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In this Huawei Research  issue, we explore AI's transformative power in industrial and scientific modeling and computing. 
Our focus encompasses a broad spectrum of topics, including computing architectures, data types, the intricacies of 
hardware-software co-design, the development of algorithm models and architectures, and the exploration of various 
theories. Our objective is to offer an in-depth yet easily understandable analysis of the prevailing challenges and 
opportunities in AI technologies.

We systematically explain how AI can be effectively applied in industrial and scientific modeling and computing to 
address problems that have remained unsolved for over 200 years and are challenging to solve using existing AI statistical 
modeling. We explore how computer graphics and multimedia technologies can be integrated to create holographic 
media representations and non-geometric 3D scenario modeling. Additionally, we discuss the development of intelligent 
devices that can work in harmony with humans and complex environments. We also delve into the development of 
robotics without the use of coordinate systems. Finally, we examine how nonlinear system signals can be processed in 
the signal and system domain, leading to more accurate modeling methods. We aim to provide valuable insights and 
guidance for the next generation of AI technologies to tackle complex challenges.

Spatial Computing introduces a novel, highly scalable architecture that transcends the conventional von Neumann 
model, designed to cater to the exponential computing power demands essential for AI advancements. Reprioritizing 
Speculative Task-Level Parallelism  presents Hive, a cutting-edge task-based execution model and multicore architecture 
that enhances performance and optimizes energy efficiency. Hive leverages a wealth of fine-grained parallelism inherent 
in algorithms, employing dynamic priority updates to optimize execution. Hive ensures the integrity of speculative 
scheduling updates and prevents spurious task conflicts, establishing itself as an industry-leading hardware solution 
that significantly outperforms software-only parallel schedulers in efficiency and performance. Exploration of Hybrid 
Optical-Electrical Switching Networks in AI Training Clusters presents a groundbreaking hybrid optical-electrical switching 
network tailored for large-scale, high-bandwidth, and adaptable operations, addressing the challenges of cost and power 
consumption prevalent in computationally intensive scenarios such as AI and high-performance computing (HPC). 
Additionally, it introduces a novel collective communication algorithm optimized for this hybrid network, enhancing the 
efficiency of communication operations within AI training clusters. Ascend HiFloat8 AI Training and Inference  doubles 
the computing power with a minimal increase in area by introducing an innovative 8-bit floating-point format, HiF8. 
This development, coupled with HiF8-based AI training and inference solutions, marks a substantial improvement in 
computing efficiency. To overcome hardware performance bottlenecks caused by complex CPU instructions for floating-
point square root (FP SQRT) computation, DP SQRT Computation Principle and Ultra-Low Latency Microarchitecture 
Design introduces an FP SQRT computation precision doubling method. This method segregates high and low bits and is 
paired with a corresponding microarchitecture design, enhancing computing precision and system performance.

In hardware-software co-design and optimization, modern language implementations are increasingly leveraging 
dynamic or just-in-time (JIT) compilation techniques. This approach capitalizes on a unique opportunity to monitor 
and analyze the state of a program during its execution, allowing for real-time optimizations and enhancements that 
traditional compilation methods cannot offer. Balancing the Yin and Yang of Dynamic Compilation and Execution 
proposes innovative strategies for hardware-software co-design. It introduces software-directed narrowly focused 
profiling on hardware to more detailed profiles with minimal overhead. Data-Centric Auto-Tuning of High-Performance 
Computing Applications presents DCTuner, a novel auto-tuning method for optimizing HPC applications. DCTuner 
uses a data-centric representation, integrating a pruning strategy and a greedy exploration algorithm. This method 
enhances the performance of HPC applications beyond the current state-of-the-art benchmarks while ensuring high 
portability. Humble Heroes  proposes a novel Algebraic Programming (ALP)/Pregel paradigm that scales well on a 
shared-memory parallel system and achieves speedups of up to 17.8x on common graph workloads, demonstrating that 



Editorial Note

Heng Liao
Chief Scientist of 2012 Labs

multiple humble programming models can be supported by a single software stack. Asynchronous Training and MoRe  
introduces the Momentum Reconstruction (MoRe) optimization technique, which achieves state-of-the-art convergence 
rates and generalization properties while reducing their memory requirements by a factor of two. Computational Graph 
Representation of Equations System Constructors in Hierarchical Circuit Simulation suggests using a computational graph 
representation to create an equations system constructor that supports dynamic parameters. This method, along with its 
JSON format netlist, simplifies the model development process and makes it easier to compute the gradients of equation 
remainders with respect to parameters.

In multidomain multimodal AI algorithms, MDMMT-2 delves into the analysis of datasets and training methodologies 
for text-image and text-video retrieval tasks. It introduces a sophisticated multistage training strategy for multilingual 
models, enhancing knowledge transfer efficiency and facilitating the use of noisy datasets during training without 
compromising prior knowledge integrity. Wasserstein Robust Reinforcement Learning  proposes an innovative zero-
order optimization method to address the max-min game in reinforcement learning, incorporating a constraint 
based on Wasserstein distance. This method demonstrates superior performance and efficiency in low- and high-
dimensional MuJoCo environments. Random Tensor Theory, Algorithms and Applications comprehensively explores 
tensor properties and classical tensor decomposition methods. It examines the application of random tensor theory 
in evaluating the performance of supervised and unsupervised learning, highlighting the pivotal role of tensors in AI 
applications. Dynamical Systems and Control Theory Perspective of Computation presents a groundbreaking perspective, 
conceptualizing computation as a control system that transitions from an initial state to a desired output. This 
novel approach integrates dynamical systems and control theory. It offers a framework for designing hybrid physical 
systems that balance energy consumption and accuracy, paving the way for substantial energy savings in large-scale 
computational tasks.
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In practical terms, connectionist AI algorithms have — over the past decade — functioned as a more effective statistical 
modeling approach for non-physical modeling tasks such as image classification, image segmentation, and machine 
translation. The development of connectionist AI has given rise to many new industries and brought huge economic benefits 
to them and society as a whole. AI algorithms have quickly drawn wide attention from both academia and industry thanks 
to their ability to solve problems related to the aforementioned modeling tasks — such problems could not otherwise be 
solved by using physical (or rule-based) modeling methods, which had been a common practice over the past two centuries 
of scientific development. Throughout that time, though, many difficult yet important problems remain unsolved or have 
not been adequately addressed. Some of these problems cannot be solved using only traditional methods, and even directly 
applying AI-based statistical modeling methods fails to produce any practical outcome for most of them. Worse yet is the 
wide variety of applications in which these problems are involved: scientific and industrial problem modeling and solving; 
integration of computer graphics and multimedia technologies (e.g., building holographic multimedia representations and 
modeling 3D scenarios with a non-geometric approach); manufacturing intelligent devices that collaborate harmoniously 
with humans and complex environments, or developing robotics without using coordinate systems; using highly structured 
advanced knowledge systems to realize automatic Q&A for both open and closed domains, and automated theorem 
proving; and processing nonlinear system signals in the signal and system domain, and developing higher-accuracy modeling 
methods for doing so. In this article, we review existing research for these applications and provide further insights.
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high-performance computing, AI
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AI algorithms have created incredible economic value over 
the past decade thanks to their increasing applications in 
several key fields.

In the security protection field, AI algorithms have made 
significant strides in computer graphics — they are 
comparable to or even outperform humans in image 
classification, segmentation, compression, enhancement, 
and recognition. And thanks to improvements in massive 
data storage, reading, and retrieval, AI algorithms have had 
a major impact in not only facilitating but also enhancing 
security protection across society.

AI algorithms have also been instrumental in the field 
of mobile phone applications. Take the camera snapshot 
function of mobile phones as an example — AI-based 
image processing helps to effectively ensure the quality of 
photo snapshots.

Another field in which AI algorithms create significant value 
is the autonomous driving industry. Here, AI technologies 
are heavily utilized in modeling the environment of 
vehicles and road obstacles, as well as in performing 
sensing, prediction, decision-making, control, and battery 
management functions.

And in the Internet field, AI algorithms enable big data 
analytics to do a remarkably good job in user profiling, 
thereby allowing content to be more personalized in order 
to achieve a better Internet surfing experience for users.

Essentially, AI algorithms benefit immensely from a data-
driven neural network architecture of deep learning and 
reinforcement learning where these algorithms are rooted. 
Unlike the analytical approach adopted by traditional 
computer algorithms, AI algorithms leverage big data 
statistics to solve problems in a much more effective 
way — this is even more noticeable when addressing 
certain types of problems that the traditional approach 
cannot solve. Nevertheless, the huge success of applying 
AI algorithms in the fields mentioned earlier also leads 
to a high homogeneity of research. So while researchers 
commit valuable resources to these key fields, they might 
inadvertently overlook other more important and difficult 
areas that require even larger investment.

This article focuses on several important areas where 
established science or existing AI technologies fail to fully 
solve certain problems. It will explore the following topics:

1 Introduction

2 A New Approach to Scientific 
Computing and Industrial 
Computing

•	 A New Approach to Scientific Computing and Industrial 
Computing

•	 A Novel Method of Integrating Computer Graphics and 
Multimedia Technologies

•	 A Groundbreaking Paradigm of Developing Autonomous 
Robotics

•	 A Fresh Understanding on the Learning and Reasoning 
of Structured Knowledge

•	 Material Basis of AI

Experiments, theories, and computing have been and continue 
to be three of the most important factors in advancing 
human science, enabling us to obtain and expand our 
control over information, energy, and matter. Before big data 
analytics emerged, processing information reliably depended 
primarily on physical modeling that utilizes mathematical 
symbols. Physical models have been advantageous because 
they are simple and specific, allow deductive reasoning, 
partially support analytical and numerical computation, 
and — very importantly — some of them are quantitatively 
verifiable through experiments. For instance, once Newton 
defined the concepts of point mass, rigid body, and the like, 
he was able to derive his laws of motion using parameters 
(e.g., position and velocity) that originated from those 
defined concepts. In a complex system, however, what 
may first appear to be an advantage may actually be a 
disadvantage. To demonstrate this, assume we use an ideal, 

simplified model of "spherical chickens in a vacuum" to 
perform computation — this model cannot actually solve any 
real-world problems. Given that data acquisition, storage, and 
computing have all become exceptionally convenient today, 
is it now possible to further explore the value of information 
in a more effective and efficient way than if we were to use 
traditional physical modeling methods? We will explore this 
possibility by analyzing traditional applied mathematics — a 
subject that closely combines symbols and experiments. It is 
comprised of the following five main steps:

•	 Create a mathematical model for a domain problem.

•	 Find the analytical or numerical method for solving the 
problem.

•	 Convert the problem-solving process into a computer 
algorithm.
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•	 Compile the algorithm as a software program.

•	 Optimize the algorithm and software iteratively, and 
implement large-scale parallelization.

Data is a product of "intelligence." But despite data storing 
the essence of intelligence information, it does so in quite 
a fragmented way. Due to the lack of effective methods 
for capturing salient information from data, human 
civilization has struggled throughout history. Traditional 
mathematical modeling primarily involves finding abstract 
equivalent representations of things, such as concept 
definitions, hypothetical conditions, and mathematical 
relations. Even though the study of mathematical relations 
attracts the attention of most scholars, concept definitions 
and hypotheses essentially determine the quality and 
significance of traditional mathematical modeling. Let's 
look at two typical examples — Kepler's Laws of Planetary 
Motion and Newton's Laws of Motion. Using a geometric 
language conceived by René Descartes, Kepler's Laws explain 
the motion of planetary bodies through the mathematical 
relations of several concepts such as planetary coordinates, 
time, and orbital parameters. Newton's Laws go one step 
further by coining the terms of mass, action relationship, 
and acceleration. Among them, the concept of "mass" 
unifies the measurement of all substances, meaning that all 
objects — from those as big as the Sun and the Moon to 
those as small as apples and oranges — can be measured 
by just one dimension, namely, their mass. Such symbolic 
abstractions, both mathematical and physical ones, are 
adopted by many scientific masterpieces, including Euclid's 
Elements written before antiquity, Newton's Mathematical 
Principles of Natural Philosophy in the 17th century, and 
Einstein's General Relativity in the 20th century. Similarly, 
Galois' group theory proposed in the 19th century unifies 
the algebraic structures with the concept of group. Later, 
quantum mechanics and quantum electrodynamics emerged 
to unify the action relationships between inorganic matters 
in nature through four fundamental interactions. This kind 
of representation, achieved in an "equivalent" or "unified" 
manner, has demonstrated remarkable advantages in the 
induction, deduction, and spreading of science throughout 
human civilization.

At the substance level, equivalent representation of action 
relationships has brought fundamental changes to society. 
Yet at the consciousness (or human intelligence) level, 

2.1 Creating a Mathematical Model 
for a Domain Problem

we still lack a unified representation that proves effective 
for modeling. On the one hand, it is impossible to acquire 
parameters from within the system — in this case, the 
human brain. On the other hand, rules summarized by 
humans do not perform well enough to address problems 
in open domains. For instance, in the early stages of 
development (in the 1950s), machine translation adopted 
a grammar rule–based approach (i.e., one based on expert 
knowledge) and consequently struggled to develop further 
due to the inefficiency of rule-based systems. It was not 
until data-driven statistical methods were employed in the 
1990s that machine translation began to deliver satisfactory 
performance. Although such modeling methods drove 
breakthroughs in speech recognition and text recognition, 
their value was not fully realized at that time because the 
capabilities of storing, reading, and processing big data 
still needed to be perfected. Later in 2012, data-driven 
neural networks emerged and demonstrated compelling 
performance in classification. Since then, statistical modeling 
based on neural networks has been creating unprecedented 
value in many fields.

The rapid development of neural network methods leads us 
to ask ourselves: What makes AI technologies so special? 
And what are the advantages and disadvantages of AI 
methods with respect to their technical principles? The 
currently popular "Datasets + Neural network architecture 
+ Gradient backpropagation" approach is actually an 
automated "Modeling + Training + Generalization & 
inference" framework designed for specific high-dimensional 
problems. The core philosophy of such a framework in terms 
of problem solving is "to make an assumption and verify it."

As an example, let's look at the modeling of an image 
classification problem. For a given set of images, the input 
dimensionality is d = 3 ∗ 224 ∗ 224, and an expectation 
function based on L1 loss is used as the target function. 
According to the universal approximation theorem, the 
approximation error of neural network fitting is independent 
of the input dimensionality. We can therefore use neural 
networks to model high-dimensional problems [1]. Weinan 
E et al. also analyzed in further detail the performance of 
two-layer neural networks and that of residual networks in 
Barron space and flow-induced function space separately [2].

Gradient disappearance and dispersion are two factors that 
we may encounter during the training of neural networks. 
However, we can address them by respectively selecting an 
appropriate activation function (e.g., the popular ReLU 
function) and normalizing parameters. For a neural network 
that has many layers, the training effect may not meet 

file:///H:/2023-%e7%ae%80%e5%8d%95%e6%8e%92%e7%89%88/%e6%9c%9f%e5%88%8a-%e8%ae%a1%e7%ae%97/%e6%9b%be%e4%ba%91%e8%be%89/%e8%8b%b1%e6%96%87%e6%8f%90%e6%8e%92%e7%89%88/javascript:;
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expectations — in this case, we can use a residual neural 
network (ResNet) to ensure the relevance of gradients [3]. 
In the case of an L-layer network, the attenuation of 
gradient relevance in a PlainNet without residual 

representation is 1

2L
, and that of a ResNet is only 1

√

L
 [4]. A 

ResNet is also more flexible in terms of its representation 
capability, and performs especially well in the selection and 
combined use of shallow and deep features. With these 
advantages, a ResNet is more suitable for learning from 
large datasets. From this, we can conclude that there is very 
little logical reasoning or deduction involved in the process 
of fixing training issues. Instead, theoretical analysis is often 
conducted on a solution that has been verified as valid 
through experiments. As such, we can determine that the 
ResNet representation of image classification problems 
provides us a better loss landscape [5] and considerably 
reduces the difficulty involved in gradient optimization. Even 
so, these advantages have yet to be theoretically proven in 
a strict sense.

Nevertheless, the main difficulty encountered in data-driven 
and AI-based statistical modeling lies in the generalization 
capability of models. Even if the previous training issues are 
addressed, the resulting models will still depend strongly 
on training data. Intuitively, we can see that the difficulty 
of generalizing a model goes up as the actual environment 
of inference and the training data become more and more 
dissimilar. The generalization predicament also occurs in 
traditional physical modeling — the most typical example 
of this is that Newtonian mechanics at the macro level 
does not apply to quantum mechanics at the micro level. 
Things become worse or even disastrous when we perform 
inference with an AI-based neural network model. This is 
because we cannot determine the scenario applicability 
(i.e., the generalization capability) of a model until the 
results of inference are verified. Theoretically, we can use 
the Rademacher complexity to describe a model's capability 
of fitting random noise on a given dataset. However, the 
bound provided by the Rademacher complexity can barely 
match real-world scenarios. Such difficulties are major 
factors that hinder the generalization of models. Is there 
a way to combine established science with big data–based 
AI technologies that are widely used today, so that we can 
find a "unified" information processing technology that 
brings higher efficiency and hence alleviate — to the largest 
degree practicable — the model generalization predicament 
of high-dimensional problems? Without a ready answer 
to this question, we can still study the following successful 
cases in industry to see whether they offer us some insights, 
either physically or mathematically.

•	 In what way is the Transformer architecture [6], which 
adopts a self-attention mechanism, similar to the action 
mechanism of universal gravitation and Coulomb force?

•	 How can we guarantee the equivariance of 3D roto-
translations [7] during the training of a neural network?

•	 Using side length restrictions of triangles, can we 
improve the method of training agent models for 
protein structure generation [8], such that AlphaFold2 
will reach a computational accuracy comparable to 
experimental results?

•	 Can momentum knowledge be leveraged to improve 
gradient optimization algorithms [9]?

Using implicit knowledge in big data to facilitate modeling 
remains an open and long-term undertaking. Now we 
explore several typical unsolved industrial problems, 
for which using the AI approach is expected to achieve 
breakthroughs.

OPC Modeling

To model the optical proximity correction (OPC) process of 
a lithography machine, for instance, the traditional method 
builds a physical model for each lens and then stacks these 
models. This method, while allowing us to obtain adequate 
results under relatively low accuracy requirements, is no 
longer effective when lenses approach their optical limits 
and the system becomes notably affected by factors such 
as temperature and lens imperfections. One possible 
approach of overcoming this issue is to construct a hybrid 
model that combines the deep neural network model and 
the traditional physical model. This approach has been 
preliminarily verified as effective — as such, it is fair to say 
that introducing AI methods in traditional modeling may 
bring very good results.

Optical Communication Module Modeling

In an optical-electrical conversion system used in optical 
communication, the presence of non-linear physical 
signals can cause dynamic damages and consequent 
coupling of the damages. As a result , the classical 
method of signal processing and modeling is unable to 
accurately model the signal conversion process and often 
produces a high bit error rate. Using AI technologies can 
help rectify the defects found in the physical models 
created for optical communication. With the novel AI 
approach, we can treat an optical-electrical conversion 
system as a non-l inear waveform transformation 
function. By using it, we can directly predict waveform 
transformation and therefore parse specific resulting 
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effects based on the predicted waveform. Furthermore, 
AI can detect non-linear signals in signal patterns 
during the early stages of simulation, making it possible 
to apply a compensation algorithm accordingly. AI 
detection is much more accurate and efficient than 
manual identification, especially when we consider 
the microscopic nature of non-linear signals and the 
difficulty in intuitively perceiving such signals.

Astronomical Phenomena Modeling

In astronomy, radio telescopes like China's FAST (Five-
hundred-meter Aperture Spherical Telescope) have 
profound capabilities of receiving and collecting signals, 
enabling the discovery of many astronomical phenomena 
such as pulsars and radio storms. Despite this, the signal 
processing capability of these telescopes falls far behind the 
speed at which they gather information — a performance 
bottleneck. In traditional signal processing, a radio telescope 
builds a physical model in the form of a time-frequency 
spectrogram that involves an unknown distance parameter. 
Waves of different frequencies spread at varied speeds, 
and these waves present distinct slopes in spectrogram 
signals. Leveraging these characteristics, scientists are able 
to determine the astronomical distance through a grid 
traversal of dispersion values or downsampling values, or by 
performing Gaussian fitting on the time axis. Nevertheless, 
this approach involves very high computational costs and is 
extremely inefficient.

Today, AI technologies offer the prospect of solving this 
problem. By labeling deterministic astronomical signal 
samples and learning from the labeled samples, we can 
directly determine signal waveforms in a graphical manner, 
enabling us to solve the astronomical distance based on 
the waveforms. This kind of problems involve a large 
amount of unlabeled data, in which case semi-supervised 
AI learning has demonstrated good performance. For 
example, a "distillation learning" algorithm can learn and 
train on de-dispersed data, and then transfer the resulting 
model to learn on non-de-dispersed data in order to 
provide predictions. Because blind search becomes feasible 
without the need to consider dispersion, such an algorithm 
considerably speeds up searches and can even realize real-
time search. Likewise, semi-supervised positive-unlabeled 
learning (or PU learning) algorithms can effectively explore 
a large amount of unlabeled data at a reasonably low 
training cost by mixing the unlabeled data with labeled 
samples. PU learning algorithms have yielded discoveries of 
valid pulse signals and achieve a higher detection efficiency.

Even with accurate physical modeling, solving high-
dimensional problems can still be catastrophic due to 
the absence of efficient methods. For instance, a method 
as powerful as the Schrödinger equation can only solve 
hydrogen atom problems accurately. To address this issue, 
academics have developed many approximation algorithms, 
for example, the density functional theory. The tradeoff 
between accuracy and computational complexity is always 
a thorny issue because we can never have both. As such, 
applying neural networks to solve high-dimensional partial 
differential equation (PDE) problems has naturally become 
a hot subject of research. This research is being conducted 
in the following two main directions.

First, we can use the dataset obtained through a traditional 
numerical solver to train a deep neural network, and 
then use this network as an agent simulator to achieve 
higher solving performance [10]. However, this approach 
does not allow theoretical analysis on accuracy bounds or 
convergence of solutions. Consequently, it does not provide 
any theoretical guarantee. In other words, this method 
provides only speculations for certain tasks that traditional 
methods fail to solve [11–13].

Second, we can use neural networks to learn mapping 
relationships between functions, and then use these 
mappings as operators for solving PDE problems. The two 
most typical research efforts in this regard are DeepONet 
[14] and the Fourier neural operator [15]. Once they are 
learned for an entire category of PDEs, these operators 
can be used directly for different initializations or 
bounds, without the need for retraining to be performed. 
Nonetheless, the specific PDE categories to which such 
operators are applicable still depends on further theoretical 
analysis [16, 17].

2.2 Problem Solving

3 A Novel Method of Integrating 
Computer Graphics and 
Multimedia Technologies

In computer graphics, an image is constructed and rendered 
based on a 3D geometric model in a coordinate system. 
Pixels are generated to form a corresponding image within 
geometric surfaces and grids, from a certain point of view 
or under specific illumination conditions. In multimedia 
processing, however, an image is generated after information 
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collected from the real world is processed by the color filter 
array and sensors, followed by a series of post-processing (such 
as de-mosaicization, white balance, and gamma correction). 
These two image generation methods have developed in 
parallel over the course of more than two decades. Only 
now though is it possible to integrate them thanks to the 
introduction and popularization of AI technologies.

Traditional computer graphics renders images on the basis 
of mathematical and physical modeling that utilizes the 
optical process (e.g., rasterization and ray tracing) of camera 
photographing. To approach this differently, the neural 
radiation field (NeRF) [18–20] and multiplane image (MPI) 
[21–23] techniques, along with many of their subsequent 
works, use deep learning for image rendering. In this case, 
the rendering process directly treats the model of 3D objects 
and their scenario as a function, which takes incident rays as 
input values and provides an output of reflected light rays 
with specific color, intensity, and direction information to 
represent an image. By learning functional mapping through 
AI, 3D models and images can be directly connected to 
each other without the use of geometric elements. This 
integrated approach creates new possibilities for further 
development of multimedia, graphics, and even metaverses.

Given the enormous applications of AI, it is only natural 
for us to think how we can enable more intelligence for 
machines or robots. Today's robots possess only simple 
and limited intelligence — their level of autonomy is 
far too weak to even complete tasks independently. 
Traditionally, we control robots by modeling their states 
and the environment in which they work based on a precise 
coordinate system. To put it differently, by using a robot's 
position, action, and state information collected through 
sensors and sensing algorithms, we can train a model with 
high-dimensional coordinates. As such, we can then use the 
model to predict and plan the robot's actions and the exact 
way in which each action happens (i.e., the path, distance, 
angle of movement, and so on). The planned information 
(i.e., instructions for the robot's next action) is then passed 
to the PID (Proportional-Integral-Derivative) controller for 
execution, with collaboration from the motor controller. This 
inefficient control process drastically limits the capabilities 
of robots compared to humans and animals.

