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Abstract 
Given a noisy dataset, how to locate erroneous instances and 
attributes and rank suspicious instances based on their 
impacts on the system performance is an interesting and 
important research issue. We provide in this paper an Error 
Detection and Impact-sensitive instance Ranking (EDIR) 
mechanism to address this problem. Given a noisy dataset D, 
we first train a benchmark classifier T from D. The instances, 
that cannot be effectively classified by T are treated as 
suspicious and forwarded to a subset S. For each attribute Ai, 
we switch Ai and the class label C to train a classifier APi for 
Ai. Given an instance Ik in S, we use APi and the benchmark 
classifier T to locate the erroneous value of each attribute Ai. 
To quantitatively rank instances in S, we define an impact 
measure based on the Information-gain Ratio (IR). We 
calculate IRi between attribute Ai and C, and use IRi as the 
impact-sensitive weight of Ai. The sum of impact-sensitive 
weights from all located erroneous attributes of Ik indicates 
its total impact value. The experimental results demonstrate 
the effectiveness of our strategies. 

1. Introduction   
The goal of inductive learning is to form generalizations from 
training instances such that the classification accuracy on 
previously unobserved instances is maximized. This maximum 
accuracy is usually determined by two most important factors: (1) 
the quality of the training data; and (2) the inductive bias of the 
learning algorithm. Given a specific learning algorithm, it is 
obvious that its classification accuracy depends vitally on the 
quality of the training data. Basically, the quality of a real-world 
dataset depends on a number of issues (Wang et al. 2001), but the 
source of the data is a crucial factor. Data entry and acquisition are 
inherently prone to errors. Unless an organization takes extreme 
measures in an effort to avoid data errors the field error rates are 
typically around 5% or more (Orr 1998; Maletic & Marcus 2000). 

There have been many approaches for data preprocessing 
(Maletic & Marcus 2000; Wang et al. 2001) and noise handling 
(Bansal et al. 2000; Brodley & Friedl 1999; Gamberger et al. 
1999; Kubica et al. 2003; Little & Rubin 1987; Liu et al. 2002; 
Teng 1999; Wu 1995; Zhu et al. 2003) to enhance the data quality, 
where the enhancement is achieved through noise elimination, 
missing value prediction, or noisy value correction. Basically, a 
general noise handling mechanism consists of three important 
steps: (1) noisy instance identification; (2) erroneous attribute 
detection; and (3) error treatment.  

For errors introduced by missing attribute values, the first two 
steps are trivial, because the instance itself will explicitly indicate 
whether it contains noise or not (e.g, a “?” represents a missing 
attribute value). Therefore, techniques for this type of attribute 
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noise handling mainly focus on predicting correct attribute values 
(which is called imputation in statistics) by using a decision tree 
(Shapiro 1987) or other mechanisms (Little & Rubin 1987). If an 
instance contains an erroneous value, how to distinguish this error 
becomes a challenging task, because such a noisy instance likely 
acts as a new training example with valuable information. Teng 
(1999) proposed a polishing mechanism to correct noisy attribute 
values by training classifiers for each attribute. However, this 
correcting procedure tends to introduce new noise when correcting 
the “suspicious” attributes. A recent research effort from Kubica & 
Moore (2003) employed probabilistic models to model noise and 
data generation, in which the trained generative models are used to 
detect suspicious instances in the dataset. A similar approach was 
adopted in Schwarm & Wolfman (2000) where a Bayesian model 
is adopted to identify erroneous attribute values. Unfortunately, 
since real-word data rarely comply with any generative model, 
these model-based methods still suffer from a common problem of 
noise correction: introducing new errors during data correction. 
Meanwhile, researchers from statistics have also put significant 
efforts to locate and correct problematic attribute values. Among 
various solutions from statistics, the Fellegi-Holt editing method 
(Fellegi & Holt 1976) is the most representative one. To identify 
and correct errors, this approach takes a set of edits as input, where 
the edits indicate the rules that attribute values should comply 
with. For example “age < 16” should not come with “Marital status 
= Married”. The Fellegi-Holt method has the advantage that it 
determines the minimal number of fields to change (located errors) 
so that a record satisfies all edits in one pass through the data. This 
approach has been extended to many editing systems, such as 
SPEER at the Census Bureau (Greenberg & Petkunas 1990). 
Unfortunately, the most challenging problem of the Fellegi-Holt 
method is to find a set of good edits, which turns to be impossible 
in many situations.  

