. 3): Forearm length (FA): distance from the distal extremity of the olecranon to the wrist (including carpals), measured with the wing folded. Greatest length of skull (GLS): distance from the most caudal point of the occipital region to the most anterior point of the premaxilla, excluding the upper incisors. 8 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 3. Schematic drawing of the cranium of an adult Chiroderma villosum, based on specimen AMNH 235314, showing the limits of the cranial and dental measurements. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 9 Condylo-incisive length (CIL): distance from the most caudal point of the occipital condyle to the labial surface of upper incisors. Condyle-canine length (CCL): distance from the most caudal point of the occipital condyle to the labial surface of upper canines. Post orbital breadth (PB): least breadth across the frontals, measured posterior to the post-orbital processes. Braincase breadth (BB): greatest width of braincase, measured above and behind the zygomatic arches, on the more globular portion of braincase, and excluding the paraoccipital and mastoid processes. Mastoid breadth (MB): greatest width, measured between the most lateral points of the mastoid processes of the temporal bone. Zygomatic breadth (ZB): greatest transverse dimension across zygomatic arches, measured between the most lateral points of each arch. Maxillary toothrow length (MTRL): distance from the mesial surface of the upper canine to the distal surface of the second upper molar. Distance across upper canines (C-C): distance between the labial surfaces of the upper canines. Distance across upper first molars (M1-M1): distance between the labial surfaces of the first upper molars. Distance across upper second molars (M2-M2): distance between the labial surfaces of the second upper molars. Dentary length (DENL): distance from the most caudal point of the mandibular condyle to the most anterior point of the dentary. Mandibular toothrow length (MANDL): distance from the distal surface of the second lower molar to the mesial surface of the lower canine. Distance between coronoid and angular processes (CAL): distance from the most dorsal point of the coronoid process to the most ventral point of the angular process. Only adult specimens were used in the morphological analyses. Specimens were classified as “adults” based on complete fusion of epiphyses on the metacarpals and phalanxes (Pine 1972). Occurrence of sexual dimorphism in Chiroderma was tested in series of more than five specimens of each sex, collected at the same locality or nearby localities. We performed principal component analyses (PCA) for each sample and extracted the PC1. We used t-tests to compare the PC1 values of males and females. To verify grouping in the morphospace among the specimens of the distinct species of Chiroderma, the linear measurements were log-transformed and the principal components were extracted from a variance-covariance matrix. Due to the low number of specimens measured for the C-C variable, that measurement was used only in descriptive statistics, not in the principal component analyses. Geographic variation in C. doriae. To investigate a possible correlation between the phenotype of C. doriae and the abiotic features across the distribution of the species, we extracted 19 climatic variables, related to temperature and rainfall, from the WorldClim database (Hijmans et al. 2005; https://www.worldclim.org/bioclim). Latitude was also extracted from the collecting localities of C. doriae and used in the analysis. The climatic and morphometric variables were log-transformed and two principal component analyses were done. The first PCA included the 19 climatic variables and the latitude, and the second PCA included the 13 morphometric variables. The first component (PC1) was extracted from both analyses and compared using Pearson’s correlation. Results Analyses of cytochrome c oxidase subunit 1 sequences. We obtained COI sequences of 252 specimens of Chiroderma, of which 141 were downloaded from GenBank and 111 were sequenced in this study. Sequence length varied from 539 to 657 base pairs (bp). The best partitioning scheme for the COI dataset implements a nucleotide substitution model for each codon position. For the first position the selected model was the K80 + I; for the second position, the F81 model; and for the third, the GTR + Gamma model. The phylogenetic analyses recovered high support values for the monophyly of Chiroderma and for the two species of Vampyriscus used as outgroup. Seven species were suggested by the mPTP species delimitation tests, which coincide with highly-supported nodes of the phylogenetic analyses (Figs. 4, 5). Phenotypic data overlaid with the results of the molecular analysis also supported 10 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. the recognition of seven species in Chiroderma, two of them polytypic. All taxa we recognize here have available names. FIGURE 4. Bayesian phylogeny obtained from the analysis of cytochrome c oxidase subunit 1 (COI) of Chiroderma. The diagram represents the MCC (Maximum Clade Credibility) tree summarizing 22,501 molecular phylogenies. The vertical dashed line indicates the threshold between the between-species Poisson tree processes (PTP) and the within-species PTP. The triangle base lengths are proportional to the sample size of each clade. The posterior probability values are shown above the corresponding branches. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 11 FIGURE 5. Chiroderma phylogeny obtained from the Bayesian inference analysis of partial sequences of cytochrome c oxidase subunit 1, recombination-activating gene 2, and DEAD box RNA helicase Y. The MCC (Maximum Clade Credibility) tree summarizes 15,002 molecular phylogenies. The pie charts at the nodes show the posterior probability (PP), with the full circle indicating PP = 1. The Bayesian Inference (BI) and maximum likelihood (ML) phylogenetic analyses consistently recovered three clades: salvini and scopaeum; improvisum and villosum; and doriae, gorgasi, and trinitatum. However, in the ML analysis, branch supports were generally lower, and there was a polytomy at the base of Chiroderma. In addition, the clade containing salvini and scopaeum was recovered as the sister group to the clade containing improvisum and villosum, albeit with low support (UFBoot=79%) (Fig. 4, Fig. S2 in Appendix 3). In the BI analysis, the clade containing salvini and scopaeum was the sister group to the remaining Chiroderma species. Another difference between the two analyses was that the nodes supporting the salvini and scopaeum lineages were not recovered in the ML phylogeny, although the node supporting the two putative species was recovered with a high support value (UFBoot=97%). In the ML analysis improvisum is nested in the villosum clade, but the nodes leading to this topology had low support (UFBoot < 75%). Both BI and ML analyses recovered a highly supported clade (posterior probability or PP=1, UFBoot=97%) containing individuals of scopaeum and salvini. Within this clade, the BI analyses recovered two haplogroups, one distributed from western México to Central America, that corresponds to scopaeum and another distributed from 12 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. eastern México to South America, that we identify as salvini (Fig. 4). This (salvini + scopaeum) clade is sister to the group of remaining Chiroderma species, which consists of two clades. One clade (PP=1, UFBoot=96%) contains two haplogroups, one widely distributed and the other restricted to the Lesser Antilles that correspond to villosum and improvisum, respectively. The other clade (PP=1, UFBoot=79%) has a trans-Andean haplogroup (sensu Haffer 1967) identified as gorgasi, the sister group of a clade containing two cis-Andean haplogroups, an Amazonian one identified as trinitatum and one from eastern Brazil and Paraguay identified as doriae. A single individual, identified based on phenotypic characteristics as Chiroderma vizottoi Taddei and Lim, 2010, was nested in the clade identified as doriae. The mean genetic distance between pairs of putative species, as defined by the analysis of COI sequences, varied between 2.5% (between doriae and trinitatum) and 11.6% (between doriae and scopaeum) (Table 3). Within the putative species, the mean genetic distance varied between 0.2% (improvisum) to 1.2% (villosum) (Table 3). TABLE 3. Pairwise COI sequence divergence (percentage) among the putative species of Chiroderma. The intraspecific percentages of genetic distance are presented in bold on the diagonal. salvini scopaeum doriae trinitatum gorgasi improvisum salvini 0.39 scopaeum 4.25 0.68 doriae 11.05 11.59 0.49 trinitatum 11.28 11.43 2.52 0.67 gorgasi 10.2 10.54 3.88 3.96 1.04 improvisum 10.06 9.97 6.96 6.73 6.00 0.22 villosum 9.67 9.57 7.38 7.16 6.36 4.19 villosum 1.17 Concatenated genetic analyses. The concatenated alignment of three loci had a length of 1957 bp, including 657 bp of COI, 840 bp of RAG2, and 460 bp of DBY. The complete concatenated analysis including four loci had a length of 3157 bp: 657 bp of COI, 1140 bp of CYTB, 876 bp of RAG2, and 484 bp of DBY. The partitioning schemes used in each analysis are shown in Table 4. TABLE 4. Partitioning schemes and substitution models for the two concatenated molecular datasets of Chiroderma. COI = cytochrome c oxidase subunit 1, CYTB = cytochrome b, RAG2 = recombination-activating gene 2, and DBY = DEAD box RNA helicase Y. Dataset (partition number) Partition Model 3 genes (1) COI (position 1), RAG2 (position 2) K80+I 3 genes (2) COI (position 2) F81+I 3 genes (3) COI (position 3) GTR+G 3 genes (4) RAG2 (position 1), RAG2 (position 3) HKY+I 3 genes (5) DBY JC+I 4 genes (1) COI (position 1), CYTB (position 1), RAG2 (position 2) K80+I 4 genes (2) COI (position 2), CYT (position 2) F81 4 genes (3) COI (position 3) GTR+G 4 genes (4) CYTB (position 3) HKY 4 genes (5) RAG2 (position 1), RAG2 (position 3) F81+I Resulting topologies estimated using the three loci dataset analyzed with BI and ML were similar and generally agreed with the COI topology, however, the support values for each node were different (Fig. 5, Fig. S3 in Appendix 3). Both analyses recovered the clade containing salvini and scopaeum as the sister group of a clade containing the other putative species of Chiroderma; however, neither taxon was reciprocally monophyletic. In the BI analysis, the two sequences of improvisum were nested in the villosum clade, but the node was not strongly supported (PP=0.79) and formed a trichotomy, whereas the two putative species were reciprocally monophyletic in the ML analysis, with the villosum node having low support (UFBoot=70%). Contrasting with the COI analysis, the doriae + trinitatum clade had low support (PP=0.87, UFBoot=76%) in the ML analysis. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 13 The BI analysis including the four loci also recovered the three main clades of Chiroderma identified in the other analyses, i.e., (salvini + scopaeum), (improvisum + villosum) and (doriae + gorgasi + trinitatum) (Fig. S4 in Appendix 3). However, the relationship among them differed. In the BI analysis, the improvisum + villosum clade was recovered as the sister group to a low-supported clade (PP=0.64) containing all of the other species. The villosum + improvisum clade also was recovered with low support (PP=0.79) and, as in the three-loci analysis, the two sequences of improvisum were nested within the villosum clade. The doriae + trinitatum clade had high support (PP=0.99), however, trinitatum was paraphyletic, with the single specimen of doriae forming a weakly-supported clade (PP=0.59) with one of the two individuals of trinitatum. Morphological analyses. Specimen series large enough to verify the presence of sexual dimorphism were obtained for each putative species, except for improvisum. For villosum, we analyzed representative series from Panamá, the Venezuelan Amazon, and southeastern Brazil. In most of the sample, females averaged slightly larger than males, but the difference was not statistically significant (Appendix 4). The exception was the villosum series from Venezuela in which the females were significantly larger than males, with no overlap at the 95% level (Appendix 4). However, we found no significant sexual dimorphism in other species or populations of Chiroderma; therefore, males and females were analyzed together. FIGURE 6. Dispersion of the first and second principal components (PC1 and PC2) extracted from the variance-covariance matrix of a principal component analysis of 13 cranio-dental measurements of 839 specimens of Chiroderma. The convex polygons represent the recognized species and subspecies, except for C. improvisum where only two specimens were measured. We compared measurements of 839 specimens belonging to the seven putative species suggested by the coalescent analysis using a PCA based on the 13 morphometric variables described in the Materials and Methods section. The first component (PC1) accounted for 94.1% of the observed variation, and the second component (PC2) was responsible for 2%, suggesting that most of the variation is concentrated along the size axis (Table 5). The two smallest putative species, gorgasi and trinitatum, grouped with wide overlap at the lower extreme of the PC1 axis (Fig. 6). The two largest putative species, doriae and improvisum, were placed at the higher extremity of the PC1 axis. The results of the principal component analyses carried out between selected pairs of species are discussed in the “Taxonomy” section together with results of the analyses of discrete phenotypic traits relevant to diagnose each species discussed in this study. Discussion Speciation is a continuous process and depending on the stage of the divergence and the theoretical concept adopted, distinct numbers of species may be recognized (de Queiroz 2007). Whatever the species concept adopted, most 14 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. taxonomists agree that species correspond to distinct evolutionary lineages (Simpson 1961; Wiley 1978; Mayden 1999; de Queiroz 2005). Such lineages can be identified based on, but not restricted to, reciprocal monophyly and diagnostic morphological and ecological characters (Gutiérrez & Garbino 2018). TABLE 5. Loadings of the first two principal components (PC1 and PC2) extracted from the analysis of Chiroderma specimens. Measurements PC 1 PC 2 GLS 0.249 0.073 CIL 0.279 0.066 CCL 0.283 0.042 PB 0.169 0.173 BB 0.198 0.080 MB 0.222 -0.066 ZB 0.270 0.008 MTRL 0.328 0.159 M1-M1 0.288 0.126 M2-M2 0.282 0.098 MANDL 0.342 0.249 DENL 0.306 0.064 CAL 0.331 -0.912 Therefore, we understand that the coalescence-based “species delimitation” tests useful to identify population structure, may or may not correspond to speciation processes (Sukumaran & Knowles 2017). In this study, together with the evidence from molecular phylogenetics data and coalescent methods, species recognition was corroborated by morphology, ecology, and geographic distribution. As a prelude to the formal taxonomic treatment of the species, we summarize our logic behind the species we recognize in this study. Chiroderma doriae is a haplogroup with strong molecular support, corroborated by morphological characters that clearly distinguishes it from the other species of Chiroderma. C. doriae occurs in sympatry only with the distantly-related C. villosum (Table 6). Our concept of C. doriae includes vizottoi Taddei & Lim, 2010, a taxon considered to be endemic to the Caatinga (Carmignotto & Astúa 2017), that we classify here as a subspecies of C. doriae. We justify subspecific recognition because vizottoi represents a geographically and phenotypically (smaller and paler-colored) distinct population that is genetically indistinguishable from other C. doriae populations. TABLE 6. Geographic relationships among the species of Chiroderma. doriae gorgasi improvisum salvini scopaeum trinitatum doriae — gorgasi allopatric improvisum allopatric allopatric — salvini allopatric sympatric allopatric — scopaeum allopatric allopatric allopatric sympatric — trinitatum allopatric allopatric allopatric sympatric allopatric — villosum sympatric sympatric allopatric sympatric sympatric sympatric villosum — — Chiroderma improvisum is the largest species in the genus, easily diagnosed by size, and skull and pelage characters. It is the only Chiroderma occurring in the Lesser Antilles, and consequently it is genetically isolated and does not occur in sympatry with other congeners (Table 6). Chiroderma villosum is a strongly supported haplogroup and clearly diagnosable morphologically although it is the most variable taxon, both individually and geographically. We consider the subspecies C. villosum jesupi as valid, and representing the haplogroup exclusive to the trans-Andean region. The name isthmicum of Miller (1912) is a junior synonym of jesupi. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 15 The salvini complex The morphological analyses suggest a species of Chiroderma exclusive to the Pacific versant of western–northwestern México, north of the isthmus of Tehuantepec. The oldest available name for this lineage is scopaeum of Handley (1966a). The mitochondrial DNA analyses also recovered a haplogroup from western México distinct in most sequences from individuals from Central and South America we diagnosed morphologically as salvini, partly corroborating our morphology-based conclusion. However, three specimens, from Guatemala, El Salvador, and Panamá, had a salvini phenotype but were nested in the western México clade. In the taxonomy section dealing specifically with scopaeum we discuss the implications of these results, which suggest a paraphyletic salvini if scopaeum is recognized as a full species. Chiroderma salvini comprises a clade containing specimens from Costa Rica, Panamá, Bolivia, Perú, and Venezuela supported by morphology, geographic distribution, and mitochondrial DNA sequences, that also included haplotypes of C. scopaeum. The species most similar morphologically to C. salvini is C. villosum, from which it can be distinguished by larger size and by several qualitative features. It occurs in sympatry with C. gorgasi, C. trinitatum, C. v. jesupi, and C. v. villosum, and there is a probable contact zone with C. scopaeum in the state of Veracruz, eastern México (Table 6). Chiroderma scopaeum comprises a haplogroup, with specimens from México, Guatemala, El Salvador, and Panamá having high support values in the phylogenetic analyses. However, the specimens from western México are morphologically distinct from Central American and eastern Mexican specimens, which we identify as C. salvini. We consider scopaeum to be a valid species, restricted to western/northwestern México. The trinitatum complex The following two species are the smallest in Chiroderma, distinguishable from larger Chiroderma spp. by their size and qualitative characteristics of the skull and dentition. However, the two species are phenotypically similar to each other. The molecular phylogenies recovered a cis-Andean haplogroup of small Chiroderma, for which the applicable name would be trinitatum Goodwin, 1958, as the sister group of C. doriae. However, the sister group of this clade is a trans-Andean haplogroup of small Chiroderma, for which the oldest name is gorgasi Handley, 1960. Under the scenario of a paraphyletic C. trinitatum, one option is to synonymize the two small species into the oldest name, which is C. doriae Thomas, 1891, and recognize three subspecies. C. d. doriae, C. d. trinitatum, and C. d. gorgasi. However, given the significant phenotypic differences among C. doriae and the other species, we recognize gorgasi and trinitatum as distinct species, bearing in mind that both are not easily diagnosed morphologically, although there are subtle dental and cranial shape differences (Lim et al. 2020). Chiroderma gorgasi Handley, 1960 is the name we use for the trans-Andean populations of small Chiroderma. The name gorgasi has been used as a subspecies of C. trinitatum by some authors (Barriga-Bonilla 1965; Jones & Carter 1976; Gardner 2008a). The species occurs in sympatry with C. salvini and C. v. jesupi (Table 6). Chiroderma trinitatum consists of a highly supported haplogroup of small Chiroderma from the cis-Andean Guiana Shield and Amazon basin. It occurs in sympatry with C. salvini and C. v. villosum (Table 6). Taxonomy Family Phyllostomidae Gray, 1825 Subfamily Stenodermatinae Gervais, 1856 Tribe Stenodermatini Gervais, 1856 Subtribe Vampyressina Baker et al. 2016 Genus Chiroderma Peters, 1860 Synonyms: Chiroderma Peters, 1860: 747. Type-species Chiroderma villosum Peters, 1860, by monotypy. Mimetops Gray, 1866: 117. Listed in the synonymy of Chiroderma; being a nomen nudum. Chirodesma Thenius, 1989: 113 (not verified). Incorrect spelling of Chiroderma W. Peters, 1860. 16 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Distribution. Chiroderma is in western, eastern, and southern México, Central America (Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa Rica, and Panamá), Lesser Antilles (Guadeloupe, Marie-Galante, Monserrat, Saint Kitts and Nevis), Trinidad and Tobago, and South America (Venezuela, Guyana, Suriname, French Guiana, Colombia, Ecuador, Perú, Bolivia, Paraguay, and Brazil south to the state of Santa Catarina) (Fig. 7). FIGURE 7. Collecting localities of the Chiroderma specimens analyzed in this study. The localities are compiled in the gazetteer (Appendix 1). Diagnosis. Chiroderma is a genus of small to large-sized fruit and seed-eating bats (total length of head and body 50–93 mm, length of forearm 34–58 mm, body mass 11–42 g; Tables 7 and 8). Dorsal fur dense, with long guard hairs, standing out above the underfur covering the body, and especially conspicuous on the cephalic region. Dorsal fur varies from buff to dark brown or dark gray; individual hairs with three well-defined bands, with the middle band always wider and paler than basal and terminal bands. Ventral pelage varies from pale gray to plumbous gray. The median dorsal stripe conspicuous or faint; may be absent in some C. villosum. Dorsal stripe begins at interscapular region and extends to the base of uropatagium. Four facial stripes present in most individuals, and may be bright and wide or faint and narrow. Tip of the spear of noseleaf may be notched. Horseshoe of noseleaf with free margins along its entire extension. Ears relatively small and round. Forearm densely furred along the proximal ⅔ of its length. Wing membranes, i.e., propatagium, chiropatagium, plagiopatagium, and uropatagium, are dark and opaque, except for the pale, translucent membrane between digits II and III of the dactylopatagium. Uropatagium relatively well-developed, extending posteriorly to the level of the knees; densely furred dorsally along ⅔ of its length. Plagiopataium inserts at the metatarsus. Tail absent. Calcar shorter than foot. Skull with a conspicuous notch at the region of the nasal bones, which are extremely reduced (Fig. 8). Orbital region relatively large; distinct postorbital processes. Frontonasal region relatively straight, in lateral view (neither concave nor convex; Fig. 8). Hard palate long, extending posteriorly close to glenoid fossa. Basioccipital pits shallow or absent. Dental formula: I 2/2, C 1/1, P 2/2, M 2/2. First upper incisors (I1) conic in cross-section, elongated with simple tips (not bilobed), and more than twice the crown size of the second upper incisors (I2). First upper premolar (P3) and canine (C) in contact; diastema between P3 and second upper premolar (P4). First and second SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 17 upper molars (M1 and M2) with approximately the same occlusal area, or M2 with slightly larger area than M1; M2 triangular in occlusal view, with protocone distally placed and level with centrocrista. Hypocone absent in both M1 and M2; small hypoconal basin present in M1. With cranium and mandible in occlusion, there is a lateral gap bordered by the upper canine (C), first upper premolar (P3), and the two lower premolars (p2 and p4; Fig. 9). FIGURE 8. Dorsal, ventral, and lateral views of skull and lateral view of the mandible of Chiroderma villosum (USNM 408644) from San Juan, Amazonas, Venezuela. 18 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 9. Lateral view of skull and mandible in occlusion for A) Chiroderma salvini (ROM 99703), B) Chiroderma scopaeum (TTU 110649), C) Chiroderma d. doriae (TTU 99569), D) Chiroderma villosum (USNM 560607), and E) Chiroderma improvisum (ROM 126002). Coronoid process of mandible tall, its height approximately level with the tip of lower canine (c). Angular process conspicuous, projecting ventro-posteriorly in relation to the horizontal ramus of the mandible. Mandibular condyle relatively high, level with or slightly above tooth row. First lower premolar (p2) close to canine, the two teeth usually in contact; p2 shorter in height and length than second lower premolar (p4), ranging from approximately ¼ to ⅔ the height of p4. Diastema between p2 and p4. Second lower molar (m2) is the largest mandibular tooth and approximately twice the mesiodistal length of the first lower molar (m1). Well-developed metaconid, entoconid, protoconid, and hypoconid in m2. There is a fifth cusp between the hypoconid and entoconid, that we identify as the hypoconulid, following Garbino & Tavares (2018a). Discrete morphological comparisons among the species of Chiroderma recognized in this study are summarized in Table 9, and the descriptive statistics of the species is summarized in Tables 7 and 8. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 19 TABLE 7. Descriptive statistics (mean, standard deviation, range in parentheses, and sample size) of adult specimens of Chiroderma salvini, C. scopaeum, C. doriae (including subspecies), C. gorgasi and C. trinitatum. See Materials and Methods for measure abbreviations and descriptions. C. salvini C. scopaeum C. d. doriae C. d. vizottoi C. gorgasi C. trinitatum Body mass 28.3±2.49 (24–34) 31 23.5±2.98 (19–28) 17 31.3±4.47 (20–42) 51 – 13.3±1.68 (12–19) 11 14.8±2.35 (11–22) 54 TL 75.7±4.31 (66–89) 165 69.8±4.36 (61–80) 30 76.5±7.5 (67–93) 13 – 58.9±3.99 (53–65) 17 58.5±3.84 (50–70) 100 FA 49.53±1.5 (45.5–53) 177 45.2±1 (43.5–46.9) 33 51.8±1.4 (48.5–54.6) 91 47.9±1.37 (45.4–50.2) 14 37.7±0.72 (36.8–39.4) 17 39.1±1.44 (34.4–43) 113 GLS 26.4±0.56 (25.2–28.3) 205 24.4±0.46 (23.6–25.4) 32 27.9±0.53 (26–29.1) 93 25.8±0.42 (25.3–26.8) 13 20.9±0.42 (20.2–21.8) 16 21.4±0.55 (20.1–22.8) 118 CIL 24.7±0.56 (23.2–26.3) 201 22.5±0.46 (21.6–23.3) 31 26.3±0.51 (25–27.5) 92 24.1±0.43 (23.7–25.2) 12 19.2±0.44 (18.4–20.1) 15 19.6±0.56 (18–21.1) 115 CCL 23.7±0.53 (22.4–25.2) 201 21.7±0.45 (20.7–22.4) 32 25.4±0.5 (24.2–26.5) 93 23.2±0.39 (22.7–24.1) 12 18.4±0.45 (17.5–19.4) 15 18.8±0.55 (17.5–20.2) 115 PB 6.2±0.22 (5.6–7) 211 5.9±0.19 (5.5–6.5) 33 6.3±0.17 (5.9–6.7) 94 6±0.18 (5.7–6.3) 12 5.3±0.18 (4.9–5.6) 17 5.3±0.17 (4.8–5.8) 119 BB 11.3±0.29 (10.6–12.2) 205 10.8±0.25 (10.3–11.2) 32 11.9±0.34 (10.7–12.6) 93 11.2±0.22 (10.8–11.4) 12 9.5±0.18 (9.3–10) 16 9.6±0.25 (8.9–10.3) 118 MB 12.7±0.32 (11.7–13.6) 201 11.8±0.27 (11.2–12.5) 32 13.7±0.32 (12.6–14.5) 93 12.7±0.2 (12.4–13.1) 12 10.5±0.18 (10.3–11) 15 10.7±0.28 (10.2–11.6) 118 ZB 16.5±0.44 (15.5–17.6) 194 15.1±0.43 (14–15.8) 32 17.7±0.41 (16.9–18.7) 93 16.3±0.4 (15.7–16.8) 12 13±0.33 (12.4–13.9) 15 13.15±0.44 (11.6–14.3) 115 MTRL 9.6±0.25 (9–10.8) 209 8.6±0.23 (8–9.1) 33 10.3±0.25 (9.8–11.2) 95 9.4±0.24 (9–9.9) 12 7.1±0.23 (6.8–7.6) 16 7.3±0.24 (6.6–7.9) 119 C-C 6.2±0.2 (5.7–6.9) 210 5.5±0.17 (5.2–5.9) 29 6.3±0.19 (5.9–6.7) 35 5.8±0.1 (5.6–6) 9 4.7±0.15 (4.5–5) 16 4.8±0.17 (4.3–5.2) 112 M1M1 11.6±0.35 (10.7–12.8) 209 10.4±0.31 (9.8–11) 32 12.5±0.3 (11.9–13.3) 95 11.5±0.35 (10.9–12) 12 9±0.27 (8.6–9.6) 16 9.2±0.33 (8.4–9.9) 119 M2M2 12±0.34 (11–13) 209 10.8±0.3 (10.2–11.3) 32 13±0.33 (12.1–13.7) 95 11.9±0.39 (11.3–12.6) 12 9.4±0.28 (8.9–10.1) 16 9.55±0.33 (8.9–10.3) 117 DENL 18.2±0.48 (17–19.5) 210 16.5±0.41 (15.8–17.2) 33 19.4±0.49 (17–20.5) 95 17.9±0.22 (17.5–18.3) 11 13.8±0.35 (13.2–14.5) 17 14±0.43 (13.2–15.2) 120 MANDL 10.5±0.27 (10–11.6) 209 9.38±0.29 (8.6–10) 33 11.2±0.27 (10.1–11.7) 95 10.3±0.23 (9.7–10.8) 12 7.6±0.25 (7.3–8.2) 16 7.8±0.24 (7.3–8.5) 119 CAL 7±0.32 (6–8.2) 207 6.5±0.27 (6–7) 33 8.4±0.32 (7.6–9.2) 95 7.6±0.27 (7.2–8) 12 5.5±0.29 (5–6.1) 16 5.7±0.28 (5.1–6.5) 119 The species of Chiroderma for which the karyotype is known, i.e., C. doriae, C. improvisum, C. salvini, C. trinitatum, and C. villosum, have a chromosomal complement of 2n = 26 and FN = 48, a subtelocentric X-chromosome, and a submetacentric or subtelocentric Y-chromosome (Baker 1967, 1973; Baker & Hsu 1970; Baker & Genoways 1976; Varella-Garcia & Taddei 1985). Chiroderma salvini Dobson, 1878 Synonyms: Chiroderma salvini Dobson, 1878: 532; type locality “Costa Rica.” Chiroderma salvini salvini: Handley, 1966: 297; name combination. Chiroderma salvini scopaeum Reid and Langtimm, 1993: 300; not Chiroderma salvini scopaeum Handley, 1966. 20 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Type Material. The type of C. salvini (BMNH 68.8.16.2), fixed by original designation, is a fluid-preserved adult male with skull removed and tongue still attached to the body. The anterior half of the pelage is more faded than the posterior half. Nevertheless, it is possible to note whitish hairs above the lips and below the eyes. A thin median dorsal stripe extends from the middle dorsum to the posterior extremity of the lower back (contra Dobson 1878: 532, who considered the stripe to be absent). The cranium and mandible are in good condition with all teeth present. Some parts of the basicranium, as well as a large part of the palate have attached soft tissue. The I1s have convergent tips that do not touch each other. The angular processes of the mandible are broken. The species was named after Osbert Salvin, a British zoologist who edited and organized, with Frederick Godman, the 40-volume “Biologia Centrali-Americana”. On the type specimen’s skull label, the locality is given as “Costa Rica”, and to the right it is handwritten “O. Salvin [c]”, suggesting that the collector would indeed be Salvin. However, this naturalist collected specimens exhaustively in Guatemala and bordering countries, such as Belize (Godman 1915; Papavero 1973). Enrique Arcé, a Guatemalan field worker trained by Salvin, collected most of the bird specimens from Costa Rica described by the British zoologist (Salvin 1864; Warren & Harrison 1971; Beolens et al. 2014). Therefore, we suggest that the type of C. salvini probably was collected by E. Arcé during his work in Costa Rica. FIGURE 10. Plate of Chiroderma salvini, from the volume about mammals of the “Biologia Centrali-Americana” (plate iv, dated 1879—Lyal 2011). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 21 In the volume on mammals of the “Biologia Centrali-Americana”, authored by E. Alston (except for a few pages in the Supplement, authored by O. Thomas) and published between 1879 and 1882 (Lyal 2011), there is a color plate of C. salvini depicting the species as lacking the medial dorsal stripe (Fig. 10), an error that probably originated from Dobson (1878) description. Dobson (1880), however, recorded the presence of the stripe in an additional specimen of C. salvini from Popayán, Colombia. Distribution and Habitat. Chiroderma salvini is in eastern and southern México from Veracruz southeastward through Central America (Guatemala, El Salvador, Honduras, Costa Rica, and Panamá), into South America (northern and western Venezuela, western and northern Colombia, western Ecuador, eastern Perú in the Andean foothills, and western Bolivia; Fig. 11). The absence of records from Nicaragua may be a sampling artifact, possibly related to the fact that this country has lower mean elevations than the neighboring countries, and C. salvini is associated with montane forests. FIGURE 11. Collecting localities of the analyzed specimens of Chiroderma salvini and C. scopaeum. The locality numbers are referenced in the gazetteer (Appendix 1). Records of C. salvini are from humid tropical forests, mainly sub-montane and montane. In Guatemala, El Salvador, and Honduras, the species also occurs in seasonally dry tropical forests. The distribution of C. salvini is associated with moderate to high elevations, with records in or close to the Sierra Madre Oriental in México, the cordilleras of Central America (e.g. Sierra Madre de Chiapas in Guatemala, Cordillera de Talamanca in Panamá and Costa Rica), and on both slopes of the Andean cordillera in South America (Fig. 11). Among the 39 specimen localities with precise coordinates, the mean elevation was 1,010 m above sea level (ranging from 73 m to 2,045 m), with 32 localities (82%) above 600 m and 20 (51%) above 1,000 m. In Panamá, C. salvini was more frequently captured between 600 and 1,500 m (Handley 1966b). In Parque Nacional Braulio Carrillo, Costa Rica, the species was recorded at 680 m (Timm et al. 1989). In Venezuela C. salvini was captured between 611 and 2,240 m, with 93% of the captures above 1,000 m (Handley 1976). In Parque Nacional de Manú, Peruvian Amazon, the species was documented between 450 and 1,920 m (Solari et al. 2006). In the Department of Tolima, Colombia, records of C. salvini are between 1,380 and 2,150 m (Bejarano-Bonilla et al. 2007; Galindo-Espinosa et al. 2010), and in 22 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. the Department of Valle del Cauca, C. salvini was captured at elevations from 1,200 to 1,700 m (Mora-Beltrán & López-Arévalo 2018). Description and Comparisons. The dorsal pelage of C. salvini varies from pale brown to dark brown. Dorsal hairs are tricolored, with a narrow (approximately ¼ of hair length) dark brown base, a wide (approximately ½ of hair length) buff medial band, and a narrow terminal band approximating ¼ of hair length. Basal and terminal bands are usually the same color. Genal and interocular pairs of facial stripes are always present; conspicuous, wide, and brilliant-white. Interocular stripes are large, their widths varying between 1 and 4 mm, and entirely white. The median dorsal stripe is visible in most specimens, not detected in 2 of 174 specimens (1.1% of the sample): one from Venezuela (USNM 415233) had a faint suggestion of the stripe on the middle dorsum, and another from Honduras (TTU 12806) had no trace of a stripe. The spear of the noseleaf has a simple tip. The lateral margins of the horseshoe and the spear are whitish. The base and margins of the ear are yellowish. The dimensions of the cranium of C. salvini are similar to small C. doriae, large C. scopaeum, and large C. villosum (Tables 7 and 8). The braincase is globose, conspicuously standing out from the adjacent frontal and nasal regions. In dorsal view, the nasal notch extends posteriorly to the anterior margin of the orbits (Fig. 12). In lateral view, the anterior margin of the orbits is even with the distal margin of P4 and mesial margin of M1 (Fig. 13). A sagittal crest was present in 87.7% (186 of 212) of the specimens we examined. The sagittal crest was weakly developed in 22 (10.4%) specimens and not detected in four (1.8%). The posterior palatine process was absent in 77% of the sample (159 of 206 specimens), and was poorly developed when present. With cranium and mandible in occlusion, there is no frontal gap (as in C. improvisum and C. villosum; Fig. 14) but there is a small lateral gap, as in C. doriae, C. scopaeum, C. gorgasi and C. trinitatum (Fig. 9). FIGURE 12. Dorsal (A) and ventral (C) views of the skull of Chiroderma salvini (USNM 565812—Costa Rica, Guanacaste), and dorsal (B) and ventral (D) views of C. scopaeum (USNM 511379—México, Nayarit). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 23 FIGURE 13. Skull and mandible, in lateral view, of A) Chiroderma salvini (USNM 565812—Costa Rica, Guanacaste); B) C. scopaeum (USNM 511379—México, Nayarit). The I1s converge medially in 97% of the specimens (200 of 206) and the tips may or may not be in contact. Six specimens (3%) have parallel I1 crowns that lack any contact. The P3 is oval in occlusal outline, differing from the antero-posteriorly compressed outline of P3 in C. doriae. The P3 contacts C. but not P4. TABLE 8. Descriptive statistics (mean, standard deviation, range in parentheses, and sample size) of adult specimens of Chiroderma improvisum and C. villosum (including subspecies). See Materials and Methods for measure abbreviations and descriptions. C. improvisum C. v. villosum C. v. jesupi Body mass 34 23.5±3.26 (13–31) 130 22.7±2.7 (17–30) 36 TL 80, 85 69.16±4.3 (55–80) 165 68.8±3.8 (59–78) 92 FA 56.3, 57.3 46.6±1.87 (41–52.8) 283 44.2±1.41 (40.9–47.7) 103 GLS 28.7, 29.4 24.7±0.61 (23.2–26.6) 278 24±0.5 (22.9–25.3) 110 CIL 27.8, 28.4 22.7±0.63 (21.3–24.5) 271 22.2±0.5 (20.9–23.5) 106 CCL 27, 27.43 21.8±0.63 (20.5–23.6) 274 21.3±0.49 (20.2–22.5) 107 PB 6.5, 6.5 5.9±0.22 (5.3–6.7) 283 5.7±0.18 (5.2–6.2) 112 BB 12.2, 12.5 10.7±0.3 (10–12.3) 277 10.6±0.26 (9.9–11.1) 111 MB 14, 14.1 12±0.33 (11.1–13.4) 277 11.9±0.32 (10.4–12.9) 108 ZB 18.5, 19 15.7±0.49 (14.3–17.4) 271 15.5±0.4 (14.6–16.6) 110 MTRL 10.9, 11.1 8.9±0.29 (8.1–9.8) 283 8.6±0.29 (7.9–9.2) 108 C-C 7.4, 7.4 5.8±0.23 (5.2–6.6) 209 5.8±0.22 (5.3–6.3) 96 M1-M1 13.3, 13.3 10.9±0.43 (9.7–12.5) 281 10.8±0.41 (9.8–12) 108 M2-M2 13.6, 13.9 11.2±0.43 (9.5–12.9) 281 11±0.39 (10–12.2) 107 DENL 21.1, 21.1 16.7±0.52 (15.3–18.4) 282 16.4±0.42 (15.3–17.3) 112 MANDL 11.8, 12.2 9.64±0.32 (8.8–10.8) 280 9.4±0.29 (8.7–10) 110 CAL 9.2, 9.4 6.8±0.32 (5.9–7.9) 280 6.7±0.32 (5.9–7.8) 112 24 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. TABLE 9. Morphological comparisons of discrete characters among the species of Chiroderma. salvini scopaeum doriae trinitatum Facial stripes bright, conspicuous bright, conspicuous bright, conspicuous bright, conspicuous Noseleaf simple tip simple tip simple tip simple tip a long short long short b Hard palate straight straight U-shaped straight I1, tips convergent convergent convergent convergent c, crown height relative to coronoid process same height shorter shorter shorter p2, crown height relative to p4 crown between 1⁄4 and 1⁄3 between 1⁄4 and 1⁄3 between 1⁄2 and 2⁄3 between 1⁄2 and 2⁄3 Frontal gapc absent absent absent absent Nasal notch Continued Facial stripes gorgasi improvisum villosum bright, conspicuous dark, inconspicuous dark, inconspicuous Noseleaf simple tip notched tip notched tip Nasal notcha short long long Hard palateb straight straight palatine process present I1, tips convergent convergent usually parallel c, crown height relative to coronoid process same height shorter same height p2, crown height relative to p4 crown between 1⁄2 and 2⁄3 between 1⁄4 and 1⁄3 between 1⁄4 and 1⁄3 Frontal gapc absent present present a long = extends posterior to interorbital region; short = does not reach interorbital region or reaches only its anterior margin. b caudal portion of hard palate. c gap delimited by I1, c, and i1,2, when skull and mandible are occluded. The lower canine is pointed and relatively tall, and the tip is approximately the same height as the coronoid process (as in C. villosum, but differing from C. doriae and C. scopaeum, in which the canines are clearly below the level of the coronoid; Fig. 13). The crown of p2 is low, approximately ¼ of the crown height of p4, longer mesiodistally than tall, and does not contact p4 (similar to the morphology of C. scopaeum and C. villosum). Compared with the allopatric C. doriae, C. salvini can be distinguished by its smaller size, globose braincase (less rounded in doriae), taller lower canines (lower canines in doriae are relatively shorter and below the level of the coronoid process), and smaller p2 (in doriae the p2 is approximately ⅔ of the height of p4). Where sympatric, C. salvini can be confused with C. scopaeum and C. villosum. Externally, C. salvini can be separated from C. villosum by, on average, a longer forearm (Tables 7 and 8); basal and apical bands of dorsal fur the same color (in villosum the base is usually darker than the tip); presence of wide and conspicuous facial stripes (narrow, faint, or absent in villosum), and a simple tip on the noseleaf spear with pale lateral margins (notched tip and noseleaf uniformly brown in villosum). Cranially, C. salvini differs from C. villosum by its relatively longer rostrum and shorter nasal notch (in villosum the notch is longer, ending near the level of the post-orbital constriction); smaller orbits (in villosum the anterior margin of the orbit is even with the P4); post-orbital processes less pointed than in villosum; posterior palatine process small or absent (in villosum process usually present and conspicuous), and absence of a frontal gap when cranium and lower jaw are in occlusion (Fig. 14). Compared with C. scopaeum, C. salvini is larger (Fig. 15, Tables 8 and 10) and externally it differs in pelage color, usually being darker than scopaeum. The skull of C. salvini is more robust, and the lambdoid-suture region of C. scopaeum is rounder, as can be seen in dorsal view (Fig. 12). The nasal notch of salvini is longer, usually reach- SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 25 ing the interorbital region (Fig. 12). Lower canines are relatively taller and more pointed than in scopaeum, and the medial cingulum of the lower canines is not as well developed as in scopaeum (Fig. 13). TABLE 10. Loadings of the first and second principal components extracted from the variance-covariance matrix of a principal component analysis of 13 cranio-dental measurements comparing Chiroderma salvini and C. scopaeum. Measurements PC 1 PC 2 GLS 0.95 0.02 CIL 0.96 -0.03 CCL 0.96 -0.03 PB 0.58 0.08 BB 0.76 0.06 MB 0.91 0.06 ZB 0.93 0.05 MTRL 0.86 -0.24 M1–M1 0.93 -0.16 M2–M2 0.94 -0.14 MANDL 0.94 -0.18 DENL 0.95 -0.02 CAL 0.70 0.69 Eigenvalues 10.15 0.62 Proportion of variation 78.10% 4.80% FIGURE 14. Frontal view of skull and mandible in occlusion for A) Chiroderma salvini (ROM 99703), B) Chiroderma scopaeum (TTU 110649), C) Chiroderma d. doriae (TTU 99569), D) Chiroderma villosum (USNM 560607), E) Chiroderma improvisum (ROM 126002). 26 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 15. Dispersion of the first and second components, extracted from a principal component analysis of 13 cranio-dental measurements, representing Chiroderma salvini (circles) and C. scopaeum (squares). Geographic Variation and Phylogeography. Phylogenetic analyses of 18 sequences did not recover any geographical structuring from Costa Rica to Bolivia (Fig. 16). Phenotypically, C. salvini is a relatively homogeneous species across its distribution. Subspecies. C. salvini is monotypic. Remarks. We found four published reports in which C. villosum from localities in Perú and Brazil were misidentified as C. salvini. The record of C. salvini for the Serra do Divisor, in the Peruvian Amazon (Medina et al. 2015), is here reidentified as C. villosum based on the reported forearm length (45.6 mm) and on a photograph of the specimen clearly showing a notched tip on the noseleaf and ears lacking pale margins (C. Medina in litt.). We also reanalyzed the specimens from Porto Velho, Rondônia, (MZUSP 35408) and Aricá, Mato Grosso, (MZUSP 6494) reported by Rocha et al. (2016), and confirmed that they have the diagnostic characters of C. villosum. Also, the record for the Cerrado of Tocantins (Maas et al. 2018) is recognized here as a C. villosum based on the measurements presented in the article and a photo of the skull (L.A.C. Gomes in litt.). Natural History. Four genera and five species of plants are documented in the diet of C. salvini in Colombia: Cecropia telealba (Urticaceae), Ficus insipida, F. cuatrecasana, Poulsenia armata (Moraceae), and Piper phytolaccifolium (Piperaceae) (Castaño et al. 2018). In Bolivia, one C. salvini was captured in a mist net set under a Ficus guaranitica (Aguirre 1994 apud Anderson 1997). In Veracruz, México, individuals were covered in pollen of Pachira aquatica (Malvaceae) (Hernández-Montero & Sosa 2016). In the Peruvian Amazon, Bravo et al. (2008, 2010) recorded C. salvini visting “collpas”, which are mineral licks containing clay-rich water that is ingested by the bats. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 27 Diurnal roosts used by C. salvini are unknown, but one animal was recorded flying through a lighted tunnel in a gold mine in Panamá and, in Venezuela specimens, have been captured inside houses (Goldman 1920; Handley 1976). The following ectoparasites have been recorded in C. salvini in Panamá: Amblyomma sp. n. (Ixodidae), Chirnyssoides caparti (Sarcoptidae), Periglischrus iheringi (Spinturnicidae), and Paratrichobius salvini (Streblidae) (Fairchild et al. 1966; Furman 1966; Wenzel et al. 1966; Lourenço et al. 2013). In Venezuela, Periglischrus iheringi and Trichobius persimilis (Streblidae) were collected in C. salvini (Herrin & Tipton 1975; Wenzel 1976), and in México the mites Parichoronyssus lopezi (Macronyssidae), Periglischrus iheringi, and Eudusbabekia vampyrops (Myiobiidae) were recorded on the species (Colín-Martínez et al. 2017). FIGURE 16. Phylogenetic relationships of Chiroderma salvini and C. scopaeum based on 24 sequences of the cytochrome c oxidase subunit 1 gene. Localities in parentheses are detailed in the gazetteer (Appendix 1). This subtree is a detailed version of the clades named “salvini” and “scopaeum” in figure 4. The reproductive pattern of C. salvini in Central America is best described as seasonal polyestry, with birth peaks occurring between March and April, and in August. Based on label information, pregnant females were recorded in Panamá in January (n=1), February (n=41), March (n=1), and June (n=1), while lactating individuals were recorded in March (n=5). In Guatemala, a pregnant C. salvini was recorded in January (Carter et al. 1966). In Honduras, pregnant or lactating C. salvini have been found in July and August (LaVal 1969). In South American populations, the scarcity of data does not permit generalizations. Based on the information we obtained from specimen labels, pregnant females have been recorded in Venezuela in July (n=2), August (n=1), and November (n=1), and in the Colombian Pacific there is a record for June (n=1). Based on literature records, pregnancies in Colombia are known for January, March, April, May, June, October, and December, and there are records of females that were both pregnant and lactating in March and April (Wilson 1979). In cis-Andean South America, two pregnant females were recorded from Perú, in August and September, and a lactating C. salvini was noted in October. Specimens Examined (N = 216): Bolivia: La Paz, Serrania Bellavista (AMNH 246625); Pando, Santa Rosa (AMNH 262537, 262538); Santa Cruz, 4.5 km N and 1.5 km E of Cerro Amboro (AMNH 261666); Santa Cruz, 28 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Estancia San Rafael de Amboro (AMNH 261667–261670). Colombia: Quindío, Vereda El Dorado (IAvH-M 7034), Vereda San Juan d’Carolina (IAvH-M 7036, 7039), Valle del Cauca, Pance (USNM 483743–483746), Río Zabaletas (USNM 483747–483762). Costa Rica: without precise locality (BMNH 68.8.16.2 [holotype of salvini]); Cartago, Angostura (USNM 12913/22849), Guanacaste, Rincón de La Vieja (USNM 565812); Heredia, Parque Nacional Braulio Carrillo (USNM 562856); Puntarenas, Cañas Gordas (AMNH 142484). El Salvador: Santa Ana, Los Planes (TTU 62461, 62462). Guatemala: El Progreso, Rio Uyús (ROM 99703). Honduras: Francisco Morazán, 16 km by road N Tegucigalpa (TTU 12800–12808), La Flor (AMNH 126210, 126211, 126244–126251, 126253, 126255–126264, 126446, 126448–126455), San Marcos (AMNH 123331), Olancho, 50.4 km by road NNE Juticalpa (TTU 12809). México: Veracruz, Las Minas (USNM 329445). Panamá: Bocas del Toro, Río Changena Camp (USNM 319415–319425, 319499, 319500), Rancho Mojica, Río Changena (USNM 319286), Chiriquí, Cuesta de Piedra (USNM 331684–331686), Darién, Cana (USNM 179718), Cerro Malí (USNM 338042, 338043), Cerro Pirre (LSUMZ 25468–25474), Cerro Tacarcuna (USNM 338044), Jaqué (USNM 362919), Tacarcuna Village Camp (USNM 209969, 305387, 309443–309445, 309906, 309908–309910, 309912–309942, 309946–309968, 309972– 309977), Panamá, Cerro Azul (USNM 305388, 323445–323447). Perú: Cajamarca, San Ignacio (MUSM 12637), Cusco, Consuelo (MUSM 19663–19665, 19667), Comunidad Nativa Tangoshiari (MUSM 13377), Ridge Camp (USNM 588032), Madre de Dios, Hacienda Amazonia (MUSM 9742, 9751), Quebrada Aguas Calientes (MUSM 16650), Pasco, Palmira (MUSM 10878–10880), Puno, Yanacocha (MUSM 34980), Tumbes, Quebrada Naranjos (MUSM 19177). Venezuela: Carabobo, La Copa (USNM 440740–440744), La Vega del Río Santo Domingo (USNM 440746), Distrito Federal, Los Venados (USNM 370526, 370527), Hotel Humboldt (USNM 370528, 370530–370532), Miranda, Guatopo Natural Park (USNM 387191), Monagas, Hacienda San Fernando (USNM 415233–415235), San Agustín (USNM 415236, 415237). Chiroderma scopaeum Handley, 1966 Synonyms: Chiroderma [sp.]: Anderson, 1960: 7. Chiroderma salvini scopaeum Handley, 1966a:297; type locality “Pueblo Juárez, Colima, México.” Type Material. The type of C. salvini scopaeum, by original designation, is specimen USNM 338711, an adult female collected by Alfred L. Gardner (field number ALG 1565) in Pueblo Juaréz, Mexican state of Colima, on August 19, 1960. The specimen was previously stored in the University of Arizona collection, under the number 7952. The material consists of a stuffed skin with skull and mandible separated. The skin is in good condition, and both pairs of facial stripes are visible. The median dorsal stripe is also visible and located immediately posterior to the nape and extending to the posterior extremity of the animal. The auditory bullae have separated from the skull and upper inner incisors are missing. The posterior palatine process is absent. Distribution and Habitat. We consider C. scopaeum to be restricted to México, west of the isthmus of Tehuantepec (Fig. 11). The species has been recorded in the states of Chihuahua, Sinaloa, Durango, Nayarit, Jalisco, Colima, México, Morelos, Guerrero, Puebla, Veracruz, and Oaxaca (Anderson 1960; Handley 1966a; Crossin et al. 1973; Alvarez & Alvarez-Castañeda 1996; Valiente-Banuet et al. 1997). Hall (1981) suggests that C. scopaeum would occur from western México to northwestern Costa Rica, and based on this distribution Reid & Langtimm (1993) identified specimen USNM 565812 as C. salvini scopaeum. The morphological characters of the specimen, however, have allowed us to identify it as C. salvini. Records of C. scopaeum are from areas dominated by tropical and subtropical coniferous forests, dry deciduous forests at higher elevations, and shrubby vegetation at lower elevations. Studies suggest that in the arid areas of western México, the species would be restricted to the more humid areas close to the Pacific coast and adjacent montane forests, and along the riparian forests in the canyons that cut through the Sierra Madre Occidental (Anderson 1960, 1972; Crossin et al. 1973; García-Mendoza & López-González 2013). All analyzed specimens were collected within the altitudinal range of the species as reported by Handley (1966a), from sea level to 1,722 m. Description and Comparisons. Dorsal pelage varies from pale brown to dark brown. Most of the 38 specimens examined had pale brown pelage (84.2%, n=32), whereas dark brown pelage was found in 15.8% (n=6). Individually, dorsal hairs are tricolored, with a dark brown base, buff middle band, and light to dark brown tips. The medial dorsal stripe was present in all specimens (n=34), but was weakly developed in 5.8% of the sample (n=2). Usually, SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 29 the dorsal stripe extends from the interscapular region to the posterior extremity of the body, but in 10 specimens the stripe originated in the region immediately posterior to the nape. Both pairs of facial stripes are bright and wide (interocular stripe > 1.7 mm). The tragus and base of the ears are yellowish, as are the anterior and posterior margins of the ears close to the base. The remainder of the ear is brown. The spear of the noseleaf has a simple tip and is brown, except for the lateral margins of the horseshoe, which are whitish. The dimensions of the skull of C. scopaeum are similar to those of C. villosum, and there is also some overlap between the large C. scopaeum and the small C. doriae vizottoi and C. salvini (Tables 7 and 8). In dorsal view, the brain case is round and less massive than in C. salvini. Approximately ⅓ of the length of the nasal notch extends behind the anterior margin of the orbits. The post-orbital constriction is relatively wide (Table 7); post-orbital processes are small and pointed. A sagittal crest was unambiguously present in 32 of the 38 specimens (84.2%), but not detected in 2 (5.2%), or ambiguous in 4 (10.5%). The posterior palatine process was absent in 32 of the 38 analyzed specimens (83.8%), but small or vestigial in the remaining 6 (16.2%). Out of 35 specimens, 30 (85.7%) had convergent I1s, with the tips touching each other; whereas, 5 had both incisors separated along their entire length. The P3 is approximately oval in occlusal outline and is not in contact with P4. The M2 has well defined main cusps, but lacks a posterolingual cingulum. The lower canine has a relatively low crown, below the level of the coronoid process in lateral view. The anterior cingulum of the lower canine projects rostro-medially and is visible in lateral view (Fig. 17). The p2 is small, approximately ¼ of the height of p4; and is longer than tall and does not touch p4. Compared with C. salvini, C. scopaeum can be distinguished by its smaller size, usually paler dorsal pelage (varying from pale brown to dark brown). C. scopaeum has a relatively broader post-orbital constriction (Fig. 12), and rostro-medially projected cingula of lower canines (Fig. 17). FIGURE 17. Lateral view of part of the right dentary of A) Chiroderma salvini (LSUMZ 25649—Panamá, Darién) and B) C. scopaeum (USNM 511378—México, Nayarit). The lower left canine was removed from the image. From C. villosum, C. scopaeum can be differentiated by its bicolored noseleaf and spear having a simple tip; paler ear margins; shorter nasal notch (in villosum the notch reaches the post-orbital processes); shorter orbits (in villosum the anterior margin is in line with the middle of P4); I1s with convergent tips (usually parallel in villosum); relatively short lower canine (in villosum the tip of the lower canine is at approximately the same level as the coronoid process); and absence of a frontal gap when cranium and mandible are in occlusion (in villosum there is a frontal gap delimited by C, I1–2, and i1–2). The subspecies C. d. vizottoi differs from C. scopaeum by having pale buff pelage, and larger size (Table 7). The p2 of C. d. vizottoi is larger, about ½ to ⅔ of the height of p4, while in C. scopaeum, p2 is approximately ¼ the height of p4. Geographic Variation and Phylogeography. A clade, here identified as scopaeum, contains six specimens of Chiroderma, of which five were analyzed morphologically (Fig. 16). The two specimens from México (TTU 30 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. 109703 and TTU 110649) are phenotypically similar to the taxon we defined here as Chiroderma scopaeum, whereas specimens from Panamá (LSUMZ 25470), El Salvador (TTU 62462), and Guatemala (ROM 99703) have the diagnostic characters of Chiroderma salvini. The specimens morphologically diagnosed as salvini that nested in the scopaeum clade may represent a case of incomplete lineage sorting (ILS), a relatively common phenomenon in recently-diverged taxa (Maddison & Knowles 2006). To test the ILS hypothesis between C. salvini and C. scopaeum, we recommend increasing the genetic sample of Chiroderma from western México, and obtaining additional genomic information such as single nucleotide polymorphisms. Also, it is important to note that no specimens, morphologically diagnosed as scopaeum, are nested in the salvini clade, which contains sequences from Central and South American specimens. Subspecies. C. scopaeum is monotypic. Remarks. Anderson (1960) mentioned a record of Chiroderma from Chihuahua, western México, that at the time would considerably increase the known distribution of the genus, suggesting an undescribed species for the region. Based on a larger sample size, Handley (1966a) described the subspecies Chiroderma salvini scopaeum, then considered a smaller variant of C. salvini salvini. In this study, we consider the morphological, genetic, and biogeographic evidence as sufficiently strong to treat scopaeum as a species distinct from salvini, instead of as a geographic variant, or subspecies. Natural History. Information on the diet of C. scopaeum is scarce. In Tahuacán, Puebla, one individual was observed visiting the flowers of the columnar cactus Pachycereus weberi (Pachyceraceae), but the bat was not covered in pollen (Valiente-Banuet et al. 1997). In Sinaloa, C. scopaeum was captured in mist nets set under fruiting fig trees. In Jalisco, mist nets over a stream and under a canopy formed by wild figs and other trees also caught C. scopaeum (Jones et al. 1972; Watkins et al. 1972). Specimens have been captured in altered landscapes, such as cornfields (Almazán-Catalán et al. 2009). Summarizing data from the literature, along with the specimens we examined, C. scopaeum appears to be seasonally polyestrous. Pregnancies occurred in January (Sinaloa), February (Jalisco), and June (Jalisco and Nayarit) (Jones et al. 1972; Watkins et al. 1972). Lactating females have been found in May (Morelos) and June (Nayarit and Jalisco) (Watkins et al. 1972). Females noted as non-reproductive were recorded in July (Chihuahua; Anderson 1972) and August (Colima; Wilson 1979). Specimens Examined (N = 35): México: Colima, La Sidra (TTU 61623), Pueblo Juárez (USNM 338711 [holotype of scopaeum]); Jalisco, 20 km SW Talpa de Allende (AMNH 254647), 9.3 km W Chapala (TTU 38049), 6.4 km NW Autlán de Navarro (TTU 109703), La Cumbre (TTU 40987); Morelos, Oaxtepec (USNM 559607); Nayarit, 12.9 km NE San Miguel del Zapote, 51.5 km W Mesa del Nayar (USNM 559608–559613), 13 km NE San Blas (TTU 110649), 5 km E El Venado (USNM 559614, 559615), 12.9 km E San Blas (TTU 6122), Arroyo La Taberna, , 3.2 km W Mesa del Nayar (USNM 511374–511377), 2.9 km NE (by road), Coapan (USNM 511380–511382), 2.3 km N (by road), El Tacote (USNM 508636), 3.2 km E Jalcotoán (USNM 523258, 523259), Mesa del Nayar (USNM 511378, 511379), Playa Novillero (USNM 553885); Oaxaca, 30 km NW Sala de Veja (AMNH 190006); Veracruz, Ojo de Agua del Rio Atoyac (TTU 9996–9999). Chiroderma doriae Thomas, 1891 Synonyms: See under subspecies. Type Material. The type of Chiroderma doriae, by original designation, is specimen BMNH 44.9.2.6 (skin) and BMNH 49.8.16.29 (skull and mandible). The holotype is an adult of undetermined sex, but possibly female, as there is no vestige of scrotal sac on the skin. The skin was stitched longitudinally along the dorsum and probably for this reason the descriptions described the dorsal stripe as absent (Dobson 1878, misdentified as C. villosum; Vieira 1942). The left ear, as well as the right tarsus and metatarsus, have been lost, but the right calcar and the tibia are still attached to the skin. Interocular stripes are evident, but the color of the skin appears to be slightly faded. The genal pair of facial stripes is less conspicuous, and the stripe on the right side is more evident than on the left. Part of the medial uropatagium is torn. The skull is damaged, and the region posterior to the mesopterygoid fossa, i.e. the basioccipital, occipital, and the posterior part of the braincase are missing. The upper dental arcade is complete. The right zygomatic arch is SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 31 broken, and the root of the right upper canine is exposed. Part of the palate is also broken. The inner upper incisors have convergent tips, almost touching each other. The mandible and lower dentition are in good condition, except for the left angular process, which is missing. Information on the label indicates “Minas Geraes” as the locality and that the type was obtained from Parzudaki, referring to Charles Parzudaki and his adopted son Emile, two active dealers in natural history specimens in Paris. As Charles and Emile probably never collected in South America (Gouraud et al. 2016), it is not possible to determine the collector or to estimate a more precise locality for the specimen. Distribution and Habitat. See under Subspecies. Description and Comparisons. Dorsal pelage is pale brown in most specimens of C. d. doriae, but some have dark brown pelage. In C. d. vizottoi the dorsal pelage is pale buff (Fig.18). Dorsal hairs are tricolored; the base is dark brown, the middle is buff, and the tip is pale brown (C. d. doriae) or pale buff (C. d. vizottoi). Two pairs of interocular and genal stripes are present, wide, and formed by entirely white hairs. A median dorsal stripe is present. The stripe is conspicuous in 25 of the 29 (86%) C. d. doriae examined, and usually extends from the interscapular region to the posterior extremity of the rump. One C. d. doriae (ZUFMS 395) has the dorsal stripe beginning on the nape. The ear and tragus are yellowish at the bases, as well as is the margin of the ear. The remainder of the ear is brownish. The spear of the noseleaf is simple-tipped and the lateral borders of the horseshoe are paler than the medial portion and spear. Chiroderma doriae has the second largest cranium among Chiroderma species, smaller only than C. improvisum (Tables 7 and 8). There is some overlap among the measurements of small C. d. doriae and large C. salvini. Measurements of C. d. vizottoi broadly overlap with those of C. villosum, C. salvini, and large C. scopaeum (Tables 7 and 8). The braincase is low in C. d. doriae, relative to the length of the skull, and less globose than in the other species (except for C. improvisum; Figs. 19, 20). In C. d. vizottoi, the braincase is relatively higher and more globose than in the nominal subspecies. A sagittal crest was present in every specimen of C. d. doriae we examined (n=71), being conspicuous in 41 (57%), moderate in 25 (35%), and low or vestigial in 5 (7%). In C. d. vizottoi, the sagittal crest was present in all specimens (n=11), conspicuous in ten (90.9%) and moderate or low in one (9.1%). The nasal notch is long, extending well behind the anterior rim of the orbits. The post-orbital processes are moderately developed, more so than in gorgasi and trinitatum, but less than in salvini, scopaeum and villosum (Fig. 19). FIGURE 18. Dorsal view of the skin of A) Chiroderma doriae doriae (ALP 6121—Brazil, Rio de Janeiro) and B) C. d. vizottoi (ALP 10421—Brazil, Ceará). 32 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 19. Dorsal (A) and ventral (C) views of the skull of Chiroderma doriae doriae (TTU 99569—Paraguay, La Cordillera), and dorsal (B) and ventral (D) views of the skull of C. doriae vizottoi (ALP 10421—Brazil, Ceará). FIGURE 20. Skull and mandible, in lateral view, of A) Chiroderma doriae doriae (TTU 99569—Paraguay, La Cordillera); B) C. doriae vizottoi (ALP 10421—Brazil, Ceará). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 33 FIGURE 21. Phylogenetic relationships of Chiroderma doriae, C. gorgasi and C. trinitatum, based on 87 sequences of the cytochrome c oxidase subunit 1 gene. Localities in parentheses are detailed in the gazetteer (Appendix 1). This subtree is a detailed version of the clades named “doriae”, “gorgasi”, “trinitatum A”, and “trinitatum B” in figure 4. 34 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. The posterior palatine process is absent in 51 (78%) of the 65 specimens of C. d. doriae we examined. When present, the palatine process is small and inconspicuous, except for three specimens (4.6%), in which this structure was conspicuous. In C. d. vizottoi, the palatine process was absent in five of nine specimens in our sample. The posterior border of the palate is U-shaped, differing from other species of Chiroderma, which have an even posterior border. Paraoccipital processes are present in C. d. doriae. When skull and mandible are in occlusion, a lateral gap is formed, as in C. salvini, C. scopaeum, C. gorgasi, and C. trinitatum (Fig. 9). The I1s have converging tips that contact each other in most specimens. One (ZUFMS 395) had parallel I1s, with no contact. The P3, in occlusal view, is wider (buccolingually) than long (mesiodistally). P3 touches C, but does not touch P4 (in the similar-sized C. improvisum, P3 and P4 are in contact; see Fig. 19). The P4 has a welldeveloped disto-lingual cingulum (relatively less-developed in the other species). The mandible is robust, with the condylar processes clearly above the toothrow plane, or at approximately the same level. The coronoid process clearly is higher than the tip of the lower canine, when the mandible is viewed laterally (in C. salvini and C. villosum, the coronoid process is at the same level as the canines). The p2 crown is ½ to ⅔ the height of p4, and is approximately as high as long (longer than tall in C. salvini, C. scopaeum, C. improvisum, and C. villosum) (Fig. 20). The p2 does not touch p4. The mandible with a small p2 identified by Oprea & Wilson (2008) as C. doriae (their Figure 2) is a C. villosum (USNM 309905). The only other species of Chiroderma sympatric with C. doriae is C. villosum, from which doriae can be differentiated by its larger size, the both pairs of facial stripes wide and conspicuous (narrow and inconspicuous in villosum), bicolor noseleaf, and ears with pale margins. C. doriae also lacks posterior palatine processes, has converging I1s (usually parallel in villosum), p2 taller than longer (p2 longer than tall in villosum), relatively short c (tall in villosum), and lacks a frontal gap when cranium and mandible are in occlusion (Fig. 14). Geographic Variation and Phylogeography. The phylogenetic analyses of 16 sequences of C. doriae did not show geographic structuring, with haplotypes from geographically distant regions, e.g. from Paraguay north to Rio Grande do Norte, Brazil grouped together (Fig. 21). Although intraspecific genetic variation (0.49%) is considered low (Table 3), the phenotype of C. doriae varies geographically. Specimens from the Caatinga of Piauí and Ceará, and from the Amazonia—Cerrado ecotone in Maranhão, are significantly smaller and have much paler pelage than specimens from the Mata Atlântica and Cerrado, which are larger and have the pelage color varying from pale brown to dark brown (Figs. 18, 20). FIGURE 22. Dispersion of the two first principal components (PC1) of 20 climatic variables, and 13 morphometric variables of Chiroderma doriae. Pearson correlation coefficient = -0.744. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 35 TABLE 11. Loadings of the first and second principal components, extracted from the variance-covariance matrix of a principal component analysis of 19 climatic variables, plus latitude, from collecting localities of Chiroderma doriae doriae and C. d. vizottoi. Variables PC 1 PC 2 Latitude -0.86 -0.49 BIO1 0.48 0.49 BIO2 0.14 -0.87 BIO3 0.88 -0.07 BIO4 -0.84 -0.46 BIO5 0.39 0.12 BIO6 0.39 0.77 BIO7 -0.32 -0.83 BIO8 -0.02 0.33 BIO9 0.63 0.56 BIO10 0.20 0.54 BIO11 0.60 0.53 BIO12 -0.34 0.38 BIO13 0.45 -0.04 BIO14 -0.86 0.49 BIO15 0.79 -0.43 BIO16 0.37 -0.02 BIO17 -0.88 0.46 BIO18 -0.83 -0.50 BIO19 0.20 0.96 Eigenvalues 6.98 5.70 Proportion of variation 34.91% 28.52% TABLE 12. Loadings of the first principal component (PC1) extracted from the variance-covariance matrix of a principal component analysis of 13 cranio-dental measurements comparing Chiroderma doriae doriae and C. d. vizottoi. Measurements PC 1 GLS 0.93 CIL 0.96 CCL 0.96 PB 0.71 BB 0.75 MB 0.89 ZB 0.91 MTRL 0.92 M1–M1 0.88 M2–M2 0.90 MANDL 0.89 DENL 0.84 CAL 0.81 Eigenvalues 9.98 Proportion of variation 76.80% Given that population samples of C. doriae from the Caatinga (Ceará and Piauí) and Maranhão are phenotypically distinct from those from Mata Atlântica and Cerrado, but do not compose a distinct haplogroup, we treat this 36 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. population as a subspecies for which the available name is vizottoi, described by Taddei & Lim (2010). Subspecific recognition followed Patten (2015) for phenotypically distinct and geographically restricted groups that do not form clades. Furthermore, geographic variation in C. doriae appears to be correlated with temperature and rainfall (Fig. 22, Tables 11 and 12). Precipitation in driest month (variable BIO14 of WorldClim), precipitation in driest quarter (BIO17), precipitation in warmest quarter (BIO18), temperature seasonality (BIO4), and latitude were the variables having the strongest correlation with size. This suggests that individuals are larger in regions having a more seasonal climate, or at higher latitudes, and in areas with greater rainfall (Appendix 5). Subspecies. We recognize two subspecies in Chiroderma doriae. C. d. doriae Thomas, 1891 Synonyms: [Phyllostoma] dorsale Lund, 1842a: 134; nomen nudum. C[hiroderma]. pictum Gray, 1866: 117; nomen nudum. Chiroderma villosum: Dobson, 1878: 534; not Chiroderma villosum Peters, 1860. Ch[iroderma]. doriae Thomas, 1891: 881; type locality “Minas Geraes.” (State of Minas Gerais, Brazil). Chiroderma villosum: Winge, 1892: 9; not Chiroderma villosum Peters, 1860. [Chiroderma] doriai Trouessart, 1904: 118; unjustified emendation of Chiroderma doriae Thomas. Chiroderma sp. Pedro, Passos and Lim, 2001: 138. Chiroderma doria Wagner et al., 2015: 1016; incorrect subsequent spelling of Chiroderma doriae Thomas, 1891. Distribution and Habitat. The nominal subspecies is distributed in Brazil from the northeastern state of Rio Grande do Norte, to Santa Catarina in the south, and westward into the states of Mato Grosso do Sul, Goiás, and the Distrito Federal. The subspecies also occurs in eastern Paraguay (departments of La Cordillera and San Pedro; Fig. 23). Future studies may reveal C. d. doriae in Bolivia, as it is recorded in adjacent Corumbá, Mato Grosso do Sul, Brazil. The subspecies occurs in the Atlantic rainforest and associated formations such as the restinga, and has been found in Cerrado and Pantanal habitats (Taddei 1979; Gregorin 1998; Bordignon 2005). C. d. doriae is also present in urban parks of large cities and in other altered landscapes (Esbérard et al. 1996; Nogueira & Peracchi 2003; Nunes et al. 2017). This subspecies occurs at elevations from sea level (e.g. São Sebastião, São Paulo, Brazil) to approximately 1,200 m (e.g. Diamantina, Minas Gerais, Brazil). C. d. vizottoi Taddei and Lim, 2010 Synonyms: Chiroderma nov. sp. Cruz, Martínez, and Fernandes, 2007: 615. Chiroderma sp. Gregorin, Carmignotto, and Percequillo, 2008: 372. Chiroderma vizottoi Taddei and Lim, 2010: 384; type locality “Teresina (ca. 05° 02 ′ S and 42° 45 ′ W), in the State of Piauí, Brazil.” Distribution and Habitat. This subspecies is in the Brazilian states of Ceará, Maranhão, and Piauí (Fig. 23). A specimen from the Caatinga of Piauí was captured in an area with low xerophytic trees (3 to 5 meters high), next to a rocky outcrop (Gregorin et al. 2008). Two specimens from Maranhão were captured in mist nets set on the beach, in a mosaic of sandbank and mangrove vegetation. Remarks. Lund (1842a: 134, 1842b: 200), in his studies on the extant and fossil fauna of Lagoa Santa, Minas Gerais, recorded Phyllostoma dorsale among the living species of the region. In both publications, Lund clearly uses Phyllostoma dorsale as a new name, as evidenced by the “m.” (= mihi) following the name. Because the name is present only in a faunal list, and no formal description is given, Phyllostoma dorsale Lund is considered a nomen nudum for nomenclatural purposes (see article 12 of the ICZN 1999). Gray (1866), in his revision of Phyllostomidae, listed two species in Chiroderma, C. villosum and C. pictum. The latter name is a nomen nudum, because it lacks a description. We include Chiroderma pictum in the synonymy of Chiroderma doriae because, in the Dobson’s (1878) catalogue of bats in the British Museum, the only specimen SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 37 of Chiroderma in the collection at the time of Gray’s (1866) publication was the specimen that later became the type of Chiroderma doriae. The Latin word pictus means “painted”, or “decorated”, suggesting that Gray referred to the conspicuous facial stripes, observable that specimen, a characteristic differentiating this species from Peters’ C. villosum, which was the only other Chiroderma known at that time. Dobson (1878), in his description of Chiroderma salvini, compared the type with a specimen from Minas Gerais (Brazil) identified by him as Chiroderma villosum. However, Thomas (1891), based on an unpublished plate by Wilhelm Peters, available in the Genova Natural History Museum, recognized that the Minas Gerais specimen Dobson identified as Chiroderma villosum did not represent Chiroderma villosum Peters, 1860. Thomas (1891) described that specimen as Chiroderma doriae. Winge (1892), studying the material sent by Lund to the Copenhagen museum, identified as Chiroderma villosum the material referred to Lund as Phyllostoma dorsale. Winge (1892: 9) located, among the Lagoa Santa specimens representing extant taxa, five fluid-preserved specimens, two skeletons, and three skins. Among the fossil material, Winge mentioned only post-cranial elements from Lapa da Escrivaninha and a cave he did not identify. Thomas (1893), after receiving part of the Lagoa Santa material Winge identified as Chiroderma villosum, correctly identified the skull as belonging to C. doriae. This publication is the first to ascertain that Phyllostoma dorsale of Lund was the same taxon that Thomas (1891) described as Chiroderma doriae. The specimen collected by Lund at Lagoa Santa (BMNH 93.1.9.16) and examined by us is probably the same specimen donated by Winge to the British Museum and mentioned by Thomas (1893). Aside from the Lagoa Santa specimens and the holotype, all from Minas Gerais, no additional specimen of C. doriae were mentioned in the literature for 86 years. Probably for this reason, publications that mentioned the species cited only Minas Gerais as a locality of occurrence and repeated the morphological characteristics mentioned in the original description (Vieira 1942; Cabrera 1958). It is important to note, however, that the BMNH houses specimens of C. doriae collected in the beginning of the 20th century, by Alphonse Robert in Ypanema, currently Floresta Nacional de Ipanema, São Paulo (BMNH 3.7.1.163), and by Wilhelm Ehrhardt in Joinville, Santa Catarina (BMNH 9.11.19.15). Taddei (1979) published the first study including new data on C. doriae since Thomas’s report in 1893. When he redescribed the taxon based on 39 specimens of C. d. doriae collected in northwestern São Paulo, Taddei (1979) confirmed the presence of a conspicuous dorsal stripe previous authors had considered to be absent. Natural History. C. d. doriae is secondarily granivorous, specialized in chewing and grinding seeds of the fruits of Ficus to extract their nutritional content (Taddei 1980; Nogueira & Peracchi 2001, 2003). Four species of Ficus have been documented in the diet of C. d. doriae: Ficus clusiaefolia, F. cyclophylla, F. organensis, and F. tomentella (Sipinski & Reis 1995; Esbérard et al. 1996; Nogueira & Peracchi 2001). Individuals of C. d. doriae have been captured near to or visiting fruiting trees of Cecropia glaziovii (Urticaceae), Ficus enormis, F. gomeleira, and Muntingia calabura (Muntingiaceae), suggesting that this bat also consumes the fruits of these species (Taddei 1980; Esbérard et al. 1996). In addition to figs, fruits and infructescences of Cecropia pachystachya, Chlorophora tinctoria (Moraceae), Piper sp., and Psychotria suterella (Rubiaceae) are also consumed (Taddei 1973; Esbérard et al. 1996; Nogueira & Peracchi 2001; Novaes et al. 2010; Laurindo et al. 2017). Individuals of C. d. doriae have been found covered in the pollen of Mabea fistulifera (Euphorbiaceae) and of an unidentified species, suggesting that the bat also feeds on flowers (Esbérard et al. 1996; Olmos & Boulhosa 2000). Day roosts used by C. d. doriae are not known (see review in Garbino & Tavares 2018b), but there are two records from caves, the use of which may be occasional: one in the state of São Paulo (Arnone 2008) and the other in Minas Gerais (information on specimen UFMG 4953). In the Cerrado of São Carlos, southeastern Brazil, the species was found in pellets of the Stygian Owl (Asio stygius) by Motta-Junior & Taddei (1992). At localities in southeastern Brazil where they occur in sympatry, C. d. doriae is usually captured in much higher numbers than C. v. villosum when mist nets are set at ground level. At the Rio de Janeiro Botanical Garden, eight nights of ground-level mist netting resulted in the capture of 49 C. d. doriae and 5 C. v. villosum (Nogueira & Peracchi 2003). In Mirassol, São Paulo, 24 C. d. doriae and 6 C. v. villosum were captured in ground-level nets (Taddei 1979). In contrast, Gregorin et al. (2017), using canopy mist nets placed between 11 and 19.5 m above ground in the Parque Estadual do Rio Doce, Minas Gerais, captured 1 C. d. doriae and 24 C. v. villosum. The anecdotical report of Taddei (1980) describes the approach by C. d. doriae to fruiting trees as a low flight. Although the literature on the ecology of C. d. doriae is scarce when compared to that for C. gorgasi, C. trinitatum, and C. villosum, it suggests that the species is not as much a canopy frugivore as the other species. 38 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Five species of ectoparasites are known from C. d. doriae: Aspidoptera falcata (Streblidae), Megistopoda proxima (Streblidae), Strebla guajiro (Streblidae), and Trichobius joblingi (Streblidae) in Sergipe; and the mite Periglischrus iheringi (Spinturnicidae) recorded on individuals from Mato Grosso do Sul, Rio de Janeiro, and in Paraguay (Presley 2004; Lourenço et al. 2016; Lima Silva et al. 2017; Soares et al. 2017). Lourenço et al. (2018) found a trypanosomatid parasite in the blood of C. d. doriae from Distrito Federal, Brazil. The reproductive pattern is seasonal polyestry (Taddei 1980). Pregnancies were recorded in June through October, with earlier stages reported in June and July, and females with advanced fetuses recorded from August through October (Taddei 1980; Esbérard et al. 1996). Births of single young occur between October and January, suggesting a gestation period of at least three and half months (Taddei 1980). Females simultaneously pregnant and lactating are common, indicating postpartum estrus and the production of two young per year, with a second birth period in February and March (Taddei 1976, 1980; Esbérard et al. 1996). The natural history of C. d. vizottoi is poorly known. In Ceará, seven specimens were mist netted close to an unidentified fruiting Moraceae; one was pregnant and another lactating when captured in January (Silva et al. 2015). In Maranhão, a male and female were caught in a mist net placed along the beach in a small fishing community next to a mangrove swamp near regenerating rain forest and a “babaçual” (Attalea speciosa [Arecaceae]) palm grove. The mist-net was set in front of a tree locally called “agarra” or “amapá” (Apocynaceae?), and one of the bats had its abdomen covered with a sticky material resembling a milky sap, or latex. Almeida et al. (2016) recorded the mite Periglischrus iheringi (Spinturnicidae) on C. d. vizottoi in Ceará. Specimens Examined (N = 136): Brazil: Alagoas, Mata da Cachoeira, São José da Lage (UFPB 4348); Bahia, Reserva Particular do Patrimônio Natural Serra Bonita ([UFMG]RSB 21, [UFMG]RSB 22); Ceará, Reserva Natural Serra das Almas (ALP 10196, 10418, 10421, 10423, 10440, 10451, 10464); Goiás, Itumbiara (MCN-MQ 145); Maranhão, São Luís (ALP 6633–6635, [UFMG]VCT 373, 374); Mato Grosso do Sul, Corumbá ([UFMG]VCT 6069, [UFMG]VCT 6081), Fazenda Barma (MZUSP 28591, 28688), Morro do Paxixi (ZUFMS 2300), Parque Estadual Matas do Segredo (ZUFMS 493), Urucum (ZUFMS 800, 1058–1062, 1069), Urucum, Morro São Domingos (ZUFMS 912); Minas Gerais, without specific locality (BMNH 44.9.2.6 [holotype of doriae]), Área de Proteção Ambiental Coqueiral (CMUFLA 163), Barão de Cocais ([UFMG]VCT 5831), Belo Horizonte (UFMG 3537), Estação Ecológica de Pirapitinga in Morada Nova de Minas (UFMG 3383), Estação Ecológica de Pirapitinga in Três Marias (ALP 9154), Gruta do Salitre in Diamantina (UFMG 4953), João Monlevade (CMUFLA 965), Lagoa Santa (BMNH 93.1.9.16); Mariana (CMUFLA 938, [UFMG]VCT 6058), Parque Estadual do Rio Doce (CMUFLA 1157), Pompéu (MCN-MQ 253), Usina Hidrelétrica Retiro Baixo (CMUFLA 1415), Valos (CMFULA 496); Pará (not mapped; BMNH 7.1.1.723 [probably an error]); Paraíba, Fazenda Pacatuba, 10 km NE Sapé (UFPB 3), Reserva Biológica Guaribas (UFPB 7327, 7341); Pernambuco, Reserva de Saltinho ([MZUSP] AD119); Piauí, Parque Nacional de Sete Cidades (DZSJRP 11460 [paratype of vizottoi]), Teresina (DZSJRP 18054 [holotype of vizottoi]); Rio de Janeiro, Ilha da Marambaia (ALP 6121), Jardim Botânico do Rio de Janeiro (7508–7511, 7513–7515, 7517, 7519, 7520, 8059, 8062, 8064, 8077, 8079–8081), Morro Azul (ALP 9142), Parque Estadual da Pedra Branca (ALP 5784), Parque Natural Municipal da Prainha (ALP 6650); Rio Grande do Norte, Mata da Estrela (MZUSP 35027); Santa Catarina, Joinville (BMNH 9.11.19.15); São Paulo, Barra do Ribeirão Onça Parda (MZUSP 10632), Barão Geraldo (ZUEC 783), Cachoeira dos Índios (DZSJRP 3140, 3141), Cananéia (MZUSP 26354), Estação Experimental de Pindorama (DZSJRP 16506), Fazenda João XXIII ([LMUSP]GTG 01), Fazenda Paraguassu (ZUEC 1002), Fazenda Santa Carlota (MZUSP 35028), Fazenda Silvio Fazoli in Irapuã (DZSJRP 2924, 2937, 2945, 2946, 3611, 3728), Grota de Mirassol (DZSJRP 2640, 3997, 3998, 3999, 4029), Iguape (MZUSP 21802), Ilha do Cardoso (MZUSP 28037, ZUFMS 395, 397), Instituto de Biologia Marinha in São Sebastião (DZSJRP 10050), Itapetininga (USNM 542616), Parque Estadual da Ilha Anchieta (MZUSP 29456, 31582), Parque Estadual de Ilhabela (MZUSP 35029), Parque Estadual Turístico do Alto Ribeira (MZUSP 34012), São José do Rio Preto (DZSJRP 2469), São Roque (MZUSP 15112), Sítio Progresso (DZSJRP 3810, 3825, 3921, 4271–4273, 4381–4385, 4445), Ypanema (BMNH 3.7.1.163), Sergipe, Estação Ecológica de Itabaiana (ALP 6545), Floresta Nacional do Ibura (CMUFS SSB1-FNI, SSB2-FNI, SSB376-FNI, SSB377-FNI, SSB20-FNI, SSB33-FNI), Mata do Junco (CMUFS 51, 71, 73, 94), Parque Nacional Serra de Itabaiana (CMUFS 65). Paraguay: La Cordillera, Estancia Sombrero (TTU 75275, 99569); San Pedro, Yaguarete Forests, 0.5 km W headquarters (TTU 95747). Locality unknown: BMNH 7.1.1.698. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 39 FIGURE 23. Collecting localities of the analyzed specimens of Chiroderma doriae doriae, C. d. vizottoi, C. gorgasi, and C. trinitatum. The locality numbers are referenced in the gazetteer (Appendix 1). Chiroderma trinitatum Goodwin, 1958 Synonyms: Chiroderma trinitatus Goodwin, 1958:1; type locality “Cumaca, Trinidad, British West Indies.” Chiroderma trinitatum: Handley, 1960:466; correct gender concordance. Chiroderma trinitatum trinitatum: Barriga-Bonilla, 1965: 247; name combination. Chiroderma trinitratum Linares and Moreno-Mosquera, 2010: 275; incorrect subsequent spelling of Chiroderma trinitatum Goodwin, 1958. Type Material. The holotype, designated in the original publication, is specimen AMNH 175325, a female pregnant when collected in a well-lit cave, by L. Venus and B. Smith on March 22, 1956, in Cumaca, Trinidad and Tobago. The skin is preserved in fluid and nearly all hair has fallen out. There is a transversal cut on the abdomen. The skull has been removed and is in good condition, with all the teeth and cranial bones preserved. The fetus, removed from the type, has a distinct median dorsal stripe and a crown-rump length of approximately 20 mm. Distribution and Habitat. Specimens are known form Guyana; Suriname; French Guiana; Trinidad; northern, central and western Brazil; northern and eastern Bolivia; eastern Perú; eastern Ecuador; southern and eastern Colombia; and southern Venezuela (Fig. 23). Records are from humid tropical forests, in the Amazon basin, Orinoco basin, and the Guianas. Some records are from ecotonal areas between humid forests and drier, more seasonal formations, such as in Serra do Roncador (central Brazil), and in San Ramón (northeastern Bolivia). C. trinitatum have been collected from approximately 20 m above sea level (e.g. Belém, Brazil) to elevations near 1,050 m, in the Andean foothills (e.g. Santa Bibiana, Perú), corroborating the altitudinal amplitude given in the literature (e.g. Handley 1976; Ascorra et al. 1996; Solari et al. 2006, 2019). 40 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Description and Comparisons. Dorsal pelage may be pale brown, dark brown, or grayish brown (Fig. 24). A completely white C. trinitatum was recorded in the Peruvian Amazon by Tello et al. (2014). Dorsal hairs are tricolored, the base about ¼ of the hair length and dark brown, middle portion about ½ of the hair length and pale buff or pale gray, and tips about ¼ of the hair length and pale brown, dark brown, or grayish brown. Facial stripes are always present with the interocular pair wider (> 2 mm) than the genal stripes. A median dorsal stripe was present in 111 of the 113 specimens examined (98%). When present, the stripe was barely visible in 13 of 95 specimens (13%). The stripe usually begins in the interscapular region and reaches the posterior rump of the body. In some specimens, the dorsal stripe began more anteriorly in the region immediately behind the nape. The ears have yellowish margins and base, with the remainder brownish. The spear of the noseleaf has a simple tip, is brown in color, with paler lateral borders of the horseshoe. FIGURE 24. Dorsal view of the pelage of Chiroderma trinitatum. A) USNM 361723 from Brazil, Pará; B) USNM 393709 from Brazil, Mato Grosso. The skull is similar to that of C. gorgasi and it is smaller than every other species of Chiroderma (Tables 7 and 8). The braincase is globose, standing above the frontonasal region in lateral view. A sagittal crest was absent in 37 of 126 specimens (29.4%), weakly developed in 86 (68.2%), and well developed in 3 (2.3%). The nasal notch is relatively short, not reaching the interorbital region (Fig. 25). C. trinitatum has relatively small orbits; the anterior border approximating the mesial margin of M1 (Fig. 26). Post orbital processes are present, but rhomboid instead of pointed as in the other species. A posterior palatine process was absent in 110 (90.9%) of the 121 specimens examined. A small process was present in 10 specimens, and one (AMNH 264076) had an anomalous notch in place of a projection on the margin of the palate. Paraoccipital processes are absent. When cranium and mandible are in occlusion, there is a lateral gap bordered by the C, P3, P4, p2 and p4 (Fig. 9). The I1s have converging tips in most of the specimens (112 out of 122) we examined. The I1s may be in contact at the base, along approximately ⅔ of their length, or only at their tips, the most frequent state. In some C. trinitatum, the I1s are separated throughout their length. The P3 is wider (buccolingually) than long (mesiodistally) and does not touch P4. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 41 FIGURE 25. Dorsal (A) and ventral (C) views of the skull of Chiroderma trinitatum (USNM 581934—Perú, Amazonas) and dorsal (B) and ventral (D) view of C. gorgasi (USNM 335294—Panamá, San Blas). FIGURE 26. Skull and mandible, in lateral view, of A) Chiroderma trinitatum (USNM 581934—Perú, Amazonas) and B) C. gorgasi (USNM 335294—Panamá, San Blas). The crown of the lower canine is relatively short, clearly below the level of the tip of the coronoid, in lateral view (Fig. 26). The p2 is large, approximately ¾ of the height of p4, and higher than long. The p2 may be close to or in contact with the canine, or it may lie approximately equidistant between c and p4 (Fig. 26). Chiroderma trinitatum is easily differentiated from C. doriae and C. improvisum by its much smaller size (Tables 7 and 8). The intermediate-sized species, e.g. C. salvini, C. scopaeum, and C. villosum, are distinguishable from C. trinitatum by having their longer nasal notch that reaches the interorbital region, pointed post-orbital processes and the short p2, which is approximately ¼ the crown height of p4. The species most similar to C. trinitatum is C. gorgasi. C. trinitatum has relatively shorter lower canines, the 42 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. tips of which are clearly below the level of the top of the coronoid process in lateral view. The lower canines have higher crowns in C. gorgasi, being on the same level or higher than the tip of the coronoid process (Fig. 26). The base of lower canines of C. trinitatum is also longer, but shorter in C. gorgasi. The p2 of C. trinitatum is usually higher than long mesiodistally; whereas, in C. gorgasi the p2 is longer than high (Fig. 27). As recently described by Lim et al. (2020), C. trinitatum tends to have a wider braincase and typically has a third cuspid on p4 that is absent in C. gorgasi. FIGURE 27. Right dentary of A) Chiroderma trinitatum (USNM 460124—Brazil, Pará) and B) C. gorgasi (USNM 335294— Panamá, San Blas). Geographic Variation and Phylogeography. Phylogenetic analyses of 68 sequences of C. trinitatum resulted in two highly-supported clades (Fig. 21). One of the clades is based on sequences from 26 specimens from the Guianas (French Guiana, Guyana, and Suriname), and the island of Trinidad. The other clade consists of 42 specimens, from the Guianas (Guyana and Suriname) and the Amazon basin (Bolivia, Brazil, Ecuador, and Perú) (Fig. 21). However, we could not find any morphological differences between the two clades. Subspecies. C. trinitatum is monotypic. Natural History. C. trinitatum is frugivorous and is known to consume fruits and infructescences of at least five species: Cecropia obtusifolia, Piper elongatum, Solanum riparium (Solanaceae), Ficus sp., and Vismia sp. (Hypericaceae) (Reis & Peracchi 1987; Loayza et al. 2006; Linares & Moreno-Mosquera 2010). C. trinitatum has also been recorded drinking the mineral-rich water at clay licks (“collpas”) in the Peruvian Amazon (Bravo et al. 2008, 2010; Ghanem et al. 2013; Ghanem & Voigt 2014). In most studies comparing the relative abundance of species in the canopy and understory, C. trinitatum was more commonly netted in the higher forest strata, at approximately 20 m, suggesting that the species is a canopy frugivore (Ascorra et al. 1996; Simmons & Voss 1998; Charles-Dominique & Cockle 2001; Kalko & Handley Jr. 2001; Delaval et al. 2005; Rex et al. 2011). Day roosts of C. trinitatum are unknown, and the only information available comes from the type specimen, which was collected on the island of Trinidad in a cave described by Goodwin & Greenhall (1961) as well-lit and co-inhabited by Micronycteris megalotis. In Venezuela, two species of ectoparasites were documented on C. trinitatum, the mite Periglischurus iheringi (Spinturnicidae) and a species of Streblidae of the genus Paratrichobius (salvini complex) (Herrin & Tipton 1975; Wenzel 1976). In Colombia, the tick Ornithodoros azteci (Argasidae) was recorded from C. trinitatum by Marinkelle & Grose (1981). The endoparasite Hasstilesia tricolor (Nematoda) was recorded by Nogueira et al. (2014) in C. trinitatum from Acre, Brazil. Reproductive data suggest seasonal polyestry. Pregnant females are recorded from December through March in the Amazon of Colombia, Perú, and Venezuela, and on the island of Trinidad. Pregnancies are recorded from June through September in Guyana and the Amazon of Brazil, Perú, and Venezuela. Lactating females were documented in February, April, May, and July. Apparently, gestation peaks during the rainy season (December to March), with one birth peak from the middle to the end of the rainy season, and a second during the dry season (June to September) with births occurring close to the beginning of the rainy season. Specimens Examined (N = 146): Bolivia: Beni, Estancia Yutiole (AMNH 210810), Remansos (AMNH 209520, 209521); La Paz, Río Coraico Valley (AMNH 246646), Santa Ana de Madidi (AMNH 261632, 261641); SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 43 Santa Cruz, 10 km N San Ramón (AMNH 261674), Parque Nacional Noel Kempff Mercado, 23 km S Campamento Los Fierros (AMNH 264077), Parque Nacional Noel Kempff Mercado, 27.5 km S Campamento Los Fierros (AMNH 264076), Parque Nacional Noel Kempff Mercado, 3 km S Campamento Los Fierros (AMNH 264075), Parque Nacional Noel Kempff Mercado, El Refugio (USNM 584492). Brazil: Acre, Parque Nacional da Serra do Divisor (ALP 7020, 7088, 7099, 7124, 7134, 7143, 7144, 7195, 7295, 7311); Amazonas, Comunidade Cachoeirinha (LMSUP[ICA033]), opposite to Comunidade São Pedro (LMUSP[ICA173]); Mato Grosso, 264 km N Xavantina (USNM 393704–393711), Parque Nacional do Juruena, Serra dos Apiacás (CMUFLA 1284), São José do Rio Claro (MZUSP[PEV 896–897]); Pará, Fazenda Bocaina (UFMG[VCT1437]), Fazenda Fartura (MZUSP 36012, 36013), Floresta Nacional de Carajás (UFMG[VCT6342]), rio Xingu, Linha de Transmissão Jurupari (MZUSP 35033), Sta. A, IAN (USNM 361723, 460127), Várzea, Belém (USNM 460124, 460125, 460126); Rondônia, Monte Negro (MZUSP 35026, ZUFMS 1342). Colombia: Amazonas, Puerto Nariño (USNM 483766–483769); Vichada, Territorio Faunistico Tuparro (IAvH-M 2083). Guyana: Cuyuni-Mazaruni, Maz 3 (BMNH 1980.751, 1980.752). Namai Creek (ROM 108144); Potaro-Siparuni, Iwokrama Reserve (ROM 109026); Upper Demerara-Berbice, 3.2 km W Kurupukari (BMNH 1997.39), Tropenbos (ROM 103486). French Guiana: Sinnamary, Paracou (AMNH 266255, 266256, 267189, 268532, 269118). Perú: Amazonas, Cordillera del Condor (USNM 581934); Cusco, Camisea, Armihuari (MUSM 13619, 13622, 13623, USNM 582837), Camisea, Pagoreni (MUSM 13624–13626, USNM 582838), Consuelo (MUSM 19670); Huánuco, Puerto Inca (MUSM 36692); Junín, Santa Bibiana (MUSM 40606); Loreto, Jenaro Herrera (MUSM 4219, 5594), km 22,7 da rodovia Iquitos-Nauta (MUSM 29559), Peña Negra (MUSM 29557), Quebrada Grande (MUSM 21134, 21135), Río Lagartococha (MUSM 21138); Madre de Dios, Albergue Maskoitania (MUSM 19669), Pakitza (MUSM 678), Quebrada Aguas Calientes (MUSM 16651), Refugio Juliaca (MUSM 11662); Pasco, Campamento Río Lobo (MUSM 10229), Cerro Chontiya (MUSM 10226, 10227), Cerro Jonatán (MUSM 10228), San Pablo (AMNH 230656), Yanahuanca (MUSM 10881); Puno, Curva Alegre (MUSM 26658), San Fermín (MUSM 26659); Ucayali, Concesión de Conservación Río La Novia (MUSM 44185); Suriname: Brokopondo, Brownsberg Nature Park (ROM 114213); Sipaliwini, Kushere Landing (ROM 120168). Trinidad and Tobago: Trinidad, Arima (AMNH 205373), Cumaca (AMNH 175325 [holotype of trinitatum]), Fillete (AMNH 205375), Las Cuevas (BMNH 1971.121). Venezuela: Amazonas, Boca Mavaca (USNM 405159), Capibara (USNM 415245), Cerro Neblina base camp (USNM 560764–560766), Guayabal (USNM 415256, 415257), Río Cunucunuma (MZUSP 27166, 27167, USNM 405132–405139, 405141–405148, 405156, 405157), Río Manapiare (USNM 415250–415254); Apure, La Blanquita (USNM 440348); Barinas, Altamira (USNM 418121); Bolívar, 85 km SSE El Dorado (USNM 387192), El Manaco (USNM 387193–387198, 387202, 387203); Yaracuy, Minas de Aroa (USNM 440747). Chiroderma gorgasi Handley, 1960 Synonyms: Chiroderma gorgasi Handley, 1960: 464; type locality “Tacarcuna Village, 3,200 ft., Río Pucro, Darién, Panama.” Chiroderma trinitatum gorgasi: Barriga-Bonilla, 1965: 246; name combination. Type Material. The type of C. gorgasi, USNM 309903, consists of a stuffed skin, skull and mandible, collected in Tacarcuna Village, Panamá, on March 6, 1959 by C. O. Handley and B. R. Feinstein (field number COHJR 5436). It is an adult male, captured in a mist net over water. The skin is in good condition with the facial and dorsal stripes observable in the specimen. The skull and mandible are in good condition and every tooth is present. The I1 have convergent tips. Distribution and Habitat. Specimens are known from Panamá, western Colombia, and northwestern Ecuador (Fig. 23), and there is a record from eastern Honduras (Turcios-Casco et al. 2020). The unconfirmed record for Costa Rica is based on a bat captured and released by R. LaVal in Tortuguero (Timm & LaVal 1998). Also in Costa Rica, Harvey & González-Villalobos (2007) reported the capture of 18 “Chiroderma trinitatum” in Talamanca, but we could not verify if there are voucher specimens to support this claim. The occurrence of the species in Costa Rica is expected, as C. gorgasi has been recorded in western Panamá and eastern Honduras (Handley 1966b; TurciosCasco et al. 2020). The records of C. gorgasi are from the humid forests of the Chocó of Colombia, the Darién of Panamá, Caribbean lowland forests of Honduras, and montane forests of the Rio Magdalena valley in Colombia. The altitude where 44 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. specimens have been obtained ranges from 30 m in Esmeraldas, Ecuador, to 975 m, in Tacarcuna, Panamá. There are Colombian records of the species occurring at 2,100 in Tolima and between 1,600 and 2,300 m in Risaralda (Galindo-Espinosa et al. 2010; Castaño et al. 2018). Description and Comparisons. Dorsal pelage may vary from pale to dark brown. Individual hairs of the dorsum are tricolored: the base is approximately ¼ of the hair length and dark brown, the middle band is approximately ½ of the length of the hair and varies from buff to pale gray, and the tip is about ¼ of the hair length and varies from pale to dark brown. Both pairs of facial stripes are conspicuous. The dorsal stripe is conspicuous in approximately half of the sample (47%, n=8); whereas, it is barely visible in nine specimens. The ear margins and base are paler than the remainder of the ear conch. The noseleaf has a simple tip, is brown in color, with pale margins on the horseshoe. Dimensions of the skull are similar to those of C. trinitatum, and the two species are the smallest Chiroderma (Tables 7 and 8). Braincase is globose, clearly distinguishable in profile from the frontonasal region. The sagittal crest is poorly developed and was not detected in 9 of the 17 specimens we scored for this character. The nasal notch is short and either does not reach the interorbital region, or extends only the level of the anterior border of the orbit. Similar to C. trinitatum, the post-orbital processes are rhomboid and not pointed as in the other Chiroderma. The posterior palatine process was absent in 13 of 15 specimens and in the other 2, the process was only a small bump. When cranium and mandible are in occlusion, a lateral gap is visible, bordered by C, P3, P4, p2 and p4. The I1s are convergent and their tips are usually in contact. The mandibular condyle is level with or slightly below the toothrow. The lower canines are relatively narrow and high-crowned, with the crown tip level with the top of the coronoid process, when viewed laterally. The p2 is in contact with c, but not with p4, or if not in contact with the lower canine, p2 may be either closer to the lower canine or equidistant from c and p4. The p2 usually is longer mesiodistally than high and the protoconid is shifted anteriorly, not aligned with the base of the tooth when viewed laterally (Fig. 27). Chiroderma gorgasi differs from every other Chiroderma, except C. trinitatum, by its smaller size and nasal notch usually not reaching the interorbital region. Comparisons with C. trinitatum were made in the previous section. Geographic Variation and Phylogeography. Sequences of three individuals of C. gorgasi were analyzed in the phylogeny, precluding making inferences on geographical structuring. Within-species variation was 1.04%, the second highest value in Chiroderma after C. villosum (1.17%). Subspecies. C. gorgasi is monotypic. Remarks. Handley (1960) described Chiroderma gorgasi based on five specimens from Panamá and one C. trinitatum from Trinidad, the type and only known specimen at the time. In the original description, Handley (1960: 465) suggested that, as the sample size increased, the two taxa could prove to be conspecific. Shortly after its description, C. gorgasi was treated as a subspecies of C. trinitatum, based on their morphological similarity (BarrigaBonilla 1965; Jones & Carter 1976; Hall 1981). Simmons (2005) recognized a monotypic trinitatum with gorgasi as a junior synonym. Recently, Lim et al. (2020) recognized C. gorgasi as a distinct species, because it does not share a most recent common ancestor with C. trinitatum, and has distinguishing morphological characters. Natural History. C. gorgasi is a frugivore, specialized on fruits of Ficus (Bonaccorso 1979). Four species of fruits and infructescences have been recorded in the diet of C. gorgasi: Ficus popenoei , Piper aduncum, Solanum umbellatum, and Vismia sp. (Bonaccorso 1979; Castaño et al. 2018). The vertical distribution suggests that C. gorgasi is a canopy and sub-canopy frugivore, more frequently captured in nets between 3 and 12 m above ground (Bonaccorso 1979). The few reproductive data for the species suggest a pattern of seasonal polyestry. A pregnant female was captured in June in Colombia and lactating individuals were recorded in February and March in Panamá. Literature data for Panamá report pregnancies in February, May and between September and November; whereas lactating females are documented from May and September (Fleming 1973; Bonaccorso 1979). Births apparently occur toward the end of the dry season, between February and May, and in the middle of the rainy season, between July and September, when fruits are most abundant. Specimens Examined (N = 18): Colombia: Antioquia, La Tirana (IAvH-M 917, 934, 974, USNM 499475, 499477, 499479); Chocó, Corregimiento Gilgal (IAvH-M 4932), Finca El Recurso (IAvH-M 3260, 3299, 3323); Valle del Cauca, Río Zabaletas (USNM 483764). Panamá: Darién, Parque Nacional Darién (ROM 104342), Tacarcuna Village Camp (USNM 309902, 309903 [holotype of gorgasi], 309904); San Blas, Armila (USNM 335294, 335296, 335297). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 45 Chiroderma improvisum Baker and Genoways, 1976 Synonyms: Chiroderma improvisum Baker and Genoways, 1976: 1; type locality “Guadeloupe: Basse-Terre; 2 km. S, 2 km. E Baie-Mahault.” Type Material. The type, TTU 19900 (not seen), is a skin, skull and mandible, collected by R. J Baker and H. H. Genoways (field number J. C. Patton 552) in July 29, 1974 on the Basse-Terre island, Guadalupe (Baker & Genoways 1976). It is an adult male captured in a mist net set in a pasture adjacent to gallery forest. The karyotype of the specimen is deposited with the tissue collection of the Texas Tech University under the number TK 8285. The skin, skull, and mandible were examined by means of photographs and are in good condition. Distribution and Habitat. The species is known from four islands in the Lesser Antilles: Guadeloupe, Montserrat, Saint Kitts, and Nevis (Fig. 28). There is also a subfossil specimen collected on the island of Marie-Galante, south of Guadeloupe (Lenoble 2019). Records of C. improvisum are from areas of dry forests and humid forests, from sea level up to approximately 350 m. The few known specimens were captured in mist nets set over streams, in gallery forests, in secondary forests surrounded by pasture and plantations, and in urban and peri-urban areas (Baker et al. 1978; Jones Jr. & Baker 1979; Pierson et al. 1986; Pedersen et al. 2010; Beck et al. 2016). However, a harp trap set across a dry ravine caught the first specimen of C. improvisum from Nevis (Lim et al., 2020). FIGURE 28. Collecting localities of the analyzed specimens of Chiroderma improvisum, C. v. villosum and C. v. jesupi. The locality numbers are referenced in the gazetteer (Appendix 1). Description and Comparisons. Dorsal pelage varies from grayish to dark brown. Dorsal pelage is long (approximately 13 mm). Individual hairs of the dorsum are tricolored with a grayish base and buff middle band. The interocular stripes are weakly developed and the genal pair was not visible in the two skins we examined, but its presence can be verified in photographs of live animals (Baker & Genoways 1976; Jones Jr. & Baker 1980; Lim et al. 2020). The dorsal stripe is inconspicuous, visible from the mid dorsum to near base of the uropatagium. The ear is moderate to dark brown along most of its length; the base is yellowish. The noseleaf is uniformly dark to medium 46 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. brown, and the tip may be simple or notched, as evident in the figure in Jones & Baker (1980). The posterior border of the uropatagium has a V-shaped notch. The skull of C. improvisum is the largest among Chiroderma (Tables 7 and 8). The braincase is low and slopes evenly to the frontonasal region in profile. The sagittal and lambdoid crests are conspicuous in both specimens examined and in the type. The nasal notch extends behind the anterior margin of the orbits (Fig. 29). Post-orbital processes are distinct, but not pointed. The orbits are relatively small and the posterior margin approximates the level of the mesial margin of M1 (Fig. 30). A medial accessory foramen between incisive foramina is lacking. There is no posterior palatine process. When skull and mandible are in occlusion, there is a small lateral gap bordered by C, P3, p2, and p4 (Fig. 9). In addition, there is a frontal gap surrounded by I1, I2, c, i1, and i2 (Fig. 14). The I1s are convergent and their tips may or may not be in contact. P3 is separated from P4 by a small gap, or the two teeth contact each other (Fig. 29). The mandibular condyle is above or level with the tooth row. Lower canines are relatively short, their tips below the level of the top of the coronoid process. The basal cingulum of the lower canines is well developed and crowding the lower incisors. The p2 is mesiodistally longer than tall, and is approximately ⅓ of the height of p4 (Fig. 30). The p2 is in contact with lower canines, either touches p4 or the two lower premolars are separated by a small gap. The p4 protoconid is robust, with its distal margin sloping evenly to the tooth’s, not abruptly as in the other species. FIGURE 29. Dorsal (A) and ventral (C) views of the skull of Chiroderma improvisum (TTU 31403—Montserrat) and dorsal (B) and ventral (D) views of C. villosum (USNM 520557—Panamá). Compared with C. doriae, which has a similar size, C. improvisum is larger, has grayish or dark brown dorsal pelage (medium brown in doriae), faint facial stripes (bright in doriae), and unicolored noseleaf and ears (in doriae the horseshoe of the noseleaf has pale borders and the ears also have whitish margins). Cranially, C. improvisum can be diagnosed by its wider nasal notch and by the broader posterior border of the palate, not narrow inverted-U shaped as in C. doriae. The P3 of C. improvisum is not expanded buccolingually and is in contact with P4, differing SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 47 from C. doriae in both aspects. The lower canines of C. improvisum are relatively larger than in C. doriae. The p2 of C. improvisum is mesiodistally longer than tall; whereas, in C. doriae, p2 is taller exceeding ⅔ the height of p4. The p4 of C. improvisum is more robust than in C. doriae, and the protoconid is long mesiodistally. A frontal gap is present in C. improvisum, but lacking in C. doriae. FIGURE 30. Skull and mandible, in lateral view, of A) Chiroderma improvisum (TTU 31403—Montserrat) and B) C. villosum (USNM 520557—Panamá). The species most similar to C. improvisum in qualitative characters is C. villosum, from which improvisum can be differentiated by the much larger size, darker pelage (pale brown in villosum), absence of a posterior palatine process, convergent I1s (parallel and separate in villosum), relatively smaller lower canines (taller and more pointed in villosum), large p2 in contact with p4 (gap between p2 and p4 in villosum). Geographic Variation and Phylogeography. The genetic distance between the two specimens of C. improvisum in our molecular analysis was 0.22% (Fig. 4). Due to the small sample, we cannot make inferences either on geographic structuring or morphological variation in the taxon. Subspecies. C. improvisum is monotypic. Natural History. There is no information on the diet of C. improvisum, but it probably feeds on fruits, infructescences and their seeds, as the other species of Chiroderma. The type was collected approximately 6 m above the ground and near a forest having a 15-meter-high canopy (Baker et al. 1978), suggesting that the species may be active in the canopy as is the closely-related C. villosum. A mite, Periglischrus iheringi (Spinturnicidae), was recorded on C. improvisum from Saint Kitts (Beck et al. 2016). We lack information on reproduction in C. improvisum. Specimens Examined (N = 2): Montserrat: Saint Anthony Parish, 0.8 km above mouth of Belham river (TTU 31403). Saint Kitts and Nevis: Saint Thomas Parish (Nevis)¸ Barnes Ghaut (ROM 126002). Chiroderma villosum Peters, 1860 Synonyms: See under subspecies. Type Material. The lectotype of Chiroderma villosum (ZMB 408), designated by Thomas (1891), is a stuffed skin. The skull is inside the skin and the skin around the lips is everted, exposing all of the teeth except M2 and m2. The free portion of the noseleaf spear is broken. The wing patagia are crumbly and several fragments have fallen off. The tips of the ears are also crumbly. The skin appears to preserve the original color, the interocular stripes are barely visible, but the genal pair is not visible. Dorsal pelage is pale brown and three bands can be distinguished: a dark brown base, and buff middle. The dorsal stripe appears to be lacking. The I1s are parallel to each other, not in contact, and have slightly diverging tips. The p2 is small and clearly 48 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. separated from p4. The forearm measures 47.9 mm. According to Thomas (1891), the individual depicted in Peters’ (1906) plate, published posthumously, is probably the type. In the illustration, the skull is separate from the skin, suggesting that the skull could have been removed and later re-inserted in the skin (Fig. 31). The other possibility is that the skull Peters illustrated belonged to the partial skeleton referred to, but not examined by Carter & Dolan (1978:59). FIGURE 31. Plate of the lectotype of Chiroderma villosum by Wilhelm Peters, published posthumously. Distribution. See under subspecies. Description and Comparisons. Dorsal pelage may be pale brown, dark brown, reddish brown, or grayish brown. Most of the 328 specimens we examined have a pale brown dorsum (61%, n=201). The second most common color of the dorsal pelage is dark brown (38%, n=125). Dorsal hairs are tri-banded, the base is always dark brown, and the middle band is pale buff. Facial stripes were not detected in 191 (58%) of the 328 analyzed specimens. In 36.2% of the sample (n=119), the stripes were detected, but not conspicuous. The interocular pair was the only pair of facial stripes detected in 82.3% of the specimens, while both pairs were present in 17.7%. Only 13 specimens (3.9% of the sample) had conspicuous facial stripes, with the interocular pair more conspicuous than the genal. The dorsal stripe was not detected in 152 of 333 specimens (45.6%) scored for this character. The stripe was faint in 154 specimens (46.2%), and, in some the only evidence of a stripe was a short white mid-dorsal line. Only 22 specimens (6.6%) had a conspicuous dorsal stripe. Five specimens (1.5%) had a median dorsal stripe, but they were not scored as to conspicuousness. The tragus and base of the ears are yellow, but the remainder is uniformly brownish. The tip of the noseleaf is notched in 49 (74.2%) of the 66 specimens scored for this character. The noseleaf is nearly uniformly pale brown, with the central rib of the spear having a more pinkish tone and the lateral margin of the horseshoe slightly paler. The skull of C. villosum is similar in size to C. d. vizottoi and C. scopaeum, and measurements have some overlap with small C. d. doriae, C. salvini, and large C. trinitatum (Tables 7 and 8). The braincase is relatively deep and globose. A sagittal crest is present in 356 (85.5%) of the 416 C. villosum crania scored for this character, and varied from high and conspicuous to low and inconspicuous. The orbits are relatively large. The nasal notch is long, extending back into the interorbital region close to post-orbital processes. A posterior palatine process was present in 280 (83%) of the 336 skulls scored for this character, and varied from a long and conspicuous to a small nub. When cranium and mandible are in occlusion, a wide lateral gap, SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 49 bordered by C, P3 and P4, and p2 and p4, is evident (Fig. 9). The occluded teeth also form a W-shaped frontal gap rimmed by lower canines, lower incisors, and upper inner incisors (Fig. 14). The I1s were parallel to each other (76.2%, n=314), medially convergent (22.3%, n=92) or divergent (1.4%, n=6) in the 512 crania scored for this character (Fig. 32). M2 usually has a cingulum around the protocone, which projects lingually. Lower canines are narrow and tall, with the tips level with the top of the coronoid process when the mandible is viewed laterally. The crown of p2 is approximately ¼ the height of p4. The p2 is in contact with the canine, but not with p4. Compared to the other species of Chiroderma, the protoconid of p4 is narrow. FIGURE 32. Individual variation in the disposition of the inner upper incisors in Chiroderma villosum. A) parallel (USNM 520558, Panamá); B) convergent (USNM 520557, Panamá); C) divergent tips (USNM 540676, Trinidad); and D) base and tips divergent (USNM 499481, Colombia). The subspecies C. v. jesupi and C. v. villosum differ in size, with the former averaging smaller in forearm length and in every cranial dimension we analyzed (Table 9). As previously mentioned, our decision to recognize two subspecies was mainly due to the presence of haplotypes exclusive to the trans-Andean portion of the distribution of C. villosum. The two smallest Chiroderma (C. gorgasi and C. trinitatum) differ from C. villosum by size, presence of conspicuous facial and dorsal stripes, bicolored noseleaf, shorter nasal notch, convergent I1s, and taller p2. The insular C. improvisum is easily distinguished from C. villosum by its larger size, relatively lower braincase, longer rostrum, more robust dentition, and p2 in contact with p4. 50 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Among similar-sized species, C. villosum can be differentiated by the weaker facial and dorsal stripes (conspicuous in C. doriae, C. salvini, and C. scopaeum), paler dorsal pelage (usually darker in C. d. doriae and C. salvini), notched tip of noseleaf (simple tip in C. doriae, C. salvini, and C. scopaeum), deeper braincase (shallow in C. d. doriae), longer nasal notch (shorter in C. doriae, C. salvini, and C. scopaeum), larger orbits (smaller in C. doriae, C. salvini, and C. scopaeum), I1s parallel or divergent (convergent in C. doriae, C. salvini, and C. scopaeum), smaller p2 (large in C. doriae), narrower and taller canines (wider and shorter in C. doriae and C. scopaeum), and presence of a frontal gap when cranium and mandible are in occlusion (gap absent in C. doriae, C. salvini, and C. scopaeum). Geographic Variation and Phylogeography. Phylogenetic analyses of sequences of COI representing 133 C. villosum recovered a clade composed of sequences exclusively from México, Central America, and trans-Andean South America (Figs. 33, 35). The samples from cis-Andean South America, however, form a polytomy, which does not suggest geographic structuring because specimens from distant regions, such as Bolivia and Trinidad, group together. FIGURE 33. Haplotype network of Chiroderma villosum and C. improvisum, built using the “Median Joining” algorithm (epsilon = 0; 2,000 iterations). There is geographic variation in size among the subpopulations of C. villosum. Specimens from the Atlantic rainforest of eastern Brazil (n=48) are larger than the other geographic groups (Table 13, Fig. 34). Specimens from Trinidad and Tobago also had larger dimensions; however, the sample size was smaller (n=7). Populations from the Amazon north of the Amazonas River and from México and Central America and trans-Andean South America had the smaller dimensions. We suggest there is clinal variation in size, with larger specimens in the extreme east and southeast part of the distribution and smaller individuals in the northwestern part of the range. There is overlap between measurements from adjacent geographic groups, but the populations from the western portion of the distribution, which would correspond to subspecies C. v. jesupi, are significantly smaller than the others (Fig. 34). Subspecies. We recognize two subspecies in Chiroderma villosum. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 51 FIGURE 34. Predefined groups of C. villosum used in the geographic variation analysis (above). Boxplot of the first principal component (PC1), extracted from the variance-covariance matrix of a principal component analysis of 13 cranio-dental measurements (below). A = México/Central America/trans-Andean South America; B = northern Venezuela; C = Trinidad and Tobago; D =northern Amazonia and the Guianas; E = Southern Amazonia; F = Chaco and Cerrado; G = Atlantic coast. 52 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE 35. Phylogenetic relationships between Chiroderma improvisum and C. villosum, based on 141 sequences of the cytochrome c oxidase subunit 1 gene. Localities in parentheses are detailed in the gazetteer (Appendix 1). This subtree is a detailed version of the clades named “improvisum” and “villosum” in figure 4. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 53 TABLE 13. Loadings of the first and second principal components, extracted from the variance-covariance matrix of a principal component analysis of 13 cranio-dental measurements of Chiroderma villosum. Measurements PC 1 PC 2 GLS 0.91 -0.01 CIL 0.93 0.00 CCL 0.94 -0.02 PB 0.66 0.21 BB 0.68 0.08 MB 0.82 -0.07 ZB 0.89 0.07 MTRL 0.90 0.09 M1–M1 0.88 0.30 M2–M2 0.88 0.28 MANDL 0.89 0.09 DENL 0.90 -0.07 CAL 0.77 -0.61 Eigenvalues 9.50 0.62 Proportion of variation 73.10% 4.79% C. v. villosum Peters, 1860 Synonyms: Chiroderma villosum Peters, 1860:748; type locality “Brasilia.” Chiroderma villosa Jones, 1951: 224; incorrect gender concordance. Chiroderma villosum villosum: Handley, 1960:466; first use of current name combination. Chiroderma trinitatum: Pirlot, 1972: 76, not Chiroderma trinitatum Goodwin, 1958. Chiroderma sp. Nowak, 1994: 160. Chiroderma salvini Nowak, 1994: 160, not Chiroderma salvini Dobson, 1878. Chiroderma [sp.] Czaplewski & Cartelle, 1998: 794. see Garbino & Tavares (2018a) Chiroderma salvini: Medina et al., 2015: 204, not Chiroderma salvini Dobson, 1878. Chiroderma salvini: Rocha et al., 2016: 573; not Chiroderma salvini Dobson, 1878. Chiroderma salvini: Maas et al., 2018: 672; not Chiroderma salvini Dobson, 1878. Distribution and Habitat. The nominal subspecies, C. v. villosum, is known from the tropical region of cis-Andean South America. The taxon has been recorded in Colombia, Venezuela, Trinidad and Tobago, Guyana, Suriname, French Guiana, Brazil, Ecuador, Perú, and Bolivia (Fig. 28). The southern limit of the subspecies is in the Brazilian state of Paraná (not mapped; Reis et al. 1998). The subspecies occurs in a wide variety of environments, including humid and seasonal forests (e.g. Amazonia, Atlantic rainforest), flooded plains (e.g. Pantanal, Llanos), and dry formations (e.g. Caatinga, Cerrado) (Handley 1976; Gregorin et al. 2008; Luz et al. 2011; Fischer et al. 2015). C. v. villosum apparently tolerates some habitat disturbance, as it occurs in small forest fragments and urban areas (Nogueira & Peracchi 2003; Ferreira et al. 2010; Nunes et al. 2017). Chiroderma villosum villosum occurs from sea level to approximately 1,000 m. In Venezuela, 99% of the specimens of C. v. villosum were captured below 500 m (Handley 1976). In the Peruvian Amazonia (Madre de Dios), the species was recorded between 340 and 950 m (Solari et al. 2006). C. v. jesupi Allen, 1900 Synonyms: Chiroderma jesupi Allen, 1900: 88; type locality “Cacagualito, Colombia.” Chiroderma isthmicum Miller, 1912: 25; type locality “Cabima, Panama.” 54 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Chiroderma isthmica Hall and Jackson, 1953: 645; incorrect gender concordance. Chiroderma villosum jesupi: Handley, 1960:466; first use of current name combination. Distribution and Habitat. The subspecies C. v. jesupi occurs in the tropical region of trans-Andean South America and also in Central America and México. The taxon has been recorded in México (Oaxaca, Hidalgo, Veracruz, and states to the south), Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, Panamá (including Islas Perlas), western Colombia, western Ecuador, and extreme northwestern Perú (Tumbes; Fig. 28). Collecting sites of C. v. jesupi are in dry and humid tropical forests. The taxon has been recorded from sea level up to approximately 970 m. In northwestern Perú (Tumbes), specimens were captured at 350 m (Novoa et al. 2011). In Colombia (Tolima), the taxon was captured at 900 m (Galindo-Espinosa et al. 2010). In southern México (Chiapas), the maximum capture elevation was 915 m (Davis et al. 1964). Remarks. The original description of Chiroderma villosum was based on specimen ZMB 408 and on a skeleton from the anatomical collection of the Berlin museum that is probably lost (Turni & Kock 2008; Garbino & Nogueira 2017). From the two syntypes, Turni & Kock (2008: 44) selected specimen ZMB 408 as the lectotype, but Thomas (1891: 882) had already designated the same specimen, i.e. the one represented in Peters’ plate, as the lectotype. In the species description, Peters (1860: 748) mentioned only “Brasilia” as the locality and suggested that the lectotype was collected by Friedrich Sellow. In the collection catalogue of the Museum für Naturkunde, the locality of the specimen, handwritten by Peters reads just “Brasilien”, and there is no note indicating who collected it (Garbino & Nogueira 2017). Due to the impossibility to further restrict the type locality and the lack of evidence that it was indeed collected by Sellow, we follow most authors in citing “Brazil” as the type locality of Chiroderma villosum (Handley 1960; Husson 1962; Carter & Dolan 1978; Simmons 2005; Gardner 2008a; Turni & Kock 2008; Garbino & Nogueira 2017). Cabrera (1958: 85) erroneously designated “Venezuela” as the type locality of Chiroderma villosum, followed by Goodwin & Greenhall (1961), and probably by Vieira (1942, 1955), who did not include the species among the Brazilian mammals. Cabrera may have altered the type locality based on the mention of a specimen from St. Esteban, Venezuela by Thomas (1891: 56), which was the first subsequent precise locality reported for the species. Natural History. C. villosum is a secondarily granivorous frugivore, specializing in chewing the seeds of fruits of Ficus to extract nutritive content (Nogueira & Peracchi 2003; Wagner et al. 2015). The species apparently has preference for Ficus, and fruits of this genus may compose 100% of the diet of C. villosum in Panamá (Bonaccorso 1979). Nine species of Ficus have been recorded in the diet of C. villosum in Panamá: Ficus citrifolia, F. dugandii, F. insipida, F. nymphaefolia, F. obtusifolia, F. paraensis, F. pertusa, F. popenoei, and F. trigonata (Bonaccorso 1979; Handley et al. 1991; Wendeln et al. 2000; Wagner et al. 2015). Consumption of infructescences of Cecropia obtusa was recorded in the diet of C. villosum from French Guiana (Lobova et al. 2003; Suárez-Castro & Montenegro 2015). C. villosum have been captured at mineral-rich clay licks (“collpas”) in the Peruvian Amazon (Bravo et al. 2008; Ghanem & Voigt 2014). In the Guianas, Amazonia, and in the Atlantic rainforest, the species was captured more frequently in the canopy, suggesting that C. villosum is a canopy frugivore (Ascorra et al. 1996; Simmons & Voss 1998; CharlesDominique & Cockle 2001; Kalko & Handley Jr. 2001; Delaval et al. 2005; Gregorin et al. 2017). The only natural day roost recorded for the species are tree hollows in Venezuela (Handley 1976). In addition to natural shelters, C. villosum has been found in buildings in Brazil, Panamá, and Venezuela (Goldman 1920; Handley 1976; data from the DZSJRP collection catalogue). The following ectoparasites have been documented on C. v. jesupi: Aspidoptera busckii (Streblidae), Trichobius joblingi (Streblidae), Paratrichobius sp. A (Wenzel et al. 1966). In Venezuela, two species of streblid bat flies (Trichobius parasiticus and Metelasmus pseudopterus), two spinturnicid mites (Periglischurus acustidens and P. iheringi), and a species of trombiculid mite (Whartonia nudosetosa), are known from C. v. villosum (Herrin & Tipton 1975; Reed & Brennan 1975; Wenzel 1976). Marinkelle & Grose (1981) recorded Megistopoda proxima and Strebla carolliae, two species of streblid bat flies from Colombian C. villosum. The absence or rarity of spinturnicid mites on C. villosum was noted in some studies: in Panamá no mite was recorded on any specimen, in the Peruvian Amazon no mite was collected from 33 specimens, and only two mites were collected from a sample of 724 Venezuelan C. villosum (Furman 1966; Herrin & Tipton 1975; Gettinger 2018). Two flesh fly larvae of the genus Sarcophaga (Sarcophagidae), were found in the abdominal cavity of a freshly-dead female, suggesting that they parasitized the live animal (Goodwin & Greenhall 1961). Blood parasites of the family Trypanosomatidae, subfamily Leishmaninae, are known from C. v. villosum from SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 55 central Brazil, and Trypanosoma (Schizotrypanum) is documented in this species from Colombia (Marinkelle 1982; Lourenço et al. 2018). One C. v. villosum from southeastern Brazil had traces of hantavirus infection, making C. villosum one of the few species of frugivorous bat to host this virus (Sabino-Santos et al. 2015). Reproductive data from specimens we examined and from the literature (Davis et al. 1964; Jones et al. 1971; Taddei 1976; Bonaccorso 1979; Anderson 1997) suggest seasonal polyestry. In Central America (Nicaragua and Panamá), pregnant females were recorded in January, February, and March, just before the beginning of the rainy season, and lactating C. villosum were found in February, March, and April. In South America, pregnancies were also recorded before the rainy season in July and August (Rondônia, Brazil) and in August and September (Bolivian, Ecuadorian, and Peruvian Amazon). In southeastern Brazil (São Paulo), C. villosum were recorded as pregnant in July and August. In Venezuela, pregnancies were recorded both before the rainy season in January, February, March, and April, and during the rainy season in June, and July; whereas, lactating individuals were documented in February, June, and July. Specimens Examined (N = 509): Belize: Toledo, Bladen Nature Reserve (USNM 583035, 583036). Bolivia: Beni, Río Iténez (AMNH 209529–209533), Vacadiaz (USNM 390606); La Paz, Santa Ana de Madidi (AMNH 261677); Pando, Independencia (AMNH 262526–262529), Río Nareuda (248884, 248885); Santa Cruz, Buenavista (AMNH 61754), Parque Nacional Noel Kempff Mercado (AMNH 264078, 264079). Brazil: without specific locality (ZMB 408 [lectotype of villosum]); Acre, Seringal Lagoinha (DZSJRP 13029–13033), Parque Nacional da Serra do Divisor (ALP 7011, 7018, 7022, 7023, 7050, 7059, 7160, 7308); Alagoas, Mata de Coimbra (UFPB 4349); Amazonas, Comunidade Cachoeirinha (LMUSP[ICA048]), Humaitá (DZSJRP 14793), Igarapé Taracuá (LMUSP[JAP76]), km 27 of BR319 (DZSJRP 14121, 14651), km 5 of BR230 (DZSJRP 13134), opposite to Comunidade São Pedro (LMUSP[ICA169], LMUSP[ICA170]), Vila de Santa Fé (LMUSP[JAP84]); Bahia, Ilhéus (CMUFLA 1076, 1078, 1119); Espírito Santo, Aracruz Celulose (MZUSP 35032), Fazenda Santa Terezinha (MZUSP 35030, 35031), Reserva Natural Vale (ALP 2806, 2810, 3009, 3249, 3327, 3408, 4560, 4758); Mato Grosso, 264 km N Xavantina (USNM 393712–393714), Aricá (MZUSP 6494), Cláudia (MZUSP[PEV 1225-1226]), Nossa Senhora do Livramento (UFMT 1146, 1147), Parque Nacional do Juruena (CMUFLA 1290, 1299), Sinop (ALP 3419), U.H.E. foz do Apiacás (UFMT 1952, 1953), Usina Teles Pires (UFMT 2137, 2138); Mato Grosso do Sul, Estação Ecológica Dahma (ZUFMS 492), Maciço do Urucum (ZUFMS 208, 209), Pantanal de Aquidauana (ZUFMS 1904), Pantanal de Nhecolândia (ZUFMS 244, 1896); Minas Gerais, Dores do Indaiá (UFMG 3760), Estação Ecológica de Pirapitinga (ALP 9166, 9370), Fazenda Cabriúna (CMUFLA 465), Fazenda Marinheiro (DZSJRP 14480), Parque Nacional do Peruaçu (CMUFLA 907, 1532–1536, 1676–1678, 1680, 1682, 1684, 1686), Parque Estadual do Rio Doce (CMUFLA 1158, 1161, 1834, 1839–1841); Pará, 52 km SSW Altamira (MZUSP 22677), Centro Kaiapó de Estudos Ecológicos (MZUSP 29150–29152), Floresta Nacional de Carajás (UFMG[VCT6305]), Floresta Nacional de Carajás, Serra Norte (UFMG[VCT2303]), Floresta Nacional de Carajás, Serra Sul, Corpo A (UFMG[VCT1959], UFMG[VCT5157]), Floresta Nacional de Carajás, Serra Sul, Corpo C (UFMG[VCT2019], UFMG[VCT5073], UFMG[VCT5079]), Lago Jacaré (MZUSP 13335), Lago Leonardo (MZUSP 13209, 13197), Platô Greig (UFMG 3258), Platô Monte Branco (UFMG 3244), Porto Trombetas (UFMG 3212, 3214, 3221, 3246), Projeto Alemão (UFMG[VCT4394], UFMG[VCT4444]), Rio Xingu, left bank (MPEG 4112), Sta. A, IAN (USNM 361724, 361725), Várzea, Belém (USNM 460128–460130); Paraíba, Fazenda Pacatuba (UFPB 4), João Pessoa (UFPB 10333, 10335, 10336); Pernambuco, Recife (UFMG[M1], UFMG[M2], UFMG[M3]); Piauí, Boqueirão da Esperança (ZUEC 2066), Parque Nacional da Serra das Confusões (MZUSP 33502); Rio de Janeiro, Jardim Botânico (ALP 7419– 7424, 7426–7431, 8278), Parque Estadual Serra da Tiririca (ALP 5578, 5579); Rondônia, Calama (AMNH 37041), Costa Marques (AMNH 209575), Pedra Branca (MZUSP 22827), Pedras Negras (AMNH 209576), Cachoeira de Nazaré, Rio Machado (MZUSP 20200, 20201), U.H.E. Jirau (MZUSP 35408); Roraima, Estação Ecológica da Ilha de Maracá (DZSJRP 11487); São Paulo, São José do Rio Preto (DZSJRP 4586, 4676), Engenheiro Schmidt (DZSJRP 4804), Fazenda São Paulo (DZSJRP 14302, 14305, 14319), Roberto (DZSJRP 16549), Parque Natural Municipal Grota de Mirassol (DZSJRP 4000, 4032, 4033), Fazenda Paraguassu (ZUEC 968), Sítio Progresso (DZSJRP 3783, 3922, 4337, 4386–4390); Sergipe, Estação Ecológica de Itabaiana (CMUFS 64), Mata do Junco (CMUFS 97), Parque Nacional Serra de Itabaiana (ALP 8971); Tocantins, U.H.E. São Salvador (MZUSP[SSI178]). Colombia: no specific locality (USNM 598086); Amazonas, Puerto Nariño (USNM 483777); Antioquia, La Tirana (IAvH-M 930, USNM 449480–499482), Vereda La Pola, Parque Nacional Natural Los Katíos (IAvH-M 4923); Chocó, Corregimiento Gilgal, P.N.N. Los Katíos (IAvH-M 4924–4926), Reserva Florestal Especial Las Teresitas (IAvH-M 3257), Vereda El Tilupo, P.N.N. Los Katíos (IAvH-M 4927–4929); Magdalena, Cagualito (AMNH 14574 [holotype 56 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. of jesupi]), Parque Nacional