Now that AI has demonstrated its breakthroughs in 
computer graphics, we can also apply AI methods in robot 
control. In other words, we can train an end-to-end, graph-
based control model that does not require the use of a 
coordinate system — similar to the case with computer 
graphics we mentioned earlier. Using this model, a robot 
can directly take actions based on what it has observed 
and learned, much the same as a living creature does. 
For example, if we want a robotic arm to strike a ball like 
a professional baseball player, we can train the arm by 
repeatedly throwing baseballs at it — with a certain degree 
of variation in how it is thrown — so that the arm learns 
how to hit each baseball perfectly. A robotic arm trained in 
this way can strike a baseball on par with a professional in 
real baseball games. Most importantly, such training has 
been preliminarily proved as being effective.

In the Internet age, big data usually comes in the form of 
dynamic, unstructured, but strongly correlated texts. Many 
experts renowned in the field of AI do not advocate adopting 
the structured approach of knowledge learning. Instead, 
they believe that demand-driven, fragmented information 
ingestion benefits AI learning better and can yield an optimal 
learning effect. That being said, the human race over several 
thousands of years of civilization has adopted a process of 
extracting and accumulating structured knowledge from 
fragmented information. In particular, the emergence of 
languages and characters — as a typical and well-known 
structured symbol system — has profoundly accelerated the 
transmission of information, virtually broken the limitations 
of time and space in knowledge transfer, and substantially 
pushed our ability to exponentially accumulate knowledge. 
Therefore, learning and reasoning of structured knowledge 
could be the ultimate problem of AI development.

The development of AI relies on data, algorithms, compute 
power, and applications. Among these four factors, data 
is usually sufficient, compute power is attainable, and AI 
application scenarios are broad enough to guarantee a 
promising future, whereas AI algorithms now turn out to be 
a major bottleneck. Learning and reasoning of structured 
knowledge can be leveraged to effectively address this 
bottleneck, helping us to achieve AI algorithm breakthroughs.
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A knowledge learning system can use a weighted mapping 
network to efficiently express structured knowledge, which 
maps to specific objects in real life. Such a system should 
possess some kind of "memory" and use this memory 
to continuously store new knowledge. Using the stored 
knowledge, the system should be able to perform repeated 
reasoning on new problems and eventually solve them.

In the industry, many ultra-large models were proposed 
on the basis of the Transformer architecture mentioned 
in Section 2.1. As an example, the GPT3 model [24] 
launched in 2020 adopted a new prompting approach and 
demonstrated human-level capabilities in many humanities 
areas, such as writing articles and even poetry. Yet even a 
model as large as GPT3 could not adequately understand 
certain structured knowledge, of which mathematics is 
a very typical subject. Performance evaluations of [25] 
showed that models had only near-random accuracy for 
most science, technology, engineering, and mathematics 
(STEM) tasks.

Just one year later, however, researches utilizing human-
like thinking (e.g., chain-of-thought prompting) emerged 
[26, 27], followed by works such as the Pathways Language 
Model (PaLM) [28] — a large language model that achieved 
scaling through the use of Pathways. Based on these works, 
the latest Minerva model [29] improved the accuracy of 
the MATH dataset (mathematics competition level for high 
school) [30] from 6.9% to 50.3% — compared to only 40% 
of an average high school student, after learning more than 
1.2 million arXiv papers in LaTeX format and a large amount 
of mathematical knowledge in webpages.

Mathematical symbol–based calculation and theorem 
proving have been effectively contributing to improving AI's 
reasoning and prediction abilities. To learn the calculation 
of mathematical symbols and theorem proving, AI can 
adopt a human-like learning approach in order to solve 
problems with limited knowledge and complex reasoning 
skills. This ability, which extends limited knowledge to 
infinite applications, will enable AI to achieve automated 
exploration, learning, and prediction in many more open 
fields. Currently, AI has excelled in some simple calculation 
and theorem proving, such as symbolic calculation of 
trigonometric functions [31] and solving elementary school–
level mathematical word problems. We expect that, in the 
future, AI will prove all theorems of advanced mathematics 
in a fully automated way. While this accomplishment will 
make AI capable of applying the knowledge it has learned, 
other optimization methods will take it to an even higher 
level. With theorem representation optimization through a 

hypertree [32], or with learning method optimization based 
on the GPT-f model [33] and Expert Iteration [34], Mathlib's 
tested inference accuracy for pass@1 has reached 63%, and 
a small number of International Mathematical Olympiad 
(IMO) contest questions have been successfully proved [34].

This AI approach based on structured knowledge also 
exhibits potential in solving open-domain problems. For 
example, an AI-based search engine can directly provide 
answers to some questions that require reasoning. This 
kind of search engine can actually be used as a chatbot 
[35], although such application may come at the expense 
of certain quality defects or sensitive issues. Such an AI 
approach kicks off the first yet critical step in solving open-
domain problems.

6 Material Basis of AI

The development of AI naturally relies on a material 
foundation. Throughout the development of traditional 
CPUs, the material basis has involved a complete 
system of single-chip microcomputers, PCs, servers, and 
supercomputing centers. Likewise, humanity as a whole 
needs to work together and establish a full AI material 
system from 10-cent single-chip microcomputers to 
1-billion-dollar supercomputing centers, in order to firmly 
sustain the rapid development of AI.
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Semiconductor manufacturing is still developing but results are being delivered at a slower pace. Emerging applications, 
like AI, are demanding exponentially more and more computing power. Processors based on the traditional von Neumann 
architecture are suffering from the constraints of the memory wall and power wall. And the overhead involved in 
maintaining the shared-memory model is increasing rapidly, making it more difficult to scale out computing systems. 
These factors make it impossible to meet the demand of applications for computing power. In terms of scalability, spatial 
computing — which uses the distributed memory system — is increasingly used to build high-performance computing 
systems. This paper summarizes the existing progress and challenges of spatial computing and briefly introduces HiSilicon's 
ongoing research on the applications, programming models, and computational graph partitioning and mapping of spatial 
computing.
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1 Introduction

Research into computer architecture has continued to 
advance as semiconductor manufacturing processes and 
application algorithms evolve. And the advancement of 
semiconductor manufacturing processes following Moore's 
Law is facilitating transistor manufacturing. Moreover, 
growing application algorithms manage to convert the 
computing power of transistors into actual productivity. On 
top of that, research into computer architecture has led to 
the development of more efficient organization methods, 
paving the way for transistors to achieve more effective 
computing power.

Spatial computing is one of the most valuable research 
directions of computer architectures. This paper illustrates 
the necessity of application of "More than Moore" — a new 
paradigm for computing power growth — in the research 
of computing system architecture from the application 
algorithm and manufacturing process perspectives. It also 
dives into the potential of spatial computing, an architecture 
of "More than von Neumann" that might provide extra 
computing power in the future. The paper then summarizes 
the current work and challenges in spatial computing 
architecture, and outlines the spatial computing research 
of the HiSilicon research team in fields such as application 
scenario analysis, programming model, and computational 
graph deployment.

1.1 More Than Moore

Moore's Law observes a virtuous cycle of economy where 
user consumption drives investment, which then fuels 
technological progress, and then the resulting product 
improvements and upgrades attract  further user 
consumption. However, the development of semiconductor 
manufacturing processes lacks fuel. As such, the virtuous 
cycle is on the brink of collapse. That is, the slowdown of 
technological progress attracts fewer new users, making it 
difficult to draw enough investment in technological 
progress, and this in turn results in slower technological 

Technical progress

Resources Market users

Promote

Invest

Attract

Technical progress
hindered

Resources
cut

Market users
shrunk

Promote

Invest

Attract

Figure 1 Virtuous cycle and vicious cycle of Moore's Law [1]

progress. Figure 1 illustrates these virtuous and vicious cycles.

As mentioned earlier, Moore's Law is essentially a 

commitment to stable growth that attracts continuous 

investment from social resources. What unequivocally attracts 

continuous social investment is not the growth of nominal 

parameters, but that of available computing power —  

essentially, the better life it brings. Thus, computing power 

is facing mounting challenges in cutting-edge fields related 

to the national economy and people's livelihoods. This is 

evident in numerous cases. For example, materials and 

drug design relies on the computational processing of 

molecular dynamics or computational chemistry to simulate 

system evolution [2]. The design and control of internal 

combustion engines depend on accurate hydrodynamics 

and structural mechanics modeling [3]. Accurate weather 

forecast and earthquake warning cannot be divorced from 

fast and precise geophysical simulation [4]. And accurate 

simulation and real-time control of electromagnetic fields 

make controlled nuclear fusion possible [5].

Numerical solutions of partial differential equations, such 

as the finite element method, have made outstanding 

achievements in scientific computing. But today, these 

conventional methods are not advanced enough to handle 

sophisticated issues, such as simulating complex chemical 

reactions or phenomena of turbulence and shock waves, and 

modeling phase transition processes. They fail to generate 

accurate computing results for large-scale systems and even 

get stuck during the initial stages. The major obstacle lies in 

the complex system and physical process as they depend on 

too many variables. When high-dimensional functions are 

used to represent the system, the curse of dimensionality 

arises, resulting in the inability to solve problems. As shown 

in Figure 2, the performance of the top 500 supercomputers 

has improved 1000-fold in the space of 10 years, from 2005 

to 2015. If three-dimensional grids had been used to solve 

partial differential equations, only a tenfold increase of the 

grid resolution could have been achieved over the same 

10-year period, not to mention the complex algorithm of 

the equation solver, which could further lower the final 

resolution improvement. The curse of dimensionality 
is substantially rooted in  function approximation, a 



14 | Communications of HUAWEI RESEARCH

Technological Foundation

June 2024

conventional method to handle issues with high complexity 
and low generalization based on polynomial functions and 
piecewise functions.

The AI method has been successfully applied in extensive 

fields such as image classification and natural language 

processing. At the same time, the AI method has been 

widely introduced into the scientific computing fields 

mentioned earlier and achieved a series of remarkable 

achievements. From the point of view of computational 

mathematics, the AI method provides an effective tool 

to solve high-dimensional mathematical problems. Given 

that the target approximation error is Є , the dimension 

of the problem to be solved is d , and the total number 

of parameters required for approximate modeling is 

m . The convergence rate of the traditional polynomial 

approximation will be Є ~  m −1/d. That is, when the error  

Є ~  0.1, the total number of parameters required is m  ~ 10d. 

However, the convergence rate of AI modeling based on 

neural networks is Є ~  m−1/2. That is, when the error Є ~  0.1, 

the total number of parameters required is only m  ~ 102.

The application scope of the AI method is limited due 

to its intrinsic nature of inexplicability. However, the AI 

method can contribute to solving some highly complex 

problems that other methods cannot solve. For example, 

analytical methods cannot simulate the scale of meaningful 

problems (such as first-principle simulation of organic 

chemical reactions) [2] within an acceptable period of 

time. Another example is that current analytical methods 

provide unstable solutions, requiring the introduction of 

many phenomenological methods (such as simulation 

of turbulent flows and phenomenological theory in high 

energy physics) [3]. These phenomenological methods 

depend on the experience or intuition of scientists, while 

the contemporary AI method can systematically improve 

the expression capability of empirical phenomenological 

models. In addition, the AI method is widely used in 

engineering practices that need to control the experimental 

system in real time. For example, in a magnetic confinement 

fusion experiment that mandates accurate control of the 

magnetic field position, the conventional high-precision 

electromagnetic field solution cannot achieve real-time 

control. Consequently, phenomenological models of many 

empirical parameters are used [5].

No pain, no gain, as the saying goes. Although the AI 

method has the potential to solve cutting-edge problems 

in science and engineering, it requires that larger-scale 

AI networks be built for complex systems such as natural 

language processing (NLP) and multiphysics. As shown in 

Figure 3, AI model sizes have increased by nearly four orders 

since 2018, posing new challenges to inference and training 

systems of AI networks. This drives computing system 
designers to adopt "More than Moore" — a computing 
power growth paradigm much faster than Moore's Law 
based on existing semiconductor manufacturing processes.

1.2 More Than von Neumann

Turing's paper in 1936 gave a precise mathematical 

description of the Turing machine and explored the 

boundary of the computable problem of the Turing machine 

[8]. As shown in Figure 4, the Turing machine consists of 

seven basic elements: a group of architectural states Q, a 

Figure 2 Computing power survey of the top 500 supercomputers [6]

Figure 3 AI model size growth by time [7]
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set of input characters Σ , a set of paper tape characters Γ , a 
set of state transition functions δ , an initial state q0 within Q, 
an acceptance state qaccept, and a rejection state qreject.

However, Turing did not dive into the implementation 
strategy of the Turing machine. It was von Neumann who 
proposed a realizable architecture of the Turing machine. 
In Figure 5, the von Neumann architecture defines a basic 
architecture including a control unit, arithmetic unit, 
and memory unit, meaning that it defines a method for 
implementing the aforementioned seven basic elements 
such as the architecture state Q and the state transition 
function δ  in a Turing machine. This method has been 
highly applicable despite the constraints of the digital circuit 
technology and semiconductor technology at that time, 
and has become the cornerstone of traditional computer 
architecture research.

The success of Moore's Law stems from its commitment 
to stable growth. Accordingly, architecture designers must 
continuously improve the computing power of computing 
systems with a certain methodology. Based on the hardware 
processor of the von Neumann architecture, software 
developers have developed large and complex high-level 
software ecosystems, which are even more expensive than 
hardware systems. The traditional von Neumann architecture 
agrees on a set of interfaces for software and hardware, 
including the instruction set architecture (ISA) and shared 

memory model, and separates their design. As such, 

hardware and software can be developed independently and 

smoothly inherit the existing software. Within this system, 

the compiler acts as a software-to-hardware mapping tool 

to design the controllable complexity, facilitating the success 

of the traditional architecture.

As modern semiconductor manufacturing processes and 

packaging technologies advance, obvious limitations are 

becoming apparent in the von Neumann architecture. 

Discrete memory and computing units lead to the memory 

and power consumption walls. Centralized control units 

also restrict system scalability. Assume that an application 

requires N transistors, the available transistor density is N, 

and the footprint of the computing system is S. Then,

	 N = ρ  × S	 (1)

The growth rate of transistor scale dN is calculated based 

on those of transistor density dρ  and computing system 

footprint dS

	 dN = dρ  × S + ρ  × dS	 (2)

As mentioned earlier, the growth rate of unit transistor 

density resulting from Moore's Law is far from meeting 

the requirements of new applications such as AI (dN » dρ  

x S). This requires computer architecture researchers to 

effectively and reliably organize transistors (in pursuit of a 

larger dS) in a larger footprint .

The rapid development of packaging technologies is an 

attempt to organize transistors in a larger footprint. In 

recent years, chiplet and wafer-scale technologies have 

been widely used by major chip enterprises in their own 

products. Traditional processor providers such as AMD, Intel, 

and NVIDIA have produced CPU and GPU chips based on 

Control unit

Arithmetic 
unit

Memory unit

Input device Output device

Processor

Figure 5 Traditional von Neumann architecture

Figure 6 Cerebras CS-1 [9] (left) and Tesla DoJo [10] (right) based on the wafer-scale technology
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the chiplet technology. Some startups and cross-border 
enterprises have also developed exploratory products based 
on the wafer-scale technology, such as Cerebras CS-1/2 and 
Tesla DoJo in Figure 6.

The shared memory model of the traditional architecture 
can inherit the existing high-level software. A method of 
implementing shared storage is to maintain a logically 
shared memory model on physically distributed storage 
data by using a consistency protocol (e.g., the CHI protocol 
[11] of ARM and the TSO [12] of Intel). The synchronization 
of status information initiated by the consistency protocol 
should be performed without requiring programmer 
involvement, meaning that the synchronization must be 
completed per unit time. In a traditional architecture, the 
unit time is usually at the level of nanoseconds, which is the 
execution duration of instructions.

High-density transistors following the Moore's Law 
predict ion can cont inuously improve the on-chip 
interconnect bandwidth. However, the on-chip interconnect 
latency cannot be continuously reduced due to the 
constraints of physical laws. In order to enlarge the chip 
size while trying to maintain the coherence and consistency 
to inherit the existing software ecosystem, the traditional 
von Neumann architecture framework must be abandoned. 
That means it is necessary to ease the existing coherence 
protocol to some extent, and to increase the granularity 
from the instruction level to the task level per unit time.

Although this change can open up a new path for 
continuous growth of computing power, it also implies 
a cost on the software stack. That is, programmers 
need to develop new applications based on a task-level 
programming model, or refactor existing code to adapt 
to new computing power. In addition, software architects 
are also facing new challenges in how to design and 
develop a set of tools based on new hardware abstraction 
or configurations to effectively schedule and manage 
computing tasks. High performance computing (HPC) has 
been challenging the potential of computing scalability, and 
some inspiring attempts have emerged in this field. Despite 
the difficulty involved in automatically converting existing 
codes into task-based descriptions, OmpSs/OpenMP has 
designed some task-based compiler directive statements to 
migrate codes successfully [13]. In areas where algorithms 
such as first principles and computational chemistry evolve 
rapidly for more computing power, scientists are willing 
to pay the cost of refactoring code. NAMD/NWChem is a 
typical task-based programming model of code refactoring [13].

2 From Spatial Computing to 
Computational Graphs

2.1 Spatial Computing in a Broader 
Sense

Figure 7a shows the processor architecture spectrum. 
Processors based on the conventional von Neumann 
architecture usually use centralized control logic and shared 
memory or register files, exchange data between arithmetic 
logic units (ALUs) by accessing the shared memory , and 
perform tasks in a time sequence of instruction fetching, 
data fetching, and execution, as shown in Figure 7b. In 
addition to the time dimension, the spatial computing 
architecture also considers the spatial dimension. That is, 
many processing engines (PEs) are integrated into a given 
space in order to execute tasks at the same time. They have 
independent control logic and distributed memories, and 
data directly flows between these PEs , as shown in Figure 7c.

Traditional spatial computing architectures use many 
simple PEs to form arrays in order to achieve a high degree 
of parallelism of application algorithms. These PEs can 
directly communicate with each other in a point-to-point 
manner without detouring from a shared memory. Each 
PE may be independently programmed, and dataflows 
are formed between PEs. CGRA and FPGA are typical 

Figure 7 Processor system architecture spectrum [14]
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examples of spatial computing architecture. Compared 
with the SIMD/SIMT architecture, the current spatial 

computing architecture processor is applicable to scenarios 

with significant producer-consumer dataflows (e.g., 

audio and video encoding and decoding, encryption, and 

communications).

As mentioned earlier, the decentralized control logic and 

distributed memory design of this architecture can fit into 

the physical implementation of hardware and achieve better 

scalability than the traditional von Neumann architecture 

does. However, in scenarios such as CGRA and FPGA, the 

PE granularity of a spatial computing processor is too 

small and lacks general programmability. It is difficult 

to carry a complex application with an obvious dynamic 

feature. Therefore, we attempt to expand the definition of 

spatial computing by replacing PEs with general-purpose 

processor cores in order to improve computing power and 

programmability. Our proposal ensures that multi-core 

processor clusters retain their dataflow design and work 

in pipeline mode. Spatial computing architectures such as 

CGRA and FPGA attempt to leverage fine-grained task-level 

parallelism in order to accelerate the computing process; 

the spatial computing architecture discussed in this paper 

aims to achieve better scalability using a similar distributed, 

decentralized design. This paper defines space computing in 

a broader sense — it is dedicated to extending computing 
tasks to a larger space at the architecture level . Therefore, 

this paper focuses on scenarios that require high scalability, 
such as high performance computing and AI training.

2.2 Abstract Layers of Computational 
Graphs

As shown on the left of Figure 8, research on the 
architecture is looking for a method M  that maps a 
mathematical algorithm A to a physical implementation P, 
that is, P=M(A). The traditional architecture, however, adds 

an abstraction layer (I) of ISA to divide the mapping into 
two phases — the software compilation phase (SW) from 
algorithm to ISA, and the hardware implementation phase 
(HW) from ISA to physical implementation, that is, I  = 
SW(M), and P = HW(I).

Based on the previous discussion, research into computer 
architecture is facing the following major challenges:

•	 Although the AI method provides new tools that can 
solve real-world problems, it significantly increases the 
complexity of algorithms.

•	 The growth rate of transistor density slows down and 
new packaging technologies such as chiplet and wafer-
scale technologies are introduced.

•	 As the complexity of algorithm A  and physical 
implementation P increases dramatically, the mapping 
M from the algorithm to physical implementation is 
facing a dimensional explosion in complexity.

Complexity is an inexhaustible objective presence caused 
only by defects in architecture design. As an aphorism of 
David Wheeler goes, "All problems in computer science can 
be solved by another level of indirection" [15]. As shown 
on the right of Figure 8, there is an attempt to add an 
abstraction layer of the computational graph G between 
the ISA and the algorithm layer. That is, the algorithm M is 
mapped to the computational graph G through the graph 
compiler GC. The computational graph is converted into the 
ISA by the operator compiler OC. The hardware architecture 
completes the physical implementation, that is, G = GC(M), 
I = OC(G), and P = HW(I).

In the new abstraction layer of computational graphs, the 
complexity of operators is shielded, and the dependencies 
between tasks as well as the input and output data are 
explicitly represented. Such a design coarsens the granularity 
of computation expressions of loads from the instruction 
level to the task level. In the traditional system architecture, 
the software compilation (SW) with dimensional explosion 
in complexity is divided into graph compilation (GC ) 
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and operator compilation (OC). In the phase of graph 
compilation, higher load granularity and explicit information 
can help graph optimization tools achieve efficient 
computing load deployment over a larger space.

3 Research Progress in the 
Industry

The industry has been exploring the boundaries of scalability 
with HPC for decades, providing significant reference value. 
The traditional cluster-level parallelism solution based on 
the programming model of message passing interface (MPI) 
and open multi-processing (OpenMP) has the following 
limitations in the HPC field:

•	 Poor programmability: MPI requires programmers to 
manually process data segmentation and load balancing, 
meaning that programming is reliant on the experience 
of a minority of professional programmers.

•	 Poor performance portability: Different supercomputing 
clusters have different hardware architectures. 
High scalability requires programmers to adapt an 
optimization solution to hardware.

•	 Difficult load balancing: Load imbalance, which 
causes low computing power utilization, occurs in 
strongly dynamic applications (such as sparse matrix 
computation, finite element analysis, and molecular 
dynamics simulation) when the process-thread model 

(i.e., MPI-OpenMP model) can only express coarse 

parallel granularity and the scheduling policy is fixed.

Due to these limitations, a series of graph-based solutions 

are proposed in the HPC field to bridge the gap between 

programmability and performance, and achieve better 

load balancing. The methods used in this field also involve 

programming models, runtime systems, and hardware 

acceleration. This section discusses several successful practices.

3.1 Legate

Legate, jointly developed by NVIDIA and Stanford 

University, can automatically deploy NumPy programs to 

heterogeneous distributed computing clusters. Legate is 

implemented on top of the Legion runtime system. Figure 9 

[16] shows the Legate's rationale.

Programmers simply call NumPy to implement algorithms 

by means of serial programming. The compiler uses 

each NumPy function call as an operator to analyze 

data dependencies between NumPy function calls, and 

to generate a computational graph in order to show the 

dependencies. First, the computational graph is submitted 

to the Legion runtime system. Then, Legate Mapper maps 

the graph and makes it run on heterogeneous computing 

clusters of different scales. Experiment results show that 

although Legate significantly underperforms compared with 

the manually tuned MPI, programmers can leverage Legate 
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to scale up from a single GPU to a cluster with multiple 
GPU enclosures, without needing to deal with complex 
parallel programming.

3.2 Charm++

Charm++ is a parallel programming framework developed 
by the University of Illinois Urbana-Champaign (UIUC). 
This object-oriented framework adopts the asynchronous 
messaging mechanism, as shown in Figure 10. Programmers 
can create a series of chare-objects that allow concurrent 
and asynchronous execution in Charm++. These objects can 
synchronize information by sending and receiving messages.

Implementations based on high-level semantics are 
compiled into computational graphs and submitted to 
the Charm++ runtime system, which deploys concurrent 
chare-objects (tasks) on multiple processors. Based on 
task status, the system automatically migrates each chare-
object (task) among processors to achieve dynamic load 
balancing. A series of applications developed based on 
Charm++ have been widely used, especially NAMD, which 
is a molecular dynamics simulation software. Molecular 
dynamics simulations generally face dynamic load 

imbalances, resulting in poor scalability. However, the 

Charm++ framework helps improve the scalability of NAMD, 

outperforming other competitors that are also developed 

based on the MPI and OpenMP architecture [13].

In addition, Charm++ frees programmers of distributed 

hardware awareness and has the runtime/toolchain capable 

of solving the parallelization problem. A high-linearity 

program (such as LeanMD written in Charm++) can be 

implemented on a cluster containing more than 10,000 

cores with only a few hundred lines of code. It largely 

facilitates verification of new algorithms for scientists.

3.3 Anton

Anton is a tailored computing chip developed by D. E. 

Shaw Research for molecular dynamics simulations. The 

computing cluster built on this chip achieves performance 

far beyond Summit, a supercomputing cluster. Figure 11 [18] 

provides details about Anton.