All methods above are efficient in their own scenarios, but 
some important issues are still open. First of all, due to the fact that 
noise correction may incur more troubles, such as ignoring outliers 
or introducing new errors, the reliability of these “automatic” 
mechanisms is questionable, especially when the users are very 
serious with their data. On the other hand, for real-world datasets, 
doing data cleansing "by hand" is completely out of the question 
given the amount of human labor and time involved. Therefore, the 
contradiction between them raises a new research issue: how to 
rank instances’ impacts, so that given a certain amount of expenses 
(e.g, processing time), the data manager can maximize the system 
performance by putting priority on instances with higher impacts.  

In this paper, we provide an error detection and impact-
sensitive instance ranking system to address this problem. Our 
experimental results on real-world datasets will demonstrate the 
effectiveness of our approach: with datasets from the UCI 
repository (Blake & Merz 1998), at any noise level (even 50%), 
our system shows significant effectiveness in locating erroneous 
attributes and ranking suspicious instances. 
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2. Proposed Algorithms 
Our EDIR system consists of two major steps: Error Detection and 
Impact-sensitive Ranking. The system flowchart is depicted in Fig. 
1, and the procedures are given in Figs. 2 and 3.  
 Noisy Dataset 

D 
Suspicious Instances 

Subset S 
Erroneous Attribute 

Detection 
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Weight for Each 

Attribute 
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Fig. 1. The flowchart of EDIR system 

Procedure:  EDIR () 
Input:  Dataset D;    Output: Ranked suspicious instances. 
Parameter:  K, # of maximal changes for one instance 
(1). S ← φ; EA ← φ; IR ← φ 
(2). Train benchmark classifier T from D. 
(3). For each instance Ik in D 
(4).      If {!CorrectClassify(Ik, T) or !Cover(Ik, T)} 
(5).            S ← S ∪  {Ik} 
(6). For each attribute Ai 
(7).      Calculate Information-gain Ratio (IRi) between Ai and C 
(8).           IR ← IR ∪  {IRi} 
(9).  Switch Ai and C to learn APi and rule set ARi 
(10).  Evaluate accuracy of each rule in ARi on D. 
(11). For each instance Ik in S 
(12).  EAk ← φ; kVA ~ ← φ; kCV ← φ 
(13).  For each attribute Ai of Ik 
(14).        Calculate k

iVA ~ and confidence k
iCV  from APi  

(15).                kVA ~ ← kVA ~ ∪  { k
iVA ~ };   kCV ← kCV ∪  { k

iCV } 
(16).  For (L=1; L<=K; L++) 
(17).        If {ErrorDetection(Ik, L, kVA ~ , kCV , T, &EAk)} 
(18).                 EAk ← Located L erroneous attributes  
(19).                 EA ← EA ∪  {EAk} 
(20).                 Break 
(21). ImpactSensitiveRanking (S, IR, EA) // see Section 2.2  

Fig. 2. Error Detection and Impact-sensitive Ranking 

Procedure: ErrorDetection (Ik, L, kVA ~ , kCV , T, &EAk) 
(1). EAk ←φ; Ω [] ← φ ; ChgNum ← 0; Iteration ← 0; CV[] ← φ 
(2). Do { ;,..;~;..,~
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(3).   If {CorrectClassify (Ik, T)} 
(4).            },...,{][

1 Lii AAChgNum ←Ω  

(5).            CV [ChgNum]= k
i

k
i L

CVCV ++ ...
1

 

(6).            ChgNum++ 
(7).   Restore old values of 

Lii AA ,...
1

; Iteration++;   

(8). } while { Iteraction ≤ ( )N
L } 

(9). If {ChgNum = 0}  Return (0) 
(10). Else 
(11). EAk ← Ω [l]; l=arg{max(CV [j]), j=1, 2.., ChgNum} 
(12). Return (1) 

Fig. 3. Erroneous attribute detection 

2.1Error Detection 
2.1.1 Suspicious Instance Subset Construction 
Our first step of error detection is to construct a subset S to 
separate suspicious instances from the dataset D. We first train a 
benchmark classifier T from D, and then use T to evaluate each 
instance in D. The subset S is constructed by using the following 
criteria, as shown in steps (3) to (5) of Fig. 2. 

