
Error Detection and Impact-Sensitive Instance Ranking in Noisy Datasets

Xingquan Zhu, Xindong Wu, and Ying Yang

Department of Computer Science, University of Vermont, Burlington VT 05405, USA
{xqzhu, xwu, yyang}@cs.uvm.edu

Abstract
Given a noisy dataset, how to locate erroneous instances and
attributes and rank suspicious instances based on their
impacts on the system performance is an interesting and
important research issue. We provide in this paper an Error
Detection and Impact-sensitive instance Ranking (EDIR)
mechanism to address this problem. Given a noisy dataset D,
we first train a benchmark classifier T from D. The instances,
that cannot be effectively classified by T are treated as
suspicious and forwarded to a subset S. For each attribute Ai,
we switch Ai and the class label C to train a classifier APi for
Ai. Given an instance Ik in S, we use APi and the benchmark
classifier T to locate the erroneous value of each attribute Ai.
To quantitatively rank instances in S, we define an impact
measure based on the Information-gain Ratio (IR). We
calculate IRi between attribute Ai and C, and use IRi as the
impact-sensitive weight of Ai. The sum of impact-sensitive
weights from all located erroneous attributes of Ik indicates
its total impact value. The experimental results demonstrate
the effectiveness of our strategies.

1. Introduction
The goal of inductive learning is to form generalizations from
training instances such that the classification accuracy on
previously unobserved instances is maximized. This maximum
accuracy is usually determined by two most important factors: (1)
the quality of the training data; and (2) the inductive bias of the
learning algorithm. Given a specific learning algorithm, it is
obvious that its classification accuracy depends vitally on the
quality of the training data. Basically, the quality of a real-world
dataset depends on a number of issues (Wang et al. 2001), but the
source of the data is a crucial factor. Data entry and acquisition are
inherently prone to errors. Unless an organization takes extreme
measures in an effort to avoid data errors the field error rates are
typically around 5% or more (Orr 1998; Maletic & Marcus 2000).

There have been many approaches for data preprocessing
(Maletic & Marcus 2000; Wang et al. 2001) and noise handling
(Bansal et al. 2000; Brodley & Friedl 1999; Gamberger et al.
1999; Kubica et al. 2003; Little & Rubin 1987; Liu et al. 2002;
Teng 1999; Wu 1995; Zhu et al. 2003) to enhance the data quality,
where the enhancement is achieved through noise elimination,
missing value prediction, or noisy value correction. Basically, a
general noise handling mechanism consists of three important
steps: (1) noisy instance identification; (2) erroneous attribute
detection; and (3) error treatment.

For errors introduced by missing attribute values, the first two
steps are trivial, because the instance itself will explicitly indicate
whether it contains noise or not (e.g, a “?” represents a missing
attribute value). Therefore, techniques for this type of attribute

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

noise handling mainly focus on predicting correct attribute values
(which is called imputation in statistics) by using a decision tree
(Shapiro 1987) or other mechanisms (Little & Rubin 1987). If an
instance contains an erroneous value, how to distinguish this error
becomes a challenging task, because such a noisy instance likely
acts as a new training example with valuable information. Teng
(1999) proposed a polishing mechanism to correct noisy attribute
values by training classifiers for each attribute. However, this
correcting procedure tends to introduce new noise when correcting
the “suspicious” attributes. A recent research effort from Kubica &
Moore (2003) employed probabilistic models to model noise and
data generation, in which the trained generative models are used to
detect suspicious instances in the dataset. A similar approach was
adopted in Schwarm & Wolfman (2000) where a Bayesian model
is adopted to identify erroneous attribute values. Unfortunately,
since real-word data rarely comply with any generative model,
these model-based methods still suffer from a common problem of
noise correction: introducing new errors during data correction.
Meanwhile, researchers from statistics have also put significant
efforts to locate and correct problematic attribute values. Among
various solutions from statistics, the Fellegi-Holt editing method
(Fellegi & Holt 1976) is the most representative one. To identify
and correct errors, this approach takes a set of edits as input, where
the edits indicate the rules that attribute values should comply
with. For example “age < 16” should not come with “Marital status
= Married”. The Fellegi-Holt method has the advantage that it
determines the minimal number of fields to change (located errors)
so that a record satisfies all edits in one pass through the data. This
approach has been extended to many editing systems, such as
SPEER at the Census Bureau (Greenberg & Petkunas 1990).
Unfortunately, the most challenging problem of the Fellegi-Holt
method is to find a set of good edits, which turns to be impossible
in many situations.

