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Abstract

 

We describe an agent architecture that integrates emotions,
drives, and behaviors, and that focuses on modeling some of
the aspects of emotions as fundamental components within
the process of decision-making. We show how the mecha-
nisms of primary emotions can be used as building blocks
for the acquisition of emotional memories that serve as bias-
ing mechanisms during the process of making decisions and
selecting actions. The architecture has been implemented
into an object-oriented framework that has been successfully
used to develop and control several synthetic agents and
which is currently being used as the control system for an
emotional pet robot.

 

Introduction

 

The traditional view on the nature of rationality has pro-
posed that emotions and reason do not mix at all. For an
agent to act rationally, it should not allow emotions to
intrude in its reasoning processes. Research in Neuro-
science, however, has provided evidence indicating quite
the contrary, showing that emotions play a fundamental role
in perception, learning, attention, memory, and other abili-
ties and mechanisms we tend to associate with basic ratio-
nal and intelligent behavior [Damasio 1994; LeDoux 1966;
Adolphs 1966]. In particular, recent studies of patients with
lesions of the prefrontal cortex suggest a critical role for
emotions in decision-making [Bechara et al. 1997; Church-
land 1996; Damasio 1994]. Although the studied patients
can perform well on a variety of intelligence and memory
tests, when faced with real-life situations they seem to be
unable to make “good” decisions. Apparently, these patients
lack intuition abilities, which, as many researchers think,
may be based on memories of past emotions. These find-
ings indicate that contrary to popular belief, intuition and
emotions play significant roles in our abilities to make
smart, rational decisions.

To this date, the field of Artificial Intelligence has largely
ignored the use of emotions and intuition to guide reason-
ing and decision making. Several models of emotions have
been proposed, but most of the work in this area has
focused on specific aspects, such as recognizing emotions
[Picard 1997], synthesizing emotions as the primary means
to create believable synthetic agents [Bates 1994; Blumberg
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1994; Elliot 1992; Maes 1995; Reilly 1996;], or synthesiz-
ing emotions and some of their influences in behavior and
learning [Frijda 1996; Kitano 1995; Pfeifer 1988; Velásquez
1997]. 

The work described in this paper derives from, and
extends previous research on computational models of
emotions [Velásquez 1997]. Our main contribution is to
show how drives, emotions, and behaviors can be integrated
into a robust agent architecture, that uses some of the mech-
anisms of emotions to acquire memories from past emo-
tional experiences that serve as biasing mechanisms while
making decisions during the action-selection process.

 

Emotions as Biasing Mechanisms

 

The studies on patients with lesions in the prefrontal cortex
mentioned above, motivated Damasio and colleagues to
suggest that human reasoning and decision-making
involves several mechanisms at different levels, extending
from those that perform basic body regulation, to those that
deal with more cognitive control of complex strategies. An
interesting and novel component of this view is that reason-
ing depends also on emotions and the feelings accompany-
ing them, which involve images that relate to the state of the
body [Damasio 1994]. 

According to Damasio, part of this process includes the
use of a covert, nonconscious biasing mechanism that
directs us towards the “right” decision. This biasing step is
known as the 

 

somatic marker hypothesis

 

. The main idea
behind this hypothesis is that decisions that are made in cir-
cumstances similar to previous experience, and whose out-
come could be potentially harmful, or potentially
advantageous, induce a 

 

somatic

 

 response used to 

 

mark

 

future outcomes that are important to us, and to signal their
danger or advantage. Thus, when a negative somatic marker
is linked to a particular future outcome it serves as an alarm
signal that tell us to avoid that particular course of action. If
instead, a positive somatic marker is linked, it becomes an
incentive to make that particular choice. 

These ideas inspired the model described below.