1. If an instance Ik in D cannot be correctly classified by T, 
we forward it to S. 

2. If an instance Ik in D does not match any rule in T, we 
forward it to S too.  

The proposed mechanism relies on the benchmark classifier 
(which is also imperfect) trained from the noisy dataset to explore 
noisy instances. Our experimental analysis has suggested that 
although the benchmark classifier is not perfect (actually we may 
never learn a perfect classifier), it can still be relatively reliable to 
detect some noisy instances. 

2.1.2 Erroneous Attribute Detection 
Given an instance Ik in S, assume Ik contains N attributes A1, A2,.., 
AN and one class label C. Further assume each attribute Ai has Vi 
possible values. We denote the aggregation of all attributes by ℜ . 
To locate erroneous attributes from Ik (where an erroneous 
attribute means the attribute has an incorrect value), we adopt an 
Attribute Prediction (AP) mechanism, as shown in Figs. 2 and 3.  

Basically, Attribute Prediction uses all other attributes A1,.. 
Aj,…AN (j ≠ i) and the class label C to train a classifier, APi, for Ai 
(using instances in D). Given an instance Ik in S, we use APi to 
predict the value of attribute Ai. Assume Ik’s current value of Ai is 

k
iAV , and the predicted value from APi is k

iVA ~
. If k

iAV and 
k

iVA ~
are different, it implies that Ai of Ik may possibly contain an 

incorrect value. Then we use the benchmark classifier T (which is 
relatively reliable in evaluating noisy instances) to determine 
whether the predicted value from APi makes more sense: If we 

change k
iAV  to k

iVA ~
, and Ik can be correctly classified by T, it 

will indicate that the change results in a better classification. We 
therefore conclude that attribute Ai contains an erroneous value. 
However, if the change still makes Ik incorrectly classified by T, 
we will leave Ai unchanged and try to explore errors from other 
attributes. If the prediction from each single attribute does not 
conclude any error, we will start to revise multiple attribute values 
at the same time. For example, change the values of two attributes 
Ai (from k

iAV  to k
iVA ~ ) and Aj (from k

jAV  to k
jVA ~ ) at the 

same time, and then evaluate whether the multiple changes make 
sense to T. We can iteratively execute the same procedure until a 
change makes Ik correctly classified by T. However, allowing too 
many changes in one instance may actually have the error 
detection algorithm make more mistakes. Currently, the EDIR 
system allows to change up to K (K ≤ 3) attributes simultaneously 
to locate errors. If all the changes above still make Ik incorrectly 
resolved by T, we will leave Ik unprocessed. 

With the proposed error detection algorithm, one important 
issue should be resolved in advance: which attribute to select if 
multiple attributes are found to contain errors.  

Our solution in solving this problem is to maximize the 
prediction confidence while locating the erroneous attributes, as 
shown in Fig. 3. When learning APi for each attribute Ai, we use a 
classification rule algorithm, e.g., C4.5rules, to learn an Attribute 
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prediction Rule set (ARi). Assuming the number of rules in ARi is 
Mi, for each rule r

iAR , r=1,..Mi, in ARi, we evaluate its accuracy 

( r
iAR ) on dataset D. This accuracy will indicate the confidence 

that r
iAR classifies the instance. In our system, we use C4.5rules 

(Quinlan 1993) to learn the rule set ARi, so the accuracy value has 
been provided with each learned rule. 