For different kernels involved in molecular dynamics 

simulations, Anton integrates heterogeneous computing 

units, specifically, customized accelerator pairwise point 

Figure 10 Charm++ programming model based on concurrent chare-objects (above) and Charm++ runtime software (below) [17]
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interaction modules (PPIMs) and programmable geometry 

cores. To effectively organize these computing units, Anton 

also customizes on-chip interconnect systems and inter-

chip interconnect systems. Unlike classic server chips and 

AI chips, Anton focuses on low communication latency for 

better scalability. As shown in Figure 11, the cross-node 

end-to-end communication latency of the Anton system 

can reach as low as 90.1 ns. To achieve load balancing in 

molecular dynamics simulations, Anton also designs a task 

scheduler and an event-driven programming model that 

integrates hardware and software.

4 Spatial Computing Design 
Scheme

As described in Section 2, against a backdrop of increasingly 

complex application algorithms and hardware resulting 

from chiplet and wafer-scale technologies, we try to deploy 

complex computing tasks on large-scale hardware  efficiently 

by adding an abstraction layer to the computational 

graph. The scheme described in this paper therefore 

focuses on applications that require high scalability and 

scenarios that have complex distribution of hardware 

resources in the system. For example, a distributed training 

cluster and an HPC cluster oriented to an AI foundation 

network generally integrate a plurality of heterogeneous 

computing resources. These clusters consist of networks 

with different topologies across the pod, node, chip, and 

die levels. In addition, the system includes multiple storage 

resources with different bandwidths and delays, such as 

the on-chip static random-access memory (SRAM), in-

package high bandwidth memory (HBM), and out-of-

package dynamic random-access memory (DRAM). The 

design scheme of spatial computing is shown in Figure 12. 

Spatial computing supports the description of algorithms 

in high-level languages and compilation of algorithms into 

computational graphs. The deployment and scheduling 

of computational graphs are classified into two phases: 

offline scheduling and online running scheduling. These are 

described in the following sections.

Figure 11 Anton system architecture (above) and Anton photos (below) [18]
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4.1 Computational Graph and 
Hardware Resource Graph

The existing computational graph schemes (such as 
Legate and Charm++) in the HPC field usually assume 
high homogeneity of hardware systems. As such, they 
focus only on the partition, deployment, and scheduling 
of computational graphs. For example, Fugaku uses 
homogeneous A64FX compute nodes to achieve 6D 
torus interconnect. Compute nodes in each dimension 
are homogeneous and have the same interconnection 
bandwidth [19]. Similarly, although the Summit system 
consists of CPU-GPU heterogeneous nodes, the nodes 
are interconnected through fat-trees to ensure the same 
interconnect bandwidth among nodes [20].

Conversely, the emerging chiplet/wafer-scale system is 
heterogeneous. For example, in the DoJo system, the node 
at the edge of the wafer has far lower memory access 
latency (due to its converged interconnection bandwidth) 
compared with the node at the center of the wafer. In 
addition, in modern computing systems, data movements 
consume much more time and energy than computing does. 
Therefore, the deployment of computing tasks requires 
there be location awareness in order to ensure good 
hardware utilization. As shown in Figure 12, the input of the 
spatial computing scheme needs to include a computational 
graph that describes the load information of the computing 
task, the operator information of the computing task, and a 
hardware resource graph that describes the distribution of 
hardware resources. The computational graph is compiled 

by high-level languages such as Python and Julia. The 
operator information includes the size of the input and 
output data of the computing task and the load of the 
computing task, as shown in Figure 13. The hardware 
resource graph includes the computing power of the 
computing unit, capacity of the memory unit, interconnect 
topology, bandwidth, and delay, as shown in Figure 13.

4.2 Annotation, Partition, Mapping, 
and Pre-scheduling of Offline 
Computational Graphs

The offline scheduling process based on the computational 
graph, operator information, and hardware resource graph 
is as follows:

•	 Computat ional  graph annotat ion :  The input 
computational graph and operator information are 
shown in Figure 12. In the computational graph 
marking stage, the operator information is marked 
in the computational graph. In Figure 14b, the 
computational graph contains the unique IDs of all 
computing tasks, input and output data information 
of computing tasks, and control flow dependencies 
between computing tasks. After the marking of the 
computational graph, each node in the computational 
graph is added with the load size and required storage 
size of each computing task. Operator information such 
as data movement across tasks is added to each edge 
of the computational graph.

Figure 13 (a) Example of operator information; (b) Example of a hardware resource graph
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•	 Computational graph partition: Figure 14c gives an 
example. The partitions of the computational graph 
include the information related to the computing tasks 
(as provided by the marked computational graph) and 
the hardware resource graph (which includes processor 
computing power, memory capacity, interconnect 
latency, and bandwidth). Graph partition is based on the 
following assumptions: 

(1)	 The partition of computing tasks is proportional to 
the computing power provided by the hardware. 

(2)	 The memory required by the computing tasks is 
within the memory capacity. 

(3)	 The cutting edges of the graph are minimized to 
reduce memory movements.

•	 Computational graph mapping: Figure 15a–b gives 
an example. The mapping process includes the phases 
of mapping and communication path planning. In 
the mapping phase, according to the spatial position 
relationship between hardware computing units, a method 
similar to the placement algorithm in the electronic design 
automation (EDA) is adopted to allocate the sub-graphs 
divided from the computational graph to computing units 
with different computing power in different locations. In 
this mapping process, two tasks involving the transfer 

of a large block of data are allocated to physically 
closer hardware computing units. In the communication 
path planning phase, a method similar to the routing 
algorithm in the EDA is used. The interconnect bandwidth 
and topology relationship between compute nodes are 
considered, and an appropriate path is selected for each 
data movement task to ensure balanced communication 
traffic on the interconnect.

•	 Computational graph pre-scheduling: Figure 15c  
shows a schematic diagram. After the original 
computational graph is partitioned and mapped, 
multiple tasks can still be executed at the same time. 
In the pre-scheduling phase, tasks in the computational 
graph are sorted by topology in the time domain and 
executed by priority (PRTY) to optimize the overall task 
execution efficiency.

Figure 16 shows the offline scheduling result . Each 
computing unit is assigned a computational subgraph, which 
contains a series of computing tasks with clearly-declared 
dependencies, and each computing task is annotated with 
a priority (PRTY) for reference by the runtime scheduling 
software. In addition, each subgraph further includes a data 
movement task across computing units, and a notification 
task for releasing a control dependency relationship to a 
remote computing unit.

(a) (b) (c)

(a) (b) (c)

Figure 14 (a) Graph example; (b) Graph annotation; (c) Graph partition

Figure 15 (a) Graph mapping; (b) Graph communication planning; (c) Graph pre-scheduling
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4.3 Runtime Load Balancing and 
Computational Graph Dynamic 
Migration

Figure 17 shows the basic modules and functions of the 
runtime software. According to the aforementioned offline 
scheduling results, runtime software of each compute 
node stores a corresponding computational subgraph and 
maintains a released task queue, an input queue, and an 
output queue.

In the computing process, the main functions of the runtime 
software are as follows: 

(1)	 Check the computing task dependency in the 
computational graph and add those that meet the 
dependency to the released task queue. 

(2)	 Select a computing task from the release task queue 
according to the occupation status of the hardware 
resources and deploy the computing task to the 
processor core for execution. 

(3)	 When the computing task is completed, if, for example, 
a subsequent task or input data of the computing task 
is located at a remote node, send the corresponding 
notification or initiate a data movement task to the 
output queue. 

(4)	 Receive notification and data movement tasks in the 
input queue, and update related information in the 
local computational graph.

In addition, the runtime software monitors the release 
task queue usage of the local node and its adjacent nodes. 
When the occupation of the release task queue exceeds 
or falls below a certain threshold, the task is migrated in 
work-stealing or spilling mode. This mechanism can ensure 
better hardware usage for applications with strong dynamic 
features, such as sparse matrix solution and molecular 
dynamics simulation.

5 Prototype System Verification

5.1 Experiment Settings

Based on the spatial computing design scheme mentioned 
earlier, we build a prototype system to verify its feasibility. 
The experiment uses the training of an AI foundation 
network (Megatron network) as an example application. In 
Figure 18a, the Megatron network includes 72 transformer 
encoder layers, and each layer in the computational graph 
includes forward propagation (FP), backward propagation 
(BP), and gradient descent computing tasks. It is assumed 
that the chip is comprised of multiple chiplets, including 

Figure 16 Offline scheduling result

Figure 17 Schematic diagram of the running software
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the CPU Die for general-purpose computing and the AI Die 
for AI computing, as shown in Figure 18b. The hardware 
resource distribution of the chip is described in the hardware 
resource diagram in Section 4. The training process of 
the AI network is similar to the pipeline parallel mode 
[20] adopted by Microsoft's PipeDream. In Figure 18c, the 
parallel method is implemented among chiplets at a micro-
batch granularity. (Each chiplet computes some of the 
layers, and processes FP and BP computation in turns based 
on the dependency.)

5.2 Experiment Results

Figure 19 compares manual deployment and automatic 
deployment based on the spatial computing scheme 
mentioned earlier. Manual deployment evenly allocates 
different layers of an AI network into multiple chiplets, and 
implements pipeline parallelism similar to that in Figure 
18c through programming. This method relies on the 
programmer's experience to complete the task partition 
and deployment, and requires manual optimization of the 
distributed system. Conversely, in the spatial computing 

scheme, the programmer only needs to use high-level 

languages to describe the algorithm and adopt the serial 

programming mode without perceiving the distribution 

among chiplets. A compiler generates computational graphs 

and automatically implements partition, deployment, and 

global optimization with tools. In comparing Figure 19a and 

Figure 19b, it can be seen that the behavior of the automatic 

deployment is slightly different from that of the manual 

deployment. The advantages of the former are as follows:

•	 The automat ic  dep loyment  scheme based on 

computational graphs can simplify the optimization work 

of programmers. The results of automatic deployment 

may be slightly lower than those of manual optimization. 

However, automatic deployment can quickly achieve 

better performance in new applications or portation of 

existing applications to a new hardware platform.

•	 The automat ic  dep loyment  scheme based on 

computational graphs can be globally optimized based 

on computational graphs and hardware resource graphs.

•	 �Based on more comprehensive information and graph 

optimization algorithms, automated schemes for spatial 

computing may acquire better deployment strategies.

(a)

(b) (c)

Microbatch ID

Microbatch ID

Forward 
propagation

Backward 
propagation

Figure 18 (a) Computational graph; (b) Hardware structure; (c) Scheduling actions

Figure 19 (a) Manual deployment; (b) Automatic deployment

(a) (b) 
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Table 1 Performance comparison between manual deployment and automatic deployment

Manual Deployment Spatial Auto-Deployment
ResNet-50 x1 x1.01

Bert-Large x1 x1.02

VGG-16 x1 x0.98

Inception x1 x1.01

•	 The automat ic  dep loyment  scheme based on 
computat ional graphs can add informat ion at 
high priority for each task in the entire graph. The 
information can help the runtime software in dynamic 
load balancing.

Experiment results show that automatic deployment can 
achieve similar performance to that in manual optimization 
(2% higher by automatic deployment).

We have also performed similar pipel ine paral lel 
experiments on ResNet, Bert-Large, VGG-16, and Inception 
networks. Table 1 shows that automatic deployment based 
on spatial computing can achieve performance close to 
manual deployment.

6 Conclusion

Algorithms represented by the AI method are strikingly 
complex. At the same time, the growth of the computing 
power density is slowing due to the slowdown of Moore's 
Law. Against this backdrop, spatial computing is dedicated 
to extending computing tasks to a larger spatial extent at 

the architectural level. However, the methods to achieve 
high scalability of computation usually rely on professional 
programmers carrying out manual optimization, resulting in 
programming difficulties and poor performance portability. 
Spatial computing tries to add an abstraction layer of 
computational graphs, take operator-level large-granularity 
tasks as basic scheduling units, and achieve a tradeoff 
between programmability and scalability during the graph 
building and operator building phases.

With numerous attempts, the industry has made remarkable 
achievements. Based on the industry progress, service 
requirements, and technology experience, the HiSilicon research 
team has organized and proposed the preliminary scheme 
of spatial computing and made some progress. However, 
the team still faces a series of challenges. For example, the 
boundary division between computational graph and operator 
is empirical, meaning that the selection of operator granularity 
needs systematic methodology. More attempts should be 
made in high-scalability hardware interconnect architecture 
for spatial computing. Graph optimization and scheduling 
algorithms involved in the estimation of operator information 
and the compilation of computational graphs also involve 
more algorithmic obstacles.
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Task-based programming and execution models expose massive parallelism to achieve performance improvement and 
energy savings. While many implementations are non-speculative, task-level speculation has proved critical when exploiting 
parallelism in irregular algorithms, such as graph analytics. However, prior models lack expressive semantics regarding 
scheduler data structures, leaving much performance unexploited.

Specifically, many algorithms schedule tasks, according to a priority order for correctness or faster convergence. While 
priority schedulers commonly implement task enqueue and dequeueMin operations, some algorithms need a priority update 
operation that alters the scheduling metadata for a task. Prior software and hardware systems that support scheduling with 
priority updates compromise on parallelism, work-efficiency, or even correctness.

We present Hive, a task-based execution model and multicore architecture that extracts abundant fine-grain parallelism 
from algorithms with priority updates, while retaining their strict priority schedules. Like prior hardware systems for ordered 
parallelism, Hive uses data- and control-dependence speculation and a large speculative window to execute tasks in parallel 
and out-of-order. Hive improves on prior work by directly supporting updates in the interface, identifying the novel scheduler-
carried dependence, and speculating on such dependences with task versioning, distinct from data versioning. Hive enables 
safe speculative updates to the schedule and prevents spurious conflicts among tasks to better utilize speculation tracking 
resources and efficiently uncover more parallelism. Across a suite of nine benchmarks, Hive improves performance at 256 cores 
by up to 2.8× over the next best hardware solution, and even more over software-only parallel schedulers.
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1 Introduction

Task-based programming and execution models have 

received increasing attention as they are promising to 

provide better scalability than their conventional thread-
based counterparts. Multicores strive to keep functional 

units busy by exploiting parallelism both across threads 

(thread-level parallel ism) and within each thread 

(instruction-level parallelism). However, thread-based 

programming models have significant limitations, affecting 

performance and energy efficiency.

Specifically, thread-based models incur three issues. 

First, threads are not designed for expressing fine-grain 

parallelism. For instance, a piece of code with an execution 

time of ten microseconds can hardly be treated as a thread, 

because the scheduling overheads in the OS kernel would 

dominate, causing significant performance loss. Therefore, 

microsecond-level parallelism can hardly be captured 

by the thread model. Second, thread-based models are 

not as expressive and rely on OS schedulers heavily. A 

typical practice of thread programming is to create many 

threads, often many more than the hardware can support 

concurrently, to use synchronization primitives to express 

their dependencies separately, and to leave them to the OS 

scheduler [49]. Third, many irregular  applications, where 

control flow and data accesses are hard to know statically, 

still suffer from limited available parallelism, e.g., they are 

hard to scale to a few tens of cores or hard to program [31].

Task-based models are much more surgical than thread-

based ones. First , tasks can easily carry additional 

information, such as dependences or timestamps, to express 

complex control or data flows. For instance, OpenMP 4.0 

[13] allows programmers to specify the data dependences 

of a task. Swarm [25, 26] allows users to use per-task 

timestamps to enforce a task order. Second, task-based 

models typically adopt a two-tier scheduling mode. While 

thread-based models have kernel-level scheduling only, 

task-based models adopt both kernel-level scheduling, 

which maps threads to hardware execution units, and 

user-level scheduling, which maps tasks to threads. This 

hierarchical design reduces the burden on the OS scheduler, 

and is especially useful when the system workloads are 

high. Third, this user-level scheduling is a natural fit for 

hardware acceleration. The hardware-assisted timestamp-

based conflict detection and resolution in Swarm are great 

examples. Such architectural support can significantly reduce 

scheduling overheads, enabling more fine-grain parallelism 

to be exploited, and hence resulting in better scalability and 
energy efficiency.

Prior work on task-based models can be categorized 
based on whether it uses speculation to extract task-
level parallelism. Though instruction-level speculation is 
fundamental for modern out-of-order processors to extract 
instruction-level parallelism, task-level speculation has 
caused debates, as it has demonstrated great performance 
potential in some cases, but may incur high area overheads 
and design complexity.

Specifically, non-speculative task-based programming 
models have been widely adopted. Many programming 
languages are nonspeculative, such as OpenMP [13], 
NESL [12], Cilk [19], and X10 [14]. Such systems avoid 
the complexity brought in by speculation, such as version 
management and conflict detection, but leave performance 
on the table.

Speculative approaches have been studied extensively in 
academia, mainly through three dominant execution models. 
Thread-level speculation (TLS) automatically extracts task-
level parallelism from sequential programs. Transactional 
memory (TM) performs optimistic synchronization of usually 
unordered transactions in multithreaded programs. Swarm 
adopts timestamps in the programming model to express 
and force the order of tasks, and relies on architectural 
support to exploit the parallelism across small independent 
tasks.

However, prior ordered speculative task-based models still 
suffer from limited semantics. Typically, they must add 
software scheduling structures that shadow the hardware 
ones, tracking much of the same state redundantly, 
and they must write early exiting tasks to emulate the 
sequential behavior. Such programs clog the speculative 
task-tracking data structures of the hardware, resulting in 
stalls and reduced throughput. In this paper, we focus on a 
specific operation: priority updates.

2 Motivation

2.1 Priority Updates

The optimal or fast-converging algorithms for many 
prob lems requ i re  the i r  work  i tems ,  or  tasks ,  to 
execute according to some priority order. Sequential 
implementations use a priority queue to schedule the tasks. 
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In particular, we focus on those algorithms that dynamically 

alter the task schedule with priority update operations [18, 

58] that associate an object ID with a priority. For example, 

some graph algorithms will assign an initial priority to 

every vertex (ID). Their executions consist of processing 

the highest-priority vertex, updating the priorities of its 

neighbors, and then repeating the process in a loop with the 

next highest priority vertex.

Ideally, these algorithms should have abundant task-level 

parallelism, as true data dependences among tasks (loop 

iterations) are rare for sparse data structures like graphs. 

However, practically extracting this parallelism is challenging 

as it requires (i)  ensuring irregular data dependences flow 

in the required order and (ii) circumventing the false data 

dependences on the global scheduling structure, which 

every task would otherwise read and write. Software and 

hardware systems exploit this ordered irregular parallelism 

[41] using one or more of three techniques: bulk-

synchronous parallelism, speculative parallelism, or relaxing 

the order.

Current software parallel frameworks strive to drive 

down scheduling overheads. Bucketing [16, 65] is a bulk-

synchronous approach that executes groups of equal-

priority tasks (buckets) in parallel.

Bucketing can retain a strict priority order, giving work-

efficient implementations, but the barriers between buckets 

limit parallelism when there is little work per bucket. 

Moreover, priority updates on the schedule can create even 

more buckets, further constraining parallelism. Speculative 

techniques [11, 22, 23, 30] uncover parallelism across 
priorities , speculating that tasks will access independent 

data, circumventing barriers. However, speculation 

overheads in software overwhelm the benefits of inter-

priority parallelism for small tasks [22, 23]. Schedulers 

that relax the priority order [4, 5, 32, 39, 44, 48, 51, 61, 63, 

66] present a middle ground between these techniques, 

providing a best effort to dispatch tasks in order, but 

with only probabilistic guarantees, if any. Approximating 

the desired task order circumvents barriers and enables 

distributing software queues to reduce contention due 

to scheduling. However, relaxation is only amenable to 

those algorithms where task ordering is not required for 

correctness, but instead reduces redundant work to improve 

convergence time [2, 3, 36, 39]. Moreover, the higher the 

core count, the greater the deviation from the desired 

priority order, worsening work efficiency and convergence 

time [6, 51].

Prior order-aware hardware systems are subject to the same 
parallelism vs. relaxation trade-off, or do not support priority 
update operations. PolyGraph [15] provides relaxed priority 
semantics or accelerated bulk-synchronous execution, 
but does not provide a scalable strict priority schedule 
with update semantics. Thread-level speculation [21, 28, 
46, 47, 54, 55, 57] targets the automatic parallelization 
of sequential code, so it couples loop iteration order to 
execution order. Consequently, to schedule new work to 
execute at a future time, a scheduling structure in software 
is still required, serializing all tasks with dependences 
through the scheduler. In contrast, hardware for speculative 
ordered parallelism, such as Swarm [25, 26], Fractal [56], 
and Chronos [1], can implement a dynamic strict priority 
schedule. However, the sequential queue that these systems 
abstract supports only enqueue and dequeueMin operations, 
notably not a priority update.

Hive [43] is an execution model and speculative multicore 
architecture to express and extract parallelism from ordered 
algorithms with priority updates. We characterize the 
implications of a strict priority schedule with updates, and 
the complex scheduler-carried dependences created between 
successive tasks in the schedule. The Hive execution model 
enables the programmer to convey the desired priority 
schedule (and updates) directly to hardware, abstracting a 
strict priority queue. Our Hive implementation adds modest 
area to the Swarm architecture, extracting parallelism from 
the abstract queue by speculatively executing tasks out of 
priority order. Importantly, Hive introduces task versioning, a 
method of speculating on scheduler dependences, similarly 
to how memory versioning enables data dependence 
speculation.

2.2 Case Study: k-Core Decomposition 
Problem

The optimal algorithm for the k -core decomposition 
problem [35, 50] (kcore) requires a strict priority schedule 
supporting priority updates, and illustrates the challenges 
and opportunities in this work. The maximum core, or 
coreness, of a vertex is an important property in a variety of 
domains, including graph mining [52], graph visualization 
[8], statistical mechanics [37], ecosystem analysis [38], 
and bioinformatics [62]. The coreness can represent the 
importance of a vertex [34] or its position in a hierarchical 
description of the graph [8]. A k-core of an undirected 
graph is a maximal set of vertices where every vertex has at 
least k edges to other vertices in the k-core.



30 | Communications of HUAWEI RESEARCH

Technological Foundation

June 2024

Listing 1 shows the sequential algorithm for kcore, which 

determines the coreness of each vertex in the graph. In 

essence, for each increasing value of k , the algorithm 

recursively removes all vertices with degree k, then repeats 
with the next value of k , until no vertices remain. The k 
value at which a vertex is removed is its coreness.

This algorithm depends on three priority queue operations. 
In addition to the enqueue and dequeueMin operations 
typical of any priority queue [60] (e.g., the C++std: 
:priority_queue), it also uses decrementPrio [18, 58] 
(e.g., in the boostfibonacci_heap).1 The latter operation 
indexes into the queue by vertex (ID) and updates its priority 
to dynamically alter the vertex's position in the schedule.
1 This code adds a fourth getPrio command for readability.

The priority schedule of kcore is required for correctness. 

However, there is ample parallelism available in kcore, 

once the false data dependences on the scheduling 

structure [25] are abstracted away. In the running example, 

iterations that operate on the blue and orange vertices are 

independent and could therefore be processed in parallel. 

However, current software and hardware are incapable 

of efficiently unlocking this parallelism for the following 

reasons. 

Priority updates often outnumber dequeues: Since 
vertices on average have more than one neighbor, then 
kcore will at least consider calling decrementPrio more 
than it calls dequeueMin. Figure 3 shows the high ratio 
of conditional updates vs. dequeues on large inputs for 
our benchmark suite of nine algorithms, including kcore 
(see Section 6.1 for methodology). The ratio is greater 
than 1 for all benchmarks except astar, which terminates 
before exploring the entire graph, and mm, where priority 
updates can only eliminate two thirds of the fine-grain 
tasks [24], capping the ratio at 1. Since priority updates can 
comprise the majority of an algorithm's work, they must be 
performed in a scalable and efficient way.

Priority updates cause poor performance in software: 

Like enqueue and dequeueMin, priority updates are read-

modify-write operations on the scheduling structure, so they 

contend when performed on a shared global state. Software 

schedulers with privatization [32, 39, 51, 63] mitigate some 

contention, but they consequently do not update the global 

scheduler immediately. Therefore, to maintain kcore's strict 

priority schedule, systems such as Julienne [16] and Ordered 

GraphIt [65] use bulk-synchronous parallelism among 

equal-priority tasks and apply reductions to the privatized 

queues into a consistent state at barriers. These systems can 

only extract parallelism from the potentially limited work 

between barriers, and are unable to extract parallelism 

across priorities.

Listing 1 Sequential code for kcore

1 PriorityQueue pq;

2 for (int v : G.V)

3   pq.inquire(v, G.degree[v]);

4 while (!pq.empty()) {

5   int v, int prio = pq.dequeueMin();

6   coreness[v] = prio;

7   for (int nbr : G.edges[v])

8     if (pq.getPrio(nbr) > prio)

9       pq.decrementPrio(nbr);

10 }

Figure 3 Ratio of scheduler updates to dequeues at 1 core

Figure 1 Graph labeled with the coreness of each vertex
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To extract parallelism across priorities, the alternatives to 
synchronous execution are relaxation, speculation, and task 
dependence graphs. Relaxed priority queues are ineligible 
for kcore because relaxed scheduling can lead to incorrect 
outputs. kcore's tiny tasks and abundant updates would 
lead to high overheads in scheduler-aware speculation [22, 
30], and kinetic dependence graphs [23], as observed in 
similar algorithms.