 

The Computational Model

 

This section describes 

 

Cathexis

 

, a computational model of
emotions and action-selection inspired by work in different
fields, including Neuropsychology, Artificial Intelligence,
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and Ethology. In particular, it has a strong influence from
neuropsychological theories about the functional organiza-
tion of the prefrontal lobes and their interaction with other
neural systems involved in mediating emotions and sen-
sorimotor responses that guide decision-making [Damasio
1994; Adolphs et al. 1996; Churchland 1996; Altman
1996]. Figure 1 provides a high level view of the model’s
architecture. 

 

Figure 1  The Model’s Architecture.

 

The Drive System

 

The Drive System consists of a set of motivational systems,
or drives, representing urges that impel the agent into
action. For instance, a 

 

Hunger

 

 drive will aid in controlling
behaviors that directly affect the level of food intake by the
agent.

Each Drive includes a set of Releasers which filter sen-
sory data and identify special conditions which will either
increase or decrease the value of the drive they belong to.
These releasers represent control systems that maintain a
controlled variable within a certain range. Drive control
systems measure this variable through some of the agent’s
sensors and compare it to a desired value or set point. If its
value does not match the set point, an error signal is pro-
duced. This error signal is fed to the appropriate drive, in
which it can be combined with error signals from other rel-
evant control systems. For instance, a 

 

TemperatureRegula-
tion

 

 drive would combine the signals from two different
control systems: one controlling peripheral temperature and
one controlling brain temperature.

The value of each drive is determined by a linear combi-
nation of its control systems as described in Equation (1):

(1)
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D
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.

 

The Emotion Generation System

 

Following a neuropsychological perspective, the Emotion
Generation System bears resemblance to some of the
aspects in which the interactions between neural systems

involving the amygdala, the hippocampus, and the prefron-
tal cortices have been considered to mediate emotions, such
as assigning an emotional valence to different stimuli, acti-
vation of emotional behaviors, and emotional learning
[Damasio 1994; LeDoux 1993; Panksepp 1995]. 

This system consists of a distributed network of self-
interested emotional systems representing different families
of related affective states, such as Fright, Fear, Terror, and
Panic. Each member of an emotion family shares certain
mechanisms and characteristics, including similarities in
antecedent events, expression, likely behavioral response,
and physiological patterns. These characteristics differ
between emotion families, distinguishing one from another. 

Drawing upon ideas from different theorists [Ekman
1992; Izard 1991; Johnson-Laird and Oatley 1992], we
have identified and created explicit models for six different
emotion families: 

 

Anger

 

, 

 

Fear

 

, 

 

Distress

 

/

 

Sadness

 

, 

 

Enjoy-
ment/Happiness

 

, 

 

Disgust

 

, and 

 

Surprise

 

. The selection of
this core set of emotion types is not arbitrary, but rather it is
based upon evidence suggesting their universality, includ-
ing distinctive universal facial expressions, as well as eight
other properties [Ekman 1992].

Emotional Systems have a set of Releasers that con-
stantly check for the appropriate conditions that would
elicit the emotion they belong to. Influenced by Izard’s
multi-system for emotion activation [Izard 1993], we con-
sider both cognitive and noncognitive releasers and divide
them into four different groups:

•  

 

Neural

 

: Includes the effects of neurotransmitters,
brain temperature, and other neuroactive agents that can
lead to emotion and which can be mediated by hormones,
sleep, diet, and environmental conditions. For instance,
there is a great deal of evidence that shows that decreased
levels of norepinephrine and serotonin are associated with
depression [Meltzer et al. 1981]. Similarly, it is clear that
several chemical agents, such as carbon dioxide, yohim-
bine, and amphetamines produce anxiety in humans by acti-
vating the noradrenergic system [Charney and Redmon
1983].

•

 

Sensorimotor

 

: This system covers sensorimotor
processes, such as facial expressions, body posture, muscle
action potentials, and central efferent activity, that not only
regulate ongoing emotion experiences but can also elicit
emotion. Some evidence supporting this type of elicitors
comes from neuropsychological studies in which experi-
menter-directed manipulation of facial muscles, composing
a specific emotional expression, produces the subjective
feeling corresponding to that emotion, as well as emotion-
specific patterns of autonomic nervous system (ANS) activ-
ity [Ekman, Levenson, and Friesen 1993]. 