When adopting the rule set ARi to predict the value of Ai, we 
use the first hit mechanism (Quinlan 1993), which means we rank 
the rules in ARi in advance, and classify instance Ik by its first 
coved rule in ARi. Meanwhile, we also use the accuracy of the 
selected rule as the confidence ( k

iAC ) of APi in predicting Ai of Ik.   
Given an instance Ik, assume the predicted values for each 

attribute are kVA 1
~ , .., k

NVA ~  respectively, with the confidences for 

each of them denoted by k
N

k ACAC ,..,1 . We first set L to 1 to 
locate an erroneous attribute by using Eq. (1). If this procedure 
does not find any erroneous attribute, we increase the value of L by 
1 and repeat the same procedure, until we find erroneous attributes 
or L reaches the maximal allowable changes for one instance (K).  
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2.1.3 Validity Analysis 
Our algorithm above switches each attribute Ai and class C to learn 
an APi classifier, then uses APi to locate erroneous attributes. 
There are two possible concerns with the algorithm: (1) switching 
Ai and C to learn classifier APi does not make much sense to many 
learning algorithms, because attribute Ai may have very little 
correlation with other attributes (or not at all); and (2) when the 
prediction accuracy from APi is relative low (e.g., less than 50%), 
does the algorithm still work? Our experimental results in Section 
3 will indicate that even the prediction accuracy from all APi 
classifiers are relatively low, the proposed algorithm can still 
provide good results.  

As we can see from Fig. 3, the prediction from each APi 
classifier just provides a guide for the benchmark classifier T to 
evaluate whether a change makes the classification better or not. 
The prediction from APi won’t be adopted unless T agrees that the 
value predicted by APi will make the instance correctly classified. 
In other words, the proposed mechanism relies more on T than on 
any APi. Even if the prediction accuracy from APi is 100%, we 
won’t take its prediction unless it gets the support from T. 
Therefore, a low prediction accuracy from APi does not have much 
influence with the proposed algorithm. However, we obviously 
prefer a high prediction accuracy from each APi. Then the question 
comes to how good APi could be with a normal dataset? Actually, 
the performance of APi is inherently determined by correlations 
among attributes. It is obvious that if all attributes are independent 
(or conditionally independent given the class C), the accuracy of 
APi could be very low, because no attribute could be used to 
predict Ai. However, it has often been pointed out that this 
assumption is a gross over-simplification in reality, and the truth is 
that the correlations among attributes extensively exist (Freitas 
2001; Shapiro 1987). Instead of taking the assumption of 
conditional independence, we take the benefits of interactions 
among attributes, as well as between the attributes and class. Just 
as we can predict the class C by using the existing attribute values, 
we can turn the process around and use the class and some 
attributes to predict the value of another attribute.  Therefore, the 

average accuracy of APi classifiers from a normal dataset usually 
maintains a reasonable level, as shown in Tab. 1. 

2.2 Impact-sensit ive Ranking 
To rank suspicious instances by their impacts on the system 
performance, we define an impact measure based on the 
Information-gain Ratio (IR). We first calculate IR between each 
attribute Ai and class C, and take this value as the impact-sensitive 
weight (IW) for Ai. The impact value for each suspicious instance 
Ik, Impact(Ik), is then defined by Eq. (2), which is the sum of the 
impact-sensitive weights of all located erroneous attributes in Ik,  
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The Information-gain Ratio (IR) is one of the most popular 
correlation measures used in data mining. It was developed from 
information gain (IG) which was initially used to evaluate the 
mutual information between an attribute and the class (Hunt et al. 
1966). The recent development from Quinlan (1986) has extended 
IG to IR to remove the bias caused by the number of attribute 
values. Since then, IR has become very popular in constructing 
decision trees or exploring correlations. Due to the space limit of 
the paper, we omit the technique on calculating IR. Interested 
readers may refer to Quinlan (1986; 1993) for details. 

With Eq. (2), instances in S can be ranked by their Impact(Ik) 
values. Given a dataset with N attributes, the number of different 
impact values of the whole dataset D is determined by Eq. (3), if 
we allow the maximal number of changes for one instance to be K. 
For example, a dataset D with N=6 and K=3 will have NC(D) equal 
to 41. It seems that NC(D) is not large enough to distinguish each 
suspicious instance, if the number of suspicious instance in D is 
larger than 41 (which is likely a normal case). However, in reality, 
we usually work on a bunch of suspicious instances rather than a 
single one to enhance the data quality. Therefore it may not be 
necessary to distinguish the quality of each instance, but to assign 
suspicious instances into various quality levels. Given the above 
example, we can separate its suspicious instances into 41 quality 
levels. From this point of view, it’s obvious that this number is 
large enough to evaluate the quality of instances in S.  