All methods above are efficient in their own scenarios, but
some important issues are still open. First of all, due to the fact that
noise correction may incur more troubles, such as ignoring outliers
or introducing new errors, the reliability of these “automatic”
mechanisms is questionable, especially when the users are very
serious with their data. On the other hand, for real-world datasets,
doing data cleansing "by hand" is completely out of the question
given the amount of human labor and time involved. Therefore, the
contradiction between them raises a new research issue: how to
rank instances’ impacts, so that given a certain amount of expenses
(e.g, processing time), the data manager can maximize the system
performance by putting priority on instances with higher impacts.

In this paper, we provide an error detection and impact-
sensitive instance ranking system to address this problem. Our
experimental results on real-world datasets will demonstrate the
effectiveness of our approach: with datasets from the UCI
repository (Blake & Merz 1998), at any noise level (even 50%),
our system shows significant effectiveness in locating erroneous
attributes and ranking suspicious instances.

378 LEARNING

2. Proposed Algorithms
Our EDIR system consists of two major steps: Error Detection and
Impact-sensitive Ranking. The system flowchart is depicted in Fig.
1, and the procedures are given in Figs. 2 and 3.
 Noisy Dataset

D
Suspicious Instances

Subset S
Erroneous Attribute

Detection

Calculate
Information-gain

Ratios

Impact-sensitive
Weight for Each

Attribute

Overall Impact Value
for Each Suspicious

Instance

Impact-sensitive
Ranking and

Recommendation

Impact-sensitive Ranking

Error Detection

Fig. 1. The flowchart of EDIR system

Procedure: EDIR ()
Input: Dataset D; Output: Ranked suspicious instances.
Parameter: K, # of maximal changes for one instance
(1). S ← φ; EA ← φ; IR ← φ
(2). Train benchmark classifier T from D.
(3). For each instance Ik in D
(4). If {!CorrectClassify(Ik, T) or !Cover(Ik, T)}
(5). S ← S ∪ {Ik}
(6). For each attribute Ai
(7). Calculate Information-gain Ratio (IRi) between Ai and C
(8). IR ← IR ∪ {IRi}
(9). Switch Ai and C to learn APi and rule set ARi
(10). Evaluate accuracy of each rule in ARi on D.
(11). For each instance Ik in S
(12). EAk ← φ; kVA ~ ← φ; kCV ← φ
(13). For each attribute Ai of Ik
(14). Calculate k

iVA ~ and confidence k
iCV from APi

(15). kVA ~ ← kVA ~ ∪ { k
iVA ~ }; kCV ← kCV ∪ { k

iCV }
(16). For (L=1; L<=K; L++)
(17). If {ErrorDetection(Ik, L, kVA ~ , kCV , T, &EAk)}
(18). EAk ← Located L erroneous attributes
(19). EA ← EA ∪ {EAk}
(20). Break
(21). ImpactSensitiveRanking (S, IR, EA) // see Section 2.2

Fig. 2. Error Detection and Impact-sensitive Ranking

Procedure: ErrorDetection (Ik, L, kVA ~ , kCV , T, &EAk)
(1). EAk ←φ; Ω [] ← φ ; ChgNum ← 0; Iteration ← 0; CV[] ← φ
(2). Do { ;,..;~;..,~

111
ℜ∈←←

LLL ii
k

i
k

i
k

i
k

i AAVAAVVAAV
 ∀ℜ∈≠≠Ω∉

jLL iiiii AAAAA ;..[];,..
11

(3). If {CorrectClassify (Ik, T)}
(4). },...,{][

1 Lii AAChgNum ←Ω

(5). CV [ChgNum]= k
i

k
i L

CVCV ++ ...
1

(6). ChgNum++
(7). Restore old values of

Lii AA ,...
1

; Iteration++;

(8). } while { Iteraction ≤ ()N
L }

(9). If {ChgNum = 0} Return (0)
(10). Else
(11). EAk ← Ω [l]; l=arg{max(CV [j]), j=1, 2.., ChgNum}
(12). Return (1)

Fig. 3. Erroneous attribute detection

2.1Error Detection
2.1.1 Suspicious Instance Subset Construction
Our first step of error detection is to construct a subset S to
separate suspicious instances from the dataset D. We first train a
benchmark classifier T from D, and then use T to evaluate each
instance in D. The subset S is constructed by using the following
criteria, as shown in steps (3) to (5) of Fig. 2.

1. If an instance Ik in D cannot be correctly classified by T,
we forward it to S.

2. If an instance Ik in D does not match any rule in T, we
forward it to S too.

The proposed mechanism relies on the benchmark classifier
(which is also imperfect) trained from the noisy dataset to explore
noisy instances. Our experimental analysis has suggested that
although the benchmark classifier is not perfect (actually we may
never learn a perfect classifier), it can still be relatively reliable to
detect some noisy instances.