•

 

Motivational

 

: This system includes all motivations
that lead to emotion. In this model, motivations include
drives (e.g. 

 

Thirst

 

 and 

 

Hunger

 

), emotions (e.g. 

 

Anger

 

, and

 

Happiness

 

), and pain regulation. Some examples of elici-
tors in this system include the innate response to foul odors
or tastes producing disgust, as measured in neuropsycho-
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logical studies by [Fox and Davidson 1986], pain or aver-
sive stimulation causing anger, and emotions like sadness
eliciting others such as anger.

•

 

Cognitive

 

: This system includes all type of cogni-
tions that activate emotion, such as appraisal of events,
comparisons, attributions, beliefs and desires, memory, and
so on. In previous work, these elicitors were based on a
cognitive appraisal theory (See [Velásquez 1997] for
details). In an effort to design a more plausible model, we
have revised the Emotion Generation System so that it does
not include any pre-wired cognitive elicitors, but rather
allows for them to be learned through emotional experi-
ences, as the agent interacts with its environment.

Besides its releasers, each Emotional System includes
two different thresholds. The first one, 

 

α

 

, is used to deter-
mine when an emotion episode occurs. That is, once its
intensity goes above this threshold, the Emotional System
releases its output signal to other Emotional Systems and to
the Behavior System which in turn selects and controls an
appropriate behavior according to the agent’s motivational
state. The second threshold, 

 

ω

 

, specifies the level of satura-
tion for that emotion. This is consistent with real life emo-
tional systems in which levels of arousal will not exceed
certain limits. In addition to these parameters, each Emo-
tional System has a function, 

 

Ψ

 

(), which controls the tem-
poral decay of its intensity. These kinds of mechanisms
contribute to the nonlinear behavior exhibited by the model.
Figure 2 illustrates these ideas.

 

Figure 2  Emotional Systems.

 

The intensity of an Emotional System depends on all the
factors that contribute to it, including its previous level of
arousal, the contributions of each of its elicitors, and the
interaction (inhibitory and excitatory) with other Emotional
Systems. This is summarized in Equation (2):

(2)
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 is the function that constrains the inten-
sity of Emotion 

 

e

 

 between 0 and its saturation value

 

.

This model of Emotional Systems allows for the distinc-
tion between different affective phenomena. For instance,
primary emotions are modeled as the activation of one par-
ticular Emotional System such as 

 

Sadness

 

 or 

 

Disgust

 

. Emo-
tion blends, such as 

 

Jealousy

 

, emerge as the co-activation of
two or more of these Emotional Systems. Similarly, and fol-
lowing a psychobiological perspective [Panksepp 1995],
moods are differentiated from emotions in terms of levels of
arousal. While emotions consist of high arousal of specific
Emotional Systems, moods may be explained as low tonic
levels of arousal within the same systems (i.e. levels below
the 

 

α

 

 threshold). This representation is consistent with the
enormous subtleties of human moods and feelings, as well
as with the common observation that moods seem to lower
the threshold for arousing certain emotions. This occurs
because emotional systems that are aroused, as it happens
in the representation of moods, are already providing some
potential for the activation of an emotion. Finally, it is con-
sistent with the observation that the duration of moods
appears to be longer than that of the emotions, since at low
levels of arousal, the intensity of the Emotional Systems
will decay more slowly.

Finally, temperaments are modeled through the different
values that parameters (e.g., thresholds, gains, and decay
rates) within each Emotional System can have. Thus, for
instance, if we want to model a depressed agent, we might
lower the activation threshold and decay rate for the 

 

Sad-
ness

 

 emotion as well as lowering the inhibitory gain
between 

 

Happiness

 

 and 

 

Sadness

 

. The result is a flexible,
distributed model that can synthesize a variety of affective
phenomena simultaneously.