∑
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3. Experimental Evaluations 
3.1 Experiment Settings 
The majority of our experiments use C4.5, a program for inducing 
decision trees (Quinlan 1993). To construct the benchmark 
classifier T and APi classifiers, C4.5rules (Quinlan 1993) is 
adopted in our system. We have evaluated our algorithms 
extensively on datasets collected from the UCI data repository 
(Blake & Merz 1998). Due to the size restrictions, we will mainly 
report the results on two representative datasets: Monks-3 and Car, 
because these two datasets have relatively low attribute prediction 
accuracies, as shown in Tab. 1. If our algorithms achieve good 
results on these two datasets, they can possibly have good 
performances on most real-world datasets. In Tab. 1, ATi 
represents the average prediction accuracy for attribute Ai (from 
APi). For Soybean, Krvskp and Mushroom datasets, we only show 
the results of the first six attributes. We also report summarized 
results from these three datasets in Tab. 5. 

For most of the datasets that we used, they don’t actually 
contain much noise, so we use manual mechanisms to add attribute 
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noise, where error values are introduced into each attribute with a 
level x⋅100%, and the error corruption for each attribute is 
independent. To corrupt each attribute Ai with a noise level 
x⋅100%, the value of Ai is assigned a random value approximately 
x⋅100% of the time, with each alternative value being 
approximately equally likely to be selected. With this scheme, the 
actual percentage of noise is always lower than the theoretical 
noise level, as sometimes the random assignment would pick the 
original value. Note that, however, even if we exclude the original 
value from the random assignment, the extent of the effect of noise 
is still not uniform across all components. Rather, it is dependent 
on the number of possible values in the attribute. As the noise is 
evenly distributed among all values, this would have a smaller 
effect on attributes with a larger number of possible values than 
those attributes that have only two possible values (Teng 1999). In 
all figures and tables below, we only show the noise corruption 
level x⋅100%, but not the actual noise level in each dataset. 

Tab. 1. The average prediction accuracy for each attribute 

DataSet AT1(%) AT2(%) AT3(%) AT4(%) AT5(%) AT6(%)

Monks-3 45.02 57.08 54.31 37.52 45.82 49.55 
Car 36.48 35.47 27.68 49.57 41.24 56.5 

Soybean 55.38 95.66 94.9 86.35 96.58 54.67 
Krvskp 97.74 98.63 99.17 95.59 85.92 78.98 

Mushroom 46.28 55.77 44.76 100 81.25 99.79 

3.2 Suspicious Subset Construction 
To evaluate the performance of the suspicious subset (S) 
construction, we need to assess the noise level in S. Intuitively, the 
noise level in S should be higher than the noise level in D, 
otherwise the existence of S becomes useless. Also, the size of S 
should be reasonable (not too large or too small), because a subset 
with only several instances has a very limited contribution in 
locating erroneous attributes, even if all instances in S are noise. 
To this end, we provide the following measures: (1) S/D, which is 
the ratio between the sizes of S and D; (2) I_S and I_D, which are 
the instance-based noise levels in S and D, as defined by Eq. (4); 
and (3) Ai_S and Ai_D, which represent the noise levels for 
attribute Ai in S and D, as defined by Eq. (5). 

I_X= # erroneous instances in X / # instances in X  (4) 

Ai_X= # instances in X with error in Ai / # instances in X   (5) 
We have evaluated our suspicious subset construction at 

different noise levels and provided the results in Tab. 2. Basically, 
the results indicate that in terms of S/D, the proposed algorithm in 
Section 2.1 has constructed a suspicious subset with a reasonable 
size. When the noise level increases from 10% to 50%, the size of 

S also proportionately increases (from 14.17% to 41.07% for the 
Car dataset), as we have anticipated. If we take a look at the third 
column with instance-based noise, we can find that the noise level 
in S is always higher than the noise level in D. For the Car dataset, 
when the noise corruption level is 10%, the noise level in S is 
about 30% higher than the noise level in D. With Monks-3, the 
noise level in S is significantly higher than D. It indicates that with 
the proposed approach, we can construct a reasonable size of the 
subset concentrating on noisy instances for further investigation. 