2.1.2 Erroneous Attribute Detection
Given an instance Ik in S, assume Ik contains N attributes A1, A2,..,
AN and one class label C. Further assume each attribute Ai has Vi
possible values. We denote the aggregation of all attributes by ℜ .
To locate erroneous attributes from Ik (where an erroneous
attribute means the attribute has an incorrect value), we adopt an
Attribute Prediction (AP) mechanism, as shown in Figs. 2 and 3.

Basically, Attribute Prediction uses all other attributes A1,..
Aj,…AN (j ≠ i) and the class label C to train a classifier, APi, for Ai
(using instances in D). Given an instance Ik in S, we use APi to
predict the value of attribute Ai. Assume Ik’s current value of Ai is

k
iAV , and the predicted value from APi is k

iVA ~
. If k

iAV and
k

iVA ~
are different, it implies that Ai of Ik may possibly contain an

incorrect value. Then we use the benchmark classifier T (which is
relatively reliable in evaluating noisy instances) to determine
whether the predicted value from APi makes more sense: If we

change k
iAV to k

iVA ~
, and Ik can be correctly classified by T, it

will indicate that the change results in a better classification. We
therefore conclude that attribute Ai contains an erroneous value.
However, if the change still makes Ik incorrectly classified by T,
we will leave Ai unchanged and try to explore errors from other
attributes. If the prediction from each single attribute does not
conclude any error, we will start to revise multiple attribute values
at the same time. For example, change the values of two attributes
Ai (from k

iAV to k
iVA ~) and Aj (from k

jAV to k
jVA ~) at the

same time, and then evaluate whether the multiple changes make
sense to T. We can iteratively execute the same procedure until a
change makes Ik correctly classified by T. However, allowing too
many changes in one instance may actually have the error
detection algorithm make more mistakes. Currently, the EDIR
system allows to change up to K (K ≤ 3) attributes simultaneously
to locate errors. If all the changes above still make Ik incorrectly
resolved by T, we will leave Ik unprocessed.

With the proposed error detection algorithm, one important
issue should be resolved in advance: which attribute to select if
multiple attributes are found to contain errors.

Our solution in solving this problem is to maximize the
prediction confidence while locating the erroneous attributes, as
shown in Fig. 3. When learning APi for each attribute Ai, we use a
classification rule algorithm, e.g., C4.5rules, to learn an Attribute

LEARNING 379

prediction Rule set (ARi). Assuming the number of rules in ARi is
Mi, for each rule r

iAR , r=1,..Mi, in ARi, we evaluate its accuracy

(r
iAR) on dataset D. This accuracy will indicate the confidence

that r
iAR classifies the instance. In our system, we use C4.5rules

(Quinlan 1993) to learn the rule set ARi, so the accuracy value has
been provided with each learned rule.

When adopting the rule set ARi to predict the value of Ai, we
use the first hit mechanism (Quinlan 1993), which means we rank
the rules in ARi in advance, and classify instance Ik by its first
coved rule in ARi. Meanwhile, we also use the accuracy of the
selected rule as the confidence (k

iAC) of APi in predicting Ai of Ik.
Given an instance Ik, assume the predicted values for each

attribute are kVA 1
~ , .., k

NVA ~ respectively, with the confidences for

each of them denoted by k
N

k ACAC ,..,1 . We first set L to 1 to
locate an erroneous attribute by using Eq. (1). If this procedure
does not find any erroneous attribute, we increase the value of L by
1 and repeat the same procedure, until we find erroneous attributes
or L reaches the maximal allowable changes for one instance (K).

}1),~,.,~(};{max{arg};,.,{
;..;}.,,.{

,..,
11

1
1

1

∀ℜ∈≠≠ℜ∈

== ∑
jiLjLijii

Ll
L

L

AiiiAAA

k
i

k
i

L

l

k
i

ii
iik TVAVAssifyCorrectClaACAAEA

 (1)

2.1.3 Validity Analysis
Our algorithm above switches each attribute Ai and class C to learn
an APi classifier, then uses APi to locate erroneous attributes.
There are two possible concerns with the algorithm: (1) switching
Ai and C to learn classifier APi does not make much sense to many
learning algorithms, because attribute Ai may have very little
correlation with other attributes (or not at all); and (2) when the
prediction accuracy from APi is relative low (e.g., less than 50%),
does the algorithm still work? Our experimental results in Section
3 will indicate that even the prediction accuracy from all APi
classifiers are relatively low, the proposed algorithm can still
provide good results.