 

The Behavior System

 

Following Damasio’s view, reasoning and decision-making
define a domain of cognition in which an agent must choose
how to respond to a situation. Concepts like 

 

decision

 

, 

 

rea-
son

 

, 

 

action

 

-

 

selection

 

, and 

 

rationality

 

 are fundamentally
linked to behavior. When an agent faces a situation, a deci-
sion of what to do next must be made. This choice is
responsibility of the Behavior System. The action-selection
process is mediated by the reasoning engaged. If the out-
come of the reasoning and the selected behavior are adap-
tive (oversimplified in this model as selecting a behavior
that avoids negative outcomes), the choice is considered
rational.

The Behavior System is a distributed network of self-
interested behaviors, such as 

 

“approach human”

 

, “

 

play

 

”,
“

 

request attention

 

”, and “

 

avoid obstacle

 

”.
Like Drives and Emotional Systems, Behaviors have

Releasers that obtain and filter sensory data in order to
identify special conditions which will either increase or
decrease the value of the Behavior. Releasers might repre-
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sent objects and conditions such as “battery recharger is
present”, and motivational states such as “battery level is
low” and “distress is high”, which would most likely
increase the value of a “

 

recharge batteries

 

” behavior.
Behaviors may mutually inhibit or excite each other. For

instance, “

 

wag the tail

 

” might inhibit “

 

running

 

” and vice-
versa. Whereas behaviors such as “

 

play with human

 

” might
excite lower-level ones like “

 

find human

 

”. 
In earlier work, the Behavior System followed a winner-

take-all strategy in which only one behavior could be active
at a time. This made it impossible for non-conflicting
Behaviors, such as “

 

walk

 

” and “

 

cry

 

” to execute at the same
time. Given the parallelism of the model, we revised the
Behavior System so that active, non-conflicting Behaviors
can issue motor commands simultaneously. The value for
each Behavior is computed as described in Equation (3):

(3)

 

Where 

 

B

 

jt

 

 is the value of Behavior 

 

j

 

 at time 

 

t

 

; Rnj is the value of
releaser n and Wnj is the weight for releaser n, where n ranges over
the releasers for Behavior j; Glj  is the Excitatory Gain that Behav-
ior l applies to Behavior j, and Blt is the intensity of Behavior l at
time t, where l ranges over the set of behaviors that excite Behav-
ior j; Hmj is the Inhibitory Gain that Behavior m applies to Behav-
ior j, and Bmt is the intensity of Behavior m at time t, where m
ranges over the set of behaviors that inhibit Behavior j.

 
Integrating Emotional Memories

The mechanisms described above for primary emotions do
not describe the whole range of emotions we experience. In
fact, most of our emotional experiences can be considered
secondary which occur after we begin experiencing feelings
and start making orderly associations between objects and
situations, and primary emotions. Thus, for instance,
whereas a loud noise might activate an innate fear response
(primary emotion), thinking about not making a paper
deadline might activate a learned one (secondary emotion).
This latter kind of emotion requires more complex process-
ing, including in most cases, the retrieval of emotional
memories of similar previous experiences. Following the
ideas behind both Damasio’s somatic-marker hypothesis
[Damasio 1994], and LeDoux’s work on fast (low-road) and
slow (high-road) pathways for emotion activation [LeDoux
1993], we have extended our model to consider not only
pre-wired, stimuli-driven emotions, but also, more cogni-
tive, memory-based, learned ones. 

These secondary emotions have been modeled with an
associative network comparable to Minsky’s K-lines [Min-
sky 1986], in which primary emotions are connected to the
specific stimuli (e.g., executed behaviors, objects, or
agents) that have elicited them during the agent’s interac-
tion with the world. The connections between primary emo-
tions and different stimuli specify the amount (averaged
throughout different occurrences) of emotional energy
(intensity of the Emotional System) applied to each stimu-

lus when encountered. 
For instance, supposing that an agent is about to engage

in Feeding and the only available food is a bad-tasting soup,
it is likely that once the agent eats, the Disgust Emotional
System will become active at some particular intensity
because it has a pre-wired elicitor for foul odors and tastes.
Once this happens, an association is made between the pri-
mary emotion (Disgust) and the stimulus that provoked it
(soup), and an emotional memory is created. 