The above observations conclude the effectiveness of the 
proposed approach, but it’s still not clear whether S equally 
captures noise from all attributes or more focuses on some of them. 
We therefore evaluate the noise level on each attribute, which is 
shown from columns 5 to 10 in Tab. 2. As we can see, most of the 
time, the attribute noise level in S (Ai_S) is higher than the noise 
level in D (Ai_D), which means the algorithm has a good 
performance on most attributes. However, the algorithm also 
shows a significant difference in capturing noise from different 
attributes. For example, the noise level on attributes 2 and 5 in 
Monks-3 (in S) is much higher than the attribute noise level in the 
original dataset D. The reason is that these attributes have 
significant contributions in constructing the classifier, hence the 
benchmark classifier T is more sensitive to errors in these 
attributes. This is actually helpful for us to locate erroneous 
attributes: if noise in some attributes has less impact with the 
system performance, we can simply ignore them or put less effort 
on them.   

3.3 Erroneous Attribute Detection 
To evaluate the performance of our erroneous attribute detection 
algorithm, we define the following three measures: Error detection 
Recall (ER), Error detection Precision (EP), and Error detection 
Recall for each Attribute (ERAi). Their definitions are given in Eq. 
(6), where ni, pi and di represent the number of actual errors, the 
number of correctly located errors and the number of located errors 
in Ai respectively. 
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We provide the results in Tab. 3, which are evaluated at three 
noise levels (from 10% to 50%). As we can see from the third 
column (EP) of Tab. 3, the overall error detection precision is 
pretty attractive, even with the datasets (Monks-3 and Car) that 
have low attribute prediction accuracies. On average, the precision 
is maintained at 70%, which means most located erroneous 
attributes actually contain errors. We have also provided the 
experimental results from other three datasets in Tab. 5. All these 
results prove the reliability of the proposed error detection 
algorithm.  

Tab. 2. Suspicious subset construction results 

Instance Noise AT1 Noise AT2 Noise AT3 Noise AT4 Noise AT5 Noise AT6 Noise Dataset Noise 
Level S/D 

I_D I_S A1_D A1_S A2_D A2_S A3_D A3_S A4_D A4_S A5_D A5_S A6_D A6_S 
10% 6.29 32.41 97.09 6.04 6.71 6.45 44.85 4.58 5.21 6.43 9.96 7.49 54.92 5.62 5.34 
30% 17.14 71.06 94.78 20.22 20.95 20.33 51.46 14.94 15.83 20.75 22.29 21.63 49.2 14.73 16.02 Monks-

3 
50% 33.42 89.45 95.68 32.61 33.18 33.52 54.36 25.3 25.74 33.07 33.72 38.11 53.25 24.8 25.27 
10% 14.17 36.3 64.14 7.51 14.25 7.73 14.15 7.86 8.65 6.87 16.85 6.72 9.75 6.66 18.6 
30% 33.71 76.32 85.97 22.71 26.78 22.75 26.35 22.52 22.69 19.95 28.47 20.56 21.21 20.02 29.78 Car 
50% 41.07 92.06 96.61 36.82 39.45 36.42 38.67 37.65 37.27 33.29 40.71 32.56 34.64 33.52 42.79 
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Obviously, having a high precision is only a partial advantage 
of the algorithm. A system that predicts only one error is likely 
useless, even if its precision is 100%. We therefore evaluate the 
error detection recall (ER), as shown on columns 4 to 10 in Tab. 3. 
On average, the algorithm can locate about 10% of errors. 
Meanwhile, for different attributes, the ERAi values vary 
significantly. For example, when the noise level is 30%, the ERA1 
for Monks-3 is about 5.4% which is much less than the value 
(about 24%) of attribute 2. If we go further to analyze the 
correlations between attributes and the class, we can find that the 
proposed algorithm actually has a good performance in locating 
errors for some important attributes. For example, among all 
attributes in Monks-3, attribute 2 has the highest correlation with 
class C, and its recall value (ERA2) also turns out to be the highest.  