Priority updates have poor performance in hardware: 
Hardware implementations do not support explicit priority 
update operations without either relaxing the schedule [15] 
or requiring schedule tracking metadata in software.

Swarm [25] and Chronos [1] provide strict priority 
scheduling, using hardware speculation to extract 
parallelism across priorities, but lack built-in support for 
priority updates. A programmer wishing to write a program 
with priority updates must (i ) implement a scheduling 
metadata structure in software to track the current priority 
of each object, and (ii) restructure task code to check the 
metadata and exit early if the task's object priority has been 
updated, making the task moot. This is similar to writing 
Listing 1 with a priority queue that only supports enqueue 
and dequeueMin, as shown in Listing 2. This code is largely 
similar to Listing 1, with the exceptions of lines 10 and 12–

14. Line 10 checks the priority-tracking metadata structure 
to ensure that vertex v was not already processed at an 
earlier priority. If it was, the loop exits that task early and 
moves on to the next vertex. Because the queue does not 
support priority updates, lines 12–14 instead conditionally 
decrement the priority of v's neighbors in the scheduling 
metadata and enqueue a new task for each vertex nbr at 

its new priority. When the old later-ordered task dequeues, 
it will exit early at line 10.

Having tasks check a condition and potentially do nothing 
is similar to predication of instructions as an alternative 
to conditional branches [7]. Early exiting tasks fill the 
speculation state-tracking structures with tasks that are 
practically NOPs. Although task-level predication is a valid 
approach, we advocate for a more expressive execution 
model and hardware support to better utilize on-chip 
resources for extracting reprioritizable ordered parallelism.

3 Hive Execution Model

A Hive program consists of priority-ordered tasks  which 
can be logically bound to objects to enable updates to the 
schedule. Hive hardware extracts speculative parallelism 
across hundreds of cores by finding independent tasks to run 
out-of-order. However, Hive guarantees the program output 
will always match that of a sequential thread scheduling 
the tasks in a priority queue supporting updates [18, 58]. 
Every task can read and write arbitrary shared memory, 
dynamically update tasks bound to objects, and enqueue 
new tasks unbounded from any object. The update and 
enqueue operations assign each task an integer timestamp 
which encodes its priority order in the modeled queue. Hive 
objects are the program's core data type for scheduling, and 
each object is identifiable with a unique number, such as a 
memory address or ID. The programmer defines objects as 
needed in application memory. Hive records the binding for 
every object ID to one or no queued task in an object table 
residing in a protected region of memory, inaccessible to the 
tasks except through an API. When no queued task is bound 
to an object, the object table instead records the timestamp 
of the object's last queued task (or infinity if none).

Hive ensures that tasks appear to  execute in increasing 
timestamp order, as if a sequential loop repeatedly 
dequeues the lowest-timestamp task from the modeled 
queue, runs it, then dequeues the next task, until the queue 
is empty. Tasks with equal timestamp are atomic, being 
serialized arbitrarily among each other. This execution 
model has two key consequences: (i)  a task's enqueued 
child tasks appear to execute only after the parent task 
finishes — child tasks are ordered after the parent task —
and (ii) a task's accesses to shared memory and its updates 
to object-task binding appear to happen atomically and 
before the next task in priority order would be dequeued.

1 PriorityQueue pq;

2 int prios[G.n]; // Scheduling metadata

3 for (int v : G.V) {

4   prios[v] = G.degree[v];

5   pq.enqueue(v, prios[v]);

6 }

7 while (!pq.empty()) {

8   int v, int prio = pq.dequeueMin();

9   // Skip if this iteration/task is moot

10   if (prio > prios[v]) continue;

11   for (int nbr : G.edges[v])

12     if (prios[nbr] > prio) {

13       prios[nbr]--;

14       pq.enqueue(nbr, prios[nbr]);

15     }

16 }

17 coreness = prios

Listing 2 Sequential kcore without priority updates
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Table 1 shows the Hive API, which programs use to enqueue 
tasks and manipulate the object-task bindings. Listing 3 shows 
the API in action with a Hive implementation of kcore.

A Hive task is an instance of a function with timestamp and 
arguments received through registers. Listing 3 defines one 
task function, removeV, which logically removes a vertex 
v (a Hive object) from the graph, performing the work of 
lines 6–9 of Listing 1.

Any task can set, update, or cancel tasks bound to 
objects, by calling the given (inlined) Hive functions with 
a task function pointer, timestamp, and arguments. These 
are passed to hardware through registers with one new 
instruction. While these basic  operations provide sufficient 
schedule manipulation for some programs, others require 
timestamp-relative  task updates that depend on the 
timestamp of the task currently bound to an object. One 
could implement such relative updates with hive::getTS 
and hive::update, but (i) this complicates programming, 
and (ii)  it hurts performance with remote accesses to 
the object table in memory. The Hive interface improves 

expressiveness by adding min, increment, and decrement 
updates, similar to those in DSLs [65].

Listing 3 uses both basic and relative task updates. The 
main function binds an initial removeV task to every vertex 
by calling hive::update with timestamp equal to v's 
original degree. The removeV task itself decrements the 
task timestamp (degree) for all neighbors of its vertex v. 
Since kcore tasks are ordered by their current degree, 
removeV implicitly sets v's coreness in the object table as 
the last (and only) timestamp for a task that executed on v.

Table 1 Hive programming interface

Signature Description

void hive::init<flags>(nobjs)
Reserve object table capacity for nobjs objects with no initially 
queued tasks. Empty (null) tasks implicitly have timestamp infinity.

void
hive::extract(Timestamp* 

dest)

Extract the timestamp of the last task that executed for every 
object ID.

void
hive::update(taskFn, oid, 

ts, args...)
Replace or set the queued task bound to object oid.

void hive::cancel(oid)

Remove the queued task bound to object oid. This is either an 
update with timestamp infinity, or an updateMin with timestamp 
0 and an empty task.

Timestamp hive::getTS(oid)
Return the timestamp of the task currently or last executed bound 
to oid.

void
hive::enqueue(taskFn, ts, 

args...)
Queue a task unbounded from any object.

void
hive::updateMin(taskFn, 

oid, ts, args...)

Replace the queued task bound to object oid only if ts < 
hive::getTS(oid).

void
hive::incrTS(taskFn, oid, 

delta, args...)

Replace the queued task bound to object oid, adding a signed 
delta to the previous timestamp. NOP if there is no task bound to 
the object.

void
hive::decrTS(taskFn, oid, 

delta, args...)

Replace the queued task bound to object oid, where the new 
timestamp is equal to the max of the previous timestamp minus an 
unsigned delta and the caller's timestamp, only if doing so would 
decrease the timestamp. NOP otherwise, or if there is no task 
bound to the object.

TS
-R
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at
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e

Ba
si

c

1 void removeV(Vertex* v, Timestamp ts) { // Task

2   for (Vertex* nbr : v->neighbors())

3     hive::decrTS(&removeV, nbr, 1);

4 }

5 void main(int argc, char** argv) {

6   hive::init(G.n);

7   for (Vertex* v : G.V)

8     hive::update(&removeV, v, v->degree);

9   hive::run();

10   hive::extract(coreness);

11 }

Listing 3 Hive implementation of kcore
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A program invokes Hive by initializing the object table 

(hive::init), enqueuing or updating some initial task(s), 

then calling hive::run, which returns control to the main 

thread when there are no more tasks to run. Listing 3 

initializes the object table with one entry for every vertex 

in the graph. In many algorithms, the program output is in 

fact the priority at which every task ran, so Hive provides 

the hive::extract function to copy the last timestamp 

for every object to a buffer in application memory.

4 Speculative Parallelism amid 
Priority Updates

Hive software directly conveys its dynamic scheduling 

needs to hardware, expressing implicit parallelism through 

task enqueues and updates. Our goal with the Hive 

implementation is to extract abundant parallelism among 

the queued tasks. Because safe parallel executions for 

these irregular algorithms cannot be statically determined 

at compile time, Hive executes queued tasks in parallel 

and out-of-order, speculating that they are independent. 

Specifically, Hive speculates that for every executing task:

•	 its data-dependent predecessors have performed their 

stores,

•	 its parent task did not misspeculate, and

•	 it will not become Moot: replaced or canceled.

The Swarm architecture [25] similarly speculates on the first 

two conditions (data and control dependences, respectively), 

making it a natural baseline upon which to build Hive. This 

section gives an overview of Hive's approach to parallelism, 

identifying similarities and differences between Swarm and 

Hive, and highlighting the key insights that enable Hive to 

speculate efficiently amid priority updates.

4.1 Similarities and Differences with 
Swarm

Both Swarm and Hive detect data misspeculation by 

tracking the memory read and write sets of all tasks and 

piggy-backing on cache coherence requests. When two 

tasks access the same data with at least one writing, both 

systems identify a dependence order violation based on 

task timestamps and access types, and abort and restart the 

later-ordered task if necessary.

Both systems handle control misspeculation by tracking 
child tasks. A parent task may have created its child tasks 
based on incorrect control flow due to misspeculating on 
data. If the parent task aborts, both systems abort all its 
control-misspeculated descendents, recursively.

The key distinction of Hive hardware from Swarm is 
Hive's built-in support for updates to the schedule, or 
how it speculates on scheduler-carried dependences . 
While Swarm can only rely on its support for data and 
control misspeculation, Hive maintains multiple versions 
of scheduler-dependent tasks, with all but one per object 
being in a Moot state. This reduces Moot task overheads, 
while retaining the ability to recover from priority update 
misspeculation.

4.2 Scheduler Dependences and Moot 
Tasks

We identify the scheduler-carried dependence as a new 
class which resembles both data and control dependences, 
but is neither. A task t is scheduler-dependent on task s if, 
when s appears to begin executing, t  is scheduled after s , 
and either

•	 s mutates scheduler state corresponding to t , or

•	 t  is scheduler-dependent on u , and u  is scheduler-
dependent on s.

Scheduler-carried dependences arise in systems where 
scheduler state of future tasks is accessible and mutable. 
One example is when a Hive task s cancels the task t bound 
to some object. The execution or existence of t is scheduler-
dependent on s. Another example is in processors with 
self-modifying code [59], if we view each instruction as 
an individual task. To exit a loop, a store instruction would 
overwrite the jump target address in the memory location 
of a later PC [20]. The jump instruction is scheduler-
dependent on the store. Swarm tasks are never scheduler-
dependent, because Swarm has no mutable scheduler state.

Like how predication can transform control dependences 
into data dependences [7], one can transform scheduler-
carried dependences into a combination of control and 
data dependences. Consequently, Swarm can implement 
the Hive execution model using only its data- and control-
dependence speculation. For example, Listing 4 shows a 
Swarm implementation of kcore. We replace each Hive 
operation with reads and writes of scheduling metadata in 
memory (prios) and task enqueue (line 7). Now, every 
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update operation produces a new task, and each task first 

checks memory to see if it is still scheduled to run, exiting 

early if not (line 3).

Priority update operations often outnumber dequeues in 

algorithms with updatable priority queues. Therefore, the 

majority of tasks in Swarm implementations will dequeue, 

perform a single memory read, and exit early with no effect 

on program state. For example, the early exit path of Listing 

4 will trigger more than 36× more often than not (Figure 3). 

We call these early exiting tasks Moot because they might 

as well have not run at all.

In a Swarm system, every Moot task consumes cycles on a 

core while waiting on its memory access, and its speculative 

state with non-empty read set consumes precious hardware 

resources until it commits in order. Wasting core and 

speculation resources on Moot tasks can cause stalls, 

hurting program performance.

In contrast, Hive speculates on a lack of scheduler-

carried dependences among tasks, but it recovers from 

misspeculation by holding multiple speculative task versions 

for the same object. Unlike Swarm, Hive does not treat 

these versions as separate tasks: only one will appear to 

dequeue and run, matching the sequential semantics.

Hive temporarily holds the others in an explicit Moot state. 

Hive does not execute Moot task versions and aborts a task 

if it becomes Moot after dequeue. Hive clears Moot versions 

out of its hardware resources when their fate becomes 

non-speculative. This is always earlier than they would be 

committed as normal tasks in Swarm. We provide more 

detail in Section 5.

5 Hive Implementation

Given the overview of Hive's approach to speculative 
parallelism, we now present an implementation of Hive as 
an extension to the Swarm microarchitecture [24, 25, 27], 
visualized in Figure 4. With restrictions, Hive could also 
be adapted to the Chronos [1] accelerator for speculative 
ordered parallelism, which we leave to future work. We 
first describe Swarm's main features for task-level data and 
control speculation. We then turn to Hive's modifications 
that enable detection and recovery from scheduler-
dependence misspeculation.

5.1 Hive Microarchitecture

Hive generalizes the Swarm microarchitecture to support 
(i)  logically binding ordered tasks and objects, and 
(ii)  speculating on the outcome of scheduler-carried 
dependences. To implement the former, Hive introduces the 
object table in memory. To achieve the latter, Hive adapts 
Swarm task unit structures, shown in Figure 4, to enable 
task versioning. For simplicity, we describe Hive hardware 
assuming only support for the hive::update operation, 
along with hive::init only. The full paper [43] contains 
the complete description of other operations.

Object table entries represent non-speculative object-task 
bindings. The object table has an entry for every Hive object 
o, pointing to the task version currently (or last) bound to o. 
Misspeculating tasks must never corrupt the object table.

The programmer specifies the number of object table entries 
to allocate with hive::init. We implement the object 
table as an array and leave dynamic creation and destruction 
of objects to future work (e.g., via hash table or tree).

Speculative task versioning: Hive buffers task descriptors 
in the TQs for all task versions for all objects, alongside any 

Listing 4 The Swarm implementation of kcore transforms scheduler-carried 
dependences into data and control dependences, as did Listing 2 for sequential code.

1 Timestamp prios[G.n]; // Scheduling metadata

2 void removeV(Timestamp ts, Vertex* v) { // Task

3   if (prios[v->id] < ts) return;

4   for (Vertex* ngh : v->neighbors()) {

5     if (prios[ngh->id] <= ts) continue;

6     prios[ngh->id]--;

7     swarm::enqueue(&removeV, prios[ngh->id], ngh);

8   }

9 }

10 void main(int argc, char** argv) {

11   for (Vertex* v : G.V) {

12     prios[v->id] = v->degree;

13     swarm::enqueue(&removeV, prios[v->id], v);

14   }

15   swarm::run();

16   coreness = prios;

17 }

Figure 4 Swarm and Hive system configuration
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enqueued tasks unbounded from objects. A task calling 
update creates a task with a similar asynchronous send 

scheme as enqueue. Like enqueue, the parent task tracks 

the location of its child task. Unlike enqueue, the child task 

may be speculatively replacing (or replaced by) another task 

for the same object, making it a speculative task version.

Hive sends new task versions for the same object to the 

same tile. Like Swarm's spatial hints insight, tasks bound 

to the same object are likely to access the same data, 

leveraging locality. Unlike (optional) spatial hints, co-

locating same-object tasks is required to prevent races 

on the object table and simplify detection of scheduler-

dependence misspeculation.

Mootness detection and recovery: Hive must detect 

and recover from two cases of scheduler-dependence 

misspeculation. First, a task version that is idle, running, 

or finished could be replaced by an update operation, 

making it speculatively Moot. Second, a task version 

previously found to be Moot may have been replaced by a 

misspeculating task calling update, and should be restored.

Hive expands the Swarm task descriptor [25, 26], to 

facilitate mootness detection. Update operations add the 

virtual time (VT) of the task responsible for creating the 

task version. This is usually the parent task that directly 

called update, but read-only spawner trees [64] propagate 

the parentVT from their root task to increase parallelism.

A task unit detects which task versions are newly made 

Moot when it receives a new task descriptor for a priority 

update to object o. The task unit inserts the incoming task 

version ti  to a free slot in the TQ and object map. and 

compares two VT fields of ti  with those of all task versions 

for o in the TQ. Based on the following rules, moot tasks are 

determined and actions such as aborts or slot replacement 

are performed accordingly.

parentVT(tq) < parentVT(ti) < VT(tq) => tq is Moot
parentVT(tq) < VT(tq) < parentVT(ti) => neither is Moot
parentVT(ti) < parentVT(tq) < VT(ti) => ti is Moot
parentVT(ti) < VT(ti) < parentVT(tq) => neither is Moot

Object map: Hive adds an object map to every task unit to 

accelerate task-version queries. This associative array maps 

an object ID to the set of TQ entries that hold task versions 

for the given object. We move the object ID field out of the 

TQ and into the object map.

Clearing Moot task versions: When a task commits, its 

child tasks are no longer control-speculative but they 

may remain data-dependent or scheduler-dependent on 

other speculative tasks. Swarm and Hive virtualize the 
TQ by making idle control-non-speculative tasks spillable 
to memory. Hive also clears Moot tasks from the TQ and 
object map by exploiting scheduler-non-speculative object-
task bindings.

5.2 Hive Overheads

Swarm adds modest overheads [25] to a multicore and 
Hive adds more, with the key addition of a 2KB CAM for 
the object map per task unit. We use CACTI 7.0 [10] to 
estimate the area of Bloom filters, SRAMs, and CAMs for a 
32 nm process. We estimate the order queue area by scaling 
a commercial 28 nm TCAM [9]. The total storage area 
of a Hive task unit is less than 3% of a 45 nm Nehalem 
processor [17] when scaled up to a 45 nm process.

6 Evaluation

We evaluate Hive across nine benchmarks that require, 
or benefit from, priority scheduling with updates. We find 
that Hive consistently outperforms Swarm and software-
only parallel implementations, with speedups of up to 2.8× 
over Swarm at 256 cores (gmean 52%) and more over 
software. Papers [42, 43] also characterize Hive and Swarm 
performance sensitivity to graph structure, and show the 
performance impact of restricting scheduling features.

6.1 Methodology

Modeled system: We adapt an open-source1, cycle-level, 
execution-driven simulator based on Pin [33, 40] to model 
Hive, Swarm, and multicore systems of up to 256 cores. 
Swarm parameters are consistent with prior work [24, 25, 
27, 56, 64]. We use detailed core, cache, network, and main 
memory models, and simulate all task and speculation 
overheads (e.g., task traffic, running misspeculating tasks 
until they abort, simulating conflict and mootness check 
and rollback delays and traffic, etc.). We also simulate 
smaller systems with square meshes (K × K tiles for K  ≤ 8), 
keeping per-core cache sizes and queue capacities constant. 
Because aggregate cache and queue capacity grows, we see 
superlinear speedup on several benchmarks.

1 https://github.com/SwarmArch/sim
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Benchmarks: We ported four graph benchmarks to Hive 
(astar, bfs, sssp, and mis) from prior Swarm work [1, 
25, 27, 56]. We also ported one statistical inference (rbp 
[2]), one optimization (setcover [16]), and three graph 
algorithms to Hive and Swarm: kcore [16], msf (minimum 
spanning forest) [29, 45, 53] and mm (greedy maximal 
matching) [53]. The full paper [43] contains a complete 
description of our methodology.

We fast-forward each benchmark to the start of its parallel 
region and run the entire parallel region. We perform 
enough runs to achieve 95% confidence intervals ≤ 1%.

6.2 Hive Performance

Figure 5 compares the performance of Hive, Swarm, and 
software-only parallel versions of our benchmarks, as the 
system scales from 1–256 cores. Hive always outperforms 
both, with speedups over parallel software of 3.3× (rbp) 
to 124× (sssp) at 256 cores (gmean 23×). Software-only 
versions struggle to scale to hundreds of cores on these 
inputs, so we do not consider them further. The benefits 
of Hive over Swarm vary with algorithm and input. At 256 
cores, Hive yields between modest speedups of 11–22% 
(astar, mm, rbp) to large speedups of 1.9× (sssp) and 2.8× 
(kcore) (gmean 52%).

Figure 6 gives more insight into these results by showing 

execution time breakdowns for Swarm and Hive versions 

at 256 cores. Each pair of bars shows a benchmark, with 

the height of a bar giving the execution time relative to 

Swarm. Each bar breaks down how cores spend their cycles, 

executing (i)  tasks that eventually commit or (ii) later 

abort; and cycles spent (iii) spilling tasks to/from memory; 

(iv)  stalled on a full TSB or CQ; or (v) idle because there 

are no (non-Moot in Hive) tasks available to run. The figure 

overlays the update-to-dequeue ratio of Figure 3 on the 

right y-axis. We analyze overall trends first, then focus on 

outliers kcore and mm. The results show that Hive reduces 

committed task cycles across all benchmarks, and reduces 

the cycles stalled on resource exhaustion for most of them.

7 Conclusion

Foundational and emerging algorithms depend on a strict 

task ordering for correctness. However, hardware systems 

that support task order lack crucial update operations. 

We have examined the semantics of the priority update 

operation, and in doing so, uncovered a new class of 

dependence, the scheduler-carried dependence . We have 

described how this new dependence occurs and the 

necessary invariants required to avoid violating it, as well 

as implications of these invariants. Using these insights, 

we introduced Hive, an execution model and hardware 

architecture that implements a scalable priority queue with 

priority update operations. Hive achieves up to 2.8× speedup 

over Swarm at 256 cores, whereas software solutions fail to 

scale to such large system sizes. We envision this effort as 

one step toward our ultimate goal: designing software and 

hardware support for both speculative and non-speculative 

task-based programming and execution models.
Figure 5 Speedup of Hive, Swarm, and software-only versions on 1–256 cores, 

normalized to tuned 1c Swarm

Figure 6 Breakdown of total core cycles at 256 cores, comparing Swarm and Hive 
(lower is better)
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Electrical switching networks in heavy computing scenarios such as AI and high-performance computing (HPC) are troubled 
by the high cost and power consumption of non-blocking fat trees. In addition, hash conflicts also cause severe performance 
loss. To resolve these issues, this paper proposes to build a large-scale, high-bandwidth, and flexible hybrid optical-electrical 
switching network by leveraging the large number of ports on the micro-electro-mechanical system (MEMS) optical 
cross-connect (OXC), the high-bandwidth feature of wavelength aggregation optical components, and the flexibility of a 
super node architecture. In addition, for the key AllReduce and AlltoAll communication operators, this paper proposes a 
new collective communication algorithm to adapt to the hybrid optical-electrical switching network. Experimental results 
and analysis show that in the ResNet50 data parallel training scenario, a 64-NPU prototype system provides the same 
performance as the optimal non-congestion electrical network. In addition, a cluster of 4K to 32K (K = 1024) NPUs reduces 
the end-to-end power consumption of the entire system by about 10%. To satisfy the requirements of future hybrid HPC/
AI scenarios, we further propose the FAT-Dragonfly+ topology and pipelined collective communication algorithm based on 
existing work, pointing out a new direction for the future exploration of hybrid optical-electrical switching networks.
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AI, neural network, large model, distributed training, collective communication, optical communication, optical cross-
connect
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In the AI field, by using simple neural-network architecture 
and combining big data sets, high computing power, 
and large-scale training parameters, a large neural 
network model surpasses complex algorithms in precision 
performance. In the natural language processing (NLP) 
field, the industry has embarked on a race for large models. 
The parameter number of large models increased from 340 
million (in 2018) of Bidirectional Encoder Representations 
from Transformers (BERT) [1], 1.5 billion (in 2019) of 
Generative Pre-trained Transformer 2 (GPT-2) [2], and 175 
billion (in 2020) of GPT-3 [3] to 1.6 trillion (in 2021) of 
Switch Transformer [4]. Huawei also released the Pangu-α 
model [5] in 2021, with up to 200 billion parameters.

The rapid growth of the model s ize poses higher 
requirements on hardware infrastructure such as computing 
power and memory. The supercomputer cluster jointly built 
by Microsoft and OpenAI has 285,000 central processing 
unit (CPU) cores and 10,000 graphics processing units 
(GPUs), providing a training platform1 for AI models such as 
GPT-3. And Meta is building the AI Research SuperCluster 
(RSC) — a supercomputer for AI research — that has 760 
computing nodes and 6080 NVIDIA DGX A100 GPUs. Meta 
plans to increase the number of GPUs in the RSC to 16,0002 
by 2022.

However, simply stacking machines does not necessarily 
increase the overall computing power of AI clusters. In the 
distributed training of a large model, a large training task 
is usually split into smaller parts and distributed to multiple 
nodes, with each node then distributing its part of the 
task to multiple neural processing units (NPUs). Because 
each NPU completes only a part of the task, they need to 
communicate with each other in order to exchange data and 
aggregate computation results. The high computing power 
of an AI cluster can be fully utilized only when computing 
and communication in the cluster are well coordinated.