The emotional memory by itself is not very useful.
Instead, the model described above has been extended so
that it uses this information as part of the behavior selection
process. Thus, the next time an agent encounters a marked
stimulus, such as the soup in our example, the memory rep-
resented in the associative network will be relived, repro-
ducing the emotional state previously experienced, and
influencing the selection of actions to follow. 

Thus, although the agent had no pre-wired aversion for
soup, its previous negative experience has created a learned
one for it. Furthermore, even if the agent is very hungry, it
is likely that the Feeding behavior will not become active if
soup is the only food present. Hence, the purpose of emo-
tional memories is twofold. First, they allow for the learn-
ing of secondary emotions as generalizations of primary
ones. And second, they serve as markers or biasing mecha-
nisms that influence what decisions are made and how the
agent behaves.

Implementation and Results
The model described in the previous sections has been
implemented in its totality as part of an object-oriented
framework for building autonomous agents. We have used
this framework to develop and control various synthetic
agents, including Simón the Toddler (See [Velásquez 1997]
for a description), and Virtual Yuppy, a simulated emotional
pet robot, shown in Figure 3.

Figure 3  Virtual Yuppy

As part of our ongoing research, the same framework has
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been used to control Yuppy, the actual physical robot shown
in Figure 4.

The implementation details and results described in this
section correspond in most part to the simulated robot, but
are also applicable to current observations with the physical
robot.

Figure 4  Yuppy, an Emotional Pet Robot

Virtual Yuppy has different sensors, including one for
very simple synthetic vision, as well as simulated tactile
sensors to model painful and pleasurable stimuli. 

Its Drive System is composed of four different drives:
RechargingRegulation, TemperatureRegulation, Fatigue,
and Curiosity, each of which controls internal variables rep-
resenting the agent’s battery, temperature, energy, and
interest levels, respectively. 

Its Emotion Generation System includes emotional sys-
tems with innate releasers for the set of basic emotion fami-
lies described before. These releasers have been grouped
under the Neural, Sensorimotor, and Motivational elicitor
categories, modeling the primary emotions for the agent.
For instance, via motivational elicitors, unsatisfied drives
produce Distress and Anger, whereas satiation generates
Happiness. Similarly, “synthetic bones” and “petting” elicit
Happiness, Fear includes an innate releaser for darkness,
and pain produces Distress and Anger. 

The robot’s Behavior System is composed of a distrib-
uted network of approximately nineteen different self-inter-
ested behaviors, directed in most part towards satisfying its
needs and interacting with humans. Examples of such
behaviors include “search for bone”, “approach bone”,
“recharge battery”, “wander”, “startle”, “avoid obsta-
cle”, “approach human”, and “express emotion”.

The user interacts with the robot in two different ways:
First, by controlling its affective style, which is done by
tweaking the different parameters described above (e.g.,
thresholds, gains, or inhibitory and excitatory connections)
for each Emotional System. And second, by providing stim-
uli for the agents, whether in the form of internal stimuli,
such as modifying the level of synthetic neurotransmitters
and internal variables, or external stimuli, such as hitting
the robot, showing the bone, and so on. 

Using the model described before, Virtual Yuppy pro-
duces emotional behaviors under different circumstances.
For instance, when its Curiosity drive is high, Virtual Yuppy
wanders around, looking for the synthetic bone which some
humans carry. When it encounters one, its level of Happi-
ness increases and specific behaviors, such as “wag the
tail”  and “approach the bone” become active. On the other
hand, as time passes by without finding any bone, its Dis-
tress level rises and sad behaviors, such as “droop the tail”,
get executed. Similarly, while wandering around, it may
encounter dark places which will elicit fearful responses in
which it backs up and changes direction.