Just looking at the ER values may make us worry that the 
algorithm has missed too much noise (90% of errors). We’d like to 
remind the readers that from the data correction point of view, 
having a higher precision is usually more important, because an 
algorithm should avoid introducing more errors when locating or 
correcting existing errors. Actually, the 10% located errors likely 
bring more troubles than others (because they obviously cannot be 
handled by the benchmark classifier T). Our experimental results in 
the next subsection will indicate that correcting this part of the 
errors will improve the system performance significantly.    

Tab. 3. Erroneous attribute detection results 

Data 
Set 

Noise 
Level EP ER ERA1 ERA2 ERA3 ERA4 ERA5 ERA6

10% 84.61 7.18 0.68 24.08 0.94 1.07 15.22 1.08 
30% 77.08 11.36 5.41 24.01 4.34 6.09 20.9 7.45 Mon

ks-3 50% 80.58 10.54 5.61 22.21 6.35 6.17 16.58 6.57 
10% 65.84 11.35 7.31 6.91 3.43 21.91 4.85 23.69
30% 71.43 11.17 8.25 7.58 4.56 21.5 6.18 18.97Car 
50% 73.29 8.55 6.05 6.2 5.78 14.11 5.54 13.62

3.4 Impact-sensitive Instance Ranking  
We evaluate the performance of the proposed impact-sensitive 
instance ranking mechanism in Section 2.2 from three aspects: 
training accuracy, test accuracy and the size of the constructed 
decision tree. Obviously, it’s hard to evaluate the ranking quality 
instance by instance, because one instance likely does not impact 
too much with the system performance. We therefore separate the 
ranked instances into three tiers, each tier consisting of 30% of 
instances from the top to the bottom of the ranking. Intuitively, 
correcting instances in the first tier will produce a bigger 
improvement than correcting instances in any of the other two 
tiers, because instances in the first tier have more negative impacts 
(with relatively larger impact values), so does the second tier to the 
third tier. Accordingly, we manually correct the instances in each 

tier (because we know which instance was corrupted, the manual 
correction has a 100% accuracy), and compare the system 
performances on the corrected dataset and the original dataset.  

We evaluate the system performance at three noise levels and 
provide results in Tab. 4, where “Org” means the performance 
(training, test accuracy and tree size) from the original dataset (D), 
and “Fst”, “Snd” and “Thd” indicate the performance of only 
correcting instances in the first, second and third tier respectively. 

From Tab. 4, we can find that at any noise level, correcting 
instances in the first tier always results in a better performance 
than correcting instances in any of the other two tiers, so does the 
second tier to the third tier. For example, with the Car dataset at 
30% noise level, correcting instances at the first tier will achieve 
0.7% and 2.3% more improvements with the test accuracy than 
correcting instances in the second and third tiers. In terms of the 
decision tree size, the improvement is even more significant. It 
proves that our system provides an effective way to automatically 
locate errors, and rank them by their negative impacts (danger 
levels). So we can put more emphasis on instances in the top tier 
than those in the bottom tier.   

When comparing the performances from each tier with the 
performance from the original dataset, we find that correcting 
recommended instances has a significant improvement, especially 
when the noise level goes higher. For example, with the Car 
dataset at 30% noise level, correcting instances at any tier will 
contribute a 2.1% (or more) improvement with the test accuracy. 
This also proves the effectiveness of our EDIR system in 
enhancing the data quality, even in high noise-level environments. 

When using EDIR as a whole system for noise detection and 
data correction, we’d like to know its performance in comparison 
with other approaches, such as random sampling. We therefore 
perform the following experiments. Given a dataset D, we use 
EDIR to recommend α% of instances in D for correction. For 
comparison, we also randomly sample α% of instances in D for 
correction. We compare the test accuracies from these two 
mechanisms (because the comparison of the test accuracies is 
likely more objective), and report the results in Fig. 4 (b) to Fig. 4 
(g), where “Org”, “EDIR” and “Rand” represent the performances 
from the original dataset, the corrected dataset by EDIR and the 
random sampling mechanism respectively. We have evaluated the 
results by setting α⋅100% to four levels: 5%, 10%, 15% and 20%. 
In Tab. 5, we provide summarized results from other three datasets 
by setting α⋅100% to 5%. The results from Fig. 4 indicate that 
when the value of α increases, the performances of EDIR and 
Rand both get better. This does not surprise us, because when 
recommending more and more instances for correction, we actually 
lower the overall noise level in the dataset, therefore better 
performances could be achieved. However, the interesting point is 
that when comparing “EDIR” and “Rand”, we can find that EDIR 
always has a better performance than Rand. 