Natural Tayrona (IAvH-M 4198), Vereda El Congo (IAvH-M M-9665); Putumayo, Caño Caucayá (IAvH-M M-624); Sucre, Estación Primates (IAvH-M 9583), Quebrada El Sereno (IAvH-M 9593); Valle del Cauca, Río Zabaletas (USNM 483770–483776); Vaupés, Caño Arara (IAvH-M 1550). Costa Rica: Puntarenas, Corcovado National Park (USNM 565813). El Salvador: La Libertad, Deininger Park (TTU 63906); La Paz, Hacienda Escuintla (TTU 63911); La Unión, El Tamarindo (TTU 63912). Ecuador: Los Ríos, Beata Elvira (USNM 498921, 498922), El Papayo (USNM 498923, 522435–522437), Hacienda Santa Teresita (USNM 522438), Lima Pareja (USNM 498924, 498925, 522434), Río Nuevo (USNM 534315, 534316), Vinces (USNM 534314); Pastaza, Lorocachi (USNM 548240, 548241), Santiago (not located; USNM 548242), Tiguino (USNM 574537, 574539), Yosa (not located, USNM 548237–548239); Pichincha, Río Palenque Science Center (USNM 528541). Guatemala: Jutiapa, Colonia Montufar (AMNH 217417), Santa Rosa, La Avellana (AMNH 235312–235315). Guyana—Barima-Waini, North West, Santa Cruz (ROM 98850); Cuyuni-Mazaruni, 24 km along Potaro road from Bartica (BMNH 1965.645), Namai Creek (ROM 108219); Upper Demerara-Berbice, Dubulay Ranch (USNM 582328); Upper Takutu-Upper Essequibo, Chodikar River (ROM 106644). French Guiana: Sinnamary, Paracou (AMNH 267190, 267191, 268534–268536). México: Veracruz, Xalapa (= Jalapa) (BMNH 81.10.27.1). Nicaragua—Zelaya (currently Región Autónoma de la Costa Caribe Sur), 4,5 km NW Rama (TTU 12794). Panamá—Bocas del Toro, Almirante (USNM 315559–315562), Isla Popa (USNM 464304), Sibube (USNM 335298, 335299); Colón, Bohio Peninsula (USNM 503637); Darién, Cana (USNM 179619), El Real (USNM 338045), Jaqué (USNM 362920), Punta Piña (USNM 314718), Tacarcuna Village Camp (USNM 309894, 309896–309900); Los Santos, Cerro Hoya (USNM 323451–323453), Guánico Arriba (USNM 323448–323450); Panamá, Barro Colorado Island (USNM 304904, 304905, 304907–304909, 332053, 457954, 544896), Cabima (USNM 173834 [holotype of isthmicum], USNM 173836), Cerro Azul (USNM 305386), Culebra (USNM 223402), Gamboa (USNM 520557, 520558), Isla San José (USNM 448449), Punta de Cocos (USNM 314719, 314720, 314721), Río Mandinga (USNM 305385); San Blas (currently Guna Yala), Armila (USNM 335300–335316); Veraguas, Isla Cébaco (USNM 360219). Perú: Cusco, Camisea (USNM 582836), Camisea, Armihuari (MUSM 13606, 13631, 13634, 13636, 13637, 13639– 13641), Camisea, Konkariari (MUSM 14742), Camisea, Pagoreni (MUSM 13610, 13615, USNM 582839), Camisea, San Martín (MUSM 13618, 13644, USNM 582840, 582841), Jenaro Herrera (MUSM 6791), Ridge Camp (USNM 588033); Loreto, 13,6 km NW Albarenga (MUSM 26545), Alto Río Pauya (MUSM 17734), Centro de Investigaciones Jenaro Herrera (MUSM 4221, 4222), Estación Biologica Allpahuayo (MUSM 16476), Ninarumi (MUSM 29560, 29561), Paujil (MUSM 29562), Puesto de Vigilancia Castaña (MUSM 21136), Quistococha (USNM 337940), Río Lagartococha (MUSM 21137), Río Pisqui, Campamento Llanura (MUSM 17735), Río Samiria (MUSM 29562), Río Samiria, Flor de Yarina (MUSM 1637), Río Samiria, Tacshacocha (MUSM 1638, 1639), San Lorenzo (BMNH 1924.3.1.75, 1924.3.1.76), Zungarococha (MUSM 29563); Madre de Dios, CICRA (MUSM 26106), Cocha Salvador (MUSM 733), Estación Biológica Cocha Cashu (MUSM 15856), Explorer’s Inn Lodge (MUSM 1640), Hacienda Amazonia (MUSM 9757), Maskoitania (MUSM 19671), Pakitza (MUSM 6781, USNM 566544), Quebrada Aguas Calientes (MUSM 16653, 16660, 16661, 16665–16667), Reserva Cuzco Amazónico (MUSM 6168, 6169), Santuario Nacional Pampas del Heath (MUSM 12827); Pasco, Campamento Río Lobo (MUSM 10232), Cerro Chontiya (MUSM 10225, 10230, 10231), San Juan (USNM 364418), Villa America (MUSM 1641); San Martín, Concesion de Conservación Valle del Biavo (MUSM 43843, 43844, 43485), Juanjuí (MUSM 1642), Saposoa (MUSM 1643), Yurac Yacu (BMNH 27.1.1.63); Tumbes, Carrizalillo (MUSM 22123), Parque Nacional Cerros de Amotape (MUSM 22121, 22122), Quebrada Las Pavas (MUSM 24479); Ucayali, 59 km W Pucallpa (USNM 461256), Concesión de Conservación Río La Novia (MUSM 44186, 44187, 44472). Suriname: Brokopondo, Brownsberg Nature Park (ROM 114212); Sipaliwini, Kushere Landing (ROM 120226). Trinidad and Tobago: Tobago, Charlotteville (USNM 540676); Trinidad, without specific locality (AMNH 256325), Diego Martin (AMNH 183167), Grande Riviere (AMNH 172149), Guaico Tamana (AMNH 172148), Maracas Valley (AMNH 175599), Waterloo (BMNH 1897.6.7.44). Venezuela: Amazonas, 9 km SE Puerto Ayacucho (MZUSP 27168), Cerro Neblina base camp (USNM 560606, 560607, 560767, 560768, 560769, 560770, 560771, 560772), Río Cunucunuma (USNM 405127, 405165, 405167–05171), Río Manapiare (USNM 408624–408660, 408662–408678), Río Mavaca (USNM 405175), San Carlos de Rio Negro (USNM 560604, 560605), Tamatama (USNM 405176, 405177, 408611–408617); Bolívar, El Manaco (USNM 387205–387209, 387212, 387213, 387126, 387210, 387211, 387214, 387215), Hato La Florida (USNM 405164), Hato San José (USNM 405162), Río Supamo (USNM 387204); Sucre, Manacal (USNM 408620); Yaracuy, 19 km NW Urama (USNM 372145, 372146, 372149, 372150). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 57 Key to the species and subspecies of genus Chiroderma 1 2 3 4 5 - 6 7 - 8 - Size small, forearm equal to or less than 42 mm, greatest length of skull equal to or less than 23 mm . . . . . . . . . . . . . . . . . . . 2 Size intermediate to large, forearm equal to or more than 43 mm, greatest length of skull equal to or more than 23 mm . . . . . . ...................................................................................................3 First lower premolar longer than high mesiodistally; third cuspid of first lower premolar absent; crown of lower canine at the same level or higher than the tip of the coronoid process of the mandibular bone . . . . . . . . . . . . . . . . . . . . Chiroderma gorgasi First lower premolar higher than long mesiodistally; third cuspid of first lower premolar present; crown of lower canine clearly below the level of the top of the coronoid process of the mandibular bone . . . . . . . . . . . . . . . . . . . . . . . . Chiroderma trinitatum Size large, length of forearm equal to or more than 56 mm, greatest length of skull equal to or more than 28 mm; first lower premolar in contact with the lower canine and second premolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chiroderma improvisum Size intermediate to large, forearm length equal to or less than 54 mm (43–54 mm), greatest length of skull usually equal to or less than 28 mm (23–28 mm); diastema between first lower premolar and second lower premolar . . . . . . . . . . . . . . . . . . . . . . 4 Size large, forearm length 47–54 mm, greatest length of skull 26–29 mm; dorsal pelage brown or dark brown; basal and terminal bands of the dorsal hairs of a same color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Size intermediate, forearm length 43–50 mm, greatest length of skull 23–26 mm; dorsal pelage brown, light brown or buff; base of dorsal hairs darker than terminal band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 First lower premolar large, with approximately ⅔ the height of second lower premolar; crown of lower canine clearly below the level of the top of the coronoid process of the mandibular bone; paraoccipital processes present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chiroderma doriae doriae First lower premolar small, with approximately ¼ the height of second lower premolar; crown of lower canine approximately the same height as the top of the coronoid process of the mandibular bone; paraoccipital processes absent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chiroderma salvini Tip of noseleaf unnotched; facial stripes bright and conspicuous; posterior process of the palate absent; first upper incisors with convergent tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Tip of noseleaf notched; facial stripes dark and inconspicuous; posterior process of the palate present; first upper incisors with parallel or divergent tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Length of forearm usually more than 48 mm (45–50 mm); greatest length of skull equal to or more than 25 mm (25–27 mm); high-crowned first lower premolar (⅔ the height of second lower premolar; low-crowned lower canine, with the tips clearly below the level of the top of the coronoid process of the mandibular bone . . . . . . . . . . . . . . . . . . . . Chiroderma doriae vizottoi Length of forearm equal to or less than 47 mm (43–47 mm); greatest length of skull equal to or less than 25 mm (23–25 mm); low-crowned first lower premolar (¼ the height of second lower premolar); high-crowned lower canine, with the tips approximately the same height as the top of the coronoid process of the mandibular bone . . . . . . . . . . . . . . . . Chiroderma scopaeum Length of forearm 46 mm on average (41–52 mm); distributed east of the Andes . . . . . . . . . . . Chiroderma villosum villosum Length of forearm 44 mm on average (41–47 mm); distributed west of the Andes . . . . . . . . . . . . . Chiroderma villosum jesupi Acknowledgements We are thankful to Adriano Peracchi, Luiz Gomes, Marcelo Nogueira, and Daniela Dias (ALP-UFRRJ), Sara Ketelsen and Robert Voss (AMNH), Roberto Portela (BMNH), Eliana Morielle-Versute (DZSJRP), Alexandre Percequillo (ESALQ-USP), Andrés Cuervo and Maria del Socorro Sierra (IAvH), Jake Esselstyn and Donna Dittman (LSU), Victor Pacheco (MUSM), Juliana Gualda, Mario de Vivo, and Luis F. Silveira (MZUSP), Claudia Costa and Cástor Cartelle (PUC-MG), Heath Garner (TTU), Renato Gregorin (UFLA), Fernando Perini (UFMG), Gustavo Graciolli and Thomaz Sinani (UFMS), Rogerio Rossi and Thiago Semedo (UFMT), Pedro Estrela, Anderson Feijó, and Hannah Nunes (UFPB), Adriana Bocchiglieri, Patricio A. Rocha, and Raone Beltrão-Mendes (UFS), Alfred Gardner, Suzanne Peurach and Darrin Lunde (USNM), Christiane Funk and Frieder Meyer (ZMB), and Karina Rebelo and Ivan Sazima (ZUEC), for allowing us to examine specimens under their care. We also thank Bruce Patterson (FMNH), Gerson Lopes and João Valsecchi (IDSM), Leonardo Trevelin and José de Souza e SilvaJúnior (MPEG), Livia Paniagua and Giovani Hernández-Canchola (MZFC), Franger Garcia and Mariana Jaramillo (MZUC), Ana Pavan (USP), and Bruna Fonseca and Albert Ditchfield (UFES), for providing tissue samples. We are grateful to Giuliano Doria and Cristina Macciò for sending a digital copy of the Chiroderma villosum plate of Peters. GSTG would like to thank Alfred Gardner and Marcelo Nogueira for the valuable discussions on the subject of this paper. We would like to thank also Ana Paula Carmignotto Daniel Casali, Gisele Kawauchi, Livia Loureiro, Ligiane Moras, Maria Clara Nascimento Costa, and Paul Velazco for the suggestions and comments on an early version of this paper. DNA sequencing was done by Kristen Choffe and Maria Clara Nascimento Costa in the Laboratory of Molecular Systematics at the Royal Ontario Museum. Alfred Gardner and one anonymous referee provided very helpful comments and suggestions on an earlier version of this paper and Paul Velazco kindly translated the 58 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. abstract to Spanish. GSTG received a predoctoral fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; Code 001). VCT was funded by the Programa Nacional de Pós Doutorado (PNPD/CAPES; Code 001, 2014-2018) during most of the period of her mentorship of GSTG. Literature cited Allen, J.A. (1900) List of bats collected by Mr. H. H. Smith in the Santa Marta region of Colombia, with descriptions of new species. Bulletin of the American Museum of Natural History, 13, 87–94. Almazán-Catalán, J.A., Taboada-Salgado, A., Sánchez-Hernández, C., Romero-Almaraz, M.L., Jiménez-Salmerón, Y.Q. & Guerrero Ibarra, E. (2009) Registros de murciélagos para el estado de Guerrero, México. Acta Zoológica Mexicana, New Series, 25 (1), 177–185. Almeida, J.C., Martins, M.A., Guedes, P.G., Peracchi A.L. & Serra-Freire, N.M. (2016) New records of mites (Acari: Spinturnicidae) associated with bats (Mammalia, Chiroptera) in two Brazilian biomes : Pantanal and Caatinga. Revista Brasileira de Parasitologia Veterinária, Jaboticabal, 25 (1), 18–23. https://doi.org/10.1590/S1984-29612016005 Alston, E.R. (1879–1882) Biologia Centrali-Americana. Vol. 2. Mammalia. R. H. Porter, London [published in parts—see Lyal 2011] Alvarez, T. & Alvarez-Castañeda, S.T. (1996) Aspectos Biológicos y ecológicos de los murciélagos de Ixtapan del Oro, México. In: Genoways, H.H. & Baker, R.J. (Eds.), Contributions in mammalogy: a memorial volume honoring J. Knox Jones, Jr. The Museum, Texas Tech University, Lubbock, Texas, pp. 169–182. Anderson, S. (1960) Neotropical bats from Western México. University of Kansas Publications, Museum of Natural History, 14, 1–8. Anderson, S. (1972) Mammals of Chihuahua: taxonomy and distribution. Bulletin of the American Museum of Natural History, 148, 153–410. Anderson, S. (1997) Mammals of Bolivia, taxonomy and distribution. Bulletin of the American Museum of Natural History, 231, 1–652. Arnone, I.S. (2008) Estudo da comunidade de morcegos na área cárstica do Alto Ribeira - SP: uma comparação com 1980. MSc thesis, Universidade de São Paulo, São Paulo, 116 pp. Ascorra, C.F., Solari, S. & Wilson, D.E. (1996) Diversidad y Ecologia de los Quiropteros en Pakitza. In: Wilson, D.E. & Sandoval, A. (Eds.), Manu. The biodiversity of Southeastern Peru. Editorial Horizonte, Lima, pp. 593–612 . Baker, R.J. (1967) Karyotypes of bats of the family Phyllostomidae and their taxonomic implications. The Southwestern Naturalist, 12 (4), 407–428. https://doi.org/10.2307/3669608 Baker, R.J. (1973) Comparative cytogenetics of the New World leaf-nosed bats (Phyllostomatidae). Periodicum Biologorum, 75, 37–45. Baker, R.J. & Genoways, H.H. (1976) A new species of Chiroderma from Guadeloupe, West Indies (Chiroptera: Phyllostomatidae). Occasional Papers of the Museum of Texas Tech University, 48, 1–9. Baker, R.J., Genoways, H.H. & Patton, J.C. (1978) Bats of Guadeloupe. Occasional Papers of the Museum of Texas Tech University, 50, 1–16. Baker, R.J. & Hsu, T.C. (1970) Further studies on the sex-chromosome systems of the American leaf-nosed bats (Chiroptera, Phyllostomatidae). Cytogenetics, 9 (2), 131–138. https://doi.org/10.1159/000130083 Baker, R.J., Porter, C.A., Patton, J.C. & Van den Bussche, R.A. (2000) Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers of the Museum of Texas Tech University, 202, i + 1–16. Baker, R.J., Solari, S., Cirranello, A. & Simmons, N.B. (2016) Higher level classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropterologica, 18 (1), 1–38. https://doi.org/10.3161/15081109ACC2016.18.1.001 Baker, R.J., Taddei, V.A., Hudgeons, J.L. & Van Den Bussche, R.A. (1994) Systematic relationships within Chiroderma (Chiroptera: Phyllostomidae) based on cytochrome b sequence variation. Journal of Mammalogy, 75 (2), 321–327. https://doi.org/10.2307/1382550 Barriga-Bonilla, E. (1965) Estudios mastozoologicos colombianos, I: Chiroptera. Caldasia, 9 (43), 241–268. Beck, J.D., Loftis, A.D., Daly, J.L., Reeves, W.K. & Orlova, M.V. (2016) First record of Chiroderma improvisum Baker & Genoways, 1976 (Chiroptera: Phyllostomidae) from Saint Kitts, Lesser Antilles. Check List, 12 (2), 10–13. https://doi.org/10.15560/12.2.1854 Bejarano-Bonilla, D.A., Yate-Rivas, A. & Bernal-Bautista, M.H. (2007) Diversidad y distribución de la fauna quiroptera en un transecto altitudinal en el Departamento del Tolima, Colombia. Caldasia, 29 (2), 297–308. Beolens, B., Watkins, M. & Grayson, M. (2014) The eponym dictionary of birds. Bloomsbury, London, 1414 pp. Bonaccorso, F.J. (1979) Foraging and reproductive ecology in a Panamanian bat community. Bulletin of the Florida State Museum Biological Sciences, 24 (4), 359–408. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 59 Bordignon, M.O. (2005) Geographic distribution’s ampliation of Chiroderma doriae Thomas (Mammalia, Chiroptera) in Brazil. Revista Brasileira de Zoologia, 22 (4), 1217–1218. https://doi.org/10.1590/S0101-81752005000400063 Bravo, A., Harms, K.E. & Emmons, L.H. (2010) Puddles created by geophagous mammals are potential mineral sources for frugivorous bats (Stenodermatinae) in the Peruvian Amazon. Journal of Tropical Ecology, 26 (2), 173–184. https://doi.org/10.1017/S0266467409990472 Bravo, A., Harms, K.E., Stevens, R.D. & Emmons, L.H. (2008) Collpas: Activity hotspots for frugivorous bats (Phyllostomidae) in the Peruvian Amazon. Biotropica, 40 (2), 203–210. https://doi.org/10.1111/j.1744-7429.2007.00362.x Cabrera, A. (1958) Catálogo de los mamíferos de América del Sur. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Zoología, 4, i–xvi + i–iv+308. Carmignotto, A.P. & Astúa, D. (2017) Mammals of the Caatinga: diversity, ecology, biogeography, and conservation. In: Silva, J., Leal, I. & Tabarelli, M. (Eds.), Caatinga: the largest tropical dry forest region in South America. Springer International Publishing, Cham, pp. 211–254. https://doi.org/10.1007/978-3-319-68339-3_8 Carrera, J.P., Solari, S., Larsen, P.A., Alvarado, D.F. , Brown, A.D., Carrión, B.C., Sebastián Tello, J. & Baker, R.J. (2010) Bats of the tropical lowlands of Western Ecuador. Museum of Texas Tech University Special Publications 57. Museum of Texas Tech University Press, Lubbock, Texas, 37 pp. Carter, D.C. & Dolan, P.G. (1978) Catalogue of type specimens of neotropical bats in selected european museums. Museum of Texas Tech University Special Publications 15. Museum of Texas Tech University Press, Lubbock, Texas, pp. 1–136. Carter, D.C., Pine, R.H. & Davis, W.B. (1966) Notes on Middle American bats. The Southwestern Naturalist, 11, 488–499. https://doi.org/10.2307/3668862 Castaño, H.J., Carranza, A.J. & Pérez-torres, J. (2018) Diet and trophic structure in assemblages of montane frugivorous phyllostomid bats. Acta Oecologica, 91, 81–90. https://doi.org/10.1016/j.actao.2018.06.005 Charles-Dominique, P. & Cockle, A. (2001) Frugivory and seed dispersal by bats. In: Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M. (Eds.), Nouragues: dynamics and plant-animal interactions in a Neotropical rainforest. Springer, Dordrecht, pp. 207–215. Chernomor, O., Von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65 (6), 997–1008. https://doi.org/10.1093/sysbio/syw037 Cirranello, A., Simmons, N.B., Solari, S. & Baker, R.J. (2016) Morphological diagnoses of higher-level phyllostomid taxa (Chiroptera: Phyllostomidae). Acta Chiropterologica, 18 (1), 39–71. https://doi.org/10.3161/15081109ACC2016.18.1.002 Clare, E.L., Lim, B.K., Engstrom, M.D., Eger, J.L. & Hebert, P.D. (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7 (2), 184–190. https://doi.org/10.1111/j.1471-8286.2006.01657.x Colín-Martínez, H., Morales-Malacara, J.B. & García-Estrada, C. (2017) Epizoic fauna survey on phyllostomid bats (Chiroptera : Phyllostomidae) in a shaded coffee plantation of southeastern Chiapas, Mexico. Journal of Medical Entomology, 55 (1), 172–182. https://doi.org/10.1093/jme/tjx186. Crossin, R.S., Soule, O.H., Webb, R.G. & Baker, R.H. (1973) Biotic relationships in the Canon Del Rio Mezquital, Durango, Mexico. The Southwestern Naturalist, 18 (2), 187–200. https://doi.org/ 10.2307/3670419 Cruz, L.D., Martínez, C. & Fernandes, F.R. (2007) Comunidades de morcegos em hábitats de uma Mata Amazônica remanescente na Ilha de São Luís, Maranhão. Acta Amazonica, 37 (4), 613–619. https://doi.org/10.1590/S0044-59672007000400017 Czaplewski, N.J. & Cartelle, C. (1998) Pleistocene bats from cave deposits in Bahia, Brazil. Journal of Mammalogy, 79 (3), 784–803. https://doi.org/10.2307/1383089 Davis, W.B., Carter, D.C. & Pine, R.H. (1964) Noteworthy records of Mexican and Central American bats. Journal of Mammalogy, 45 (3), 287–375. https://doi.org/10.2307/1377410 Delaval, M., Henry, M. & Charles-Dominique, P. (2005) Interspecific competition and niche partitioning : example of a Neotropical rainforest bat community. Revue d’Ecologie, Terre Vie, 60, 149–166. Dobson, G.E. (1878) Catalogue of the Chiroptera in the collection of the British Museum. British Museum of Natural History, London, xxxvi+567 pp. https://doi.org/10.5962/bhl.title.55341 Dobson, G.E. (1880) On some new or rare species of Chiroptera in the colection of the Göttingen Museum. Proceedings of the Zoological Society of London, 48 (3), 461–465. https://doi.org/10.1111/j.1469-7998.1880.tb06584.x 60 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Esbérard, C.E.L., Chagas, A.S., Baptista, M., Luz, E.M. & Pereira, C.S. (1996) Observações sobre Chiroderma doriae Thomas, 1891 no município do Rio de Janeiro, RJ (Mammalia, Chiroptera). Revista Brasileira de Biologia, 56 (4), 651–654. Fairchild, G.B. & Handley Jr., C.O. (1966) Gazetteer of collecting localities in Panama. In: Wenzel, R.L. & Tipton, V.J. (Eds.), Ectoparasites of Panama. Field Musem of Natural History, Chicago, Illinois, pp. 9–22. Fairchild, G.B., Kohls, G.M. & Tipton V.J. (1966) The ticks of Panama (Acarina : Ixodoidea). In: Wenzel, R.L. & Tipton, V.J. (Eds.), Ectoparasites of Panama. Field Musem of Natural History, Chicago, Illinois, pp. 167–220 . Ferreira, C.M.M., Fischer, E. & Pulchério-Leite, A. (2010) Fauna de morcegos em remanescentes urbanos de Cerrado em Campo Grande, Mato Grosso do Sul. Biota Neotropica, 10 (3), 155–160. https://doi.org/10.1590/S1676-06032010000300017 Fischer, E., Santos, C.F., Carvalho, L.F.A.C., Camargo, G., Cunha, N.L., Silveira, M., Bordignon, M.O. & Silva, M.O. (2015) Bat fauna of Mato Grosso do Sul, southwestern Brazil. Biota Neotropica, 15 (2), 1–17. https://doi.org/10.1590/1676-06032015006614 Fleming, T.H. (1973) The reproductive cycles of three species of opossums and other mammals in the Panama Canal Zone. Journal of Mammalogy, 54, (2) 439–455. https://doi.org/10.2307/1379129 Furman, D.P. (1966) The spinturnicid mites of Panama (Acarina: Spinturnicidae). In: Wenzel, R.L. & Tipton, V.J. (Eds.), Ectoparasites of Panama. Field Musem of Natural History, Chicago, Illinois, pp. 125–166. Galindo-Espinosa, E.Y., Gutiérrez-Díaz, K.A. & Reinoso-Flórez, G. (2010) Lista de los quirópteros del departamento del Tolima, Colombia. Biota Colombiana, 11 (1/2), 107–116. Garbino, G.S.T. & Nogueira, M.R. (2017) On the mammals collected by Friedrich Sellow in Brazil and Uruguay (1814-1831), with special reference to the types and their provenance. Zootaxa, 4221 (2), 172–190. https://doi.org/10.11646/zootaxa.4221.2.2 Garbino, G.S.T. & Tavares, V. da C. (2018a) A Quaternary record of the big-eyed bat Chiroderma villosum (Chiroptera: Phyllostomidae) with a revised lower molar terminology. Mammalia, 82 (4), 393–399. https://doi.org/10.1515/mammalia-2017-0037 Garbino, G.S.T. & Tavares, V. da C. (2018b) Roosting ecology of Stenodermatinae bats (Phyllostomidae): Evolution of foliage roosting and correlated phenotypes. Mammal Review, 48 (2), 75–89. https://doi.org/10.1111/mam.12114 García-Mendoza, D.F. & López-González, C. (2013) A checklist of the mammals (Mammalia) from Durango, western Mexico. Check List, 9 (2), 313–322. https://doi.org/10.15560/9.2.313 Gardner, A.L. (2008a) Genus Chiroderma W. Peters, 1860. In: Gardner, A.L. (Ed.), Mammals of South America: marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, Chicago, Illinois, pp. 321–326. Gardner, A.L. (2008b) Mammals of South America: marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, Chicago, Illinois, xx + 669 pp. Gettinger, D.D. (2018) Checklist of bloodfeeding mites (Acari: Spinturnicidae ) from the wings of bats (Mammalia: Chiroptera ) in the Manú Biosphere Reserve, Peru. MANTER: Journal of Parasite Biodiversity, 10, 1–9. https://doi.org/10.13014/K2DJ5CVZ Ghanem, S.J., Ruppert, H., Kunz, T.H. & Voigt, C.C. (2013) Frugivorous bats drink nutrient-and clay-enriched water in the Amazon rain forest: Support for a dual function of mineral-lick visits. Journal of Tropical Ecology, 29 (1), 1–10. https://doi.org/10.1017/S0266467412000740 Ghanem, S.J. & Voigt, C.C. (2014) Defaunation of tropical forests reduces habitat quality for seed-dispersing bats in Western Amazonia: An unexpected connection via mineral licks. Animal Conservation, 17 (1), 44–51. https://doi.org/10.1111/acv.12055 Godman, F.D. (1915). Biologia Centrali-Americana. Introductory Volume. Taylor and Francis, London, vii + 149 pp. https://doi.org/10.5962/bhl.title.730 Goldman, E.A. (1920) Mammals of Panama. Smithsonian Miscellaneous Collections, 69, 1–309. https://doi.org/10.5962/bhl.title.15684 Goodwin, G.G. (1942) Mammals of Honduras. Bulletin American Museum of Natural History, 79, 108–195. Goodwin, G.G. (1958) Three new bats from Trinidad. American Museum Novitates, 1877, 1–6. Goodwin, G.G. & Greenhall, A.M. (1961) A review of the bats of Trinidad and Tobago. Bulletin of the American Museum of Natural History, 122, 187–301. Gouraud, C., Chevrier, L. & Mearns, R. (2016) Charles and Emile Parzudaki: Natural history dealers in nineteenth-century Paris. Archives of Natural History, 43 (1), 76–89. https://doi.org/10.3366/anh.2016.0347 Gray, J.E. (1866) Revision of the genera of Phyllostomidae, or leaf-nosed bats. Proceedings of the Zoological Society of London, 1866, 111–118. Gregorin, R. (1998) Extending geographic distribution of Chiroderma doriae Thomas, 1891 (Phyllostomidae, Stenodermatinae). Chiroptera Neotropical, 4 (2), 98–99. Gregorin, R., Lobão, K.W., Oliveira, L.F., Machado, F.S., Gil, B.B. & Tavares, V. da C. (2017) Vertical stratification in bat assemblages of the Atlantic Forest of south-eastern Brazil. Journal of Tropical Ecology, 33 (5), 299–308. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 61 https://doi.org/10.1017/S026646741700027X Gregorin, R., Carmignotto, A.P. & Percequillo, A.R. (2008) Quirópteros do Parque Nacional da Serra das Confusões, Piauí, nordeste do Brasil. Chiroptera Neotropical, 14 (1), 366–383. Gutiérrez, E.E. & Garbino, G.S.T. (2018) Species delimitation based on diagnosis and monophyly, and its importance for advancing mammalian taxonomy. Zoological Research, 39 (5), 301–308. https://doi.org/10.24272/j.issn.2095-8137.2018.037 Haffer, J. (1967) Speciation in Colombian forest birds West of the Andes. American Museum Novitates, 2294, 1–56. Hall, E.R. (1981) The mammals of North America. Vol. 1. John Wiley & Sons, New York, xxx + 546 + 79 pp. Hall, E.R. & Jackson, W.B. (1953) Seventeen species of bats recorded from Barro Colorado Island, Panama Canal Zone. University of Kansas Publications, Museum of Natural History, 5, 641–646. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1–9. Handley Jr., C.O. (1960) Descriptions of new bats from Panama. Proceedings of the United States National Museum, 112, 459–479. https://doi.org/10.5479/si.00963801.112-3442.459 Handley Jr., C.O. (1966a) Descriptions of new bats (Chiroderma and Artibeus) from Mexico. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 36, 296–301. Handley Jr., C.O. (1966b) Checklist of the mammals of Panama. In: Wenzel, R.L. & Tipton, V.J. (Eds.), Ectoparasites of Panama. Field Musem of Natural History, Chicago, Illinois, pp. 753–795. Handley Jr., C.O. (1976) Mammals of the Smithsonian Venezuelan Project. Brigham Young University Science Bulletin, Biological Series, 20 (5), 1–89. https://doi.org/10.5962/bhl.part.5667 Handley Jr., C.O., Gardner, A.L. & Wilson, D.E. (1991) Food habits. In: Handley Jr., C.O., Gardner, A.L. & Wilson, D.E. (Eds.), Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panamá. Smithsonian Institution Press, Washington, D.C., pp. 141–146. Harvey, C.A. & González-Villalobos, J.A. (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation, 16, 2257–2292. https://doi.org/10.1007/s10531-007-9194-2 Hernández-Montero, J.R. & Sosa, V.J. (2016) Reproductive biology of Pachira aquatica Aubl. (Malvaceae: Bombacoideae): A tropical tree pollinated by bats, sphingid moths and honey bees. Plant Species Biology, 31 (2), 125–134. https://doi.org/10.1111/1442-1984.12096 Herrin, C.S. & Tipton, V.J. (1975) Spinturnicid mites of Venezuela (Acarina: Spinturnicidae). Brigham Young University Science Bulletin, Biological Series, 20 (2), 1–72. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15), 1965–1978. https://doi.org/10.1002/joc.1276 Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2017) UFBoot2 : improving the Ultrafast Bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. https://doi.org/10.1093/molbev/msx281 Honacki, J.H., Kinman, K.E. & Koeppl, J.W. (1982) Mammal species of the world. Allen Press Inc. and Association of Systematics Collections, Lawrence, Kansas, 694 pp. Husson, A.M. (1962) The bats of Suriname. Zoologische Verhandelingen, 58 (1), 1–278. ICZN (1999) International Code of Zoological Nomenclature. 4th Edition. International Trust for Zoological Nomenclature, London, xxix + 306 pp. Jones Jr., J.K., Choate, J.R. & Cadena, A. (1972) Mammals from the Mexican state of Sinaloa. II. Chiroptera. Occasional Papers of the Museum of Natural History, the University of Kansas, 6, 1–29. Jones Jr., J. K. & Baker, R.J. (1979) Notes on a collection of bats from Montserrat, Lesser Antilles. Occasional Papers, Museum of Texas Tech University, 60,1–6. Jones Jr., J.K. & Baker, R.J. (1980) Chiroderma improvisum. Mammalian Species, 134, 1–2. https://doi.org/10.2307/3504068 Jones Jr., J.K. & Carter, D.C. (1976) Annotated checklist, with keys to subfamilies and genera. In: Baker, R.J. & Jones Jr., J.K. (Eds.), Biology of the bats of the New World family Phyllostomatidae. Part I. Museum of Texas Tech University Special Publications 10. Museum of Texas Tech University Press, Lubbock, Texas, pp. 7–38. Jones Jr., J.K. Smith, J.D. & Turner, R.W. (1971) Noteworthy records of bats from Nicaragua, with a checklist of the chiropteran fauna of the country. Occasional papers of the Museum of Natural History, the University of Kansas, 2, 1–35. Jones, T. (1951) Bat records from the islands of Grenada and Tobago, British West Indies. Journal of Mammalogy, 32 (2), 223–224. https://doi.org/10.1093/jmammal/32.2.223-b Kalko, E.K.V. & Handley Jr., C.O. (2001) Neotropical bats in the canopy: diversity, community structure and implications for conservation. Plant Ecology, 153, 319–333. https://doi.org/10.1023/A:1017590007861 62 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T (2017) Multi-rate Poisson tree processes for single- locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 Koopman, K.F. (1994) Chiropteran systematics. In: Niethammer, J., Schliemann, H. & Starck, D. (Eds.), Handbuch der Zoologie. Vol. 8. Part 60. Walter de Gruyter, Berlin, 217 pp. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054 Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260 Laurindo, R.S., Gregorin, R. & Tavares, D.C. (2017) Effects of biotic and abiotic factors on the temporal dynamic of bat-fruit interactions. Acta Oecologica, 83, 38–47. https://doi.org/10.1016/j.actao.2017.06.009 LaVal, R.K. (1969) Records of bats from Honduras and El Salvador. Journal of Mammalogy, 50 (4), 819–822. https://doi.org/10.2307/1378267 Lenoble, A. (2019) The past occurrence of the Guadeloupe big-eyed bat Chiroderma improvisum Baker and Genoways, 1976 on Marie-Galante (French West Indies) with comments on bat remains from pre-Columbian sites in Eastern Caribbean. Acta Chiropterologica, 21 (2), 299–308. https://doi.org/10.3161/15081109ACC2019.21.2.005 Lim, B.K. (2017) Review of genetic diversification of bats in the Caribbean and biogeographic relationships to Neotropical species based on DNA barcodes. Genome, 60 (1), 65–73. https://doi.org/10.1139/gen-2015-0204 Lim, B.K., Engstrom, M.D., Bickham, J.W. & Patton, J.C. (2008) Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biological Journal of the Linnean Society, 93 (1), 189–209. https://doi.org/10.1111/j.1095-8312.2007.00942.x Lim, B.K., Loureiro, L.O. & Garbino, G.S.T. (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera: Phyllostomidae). ZooKeys, 918, 41–63. https://doi.org/10.3897/zookeys.918.48786 Lima Silva, C., Valim, M.P. & Graciolli, G. (2017) Ácaros ectoparasitos de morcegos no estado de Mato Grosso do Sul, Brasil. Iheringia, Série Zoologia, 107, 1–6. https://doi.org/10.1590/1678-4766e2017111 Linares, É.L. & Moreno-Mosquera, E.A. (2010) Morfología de los frutiolos de Cecropia (Cecropiaceae) del Pacífico colombiano y su valor taxonómico en el estudio de dietas de murciélagos. Caldasia, 32 (2), 275–287. Loayza, A.P., Rios R.S. & Larrea-Alcázar, D.M. (2006). Disponibilidad de recurso y dieta de murciélagos frugívoros en la Estación Biológica Tunquini, Bolivia. Ecología en Bolivia, 41 (1), 7–23. Lobova, T.A., Mori, S.A., Blanchard, F., Peckham, H. & Charles-Dominique, P. (2003) Cecropia as a food resource for bats in French Guiana and the significance of fruit structure in seed dispersal and longevity. American Journal of Botany, 90 (3), 388–403. https://doi.org/10.3732/ajb.90.3.388 Lourenço, E.C., Patricio, P.M.P. & Famadas, K. (2016) Community components of spinturnicid mites (Acari: Mesostigmata) parasitizing bats (Chiroptera) in the Tinguá Biological Reserve of Atlantic Forest of Brazil. International Journal of Acarology, 42 (2), 63–69. https://doi.org/10.1080/01647954.2015.1117525 Lourenço, E.C., Pinheiro, M. da C., Faccini, J.L.H. & Famadas, K.M. (2013) New record, host and localities of bat mite of genus Chirnyssoides (Acari, Sarcoptiformes, Sarcoptidae). Revista Brasileira de Parasitologia Veterinária, Jaboticabal, 22 (2), 260–264. https://doi.org/10.1590/S1984-29612013000200045 Lourenço, J.L.M., Minuzzi-Sauza, T.T.C., Silva, L.R., Olivei, A.C., Mendonça, V.J., Nitz, N., Aquiar, L.M.S. & Gurgel-Gonçalves, R. (2018) High frequency of trypanosomatids in gallery forest bats of a Neotropical savanna. Acta Tropica, 177, 200–206. https://doi.org/10.1016/j.actatropica.2017.10.012 Lund, P.W. (1842a) Fortsatte Bemaerkninger over Brasiliens uddode Dyrskabning. Det Kongelige Danske videnskabernes selskabs skrifter, 9, 123–136. Lund, P.W. (1842b) Blik paa Brasiliens Dyreverden för sidste Jordomvaeltning. Det Kongelige Danske videnskabernes selskabs skrifter, 9, 140–208, pls 28–38. Luz, J.L., Mangolin, R., Esbérard, C.E.L. & Bergallo, H.G. (2011) Morcegos (Chiroptera) capturados em lagoas do Parque Nacional da Restinga de Jurubatiba, Rio de Janeiro, Brasil. Biota Neotropica, 11 (4), 161–168. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 63 https://doi.org/10.1590/S1676-06032011000400016 Lyal, C.H.C. (2011) The dating of the Biologia Centrali-Americana. Zoological Bibliography, 1 (2), 67–102. Maas, A.C.S., Gomes, L.A.C., Martins, M.A., Dias, D. , Pol, A., Chaves, F.G., Schute, M., Araújo, R.M. & Peracchi, A.L. (2018) Bats in a Cerrado landscape of Northern Brazil: Species occurrence, influence of environmental heterogeneity and seasonality, and eight new records for the State of Tocantins. Mammalia, 82 (5), 469–480. https://doi.org/10.1515/mammalia-2017-0023 Maddison, W.P. & Knowles, L.L. (2006) Inferring phylogeny despite incomplete lineage sorting. Systematic Biology, 55 (1), 21–30. https://doi.org/10.1080/10635150500354928 Marinkelle, C.J. (1982) Prevalence of trypanosoma cruzi-like infection of Colombian bats. Annals of Tropical Medicine and Parasitology, 76 (2), 125–134. https://doi.org/10.1080/00034983.1982.11687517 Marinkelle, C.J. & Grose, E.S. (1981) A list of ectoparasites of Colombian bats. Revista de Biologia Tropical, 29 (1), 11–20. Mayden, R. (1999) Consilience and a hierarchy of species concepts : advances toward closure on the species puzzle. Journal of Nematology, 31 (2), 95–116. Medina, C.E., López, E., Pino, K., Pari, A. & Zeballos, H. (2015) Biodiversidad de la zona reservada Sierra del Divisor (Perú): una visión desde los mamíferos pequeños Revista Peruana de Biología, 22 (2), 199–212. https://doi.org/10.15381/rpb.v22i2.11354 Miller, G.S. (1907) The families and genera of bats. Bulletin of the United States National Museum, 57, 1–282. https://doi.org/10.5962/bhl.title.16306 Miller, G.S. (1912) A small collection of bats from Panama. Proceedings of the United States National Museum, 42, 21–26. https://doi.org/10.5479/si.00963801.42-1882.21 Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, pp. 1–8 . Mora-Beltrán, C. & López-Arévalo, H.F. (2018) Interactions between bats and floral resources in a premontane forest, Valle del Cauca, Colombia. Therya, 9 (2), 129–136. https://doi.org /10.12933/therya-18-560 Motta-Junior, J.C. & Taddei, V.A. (1992) Bats as prey of stygian owls in southeastern Brazil. Journal of Raptor Research, 26 (4), 259–260. Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2014) IQ-TREE : A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org /10.1093/molbev/msu300 Nogueira, M.R., De Fabio, S.P. & Peracchi, A.L. (2004) Gastrointestinal helminth parasitism in fruit-eating bats (Chiroptera, Stenodermatinae) from western Amazonian Brazil. Revista de Biología Tropical, 52 (2), 387–392. Nogueira, M.R. & Peracchi, A.L. (2001) The feeding specialization in Chiroderma doriae (Phyllostomidae, Stenodermatinae) with comments on its conservation implications. Chiroptera Neotropical, 8 (1/2), 143–156. Nogueira, M.R. & Peracchi, A.L. (2003) Fig-seed predation by 2 species of Chiroderma: discovery of a new feeding strategy in bats. Journal of Mammalogy, 84 (1), 225–233. https://doi.org/10.1644/1545-1542(2003)084<0225:FSPBSO>2.0.CO;2 Novaes, R.L.M., Menezes Jr., L.F., Duarte, A.C. & Façanha, A.C.S. (2010) Consumo de Psychotria suturella Muell. Arg. (Rubiaceae) por morcegos no sudeste do Brasil. Chiroptera Neotropical, 16 (1), 535–538. Novoa, S., Cadenillas, R. & Pacheco, V. (2011) Dispersión de semillas por murciélagos frugívoros en bosques del Parque Nacional Cerros de Amotape, Tumbes, Perú. Mastozoología Neotropical, 18 (1), 81–93. Nowak, R.M. (1994) Walker’s bats of the world. Johns Hopkins University Press, Baltimore, Maryland, 863 pp. Nunes, H., Rocha F.L. & Cordeiro-Estrela, P. (2017) Bats in urban areas of Brazil: roosts, food resources and parasites in disturbed environments. Urban Ecosystems, 20 (4), 953–969. https://doi.org/10.1007/s11252-016-0632-3 Olmos, F. & Boulhosa, R.L.P. (2000) A meeting of opportunists: birds and other visitors to Mabea fistulifera (Euphorbiaceae) inflorescences. Ararajuba, 8 (2), 93–98. Oprea, M., Wilson, D.E. (2008) Chiroderma doriae (Chiroptera: Phyllostomidae). Mammalian Species, 186:1–7. https://doi.org/10.1644/816.1 Papavero, N. (1973) Essays on the history of Neotropical dipterology, with special reference to collectors (1750–1905). Vol. 2. Museu de Zoologia, Universidade de São Paulo, São Paulo, 230 pp. Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20 (2), 289–290. https://doi.org/10.1093/bioinformatics/btg412 Patten, M.A. (2015) Subspecies and the philosophy of science. The Auk, 132 (2), 481–485. https://doi.org/10.1642/AUK-15-1.1 Pedersen, S.C., Kwiecinski, G.G., Larsen, P.A., Morton, M.N., Adams, R.A., Genoways, H.H. & Swier, V.J. (2010) Bats of Montserrat: population fluctuation and response to hurricanes and volcanoes, 1978-2005. In: Fleming, T.H. & Racey, P.A. (Eds.), Island bats: Evolution, ecology, and conservation. The Chicago University Press, Chicago, Illinois, pp. 302–340. 64 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. Pedro, W.A., Passos, F.C. & Lim, B.K. (2001) Morcegos (Chiroptera; Mammalia) da Estação Ecológica dos Caetetus, Estado de São Paulo. Chiroptera Neotropical, 7, 136–140. Peracchi, A.L. & Albuquerque, S.T. (1993) Quirópteros do municipio de Linhares, estado do Espírito Santo, Brasil (Mammalia, Chiroptera). Revista Brasileira de Biologia, 53 (4), 575–581. Peters, W. (1860) Eine neute Gattung von Flederthieren, Chiroderma villosum, aus Brasilien vor. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 1861,747–755. Peters, W. (1866) Über neue oder ungenügend bekannte Flederthiere (Vampyrops, Uroderma, Chiroderma, Ametrida, Tylostoma, Vespertilio, Vesperugo) und Nager (Tylomys, Lasiomys). Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 1866, 392–411, 2 pls. Peters, W. (1906) Museum Zoologicum Berolinense. Chiroptera. Sumptibus C.G. Lüderitz, Berlin, 70 pls. Pierson, E.D., Rainey, W.E., Warner, R.M. & White-Warner, C.C. (1986) First record of Monophyllus from Montserrat, West Indies. Mammalia, 50 (2), 269–271. https://doi.org/10.1515/mamm.1986.50.2.263 Pine, R.H. (1972) The bats of the genus Carollia. Technical Monograph, Agricultural Experimental Station, Texas A & M University, 8, 1–125. Pirlot, P. (1972) Chiropteres de moyenne Amazonie. Mammalia, 36 (1), 71–85. https://doi.org/10.1515/mamm.1972.36.1.71 Presley, S.J. (2004) Ectoparasitic assemblages of Paraguayan bats: ecological and evolutionary perspectives. PhD dissertation, Texas Tech University, Lubbock, Texas, 326 pp. Queiroz, K. de (2005) A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences, Series 4, 56, 196–215. Queiroz, K. de (2007) Species concepts and species delimitation. Systematic Biology, 56 (6), 879–886. https://doi.org/10.1080/10635150701701083 Reed, J.T. & Brennan, J.M. (1975) The subfamily Leeuwenhoekinae in the Neotropics (Acarina: Trombiculidae). Brigham Young University Science Bulletin, Biological Series, 20 (1, part 1), 1–42. Reid, F. & Langtimm, C. (1993) Distributional and natural history notes for selected mammals from Costa Rica. The Southwestern Naturalist, 38 (3), 299–302. https://doi.org/10.2307/3671441 Reis, N. R. & Peracchi, A.L. (1987) Quirópteros da região de Manaus, Amazonas, Brasil (Mammalia, Chiroptera). Boletim do Museu Paraense Emilio Goeldi, Série Zoologia, 3 (2), 1–21. Reis, N.R., Peracchi, A.L., Lima, I.P., Sekiama M.L. & Rocha, V.J. (1998) Updated list of the chiropterians [sic] of the city of Londrina, Paraná, Brazil. Chiroptera Neotropical, 4 (2), 96–98. Revell, L.J. (2012) phytools : an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3 (2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x Rex, K., Michener, R., Kunz, T.H. & Voigt, C.C. (2011) Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable carbon isotopes. Journal of Tropical Ecology, 27 (3), 211–222. https://doi.org/10.1017/S0266467411000022 Rocha, P.A., Brandão, M.V., Garbino, G.S.T., Cunha, I.N. & Aires, C.C. (2016) First record of Salvin’s big-eyed bat Chiroderma salvini Dobson, 1878 for Brazil. Mammalia, 80 (5), 573–578. https://doi.org/10.1515/mammalia-2015-0077 Rodriguez-Herrera, B., Wilson D.E., Fernández, M. & Pineda, W. (2005) La mastozoología en Costa Rica: historia, localidades y composición de especies. Brenesia, 63–64, 89–112. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2 : Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029 Sabino-Santos Jr., G., Maia, F.G.M., Viera, T.M., Muylaert, R.L., Lima, S.M., Gonçalves, C.B., Barroso, P.D., Melo, M.N., Jonsson, C.B., Goodin, D., Salazar-Bravo, J. & Figueiredo, L.T.M. (2015) Evidence of hantavirus infection among bats in Brazil. American Journal of Tropical Medicine and Hygiene, 93 (2), 404–406. https://doi.org/10.4269/ajtmh.15-0032 Salvin, O. (1864) Descriptions of seventeen new species of birds from Costa Rica. Proceedings of the Zoological Society of London, 1864, 579–586. Silva, S.S.P., Dias, D., Martins, M.A., Guedes, P.G., Almeida, J.C., Cruz, A.P., Serra-Freire, N.M., Damascena, J.S. & Peracchi, A.L. (2015) Bats (Mammalia: Chiroptera) from the Caatinga scrublands of the Crateus region, northeastern Brazil, with new records for the state of Ceará. Mastozoología Neotropical, 22 (2), 335–348. Simmons, N.B. (2005) Order Chiroptera. In: Wilson, D.E. & Reeder, D.M. (Eds.), Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, Maryland, pp. 312–529 . Simmons, N.B. & Voss, R.S. (1998) The Mammals of Paracou, French Guiana: a neotropical lowland rainforest fauna Part 1. Bats. Bulletin of the American Museum of Natural History, 237, 1–219. Simpson, G.G. (1961) Principles of animal taxonomy. Columbia University Press, New York, 247 pp. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 65 Sipinski, E.A.B. & Reis, N.R. (1995) Dados ecológicos dos quirópteros da Reserva Volta Velha, Itapoá, Santa Catarina, Brasil. Revista Brasileira de Zoologia, 12 (3), 519–528. https://doi.org /10.1590/S0101-81751995000300006 Soares, F.A.M., Rocha, P.A., Mikalauskas, J.S., Graciolli, G. & Ferrari, S.F. (2017) Ectoparasitic bat flies (Diptera, Streblidae) of bats (Chiroptera, Mammalia) from Mata do Junco Wildlife Refuge, Sergipe , northeastern Brazil. Oecologia Australis, 21 (4), 385–395. https://doi.org/10.4257/oeco.2017.2104.03 Solari, S., Medellín, R., Rodríguez-Herrera, B., Tavares, V. da C., Garbino, G.S.T., Camacho, M.A., Tirira, D., Lim, B.K., Arroyo-Cabrales, J., Rodríguez-Durán, A., Dumont, E., Burneo, S., Aguirre, L.F., Tschapka, M. & Espinosa, D. (2019) Family Phyllostomidae (New World leaf-nosed bats). In: Wilson, D.E. & Mittermeier, R.A. (Eds.), Handbook of the Mammals of the World, Bats. Vol. 9. Lynx Edicions, Barcelona, pp. 444–583. Solari, S., Pacheco, V., Luna, L., Velazco, P.M. & Patterson, B.D. (2006) Mammals of the Manu Biosphere Reserve. Fieldiana Zoology, New Series, 110, 13–22. https://doi.org/10.3158/0015-0754(2006)110[13:MOTMBR]2.0.CO;2 Stephens, L. & Traylor Jr., M.A. (1983) Ornithological Gazetteer of Peru. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 271 pp. https://doi.org/10.5962/bhl.title.14634 Straney, D.O. (1984) The nasal bones of Chiroderma (Phyllostomidae). Journal of Mammalogy, 65 (1), 163–165. https://doi.org/10.2307/1381222 Suárez-Castro, A.F. & Montenegro, O.L. (2015) Consumo de plantas pioneras por murciélagos frugívoros en una localidad de la Orinoquía Colombiana. Mastozoología Neotropical, 22 (1), 125–139. Sukumaran, J. & Knowles, L.L. (2017) Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences, 114 (7), 1607–1612. https://doi.org/10.1073/pnas.1607921114 Taddei, V.A. (1973) Phyllostomidae da Região Norte-Ocidental do Estado de São Paulo. PhD dissertation. Universidade Estadual Paulista, São José do Rio Preto, 233 pp. Taddei, V.A. (1976) The reproduction of some Phyllostomidae (Chiroptera) from the northwestern region of the State of São Paulo. Boletim de Zoologia, Universidade de São Paulo, 1 (1), 313–330. https://doi.org/10.11606/issn.2526-3358.bolzoo.1976.121587 Taddei, V.A. (1979) Phyllostomidae (Chiroptera) do Norte-ocidental do estado de São Paulo. III—Stenodermatinae. Ciência e Cultura, 31 (8), 900–914. Taddei, V.A. (1980) Aspectos da biologia de Chiroderma doriae, Thomas, 1891 (Chiroptera, Phyllostomidae). Sessões da Academia Brasileira de Ciências, 52, 643–644. Taddei, V.A. & Lim, B.K. (2010) A new species of Chiroderma (Chiroptera, Phyllostomidae) from Northeastern Brazil. Brazilian Journal of Biology, 70 (2), 381–386. https://doi.org/10.1590/S1519-69842010000200021 Tavares, V. da C. (2008) Revisionary systematics and phylogeny of Vampyressa and Stenodermatinae (Chiroptera: Phyllostomidae). PhD dissertation, The City University of New York, New York, 412 pp. Tavares, V. da C., Gardner, A.L., Ramírez-Chaves, H.E. & Velazco, P. (2014) Systematics of Vampyressa melissa Thomas, 1926 (Chiroptera, Phyllostomidae), with descriptions of two new species of Vampyressa. American Museum Novitates, 3813, 1–27. https://doi.org/10.1206/3813.1 Teixeira, S.C. & Peracchi, A.L. (1996) Morcegos do Parque Estadual da Serra da Tiririca, Rio de Janeiro, Brasil (Mammalia, Chiroptera). Revista Brasileira de Zoologia, 13 (1), 61–66. https://doi.org/10.1590/S0101-81751996000100005 Tello, C., Streicker, D.G., Gomez, J. & Velazco, P.M. (2014) New records of pigmentation disorders in molossid and phyllostomid (Chiroptera) bats from Peru. Mammalia, 78 (2), 191–197. https://doi.org/10.1515/mammalia-2013-0019 Thenius, E. (1989) Zähne und Gebiss der Säugetiere. In: Walter de Gruyter (Ed.), Handbuch der Zoologie, VIII/56, pp. i–xi + 1–513. Thomas, O. (1889) Description of a new stenodermatous Bat from Trinidad. Annals and Magazine of Natural History, Series 6, 4, 167–170. https://doi.org/10.1080/00222938909460492 Thomas, O. (1891) Note on Chiroderma villosum with the description of a new species for the genus. Annali del Museo Civico di Storia Naturale di Genova, Series 2, 10, 881–883. Thomas, O. (1893). Further notes on the genus Chiroderma. Annals and Magazine of Natural History, Series 6, 11, 186–187. https://doi.org/10.1080/00222939308677490 Thomas, O. (1924). On a collection of mammals made by Mr. Latham Rutter in the Peruvian Amazons. Annals and Magazine of Natural History, Series 9, 13, 530–538. https://doi.org/10.1080/00222932408633067 Timm, R.M. & LaVal, R.K. (1998) A field key to the bats of Costa Rica. Occasional Publication Series, Center for Latin Ameri- 66 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. can Studies, University of Kansas, 22, 1–30. Timm, R.M., Wilson, D.E., Clauson, B.L., LaVal, R.K. & Vaughan, C.S. (1989) Mammals of the La Selva–Braulio Carrillo Complex, Costa Rica. North American Fauna, 75, i–iii + 1–162. Trifinopoulos, J., Nguyen, L., Von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), W232–W235. https://doi.org/10.1093/nar/gkw256 Trouessart, E.-L. (1904) Catalogus mammalium tam viventium quam fossilium. Quinquennale supplementium, anno 1904. Fasc. 1 (1–288). R. Friedländer & Sohn, Berolini, vii + 929 pp. https://doi.org/10.5962/bhl.title.61437 Turcios-Casco, M.A., Medina-Fitoria, A. & Estrada-Andino, N. (2020) Northernmost record of Chiroderma trinitatum (Chiroptera, Phyllostomidae) in Latin America, with distributional comments. Caribbean Journal of Science, 50 (1), 9–15. https://doi.org/10.18475/cjos.v50i1.a2 Turni, H. & Kock, D. (2008) Type specimens of bats (Chiroptera: Mammalia) in the collections of the Museum für Naturkunde, Berlin. Zootaxa, 1869 (1), 1–82. https://doi.org/10.11646/zootaxa.1869.1.1 Valiente-Banuet, A., Rojas-Martínez, A., Casas, A., Arizmendi, M. del C. & Dávila, P. (1997) Pollination biology of two winterblooming giant columnar cacti in the Tehuacán Valley, central Mexico. Journal of Arid Environments, 37 (2), 331–341. https://doi.org/10.1006/jare.1997.0267 Varella-Garcia, M. & Taddei, V.A. (1985) Análise cariotípica de Chiroderma doriae (Chiroptera, Phyllostomidae). Ciência e Cultura, 37 (7), 790. Velazco, P.M. (2005) Morphological phylogeny of the bat genus Platyrrhinus Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new species. Fieldiana Zoology, New Series, 105, 1–54. https://doi.org/10.3158/0015-0754(2005)105[1:MPOTBG]2.0.CO;2 Velazco, P.M., Gardner, A.L. & Patterson, B.D. (2010). Systematics of the Platyrrhinus helleri species complex (Chiroptera: Phyllostomidae), with descriptions of two new species. Zoological Journal of the Linnean Society, 159 (3), 785–812. https://doi.org/10.1111/j.1096-3642.2009.00610.x Vieira, C.O. da C. (1942) Ensaio monográfico sobre os quirópteros do Brasil. Arquivos de Zoologia, Museu de Zoologia da Universidade de São Paulo, 3, 219–471. Vieira, C.O. da C. (1955) Lista remissiva dos mamíferos do Brasil. Arquivos de Zoologia, Museu de Zoologia da Universidade de São Paulo, 8, 341–474. Wagner, I., Ganzhorn, J.U., Kalko, E.K.V. & Tschapka, M. (2015) Cheating on the mutualistic contract: nutritional gain through seed predation in the frugivorous bat Chiroderma villosum (Phyllostomidae). Journal of Experimental Biology, 218, 1016– 1021. https://doi.org/10.1242/jeb.114322 Warren, R.L.M. & Harrison C.J.O. (1971) Type-specimens of birds in the British Museum (Natural History). Vol. 2. Passerines. Trustess of the British Museum, London, 628 pp. https://doi.org/10.5962/bhl.title.8584 Watkins, L., Jones Jr., J.K. & Genoways, H.H. (1972) Bats of Jalisco, México. Museum of Texas Tech University Special Publications 1. Museum of Texas Tech University Press, Lubbock, Texas, 44 pp. https://doi.org/10.5962/bhl.title.146912 Wendeln, M.C., Runkle, J.R. & Kalko, E.K.V. (2000) Nutritional values of 14 fig species and bat feeding preferences in Panama. Biotropica, 32 (3), 489–501. https://doi.org/10.1111/j.1744-7429.2000.tb00495.x Wenzel, R.L. (1976) The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin, Biological Series, 20, 1–177. Wenzel, R.L., Tipton, V.J. & Kiewlicz, A. (1966) The streblid batflies of Panama (Diptera: Streblidae). In: Wenzel, R.L. & Tipton, V.J. (Eds.), Ectoparasites of Panama. Field Musem of Natural History, Chicago, Illinois, pp. 405–676. Wiley, E.O. (1978) The evolutionary species concept reconsidered. Systematic Zoology, 27 (1), 17–26. https://doi.org/10.2307/2412809 Wilson, D.E. (1979) Reproductive patterns. In: Baker, J.R., Jones Jr., J.K. & Carter, D.C. (Eds.), Biology of the bats of the New World Family Phyllostomatidae. Part III. Museum of Texas Tech University Special Publications 16. Museum of Texas Tech University Press, Lubbock, Texas, pp. 317–378. Winge, H. (1892) Jordfundne og nulevende Flagermus (Chiroptera) fra Lagoa Santa, Minas Geraes, Brasilien. E Museo Lundii, Kjöbenhavn, 2 , 1–65. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 67 APPENDIX 1. Gazetteer Below we list the collecting localities of the Chiroderma specimens analyzed morphologically and sequenced in this study. Localities from which only sequences were analyzed are preceded by an asterisk. The gazetteer is organized by country, in alphabetical order. The largest administrative units, i.e., commune, department, parish, province, region, or state, are in italics. The geographic coordinates were obtained from specimen labels or by consulting the literature. When it was not possible to acquire a precise location, we used the approximate coordinates of the county. Besides the geographical information, we mention which taxon of Chiroderma was collected in each locality, as well as the collector(s) name(s) and the collection date(s). BELIZE 1. Toledo, Bladen Nature Reserve, Teakettle Camp on Bladen Branch (16°31.02’N, 88°49.80’W): villosum jesupi (col. J.F. Jacobs, 1995). Bolivia 2. Beni, Estancia Yutiole, 20 km S San Joaquin (13°15’S, 64°48’W): trinitatum (col. D.E. Añez, 1964). 3. Beni, Remansos (ca. 1 km below mouth of Río Paragua) (13°34’S, 61°54’W): trinitatum (col. K.F. Koopman, 1964). 4. Beni, Río Iténez, Opposite Costa Marques, Brazil (12°29’S, 64°17’W): villosum villosum (col. S. Anderson, 1964). 5. Beni, Vacadiaz, Río Beni, 10 km NNE Riberalta (10°55’S, 66°02’W): villosum villosum (col. G.L. Ramck, 1966). 6. *Beni, Yucumo, 35 km NW, 253 m (14°52’S, 67°07’W): salvini (col. Bolivian Expedition, 1992). 7. *La Paz, 43 km W, 1 km N Rurrenabaque, Rio Raya Maya Camp 2 (14°26’41.5’’S 67°55’42.3”W): villosum villosum (col. S.F. Moolenijzer, 1994). 8. *La Paz, Puerto Liñares, 1.6 km W (15°29’S, 67°31’W): salvini and trinitatum (col. W.D. Webster, 1979). 9. *La Paz, Río Beni (13°15’S, 67°18’W): villosum villosum (col. I.D.M. Tudor, 1985). 10. La Paz, Rio Coraico Valley, 6.6 km (by road) downstream Caranavi, 653 m (15°38’S, 67°39’W): trinitatum (col. C.G. Schmitt, 1979) 11. La Paz, Santa Ana de Madidi, 240 m (12°34’S, 67°10’W): trinitatum and villosum villosum (col. T. Mercado, 1985). 12. La Paz, Serrania Bellavista, 35 km N Caranavi, 1650 m (15°40’S, 67°35’W): salvini (col. C.G. Schmitt, 1979). 13. Pando, Independencia, 170 m (11°26’S, 67°34’W): villosum villosum (col. C.K. Malcom, 1986). 14. Pando, Rio Nareuda (11°18’S, 68°46’W): villosum villosum (col. S. Anderson, 1982). 15. Pando, Santa Rosa, Manuripi, 180 m (12°13’S, 68°24’W): salvini (col. S. Anderson, 1986). 16. Santa Cruz, 10 km N San Ramón, 400 m (16°36’S, 62°42’W): trinitatum (col. S. Anderson, 1985). 17. Santa Cruz, 4.5 km N and 1.5 km E Cerro Amboro, Río Pitasama, 620 m (17°45’S, 63°40’W): salvini (B.R. Riddle, 1985). 18. Santa Cruz, Buenavista (17°27’S, 63°40’W): villosum villosum (col. T. Steinbach, 1921). 19. Santa Cruz, Estancia San Rafael de Amboró, 400 m (17°36’S, 63°35’W): salvini and trinitatum (col. T.J. Mercado, 1985). 20. Santa Cruz, Parque Nacional Noel Kempff Mercado, 23 km S Campamento Los Fierros, 550 m (14°37’45’’S, 60°45’00’’W): trinitatum and villosum villosum (col. F.W. Davis, S. Romer, S. Miserendino, 1991). 21. Santa Cruz, Parque Nacional Noel Kempff Mercado, 3 km S Campamento Los Fierros, 220 m (14°34’03’’S, 60°53’30’’W): trinitatum (col. S. Romer, S. Miserendino, 1991). 22. Santa Cruz, Parque Nacional Noel Kempff Mercado, El Refugio (14°45’S, 61°01’W): trinitatum (col. L.H. Emmons, 2000). BRAZIL 23. Acre, Parque Nacional da Serra do Divisor, 240 m (7°26’48’’S, 73°36’58’’W): trinitatum and villosum villosum (col. M.R. Nogueira, A. Pol, 1996, 1997). 24. Acre, Seringal Lagoinha, margem do Rio Lagoinha, 30 km E Cruzeiro do Sul (ca. 7°40’S, 72°40’W): villosum villosum (col. L.F. Nascimento, F. Silva, V.P. Tadei, 1982). 25. Alagoas, Mata da Cachoeira, São José da Lage (9°00’S, 36°03’W): doriae doriae (col. R. Sá-Neto, 2002). 26. Alagoas, Mata de Coimbra, Ibateguara (9°00’S, 35°52’W): villosum villosum (col. R. Sá-Neto, 2002). 27. *Amapá, Fazenda Aricari, BR156, km147, Tartarugalzinho (ca. 1°30’N, 50°54’W): trinitatum and villosum villosum (collector and date not specified). 28. *Amapá, Parque Nacional Montanhas do Tucumaque, Rio Mutum, Calçoene (ca. 1°50’N, 54°00’W): trinitatum (collector and date not specified). 29. Amazonas, Comunidade Cachoeirinha, left margin of Rio Içá, Santo Antônio do Içá, 63 m (2°53’30.69”S, 68°21’18.66”W): trinitatum and villosum villosum (col. A.R. Percequillo et al., 2015). 30. *Amazonas, Igarapé Mandiquié, 68 km from the city, Santa Isabel do Rio Negro (ca. 00°24’S, 65°01’W): villosum villosum (col. A.D. Ditchfield, date not specified). 31. Amazonas, Igarapé Taracuá, close to Comunidade Bom Futuro, left margin of Rio Japurá, Maraã, 50 m (1°46’09.88”S, 65°45’36.31”W): villosum villosum (col. E.F. Abreu-Junior; E.A. Chiquito; P.R.O. Roth; L.C. Silva, 2014). 68 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. 32. Amazonas, km 27 of BR319 (Rod. Humaitá/Manaus), Base de Selva Tenente Pimenta, Humaitá (ca. 7°20’S, 63°11’W): villosum villosum (col. E. Leonel, 1984). 33. Amazonas, Km 5 of BR-230 road (Transamazônica), between Humaitá and Lábrea, Humaíta (ca. 7°32’S, 63°18’W): villosum villosum (col. A. Cais, D. Camora, N. Hamada, 1983). 34. Amazonas, opposite to Comunidade São Pedro, right margin of Rio Içá, Santo Antônio do Içá, 80 m (3°01’46.18”S, 68°53’6.85”W): trinitatum and villosum villosum (col. A.R. Percequillo et al., 2015). 35. Amazonas, Vila de Santa Fé, right margin of Rio Japurá, Japurá, 64 m (1°45’15.99”S, 66°20’18.09”W): villosum villosum (col. A.R. Percequillo et al., 2014). 36. Amazonas, Humaitá (ca. 7°31’S, 63°02’W): villosum villosum (col. T. Brito, A. Nagel, G. Paliari, 1984). 37. Bahia, Reserva Particular do Patrimônio Natural Serra Bonita, Camacan (15°25’S, 39°29’W): doriae doriae (collector and date not informed). 38. Bahia, Ilhéus (14°43’21.56’’S, 39°12’06.78’’W): villosum villosum (col. R. França, 2011). 39. Ceará, Reserva Natural Serra das Almas, Cratéus, 670 m (5°08’S, 40°54’W): doriae vizottoi (col. S.S.P. Silva et al., 2012, 2013). 40. Espírito Santo, Aracruz Celulose, Aracruz (19°53’S, 40°36’W): villosum villosum (col. A.D. Ditchfield, 1993). 41. *Espírito Santo, Área de Relevante Interesse Ecológico Morro da Vargem, 300 m (19°53’28”S, 40°22’43”W): villosum villosum (col. P. Mendes, collected between 2006 and 2007). 42. Espírito Santo, Fazenda Santa Terezinha, Linhares (19°07’S, 39°59’W): villosum villosum (col. A.D. Ditchfield, 1993). 43. *Espírito Santo, Parque Estadual Paulo César Vinha, Guarapari (ca. 20°35’S, 40°24’W): villosum villosum (col. M. Oprea, no date). 44. *Espírito Santo, Reserva Biológica de Sooretama, Sooretama (ca. 18°59’S, 40°06’W): villosum villosum (collector and date not specified). 45. Espírito Santo, Reserva Florestal da Companhia Vale do Rio Doce (= Reserva Natural Vale), Linhares (ca. 19°06’S, 39°56’W—see Peracchi & Albuquerque [1993]): villosum villosum (col. A. Peracchi, 1970). 46. *Espírito Santo, Sítio do Anísio, Santa Leopoldina (ca. 20°06’S, 40°31’W): doriae and villosum villosum (collector and date not specified). 47. Goiás, Itumbiara (ca. 18°25’S, 49°13’W): doriae doriae (col. Ana Paula S., 2004). 48. Maranhão, São Luis (ca. 2°31’S, 44°18’W): doriae vizottoi (col. V.C. Tavares, 2006). 49. Mato Grosso, 264 km N (by road) Xavantina, serra do Roncador, 533 m (12°51’S, 51°46’W): trinitatum and villosum villosum (col. R.H. Pine, 1968). 50. Mato Grosso, Aricá (ca. 15°57’S, 55°56’W): villosum villosum (col. A.M. Olalla, 1944). 51. Mato Grosso, Cláudia (ca. 11°30’S, 54°53’W): villosum villosum (col. M. Kerr, 1997). 52. Mato Grosso, Nossa Senhora do Livramento (16°19’53.22’’S, 56°18’32.48’’W): villosum villosum (col. A.P. Silva, 2006). 53. Mato Grosso, Parque Nacional do Juruena (8°47’51.3’’S, 58°26’03.5’’W): villosum villosum (col. J.C. Dalponte, date not specified, between 2007 and 2008). 54. Mato Grosso, Parque Nacional do Juruena. Serra dos Apiacás, 180 m (8°56’17.4’’S 58°33’39.6’’W): trinitatum (col. J.C. Dalponte, 2007). 55. Mato Grosso, São José do Rio Claro (ca. 13°26’S, 56°43’W): trinitatum (col. M. Kerr, 1997). 56. Mato Grosso, Sinop (ca. 11°50’S, 55°38’W): villosum villosum (collector and date not specified [ALP collection]). 57. Mato Grosso, U.H.E. foz do Apiacás, Paranaíta (9°24’51.90’’S, 57°05’05.31’’W): villosum villosum (col. A.P. Silva, 2008). 58. Mato Grosso, Usina Teles Pires, Paranaíta (9°34’24’’S, 56°42’29,9’’W): villosum villosum (collector not specified, 2009). 59. Mato Grosso do Sul, Corumbá, 772 m (19°11’43,61’’S, 57°34’25,08’’W): doriae doriae (col. V.C. Tavares, 2009). 60. Mato Grosso do Sul, Corumbá, 866 m (19°13’18.32’’S, 57°35’12.37’’W): doriae doriae (col. V.C. Tavares, 2009). 61. Mato Grosso do Sul, Estação Ecológica Dahma, Bandeira, Campo Grande (20°28’S, 54°32’W): villosum villosum (collector not specified, 2009). 62. Mato Grosso do Sul, Fazenda Barma, Brasilândia (21°35’S, 52°07’W): doriae doriae (col. J.F.Silva F°, 1992). 63. Mato Grosso do Sul. Maciço do Urucum, MMX, Corumbá (19°18’36”S, 57°36’07”W): villosum villosum (col. V.C. Tavares et al., 2007). 64. Mato Grosso do Sul, Morro do Paxixi, Aquidauana (20°27’01.39”S 55°37’16.37”W): doriae doriae (col. E. Barbier, 2012). 65. Mato Grosso do Sul, Pantanal de Aquidauana, Fazenda Campo Lourdes, Aquidauana (19°32’S, 55°33’W): villosum villosum (col. F. Gonçalves, date not specified). 66. Mato Grosso do Sul, Pantanal Nhecolândia, Fazenda Rio Negro, Aquidauana (19°34’S, 56°14’W): villosum villosum (col. C.F. Santos, F. Gonçalves, 2007). 67. Mato Grosso do Sul, Parque Estadual Matas do Segredo, Campo Grande (20°23’S, 54°35’W): doriae doriae (col. C.M.M. Ferreira, 2009). 68. Mato Grosso do Sul, Urucum, Corumbá (ca. 19°09’S, 57°38’W): doriae doriae (col. M.O. Bordignon, 2004). 69. Mato Grosso do Sul, Urucum, Corumbá, 495 m (19°11’33,9”S, 57°36’59”W): doriae doriae (col. M.O. Bordignon, SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 69 2002). 70. Mato Grosso do Sul, Urucum, Morro São Domingos, Corumbá, 525 m (19°15’18,6”S, 57°36’45”W): doriae doriae (col. M.O. Bordignon, 2004). 71. Minas Gerais, Área de Proteção Ambiental Coqueiral, Coqueiral (ca. 21°11’S, 45°26’W): doriae doriae (col. R. Gregorin, 2007). 72. Minas Gerais, Bairro Taquaril, Belo Horizonte (ca. 19°49’S 43°57’W): doriae doriae (col. L.H. Dias, 2014). 73. Minas Gerais, Barão de Cocais (ca. 19°56’S, 43°29’W): doriae doriae (collector not specified, 2008). 74. Minas Gerais, Belgo Mineira, João Monlevade (19°50’16.76’’S, 43°07’42.60’’W): doriae doriae (col. R. Gregorin, 2011). 75. Minas Gerais, Dores do Indaiá (ca.19°27’S 45°36’W): villosum villosum (col. R. Redondo, date not specifiec). 76. Minas Gerais, Estação Ecológica de Pirapitinga, Três Marias (18°22’S, 45°19’W): doriae doriae e villosum villosum (collector and date not specified). 77. Minas Gerais, Estação Ecológica de Pirapitinga, Morada Nova de Minas (18°36’S, 45°21’W): doriae doriae (col. R. França, 2005). 78. Minas Gerais, Fazenda Cabriuna, Ipatinga (ca. 19°28’S, 42°32’W): villosum villosum (col. R. Gregorin, 2009). 79. Minas Gerais, Fazenda Marinheiro. 40 km SW Frutal (ca. 20°01’S, 48°56’W): villosum villosum (col. T.A. Brito, M. Gianella, F. Débora, 1984). 80. Minas Gerais, Gruta do Salitre, Diamantina (18°14’S, 43°36’W): doriae doriae (col. E. Coelho, 2015). 81. Minas Gerais, Lagoa Santa (ca. 19°37’S, 43°53’W): doriae doriae (col. P.W. Lund, date not specified). 82. Minas Gerais, Mariana (ca. 20°22’S, 43°24’W): doriae doriae (col. V.C. Tavares et al., 2008). 83. Minas Gerais, Mina Del Rey (VALE), Mariana, 886 m (20°20’18,24’’S, 43°25’16,28’’W): doriae doriae (col. C. Pinto, Sebastião, 2011). 84. Minas Gerais, Parque Nacional do Peruaçu, 735 m (14°59’58,42”S, 44°10’0,04”W): villosum villosum (col. C. Pinto, 2009). 85. Minas Gerais, Parque Nacional do Peruaçu, 772 m (15°01’15.75”S, 44°15’33.47”W): villosum villosum (col. C. Pinto, 2009). 86. Minas Gerais, Parque Nacional do Peruaçu, 584 m (15°09’04.09”S, 44°14’31.32”): villosum villosum (col. C. Pinto, 2009). 87. Minas Gerais, Parque Nacional do Peruaçu, 750 m (15°09’21.87”S, 44°18’30.02”W): villosum villosum (col. C. Pinto, 2009). 88. Minas Gerais, Parque Nacional do Peruaçu, 754 m (15°09’23.99”S, 44°18’25.61”W): villosum villosum (col. C. Pinto, 2009). 89. Minas Gerais, Parque Estadual do Rio Doce, Marliéria (ca. 19°42’S, 42°34’W): doriae doriae and villosum villosum (col. L. Oliveira, 2012; R. Gregorin 2012, 2013). 90. Minas Gerais, Pompéu (ca. 19°13’S 44°56’W): doriae doriae (col. D. Silva, 2011). 91. Minas Gerais, U.H.E. Retiro Baixo, Felixlândia (18°59’31.31’’S, 44°44’57.18’’W): doriae doriae (col. C. Pinto, Sebastião, 2011). 92. Minas Gerais, Valos, Lavras (ca. 21°14’S, 45°00’W): doriae doriae (col. L. Loureiro, 2009). 93. Pará, 52 km SSW Altamira, Rio Xingu, east margin (3°39’S, 52°22’W): villosum villosum (col. L.K. Gordon, 1986). 94. Pará, Centro Kaiapó de Estudos Ecológicos (Base Pinkaití), Área Indígena Kaiapó, Ourilândia do Norte (7°41’S, 51°52’W): villosum villosum (col. C. Perez, 1996). 95. Pará, Fazenda Bocaina, Parauapebas, 675 m (6°03’14’’S, 50°34’47’’W): trinitatum (col. V.C. Tavares, 2007). 96. Pará, Fazenda Fartura, Santana do Araguaia, 190 m (9°40’43’’S, 50°23’19’’W): trinitatum (col. G.S.T. Garbino, R.L. Vendramel, 2017). 97. Pará, Floresta Nacional de Carajás, 680 m (6°05’49’’S, 50°11’26’’W): trinitatum e villosum villosum (col. V.C. Tavares et al., 2009, 2010). 