Stacking large numbers of computing devices poses 
demanding challenges to NPUs interconnection network. To 
implement a high-bandwidth cluster network, existing AI 
clusters use high-speed network connection technologies. 
The network bandwidth of each GPU server in the 
supercomputer cluster built by Microsoft and OpenAI is 
400 Gb/s. Each GPU in the RSC is connected to other GPUs 

1 Microsoft announces new supercomputer and lays out vision for future 
AI work: https://blogs.microsoft.com/ai/openai-azure-supercomputer/
2 Meta works with NVIDIA to build massive AI research supercomputer: 
https://blogs.nvidia.com/blog/2022/01/24/meta-ai-supercomputer-dgx/

1 Introduction through a 200 Gb/s HDR InfiniBand network. And DGX 
SuperPOD — a next-generation AI data center infrastructure 
platform released by NVIDIA — is equipped with a 400 Gb/s 
HDR InfiniBand network interface card (NIC) for each GPU.

However, as shown in Figure 1, there is a gap between 
the growth of computing power and that of bandwidth. 
In the future, distributed AI training models will have 
higher requirements on bandwidth. Each NPU will require 
a bandwidth of up to 10 Tb/s [6]. In fact, the trend of 
SerDes packet switching indicates that the SerDes rate 
improvement is limited by density and rate [7], which 
makes it difficult to achieve 10 Tbit/s bandwidth per port 
based on electrical switching chips. This limit is reflected in 
the following aspects:

1	 Further improvement of the SerDes rate will significantly 
increase the transmission loss of electrical signals and 
increase the SerDes power consumption.

2	 The cost of optical modules will become an important 
issue [8]. A large fraction of this cost is attributed 
to packaging and assembly, unlike that of electrical 
switching chips. And because the capacity of optical 
modules does not scale with the improvement of 
semiconductor process technologies, the cost of optical 
modules required to populate a data center switching 
chip now exceeds that of the switching chip itself.

3	 The growth of bandwidth density has started to 
lose pace. To accommodate the required number of 
pluggable optical modules and the necessary thermal 
management after power consumption growth, the size 
of the switch enclosure has doubled [8].

On the other hand, substantial progress has been made 
on silicon photonic chips by integrating optical devices and 
electrical components into independent application-specific 
integrated circuit (ASIC) chips and using laser beams instead 
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of electronic signals to improve bandwidth. Currently, 
the data transmission rate of silicon photonic chips is 
much higher than that of electrical signals, achieving an 
egress bandwidth in the Tb/s level [9]. This brings new 
opportunities for the hybrid optical-electrical networks of AI 
training clusters.

However, optical switching also faces some challenges. 
Currently, there are three mainstream optical cross-connect 
(OXC) technologies: micro-electro-mechanical system 
(MEMS) OXC, wavelength selective switch (WSS), and 
sub-µs fast optical cross-connect. The MEMS and WSS 
technologies, which take tens to hundreds of milliseconds to 
established new optical paths, can only be used in long-task 
scenarios and cannot meet the ns-/µs-level quick response 
requirements in AI training. In contrast, fast optical cross-
connect can achieve ns-/µs-level switching time, but the 
port number cannot be further increased due to factors 
such as loss and packaging.

In addition, on a traditional electrical switching network, 
the equal-cost multi-path (ECMP) [10] algorithm randomly 
hashes traffic to multiple paths to balance traffic. However, 
this method does not consider the time and space 
distribution characteristics of the traffic of the application 
itself, leading to more than 50% bisection bandwidth loss 
caused by hash collisions [11]. This loss is unacceptable for 
bandwidth-hungry AI scenarios.

Based on the advantages of MEMS, fast optical cross-
connect components, and electrical switching, we have 
designed a new architecture of heterogeneous hybrid 
optical-electrical switching networks. This architecture 
fully takes advantages of different optical and electrical 
technologies, supports a cluster size (number of NPUs/
GPUs) of up to 128K, and achieves ns-/µs-level fast 
switching time. In addition, network traffic in AI scenarios 
is periodic and predictable elephant flows generated by 
clearly defined collective communication operators (such 
as AllReduce and AlltoAll). The communication mode is the 
same in each iteration of the training process. Compared 
with random and disordered traffic in traditional data 
centers, network traffic in AI scenarios greatly simplifies 
the communication algorithm and control plane design. 
Therefore, we propose to redesign the control plane for 
optical networks and adapted collective communication 
algorithms to optical networks, thereby avoiding the 
performance loss caused by hash collisions.

In the future, the hybrid optical-electrical switching networks 
of AI clusters will witness several development trends: 

ultra-high bandwidth, ultra-low latency, ultra-low power 
consumption, simplified configuration, and ultra-large scale. 
Our team will make useful explorations in these directions.

This paper is organized as follows: Section 1 analyzes 
the background and requirements of AI cluster hybrid 
optical-electrical switching networks. Section 2 introduces 
mainstream optical cross-connect technologies and focuses 
on the optical components suitable for AI training scenarios. 
Sections 3 and 4 describe the challenges faced by hybrid 
optical-electrical switching networks and the solutions to 
these challenges. Section 5 shows the prototype system and 
preliminary test results. Section 6 points out new exploration 
directions to further improve algorithm performance and 
adapt to a wider range of HPC scenarios with a hybrid 
optical-electrical switching network architecture. And finally, 
Section 7 summarizes related work.

2 Optical Communication 
Technologies

2.1 MEMS OXC

The core function of OXC is to implement optical channel 
connections from one or more input optical fiber ports 
to multiple output optical fiber ports. By using different 
switching control mechanisms, OXC can output an optical 
signal of one input optical fiber port from other optical fiber 
ports. That is, an optical signal is switched between output 
ports. Currently, OXC connection technologies are booming, 
and their major development directions are wavelength-
level cross-connect and fiber-level port cross-connect. This 
section focuses on the MEMS OXC and sub-µs fast optical 
cross-connect technologies used in this solution.

The research on MEMS OXC in the industry started in the 
early 21st century. At the Optical Fiber Communication 
(OFC) Conference in 2001, Lucent announced the research 
on the prototype of MEMS optical switches with 1296 
x 1296 ports [12]. From 2003 to 2004, Bell Labs and 
Lucent published the research work on MEMS optical 
switches with 256 x 256 ports [13, 14]. In 2012, Calient 
launched the MEMS OXC product S3203 based on the 
electrostatic mechanism. The S320 provides 320 fiber port 
switching channels and applies to scenarios such as data 
center networks, software-defined networks (SDNs), and 
automatic testing. And then in 2016, Polatis (acquired by 
3 S320 product of Calient: https://www.calient.net/

https://www.calient.net/
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2.2 Sub-µs Fast Optical Cross-Connect

Figure 2 Working mechanism of a MEMS OXC

Huber+Suhner) launched the MEMS OXC Series 70004 based 
on the piezoelectric mechanism. The Series 7000 supports 
the switching of 384 x 384 fiber ports.

In a MEMS OXC switching control mechanism, a MEMS 
structure is used to drive a reflector to change the 
propagation angle of light. This enables an optical signal to 
be arbitrarily switched to different output ports, as shown in 
Figure 2. The MEMS OXC consists of four core components: 
an input fiber collimator array, an input MEMS micromirror 
array, an output MEMS micromirror array, and an output 
fiber collimator array. The unit channels of the fiber 
collimator array are in one-to-one correlation with the unit 
channels of the MEMS micromirror array. The spatial optical 
path based on micromirror reflection mainly presents three 
characteristics of the MEMS OXC:

1	 The number of ports is large. The MEMS reflector is 
processed using integrated circuit (IC) techniques to 
achieve a large-scale two-dimensional MEMS micromirror 
array, thereby increasing the number of MEMS OXC ports. 
In addition, a direct reflection optical structure determines 
that any input port of the MEMS OXC may establish a 
contentionless connection to any output port. Currently, 
MEMS OXC with a maximum of 384 inputs/outputs has 
been implemented in the industry.

2	 The port capacity is large and is irrelevant to the rate, 
wavelength, and bandwidth of transmitted optical signals. 
The MEMS reflector changes the propagation direction 
of an optical signal by adjusting a spatial deflection 
angle, without processing the optical signal. Therefore, 
the propagated optical signals may have different 
wavelengths, rates, bandwidths, or modulation formats.

3	 The switching speed of an optical switch is slow. 
A MEMS OXC controls beam deflection based on 
mechanical adjustment principles. Although the MEMS 
OXC has the advantages of low insertion loss and 
polarization independence, it requires millisecond-level 
time to switch. In addition, the reliability and stability of 
micromechanical structures also need to be improved.

In AI computing cluster scenarios, a MEMS OXC that 
features many ports, large capacity, and low power 
consumption can satisfy two key system requirements:

1	 Large-scale networking with more than 400 ports 
should effectively support the interconnection between 
large-scale compute nodes, and should be flexibly 
reconstructed at the job and tenant levels.

4 Series 7000 product of Polatis: https://www.polatis.com/series-7000-
384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp

2	 High bandwidth adaptability should cover different 
bandwidths and rates, and support further port 
bandwidth evolution to 100 Gb/s, 200 Gb/s, 400 Gb/s, 
and even 800 Gb/s.

Huawei has carried out research on MEMS OXC, covering 
MEMS micromirror array chips with many ports, high-
density chip packaging, low-loss fiber collimators, multi-
channel precision optical coupling, and micromirror control 
algorithms. It has also further explored engineering issues 
such as seismic reliability, highly efficient testing and 
calibration, and cost reduction of key components. Huawei 
has implemented a 400-port prototype that it has tested 
and verified in the AI cluster prototype system. To further 
meet the scale expansion requirements of an AI intelligent 
computing platform, Huawei is achieving breakthroughs in 
the 512 x 512–port MEMS OXC technology.

The fast cross-connect component using an optical switch 
supports point-to-point strict contentionless communication, 
and the optical switch has a switching speed at the ns to µs 
level, which can meet the requirements of fast switching in 
AI training. However, compared with a MEMS OXC, the fast 
cross-connect component has disadvantages in port number, 
component loss, packaging, and optical switch cost.

1	 On-chip integrated optical switch

Based on which key technology is applied, on-chip 
integrated fast optical switches are classified into five 
types: thermo-optic effect, free carrier effect, Pockels 
effect, Kerr effect, and silicon-based MEMS (Si-MEMS).

https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
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The thermo-optic effect indicates that the refractive 
index of the material is regulated by using the 
temperature-sensitive characteristics of the lattice 
material structure. Silicon is an ideal thermo-optic 
effect carrier due to it having the highest temperature 
coefficient in common optical components. An optical 
switch made of silicon can achieve an ultra-compact 
size in the 100 µm level [15]. Manufacturing an 
overlay channel near the silicon waveguide enables 
heat diffusion to be further limited and a switch power 
consumption of 10 mW to be achieved. The thermo-
optic switch can achieve a sub-µs switching latency by 
using an overshoot signal in an initial phase of heating 
and cooling and by placing a heat source as close as 
possible to a waveguide center [16]. The switching time 
of the 32 x 32–port on-chip integrated thermo-optic 
switch array reported in [15] is about 750 µs, and the 
loss is about 0.5 dB/cm.

The free carrier effect is also based on silicon materials. 
Because the band gap of silicon is relatively large, 
the intrinsic carrier concentration of pure silicon is 
relatively low and cannot be used as an effective 
means of regulating the refractive index. Therefore, 
boron and phosphorus ions are implanted into a silicon 
waveguide to provide carriers. Due to the diffusion-
drift free movement of carriers, the material refractive 
index of carriers is generally regulated at the ns level. 
However, the injection of carriers increases the risk of 

material defects, narrows the band gap, and amplifies 
the material's absorption of light. As a result, the length 
of an optical switch with the carrier dispersion effect 
is at the 300 µm to mm level, with 0.5–1 dB extra loss 
and more than 3 dB degradation of port isolation. The 
switching latency of the 32 x 32 carrier optical switch 
reported in [17] is 1.2 ns, the port isolation is 18.1 dB, 
and the highest link loss is 16.5 dB.

Both the Pockels effect and Kerr effect are non-linear 
optical effects. When the electric field strength in the 
waveguide or the applied electric field strength is large 
enough, the material polarization phenomenon created 
by this field causes the refractive index of the material 
to change (electro-optic effect, which has been widely 
used in high-speed modulators [18]). The difference 
between the two effects is that the crystal structure with 
mirror symmetry and central symmetry has only the 
Kerr effect, whereas the non-central symmetry structure 
material has both the Pockels effect and Kerr effect. The 
electro-optic response time of an optical switch with a 
non-linear optical effect is at the ps to fs level, and no 
extra loss is generated. However, such an optical switch 
requires a higher drive voltage or a longer component 
length. The major challenge of a highly integrated 
electro-optic effect optical switch is how to balance a 
large number of ports and a low drive voltage while 
also ensuring low loss. While the switching latency of 
the SOI-based thin-film lithium niobate dual-polarized 
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optical switch reported in [19] is about 300 ps, the 6 
mm component length limits the integration scale and 
causes cost issues, and the switching voltage of about 
10 V further increases the drive cost.

Si-MEMS has attracted more and more attention in 
recent years. It directly changes the physical spacing 
between waveguide objects based on the attraction/
rejection pattern of the suspended waveguide structure 
by electrostatic force, thereby changing the optical path. 
The switching speed of the Si-MEMS optical switch is 
at the sub-µs level. Compared with other technologies, 
Si-MEMS provides higher isolation and lower loss, and 
allows a more compact structure (supporting more than 
64 x 64 ports). For example, the Si-MEMS optical switch 
reported in [20] has 240 x 240 ports. However, Si-
MEMS relies on a mobile waveguide or metal electrode 
structure, which limits the reliability and durability of the 
optical switch. In addition, Si-MEMS requires multiple 
layers of waveguides to be coupled. Therefore, the 
preparation process is more complex and incompatible 
with the CMOS process.

2	 Fast optical cross-connect based on optical switches

As mentioned earlier, the on-chip integrated optical 
switch supports strict contentionless switching with a 
ns-level latency. It also provides 1 x N and N x N optical 
cross-connect specifications. Common N x N fast optical 
cross-connect specifications based on optical switches 
include N x N strict contentionless optical switch cross-
connect and N x N aggregation optical switch cross-
connect.

N x N strict contentionless optical switch cross-
connect: As shown in Figure 3, nodes are interconnected 
by using an N x N optical switch, and one-to-one 
communication between nodes is implemented at any 
time by controlling switching of the optical switch.

N x N aggregation optical switch cross-connect: As 
shown in Figure 4, the N x N aggregation optical switch 
cross-connect works with multiple fixed-wavelength 
lasers to support one-to-one and many-to-one switching 
between N inputs and N outputs. That is, it supports 
both optical switching and bandwidth aggregation.

The fast optical cross-connect based on optical switches 
uses the port switching function of optical switches to 
implement the switching and aggregation functions. And 
because other components (such as the light source and 
modulator) and the receive end of the system do not 

Node 1

Node N

…

Node 2

Node 1

Node N

Node 2
…

Figure 3 N x N optical switch cross-connect, one-to-one input/output

Figure 4 N x N aggregation optical switch cross-connect, many-to-one input/output
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need to be adjusted, no additional latency is introduced. 
Therefore, the switching latency of the optical switch 
(i.e., the end-to-end physical switching latency) can 
reach the ns level. Nonetheless, the on-chip integrated 
optical switch technology needs to be further explored 
to resolve issues such as port number, component loss, 
packaging, and costs.

2.3 Optical Cross-Connect Technology 
Applicable to AI Scenarios

Mainstream optical cross-connect technologies today include 
wavelength-level cross-connect and fiber-level port cross-
connect. Port cross-connect technologies can be classified 
based on the use of either spatial light or waveguide light. 
There are significant differences between optical cross-
connect technologies in terms of optical switch switching 
latency, port scale, and maturity, as listed in Table 1.

In AI large model training scenarios, optical cross-
connection configurations are divided into two phases. The 
first phase is pre-configuration. In this phase, the optical 
switch is pre-configured upon task submission. After the 
pre-configuration is completed, there is no need to modify 
optical cross-connection configurations throughout the 
entire training process. The MEMS OXC technology with a 
large number of ports, a large capacity, and a millisecond-
level configuration latency can be used. The second phase is 
on-the-fly reconfiguration. While a task is running, optical 
cross-connections are configured on-the-fly to adjust the 
destination of traffic. In this phase, the fast optical cross-
connect technology with ns-/µs-level configuration latency 
is required.
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Category Type Switching Time Port Scale Risk

Wavelength 

switching

Fast tunable laser 

(thermal tuning)
ms to s

Limited by the number 

of wavelengths
None

Fast tunable laser 

(electrical tuning)
ns

Limited by the number 

of wavelengths

Wavelength locking issue: Wavelength 

drift may occur. In this case, wavelength 

locking needs to be performed in closed-

loop tuning mode, which affects the 

switching time.

SOA wavelength 

selection
ns

Limited by the number 

of wavelengths

Restricted by the multi-wavelength light 

source process and SOA array, the scale 

is limited.

WSS 100 ms
Limited by the number 

of wavelengths

None

Microring wavelength 

routing (thermal 

tuning)

ms
Limited by the number 

of wavelengths

Trade-off is required for the microring 

filtering feature and isolation, which may 

affect the scale.

Microring wavelength 

routing (electrical 

tuning)

ns
Limited by the number 

of wavelengths

(1) Trade-off is required for the microring 

filtering feature and isolation, which 

may affect the scale.

(2) The microring may drift and needs 

to be tuned in a closed-loop manner, 

which affects the switching time.

Port switching 

(spatial light)

MEMS OXC 10 ms 320/512 None

Piezoelectric OXC ms to 10 ms 384 High cost

2D mechanical switch ms to s 2 x 2 Relatively high cost and large size

2D MEMS switch ms 8/16 None

Magneto optical 

switch
30 µs to 50 µs 4/8 High cost

High-voltage lithium 

niobate switch
10 ns to 300 ns 8 x 12

High cost, large size, and requiring 300 V 

drive voltage

Low-voltage lithium 

niobate switch
10 ns 2 x 2 High cost and large size

Port switching 

(waveguide 

light)

Silicon photonic MEMS 700 ns 64/128

The chip manufacturing process requires 

silicon photonics and MEMS techniques, 

which may require iterative optimization. 

A drive voltage of 40 V is required.

220 nm silicon 

photonics
10 ns 16/32

(1) Temperature drift or aging drift may 

occur. Closed-loop tuning is required, 

which affects the switching time.

(2) The isolation is about –17 dB, and the 

architecture needs to be optimized.

3 μm silicon photonics 100 ns to 300 ns 8/16

6 μm silicon photonics 400 ns 2

Thin-film lithium 

niobate (TFLN)
ns 8/16 The wafer cost is high.

Electro-optic polymer ns 16/32 Aging issues may occur.

Optical splitter + SOA < 1 ns 1 x 8
High ASE noise is introduced, affecting 

the signal-to-noise ratio (SNR).

Table 1 Mainstream optical cross-connect technologies
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The combination of the preceding two components, new 
application algorithms, and system control can form 
an efficient hybrid optical-electrical switching network 
architecture for AI training clusters. This heterogeneous 
optical cross-connect networking architecture satisfies the 
requirements of large-scale network and supports ns-/µs-
level switching time. It has high flexibility and maximizes 
the advantages and potential of optical cross-connect.

3 Challenges Faced by AI Optical 
Training

It is not easy to train large models, especially those with 
hundreds of billions or even trillions of parameters. For 
example, the Pangu-α model has 200 billion parameters, 
consuming 750 GB of memory just for the model 
parameters. A large amount of additional memory space is 
also required for information such as datasets, gradients, 
and optimizer status during training [5]. On the other 
hand, NVIDIA's most advanced H100 GPU has a memory 
capacity of only 80 GB. Limited by the memory wall and 
overall power consumption of NPUs, the growth rate of 
an NPU's memory capacity cannot match the growth rate 
of the scale of large models. Furthermore, the computing 
power of a single NPU cannot meet the massive computing 
requirements of large models. Therefore, using the high 
computing power and large memory of multi-node AI 
clusters to accelerate large model training has become a 
mainstream choice, and distributed training is imperative.

3.1 Communication in Distributed 
Training

Common distributed training modes include data parallelism, 
operator-level model parallelism, pipeline model parallelism, 
and mixture of expert (MoE) parallelism.

Data parallelism: In this mode, the distributed training splits 
the dataset into smaller parts and sends these parts to each 
training group. Each training group consists of one or more 
NPUs and has a complete model. The AllReduce operation is 
performed between training groups to aggregate gradients.

Operator-level model parallelism: In this mode, the 
distributed training splits a model and sends a complete 
dataset to each training group. Each training group 
consists of one or more NPUs, but has only a part of the 
complete model.

Pipeline model parallelism: Unlike operator-level model 
parallelism, this mode splits a complete model by layer and 
places each complete layer into different training groups. 
Each training group consists of one or more NPUs and one 
or more complete model layers, but has only a part of the 
complete model.

MoE parallelism: This mode selects different parameters 
for different samples (unlike the traditional neural network 
model, which uses the same parameters for all sample 
data). Therefore, only some parameters are trained for 
each sample, but the model parameter number is greatly 
increased. In MoE parallelism, because the feature vectors 
of a node are sent to experts of other nodes through the 
routing algorithm, AlltoAll traffic is introduced.

The parallelism policy determines the communication 
between NPUs, and this communication determines 
the scheduling between links. In AI training, collective 
communication is generally used to implement data 
exchange and result aggregation between NPUs. Common 
collective communication operations include AlltoAll, 
AllReduce, ReduceScatter, Broadcast, and AllGather. In 
distributed training, these collective communication 
operations generally use hierarchical algorithms to 
implement intra-node and inter-node communication. 
This section uses AllReduce as an example to describe the 
implementation of hierarchical collective communication 
algorithms on existing electrical switching networks.

Classical AllReduce algorithms can be classified into two 
types: One type is ring-based, which is usually used in 
scenarios where the data volume is large (for example, 
larger than 1 MB) or the number of NPUs is relative small 
(for example, smaller than 16). The other type is tree-
based, such as the recursive halving and doubling (HD 
AllReduce) algorithm, which is more suitable for scenarios 
where the data volume is small or the number of NPUs 
is relative large. Because intra-node bandwidth is much 
higher than inter-node bandwidth, a hierarchical AllReduce 
algorithm is generally used in distributed applications to 
reduce the number of inter-node communication times and 
communication overheads.

Figure 5 Hierarchical ring AllReduce algorithm proposed by Tencent
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Figure 6 2D-mesh hierarchical AllReduce algorithm proposed by Google

Table 2 Pipeline parallelism communicators

A hierarchical algorithm usually uses high bandwidth within 
a node to transmit as much data as possible in the node. 
For example, Figure 5 shows a hierarchical ring AllReduce 
algorithm proposed by Tencent [21]. As shown in the figure, 
there are four nodes, and each node has four NPUs. The 
main steps involved in this algorithm are as follows:

1	 Intra-node Reduce.

2	 Inter-node AllReduce.

3	 Intra-node Broadcast.

Figure 6 shows the 2D-mesh hierarchical AllReduce 
algorithm proposed by Google [22]. As shown in the figure, 
there are three nodes, each node has three NPU training 
cards, and data in each training card is divided into two 
copies. The main steps involved in this algorithm are as 
follows:

1	 Intra-node AllReduce on the first copy of data and inter-
node AllReduce on the second copy of data.

2	 Inter-node AllReduce on the first copy of data and intra-
node AllReduce on the second copy of data.

In each step, the two AllReduce operations are performed 
concurrently and do not interfere with each other.

3.2 Interconnection Issues Faced by AI 
Optical Training

Optical buffering is difficult to implement. Consequently, 
an optical switch usually implements circuit switching, 
whereby NPUs are connected in a point-to-point manner. 
In an optical network with circuit switching, only one NPU 
can be connected to another NPU at any one time. The 
limited number of switch ports means that the number of 
connections between NPUs is also limited, and therefore 
full interconnection between NPUs cannot be implemented. 
In addition, communication traffic in the AI large model 

includes not only simple point-to-point communication, 
but also complex collective communication. Adapting an 
existing collective communication algorithm to an optical 
network architecture has become an issue that urgently 
needs to be resolved.

Taking the Pangu-α model as an example, Figure 7 shows 
the schematic diagram of running the Pangu-α model in 
pipeline parallelism mode. There are 8 servers in the training 
cluster, and each server is configured with 8 NPUs (64 NPUs 
in total, numbered from 0 to 63). In distributed training, 
two channels of parallel data are used — the NPUs in blue 
are applied to one channel, and those in yellow are applied 
to the other channel. Each channel has a complete model 
and runs on multiple servers in pipeline parallelism mode, 
and each server runs a stage in the pipeline. Eight NPUs in 
each stage are used for operator-level model parallelism.

Table 2 shows the communication traffic in the Pangu-α 
model in pipeline parallelism mode. In the training process, 
there are a total of five communicators:

1	 Four inter-node NPUs.

2	 Eight intra-node NPUs.

3	 16 inter-node NPUs.

Communicator

Intra-communicator 
NPU No.