 
Tab. 4. Impact-sensitive instance ranking results 

Training Accuracy (%) Test Accuracy (%) Tree Size 
DataSet Noise 

Level Org Fst Snd Thd Org Fst Snd Thd Org Fnt Sed Thd 
10% 94.31 96.27 95.9 95.48 97.45 98.94 98.52 98.13 29.2 26.1 27.8 28.6 
30% 86.44 90.23 89.98 89.07 88.06 92.17 91.58 91.37 76.1 60.8 63.3 66.1 Monks-

3 50% 81.73 86.37 85.84 84.96 76.09 82.64 82.01 81.09 112.8 93.9 101.5 107.6 
10% 90.25 92.73 92.2 91.86 87.77 90.44 89.62 89.04 250.2 215.8 225.6 232.5 
30% 83.77 86.9 86.32 86.14 76.77 80.98 80.21 78.69 394.1 363.3 375.2 391.3 Car 
50% 80.76 83.51 82.8 82.09 69.37 74.59 73.18 72.66 463.7 415.2 429.4 437 
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Actually, most of the time, the results from EDIR by 
recommending 5% of instances are still better than using Rand to 
recommend 20% of instances. For example, when EDIR 
recommends 5% of instances for correction, the test accuracy for 
the Car dataset at 10% noise level is 88.51%, which is still better 
than the results (88.11%) of using Rand to recommend 20% of 
instances. The same conclusion can be drawn from most other 
datasets. It indicates that EDIR has a significantly good 
performance in locating and recommending suspicious instances 
to enhance the data quality. 
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(a) Meaning of each curve in Fig. 4 (b) to Fig. 4 (g) 
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Fig. 4. Experimental comparisons of EDIR and random sampling 
approaches from three noise levels: 10%, 30% and 50% 

In Figs. 4 (b) to (g), the x-axis denotes the percentage of 
recommended data (α) and the y-axis represents the test accuracy. 

Tab. 5. Experimental summary from other three datasets (α=0.05) 

Test Accuracy Tree Size Data 
Set 

Noise 
Level EP ER 

Org EDIR Rand Org EDIR Rand
10% 88.51 10.4 86.23 86.99 86.23 424.7 407.2 418.9
30% 87.23 12.66 76.18 77.14 76.25 496.8 485.3 497.1Soyb

ean 50% 84.17 9.42 57.44 61.64 58.09 532.1 526 532.8
10% 76.57 10.56 95.22 96.78 95.89 500.2 379.5 466.4
30% 72.33 8.69 80.23 85.94 82.66 986.8 887.1 964 Krvs

kp 50% 71.08 6.83 67.65 79.41 70.78 1096 998.3 1072
10% 90.28 9.79 99.89 100 99.97 545 322 529 
30% 84.33 7.48 99.21 99.97 99.32 1644 1126 1620Mush

room 50% 81.49 7.04 98.32 99.82 99.11 3060 2383 2935

4. Conclusions 
In this paper, we have presented an EDIR system, which 
automatically locates erroneous instances and attributes and ranks 
suspicious instances according to their impact values. The 
experimental results have demonstrated the effectiveness of our 
proposed algorithms for error detection and impact-sensitive 
ranking. By adopting the proposed EDIR system, correcting the 
instances with higher ranks always results in a better performance 
than correcting those with lower ranks. The novel features that 

distinguish our work from existing approaches are threefold: (1) 
we provided an error detection algorithm for both instances and 
attributes; (2) we explored a new research topic on impact-
sensitive instance ranking, which can be very useful in guiding 
the data manager to enhance the data quality with minimal 
expenses; and (3) by combining error detection and impact-
sensitive ranking, we have constructed an effective data 
recommendation system. It’s more efficient than the manual 
approach and more reliable than automatic correction algorithms.   
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