98. Pará, Floresta Nacional de Carajás, 679 m (6°00’41.52’’S, 50°17’54.34’’W): villosum villosum (col. V.C. Tavares et al., 2008). 99. Pará, Floresta Nacional de Carajás (6°20’48.60’’S, 50°27’03.01’’W): villosum villosum (col. V.C. Tavares et al., 2008). 100. Pará, Floresta Nacional de Carajás (6°22’33.97’’S, 50°22’58.28’’W): villosum villosum (col. V.C. Tavares et al., 2008). 101. Pará, Lago Jacaré, Rio Trombetas (1°27’S, 56°01’W): villosum villosum (col. S.A. Marques, 1979). 102. Pará, Lago Leonardo, Rio Trombetas (1°11’S, 56°40’W): villosum villosum (col. S.A. Marques, 1979). 103. Pará, Linha de Transmissão Jurupari, Rio Xingu (2°11’S, 52°17’W): trinitatum (col. JGP Consultoria, 2010). 104. Pará, Platô Greig. Floresta Nacional de Saracá-Taquera, Porto Trombetas, Oriximiná (ca. 1°34’S, 56°02’W): villosum villosum (col. V.C. Tavares, 2006). 105. Pará, Platô Monte Branco, Floresta Nacional de Saracá-Taquera, Porto Trombetas, Oriximiná (ca. 1°38’S, 56°02’W): villosum villosum (col. V.C. Tavares, 2005). 106. Pará, Porto Trombetas, Oriximiná (1°40’S, 56°00’W): villosum villosum (col. V.C. Tavares, 2006). 107. Pará, Projeto Alemão, Ponto 2, Parauapebas (6°03’14.22’’S, 50°34’47.57’’W): villosum villosum (col. V.C. Tavares et al., 2008). 108. Pará, Rio Xingu, left bank, Vitória do Xingu (3°22’12.72’’S, 51°55’39.78’’W): villosum villosum (col. V.C. Tavares et al., 70 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. 2008). 109. Pará, Sta. A, IAN (= Instituto Agronômico do Norte, currently EMBRAPA Amazônia Oriental), Belém, 27 m (1°26’S, 48°26’W): trinitatum and villosum villosum (col. C.O. Handley Jr., 1965). 110. Pará, Uruá, Rio Tapajós (4°50’S, 56°22’W): villosum villosum (col. S.A. Marques, 1979). 111. Pará, Várzea, Belém (ca. 1°27’S, 48°29’W): trinitatum (col. C.O. Handley Jr., 1969). 112. Paraíba, Fazenda Pacatuba, 10 km NE Sapé (7°05’S, 35°13’W): doriae doriae and villosum villosum (col. A. Langguth, 1983). 113. Paraíba, João Pessoa (7°05’S, 34°50’W): villosum villosum (col. H.L. Nunes, date not specified). 114. Paraíba, Reserva Biológica Guaribas, Rio Tinto (6°48’S, 35’05’W): doriae doriae (col. H.L. Nunes, 2012). 115. Pernambuco, Recife, near (ca. 8°03’S, 34°52’W): villosum villosum (col. A. Queiroz, 2012). 116. Pernambuco, Reserva de Saltinho (8°43’S, 35°10’W): doriae doriae (col. A.D. Ditchfield, date not specified). 117. Piauí, Boqueirão da Esperança, São Raimundo Nonato (8°48’36’’S, 42°32’32’’W—coordinates of “Baixão da Esperança”): villosum villosum (col. M.F.B. de Souza, 1987). 118. Piauí, Parque Nacional de Sete Cidades, Pirarucura (4°05’, 41°30’W): doriae vizottoi (col. W. Uieda, 1976). 119. Piauí, Parque Nacional da Serra das Confusões, close to olho d’agua da Santa, Guaribas (9°13’10’’S, 43°29’27’’W): villosum villosum (col. A.R. Percequillo, 2000). 120. Piauí, Serra Grande, Parque Nacional da Serra das Confusões, Guaribas (8°40’S, 43°29’W): doriae vizottoi (col. A.R. Percequillo, A.P. Carmignotto, 2000). 121. Piauí, Teresina (ca. 5°05’S, 42°48’W): doriae vizottoi (col. L.D. Vizotto, A.J. Dumbra, V. Rodrigues, date not specified) 122. Rio de Janeiro, Ilha da Marambaia, along path to Armação beach, Mangaratiba (23°03’38’’S, 43°58’45’’W): doriae doriae (col. B.N. Costa, E.F. Ramos, 2001). 123. Rio de Janeiro, Jardim Botânico, Rio de Janeiro (22°58′S, 43°13′W): doriae doriae and villosum villosum (col. M.R. Nogueira et al., 1997, 1998, 1999, 2001). 124. Rio de Janeiro, Morro Azul, Engenheiro Paulo de Frontin (22°28’S, 43°34’W): doriae doriae (collector and date not specified). 125. Rio de Janeiro, Parque Estadual da Pedra Branca, Rio de Janeiro (ca. 22°57’S, 43°27’W): doriae doriae (collector and date not specified). 126. Rio de Janeiro, Parque Estadual da Serra da Tiririca, Niterói (22°58’S, 43°01’—coordinates in Teixeira & Peracchi [1996] are wrong): villosum villosum (col. S.C. Teixeira, 1993). 127. Rio de Janeiro, Parque Natural Municipal da Prainha, Rio de Janeiro (ca. 23°02’S, 43°30’W): doriae doriae (col. A.C. Duarte, L.F. Menezes Jr, date not specified). 128. Rio Grande do Norte, Mata da Estrela, Usina Pedrosa, Baia Formosa (6°25’S, 35°03’W): doriae doriae (col. A.D. Ditchfield, 1993). 129. Rondônia, Cachoeira de Nazaré, Rio Machado, Vale do Anari (9°45’S, 61°55’W): villosum villosum (col. D. Stotz, 1986). 130. Rondônia, Calama, Porto Velho (ca. 8°01’S, 62°52’): villosum villosum (col. L.E. Miller, 1914). 131. Rondônia, Costa Marques (ca. 12°28’S, 64°17’W): villosum villosum (col. S. Anderson, 1964). 132. Rondônia, Monte Negro, right margin of Rio Jamari (10°17’S, 63°14’W): trinitatum (col. C.C. Aires et al., 2001, collector not specified, 2011). 133. Rondônia, Pedra Branca, Ariquemes (10°03’S, 62°07’W): villosum villosum (col. D. Stotz, 1988). 134. Rondônia, Pedras Negras (= Piedras Negras) (12°50’S, 62°53’W): villosum villosum (col. K.F. Koopman, 1964). 135. Rondônia, U.H.E. Jirau, Distrito de Mutum-Paraná, Porto Velho (9°35’43”S, 65°03’57”W): villosum villosum (col. C.C. Aires et al., 2014). 136. Roraima, Estação Ecológica da Ilha de Maracá, Amajari (3°25’N, 61°40’W): villosum villosum (col. N.R. Reis, 1978). 137. Santa Catarina, Joinville (26°18’S, 48°50’W): doriae doriae (col. W. Ehrhart, sem data). 138. São Paulo, Barra do Ribeirão Onça Parda (24°19’S, 47°51’W): doriae doriae (col. A.M. Olalla, 1964). 139. São Paulo, Cachoeira dos Índios (= Cachoeira da Água Vermelha) (flooded by U.H.E. Água Vermelha), close to Distrito de Arabá, Ouroeste (19°52’S, 50°25’W): doriae doriae (col. Brianezi, V. Garutti, Marques, et al., 1969). 140. São Paulo, Cananéia (25°01’S, 47°57’W): doriae doriae (col. Inst. Adolpho Lutz, 1976). 141. São Paulo, Caverna Morro Preto, Parque Estadual Turístico do Alto Ribeira, Iporanga (24°31’S, 48°41’W): doriae doriae (col. I.S. Arnone, 2006). 142. São Paulo, Engenheiro Schmidt, São José do Rio Preto (20°52’S, 49°18’W): villosum villosum (col. V. Garutti, date not specified). 143. *São Paulo, Estação Ecológica dos Caetetus (22°24’S, 49°41’W): doriae doriae (col. B.K. Lim, W.A. Pedro, F.C. Passos, 1998). 144. São Paulo, Estação Experimental de Pindorama, Pindorama (21°13’S, 48°56’W): doriae doriae (col. H. Ferrarezi, E.A. Gimenez, 1989). 145. São Paulo, Fazenda João XXIII, Pilar do Sul, 933 m (23°56’04’’S, 47°41’55’’W): doriae doriae (col. G.S.T. Garbino, G.C. Rezende, 2014). 146. São Paulo, Fazenda Paraguassu, Santa Gertrudes (22°27’S, 47°32’W): doriae doriae and villosum villosum (col. W. Uieda, M. Fabian, I. Sazima, V. Sanches, 1978) SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 71 147. São Paulo, Fazenda Rio das Pedras, Barão Geraldo, Campinas (22°54’S, 47°36’W): doriae doriae (col. W. Uieda, A. Storti, Sanches, Fernandes, 1977). 148. São Paulo, Fazenda Santa Carlota, Cajuru (21°16’S, 47°17’W): doriae doriae (A.D. Ditchfield, 1993). 149. São Paulo, Fazenda São Paulo, 5 km SW Neves Paulista (aprox. 20°50’S 49°37’W): villosum villosum (col. V.A. Taddei et al., 1984). 150. São Paulo, Fazenda Silvio Fazoli, Irapuã (ca. 21°16′S 49°24′W): doriae doriae (V.A. Taddei, J.M. Diniz, Fazoli, 1971). 151. São Paulo, Iguape (24°42’S, 47°33’W): doriae doriae (col. Inst. Adolpho Lutz, 1976). 152. São Paulo, Ilha de São Sebastião, Parque Estadual de Ilha Bela (23°50’S, 45°18’W): doriae doriae (col. A.D. Ditchfield, 1993). 153. São Paulo, Instituto de Biologia Marinha, Praia do Segredo, São Sebastião (23°49’S, 45°25’W): doriae doriae (col. V.A. Taddei, 1968). 154. São Paulo, Itapetininga (23°35’S. 48°03’W): doriae doriae (col. D. de Souza Lopes, 1975). 155. São Paulo, Parque Estadual da Ilha Anchieta, Ubatuba (23°31’S, 45°02’W): doriae doriae (col. C.C. Aires, 1998). 156. São Paulo, Parque Estadual da Ilha do Cardoso, Cananéia (25°11’S, 47°59’W): doriae doriae (col. S.F. Correa, 1991, L. Alves, 2007). 157. São Paulo, Parque Natural Municipal Grota de Mirassol (= Grota de Mirassol), Mirassol (20°46’S, 49°28’W): doriae doriae and villosum villosum (col. V. Taddei et al., 1971). 158. São Paulo, Roberto, Pindorama (21°15’S, 48°58’W): villosum villosum (col. H. Ferrarezi, E.A. Gimenez, 1989). 159. São Paulo, São José do Rio Preto (ca. 20°48’S, 49°22’W): doriae doriae and villosum villosum (col. V.A. Taddei, 1967, V.A. Taddei, L.D. Vizotto, 1973; Mazzoni, 1973). 160. São Paulo, São Roque (23°31’S, 47°07’W): doriae doriae (col. Expedição do Departamento de Zoologia, 1963). 161. São Paulo, Sítio Progresso, Mirassol (20°47’S, 49°32’W): villosum villosum (col. V.A. Taddei, M.E.S. Caballero, J.M. Diniz, 1971). 162. São Paulo, Ypanema (= Floresta Nacional de Ipanema, Varnhagen) (23°25’S, 47°36’W): doriae doriae (col. A. Robert, date not specified). 163. Sergipe, Estação Ecológica de Itabaiana (= Parque Nacional da Serra de Itabaiana) (10°40’S, 37°25’W): doriae doriae and villosum villosum (col. J.S. Mikalauskas, 2004). 164. Sergipe, Floresta Nacional do Ibura, Nossa Senhora do Socorro (10°50’S, 37°08’W): doriae doriae (col. S. Bomfim, 2014). 165. Sergipe, Parque Nacional da Serra de Itabaiana, Areia Branca (10°45’S, 37°19’W): doriae doriae (col. A. Bocchiglieri, 2011). 166. Sergipe, Refúgio de Vida Silvestre Mata do Junco, Capela (10°46’S, 37°01’W): doriae doriae and villosum villosum (col. A. Bocchiglieri, 2012). 167. Tocantins, U.H.E. São Salvador (12°48’S, 48°14’W): villosum villosum (F.A. Martins et al., 2008). COLOMBIA 168. Amazonas, Puerto Nariño, ca. 50 km N Leticia, 80 m (3°46’S, 70°22’W): trinitatum and villosum villosum (col. A. Arata, M. Thomas, 1967). 169. Antioquia, La Tirana, 25 km S + 25 km W Zaragoza, 520 m (7°18’N, 75°05’W): gorgasi and villosum jesupi (col. N. Peterson, 1970, 1971, 1972). 170. Antioquia, Vereda La Pola, Rio León en el caño de Los Mangos, Parque Nacional Natural Los Katíos, Turbo (8°05’N, 76°43’W): villosum jesupi (col. I.V. Rodriguez, 1974). 171. Chocó, Corregimiento Gilgal, Unguía (ca. 8°32’N, 77°14’W): gorgasi and villosum jesupi (col. I.V. Rodriguez, 1977). Contrary to the information on specimen labels (e.g. IAVH-M 4932) and publications (e.g. Velazco et al. 2010) that place Corregimiento Gilgal in Acandí, this Corregimiento is in Unguía. 172. Chocó, Reserva Florestal Especial Las Teresitas (= La Teresita), Riosucio (not located, estimated at 7°25’N 77°07’W): villosum jesupi (col. L. Gualdron, 1979). 173. Chocó, Vereda El Tilupo, Parque Nacional Natural Los Katíos (ca. 7°43’N, 77°12’W): villosum jesupi (col. I.V. Rodriguez, 1977). 174. Chocó, Vereda O. Arenas, Finca El Recurso, Ungía (8°01’N, 77°04’W): gorgasi (collector not specified, 1980). 175. Magdalena, Cagualito, Santa Marta (11°18’N, 74°00’W): villosum jesupi (col. H.H. Smith, 1898). 176. Magdalena, Parque Nacional Natural Tayrona, El Cedro (11°17’N, 74°11’W): villosum jesupi (col. A. Cuervo, 1983). 177. Magdalena, Vereda El Congo, Quebrada El Congo, Ciénaga, 686 m (10°59’17.19’’N, 74°04’03.9’’W): villosum jesupi (col. J. Valencia, S. Jimenez, 2015). 178. Putumayo, Caño Caucayá, finca Señor Miguel Velasquez, Puerto Leguízamo (0°11’S, 74°46’W): villosum villosum (col. H. Chiriví, J. Mora, 1973). 179. Quindío, Vereda El Dorado, Bosque San Isidro, Génova, 1500 m (4°14’53’’N, 75°48’W): salvini (col. Proyecto Quindío, 2011). 180. Quindío, Vereda San Juan d’Carolina, Finca La Irlanda, Bosque San Pedro, Armenia, 1400 m (ca. 4°32’N, 75°40’W): salvini (col. Proyecto Quindío, 1999). 181. Sucre, Estación Primates, Colosó, 386 m (9°32’10.2’’N, 75°21’00.6’’W): villosum jesupi (col. C. Fernández, S. Jiménez, 72 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. 2014). 182. Sucre, Quebrada El Sereno, Estación Primates, Colosó, 270 m (9°32’29.29’’N, 75°20’30.3’’W): villosum jesupi (col. C. Fernández, S. Jiménez, 2014). 183. Valle del Cauca, Pance (2 km S), ca. 20 km SW Cali, 1670 m (3°20’N, 76°38’W): salvini (col. A. Arata, M. Thomas, 1967). 184. Valle del Cauca, Rio Zabaletas, 22 km E Buenaventura (3°44’N, 76°57’W): gorgasi, salvini and villosum jesupi (col. A. Arata, M. Thomas, 1967). 185. Vaupés, Caño Arara (= Bocas del Arara), Carurú (ca. 1°00′N, 71°18’W): villosum villosum (col. J. Morales, S.-C. Cruz, A. Samper, P. Jaimes, 1975). 186. Vichada, Territorio Faunistico Tuparro, 4 km SE Centro Admnistrativo (5°17’N, 68°04’W): trinitatum (col. T.O. Lemke, 1999): COSTA RICA 187. Cartago, Angostura (ca. 9°53’N, 83°39’W): salvini (col. J. Cooper, 1876). 188. Guanacaste, Rincón de la Vieja National Park, 500 m from Admnistration, 1040 m (10°49’N, 85°19’W): salvini (col. F. Reid, 1989). 189. Heredia, Parque Nacional Braulio Carrillo, San Miguel, 1 km S 11.5 km E, 900 m (10°09’N, 83°58’W): salvini (col. D.E. Wilson, 1986). 190. Puntarenas, Cañas Gordas (8°45’N, 82°55’W—see Rodriguez-Herrera et al. [2005)]): salvini (col. C.F. Underwood, 1943). 191. Puntarenas, Corcovado National Park, Quebrada Camaronal, Sirena Station (8°33’N, 83°35’W): villosum jesupi (col. F. Reid, 1989). 192. *Puntarenas, Las Cruces Tropical Botanical Garden, 3.4 km S, 1.8 km E San Vito (8°47’N, 82°57’W): salvini (col. I.F. Greenbaum, 1977). ECUADOR 193. *Esmeraldas, Finca San José, San Lorenzo, 144 m (1°00’36”N, 78°37’20”W—see Carrera et al. 2010): gorgasi (col. R.J. Baker et al., 2004). 194. *Esmeraldas, San Lorenzo, Banana Plantation, 53 m (1°15’31”N, 78°46’51”W– see Carrera et al. 2010): gorgasi (col. R.J. Baker et al., 2001). 195. Los Ríos, Beata Elvira, 3 km N Puebloviejo (1°30’S, 79°26’W): villosum jesupi (col. R.G. McLean, 1974). 196. Los Ríos, El Papayo (near San Juan), 7 km SW Puebloviejo (1°35’S, 79°28’W): villosum jesupi (col. R.G. McLean, 1974). 197. Los Ríos, Hacienda Santa Teresita, (Abras de Mantequilla), ca. 12 km NE Vinces (ca. 1°28’S, 79°35’W): villosum jesupi (col. R.G. McLean, 1974). 198. Los Ríos, Lima Pareja (near San Juan), 4 km SW Puebloviejo (1°33’S, 79°28’W): villosum jesupi (col. R.G. McLean, 1974). 199. Los Ríos, Rio Nuevo, N Vinces (ca. 1°32’S 79°44’W): villosum jesupi (col. R.G. McLean, 1976). 200. Los Ríos, Vinces, near Puerto Nuevo and Vinces (ca. 1°32’S, 79°45’W): villosum jesupi (col. R.G. McLean, 1976). 201. *Napo, Parque Nacional Yasuní (ca. 0°49’S, 76°19’W): trinitatum and villosum villosum (col. M.D. Engstrom, F.A. Reid, F. Sornoza, 1995, 1996). 202. Pastaza, Lorocachi (1°32’S, 75°57’W): villosum villosum (col. R.H. Rageot, 1983). 203. Pastaza, Santiago (not located): villosum villosum (col. R.H. Rageot, 1983). 204. Pastaza, Tiguino, 130 km S Coca (1°07’S, 76°57’W): villosum villosum (col. J.F. Jacobs, 1990). 205. Pastaza, Yosa (not located): villosum villosum (col. R.H. Rageot, 1982). 206. Pichincha, Rio Palenque Science Center, 47 km S (by road) Santo Domingo (0°33’S, 79°22’W): villosum jesupi (col. D.E. Wilson, 1979). EL SALVADOR 207. *Ahuachapán, El Imposible, San Francisco Menéndez (13°51’N 90°00’W): villosum jesupi (col. M.D. Engstrom, F.A. Reid, B.K. Lim, 1993). 208. La Libertad, Deininger Park (13°29’N, 89°16’W): villosum jesupi (col. J.G. Owen, 1993). 209. La Paz, Hacienda Escuintla, Zacatecoluca (13°30’N, 88°52’W): villosum jesupi (col. J.G. Owen, 1993). 210. La Unión, El Tamarindo, 2 km W Airstrip (13°10’N, 87°55’W): villosum jesupi (col. J.G. Owen, 1993). 211. Santa Ana, Los Planes, Parque Nacional Montecristo, ca. 1500 m (14°26’N, 89°19’W): salvini (col. J.G. Owen, 1990). FRENCH GUIANA 212. Sinnamary, Paracou, near Sinnamary (5°17’N, 52°55’W): trinitatum and villosum villosum (col. N.B. Simmons, 1992). GUADELOUPE 213. Basse-Terre, 2 km S, 2 km E Baie-Mahault (ca. 16°16’N, 61°35’W): improvisum (col. R.J. Baker, H.H. Genoways, SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 73 1974). GUATEMALA 214. El Progreso, Rio Uyús, 5 km E San Cristóbal Acasaguascatlán, 240 m (14°57’N, 89°50’W): salvini (col. M. Engstrom, F. Reid, B.K. Lim, 1992). 215. Jutiapa, Colonia Montufar, ca. 19 km South Pedro Alvarado (13°51’N, 90°06’W): villosum jesupi (col. R.W. Dickerman, 1969). 216. Santa Rosa, La Avellana (13°55’N, 90°28’W): villosum jesupi (col. R.W. Dickerman, 1971). GUYANA 217. Barima-Waini, North West, Santa Cruz (7°39’N, 59°14’W): villosum villosum (col. B.K. Lim, S. Woodward, 1991). 218. Cuyuni-Mazaruni, Forest Reserve 24 km along Potaro Road from Bartica (6°00’N, 58°40’W): villosum villosum (col. J.N. Davies, 1963). 219. Cuyuni-Mazaruni, Karowrieng River, Upper Mazaruni District (ca. 5°40’N, 60°16’W): trinitatum (col. N.S. Weller, 1979). 220. Cuyuni-Mazaruni, Maz 3, Karowrieng River, within 19 km of Maipuri Falls, Upper Mazaruni (ca. 5°40’N, 60°15’W): trinitatum (col. N.S. Weller., 1979). 221. Cuyuni-Mazaruni, Namai Creek, 5 km W Parnima, 800 m (54°8’N, 61°06’W): villosum villosum (col. B.K. Lim, W. Scully, 1997). 222. Potaro-Siparuni, Iwokrama Reserve, 10 km NW Kurupakari (4°44’N, 58°43’W): trinitatum (B.K. Lim et al., 1997). 223. Upper Demerara-Berbice, 3.2 km W Kurupukari (4°40’N, 58°40’W): trinitatum (col. P. Smith, S. Kerry, 1992). 224. Upper Demerara-Berbice, Dubulay Ranch, 60 m (5°40’N, 57°51’52”W): villosum villosum (col. J. Arroyo-Cabrales, 1999). 225. Upper Demerara-Berbice, Tropenbos, 20 km SSE Mabura Hill (5°09’N, 58°42’W): trinitatum (col. M.D. Engstrom, B.K. Lim, R. Dowler, A. Boyd, 1994). 226. Upper Takutu-Upper Essequibo, Chodikar River, 55 km SW Gunn’s Strip (1°22’N, 58°46’W): villosum villosum (col. B.K. Lim, O’Toole, Robertson, 1996). HONDURAS 227. Francisco Morazán, 16 km by road N Tegucigalpa, ca. 900 m (14°06’N, 87°13’W): salvini (col. V.R. McDaniel, 1971). 228. Francisco Morazán, La Flor, Archaga (14°15’N, 87°13’W): salvini (col. C.F. Underwood, 1936). 229. Francisco Morazán San Marcos, Guaimaca district (ca. 14°32’N, 86°49′W, see Goodwin 1942): salvini (col. C.F. Underwood, 1934). 230. Olancho, 50.4 km by road NNE Juticalpa (ca. 14°39’N, 86°13’W): salvini (col. R.J. Baker et al., 1971). 231. *Valle, 13.7 km SSW San Lorenzo (ca. 13°21’N, 87°33’W): villosum jesupi (col. R.D. Bradley, 1991). MÉXICO 232. *Campeche, 15 km S X-Canhá (18°55’12”N, 89°19’48”W): villosum jesupi (col. M.D. Engstrom, R.C. Dowler, 1989). 233. Colima, La Sidra, near Agua Zarca, Landa de Matamoros (19°13’N, 103°56’W): scopaeum (col. A.L. Gardner, 1963). 234. Colima, Pueblo Juaréz (19°10’N, 103°55’W): scopaeum (col. A.L. Gardner, 1960). 235. Jalisco, 20 km SW (by road) Talpa de Allende, 1280 m (20°23’N, 104°49’W): scopaeum (col. R.C. Dowler, 1979). 236. Jalisco, 9.3 km W Chapala, 1524 m (20°18’N, 103°11’W): scopaeum (col. C.J. Philips, 1972). 237. Jalisco, 6.4 km NW Autlán de Navarro (19°46’N, 104°22’W): scopaeum (col. P.A. Larsen, 2008). 238. Jalisco, La Cumbre, Puerto Los Mazos, 14.5 km SSW Autlán (19°52’S, 105°20’W): scopaeum (col. W.J. Schaldach, 1966). 239. Morelos, Oaxtepec (18°54’N, 98°58’W): scopaeum (col. R.A. Medellin, 1984). 240. Nayarit, 13 km NE San Blas, 174 m (21°32’N, 105°17’W): scopaeum (col. P.A. Larsen, 2008). 241. Nayarit, 5 km E, El Venado, Ruiz (21°56’N, 104°59’W): scopaeum (col. D.E. Wilson, 1986). 242. Nayarit, 12.9 km E San Blas (21°32’N, 105°17’W): scopaeum (col. A.L. Gardner, 1960). 243. Nayarit, 12,9 km NE San Miguel del Zapote, 51.5 km W Mesa del Nayar (21°59’N, 104°46’W): scopaeum (col. D.E. Wilson, 1984). 244. Nayarit, Arroyo La Taberna, ca. 3.2 km NW Mesa del Nayar, 1490 m (22°12’N, 104°39’W): scopaeum (col. C.B. Robbins, 1975). 245. Nayarit, Coapan, 2.9 km NW, by road, Jala, 1420 m (21°08’N, 104°28’N): scopaeum (col. C.B. Robbins, 1975). 246. Nayarit, El Tacote, 2.2 km N (22°37’N, 105°26’W): scopaeum (col. R.D. Fisher, 1975). 247. Nayarit, Jalcocotán, 3.2 km E, San Blas (21°46’N, 104°88’W): scopaeum (col. B.A. Harvey, 1977). 248. Nayarit, Mesa del Nayar, 1370 m (22°12’N, 104°39’W): scopaeum (col. R.O. Fisher, 1975). 249. Nayarit, Playa Novillero (22°22’N, 105°40’W): scopaeum (col. D.E. Wilson, 1981). 250. Oaxaca, 30 km NW Sala de Veja (= Sola de Vega) (16°30’N, 96°58’W): scopaeum (col. M.D. Tuttle, 1962). 251. *Oaxaca, Santa Catarina Juquila (16°12’11.02”N, 97°21’18”W): scopaeum (collector and date not specified). 252. *Oaxaca, Santa María Chimalapa (17°04’36.98”N, 94°35’57.01”W): villosum jesupi (collector and date not specified). 74 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. 253. Veracruz, 0.8 km NE Las Minas (19°41’N, 97°08’W): salvini (col. A.D. Stock, 1963). 254. Veracruz, Jalapa (= Xalapa) (19°32’N, 96°55’W): villosum jesupi (col. F.D. Godman, date not specified). 255. Veracruz, Ojo de Agua del Rio Atoyac (18°56’N, 96°54’W): scopaeum (col. B.L. Davis, J.R. Emily, T. Clark, V.R. McDaniel, 1970). 256. *Veracruz, Palma de Abajo (19°35’21”N, 96°26’05”W): villosum jesupi (collector not specified, 1992) MONSTERRAT 257. Saint Anthony Parish, 0.8 km above mouth of Belham River (16°44’N, 62°13’W): improvisum (col. J. Knox-Jones Jr., R.J. Baker, 1978). NICARÁGUA 258. Región autónoma de la Costa Caribe Sur, 4,5 km NW Rama (= El Rama) (12°20’N, 84°40’W): villosum jesupi (col. W.J. Bleier, 1971). PANAMÁ 259. Bocas del Toro, Almirante (9°18’N, 82°24’W): villosum jesupi (col. C.O. Handley Jr., D. Rhymer, 1960). 260. Bocas del Toro, Isla Popa, 1 km SE Deer Island Channel (9°09’N, 82°07’W): villosum jesupi (col. C.O. Handley Jr., 1987). 261. Bocas del Toro, Rio Changena Camp, 731-792 m (9°02’N, 82°41’W): salvini (col. C.M. Keenan, R. Hinos, 1961). 262. Bocas del Toro, Sibube (9°36’N, 82°47’W): villosum jesupi (col. C.O. Handley Jr., F. Greenwell, 1963). 263. Bocas del Toro, Upper Rio Changena, Rancho Mojica, ca. 32 km SSW Changuinola (09°06’N, 82°34’W): salvini (col. V.J. Tipton, 1961). 264. Chiriquí, 1.6 km E Cuesta de Piedra, 853 m, Cuesta de Piedra, 914 m (8°41’N, 82°38’W): salvini (col. E. Tyson, 1961, 1962). 265. Colón, Península Bohio, 5.5 km NWW Frijoles (9°12’N, 79°50’W): villosum jesupi (col. R.H. Pine, 1972). 266. Darién, ca. 6 km NW Cana, E face Cerro Pirre, 1200 m (7°51’N, 77°44’W): salvini (col. L.J. Barkley, 1983). 267. Darién, Cana (= Santa Cruz de Cana) (7°47’N, 77°42’W): villosum jesupi (col. E.A. Goldman, 1912). 268. Darién, Cerro Malí, 1430 m (8°07’N, 77°14’W): salvini (col. C.O. Handley Jr., 1964). 269. Darién, Cerro Tacarcuna, 1250 m (8°10’N, 77°18’W): salvini (col. C.O. Handley Jr., 1964). 270. Darién, El Real (= Real de Santa Maria) (8°23’N, 77°49’W): villosum jesupi (col. C.O. Handley Jr., 1964). 271. Darién, Jaqué, junction of Jaqué and Imamado rivers (7°31’N, 78°10’W): salvini and villosum jesupi (col. F.M. Greenwell, T.H. Fleming, 1966). 272. *Darién, Meteti, Filo del Tallo (8°28’31.77”N, 77°58’55.06”W): villosum jesupi (col. J.L. Dunnum, 2015). 273. Darién, Parque Nacional Darién (8°00’N, 77°43’W): gorgasi and villosum jesupi (col. B.K. Lim, E. O’Toole, 1995). 274. Darién, Punta Piña, near Jaqué (7°34’N, 78°12’W): villosum jesupi (col. C.M. Keenan, 1960). 275. Darién, Tacarcuna Village Camp, 975 m (8°05’N, 77°17’W): gorgasi, salvini and villosum jesupi (col. C.O. Handley Jr., B.R. Feinstein, 1959). 276. Los Santos, Cerro Hoya (7°18’N, 80°42’W): villosum jesupi (col. C.O. Handley Jr., F. Greenwell, 1962). 277. Los Santos, Guánico Arriba (= Las Palmitas) (7°20’N, 80°30’W): villosum jesupi (col. C.O. Handley Jr., F. Greenwell, 1962). 278. Panamá, Barro Colorado Island (9°09’N, 79°51’W): villosum jesupi (col. Carl B. Koford, 1956; E. Tyson, 1962; C.O. Handley Jr., 1981; J. Tripp, 1985). 279. Panamá, Cabima (ca. 9°08’N, 79°34’W): villosum jesupi (col. A. Busck, 1911). 280. Panamá, Cerro Azul (= La Zumbadora—see Fairchild & Handley [1966]) (9°14’N, 79°21’W): salvini and villosum jesupi (col. C.O. Handley Jr., 1957; C.O Handley Jr., F.M. Greenwell, 1962). 281. Panamá, Culebra (9°03’N, 79°40’W): villosum jesupi (col. E.A. Goldman, 1911). 282. Panamá, Gamboa, 9.6 km N (9°06’N, 79°42’W): villosum jesupi (col. E. Tyson, F. Chapman, 1964). 283. Panamá, Isla San José, Islas Perlas (8°15’N, 79°08’W): villosum jesupi (col. F.M. Greenwell, 1986). 284. Panamá, Punta de Cocos (= Punta Coco), Isla Del Rey (8°13’N, 78°54’W): villosum jesupi (col. C.M. Keenan, 1960). 285. Panamá, Rio Mandinga (9°05’N, 79°42’W): villosum jesupi (col. C.O. Handley Jr., 1957). 286. San Blas (currently Guna Yala), Armila, Quebrada Venado (8°40’N, 77°27’W): gorgasi and villosum jesupi (col. C.O. Handley Jr., F. Greenwell, 1963). 287. Veraguas, Isla Cébaco (7°31’N, 81°11’W): villosum jesupi (col. E. Tyson, 1965). PARAGUAY 288. Cordillera, Estancia Sombrero, 110 m (25°04’20’’S, 56°36’13’’W): doriae doriae (col. López-González et al., 1995; S.J. Presley et al., 1997). 289. San Pedro, Yaguarete Forests, 0.5 km W headquarters (23°48’S, 56°07’W): doriae doriae (col. R.D. Stevens, 1997). PERÚ 290. Amazonas, Cordillera del Condor, Valle Rio Comaina, Puesto Vigilancia 3, Alfonso Ugarte (3°54’S, 78°25’W): trinitatum SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 75 (col. L.H. Emmons, V. Pacheco, 1994). 291. Cajamarca, San Ignacio, Chirinos, Nuevo Chalaquito, “El Chaupe” (5°12’16’’S 79°01’40’’W): salvini (col. A. Tovar, 1992). 292. Cusco, Consuelo, 15.9 km SE Pilcopata, 1000 m (13°01’24.96”S, 71°29’30.66”W): salvini and trinitatum (col. B.D. Patterson, S. Solari, U. Paredes, 2001). 293. Cusco, La Convención, Comunidade Nativa Tangoshiari, 1014 m (11°46’47’’S, 73°20’26.5’’W): salvini (col. L. Luna W., 1998). 294. Cusco, La Convención, Camisea, 465 m (11°53’S, 72°39’): villosum villosum (S. Solari, 1998). 295. Cusco, La Convención, Camisea, Segakiato (11°46’S, 73°00’W): cf. salvini (col. E. Vivar, 1997). 296. Cusco, La Convención, Ridge Camp, 980 m (11°46’47’’S, 73°20’26’’W): salvini and villosum villosum (col. M. Romo-R., 1998). 297. Cusco, La Convención, Camisea, Armihuari, 560 m (11°51’51”S, 72°46’46”W): trinitatum and villosum villosum (col. J.J. Rodriguez, S. Solari, D.E. Wilson, 1997; V. Pacheco, E. Vivar, 1998). 298. Cusco, La Convención, Camisea, Konkariari, 450 m (11°48’S, 72°52’W): villosum villosum (col. J.L. Mena, 1997). 299. Cusco, La Convención, Camisea, Pagoreni, 465 m (11º42’22”S, 72º54’9”W): trinitatum and villosum villosum (col. J.J. Rodriguez, S. Solari, P. Velazco, 1998). 300. Cusco, La Convención, Camisea, San Martin, 475 m (11°47’S, 72°42’W): trinitatum and villosum villosum (col. J.J. Rodriguez, P. Velazco, 1998). 301. *Huánuco, 9 km S, 2 km E Tingo Maria (ca. 9°17’S, 75°59’W): salvini and trinitatum (col. R.D. Owen, 1983). 302. Huánuco, Puerto Inca, Estación Biológica Panguana, 247 m (9°37’S, 74°56’W): trinitatum (col. S. Velazco, 2011). 303. Junín, Satipo, Santa Bibiana, 1053 m (11°21’22.97”S, 74°43’53.18”W): trinitatum (col. S. Refulio, 2011). 304. Loreto, Maynas, 13.6 km NW Albarenga (aprox. 3°11’59’’S, 74°42’28’’W): villosum villosum (col. E. Arias, 2008). 305. Loreto, Maynas, distrito de San Juan, Km 22.7 of Iquitos-Nauta road (3°56.371’S, 73°23.710’W): trinitatum (col. M.M. Díaz, 2003, 2004). 306. Loreto, Maynas, Estación Biologica Allpahuayo (3°58’S, 73°25’W): villosum villosum (col. C.L.H., date not specified). 307. Loreto, Maynas, Ninarumi. 7.4 km W and 500 m SE Km 6 of the Iquitos-Nauta road (3°50.635’S, 73°22.899’W): villosum villosum (col. M.M.P., 2004). 308. Loreto, Maynas, Paujil, 37.45 km W Iquitos-Nauta road (4°03’31.61”S, 73°26’32.1”W): villosum villosum (col. M.M. Díaz, 2004). 309. Loreto, Maynas, Peña Negra, 600 m W Km 10 of the Iquitos-Nauta road (3°51’19.33”S, 73°20’42.54”W): trinitatum (col. M.M. Díaz, 2003). 310. Loreto, Maynas, Quistococha (3°50’S, 73°16’W—see Stephens & Traylor [1983]): villosum villosum (col. C.M. Prentice, 1963). 311. Loreto, Maynas, Río Lagartococha, Campamento Catalino (0°31’42”S, 75°15’35”W): trinitatum and villosum villosum (col. J. Loja-Aleman, R.A. Van der Busche, 1994). 312. Loreto, Maynas, Zungarococha, 5.2 km W of Km 6 of the Iquitos-Nauta road (ca. 3º50.635’S, 73º22.899’W): villosum villosum (col. M.M.P., 2003). 313. Loreto, Puesto de Vigilancia Castaña, Río Aguarico (0°48’22”S, 75°14’40”W): trinitatum (col. C. Ascorra, 1993). 314. Loreto, Requena, Centro de Investigaciones Jenaro Herrera (4°54’S, 73°40’W): villosum villosum (col. R. Araña, 1989). 315. Loreto, Requena, Jenaro Herrera, 130 m (4°55’S, 73°45’W): trinitatum and villosum villosum (col. R. Araña, 1989; C. Ascorra, 1990, 1991). 316. Loreto, Río Samiria (4°42’S, 74°13’W—see Stephens & Traylor 1983): villosum villosum (col. V. Pacheco, 1980). 317. Loreto, Río Samiria, Flor de Yarina (4°43’S, 74°21’W): villosum villosum (col. V. Pacheco, 1980). 318. Loreto, Río Samiria, Tacshacocha, 112 m (4°52’45.5’’S, 74°21’25.3’’W): villosum villosum (col. V. Pacheco, 1980). 319. Loreto, San Lorenzo, Rio Marañon (4°49’S, 76°36’W): villosum villosum (col. L. Rutter, 1923—see Thomas 1924). 320. Loreto, Sucusari, Quebrada Grande (3°15’S, 72°54’W): trinitatum (col. C. Ascorra, 1993). 321. Loreto, Ucayali, Alto Rio Pauya, Campamento Vertiente (7°33’40”S, 75°54’58”W): villosum villosum (col. V. Pacheco, 2000). 322. Loreto, Ucayali, Río Pisqui, Campamento Llanura (8°24’22.7”S, 75°42’06.2”W): villosum villosum (col. V. Pacheco, 2000). 323. Madre de Dios, Albergue Maskoitania, 13. 5 km N Atalaya, 470 m (12°46’18.12”S, 71°23’7.8”W): trinitatum and villosum villosum (col. S. Solari, 2001). 324. Madre de Dios, Estación Biológica Cocha Cashu, 380 m (11°51’S, 71°19’W): villosum villosum (col. M. Romo, 1989). 325. Madre de Dios, Alto Río Madre de Dios, Hacienda Amazonia, Ridge Above, 825 m (12°52’38.28”S, 71°23’11.4”W): salvini and villosum villosum (col. R. Izor, 1985). 326. Madre de Dios, Manu, CICRA (Centro de Investigación y Capacitación Río Los Amigos), Aerodromo, 217 m (12°33’36.38’’S, 70º06’17.36”): villosum villosum (col. S. Velazco, 2005). 327. Madre de Dios, Manu, Cocha Salvador (11°59’34.8”S, 71°13’37.2”W): villosum villosum (col. C. Ascorra, 1988). 328. Madre de Dios, Manu, Quebrada Aguas Calientes, 2.75 km E Shintuya, 400m (12°40’5.88”S, 71°16’8.4”W): salvini, trinitatum and villosum villosum (col. B.D. Patterson, P. Velazco, 1999). 329. Madre de Dios, Manu, Pakitza, 350m (11°56’47.04”S, 71°16’59.88”W): trinitatum and villosum villosum (col. D.E. Wil- 76 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. son, 1988; C. Ascorra, S. Solari, 1990). 330. Madre de Dios, Tambopata, Explorer’s Inn Lodge (12°50’S, 69°17’W): villosum villosum (col. M. Romo, 1986). 331. Madre de Dios, Tambopata. Pampas del Heath. Refugio Juliaca (12°57.4’S, 68°52.9’W): trinitatum (col. L. Luna W., 1996). 332. Madre de Dios, Tambopata, Reserva Cuzco Amazónico, 15 km NE Puerto Maldonado, 200 m (12°33’S, 69°03’W): villosum villosum (col. R. Araña C., V. Pacheco, 1990). 333. Madre de Dios, Tambopata, Santuario Nacional Pampas del Heath (13°00’S, 69°00’W): villosum villosum (col. C. Ascorra, 1992). 334. Pasco, Oxapampa, Cerro Chontiya, 5 km W Shiringamazu, on road to Iscosazin, 930 m (10°18’33’’S, 75°09’46”W): trinitatum and villosum villosum (col. E. Vivar, V. Pacheco, 1992). 335. Pasco, Oxapampa, Cerro Jonatán. 5 km E Lontananza (10°21’57’’S, 75°11’23’’W): trinitatum (col. S. Solari, 1992). 336. Pasco, Oxapampa, Palcazu, Campamento Río Lobo, Parque Nacional Yanachaga-Chemillen, 390 m (10°21’30’’S, 75°14’46’’W): trinitatum and villosum villosum (col. S. Solari, 1993). 337. Pasco, Oxapampa, Pozuzo, Palmira, ca. 5 km NE Pozuzo, 830 m (10°04’S, 74°32’W): salvini (col. J. Amanzo A., 1996). 338. Pasco, Oxapampa, Pozuzo, Yanahuanca. 900 m (ca. 10°02’S, 75°35’W): trinitatum (col. J. Amanzo A., 1996). 339. Pasco, Oxapampa, San Juan, 274 m (10°30’S, 74°53’W—ver Gardner 2008): villosum villosum (col. A.L. Tuttle, 1964). 340. Pasco, Oxapampa, San Pablo (10°27’S ,74°52’W): trinitatum (col. A.L. Tuttle, 1964). 341. Pasco, Oxapampa, Villa America, Río Maiz, 300 m (10°10’00’’S, 75°13’50’’W): villosum villosum (col. P. Hocking, 1983). 342. Puno, Sandia, Putinapunco, Curva Alegre, 950 m (14°2’30.12”S, 68°57’41.04”W): trinitatum (col. E.S.P., 2009). 343. Puno, Sandia, San Fermín, 850 m (13°56’36.96”S, 68°58’33.96”W): trinitatum (col. E.S.P., 2009). 344. Puno, Sandia, Yanacocha, 1985 m (14°11’06’’S, 69°15’04’’W): salvini (col. O. Centty, 2010). 345. San Martín, Juanjuí (7°11’S, 76°45’W): villosum villosum (col. J.O.P., 1948). 346. San Martín, Bellavista, Bajo Biavo. Concesion de Conservación Valle del Biavo (ca. 7°13’S 76°28’W): villosum villosum (col. D. Ruelas, 2015). 347. San Martín, Saposoa (6°56’S, 76°48’W): villosum villosum (col. J.O.P., 1948). 348. San Martín, Yurac Yacu (5°57’S, 77°11’W): villosum villosum (col. Hendee, sem data). 349. Tumbes, Matapalo, Río Zarumilla, Parque Nacional Cerros de Amotape. 173 m (ca. 3°50’S 80°11’W): villosum jesupi (col. R. Cadenillas, 2006). 350. Tumbes, Matapalo, Río Zarumilla, Carrizalillo (3°43’56.71’’S, 80°11’10.42’’W): villosum jesupi (col. F. Cornejo, 2006). 351. Tumbes, Quebrada La Pavas (3°49’12”S, 80°15’36”W): villosum jesupi (col. L. Huamaní, 2007). 352. Tumbes, Quebrada Naranjos, 560 m (3°50’24”S, 80°12’0”W): salvini (col. R. Cadenillas, 2004). 353. Ucayali, 59 km W Pucallpa (8°35’S, 74°52’W): villosum villosum (col. H. Hinsch, 1971). 354. Ucayali, Purús, Concesión de Conservación Río La Novia (9°55’46”S, 70°42’9”W): trinitatum and villosum villosum (col. D. Ruelas, O. Ruelas P., V. Pacheco, 2015). SAINT KITTS AND NEVIS 355. Saint Thomas Parish, Barnes Ghaut, 183 m (17°09’48.67”N, 62°36’22.79”W): improvisum (col. B.K. Lim, L. Loureiro, 2016). SURINAME 356. Brokopondo, Brownsberg Nature Park, Irene Falls (4°55’N ,55°10’W): trinitatum and villosum villosum (col. M.D. Engstrom, B.K. Lim, S.L. Peters, 2002). 