As we can see from Fig. 3, the prediction from each APi
classifier just provides a guide for the benchmark classifier T to
evaluate whether a change makes the classification better or not.
The prediction from APi won’t be adopted unless T agrees that the
value predicted by APi will make the instance correctly classified.
In other words, the proposed mechanism relies more on T than on
any APi. Even if the prediction accuracy from APi is 100%, we
won’t take its prediction unless it gets the support from T.
Therefore, a low prediction accuracy from APi does not have much
influence with the proposed algorithm. However, we obviously
prefer a high prediction accuracy from each APi. Then the question
comes to how good APi could be with a normal dataset? Actually,
the performance of APi is inherently determined by correlations
among attributes. It is obvious that if all attributes are independent
(or conditionally independent given the class C), the accuracy of
APi could be very low, because no attribute could be used to
predict Ai. However, it has often been pointed out that this
assumption is a gross over-simplification in reality, and the truth is
that the correlations among attributes extensively exist (Freitas
2001; Shapiro 1987). Instead of taking the assumption of
conditional independence, we take the benefits of interactions
among attributes, as well as between the attributes and class. Just
as we can predict the class C by using the existing attribute values,
we can turn the process around and use the class and some
attributes to predict the value of another attribute. Therefore, the

average accuracy of APi classifiers from a normal dataset usually
maintains a reasonable level, as shown in Tab. 1.

2.2 Impact-sensit ive Ranking
To rank suspicious instances by their impacts on the system
performance, we define an impact measure based on the
Information-gain Ratio (IR). We first calculate IR between each
attribute Ai and class C, and take this value as the impact-sensitive
weight (IW) for Ai. The impact value for each suspicious instance
Ik, Impact(Ik), is then defined by Eq. (2), which is the sum of the
impact-sensitive weights of all located erroneous attributes in Ik,





==∑
= otherwise

errorcontainsAIfIR
IAIWIAIWImpactI ii

ki

N

i
kik 0

;
),(;),()(

1

 (2)

The Information-gain Ratio (IR) is one of the most popular
correlation measures used in data mining. It was developed from
information gain (IG) which was initially used to evaluate the
mutual information between an attribute and the class (Hunt et al.
1966). The recent development from Quinlan (1986) has extended
IG to IR to remove the bias caused by the number of attribute
values. Since then, IR has become very popular in constructing
decision trees or exploring correlations. Due to the space limit of
the paper, we omit the technique on calculating IR. Interested
readers may refer to Quinlan (1986; 1993) for details.

With Eq. (2), instances in S can be ranked by their Impact(Ik)
values. Given a dataset with N attributes, the number of different
impact values of the whole dataset D is determined by Eq. (3), if
we allow the maximal number of changes for one instance to be K.
For example, a dataset D with N=6 and K=3 will have NC(D) equal
to 41. It seems that NC(D) is not large enough to distinguish each
suspicious instance, if the number of suspicious instance in D is
larger than 41 (which is likely a normal case). However, in reality,
we usually work on a bunch of suspicious instances rather than a
single one to enhance the data quality. Therefore it may not be
necessary to distinguish the quality of each instance, but to assign
suspicious instances into various quality levels. Given the above
example, we can separate its suspicious instances into 41 quality
levels. From this point of view, it’s obvious that this number is
large enough to evaluate the quality of instances in S.

∑
=









=

K

l l
N

DNC
1

)((3)

3. Experimental Evaluations
3.1 Experiment Settings
The majority of our experiments use C4.5, a program for inducing
decision trees (Quinlan 1993). To construct the benchmark
classifier T and APi classifiers, C4.5rules (Quinlan 1993) is
adopted in our system. We have evaluated our algorithms
extensively on datasets collected from the UCI data repository
(Blake & Merz 1998). Due to the size restrictions, we will mainly
report the results on two representative datasets: Monks-3 and Car,
because these two datasets have relatively low attribute prediction
accuracies, as shown in Tab. 1. If our algorithms achieve good
results on these two datasets, they can possibly have good
performances on most real-world datasets. In Tab. 1, ATi
represents the average prediction accuracy for attribute Ai (from
APi). For Soybean, Krvskp and Mushroom datasets, we only show
the results of the first six attributes. We also report summarized
results from these three datasets in Tab. 5.