(Using the NPU Where 
Rank 16 Resides as an 

Example)

Communication 
Type

Four inter-node 
NPUs

(pipeline 
communicator)

0-16-32-48 Send/Recv

Eight intra-node 
NPUs

(operator-level 
model parallelism 
communicator)

16-17-18-19-20-21-22-
23

AllReduce
AllGather

ReduceScatter

16 inter-node 
NPUs

(data parallelism 
communicator)

16-17-18-19-20-21-22-
23-24-25-26-27-28-29-

30-31

AllGather

AllReduce

Two inter-node 
NPUs

(data parallelism 
communicator)

16-24

AllReduce
AllGather

ReduceScatter

64 global NPUs 0-1-2-...-63 AllReduce
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Figure 7 Pangu-α pipeline parallelism training cluster
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Taking NPUs 16 as an example, the communication types 
generated by them in different communicators diverse 
greatly. In an optical cross-connect network, connecting every 
communication link for complex and diversified communication 
traffic types has become a fundamental challenge.

4 AI Optical Training Solution

4.1 AI Optical Training Architecture

We propose a hybrid optical-electrical switching network 
architecture for next-generation machine learning cluster 
systems. Combining the advantages of a large number of 
MEMS ports and a low switching latency of sub-µs fast 
optical cross-connect, this heterogeneous hybrid optical-
electrical switching network architecture can expand the 
cluster scale (number of NPUs/GPUs) to 128K (K = 1024) 
and meet requirements for ns-/µs-level fast link switching. 
Sub-µs fast optical cross-connect components are used to 
implement fast optical link switching within a cluster node, 
while MEMS components are used to expand the cluster 
scale between cluster nodes.

In addition, traffic in AI applications is regular, periodic, 
and predictable, and links between nodes do not need to 
be frequently switched. This presents a unique opportunity 
for the efficient use of optical components, offering a 
way to greatly simplify the complex plane control logic of 
traditional data centers. A parallel training policy determines 
link scheduling, and the latter determines the operation 
logic of the control plane. Therefore, for our proposed 
architecture, we have redesigned the operation logic of 
the control plane and adapted collective communication 
algorithms to optical topology networking on the premise 

of being compatible with the existing parallel training 
policy, thereby building an efficient end-to-end (E2E) optical 
training path.

Figure 8 shows the hybrid optical-electrical switching 
network architecture of an AI cluster. The entire cluster can 
be divided into three layers.

1	 The first layer is intra-node. Intra-node interconnection 
is implemented through high-bandwidth interconnection 
protocols (such as Nvlink5, CXL6, and UB [23]), and 
all memory within the node can be addressed in a 
unified manner. Intra-node NPUs are managed by the 
same operating system (OS). NPUs in this layer are 
interconnected through electrical switching, and the 
cable transmission distance is within 1 m, achieving 
ultra-high bandwidth between intra-node NPUs.

2	 The second layer is within a cabinet or a Performance-
Optimized Datacenter (POD), which is a super 
node consisting of 32 nodes. NPUs in this layer are 
interconnected using high-bandwidth interconnection 
protocols (such as Nvlink, CXL, and UB), and their 
memory is also addressed in a unified manner. Each 
node in the cabinet is managed by an independent OS. 
NPUs at this layer are interconnected through electrical 
switching, and the cable transmission distance is within 
10 m. The first and second layers form a non-blocking 
fat tree structure.

3	 The third layer is inter-cabinet. Cabinets are directly 
connected by long-distance optical fibers through the 
network ports on NPUs. Each network port in a cabinet 
has a single unique port index. Network ports with the 
same index in different cabinets are connected to the 
same MEMS OXC. After the OXC is configured, these 
network ports form a full-mesh network. One NPU 
can provide two network ports, and one super node 
can provide 512 network ports. In this way, 512 super 
nodes can be interconnected to build an AI cluster 
with 128K NPUs. At the third layer, interconnection is 
implemented through a high-bandwidth remote direct 
memory access (RDMA) network (such as InfiniBand7 
and RoCEv28). In addition, to cope with the bursty 
traffic between cabinets, the wavelength fast optical 
cross-connect devices mentioned in Section 2.2 are 

5 Nvlink: https://en.wikipedia.org/wiki/NVLink
6 CXL: https://en.wikipedia.org/wiki/Compute_Express_Link
7 InfiniBand: https://en.wikipedia.org/wiki/InfiniBand
8 RoCEv2: https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet

https://en.wikipedia.org/wiki/NVLink
https://en.wikipedia.org/wiki/Compute_Express_Link
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
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Figure 8 Architecture of AI optical training networking Figure 9 Dual-plane communication

used between cabinets, ensuring high-bandwidth traffic 
aggregation between them. Real-time adjustment of the 
wavelength cross-connect devices during the running 
process enables the bandwidth of the network port to 
be aggregated. The specific control process is described 
in the next section.

The aforementioned three-layer structure form an AI 
training cluster architecture. The network structure 
of the entire cluster can be logically divided into two 
communication planes, as shown in Figure 9. The first plane 
is the electrical plane formed by the first and second layers. 
Similar to NVIDIA DGX-H100 SuperPOD9, each super node 
on this plane has up to 256 NPUs. The second plane is the 
all-optical interconnection plane formed by network ports 
on NPUs, with up to 512 super nodes on this plane. The two 
planes run independently and do not interfere with each 
other. Moreover, the wavelength cross-connect devices of 
the all-optical interconnection plane use the technologies 
and components designed for co-packaged optics/near-
package optics (CPO/NPO). This makes it possible to meet 
the requirements of direct light output on NPUs in the 
future and share the industry chain to reduce costs.

Compared with the tradit ional electr ical network 
architecture, this AI cluster network architecture has the 
following advantages:

1	 Optical interconnection is used to build hard pipes. 
Wavelength cross-connect devices are used to prevent 
traffic conflicts between eight NPUs across super nodes.

2	 The full-mesh networking of this architecture reduces 
the cost of optical modules by half.

3	 MEMS OXC port switching avoids the need to design 

9 NVIDIA DGX SuperPOD: https://www.nvidia.com/en-us/data-center/
dgx-superpod/

large-capacity electrical switches that require heavy 
investment but are seldom sold, thereby reducing 
non-recurring engineering (NRE) costs and power 
consumption.

4	 The heterogeneous optical cross-connect architecture 
can match the evolution of high bandwidth (200 Gb/s or 
higher per lane) in the future on relative long distances.

4.2 Control Plane of a MEMS OXC

4.2.1 Optical Management and Control 
Based on SDN

A MEMS OXC features many ports, large capacity, and low 
power consumption. It is mainly used to connect nodes or 
super nodes in order to expand the scale of AI clusters. The 
main function of the MEMS OXC control plane is to establish 
optical paths for multiple NPUs/nodes of a tenant or task 
in the pre-configuration phase. After the pre-configuration 
is completed, there is no need to modify the connection 
relationship between nodes throughout the entire training 
process, and the requirement on the configuration latency 
of the MEMS OXC is relatively flexible.

In a multi-tenant and multi-task environment, an AI cluster 
is divided into multiple independent small clusters for 
different tenants. In the tenant or task assignment phase, 
the MEMS OXC needs to be configured using an SDN 
controller to connect physical optical paths for NPUs of a 
tenant or task. It is necessary to ensure that there is at least 
an optical path between any two nodes. After the optical 
path is configured, the SDN controller transmits topology 
connection information to each compute node.

https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
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Figure 10 Topology information transmission

Table 3 Node 0 route orchestration table

Figure 11 Tenant configuration process
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(1) Original state (2) The tenant selects four 
NPUs on node 0 and node 2.

(3) The tenant selects six NPUs 
on node 0, node 2, and node 3.

(4) The tenant selects four 
NPUs on node 0 and node 1.

Node 0 Node 1 Node 2 Node 3Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

In this proposal, a route orchestration table is embedded 
in the cluster scheduling software (such as ModelArts10). 
The configured optical path information is incorporated 
into the Rank_Table of each NPU through the route 
orchestration table and applied to the corresponding 
NPU before communication starts. Figure 10 shows the 
process of transmitting topology information. In a training 
process, a communication operator in the corresponding 
communication library (such as NCCL or HCCL) switches an 
optical switch according to the route orchestration table, 
and dynamically adjusts the traffic destination.

Figure 11 shows how a tenant establishes an optical link 
based on the route orchestration table. Different tenants 
select NPUs among multiple nodes. Note that the red line 
between each two NPUs represents a multi-wavelength link 
that passes through the fast optical switches controlled by 
the two NPUs (it does not represent the data flow passing 
through the two NPUs). This means that each such multi-
wavelength link can carry N  data flows (N ranges from 8 
to 16 based on the current component features). During 
the configuration, only the connections of the MEMS OXCs 
10 ModelArts: https://www.huaweicloud.com/intl/en-us/product/mod-
elarts.html

on an idle plane need to be configured. A tenant does not 
need to configure a connection between two nodes if the 
connection has been configured by another tenant. After 
the configuration is complete, the egress of the node where 
the NPU resides and the peer node ID corresponding to 
the egress need to be configured for the RANK_TABLE of 
the task or tenant, as shown in Table 3. This node's route 
orchestration table needs to be configured for the RANK_
TABLE of each NPU so that the switching path of the optical 
switch can be selected based on the route orchestration 
table during communication (described in Section 4.2.1).

Node 0 Route Orchestration Table

Destination Node ID Optical Switch ID

Node 2 DEMUX 1/MUX 1

Node 3 DEMUX 4/MUX 4

Node 1 DEMUX 5/MUX 5

For the general configuration of large-scale MEMS OXCs 
on the entire network, this proposal provides a full-mesh 
connection configuration policy. This policy can quickly 
calculate the optical paths between nodes in multiple scenarios 
(with different numbers of nodes and NPUs in nodes).

In the case of an odd number of nodes, the current 
collective communication algorithm is a plane-based one. 
Therefore, in a single plane (e.g., a plane formed by all 
NPUs with the same index numbered in nodes), if every 
two NPUs are connected, there will be one NPU that cannot 
be connected to any other NPU. That is, the number of 

https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
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connections on a single plane decreases to (N – 1)/2 . In 
order to implement full-mesh interconnection between 
nodes on multiple planes, N cards are required in each 
node. For example, if there are 7 nodes, 21 connections are 
required theoretically to achieve interconnection between 
every two nodes. Because a single plane can provide only 
three connections, seven NPUs are required in each node to 
implement full-mesh interconnection between nodes.

In the case of an even number of nodes, each plane 
can provide N/2  connections. Therefore, only N –  1 
NPUs are required in each node to implement full-mesh 
interconnection between nodes. For example, if there are 
eight nodes, seven NPUs are required in each node to 
implement full-mesh interconnection between nodes on 
multiple planes. The total number of connections is 28.

The number of NPUs required in a node is denoted as Ndev, 
and the number of nodes is denoted as Nnode. devsrc and devdst 
indicate the source NPU ID and destination NPU ID of the 
two interconnected NPUs respectively, with devsrc, devdst ∈ [0, 
Ndev). nodesrc and nodedst indicate the source NPU node ID and 
destination NPU node ID of the two interconnected NPUs 
respectively, with nodesrc, nodedst ∈ [0, Nnode). The network-
wide interconnection problem under the optical architecture 
can be formulated as, assuming that the source NPU 
node ID and source NPU ID are known, how to obtain the 
destination NPU node ID and destination NPU ID.

A hierarchical collective communication policy usually 
adopts the plane-based algorithm between nodes. The 
NPUs with the same number on all nodes form a plane. It 
can be seen that the number of planes in the system is 
equal to the number of NPUs in each node. Therefore, 
during optical interconnection configuration, only NPUs on 
the same plane need to be connected between nodes. That 

Number of 
Nodes

Condition

(Conditions are matched from top to bottom.)
Destination Node ID

Even number

nodesrc ≡ Ndev and devsrc2
≡

⌈
devsrc

2

⌉
 nodedst =

devsrc+Nnode
2

nodesrc ≡ Ndev and devsrc
2

�=
⌈
devsrc

2

⌉
nodedst =

devsrc+1
2

(devsrc + 1− nodesrc) mod Ndev ≡ nodesrc nodedst = Ndev

None of the above conditions is met. nodedst = (devsrc + 1− nodesrc) mod Ndev

Odd number

(devsrc − nodesrc) mod Nnode �= nodesrc nodedst = (devsrc − nodesrc) mod Nnode

(devsrc − nodesrc) mod Nnode ≡ nodesrc
No destination node. That is, this NPU does not participate 

in inter-node interconnection or is user-defined.

Table 4 Inter-node interconnection configuration policies for different numbers of nodes

Figure 12 All-optical interconnection algorithm connections 
when there are 7 nodes and 7 NPUs in each node

is, the source NPU (numbered devsrc  in the node) and 

destination NPU (numbered devdst in the node) have the 
same number in the node, as shown in Formula (1).

devdst ≡ devsrc                                 (1)

As described above, the number of NPUs required to 
implement interconnection differs depending on whether 
the number of nodes is even or odd. When the number of 
nodes (N) is even, only N – 1 NPUs are required in a node 
to implement full interconnection between nodes. When 
the number of nodes (N) is odd, at least N NPUs in a node 
are required to implement full interconnection between 
nodes. Therefore, for the scenarios with different numbers 
of nodes, different connection configuration policies can be 
used, as listed in Table 4.

Once these formulas are normalized, the configuration 
policy for an odd number of nodes can also be applied to 
the case of an even number of nodes, but in this policy 
the number of NPUs required in a node is not the optimal 
one. During the optical path configuration of a specific 
networking topology, configuration policies listed in Table 4 
can be flexibly selected.
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Figure 14 All-optical interconnection algorithm connections 
when there are 8 nodes and 7 NPUs in each node

Figure 13 All-optical interconnection algorithm connections 
when there are 8 nodes and 8 NPUs in each node

According to the preceding formulas, when both the 
number of nodes and the number of NPUs in each node are 
odd numbers (e.g., there are 7 nodes and 7 NPUs in each 
node), the schematic diagram of connections for all-optical 
interconnection is shown in Figure 12.

When both the number of nodes and number of NPUs in 
each node are even numbers (e.g., there are 8 nodes and 8 
NPUs in each node), the schematic diagram of connections 
for all-optical interconnection is shown in Figure 13.

When the number of nodes is an even number and the 
number of NPUs in each node is an odd number (e.g., 
there are 8 nodes and 7 NPUs in each node), the schematic 
diagram of connections for all-optical interconnection is 
shown in Figure 14.

4.3 Control Plane of Fast Optical 
Cross-Connect Components

4.3.1 Optical Switch Device Forms

Fast optical cross-connect components support point-to-
point (P2P) strict non-blocking communication, and can 
implement ns-/µs-level optical switch switching. They are 
mainly used to quickly adjust traffic destinations in AI 
training. For fast optical cross-connect components, the 

main function of the control plane is to dynamically switch 
a connection between NPUs in cooperation with a collective 
communication algorithm of optical interconnection 
in a runtime phase. In complex large models and HPC 
applications, the type and size of traffic change dramatically, 
and links are frequently re-established between NPUs. 
These characteristics pose high requirements on the control 
latency of fast optical cross-connect components.

In a cluster network, an optical cross-connect device is 
generally used as a network device. A network device is 
usually controlled by an SDN controller, as shown in Figure 
15a, and the control time is generally dozens of milliseconds 
or even seconds. The SDN controller can only perform 
static adjustment during initialization, but cannot perform 
real-time adjustment on a specific data flow in a training 
process. Therefore, the control mode based on an SDN 
controller can be used only for tenant-level configuration, 
but cannot be used for fast optical cross-connect control.

AI training uses NPUs as compute units. The CPU reads 
samples from memory and transmits the samples to 
an NPU for computing. The entire computing process is 
completed within the NPU. Parameters are automatically 
transmitted between NPUs without CPU intervention. If 
the fast optical cross-connect component is controlled by a 
CPU-based controller, as shown in Figure 15b, the NPU will 
frequently communicate with the CPU in a training process. 
The CPU-based control policy causes the end-to-end latency 
overhead to reach dozens of microseconds, which cannot 
meet the dynamic adjustment requirement in the training 
process.

In order to achieve microsecond-level end-to-end optical 
switch switching latency, we have considered the proposal 
in Figure 15c and Figure 15d. Figure 15c uses a network 
interface card (NIC) within an NPU for in-band control, and 
an in-band control command is sent to the corresponding 
optical cross-connect switch by the NPU through its NIC. 
However, in this proposal, the optical cross-connect switch 
board needs the same number of control interfaces as that 
of NPUs, and the controller implementation is relatively 
complex. In addition, the NPU cannot send in-band control 
commands to other optical switches or receive traffic from 
any NPU.

Based on these considerations, Figure 15d uses an optical 
switch board as an out-of-band controller. In this proposal, 
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Figure 15 Optical switch device forms

Table 5 Comparison of optical switch device forms

the optical switch board is presented as a device of the 
node where the NPU resides, and it is tightly coupled with 
the NPU. The NPU and optical switch board can access each 
other in P2P mode. Before inter-node NPUs communicate 
with each other, they send instructions to control the 
switching of the optical switch. The NPUs can communicate 
with each other only after the switching is complete. Out-
of-band control can implement flexible communication at 

Controller Type Application Scenario Advantage Disadvantage

Unified SDN 

controller (out-

of-band SDN 

controller)

Application level

Tenant level

(1) Global control.

(2) The optical switch board 

requires only one control 

interface, which is easy to 

implement.

(1) Only the administrator has the 

required permission, and applications 

cannot be adjusted.

(2) The latency overhead of the control 

operation is high.

Node CPU–based 

controller

Application level

Tenant level

The optical switch board 

requires only one control 

interface, which is easy to 

implement.

(1) Security is poor. When NPUs are 

randomly selected for each tenant or 

task, different tenants may control 

other optical switches.

(2) In offload mode, the NPU needs to 

interact with the CPU to support 

flow-level switching, resulting in high 

latency overhead.

Intelligent NIC 

controller (in-

band controller)

Flow-level control

Isolation between NPUs

The control is performed on 

the data plane, and the time 

overhead is low.

(1) The optical switch board has too many 

control interfaces.

(2) The NPU needs to provide additional 

control interfaces.

Optical switch 

board controller 

(in-band 

controller)

Flow-level control

Isolation between NPUs

(1) The control is performed 

on the data plane, and the 

latency overhead is low.

(2) The optical switch board 

requires only one control 

interface, which is easy to 

implement.

The optical switch board must be 

presented as an endpoint or a peer device 

to the NPU.

the microsecond level, meeting requirements for dynamic 
adjustment during AI training.

Table 5 lists the advantages, disadvantages, and application 
scenarios of the four control proposal. In addition to device 
forms, control isolation must be considered to prevent 
optical switches from being controlled by malicious NPUs, 
which may interrupt normal communication. These aspects 
will be continuously improved in subsequent work.
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Figure 16 Point-to-point communication process of AI optical training

4.3.2 Optical Switch Configuration 
Process

P2P communication, the most basic communication mode, 
serves as the basis to implement collective communication 
for data exchange in AI training. Therefore, accurately and 
efficiently configuring an optical switch during training has 
become a key issue. Figure 16 shows a complete point-to-
point communication configuration process in an optical 
interconnection architecture.

In Figure 16, there are two compute nodes: Node0 and 
Node1. Each compute node has two boards. One is a 
compute board that carries computing devices, such as CPUs 
and NPUs. The other is an optical switch board that carries 
lasers, sub-µs fast optical cross-connect components, and 
a general control unit. Components on the optical switch 
board are interconnected with the compute board through 
PCIe ports and are presented as PCIe devices to compute 
nodes. Compute nodes are connected through a MEMS 
OXC. An optical switch (1 x 16 at the transmit end and 16 
x 16 at the receive end) is the most critical part of a fast 
optical cross-connect component, and the control plane of 
the fast optical cross-connect component mainly configures 
the optical switch on this component.

This section uses a scenario in which NPU4 and NPU5 in 
Node0 send data to NPU5 and NPU6 in Node1 respectively 
as an example to describe a point-to-point communication 
process based on a sub-µs fast optical cross-connect device, 
as shown in Figure 16. Numbers with red circles in Figure 
16 represent the IDs of configuration steps. The complete 
point-to-point communication process is as follows:

1	 The NPU4 at the transmit end inserts the command for 
switching the 1 x 16 optical switch before communication 
starts. After this command is successfully executed, 
NPU4 enters the waiting state.

2	 The command is transmitted through PCIe in P2P mode 
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to an optical switch board connected to the wavelength 
cross-connect component corresponding to Node0, and 
is written into a 1 x 16 optical switch corresponding to 
NPU4 (a corresponding register entry is written).

3	 At the transmit end, the output port of the optical 
switch is switched to the MUX connected to Node1.

At the receive end, the preceding three steps are also 
performed to switch the input port of the optical switch 
to the DEMUX connected to Node0 and the output port 
of the optical switch to NPU5.

4	 The link is re-established at the physical layer.

5	 The link is re-established at the physical coding sublayer 
(PCS).

6	 The network port of NPU4 on Node0 detects that the 
link is successfully established, stops waiting, and starts 
RDMA communication.

Before switching the optical switch, queue pair (QP) 
connections must be established between the RDMA 
network ports of all NPUs that need to communicate 
with each other. The link establishment process can 
be implemented by using other external networks. 
Alternatively, it can be implemented after the links that 
need to communicate are switched one by one using the 
wavelength cross-connect component before a tenant 
or task is allocated. Neither of the two implementation 
methods affects the system overall performance.

In addition, the optical switch of the wavelength cross-
connect component must be correctly configured in the 
NPU communication process. Therefore, each NPU at the 
transmit end can access only the corresponding optical 
switch. During the configuration process, the configuration 
source needs to be identified and incorrect configurations 
need to be filtered out. At the receive end, because each 
NPU may be configured with any optical switch, permission 
control on a path needs to be maintained in the 16 x 16 
optical switch. Once a path is occupied by an NPU at the 
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receive end, it cannot be configured for other NPUs. In this 
case, the out-of-band authentication code can be used for 
permission control.

This proposal brings an addit ional advantage: the 
connectivity of an optical path is determined by the 
algorithms of the source and destination ends. It is a 
distributed mechanism and does not require a centralized 
SDN controller, preventing single points of failures and 
performance bottlenecks in hotspots.

4.4 Topology-Aware Collective 
Communication Algorithms

The distributed training framework generally uses collective 
communication libraries to simplify model development. 
Such a library can abstract regular communication processes 
between multiple NPUs (e.g., AllReduce and AlltoAll). 
Compared with traditional point-to-point communication, 
the collective communication library greatly simplifies the 
development of large models. Examples of such libraries 
include open-source Open MPI, NCCL developed by NVIDIA, 
and HCCL developed by Huawei.

For the interconnection topology of AI optical training, 
we have designed topology-aware hierarchical collective 
communication algorithms to adapt to the full-mesh 
networking of optical interconnection and resolve the 
problem that optical interconnection cannot support 
multiple-to-multiple mappings concurrently.

4.4.1 Topology-Aware Hierarchical 
AllReduce Algorithm

An AI cluster with four nodes, each of which has four 
NPUs, is used as an example to describe the AllReduce 
communication process involving all NPUs (global 
communicator). In a conventional electrical switching 
scenario, the AllReduce operation in a global communicator 
can be divided into three steps, as shown in Figure 17.

Step 1: Intra-node ReduceScatter. The data of each NPU 
on a node is divided into four parts (marked A through 
D) based on the number of NPUs on the node. After the 
reduction operation is performed on each part of data, the 
data is scattered to each NPU.

Step 2: Inter-node plane-specific AllReduce. NPUs in 
the same position on different nodes form a plane. The 
AllReduce operation is performed on all NPUs on each 
plane. Take the plane formed by NPUs 0 as an example. 
All NPUs 0 (i.e., NPU 0, NPU 4, NPU 8, and NPU 12) of 
all nodes form plane 0. The Halving-Doubling AllReduce 
method performs the AllReduce operation on all NPUs in 
plane 0. The entire process requires two iterations: In the 
first iteration, the AllReduce operation is performed on 
adjacent nodes. After the operation is complete, both NPU 
0 and NPU 4 have data A0 to A7, and both NPU 8 and 
NPU 12 have data A8 to A15. In the second iteration, the 
AllReduce operation is performed on the two nodes whose 
interval is 1. After the operation is complete, all NPUs have 
complete data A0 to A15.

Figure 17 HD-AllReduce algorithm in an electrical switching scenario
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Figure 18 HD-AllReduce algorithm in an optical switching scenario

Step 3: Intra-node AllGather. After the previous step, 
each node has complete data, but the data is distributed 
on different NPUs. Therefore, the AllGather operation 
is required to aggregate all data. After this operation is 
complete, all NPUs have the complete resultant data.

In an optical switching networking scenario, we have 
designed a topology-aware hierarchical AllReduce algorithm. 
As shown in Figure 18, the entire communication process 
can be divided into the following steps:

Step 1: Intra-node topology-aware ReduceScatter. The data 
of each NPU on a node is divided into four parts (marked 
A through D) based on the number of NPUs on the node. 
Unlike the ReduceScatter operation of electrical switching, 
the ReduceScatter operation of optical switching cannot 
ensure the full-mesh interconnection of all NPUs on the 
same plane. Therefore, each part of data is placed on an 
NPU that is directly connected to other nodes, so that the 
following steps can directly exchange data between nodes.

Step 2.1: Inter-node data exchange. Each NPU sends the 
data scattered to itself in the first step to the connected 
peer node and receives data from the peer node. After this 
step, each node has a part of data from A to D and this 
data scattered to different NPUs.