357. Sipaliwini, Kushere Landing, Sipaliwini River (1°56’N, 56°03’W): trinitatum and villosum villosum (col. B.K. Lim, M.D. Engstrom, L. Arcila, 2009). TRINIDAD AND TOBAGO 358. Tobago, St. John Parish, Charlotteville (11°19’N, 60°33’W): villosum villosum (col. F.A. Harrington, 1981). 359. Trinidad, Caroni, Waterloo (10°28’N, 61°28’W): villosum villosum (col. Rendall, date not specified). 360. Trinidad, St. Andrew County, Cumaca, 305 m (10°42’N, 61°09’W): trinitatum (col. L. Venus, B. Smith, 1956). 361. Trinidad, St. Andrew County, Guaico Tamana (10°28’N, 61°08’W): villosum villosum (col. Palack, 1960). 362. Trinidad, St. David County, Grande Riviere (10°50’N, 61°03’W): villosum villosum (col. E. Ache, 1962). 363. Trinidad, St. George County, Arima (10°44’N, 61°17’W): trinitatum (col. A.M. Greenhall, 1963). 364. Trinidad, St. George County, Diego Martin (10°43’N, 61°34’W): villosum villosum (col. A.M. Greenhall, 1959). 365. Trinidad, St. George County, La Fillette (10°48’N, 61°21’W): trinitatum (col. A.M. Greenhall, 1963). 366. Trinidad, St. George County, Las Cuevas (10°47’N, 61°23’W): trinitatum (col. Warren Morris King Expedition to Trinidad and Guyana, 1969). 367. Trinidad, St. George County, Maracas Valley (10°41’N, 61°24’W): villosum villosum (col. A.M. Greenhall, 1954). VENEZUELA 368. Amazonas, 9 km SE Puerto Ayacucho (5°35’N, 67°30’W): villosum villosum (col. M.D. Tuttle, 1967). SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 77 369. Amazonas, Boca Mavaca, 69 km SE Esmeralda, Belén (2°30’N, 65°13’W): trinitatum (col. M.D. Tuttle, F.L. Harder, 1967). 370. Amazonas, Capibara, Canal Cassiquiare, 130 m (2°38’N, 66°19’W): trinitatum (col. M.D. Tuttle, F.L. Harder, 1967). 371. Amazonas, Cerro Neblina base camp, 140 m (0°49’50’’N, 66°09’40’’W): trinitatum (col. A.L. Gardner, 1985). 372. Amazonas, Cerro Neblina base camp, Río Mawarinuma, 140 m (0°50’N, 66°10’W): villosum villosum (col. A.L. Gardner, 1984, 1985). 373. Amazonas, Guayabal, 28 km SSE Puerto Ayacucho (5°27’N, 67°37’W): trinitatum (col. M.D. Tuttle, 1967). 374. Amazonas, Río Cunucunuma, Belén, 150 m (3°39’N, 65°46’W): trinitatum and villosum villosum (col. M.D. Tuttle, F.L. Harder, 1967). 375. Amazonas, Río Manapiare, San Juan, 155 m (5°18’N, 66°13’W): trinitatum and villosum villosum (col. M.D. Tuttle, F.L. Harder, 1967). 376. Amazonas, Río Mavaca, 108 km SE Esmeralda (2°15’N, 65°17’W): villosum villosum (col. M.D. Tuttle, F.L. Harder, 1967). 377. Amazonas, San Carlos de Río Negro (1°55’N, 67°04’W): villosum villosum (col. A.L. Gardner, 1984). 378. Amazonas, Tamatama, Río Orinoco (3°10’N, 65°49’W): villosum villosum (col. M.D. Tuttle, F.L. Harder, 1967; O.S. Brewington, 1967). 379. Apure, 4 km N Nula, La Blanquita (7°12’N, 71°45’W): trinitatum (col. M.D. Tuttle, 1968). 380. Barinas, Altamira, 700 m (8°50’N, 70°30’W): trinitatum (col. M.D. Tuttle, 1968). 381. Barinas, La Vega del Rio Santo Domingo, 2 km SE of Altamira (8°48’N, 70°29’W): salvini (col. M.D. Tuttle, 1968). 382. Bolívar, 85 km SSE El Dorado, km 125 (6°02’N, 61°22’W): trinitatum (col. M.D. Tuttle, 1966). 383. Bolívar, El Manaco, 59 km SE of El Dorado, km 74 (6°21’N, 61°17’W): trinitatum and villosum villosum (col. M.D. Tuttle, 1966). 384. Bolívar, Hato La Florida, 14 km S and 45 km E Caicara (7°19’N, 65°52’W): villosum villosum (col. M.D. Tuttle, 1967). 385. Bolívar, Hato San José, 146 km S and 7 km E Ciudad Bolívar, 300 m (6°49’N, 63°31’W): villosum villosum (col. M.D. Tuttle, 1967). 386. Bolívar, Río Supamo, 56 km SE of El Manteco, 350 m (7°00’N, 62°15’W): villosum villosum (col. M.D. Tuttle, 1966). 387. Carabobo, La Copa, 4 km NW of Montalbán, 1810 m (10°14’N, 68°12’W): salvini (col. M.D. Tuttle, 1967). 388. Distrito Federal, Hotel Humboldt, 9.4 km N Caracas, 2118 m (10°33’N, 66°52’W): salvini (col. M.D. Tuttle, 1965). 389. Distrito Federal, Los Venados, 8 km N Caracas, 1559 m (10°32’N, 66°54’W): salvini (col. Smithsonian Venezuelan Project, 1965). 390. Miranda, Guatopo Natural Park, 48 km S and 34 km E Caracas, 630 m (10°11’N, 66°31’W): salvini (col. Smithsonian Venezuelan Project, 1966). 391. Monagas, Hacienda San Fernando, 1 km N and 3 KM W Caripe, 1165 m (10°12’N, 63°33’W): salvini (col. Smithsonian Venezuelan Project, 1967). 392. Monagas, San Agustin, 3 km N and 4 km W Caripe, 1180 m (10°15’N, 63°29’W): salvini (col. Smithsonian Venezuelan Project, 1967). 393. Sucre, Manacal, 5 Km S, 25 Km E of Carupano, 300 m (10°17’N, 63°03’W): villosum villosum (col. Smithsonian Venezuelan Project, 1967). 394. Yaracuy, 19 km NW of Urama, km 40 (10°33’N, 68°24’W): villosum villosum (col. M.D. Tuttle, 1965). 395. Yaracuy, Minas de Aroa, 8 km N and 18 km W San Felipe, 400 m (10°25’N, 68°54’W): trinitatum (col. Smithsonian Venezuelan Project, 1967). 396. *Yaracuy, Sector El Silencio, Parque Nacional Yurubí, Sierra de Aroa, 1939 m (10°24’11”N, 68°48’01”W): salvini (col. F. García, 2015). 78 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) APPENDIX 2. TABLE S1. Species, tissue/collection numbers, locality, and GenBank accession numbers of Chiroderma and outgroup specimens sequenced for the mitochondrial gene cytochrome c oxidase subunit 1. The numbers in parentheses in the Locality column refer to the localities described in the gazetteer (Appendix 1). Specimens with an asterisk (*) were also examined morphologically. Taxon Tissue/Collection Numbers Zootaxa 4846 (1) © 2020 Magnolia Press · Locality GenBank bp Chiroderma doriae Chiroderma doriae VCT 373/UFMG* Brazil: Maranhão: São Luis (48) MN814135 657 MCR 016/UFMG* Brazil: Mato Grosso do Sul, Corumbá (59) MN814129 657 Chiroderma doriae MCR 033/UFMG* Brazil: Mato Grosso do Sul, Corumbá (59) MN814130 657 Chiroderma doriae MCR 191/UFMG Brazil: Mato Grosso do Sul, Corumbá (59) MN814131 657 Chiroderma doriae MCR 257/UFMG* Brazil: Mato Grosso do Sul, Corumbá (59) MN814133 657 Chiroderma doriae CMUFLA 965* Brazil: Minas Gerais, João Monlevade (74) MN814127 657 Chiroderma doriae CMUFLA 1157* Brazil: Minas Gerais, PE do Rio Doce (89) MN814134 657 Chiroderma doriae AD 110/MZUSP 35027* Brazil: Rio Grande do Norte, Mata da Estrela (128) MN814125 657 Chiroderma doriae ROM 111114 Brazil: São Paulo, Caetetus (143) JF448016 657 Chiroderma doriae ROM 111141 Brazil: São Paulo, Caetetus (143) JF446371 657 Chiroderma doriae ROM 111149 Brazil: São Paulo, Caetetus (143) JF446373 657 Chiroderma doriae ROM 111163 Brazil: São Paulo, Caetetus (143) JF446372 657 Chiroderma doriae AD 223/MZUSP 35029* Brazil: São Paulo, Ilhabela (152) MN814126 657 Chiroderma doriae GTG 01/LMUSP* Brazil: São Paulo, Pilar do Sul (145) MN814128 657 Chiroderma doriae CMUFLA 332 Brazil? MN814132 657 Chiroderma doriae TK 64800/TTU 99569* Paraguay: Cordillera, Estancia Sombrero (288) MN814079 657 Chiroderma gorgasi TK 135749/TTU 103086 Ecuador: Esmeraldas, Finca San José (193) MN814086 657 Chiroderma gorgasi TK 104587/TTU 85359 Ecuador: Esmeraldas, San Lorenzo (194) MN814090 585 Chiroderma gorgasi F 38196/ROM 104342* Panamá: Darién. P.N. Darién (273) MN714901 657 Chiroderma improvisum TK 15713/TTU 31403* Montserrat (257) MN814080 657 Chiroderma improvisum F 59453/ROM 126002* Nevis (355) MN714893 657 Chiroderma salvini MSB 235596 Bolivia: Beni, 35 km N Yucumo (6) MN814174 657 Chiroderma salvini TK 14602/TTU 34878 Bolivia: La Paz, Puerto Liñares (8) MN814091 657 Chiroderma salvini MSB 236596 Bolivia: Pando, Santa Rosa (15) MN814175 657 Chiroderma salvini MSB 211208 Bolivia: Santa Cruz, San Rafael de Amboró (19) MN814176 657 Chiroderma salvini MSB 211293 Bolivia: Santa Cruz, San Rafael de Amboró (19) MN814177 657 Chiroderma salvini MSB 55893 Bolivia: Santa Cruz, San Rafael de Amboró (19) MN814173 657 ......continued on the next page 79 80 · Zootaxa 4846 (1) © 2020 Magnolia Press TABLE S1. (Continued) GARBINO ET AL. Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma salvini TK 9031/TTU 34309 Costa Rica: Puntarenas, San Vito (192) MN814085 657 Chiroderma salvini TK 34858b/TTU 62462* El Salvador: Santa Ana, Parque Nacional Montecristo (211) MN814083 657 Chiroderma salvini ROM 99703* Guatemala: El Progreso, Rio Uyús (214) JF446777 657 Chiroderma salvini M 519/LSUMZ 25468* Panamá: Darién, Cerro Pirre (266) MN814102 657 Chiroderma salvini M 520/LSUMZ 25469* Panamá: Darién, Cerro Pirre (266) MN814103 657 Chiroderma salvini M 521/LSUMZ 25470* Panamá: Darién, Cerro Pirre (266) MN814104 657 Chiroderma salvini M 523/LSUMZ 25472* Panamá: Darién, Cerro Pirre (266) MN814105 657 Chiroderma salvini M 525/LSUMZ 25474* Panamá: Darién, Cerro Pirre (266) MN814106 657 Chiroderma salvini M 567/LSUMZ 25535 Panamá: Darién, Cerro Pirre (266) MN814107 657 Chiroderma salvini M 580/LSUMZ 25553 Panamá: Darién, Cerro Pirre (266) MN814108 657 Chiroderma salvini BDP 4069/FMNH 174645 Perú: Cusco, Consuelo, Pilcopata (292) MN814098 657 Chiroderma salvini TK 22917/TTU 46261 Perú: Huánuco, Tingo Maria (301) MN814092 625 Chiroderma salvini UP 164/FMNH 174641 Perú: Madre de Dios, Maskoitania (323) MN814099 657 Chiroderma salvini SS 1824/FMNH 170000 Perú: Madre de Dios, Quebrada Aguas Calientes (328) MN814097 657 Chiroderma salvini MZUC 2152 Venezuela: Yaracuy, P.N. Yurubí (396) MN814136 657 Chiroderma scopaeum TK 148769/TTU 109703* México: Jalisco, Autlán de Navarro (237) MN814082 657 Chiroderma scopaeum TK 148371/TTU 110649* México: Nayarit, San Blas (286) MN814081 657 Chiroderma scopaeum TN 4116/MZFC-M 11034 México: Oaxaca, Santa Catarina Juquila (251) MN814112 657 Chiroderma trinitatum TK 14584/TTU 34874 Bolivia: La Paz, Puerto Liñares (8) MN814087 657 Chiroderma trinitatum MSB 211734 Bolivia: La Paz, Santa Ana de Madidi (11) MN814182 657 Chiroderma trinitatum GTG 38/MZUSP 36013 * Brazil: Pará, Fazenda Fartura (96) MN814113 657 Chiroderma trinitatum GTG 40/MZUSP 36012* Brazil: Pará, Fazenda Fartura (96) MN814114 657 Chiroderma trinitatum MPEG 44542 Brazil: Pará, Rio Tapajós MN814141 657 Chiroderma trinitatum ROM 105191 Ecuador: Napo, Parque Nacional Yasuní (201) JF448017 657 Chiroderma trinitatum ROM 105230 Ecuador: Napo, Parque Nacional Yasuní (201) JF448810 657 Chiroderma trinitatum ROM 105243 Ecuador: Napo, Parque Nacional Yasuní (201) JF448806 657 Chiroderma trinitatum ROM 105253 Ecuador: Napo, Parque Nacional Yasuní (201) JF448805 657 Chiroderma trinitatum ROM 105581 Ecuador: Napo, Parque Nacional Yasuní (201) JF448811 657 Chiroderma trinitatum ROM 105685 Ecuador: Napo, Parque Nacional Yasuní (201) JF448807 657 ......continued on the next page SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) TABLE S1. (Continued) Zootaxa 4846 (1) © 2020 Magnolia Press · Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma trinitatum ROM 105718 Ecuador: Napo, Parque Nacional Yasuní (201) JF448809 657 Chiroderma trinitatum ROM 105766 Ecuador: Napo, Parque Nacional Yasuní (201) JF448808 657 Chiroderma trinitatum ROM 106342 Ecuador: Napo, Parque Nacional Yasuní (201) JF448812 657 Chiroderma trinitatum ROM F40504 Ecuador: Napo, Parque Nacional Yasuní (201) JF448813 657 Chiroderma trinitatum F58242/ROM 121975 Guyana: Potaro-Siparuni, Iwokrama River Lodge MN714881 657 Chiroderma trinitatum F58815/ROM 125124 Guyana: Potaro-Siparuni, Kabocalli MN714882 657 Chiroderma trinitatum ALP 124/AMNH 269118* French Guiana: Paracou (212) MN814094 657 Chiroderma trinitatum ROM 108144* Guyana: Cuyuni-Mazaruni, Namai Creek (221) JF454552 657 Chiroderma trinitatum ROM 108244 Guyana: Cuyuni-Mazaruni, Namai Creek (221) JF454559 657 Chiroderma trinitatum ROM 107476 Guyana: Potaro-Siparuni, Iwokrama (222) MN714877 657 Chiroderma trinitatum ROM 108763 Guyana: Potaro-Siparuni, Iwokrama (222) MN714878 657 Chiroderma trinitatum ROM 109026* Guyana: Potaro-Siparuni, Iwokrama (222) MN714879 657 Chiroderma trinitatum ROM 107205 Guyana: Potaro-Siparuni, Iwokrama (222) EF080285 657 Chiroderma trinitatum ROM 107419 Guyana: Potaro-Siparuni, Iwokrama (222) EF080286 657 Chiroderma trinitatum ROM 108463 Guyana: Potaro-Siparuni, Iwokrama (222) JF454544 657 Chiroderma trinitatum ROM 108554 Guyana: Potaro-Siparuni, Iwokrama (222) JF454545 657 Chiroderma trinitatum ROM 108587 Guyana: Potaro-Siparuni, Iwokrama (222) JF454555 642 Chiroderma trinitatum ROM 108588 Guyana: Potaro-Siparuni, Iwokrama (222) JF454554 628 Chiroderma trinitatum ROM 108714 Guyana: Potaro-Siparuni, Iwokrama (222) EF080287 657 Chiroderma trinitatum ROM 108889 Guyana: Potaro-Siparuni, Iwokrama (222) EF080288 619 Chiroderma trinitatum ROM 108950 Guyana: Potaro-Siparuni, Iwokrama (222) JF454557 657 Chiroderma trinitatum ROM 108993 Guyana: Potaro-Siparuni, Iwokrama (222) JF454556 657 Chiroderma trinitatum ROM 109195 Guyana: Potaro-Siparuni, Iwokrama (222) JF454558 657 Chiroderma trinitatum ROM 109271 Guyana: Potaro-Siparuni, Iwokrama (222) JF454553 657 Chiroderma trinitatum ROM 109333 Guyana: Potaro-Siparuni, Iwokrama (222) JF454542 657 Chiroderma trinitatum ROM 111627 Guyana: Potaro-Siparuni, Iwokrama (222) JF454543 657 Chiroderma trinitatum ROM 111809 Guyana: Potaro-Siparuni, Iwokrama (222) JF454547 657 Chiroderma trinitatum ROM 111884 Guyana: Potaro-Siparuni, Iwokrama (222) JF454546 657 Chiroderma trinitatum ROM 111946 Guyana: Potaro-Siparuni, Iwokrama (222) JF454548 657 81 ......continued on the next page 82 · Zootaxa 4846 (1) © 2020 Magnolia Press TABLE S1. (Continued) GARBINO ET AL. Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma trinitatum ROM 116630 Guyana: Potaro-Siparuni, Kaieteur National Park JF454549 644 Chiroderma trinitatum ROM 115807 Guyana: Potaro-Siparuni, Mount Wokomung JF454550 657 Chiroderma trinitatum ROM 103504 Guyana: Upper Demerara-Berbice, Tropenbos (225) MN714876 654 Chiroderma trinitatum ROM 103486 Guyana: Upper Demerara-Berbice, Tropenbos (225) JF454560 634 Chiroderma trinitatum ROM 103503 Guyana: Upper Demerara-Berbice, Tropenbos (225) JF454561 540 Chiroderma trinitatum ROM 103505 Guyana: Upper Demerara-Berbice, Tropenbos (225) JF454562 657 Chiroderma trinitatum ROM 118996 Guyana: Upper Takutu-Upper Essequibo, Upper Essequibo Conservation Concession JF454551 657 Chiroderma trinitatum ROM 111844 Guyana: Potaro-Siparuni, Sandstone MN714880 657 Chiroderma trinitatum SS 2193/FMNH 174650 Perú: Cusco, Consuelo, Pilcopata (292) MN814100 657 Chiroderma trinitatum TK 22754/TTU 46259 Perú: Huánuco, Tingo Maria (301) MN814088 657 Chiroderma trinitatum F53794/ROM 122084 Perú: Loreto, Jenaro Herrera MN714887 657 Chiroderma trinitatum F53847/ROM 122137 Perú: Loreto, Jenaro Herrera MN714888 657 Chiroderma trinitatum F53859/ROM 122149 Perú: Loreto, Jenaro Herrera MN714889 657 Chiroderma trinitatum ROM 114170 Suriname: Brokopondo, Brownsberg Nature Park (356) JF447622 657 Chiroderma trinitatum ROM 114213* Suriname: Brokopondo, Brownsberg Nature Park (356) JF447625 657 Chiroderma trinitatum ROM 114233 Suriname: Brokopondo, Brownsberg Nature Park (356) JF447623 657 Chiroderma trinitatum ROM 114234 Suriname: Brokopondo, Brownsberg Nature Park (356) JF447624 657 Chiroderma trinitatum ROM 117003 Suriname: Sipaliwini, Bakhuis JF447627 657 Chiroderma trinitatum ROM 117027 Suriname: Sipaliwini, Bakhuis JF447626 657 Chiroderma trinitatum ROM 117083 Suriname: Sipaliwini, Bakhuis JF447628 654 Chiroderma trinitatum ROM 117376 Suriname: Sipaliwini, Bakhuis EU096695 657 Chiroderma trinitatum ROM 117555 Suriname: Sipaliwini, Bakhuis EU096696 657 Chiroderma trinitatum ROM 120384 Suriname: Sipaliwini, Iconja Landing HQ919736 657 Chiroderma trinitatum ROM 120168* Suriname: Sipaliwini, Kushere Landing (357) HQ545629 657 Chiroderma trinitatum ROM 120225 Suriname: Sipaliwini, Kushere Landing (357) HQ545678 657 Chiroderma trinitatum TK 25211/TTU 44082 Trinidad: St. George, Simla Research Center MN814089 657 Chiroderma villosum MSB 211664 Bolivia: La Paz, Rio Beni (9) MN814181 657 Chiroderma villosum MSB 239056 Bolivia: La Paz, Rurrenabaque (7) MN814183 657 ......continued on the next page SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) TABLE S1. (Continued) Zootaxa 4846 (1) © 2020 Magnolia Press · Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma villosum MSB 236649 Bolivia: Pando, Independencia (13) MN814185 657 Chiroderma villosum MSB 236650 Bolivia: Pando, Independencia (13) MN814186 657 Chiroderma villosum MSB 236653 Bolivia: Pando, Independencia (13) MN814180 657 Chiroderma villosum MSB 236738 Bolivia: Pando, Independencia (13) MN814187 657 Chiroderma villosum MSB 236577 Bolivia: Pando, Santa Rosa (15) MN814184 657 Chiroderma villosum MSB 235171 Bolivia: Santa Cruz, P.N. Noel Kempff Mercado (20) MN814178 657 Chiroderma villosum MSB 235202 Bolivia: Santa Cruz, P.N. Noel Kempff Mercado (20) MN814179 657 Chiroderma villosum MAP 442 Brazil: Amapá, Tartarugalzinho (27) MN814157 657 Chiroderma villosum MAP 444 Brazil: Amapá, Tartarugalzinho (27) MN814165 657 Chiroderma villosum MAP 449 Brazil: Amapá, Tartarugalzinho (27) MN814166 657 Chiroderma villosum APM 334 Brazil: Amazonas MN814115 657 Chiroderma villosum JJM 180 Brazil: Amazonas MN814116 657 Chiroderma villosum AD 892 Brazil: Amazonas, Igarapé Mandiquié (30) MN814145 657 Chiroderma villosum PEB 716/INPA Brazil: Amazonas, Rio Purus MN814161 657 Chiroderma villosum PEB 749/INPA Brazil: Amazonas, Rio Purus MN814162 657 Chiroderma villosum VCT 4146 Brazil: Bahia, Caetité MN814138 657 Chiroderma villosum CMUFLA 1076* Brazil: Bahia, Ilhéus (38) MN814147 657 Chiroderma villosum CMUFLA 1078* Brazil: Bahia, Ilhéus (38) MN814148 657 Chiroderma villosum UFES Brazil: Espírito Santo KT236232 572 Chiroderma villosum UFES Brazil: Espírito Santo KT236233 537 Chiroderma villosum AD 336 Brazil: Espírito Santo, Aracruz (40) MN814164 657 Chiroderma villosum AD 350/MZUSP 35030* Brazil: Espírito Santo, Fazenda Santa Terezinha (42) MT475709 657 Chiroderma villosum AD 351/MZUSP 35031* Brazil: Espírito Santo, Fazenda Santa Terezinha (42) MN814144 657 Chiroderma villosum AD 352 Brazil: Espírito Santo, Fazenda Santa Terezinha (42) MN814120 650 Chiroderma villosum AD 353 Brazil: Espírito Santo, Fazenda Santa Terezinha (42) MN814121 657 Chiroderma villosum PM 54/UFES Brazil: Espírito Santo, Ibiraçu MN814163 657 Chiroderma villosum MO 19/UFES Brazil: Espírito Santo, P.E. Paulo César Vinha (43) MN814123 657 Chiroderma villosum MO 58/UFES Brazil: Espírito Santo, P.E. Paulo César Vinha (43) MN814158 657 Chiroderma villosum MO 60/UFES Brazil: Espírito Santo, P.E. Paulo César Vinha (43) MN814159 657 83 ......continued on the next page 84 · Zootaxa 4846 (1) © 2020 Magnolia Press TABLE S1. (Continued) GARBINO ET AL. Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma villosum MO 65/UFES Brazil: Espírito Santo, P.E. Paulo César Vinha (43) MN814160 657 Chiroderma villosum VP 334/UFES Brazil: Espírito Santo, REBIO Sooretama (44) MN814172 657 Chiroderma villosum MCR 665a/UFMG Brazil: Mato Grosso do Sul, Corumbá (59) MN814137 657 Chiroderma villosum CMUFLA 1836[9?]* Brazil: Minas Gerais, P.E. do Rio Doce (?) MN814152 657 Chiroderma villosum CMUFLA 1158* Brazil: Minas Gerais, P.E. do Rio Doce (89) MN814149 657 Chiroderma villosum CMUFLA 1834* Brazil: Minas Gerais, P.E. do Rio Doce (89) MN814151 657 Chiroderma villosum CMUFLA 1841* Brazil: Minas Gerais, P.E. do Rio Doce (89) MN814153 657 Chiroderma villosum CMUFLA 1532* Brazil: Minas Gerais, P.N. do Peruaçu (84) MN814150 657 Chiroderma villosum AC 1867/MZUSP Brazil: Pará, FLONA Carajás (97) MN814143 657 Chiroderma villosum VCT 1959/UFMG* Brazil: Pará, FLONA Carajás (97) MN814167 657 Chiroderma villosum VCT 2019/UFMG* Brazil: Pará, FLONA Carajás (97) MN814168 657 Chiroderma villosum VCT 2303/UFMG* Brazil: Pará, FLONA Carajás (97) MN814124 657 Chiroderma villosum VCT 5073/UFMG* Brazil: Pará, FLONA Carajás (97) MN814139 657 Chiroderma villosum VCT 5157/UFMG* Brazil: Pará, FLONA Carajás (97) MN814170 657 Chiroderma villosum VCT 6305/UFMG* Brazil: Pará, FLONA Carajás (97) MN814171 657 Chiroderma villosum VCT 427/UFMG Brazil: Pará, FLONA Saraca-Taquera (104) MN814169 657 Chiroderma villosum MPEG 44231 Brazil: Pará, Juruti MN814142 657 Chiroderma villosum VCT 4394/UFMG* Brazil: Pará, Projeto Alemão (107) MN814140 657 Chiroderma villosum HLN 357/UFPB 10333* Brazil: Paraíba, João Pessoa (113) MN814154 657 Chiroderma villosum HLN 381/UFPB 10335* Brazil: Paraíba, João Pessoa (113) MN814155 620 Chiroderma villosum HLN 384/UFPB 10336* Brazil: Paraíba, João Pessoa (113) MN814156 657 Chiroderma villosum CCA 1764/MZUSP Brazil: Rondônia, Porto Velho (135) MN814122 657 Chiroderma villosum CCA 2311/MZUSP Brazil: Rondônia, Porto Velho (135) MN814146 657 Chiroderma villosum ROM 101245 El Salvador: Ahuachapan, El Imposible (207) JF446499 657 Chiroderma villosum ROM 104448 Ecuador: Napo, Parque Nacional Yasuní (201) JF448818 657 Chiroderma villosum ROM 104540 Ecuador: Napo, Parque Nacional Yasuní (201) JF448829 657 Chiroderma villosum ROM 104541 Ecuador: Napo, Parque Nacional Yasuní (201) JF448814 657 Chiroderma villosum ROM 104549 Ecuador: Napo, Parque Nacional Yasuní (201) JF448828 657 Chiroderma villosum ROM 105244 Ecuador: Napo, Parque Nacional Yasuní (201) JF448815 657 ......continued on the next page SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) TABLE S1. (Continued) Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma villosum ROM 105254 Ecuador: Napo, Parque Nacional Yasuní (201) JF448816 657 Chiroderma villosum ROM 105267 Ecuador: Napo, Parque Nacional Yasuní (201) JF448826 657 Chiroderma villosum ROM 105361 Ecuador: Napo, Parque Nacional Yasuní (201) JF448825 657 Chiroderma villosum ROM 105540 Ecuador: Napo, Parque Nacional Yasuní (201) JF448824 657 Chiroderma villosum ROM 105587 Ecuador: Napo, Parque Nacional Yasuní (201) JF448830 657 Chiroderma villosum ROM 105719 Ecuador: Napo, Parque Nacional Yasuní (201) JF448822 657 Chiroderma villosum ROM 105720 Ecuador: Napo, Parque Nacional Yasuní (201) JF448821 657 Chiroderma villosum ROM 105721 Ecuador: Napo, Parque Nacional Yasuní (201) JF448820 657 Chiroderma villosum ROM 105928 Ecuador: Napo, Parque Nacional Yasuní (201) JF448817 657 Chiroderma villosum ROM 105968 Ecuador: Napo, Parque Nacional Yasuní (201) JF448819 657 Chiroderma villosum ROM F37400 Ecuador: Napo, Parque Nacional Yasuní (201) JF448827 657 Chiroderma villosum ROM F37774 Ecuador: Napo, Parque Nacional Yasuní (201) JF448823 656 Chiroderma villosum F38952 Guyana: Potaro-Siparuni, Iwokrama (222) MN714886 657 Chiroderma villosum F58617/ROM 122481 Guyana: Potaro-Siparuni, Sandstone MN714884 657 Chiroderma villosum F58849/ROM 125179 Guyana: East Berbice-Corentyne, Berbice River Camp MN714885 657 French Guiana KU295490 579 Chiroderma villosum ALP 151/AMNH 268535* French Guiana: Paracou (212) MN814096 657 Chiroderma villosum ALP 19/AMNH 268533 French Guiana: Paracou (212) MN814095 657 Chiroderma villosum ROM 98850* Guyana: Barima-Waini, Santa Cruz (217) JF454563 654 Chiroderma villosum ROM 108203 Guyana: Cuyuni-Mazaruni, Namai Creek (221) JF454565 657 Chiroderma villosum ROM 108219 Guyana: Cuyuni-Mazaruni, Namai Creek (221) JF454564 657 Chiroderma villosum ROM 107111 Guyana: Potaro-Siparuni, Iwokrama (222) EF080290 657 Chiroderma villosum ROM 107394 Guyana: Potaro-Siparuni, Iwokrama (222) EF080292 657 Chiroderma villosum ROM 111628 Guyana: Potaro-Siparuni, Kabocalli EF080293 657 Chiroderma villosum ROM 107112 Guyana: Potaro-Siparuni, Iwokrama (222) EF080291 657 Chiroderma villosum ROM 108764 Guyana: Potaro-Siparuni, Iwokrama (222) JF454571 657 Chiroderma villosum ROM 108765 Guyana: Potaro-Siparuni, Iwokrama (222) JF45457 657 Chiroderma villosum ROM 108843 Guyana: Potaro-Siparuni, Iwokrama (222) EF080289 657 Chiroderma villosum ROM 108998 Guyana: Potaro-Siparuni, Iwokrama (222) JF454573 657 Chiroderma villosum Zootaxa 4846 (1) © 2020 Magnolia Press · 85 ......continued on the next page 86 · Zootaxa 4846 (1) © 2020 Magnolia Press TABLE S1. (Continued) GARBINO ET AL. Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma villosum ROM 109138 Guyana: Potaro-Siparuni, Iwokrama (222) JF454572 657 Chiroderma villosum ROM 109175 Guyana: Potaro-Siparuni, Iwokrama (222) JF454569 657 Chiroderma villosum ROM 109221 Guyana: Potaro-Siparuni, Iwokrama (222) JF454568 657 Chiroderma villosum ROM 109270 Guyana: Potaro-Siparuni, Iwokrama (222) JF454567 657 Chiroderma villosum ROM 109307 Guyana: Potaro-Siparuni, Iwokrama (222) JF454583 657 Chiroderma villosum ROM 109308 Guyana: Potaro-Siparuni, Iwokrama (222) JF454582 651 Chiroderma villosum ROM 109337 Guyana: Potaro-Siparuni, Iwokrama (222) JF454581 657 Chiroderma villosum ROM 111629 Guyana: Potaro-Siparuni, Iwokrama (222) JF459119 657 Chiroderma villosum ROM 111754 Guyana: Potaro-Siparuni, Iwokrama (222) JF454580 657 Chiroderma villosum ROM 111768 Guyana: Potaro-Siparuni, Iwokrama (222) JF454579 657 Chiroderma villosum ROM 111769 Guyana: Potaro-Siparuni, Iwokrama (222) JF454578 657 Chiroderma villosum ROM 111770 Guyana: Potaro-Siparuni, Iwokrama (222) JF454577 657 Chiroderma villosum ROM 111788 Guyana: Potaro-Siparuni, Iwokrama (222) JF454576 657 Chiroderma villosum ROM 111836 Guyana: Potaro-Siparuni, Iwokrama (222) JF454575 657 Chiroderma villosum ROM 111845 Guyana: Potaro-Siparuni, Iwokrama (222) JF454574 657 Chiroderma villosum ROM 119167 Guyana: Upper Takutu-Upper Essequibo, 2 Km W Unabaiton MN714883 657 Chiroderma villosum ROM 119230 Guyana: Upper Takutu-Upper Essequibo, 2 Km W Unabaiton JF454586 656 Chiroderma villosum ROM 106644 Guyana: Upper Takutu-Upper Essequibo, Chodikar River JF454566 657 Chiroderma villosum ROM 103214 Guyana: Upper Takutu-Upper Essequibo, Surama JF454584 657 Chiroderma villosum ROM 103331 Guyana: Upper Takutu-Upper Essequibo, Surama JF454585 657 Chiroderma villosum TK 40390/TTU 61154 Honduras: Valle, San Lorenzo (231) MN814084 657 Chiroderma villosum ROM 96536 México: Campeche, X-Canh (232) JF448018 656 Chiroderma villosum ROM FN30654 México: Campeche, X-Canh (232) JF447242 657 Chiroderma villosum TN 1193/MZFC-M 6584 México: Oaxaca, Santa María Chimalapa (252) MN814117 657 Chiroderma villosum TN 1267/MZFC-M 6585 México: Oaxaca, Santa María Chimalapa (252) MN814118 657 Chiroderma villosum TN 1276/MZFC-M 6586 México: Oaxaca, Santa María Chimalapa (252) MN814119 657 Chiroderma villosum MSB 82212 México: Veracruz, Palma de Abajo (256) MN814188 657 Chiroderma villosum MSB 311732 Panamá: Darién, Meteti (272) MN814189 657 Chiroderma villosum ROM 104352 Panamá: Darién, P.N. Darién (273) JF447405 657 ......continued on the next page SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) TABLE S1. (Continued) Zootaxa 4846 (1) © 2020 Magnolia Press · Taxon Tissue/Collection Numbers Locality GenBank bp Chiroderma villosum ROM F38210 Panamá: Darién, P.N. Darién (273) JF447406 657 Chiroderma villosum F53875/ROM 122165 Perú: Loreto MN714890 657 Chiroderma villosum F53970/ROM 122260 Perú: Loreto MN714891 657 Chiroderma villosum M 1750/LSUMZ Perú: Loreto MN814110 657 Chiroderma villosum M 1764/LSUMZ Perú: Loreto MN814111 657 Chiroderma villosum ES 6/FMNH 174651 Perú: Madre de Dios, Maskoitania (323) MN814101 657 Chiroderma villosum F58726/ ROM 125567 Perú: Tumbes, Quebrada Huapala MN714892 657 Chiroderma villosum F 63200/ROM 126174 Suriname: Para, Sabajo MN714899 657 Chiroderma villosum F52886/ROM 120098 Suriname: Sipaliwini, Kushere Landing (357) MN714895 657 Chiroderma villosum F53142/ROM 120354 Suriname: Sipaliwini, Iconja Landing MN714896 657 Chiroderma villosum F53740/ROM 121027 Suriname: Sipaliwini, Merian MN714897 657 Chiroderma villosum F54366/ROM 117003 Suriname: Sipaliwini, Bakhuis MN714894 657 Chiroderma villosum F58031/ROM 121117 Suriname: Sipaliwini, Upper Palumeu River MN714898 657 Chiroderma villosum ROM 114212 Suriname: Brokopondo, Brownsberg Nature Park (356) JF447630 657 Chiroderma villosum ROM 114228 Suriname: Brokopondo, Brownsberg Nature Park (356) JF447631 657 Chiroderma villosum ROM 117119 Suriname: Sipaliwini, Bakhuis JF447629 657 Chiroderma villosum ROM 117375 Suriname: Sipaliwini, Bakhuis EU096697 657 Chiroderma villosum ROM 120364 Suriname: Sipaliwini, Iconja Landing HQ919717 657 Chiroderma villosum ROM 120226 Suriname: Sipaliwini, Kushere Landing (357) HQ545679 657 Chiroderma villosum ROM 120239 Suriname: Sipaliwini, Kushere Landing (357) HQ545445 657 Chiroderma villosum ROM 120240 Suriname: Sipaliwini, Kushere Landing (357) HQ545446 657 Chiroderma villosum TK 25205/TTU 44084 Trinidad: St. George, Simla Research Center MN814093 657 Chiroderma villosum F 43045 Venezuela: Amazonas MN814109 657 Mesophylla macconnelli ROM 106072 Ecuador: Napo, Parque Nacional Yasuní (201) JF448922 657 Vampyressa pusilla ROM 111095 Brazil: São Paulo, Caetetus JF448148 657 Vampyriscus bidens ROM 100964 Guyana: Barima-Waini, Baramita JF456128 657 Vampyriscus bidens ROM 107204 Guyana: Potaro-Siparuni, Iwokrama (222) JF456109 657 Vampyriscus brocki ROM 114235 Suriname: Brokopondo, Brownsberg Nature Park JF447754 657 Vampyriscus brocki ROM 117364 Suriname: Sipaliwini, Bakhuis EU097069 657 87 APPENDIX 3 We present below the results of three phylogenetic analyses of Chiroderma (Figs. S2, S3, and S4) using distinct algorithms and datasets. FIGURE S2. Tree obtained from the maximum likelihood phylogenetic analysis of Chiroderma inferred from partial sequences of the mitochondrial gene cytochrome c oxidase subunit 1 (COI). Pie charts on the nodes indicate the support values (UltraFast Bootstrap), where the completely gray circle corresponds to 100%. 88 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. FIGURE S3. Tree obtained from the maximum likelihood phylogenetic analysis of Chiroderma using three concatenated genes. COI = cytochrome c oxidase subunit 1, RAG2 = recombination activating gene 2, DBY = DEAD box RNA helicase Y. Pie charts on the nodes indicate branch support values (UltraFast Bootstrap), where the completely gray circle indicates 100%. Support. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 89 FIGURE S4. Chiroderma phylogeny obtained from the Bayesian inference analysis of partial sequences of cytochrome c oxidase subunit 1, cytochrome b, recombination-activating gene 2, and DEAD box RNA helicase Y. The MCC (Maximum Clade Credibility) tree summarizes 15,002 molecular phylogenies. The pie charts at the nodes show the posterior probability (PP), with the full circle indicating PP = 1. 90 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. APPENDIX 4. Results of the sexual dimorphism analyses in Chiroderma. FIGURE S5. Dice-Leeras diagrams showing 95% of the confidence interval of the first component (PC1) from an analysis of 13 cranio-dental measurements of male and female Chiroderma (C. salvini, C. scopaeum, C. trinitatum, C. gorgasi and C. d. doriae) from the same area. M = male; F = female. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) Zootaxa 4846 (1) © 2020 Magnolia Press · 91 FIGURE S6. Dice-Leeras diagrams showing 95% of the confidence interval of the first component (PC1) from an analysis of 13 cranio-dental measurements of male and female Chiroderma villosum from three distinct regions. M = male; F = female. 92 · Zootaxa 4846 (1) © 2020 Magnolia Press GARBINO ET AL. SYSTEMATICS OF CHIRODERMA (PHYLLOSTOMIDAE) APPENDIX 5. Correlations between climatic variables and size in Chiroderma doriae. Table of Pearson correlation values between each pair of climatic variables and the first principal component (PC1), extracted from an analysis of 13 cranio-dental variables. Climatic variables were extracted from Worldclim (https://www.worldclim.org/bioclim). Values in bold indicate statistically significant correlations (p < 0.01). PC1 Latitude BIO1 BIO2 BIO3 BIO4 BIO5 BIO6 BIO7 BIO8 BIO9 BIO10 BIO11 BIO12 BIO13 BIO14 BIO15 BIO16 BIO17 BIO18 BIO19 PC1 Latitude 0.815 BIO1 -0.529 -0.645 BIO2 0.123 0.286 -0.341 BIO3 -0.594 -0.736 0.490 0.249 BIO4 0.770 0.947 -0.626 0.361 -0.762 BIO5 -0.429 -0.397 0.816 0.103 0.334 BIO6 -0.571 -0.696 0.874 -0.704 0.307 BIO7 0.436 0.665 -0.591 0.866 -0.270 -0.709 0.540 -0.269 0.751 -0.069 -0.857 BIO8 -0.099 -0.146 0.768 -0.230 0.004 -0.114 0.789 0.582 -0.229 BIO9 -0.659 -0.801 0.931 -0.446 0.605 -0.811 0.624 0.920 -0.755 0.508 BIO10 -0.372 -0.431 0.926 -0.402 0.158 -0.365 0.847 0.816 -0.480 0.899 0.769 BIO11 -0.649 -0.768 0.964 -0.417 0.576 -0.783 0.699 0.925 -0.711 0.621 0.983 BIO12 0.307 0.060 -0.117 -0.459 -0.425 0.037 -0.254 0.052 -0.240 0.082 -0.145 0.019 BIO13 −0.218 -0.398 0.019 0.022 BIO14 0.445 0.502 −0.194* -0.555 -0.799 0.495 * 0.313 -0.397 -0.059 0.003 -0.296 0.043 -0.144 -0.170 0.119 0.829 -0.117 -0.276 0.076 -0.141 0.152 -0.131 0.507 0.084 -0.268 Zootaxa 4846 (1) © 2020 Magnolia Press · * 0.455 -0.414 BIO15 -0.402 -0.483 0.136 0.486 0.771 -0.457 0.169 -0.235 0.254 -0.142 0.205 -0.333 0.61 -0.891 BIO16 -0.127 -0.348 -0.024 0.003 0.240 -0.346 -0.104 -0.037 -0.124 -0.160 0.058 -0.130 0.029 0.612 0.978 -0.345 0.53 0.530 −0.185 -0.279 0.491 0.982 -0.887 BIO17 BIO18 0.500 0.861 0.940 -0.474 -0.643 BIO19 * Significant for p < 0.05. * -0.508 -0.787 0.518 -0.620 0.316 0.539 -0.765 0.123 -0.643 0.896 -0.075 0.084 -0.278 0.006 -0.100 0.191 -0.410 -0.707 0.646 -0.589 0.177* 0.774 * -0.292 0.085 -0.146 -0.772 -0.445 -0.825 0.286 0.641 0.533 -0.749 0.198 0.597 0.325 -0.396 * -0.311 −0.223 0.454 -0.373 -.154 0.501 0.117 0.289 -.204* .123 0.271 * -0.627 93