Besides regulating action-selection and generating emo-
tional behaviors through primary emotions, Virtual Yuppy
learns secondary emotions which are stored as new or mod-
ified cognitive elicitors based on the associative network
model described before. For instance, after locating a bone,
the robot may approach it, thus approaching the human who
is carrying it. Depending on these interactions (e.g., humans
pet or hit the robot), Virtual Yuppy will create positive or
negative emotional memories with respect to humans, and
future selection of behaviors such as approaching or avoid-
ing them will be influenced. 

Related Work
Given the space limitations, a comprehensive review of
related work is not possible, and only the most relevant
work is discussed in this section. For an overview of various
models the reader is referred to [Picard 1997; Pfeifer 1988;
Hudlicka and Fellows 1996].

Most of the recent work on this area has focused on mod-
eling emotions for entertainment purposes. Some excellent
work in the area of believable agents includes Reilly’s Em
architecture [Reilly 1996] and Elliot’s Affective Reasoner
[Elliot 1992]. Both differ from our work in several impor-
tant ways. Their approach is mostly concerned with contri-
bution of appraisal to emotion, hence they emphasize on
cognitively generated emotions. In contrast, fast, primary
emotions, emergent emotions, and other affective phenom-
ena are not explicitly modeled or are otherwise oversimpli-
fied. Also, they do not model interactions with other
processes, including regulatory mechanisms (i.e. drives),
decision-making, and emotional learning.

It should be noted, however, that some of these differ-
ences may be due, in part, to the specific purpose for which
each model was designed. Their work is mostly aimed at
designing tools and models to create believable agents.
Therefore, rule-based approaches that emphasize more on
cognitive generation of emotion and less on designing a
plausible model, may be the most appropriate ones. 

Our work also relates to models of action-selection. A
number of researchers have proposed successful models of
action-selection for agents with multiple goals that operate
in unpredictable environments [Brooks 1986; Maes 1990,
Blumberg 1994; Tyrell 1993]. However, and in contrast to
the work presented here, most of these models do not con-
sider emotions as an integral part of the action-selection
process, and when they do, they do not include explicit



emotion models, emotional states, or moods, but rather sim-
plified internal variables that represent emotions as well as
other motivations such as hunger or thirst.

Conclusions
We have presented a flexible agent architecture that inte-
grates drives, emotions, and behaviors and that focuses on
emotions as the main motivational system that influences
how behaviors are selected and controlled. We have showed
how the mechanisms of primary emotions included in the
proposed model, and which have been inspired by work in
Neuropsychology and other fields, can be used to create
emotional memories, or secondary emotions that act as
biasing mechanisms during the process of making decisions
and selecting actions.

Acknowledgments
The author would like to thank Professor Rod Brooks for
his support of this work. Also, thanks to the entire Yuppy
team for their help. In particular, thanks to Charles Kemp
for his suggestion on simultaneous activation of non-con-
flicting behaviors. This research is part of the Yuppy project
which is funded by Yamaha.

References
Adolphs, R et al. 1996. Neuropsychological Approaches to

Reasoning and Decision-Making. In: Damasio, A., et al.
Eds. Neurobiology of Decision-Making. Berlin: Springer-
Verlag.

Altman, J. 1996. Epilogue: Models of Decision-Making. In:
Damasio, A., et al. Eds. Neurobiology of Decision-Mak-
ing. Berlin: Springer-Verlag.

Bates, J. 1994. The Role of Emotion in Believable Agents.
Communications of the ACM 37(7):122-125.

Bechara, A., et al. 1997. Deciding Advantageously Before
Knowing the Advantageous Strategy. In: Science, 275,
1293-1295.

Blumberg, B. 1994. Action-Selection in Hamsterdam: Les-
sons from Ethology. In Proceedings of SAB94, 108-117.
Brighton, England: MIT Press.