Step 2.2: Intra-node AllGather. The AllGather operation 
is performed on data in each node. After the operation is 
complete, the data of each NPU in the node is consistent.

Step 2.3: Inter-node data exchange. Each NPU sends its 
data to the connected peer node and receives data from the 
peer node. After the previous step is complete, the data of 
each NPU on the same node is consistent. Once the data 
exchange is complete, each node has the complete resultant 
data, but the data is distributed on different NPUs.

Step 3: Intra-node topology-aware AllGather. By performing 
the AllGather operation on the data on different NPUs in 
the node, each NPU can have the complete resultant data.

In addition, in the case of a non-power-of-2 number of 
nodes and a non-power-of-2 number of NPUs in each node, 
the topology-aware hierarchical AllReduce algorithm only 
needs to adjust the number of data parts and logical IDs 
(of topology awareness). Based on this algorithm, we have 
implemented and verified the system prototype described in 
Section 5.1, and completed the end-to-end training of the 
ResNet50 model.

For details about the quantitative performance comparison 
between this algorithm and the AllReduce algorithm on an 
electrical network, see Section 6.1.
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4.4.2 Topology-Aware Hierarchical 
AlltoAll Algorithm

In large-scale AlltoAll communication, the industry typically 
uses the pair-wise algorithm. Figure 19 shows the AlltoAll 
algorithm based on pair-wise. This algorithm implements 
data exchange between NPUs through multiple steps. In 
each step, each NPU sends and receives data to fully utilize 
bidirectional link bandwidth.

Figure 19 AlltoAll algorithm based on pair-wise

Figure 20 Pair-wise algorithm not applicable to the 
optical interconnection architecture

The number of NPUs is denoted as N, and the NPU ID is 
denoted as Pn, where n ∈ [0, N – 1]. The step ID starts from 
1, that is, step ≥ 1. In this case, the pair-wise algorithm can 
be expressed as follows: In each step, NPU Pn receives data 
from NPU PN + step, and sends the data to NPU PN – step. Modular 
addition and subtraction methods are used here. If overflow 
or underflow occurs, the NPU ID will start from the smallest 
or largest NPU ID. For example, P–1 is PN – 1, and PPNUM is P0.

However, in the optical interconnection architecture, each 
NPU in the pair-wise algorithm needs to receive data from 
one node and send data to another node. The multiple-
to-one communication pattern does not match the point-
to-point optical interconnection characteristic, as shown in 
Figure 20.

This paper proposes a topology-aware hierarchical AlltoAll 
algorithm — an adaptation of the pair-wise algorithm to 
optical interconnection communication — to ensure that 

NPU1NPU0 NPU2

Electrical 
switching

NPU3 NPU1NPU0 NPU2 NPU3

Electrical switching Optical switching

each NPU between nodes only needs to communicate 
with another NPU. An AI cluster with four nodes, each of 
which has four NPUs, is used as an example to describe the 
AlltoAll communication process involving all NPUs (global 
communicator), as shown in Figure 21. The topology-aware 
hierarchical AlltoAll algorithm in optical interconnection 
scenarios can be divided into three steps.

Step 1: Intra-node topology-aware AlltoAll. Data on each 
NPU in a node is divided based on the number of NPUs 
involved in AlltoAll communication. In this example, data 
on each NPU is divided into 16 parts, which are marked as 
A to P. Because there are only four NPUs on a node, only 
four parts of data are required to implement the intra-node 
AlltoAll operation. Therefore, 16 parts of data are combined 
into four groups. After this step is completed, four groups 
of data on each NPU within a node are scattered on four 
different NPUs.

Step 2: Inter-node data exchange. In an optical switching 
scenario, each node has only one NPU directly connected 
to another node, and the connected NPU sends all the four 
parts of data to the corresponding NPU. After this step is 
completed, 16 parts of data on each NPU are distributed to 
all nodes.

Step 3: Intra-node topology-aware AlltoAll. In this step, 
the 16 parts of data required by each NPU are scattered 
on other NPUs (unlike in step 1, where the data was 
divided into four groups). During the intra-node AlltoAll 
operation, the offset of each part of data in the buffers of 
the transmitter and receiver needs to be adjusted. After this 
step is completed, data exchange is completed between the 
16 NPUs of the global communicator.

In addition, in the case of a non-power-of-2 number of 
nodes and a non-power-of-2 number of NPUs in each 
node, the topology-aware hierarchical AlltoAll algorithm 
only needs to adjust the number of data parts and logical 
IDs (of topology awareness). Note that if a fast optical 
cross-connect component is used, only the first two steps 
are required for the hierarchical AlltoAll algorithm. In the 
second step, when the data arrives at the peer node, only 
the fast optical cross-connect component needs to be used 
to switch the destination in the node to the corresponding 
NPU so that the communication efficiency of the AlltoAll 
operator can be further improved.

For details about the performance comparison between 
this algorithm and the AlltoAll algorithm on an electrical 
network, see Section 6.2.



Communications of HUAWEI RESEARCH | 61

Technological Foundation

June 2024

4.5 Topology-Aware Parallelism Policy

Figure 21 Topology-aware hierarchical AlltoAll algorithm in optical interconnection scenarios

In addition to collective communication algorithms, optical 
interconnection technologies need to be adapted. The 
parallelism policy directly determines optical link scheduling 
and has a greater impact on training performance. 
Therefore, such a policy needs to be optimized for optical 
scenarios. This section uses the Pangu-α model as an 
example to describe the optimization policy of the pipeline 
parallelism model for optical interconnection scenarios.

The Send/Recv operator mainly exists in the pipeline 
parallelism mode, as shown in Table 2. The main sources of 
the Send operation in Pangu-α pipeline parallelism are as 
follows:

1	 A stage sends the feature map to the next stage.

2	 The next stage sends gradient data to its previous stage.

3	 The first stage sends the embedding table to the last 
stage. The Recv operation is a reverse communication 
operator corresponding to the Send operation.

In an optical communication scenario, a connection may 
not be established between an NPU in a stage and an NPU 
in a next stage. Therefore, the Send operation needs to be 
adapted to optical interconnection scenarios.

Assume that Pangu-α runs in pipeline parallelism mode 
in an environment with 8 servers and 64 NPUs. Figure 
22 shows the Send/Recv communication modification 
pattern. In the Pangu-α model, the AllReduce operation has 
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Figure 22 Adapting Send/Recv communication to optical switching scenarios

Figure 23 Prototype of an 8-server 64-NPU AI optical interconnection cluster

Figure 24 Prototype framework

been performed for eight NPUs in a node before all Send 
operations. Therefore, before each NPU performs the Send 
operation, the data to be sent by all NPUs is the same. Only 
one NPU is required to perform the Send operation. The 
selected NPU is the one connected between two stages. 
After reaching the NPU of the next stage through the Send 
operation, the data is broadcast to all NPUs within the node 
through the Broadcast operation in the node.

In some models, no AllReduce operation is performed before 
the Send operation, and the data sent by each NPU is 
inconsistent. In this case, the intra-node forwarding process 
is added to the implementation of the Send/Recv algorithm. 
Assume that NPU 0 performs the Send operation to send 
data to NPU 16. The two stages have only NPU 2 connected 
between them. The data of NPU 0 needs to first be sent to 
NPU 2 of this node. Then, NPU 2 sends the data to NPU 18 
of the next stage, and NPU 18 forwards the data to NPU 16 
of the destination node.

The two Send operations do not conflict with each other. 
They are dynamically adjusted based on the model 
configuration and network topology during running. 
The topology-aware model parallelism policy can better 
optimize the training performance of large models.

5 System Prototype of AI Optical 
Training

5.1 System Prototype

The current prototype system uses a MEMS OXC to build an 
all-optical AI training cluster with 8 servers and 64 NPUs. 
It has tested ResNet50 in two network architectures: all-
optical interconnection and all-electrical interconnection.

To verify the low-latency AI optical interconnection proposed 
in this paper, we have set up a small prototype system, as 
shown in Figure 23. Currently, no stable prototype is available 

Electrical switch 0 Electrical switch 1

MEMS OXC

Node 0 Node 1 Node 2 Node 3

for wavelength aggregation optical components, but MEMS 
OXC products are relatively mature. Therefore, the prototype 
system contains only Huawei-developed MEMS OXC. The lack 
of fast optical cross-connect components makes it difficult 
to verify ultra-large-scale AI applications. However, optical 
interconnection networks can still be quickly tested on the 
current mainstream large model.

Figure 24 shows the framework of a prototype system. The 
AI cluster system consists of eight nodes, each of which 
is a Huawei-developed Atlas 800-9010 server. Each node 
contains eight Ascend 910B NPUs, meaning there is a total 
of 64 NPUs. Each NPU provides a network port to connect 
to the MEMS OXC, which itself is connected to the fat-
tree electrical network formed by two layers of electrical 
switches.

Such a networking architecture enables the prototype 
system to test the performance of AI applications in 
both optical and electrical networking environments. To 
perform the test in an optical interconnection network, 
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Figure 25 Huawei-developed 400 x 400 3D MEMS OXC prototype

Table 6 ResNet50 test results

5.2 Test Resultsthe optical switch connection policy of the MEMS OXC 
can be configured to bypass electrical switches in the fat-
tree structure. This allows all NPUs to communicate with 
each other through the MEMS OXC. To perform the test in 
an electrical interconnection network, the MEMS OXC can 
be configured to provide optical ports, and NPUs directly 
communicate with each other through the two-layer fat-
tree electrical network. Due to an ultra-low transmission 
latency of the MEMS OXC, latency overheads caused by the 
MEMS OXC in the electrical interconnection network can be 
ignored.

Figure 25 shows the prototype of Huawei-developed 3D 
MEMS OXC. This optical switching prototype is equipped 
with 400 pairs of available optical ports. In addition, it 
features low insertion loss (lower than 3.0 dB) and ultra-
low transmission latency (lower than 30 ns for all-optical 
interconnection transmission). Currently, however, the 
configuration latency is still high. It takes about 1000 ms to 
configure optical switches for all ports. The related research 
team is working to lower this configuration latency for the 
512-port MEMS OXC.

With the prototype system described earlier, we have tested 
the ResNet50 model under both the optical interconnection 
network and electrical interconnection network. In the test, 
the ImageNet 2012 training dataset with a sample batch 
size of 256 is used. The prototype system tests ResNet50 in 
the fat-tree electrical interconnection environment and all-
optical interconnection environment. Table 6 lists the test 
data.

The main collective communication operator in ResNet50 
is AllReduce. Although AllReduce has been adapted to 
optical interconnection networks, the average latency 
of the AllReduce operator in such networks is still about 
13.4% higher than that of electrical interconnection 
networks. The main causes are as follows: (1) To adapt 
to all-optical interconnection clusters, the AllReduce 
algorithm for optical interconnection has two extra inter-
node data copying operations. (2) Currently, the topology 
of eight NPUs in the Atlas 800-9010 server is 2 x 4 NPU 
mesh, meaning that the HD AllReduce algorithm cannot 
be used. Therefore, compared with step 2 in the algorithm 
for electrical interconnection, step 3 in the AllReduce 
algorithm for optical interconnection has extra startup 
latency. In the next-generation Ascend server (1980B or 
1981), the topology between NPUs in a node is the full 
mesh of eight NPUs. This means that the HD algorithm can 
be used in step 3 of the AllReduce algorithm for optical 
interconnection, eliminating the introduction of additional 
startup latency.

Because communication latency can be overlapped by 
computation in a training process, the performance 

Latency (ms) Electrical Switching Optical Switching Impact on Latency

Average latency of a single iteration 162.9853 163.0159 +0.019%

Forward + reverse latency 161.1194 161.1569 +0.023%

Average 
latency of 
AllReduce

Average latency of 
AllReduce1

5.6878 6.3994 +12.5%

Average latency of 
AllReduce2

1.0341 1.2829 +24.06%

AllReduce communication 
latency that cannot 
be overlapped with 

computation

1.548 1.6968 +9.6%

Overall latency 8.2699 9.3791 +13.4%
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deterioration of model training in an optical interconnection 
scenario is far less significant than that of an individual 
AllReduce operator. In ResNet50, an AllReduce operator 
is usually split into multiple AllReduce sub-operators. For 
example, Table 6 shows that the AllReduce operator is split 
into sub-operators AllReduce1 and AllReduce2 in this test. 
After some results are computed, AllReduce1 can be started 
and completely overlapped by the computation phase. In 
terms of end-to-end latency, the performance of ResNet50 
in all-optical interconnection network scenarios is close to 
that of ResNet50 in collision-free pure electrical network 
scenarios. The performance difference is only 0.019%.

The purpose of the preceding phased work is to demonstrate 
the feasibility of optical interconnection with limited labor 
by using the current combination of software and hardware. 
Therefore, optimizing performance is not a top priority. For the 
measures of further performance improvement, see Section 6.1.

5.3 Power Consumption Analysis 6.1 Pipelined Communication Latency 
Overlapping AllReduce Algorithm

Calculation (including
L1 and L2)

Super node (including
L1 and L2 switching)

220 256 56320 56320
Super node (including
L1 and L2 switching)

220 256 56320 56320

AI plane-L2-L3 optical
module 400G

0.01 131072 1310.72
AI plane-L2-L3 optical
module 400G

0.01 65536 655.36

AI plane-modular
switches with 768 ports
(only 576 ports are used)

35 113.777778 3982.22222
AI plane-MEMS OXC
with 512 ports

0.256 128 32.768

Service plane-L2-L3
optical module 200G

0.004 68812.8 275.2512

Service plane-modular
switches with 768 ports
(only 576 ports are used)

35 29.8666667 1045.33333

Network ports on the
storage device 100D: 1/20

1.1 819.2 901.12 901.12

63834.65 59229.83
Power consumption
reduction ratio

0.072137

kW/NPU 0.1439

Service plane network
(including storage
network)

Network

Storage

5292.94222

1320.58453

AI Electrical Interconnection AI Optical Interconnection
32K scale 32K scale

AI parameter plane
network

688.128

Table 7 Power consumption analysis

The next-generation chip and hardware platform is used 
as an example to estimate the power consumption of a 
network with 32K (K = 1024) NPUs.

There are four major items:

1	 Super node: It includes all scale-up interconnections and 
the L1 and L2 of a scale-out network. The two parts are 
the same in the optical and electrical networks.

2	 AI parameter plane network: It uses the traditional fat-
tree structure in an electrical network, including many 
optical modules from super nodes to core switches and 
768-port modular switches. Replacing the modular 
switches with OXC devices reduces the number of 
required optical modules by half and the end-to-end 

system power consumption by 7%.

3	 Service plane network: It is a low-bandwidth network 
that serves management, control, and storage access. 
This network is the same in optical and electrical 
networks.

4	 Storage: The optical and electrical networks share the 
same storage.

In general, replacing large modular switches with MEMS 
OXC devices achieves a 7% reduction in power consumption.

6 Future Work

To give full play to the potential of optical interconnection 
technologies, further exploration is needed in terms 
of scenarios, optical components, and corresponding 
algorithms.

As shown in Table 7, the performance of the all-optical 
algorithm in Figure 18 is lower than that of the pure 
electrical algorithm in Figure 17.

Where:

1	 S indicates the data volume on a single NPU.

2	 N indicates the number of NPUs on a single node or 
super node. To simplify the discussion, it is assumed that 
the number of nodes or super nodes is also N.

3	 BI indicates the intra-node bandwidth.

4	 BO is the inter-node bandwidth. Generally, BI  is much 
higher than BO by 5 to 10 times .
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Figure 26 Pipelined AllReduce algorithm

Table 8 Comparison between optical and electrical AllReduce algorithms

Electrical Network 
AllReduce in Figure 17

Optical Interconnection 
AllReduce in Figure 18

Pipelined AllReduce in Figure 26

Step 1: ReduceScatter. N−1
N

∗ S
BI

N−1
N

∗ S
BI

N−1
N

∗ S
BI

Step 2.1: Inter-node copying.

2 ∗ N−1
N

∗
S/N
BO

S/N
BO

0

Step 2.2: Intra-node ring 

AllReduce.
2 ∗ N−1

N
∗
S/N
BI

2 ∗ N−1
N

∗
S/N
BO

Step 2.3: Inter-node copying.
S/N
BO

0

Step 3: AllGather. N−1
N

∗ S
BI

N−1
N

∗ S
BI

N−1
N

∗ S
BI

As shown in Table 8, step 1 and step 3 of the two 

algorithms are the same. Considering that N−1
N

≈ 1 when N 

is relatively large in a case of a super node [45], only 

2 ∗
S/N
BI

 in step 2.2 is added to the optical interconnection 

algorithm in Figure 17.

In addition, considering that the intra-node bandwidth BI 
is much higher than the inter-node bandwidth BO, step 
2.2 can be covered in steps 2.1 and 2.3, as shown in the 
following figure.

The algorithm in Figure 26 divides each piece of data in 
Figure 18 into four sub-pieces. For example, A4-A7 in row 
10 is divided into A4-A7/0, A4-A7/1, A4-A7/2, and A4-A7/3. 
In addition, the first half of ring AllReduce in step 2.2 is 
expanded into six sub-steps: 2.2.1 to 2.2.6. The red box of 
each sub-step represents a sub-piece of data copied from 
another node. For example, A4-A7/1 of NPU 0 on node 0 in 
row 20 is copied from NPU 0 on node 1 in row 11. The time 

required for each copying operation is 1
N

∗
S/N
BO

.
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From sub-steps 2.2.1 to 2.2.3, each red box indicates a sub-
piece of data with a size of S/N2 and which is copied from the 
NPU that is directly connected on another node. In addition, 
a sub-piece of data with the same size is copied from the 
adjacent NPU on the same node, and the two sub-pieces of 
data are accumulated to obtain a new partial accumulation 
result. Considering that the inter-node bandwidth BO is 
far lower than the intra-node bandwidth BI  and memory 
bandwidth, the time of each sub-step is S/(N2 x BO).

From sub-steps 2.2.4 to 2.2.6, each red box indicates a sub-
piece of data with a size of S/N2 and which is distributed 
between nodes or within a node. Similarly, considering that 
the inter-node bandwidth BO is far lower than the intra-
node bandwidth BI  and memory bandwidth, the time of 
each sub-step is S/(N2 x BO).

Therefore, the latency overhead of step 2 in the algorithm 
in Figure 26 is 2 x (N – 1) x S/(N2 x BO). The performance is 
the same as that of the pure electrical algorithm in Figure 
17 without hash collisions.

6.2 Pipelined Communication Latency 
Overlapping AlltoAll Algorithm

Electrical Network AlltoAll in 
Figure 19

Optical Interconnection AlltoAll 
in Figure 21

Pipelined AlltoAll in 
Figure 26

Step 1: Intra-node AlltoAll. N−1
N

∗ S
BI

S
BOStep 2: Inter-node AlltoAll. N−1

N
∗ S

BO
S

BO

Step 3: Intra-node AlltoAll. N−1
N

∗ S
BI

As shown in Table 9, the performance of the all-optical 
algorithm in Figure 17 is lower than that of the pure 
electrical algorithm in Figure 16.

Considering that large super nodes have become the trend 
in the AI field [45], N generally reaches 256 or even 384. In 

this case, N−1
N

≈ 1.  Considering that the intra-node 

bandwidth BI  is 10 times higher than the out-of-node 
bandwidth  BO ,  the  runn ing t ime of  the  opt i ca l 
interconnection AlltoAll in Figure 21 is about 1.2 x S/BO. 
The running time of the electrical network AlltoAll in Figure 
19 is about S/BO without hash collisions. The optical 
interconnection AlltoAll is about 20% slower than the 
electrical network AlltoAll.

Table 9 Running time comparison between optical and electrical AlltoAll algorithms

Similar to algorithms in the previous section, the pipelined 
AlltoAll algorithm can also be used to cover the extra 
latency of steps 1 and 3 of the optical interconnection 
AlltoAll algorithm in Figure 21 into step 2. As shown in 
Figure 27:

1	 On the node where NPUs 0 to 3 reside, step 1 of the 
optical interconnection AlltoAll algorithm attempts to 
collect all the blue data (that needs to be sent to the 
node where NPUs 12 to 15 reside) to NPU 2, so that 
step 2 can use a yellow optical fiber to send the data to 
NPU 14 in one go. However, in the original data, the M2 
to P2 data in the red box already exists on NPU 2 and 
no wait time is consumed. As shown by (1), the M2 to 
P2 data can be directly sent to NPU 14, and the 

consumed time is 1
N

∗ S
BO .

2	 Meanwhile, as shown by (2), step 1 of the optical 
interconnection AlltoAll algorithm is executed to send 
the N0 to P0, N1 to P1, and N2 to P2 data in the three 
black boxes to NPU 2. Because the intra-node bandwidth 
BI  is much higher than the inter-node bandwidth BO, 
this step is completed before the operation shown by (1).

3	 After the operation shown by (1) is complete, the N0 to 
P0, N1 to P1, and N2 to P2 data is sent to NPU 14, and 

the consumed time is N−1
N

∗ S
BO.

In this way, the time of step 1 is covered by step 2. Similarly, 
the time of step 3 can also be covered by step 2 through 
the pipeline. Therefore, the actual performance of the 
optical interconnection AlltoAll can be equivalent to that 
of the electrical network AlltoAll in Figure 19 without hash 
collisions.

However, hash collisions cannot be avoided on an 
electrical network with more than three layers. As such, 
the performance advantages of an optical network will be 
further reflected. Table 9 compares the performance of a 
single AlltoAll operator with the E2E performance in the 
Shennong model with 64 NPUs.
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6.3 Ideas for HPC and Hybrid HPC/AI 
Scenarios

Figure 27 Pipelined AlltoAll algorithm

Table 10 Performance loss of the Shennong model with 64 NPUs

Scenario No Traffic Conflict A Few Traffic Conflicts at the Spine Node Loss

Latency of a single AlltoAll (ms) 27.78 17.10 38.4%

Average latency of a single iteration (ms) 17340.583 18056.241 4%

It is expected that the performance loss caused by hash 
collisions will reach about 30% on a large network with 
more than 4K (K = 1024) devices. The hybrid optical/
electrical network will be able to compensate for this loss.

With the development of AI technologies, using AI to 
enable traditional HPC has become a new research 
direction. Similar to Pengcheng Cloud Brain Phase III, 
large-scale supercomputing infrastructure that emphasizes 

hybrid HPC/AI scenarios is also emerging. Applying optical 
interconnection technologies to enable such scenarios has 
also become a high-value exploration direction.

Unlike traffic in AI scenarios, HPC network traffic has the 
following characteristics:

1	 In HPC applications, traffic is relatively irregular and 
lacks periodic characteristics, and traffic predictability is 
poor.

2	 According to the statistics of current supercomputing 
centers [24], most of the traffic comes from small- and 
medium-scale jobs that use most of the system cores. 
Such jobs generally use one to four groups (nodes/
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super nodes) to achieve good coverage. Because jobs 
are scheduled on different nodes, the bandwidth traffic 
of links on the entire network is unbalanced, and only a 
few links are fully loaded [25].

Figure 28 FAT-Dragonfly+ networking

Figure 29 Dynamic wavelength aggregation and tenant-level bandwidth adjustment

Based on the traffic characteristics of the preceding HPC and 
hybrid HPC/AI scenarios, we have designed a reconfigurable 
FAT-Dragonfly+ topology, as shown in Figure 28. The 
characteristics of this architecture are as follows:

1	 Two-layer fat-tree networking is used in the group to form 
a flexible high-bandwidth electrical interconnection area.

2	 Outgoing switches in the group are connected to 
wavelength cross-connect components to implement 
μs-level fast and flexible adjustment of inter-group 
bandwidth. As shown in Figure 29a, under a specific 
tenant scale and job allocation, when a burst elephant 
flow exists between two super nodes, traffic of multiple 
wavelengths can be dynamically accommodated on 
one optical fiber and one port of the MEMS through a 
wavelength component. For details about the control 
plane process, see Section 4.3.

3	 In addition, the large-capacity port switching OXC is 
used to isolate the inter-group traffic of tenants. As 
shown in Figure 29b, after tenants A and B are allocated, 
there is no traffic on the blue optical path between 
them. Corresponding optical modules can be configured 
for optical paths inside the tenants to improve the 
bandwidth between multiple super nodes inside the 
tenant. This helps overcome the problem of inherent 
top-layer bandwidth insufficiency in the Dragonfly+ 
topology.

This hierarchical network structure gives full play to the 
advantages of optical and electrical networks. It is an 

(a) Multi-wavelength dynamic 
aggregation

Tenant B

(b) Tenant-level bandwidth 
adjustment

efficient hybrid optical-electrical architecture suitable for 
future HPC scenarios. Further exploration is needed in order 
to realize a feasible proposal with this architecture.

6.4 Large-Scale Modeling and 
Simulation System

Although the prototype system can verify the performance 
of this proposal on current Ascend training servers (Hi1980) 
in an E2E manner, there are still some limitations:

1	 The next-generation Ascend chip is not mature, 
and using it to build a prototype system is difficult. 
Therefore, the performance of optical networking in the 
next-generation training cluster cannot be verified.