For most of the datasets that we used, they don’t actually
contain much noise, so we use manual mechanisms to add attribute

380 LEARNING

noise, where error values are introduced into each attribute with a
level x⋅100%, and the error corruption for each attribute is
independent. To corrupt each attribute Ai with a noise level
x⋅100%, the value of Ai is assigned a random value approximately
x⋅100% of the time, with each alternative value being
approximately equally likely to be selected. With this scheme, the
actual percentage of noise is always lower than the theoretical
noise level, as sometimes the random assignment would pick the
original value. Note that, however, even if we exclude the original
value from the random assignment, the extent of the effect of noise
is still not uniform across all components. Rather, it is dependent
on the number of possible values in the attribute. As the noise is
evenly distributed among all values, this would have a smaller
effect on attributes with a larger number of possible values than
those attributes that have only two possible values (Teng 1999). In
all figures and tables below, we only show the noise corruption
level x⋅100%, but not the actual noise level in each dataset.

Tab. 1. The average prediction accuracy for each attribute

DataSet AT1(%) AT2(%) AT3(%) AT4(%) AT5(%) AT6(%)

Monks-3 45.02 57.08 54.31 37.52 45.82 49.55
Car 36.48 35.47 27.68 49.57 41.24 56.5

Soybean 55.38 95.66 94.9 86.35 96.58 54.67
Krvskp 97.74 98.63 99.17 95.59 85.92 78.98

Mushroom 46.28 55.77 44.76 100 81.25 99.79

3.2 Suspicious Subset Construction
To evaluate the performance of the suspicious subset (S)
construction, we need to assess the noise level in S. Intuitively, the
noise level in S should be higher than the noise level in D,
otherwise the existence of S becomes useless. Also, the size of S
should be reasonable (not too large or too small), because a subset
with only several instances has a very limited contribution in
locating erroneous attributes, even if all instances in S are noise.
To this end, we provide the following measures: (1) S/D, which is
the ratio between the sizes of S and D; (2) I_S and I_D, which are
the instance-based noise levels in S and D, as defined by Eq. (4);
and (3) Ai_S and Ai_D, which represent the noise levels for
attribute Ai in S and D, as defined by Eq. (5).

I_X= # erroneous instances in X / # instances in X (4)

Ai_X= # instances in X with error in Ai / # instances in X (5)
We have evaluated our suspicious subset construction at

different noise levels and provided the results in Tab. 2. Basically,
the results indicate that in terms of S/D, the proposed algorithm in
Section 2.1 has constructed a suspicious subset with a reasonable
size. When the noise level increases from 10% to 50%, the size of

S also proportionately increases (from 14.17% to 41.07% for the
Car dataset), as we have anticipated. If we take a look at the third
column with instance-based noise, we can find that the noise level
in S is always higher than the noise level in D. For the Car dataset,
when the noise corruption level is 10%, the noise level in S is
about 30% higher than the noise level in D. With Monks-3, the
noise level in S is significantly higher than D. It indicates that with
the proposed approach, we can construct a reasonable size of the
subset concentrating on noisy instances for further investigation.

The above observations conclude the effectiveness of the
proposed approach, but it’s still not clear whether S equally
captures noise from all attributes or more focuses on some of them.
We therefore evaluate the noise level on each attribute, which is
shown from columns 5 to 10 in Tab. 2. As we can see, most of the
time, the attribute noise level in S (Ai_S) is higher than the noise
level in D (Ai_D), which means the algorithm has a good
performance on most attributes. However, the algorithm also
shows a significant difference in capturing noise from different
attributes. For example, the noise level on attributes 2 and 5 in
Monks-3 (in S) is much higher than the attribute noise level in the
original dataset D. The reason is that these attributes have
significant contributions in constructing the classifier, hence the
benchmark classifier T is more sensitive to errors in these
attributes. This is actually helpful for us to locate erroneous
attributes: if noise in some attributes has less impact with the
system performance, we can simply ignore them or put less effort
on them.

3.3 Erroneous Attribute Detection
To evaluate the performance of our erroneous attribute detection
algorithm, we define the following three measures: Error detection
Recall (ER), Error detection Precision (EP), and Error detection
Recall for each Attribute (ERAi). Their definitions are given in Eq.
(6), where ni, pi and di represent the number of actual errors, the
number of correctly located errors and the number of located errors
in Ai respectively.

i

i
i

N

i
i n

pERAERAER ==∑
=

,
1

;
i

i
i

N

i
i d

pEPAEPAEP ==∑
=

,
1

 (6)

We provide the results in Tab. 3, which are evaluated at three
noise levels (from 10% to 50%). As we can see from the third
column (EP) of Tab. 3, the overall error detection precision is
pretty attractive, even with the datasets (Monks-3 and Car) that
have low attribute prediction accuracies. On average, the precision
is maintained at 70%, which means most located erroneous
attributes actually contain errors. We have also provided the
experimental results from other three datasets in Tab. 5. All these
results prove the reliability of the proposed error detection
algorithm.