Brooks, R. 1986. A Robust Layered Control System For A
Mobile Robot. In: Robotics and Automation, RA-2(1).

Charney, D.S., and Redmond, DE. 1983. Neurobiological
Mechanisms in Human Anxiety. In: neuropharmacology,
22, 1531-1536.

Churchland, P.S. 1996. Feeling Reasons. In: Damasio, A.,
et al. Eds. Neurobiology of Decision-Making. Berlin:
Springer-Verlag.

Damasio, A. 1994. Descartes’ Error: Emotion, Reason, and
the Human Brain. New York: Gosset/Putnam.

Ekman, P. 1992. An Argument for Basic Emotions. In:
Stein, N. L., and Oatley, K. eds. Basic Emotions, 169-
200. Hove, UK: Lawrence Erlbaum.

Ekman, P., Levenson, R., and Friesen, W. 1983. Autonomic

Nervous System Activity Distinguishes Among Emo-
tions. In: Science, 221, 1208-1210.

Elliot, C.D. 1992. The Affective Reasoner: A Process
Model of Emotions in a Multi-Agent System. Ph.D. The-
sis, Institute for the Learning Sciences, Northwestern
University.

Fox, N., and Davidson, R. 1986. Taste-Elicited Changes in
facial Signs of Emotion and the Asymmetry of Brain
Electrical Activity in Human Newborns. In: Neuropsy-
chologia, 24, 417-422.

Frijda, N. 1986. The Emotions. Cambridge, UK: Cambridge
University Press.

Hudlicka, E., and Fellows, J. 1996. Review of Computa-
tional Models of Emotions. Tech. Report 9612, Psy-
chometrix.

Izard, C. 1991. The Psychology of Emotions. New York:
Plenum Press.

Izard, C. E. 1993. Four Systems for Emotion Activation:
Cognitive and Noncognitive Processes. Psychological
Review 100(1):68-90.

Johnson-Laird, P. and Oatley, K. 1992. Basic Emotions,
Rationality, and Folk Theory. In: Stein, N. L., and Oatley,
K. eds. Basic Emotions, 169-200. Lawrence Erlbaum.

Kitano, H. 1995. A Model for Hormonal Modulation of
Learning. In: Proceedings of IJCAI-95. Montreal. 

LeDoux, J. 1993. Emotional Memory Systems in the brain.
Behavioral and Brain Research, 58.

LeDoux, J. 1996. The Emotional Brain. New York: Simon
and Schuster.

Maes P. 1995. Artificial Life meets Entertainment: Lifelike
Autonomous Agents. Communications of the ACM. Spe-
cial Issue on Novel Applications of AI.

Maes P. 1990. Situated Agents Can Have Goals. Robotics
and Autonomous Systems, 6(1&2).

Meltzer, H.Y. et al. 1981. Serotonin Uptake in Blood Plate-
lets of Psychiatric Patients. In: Archives of General Psy-
chiatry, 38:1322-1326.

Minsky. M. 1986. The Society of Mind. New York: Simon &
Schuster.

Panksepp, J. 1995. The Emotional Brain and Biological
Psychiatry. Advances in Biological Psychiatry, 1, 263-
286. 

Pfeifer, R. 1988. Artificial Intelligence Models of Emotion.
In: Hamilton, V., Bower, G. H., and Frijda, N. eds. Cog-
nitive Perspectives on Emotion and Motivation, 287-320.
Netherlands: Kluwer.

Picard, R. 1997. Affective Computing. MIT Press.
Reilly S. 1996. Believable Social and Emotional Agents.

Technical Report, CMU-CS-96-138, School of Computer
Science, Carnegie Mellon University.

Tyrell, T. 1993. The Use of Hierarchies for Action Selec-
tion. In: Proceedings of SAB92.

Velásquez, J. 1997. Modeling Emotions and Other Motiva-
tions in Synthetic Agents. In: Proceedings of AAAI-97.