Tab. 2. Suspicious subset construction results

Instance Noise AT1 Noise AT2 Noise AT3 Noise AT4 Noise AT5 Noise AT6 Noise Dataset Noise
Level S/D

I_D I_S A1_D A1_S A2_D A2_S A3_D A3_S A4_D A4_S A5_D A5_S A6_D A6_S
10% 6.29 32.41 97.09 6.04 6.71 6.45 44.85 4.58 5.21 6.43 9.96 7.49 54.92 5.62 5.34
30% 17.14 71.06 94.78 20.22 20.95 20.33 51.46 14.94 15.83 20.75 22.29 21.63 49.2 14.73 16.02 Monks-

3
50% 33.42 89.45 95.68 32.61 33.18 33.52 54.36 25.3 25.74 33.07 33.72 38.11 53.25 24.8 25.27
10% 14.17 36.3 64.14 7.51 14.25 7.73 14.15 7.86 8.65 6.87 16.85 6.72 9.75 6.66 18.6
30% 33.71 76.32 85.97 22.71 26.78 22.75 26.35 22.52 22.69 19.95 28.47 20.56 21.21 20.02 29.78 Car
50% 41.07 92.06 96.61 36.82 39.45 36.42 38.67 37.65 37.27 33.29 40.71 32.56 34.64 33.52 42.79

LEARNING 381

Obviously, having a high precision is only a partial advantage
of the algorithm. A system that predicts only one error is likely
useless, even if its precision is 100%. We therefore evaluate the
error detection recall (ER), as shown on columns 4 to 10 in Tab. 3.
On average, the algorithm can locate about 10% of errors.
Meanwhile, for different attributes, the ERAi values vary
significantly. For example, when the noise level is 30%, the ERA1
for Monks-3 is about 5.4% which is much less than the value
(about 24%) of attribute 2. If we go further to analyze the
correlations between attributes and the class, we can find that the
proposed algorithm actually has a good performance in locating
errors for some important attributes. For example, among all
attributes in Monks-3, attribute 2 has the highest correlation with
class C, and its recall value (ERA2) also turns out to be the highest.

Just looking at the ER values may make us worry that the
algorithm has missed too much noise (90% of errors). We’d like to
remind the readers that from the data correction point of view,
having a higher precision is usually more important, because an
algorithm should avoid introducing more errors when locating or
correcting existing errors. Actually, the 10% located errors likely
bring more troubles than others (because they obviously cannot be
handled by the benchmark classifier T). Our experimental results in
the next subsection will indicate that correcting this part of the
errors will improve the system performance significantly.

Tab. 3. Erroneous attribute detection results

Data
Set

Noise
Level EP ER ERA1 ERA2 ERA3 ERA4 ERA5 ERA6

10% 84.61 7.18 0.68 24.08 0.94 1.07 15.22 1.08
30% 77.08 11.36 5.41 24.01 4.34 6.09 20.9 7.45 Mon

ks-3 50% 80.58 10.54 5.61 22.21 6.35 6.17 16.58 6.57
10% 65.84 11.35 7.31 6.91 3.43 21.91 4.85 23.69
30% 71.43 11.17 8.25 7.58 4.56 21.5 6.18 18.97Car
50% 73.29 8.55 6.05 6.2 5.78 14.11 5.54 13.62

3.4 Impact-sensitive Instance Ranking
We evaluate the performance of the proposed impact-sensitive
instance ranking mechanism in Section 2.2 from three aspects:
training accuracy, test accuracy and the size of the constructed
decision tree. Obviously, it’s hard to evaluate the ranking quality
instance by instance, because one instance likely does not impact
too much with the system performance. We therefore separate the
ranked instances into three tiers, each tier consisting of 30% of
instances from the top to the bottom of the ranking. Intuitively,
correcting instances in the first tier will produce a bigger
improvement than correcting instances in any of the other two
tiers, because instances in the first tier have more negative impacts
(with relatively larger impact values), so does the second tier to the
third tier. Accordingly, we manually correct the instances in each

tier (because we know which instance was corrupted, the manual
correction has a 100% accuracy), and compare the system
performances on the corrected dataset and the original dataset.

We evaluate the system performance at three noise levels and
provide results in Tab. 4, where “Org” means the performance
(training, test accuracy and tree size) from the original dataset (D),
and “Fst”, “Snd” and “Thd” indicate the performance of only
correcting instances in the first, second and third tier respectively.

From Tab. 4, we can find that at any noise level, correcting
instances in the first tier always results in a better performance
than correcting instances in any of the other two tiers, so does the
second tier to the third tier. For example, with the Car dataset at
30% noise level, correcting instances at the first tier will achieve
0.7% and 2.3% more improvements with the test accuracy than
correcting instances in the second and third tiers. In terms of the
decision tree size, the improvement is even more significant. It
proves that our system provides an effective way to automatically
locate errors, and rank them by their negative impacts (danger
levels). So we can put more emphasis on instances in the top tier
than those in the bottom tier.

When comparing the performances from each tier with the
performance from the original dataset, we find that correcting
recommended instances has a significant improvement, especially
when the noise level goes higher. For example, with the Car
dataset at 30% noise level, correcting instances at any tier will
contribute a 2.1% (or more) improvement with the test accuracy.
This also proves the effectiveness of our EDIR system in
enhancing the data quality, even in high noise-level environments.

When using EDIR as a whole system for noise detection and
data correction, we’d like to know its performance in comparison
with other approaches, such as random sampling. We therefore
perform the following experiments. Given a dataset D, we use
EDIR to recommend α% of instances in D for correction. For
comparison, we also randomly sample α% of instances in D for
correction. We compare the test accuracies from these two
mechanisms (because the comparison of the test accuracies is
likely more objective), and report the results in Fig. 4 (b) to Fig. 4
(g), where “Org”, “EDIR” and “Rand” represent the performances
from the original dataset, the corrected dataset by EDIR and the
random sampling mechanism respectively. We have evaluated the
results by setting α⋅100% to four levels: 5%, 10%, 15% and 20%.
In Tab. 5, we provide summarized results from other three datasets
by setting α⋅100% to 5%. The results from Fig. 4 indicate that
when the value of α increases, the performances of EDIR and
Rand both get better. This does not surprise us, because when
recommending more and more instances for correction, we actually
lower the overall noise level in the dataset, therefore better
performances could be achieved. However, the interesting point is
that when comparing “EDIR” and “Rand”, we can find that EDIR
always has a better performance than Rand.

Tab. 4. Impact-sensitive instance ranking results

Training Accuracy (%) Test Accuracy (%) Tree Size
DataSet Noise

Level Org Fst Snd Thd Org Fst Snd Thd Org Fnt Sed Thd
10% 94.31 96.27 95.9 95.48 97.45 98.94 98.52 98.13 29.2 26.1 27.8 28.6
30% 86.44 90.23 89.98 89.07 88.06 92.17 91.58 91.37 76.1 60.8 63.3 66.1 Monks-

3 50% 81.73 86.37 85.84 84.96 76.09 82.64 82.01 81.09 112.8 93.9 101.5 107.6
10% 90.25 92.73 92.2 91.86 87.77 90.44 89.62 89.04 250.2 215.8 225.6 232.5
30% 83.77 86.9 86.32 86.14 76.77 80.98 80.21 78.69 394.1 363.3 375.2 391.3 Car
50% 80.76 83.51 82.8 82.09 69.37 74.59 73.18 72.66 463.7 415.2 429.4 437

382 LEARNING

Actually, most of the time, the results from EDIR by
recommending 5% of instances are still better than using Rand to
recommend 20% of instances. For example, when EDIR
recommends 5% of instances for correction, the test accuracy for
the Car dataset at 10% noise level is 88.51%, which is still better
than the results (88.11%) of using Rand to recommend 20% of
instances. The same conclusion can be drawn from most other
datasets. It indicates that EDIR has a significantly good
performance in locating and recommending suspicious instances
to enhance the data quality.

87

89

91

93

95

0.05 0.1 0.15 0.2

Test Acc. Org Test Acc. EDIR Test Acc. Rand

(a) Meaning of each curve in Fig. 4 (b) to Fig. 4 (g)

97

98

99

100

0.05 0.1 0.15 0.2

85

87

89

91

93

0.05 0.1 0.15 0.2

75

77

79

81

83

85

0.05 0.1 0.15 0.2

 (b) Monks-3 (10%) (c) Monks-3 (30%) (d) Monks-3 (50%)

87

88

89

90

91

92

0.05 0.1 0.15 0.2

76

78

80

82

0.05 0.1 0.15 0.2

70

71

72

73

74

75

76

0.05 0.1 0.15 0.2

 (e) Car (10%) (f) Car (30%) (g) Car (50%)

Fig. 4. Experimental comparisons of EDIR and random sampling
approaches from three noise levels: 10%, 30% and 50%

In Figs. 4 (b) to (g), the x-axis denotes the percentage of
recommended data (α) and the y-axis represents the test accuracy.

Tab. 5. Experimental summary from other three datasets (α=0.05)

Test Accuracy Tree Size Data
Set

Noise
Level EP ER

Org EDIR Rand Org EDIR Rand
10% 88.51 10.4 86.23 86.99 86.23 424.7 407.2 418.9
30% 87.23 12.66 76.18 77.14 76.25 496.8 485.3 497.1Soyb

ean 50% 84.17 9.42 57.44 61.64 58.09 532.1 526 532.8
10% 76.57 10.56 95.22 96.78 95.89 500.2 379.5 466.4
30% 72.33 8.69 80.23 85.94 82.66 986.8 887.1 964 Krvs

kp 50% 71.08 6.83 67.65 79.41 70.78 1096 998.3 1072
10% 90.28 9.79 99.89 100 99.97 545 322 529
30% 84.33 7.48 99.21 99.97 99.32 1644 1126 1620Mush

room 50% 81.49 7.04 98.32 99.82 99.11 3060 2383 2935

4. Conclusions
In this paper, we have presented an EDIR system, which
automatically locates erroneous instances and attributes and ranks
suspicious instances according to their impact values. The
experimental results have demonstrated the effectiveness of our
proposed algorithms for error detection and impact-sensitive
ranking. By adopting the proposed EDIR system, correcting the
instances with higher ranks always results in a better performance
than correcting those with lower ranks. The novel features that

distinguish our work from existing approaches are threefold: (1)
we provided an error detection algorithm for both instances and
attributes; (2) we explored a new research topic on impact-
sensitive instance ranking, which can be very useful in guiding
the data manager to enhance the data quality with minimal
expenses; and (3) by combining error detection and impact-
sensitive ranking, we have constructed an effective data
recommendation system. It’s more efficient than the manual
approach and more reliable than automatic correction algorithms.

Acknowledgement
This research has been supported by the U.S. Army Research
Laboratory and the U.S. Army Research Office under grant
number DAAD19-02-1-0178.

References
Bansal, N., Chawla, S., & Gupta, A., (2000), Error correction in
noisy datasets using graph mincuts, Technical Report, CMU.
Blake, C.L. & Merz, C.J. (1998), UCI Repository of machine
learning databases.
Brodley, C.E. & Friedl, M.A. (1999), Identifying mislabeled
training data, J. of Artificial Intelligence Research, 11: 131-167.
Greenberg, B. & Petkunas, T. (1990), SPEER: structured
programs for economic editing and referrals, American Statistical
Asso., Proc. of the 1990 Section on Survey Research Methods.
Fellegi, I. P. & D. Holt, (1976), A systematic approach to
automatic edit and imputation, Journal of the American
Statistical Association, vol.71, pp.17-35.
Freitas, A., (2001), Understanding the crucial role of attribute
interaction in data mining, AI Review, 16(3):177-199.
Gamberger, D., Lavrac, N., & Groselj C. (1999), Experiments
with noise filtering in a medical domain, Proc. of 16th ICML, CA.
Hunt, E. B., Martin, J. Stone, P. (1966), Experiments in
Induction. Academic Press, New York.
Kubica, J. & Moore A., (2003), Probabilistic noise identification
and data cleaning, Proc. of ICDM, FL, USA.
Little, R.J.A. & Rubin, D.B. (1987), Statistical analysis with
missing data, Wiley, New York.
Liu, X., Cheng, G., & Wu, J. (2002), Analyzing outliers
cautiously, IEEE Trans. on TKDE, 14:432-437.
Maletic J. & Marcus A. (2000), Data cleansing: Beyond integrity
analysis, Proc. of Information Quality, pp. 200–209.
Orr, K., (1998), Data quality and systems theory, CACM, 41
(2):66-71.
Quinlan, J.R. (1986). Induction of decision trees. Machine
Learning, 1(1): 81-106.
Quinlan, J.R. (1993). C4.5: programs for machine learning,
Morgan Kaufmann, San Mateo, CA.
Schwarm S. & Wolfman S., (2000), Cleaning data with Bayesian
methods, Technical Report, University of Washington.
Shapiro A. (1987), Structured induction in expert systems,
Addison-wesley.
Teng M. T., (1999), Correcting noisy data, Proc. of 16th ICML.
Wang R., Ziad M., & Lee Yang, (2001), Data quality, Kluwer.
Wu, X. (1995), Knowledge acquisition from database, Ablex
Pulishing Corp., USA.
Zhu, X., Wu, X. & Chen Q. (2003). Eliminating class noise in
large datasets, Proc. of 20th ICML, Washington D.C., USA.

LEARNING 383