2	 The networking scale of the prototype system is 
limited, and specifications such as performance, power 
consumption, and cost of a large-scale cluster cannot be 
effectively predicted.

3	 The modification and adaptation of communication 
algorithms and software stacks are usually labor hungry, 
which cannot be quickly verified.

Therefore, in the absence of actual hardware, we plan 
to implement a large-scale modeling and simulation 
platform to better verify the communication and end-to-
end performance of all-optical AI training proposed in this 
paper based on next-generation Ascend chips and large-
scale (K-level or 10K-level, K = 1024) clusters. Currently, 
the industry has witnessed many large-scale simulation 
platform applications in AI scenarios. Table 11 lists 
mainstream simulation methods.

Based on the analysis of mainstream simulators, we have 
drawn the following conclusions:

1	 A cycle-accurate (CA)-level simulator has high precision 
but a low simulation speed, whereas a polynomial 
simulator has a high simulation speed but low precision. 
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Table 11 Mainstream simulation methods

CA-Level Simulation
Fine-Grained Cluster 

Simulation
Coarse-Grained 

Cluster Simulation
Polynomial-Cost 

Model

Typical simulator
GPGPU-SIM11

Gem5 [26]

PANAMA [27]

ASTRA-SIM [28]

SIP-ML [6]

TripletRun [29]

Anonymous simulator 
[30]

Characteristics
Cycle level, with network 

model, operator/application/
communication traffic

Traffic model input, event-
driven, with network model

Traffic model input, 
event-driven, without 

network model

No runtime phase, 
direct calculation of 

latency using formulas

Node size
32 NPUs or CPUs; up to 1K 

when distributed simulation is 
used

More than 1K; up to 80K 
when distributed simulation 

is used
80K or more Cluster of any scale

Traffic input
Single-operator and pure 

communication traffic
Pure communication traffic 
and application task flow

Application task flow Application task flow

Simulation granularity Clock level Packet and flit levels Flow level
Operator level or 

higher

Simulation speed Slow Medium Fast Fastest

Implementation at 
the communication 

protocol layer
Yes Yes No No

Implementation on the 
switch side

Yes Yes

No network model is 
available, but traffic 
conflict modeling is 

available.

No

Accuracy
Accurate, basically the same as 

the actual test results
Accurate in the network 

part
Medium Low

Application scenario Single-chip application HPC/AI AI AI

11 GPGPU-SIM: http://www.gpgpu-sim.org/

Neither of them is suitable for performance simulation 
of a large-scale optical networking cluster.

2	 Coarse-grained and fine-grained cluster simulations can 
be implemented simultaneously. The combination of 
the two simulation modes can satisfy the requirements 
of quick performance evaluation for large-scale clusters 
and accurately simulate the communication layer that 
we focus on. Coarse-grained cluster simulation can be 
used to quickly evaluate large-scale overall performance 
(when the accuracy meets the requirement), and fine-
grained cluster simulation can be used to evaluate the 
communication microarchitecture's impact on overall 
performance.

3	 The simulator's capability of accurately evaluating the 
communication layer requires that the traffic input be 
compatible with actual application task flows and pure 
communication traffic.

Based on the networking models, communication traffic, 
and chip capabilities in the mentioned AI scenarios, the 
objectives of a large-scale simulation system are as follows:

1	 A simulation platform that includes integrated intra-
node and inter-node network models needs to be 
built to support electrical and optical networking 
architectures, current and next-generation Ascend 
chips and hardware capabilities, as well as large-scale 
simulation topologies at different node sizes.

2	 The simulator supports the implementation of collective 
communication operators in AI scenarios, including 
AlltoAll, AllReduce, AllGather, and Broadcast.

3	 The simulator supports interconnection with the input of 
real AI models and implementation of real AI models in 
distributed training mode.

4	 The simulator can be compatible with the simulation of 
both fine-grained and coarse-grained communication 
models. Fine-grained simulation reflects the impact of 
communication protocol features and chip capabilities 
on overall performance, and coarse-grained simulation 
is used for fast simulation in large-scale networking.

5	 The fine-grained simulation model supports both intra-
node direct memory access (DMA) communication 

http://www.gpgpu-sim.org/
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Figure 30 Large-scale modeling and simulation platform

and inter-node remote direct memory access (RDMA) 
communication, as well as communication protocols 
corresponding to the two communication modes.

The simulator is triggered based on events and supports 
three levels of inputs:  real training model,  s ingle 
communication operator, and single task. Figure 30 shows 
the overall architecture of a simulation system, which is 
mainly comprised of the following three modules:

1	 Graph manager: It parses the data flow diagram of 
the real AI training model, and schedules and executes 
operators in the diagram. Communication operators are 
delivered to the sim-CommLib module, and the input of 
compute operators comes from the actual test results or 
ESL operator simulation results.

2	 sim-CommLib: It parses communication operators in the 
communication operator libraries (e.g., HCCL, NCCL, and 
MPI) and parses these communication operators into 
tasks. The generated tasks include data transmission 
tasks and data synchronization tasks. This module 
delivers the two types of tasks to the Network Model 
module based on the configured scheduling policy.

3	 Network Model: It implements the network model, 
receives and executes communication tasks, and 
returns the task execution results to the sim-CommLib 

module. The Network Model module supports the 
implementation of both fine-grained and coarse-grained 
communication models. The fine-grained communication 
model can simulate the completion time of each 
task after being processed by the communication 
protocol stack and the switch side. The coarse-grained 
communication model focuses on traffic conflicts, but 
does not implement protocol stack details.

7 Related Work

There are two main directions to organize AI clusters. One 
is the hierarchical architecture of NVIDIA [45] and Huawei. 
With this architecture, ultra-high bandwidth is provided 
in nodes and super nodes, and hierarchical AllReduce and 
AlltoAll algorithms are designed based on the locality 
of communication to maximize the advantages of high 
bandwidth and low latency in nodes. This paper follows this 
direction. The other direction is an architecture similar to 
the Dojo cluster of Tesla, which forms a two-dimensional 
mesh topology and lacks obvious hierarchical features. This 
architecture is rooted in Tesla's own service characteristics. 
That is, Tesla mainly trains relatively small CV models, which 
require only data parallelism and ring AllReduce algorithms. 
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Large models such as transformer MMOE [4] do not need 
to be trained, and complex cross-NPU AlltoAll traffic does 
not need to be processed.

Communication traffic characteristics and bandwidth 
requirements vary depending on computing scenarios. 
The communication of AI applications is mainly based 
on collective operations, and the main traffic types are 
AllReduce, AlltoAll, and AllGather. The majority of such 
traffic is large packets, the communication rules are 
predictable, and high bandwidth is required. In AI training 
scenarios, the high bandwidth, low latency, and collision-
free features of optical signals can be fully utilized to 
accurately control each flow and implement contentionless 
communication. Exploration is growing into the application 
of optical communication technologies in AI training. For 
example, SIP-ML [6] of the Massachusetts Institute of 
Technology (MIT) has designed a degree-aware model 
parallelism policy, which uses specific optical components 
(OXCs and microrings) to improve training performance by 
1.3 to 9.1 times. FleX-LION [31] studied by the University of 
California uses arrayed waveguide grating router (AWGR), 
microring resonator (MRR), and Mach-Zehnder switch (MZS) 
components to build an intra-node interconnection system, 
reducing the execution time to less than 1/5 of the original 
time. KDDI Research, Inc. in Japan proposed the pattern-
aware scheduling (PAS) platform and fast convergence 
(FastConv) [32] to describe the control components and 
key policies based on the reconfigurable optical networking 
topology in AI scenarios from the perspective of system 
control. To better improve computing efficiency, network 
topologies, task scheduling, and communication algorithms 
need to be closely combined in the future. This will 
allow efficient AI clusters to be built by introducing the 
reconfigurable capabilities of optical networking [33, 34].

Compared with AI applications, HPC applications have a 
large amount of near-neighbor communication traffic, 
and the traffic is distributed diagonally. In addition, traffic 
distribution varies greatly in different HPC applications. For 
example, there are many communication types at a given 
moment in the early "seven dwarfs" traffic [35]. In addition 
to collective communication in AI applications, there are 
many point-to-point communication types (e.g., Send, Recv, 
and Barrier). Such traffic characteristics make it difficult to 
accurately control the direction of each flow. Furthermore, 
the time for computing and communication in HPC 
applications is irregular and out-of-order. According to the 
data captured in the Tianhe-2 cluster [36], the proportion of 
computing and communication overheads varies greatly in 

HPC applications. Therefore, a set of optical control policies 
is not suitable for different HPC applications. And because 
HPC scenarios have high requirements on communication 
latency, exploration into the use of optics in HPC scenarios 
focuses on building the shortest path based on optical 
reconfigurability and reducing detours to minimize 
communication latency. For example, TAGO [37] published 
by Columbia University and Lawrence Livermore National 
Laboratory (LLNL), bandwidth steering technology [38], 
and Flexfly [39] published by Sandia National Laboratories 
(SNL) have explored how optical cross-connect components 
are adjusted based on application traffic characteristics to 
provide low-latency paths between process groups with 
dense communication in the symmetric topology (FatTree) 
and asymmetric topology (Dragonfly, Dragonfly+, and 
Flexfly) networking environments. To achieve efficient 
optical interconnection communication in HPC scenarios, 
the following core challenges must be addressed:

1	 The traffic distribution of HPC applications and 
bandwidth requirements of each link need to be quickly 
identified to promptly adjust communication paths.

2	 After the topology changes, the route configuration 
policy in a new topology needs to be determined.

3	 After the optical path is switched, data loss may occur, 
causing data retransmission and degrading system 
performance.

Data center and cloud, two mainstream scenarios, have 
increasingly complex application changes and more urgent 
requirements for flexibility. In these scenarios, there are 
mixed applications (both high-bandwidth applications 
and low-latency applications) and mixed traffic (both 
elephant flows and mice flows). Traffic bursts and uneven 
distribution are obvious [40]. In addition, these scenarios 
need to support features such as multi-tenant isolation 
and virtualization, making it more difficult to adapt to the 
optical interconnection structure. Currently, applications 
in these scenarios focus on the optimization of temporary 
high-bandwidth traffic and use optical paths to construct 
hard pipes in order to achieve high-bandwidth transmission. 
The main optimization policy is to identify tidal traffic and 
perform certain switching policies at the core switching layer 
to improve the overall network communication capability. 
Such applications include Sirius [7] of Microsoft, Gemin [41] 
of Google, and Helios [42] of the University of California. 
The core challenge of this scenario is how to properly 
allocate network bandwidth through the combination of 
traffic engineering and topology.
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In addition to the preceding scenarios, an increasing 
amount of research introduces optical interconnection into 
a resource pooling scenario, for example, device resource 
pooling and memory resource pooling [43]. There are also 
studies that apply optical components to future chiplets 
[44]. Fully leveraging the advantages of optical components 
to maximize the value of optical interconnection in latency, 
power consumption, and bandwidth is a direction worthy of 
long-term exploration.

Summary

Given  the  t rend  o f  inc reas ing  requ i rements  fo r 
interconnection bandwidth and switching capacity as well 
as enlarged cluster scale, applying optical networking to 
supplement for electrical networking creates a wide variety 
of performance, power consumption, and cost benefits. Its 
exploration is of great potential and economic value. This 
is a systematic project that requires joint innovation at 
all levels, including protocol, chip, and middleware levels, 
to achieve E2E breakthroughs. Currently, the feasibility of 
hybrid optical-electrical networks has been partially verified 
through early researches in the AI field. To meet more 
scenario requirements in the future, optical application 
solutions need to be continuously researched, developed, 
and finally implemented in the industry.
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This paper proposes the innovative 8-bit floating-point format HiFloat8 (abbreviated as HiF8), HiF8-based AI training 
solution, and HiF8-based AI inference solution.

As a single data format, HiF8 can be simultaneously used in the forward pass and backward pass of AI training. With HiF8, 
both network statistics analysis and switching between different Float8 data formats are not required during training. 
HiF8 features tapered precision and balances the precision and dynamic range, eliminating the need for dynamic matching 
between data and formats during training, which causes redundant data scaling or exponent sliding window operations. 
The HiF8 training process is the same as the existing FP16 mixed precision training process. Therefore, HiF8 is intuitive 
and easy to use, and users are not required to know its details. The verification experiments of large-scale training show 
that compared with the accuracy of FP16 mixed precision training, the accuracy of HiF8 training on convolutional neural 
networks (CNNs) decreases by 0.16% (0.12% if FP16 is allowed to be used for training at the input layer) on average and 
the accuracy of HiF8 training on Transformer networks increases by 0.12% on average.

In terms of inference, this paper proposes a target metric loss–oriented hierarchical calibration solution that is applicable to 
HiF8. The verification experiments of large-scale inference show that:

•	 Transformer networks can be used for inference after the data type is directly converted to HiF8.

•	 Most CNNs can be used for inference after direct data type conversion to HiF8 + calibration.

•	 A few CNNs that are difficult to calibrate can be used for inference if some layers use FP16 while others use HiF8 for 
computing.

This paper also evaluates the overheads and benefits of HiF8 based on the electronic system level (ESL) models of Ascend 
XXX1 and XXX2. When Ascend XXX1 serves as the baseline, if the computing power of HiF8 is twice that of FP16, the area of 
AI Core increases by approximately 4.5%, and the training performance of ResNet50 and BERT can be improved by 26% and 
61%, respectively. If Ascend XXX2 serves as the baseline, the training performance of ResNet50 and BERT can be improved 
by 31% and 67%, respectively.
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1 Development of AI Data Formats

In 2012, AlexNet [1] won the championship of the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC), kicking 
off an explosion of deep convolutional neural networks 
(DCNNs). In 2017, the Transformer [2] architecture was 
proposed, which ushered in the era of large-scale deep 
neural network (DNN) models with hundreds of millions 
of parameters. Since then, the parameter scale of large-
scale Transformer models has been increasing exponentially 
by 240 times every two years. In addition to the silicon-
based technologies developed according to Moore's Law 
[3] and architecture innovation, AI data formats are also 
continuously developing to meet the computing power 
requirements of AI. The development of AI data formats can 
be divided into the following four phases based on the time 
for commercial use:

Phase 1 (1956–2006): FP64. The concept of AI was first 
proposed in 1956. The core idea was to enable machines 
to have basic logical inference capabilities. In 1970, the 
backpropagation algorithm was proposed [4]. Since 1980, 
the knowledge base system and knowledge engineering 
have become the main directions of AI research. In 1982, 
the Hopfield network was proposed [5]. In 1997, Deep 
Blue beat the world chess champion. From 1962 to 2006, 
the theoretical basis of deep learning, including theories 
related to CNNs and long short-term memory (LSTM), was 
established and developed but was not mature. During 
this period, CPUs were the major AI hardware, and the 
mainstream data format was the 64-bit double-precision 
floating-point format FP64 defined in IEEE Standard for 
Floating-Point Arithmetic (IEEE 754) in 1985 [6]. Before this 
international standard was established, the 60-bit floating-
point format (predecessor of FP64) applied to CDC 6000 
was in use.

Phase 2 (2006–now): FP32. In 2006, Hinton et al. successfully 
trained a multilayer feedforward neural network, indicating 
that the deep learning theory had become mature [7]. The 
CPU-based FP64 data format gradually became incapable 
of meeting AI's increasingly higher computing power 
requirements being driven by deep learning. Researchers 
were in urgent need of greater computing power to 
accelerate general matrix-vector multiplication (GEMV) 
and general matrix-matrix multiplication (GEMM). In 2006, 
FP32 was used for the first time to train CNNs on GPUs and 
achieved a four-fold performance improvement compared 
with FP64 training on CPUs [8]. The bit width of FP32 is 
only half that of FP64. Therefore, a chip that uses the FP32 

format can store more data and integrate more multiply-
accumulate (MAC) units than one that uses FP64. The single 
instruction multiple data (SIMD) computing mode enables 
GPUs to have a significantly higher degree of computing 
parallelism than CPUs. AlexNet [1] which ran on two GPUs 
won the championship of ILSVRC 2012, making FP32 the 
mainstream data format for deep learning training from 
2012 to 2017.

Phase 3 (2017–now): Float16 mixed precision. In this 
phase, the scale of deep learning networks was increasing 
exponentially, whereas Moore's Law was slowing down, 
widening the gap between AI computing requirements and 
the computing density of hardware. In addition, the memory 
wall problem became increasingly severe. The academia 
started to explore AI data formats with smaller bit widths 
than FP32. The explorations included binary quantization 
[9], ternary quantization [10], and 4- to 6-bit quantization 
of activation values or weights [11], dynamic quantization 
of weights, activation values, and gradients [12], and 16-bit 
fixed-point training of neural networks [13]. These radical 
explorations either caused a sharp decrease in the training 
accuracy or were verified to be applicable to small datasets 
only. In 2015, Google proposed a novel Float16 data format 
in its TensorFlow white paper. This format was equivalent 
to FP32 without the last 16 bits and was used as the input 
data format of multiplication, whereas FP32 was used for 
accumulation in the GEMM [14, 15]. This format was later 
named Brain Floating Point 16 (BF16) [16] and deployed on 
Tensor Processing Unit (TPU) V2 and V3. In 2017, Google's 
AlphaGo deployed based on TPU V2 defeated the world's 
number one Go player Ke Jie in all three games, causing a 
global sensation. Unlike Google, NVIDIA and Huawei adopt 
the IEEE 754 half-precision floating-point format [17]. 
NVIDIA released the V100 GPU [18] in 2017 and Huawei 
released the Ascend NPU [19] in 2019. Both the GPU and 
NPU support the FP16 and FP32 mixed precision training 
strategies. Loss scaling needs to be introduced into the 
backward pass of FP16 training to prevent a large number 
of zero-valued gradients because the dynamic range of 
FP16 is small [20]. Since 2017, the Float16 mixed precision 
training solution, mainly consisting of BF16 and FP16, 
has become the main choice for deep learning training. 
However, FP32 is still used for some networks requiring high 

precision. Over the same period, some other customized 

AI data formats were also put forward to compete with 

BF16 and FP16. In 2019, IBM proposed the DLF16 data 

format [21] consisting of 1 sign bit, 6 exponent bits, and 9 

mantissa bits. The training strategy based on DLF16 mixed 

precision has not been fully verified on a large number of 
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neural networks. The A100 GPU released by NVIDIA in 2020 
supports mixed precision training based on TF32 — a 19-bit 
AI data format. This format is equivalent to FP32 without 
the last 13 bits and applies to neural networks that require 
a higher precision than that of Float16 [22]. The 19-bit 
width of TF32 is not conducive to data storage or transfer. 
In addition to the preceding floating-point formats with 
a fixed bit width for each field, the floating-point format 
posit [24] was invented by John Gustafson in 2017 based 
on Unum [23]. Posit has a mantissa bit width that features 
tapered precision within the exponent range. However, the 
16-bit posit mixed precision training was carried out only on 
a small number of small-scale networks or datasets [25]. 
In general, BF16 and FP16 have achieved decent results in 
Float16 mixed precision training. Most existing DNNs are 
based on the BF16 + FP16 Float16 mixed precision training.

Phase 4 (2021–now): Float8 mixed precision. Google 
ushered in the era of Float16 mixed precision training, 
whereas IBM led the exploration of Float8 mixed precision 
training. In 2018, IBM radically cut off the last 8 bits of FP16 
to obtain the FP8 data format with 1 sign bit, 5 exponent 
bits, and 2 mantissa bits (1-5-2) [26], and proposed the 
GEMM computation method in which FP8 is used for 
multiplication and FP16 (1-6-9) is used for accumulation. 
The FP8 training solution achieved good results in ResNet50 
training when stochastic rounding (SR) and backward 
loss scaling were supported. However, on MobileNetV2 
and Transformer networks, the accuracy of FP8 training 
decreased dramatically. On this basis, IBM proposed the 8-bit 
hybrid FP8 (HFP8) training solution in 2019 [27]. For GEMM, 
HFP8 uses FP8 (1-4-3) for multiplication in the forward pass 
of training, FP8 (1-5-2) for multiplication in the backward 
pass of training, and FP16 (1-6-9) for accumulation. HFP8 
has achieved desired training results on some CNN, LSTM, 
and Transformer networks. The HFP8 training solution uses 
different data formats in the forward pass and backward 
pass of training, and therefore it is also called FP9 in GEMM 

hardware implementation [28]. To avoid the trouble of 
selecting one of the two FP8 data formats during training, 
the FP8 solution supporting shared exponent bias (SEB) 
was proposed [29, 30]. Based on an FP8 format with a 
large mantissa bit width, this solution adds a proper bias 
to the exponent of a piece of data through GEMM-level 
data exponent sharing, so as to adjust the dynamic range 
of the data format for data matching. In August 2021, Tesla 
took the lead in deploying a Float8 mixed precision training 
solution called configurable floating point 8 (CFP8) on its 
new product Dojo [31]. CFP8 uses the FP8 (1-4-3) and FP8 
(1-5-2) formats of HFP8, each of which is configured with a 
6-bit SEB. At the end of November 2021, Amazon deployed 
configurable Float8 (cFP8), another Float8 mixed precision 
training solution on its new product EC2 Trn1 [32]. The cFP8 
solution involves three FP8 data formats: FP8 (1-5-2), FP8 
(1-4-3), and FP8 (1-3-4). However, it does not support the 
SEB. In addition, the cFP8 mixed precision training solution 
supports SR. In March 2022, NVIDIA also deployed the 
Float8 mixed precision training solution on its new product 
H100 GPU [33]. NVIDIA adopts the FP8 (1-4-3) and FP8 (1-
5-2) formats of HFP8 and introduces an additional hardware 
module called the Transformer Engine to accelerate the 
training of Transformer networks. This module analyzes 
statistics, determines whether to use 1-4-3, 1-5-2, or FP16 
as the format of the GEMM input data at the current 
layer of the Transformer network, and implements Float8 
+ Float16 dynamic mixed precision training. In addition, 
after the Transformer Engine determines whether to use 
FP8 (1-4-3) or FP8 (1-5-2) at the current layer, a scaling 
factor needs to be computed to scale data into the dynamic 
range of FP8. NVIDIA claimed that the combination of FP8 
and Transformer Engine could reduce the time required for 
training Transformer models from weeks to days. Table 1 
compares various Float8 solutions in the industry. On the 
whole, the commercial Float8 solutions of major vendors 
have certain similarities with IBM's HFP8.

Table 1 Comparison of Float8 solutions in the industry

Item IBM HFP8 Tesla CFP8 Amazon cFP8 NVIDIA FP8

Format 1-4-3/1-5-2 1-4-3/1-5-2 1-3-4/1-4-3/1-5-2 1-4-3/1-5-2

SEB - 6 bits - -

Scaling N N Y* Y

Statistics - Software* Software* Transformer Engine

SR N Undisclosed Y Undisclosed

NaN/Inf Support N N Undisclosed Undisclosed

       *: Conjecture
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On the one hand, with the evolution of deep learning 
algorithms, neural networks have an increasingly higher 
tolerance for computational errors. On some neural 
networks, the accuracy even slightly improves after 
training due to a lower computing precision. The reason 
is that increasing the computational error is equivalent to 
introducing noise, avoiding overfitting to a certain extent, 
and enhancing the generalization capability of such neural 
networks [34]. On the other hand, the exponential growth 
in the network scale has caused severe problems such as 
insufficient computing power and memory walls [35]. If 
the bit widths of data formats can be greatly reduced, 
the computing power can be significantly improved or 
the memory wall problem can be mitigated. Based on 
the preceding two aspects, AI data formats have been 
developing toward smaller bit widths in recent decades, 
from 64-bit width to the 32-bit width, and then to 16-
bit mixed precision. The era for commercialization of 8-bit 
mixed precision data formats has arrived.

In the following sections, we will break down, analyze, 
and discuss existing Float8 mixed precision solutions in 
depth, and introduce the Huawei proprietary HiF8 data 
format and Ascend HiF8 mixed precision training and 

inference solutions.

2 Rethinking Float8 and AI

As described above, training accuracy and computing 
precision of deep learning networks are not positively 
correlated. The accuracy of FP32 training is slightly higher 
than that of Float16 mixed precision training on some 
networks, whereas the result may be the opposite on 
other networks, depending on the network structures. 
This is because the error or noise caused by a decrease 
in computing precision is double-edged. If the error or 
noise is within a specific range, the network generalization 
capability is enhanced. If the error or noise is beyond this 
range, the network generalization capability is weakened 
because the computational error is excessively large or 
small. An excessively large computational error will lead 
to a significant decrease in training accuracy. During the 
transition from FP32 to Float16 mixed precision, Float16 
itself is within the inflection point range with relatively good 
computing precision and network generalization capability. 
Therefore, both BF16 which favors dynamic range, and FP16 
which favors computing precision + backward loss scaling 
have achieved commercial success. In cases where simple 
floating-point data formats with fixed field bit widths can 

achieve good results, the industry does not consider other 
complex data formats with high overheads.

However, during the transition from Float16 to Float8, the 
computing precision decreases to the critical point and 
the dynamic range also reaches the critical point, which 
requires deliberation. In this case, the computing precision 
and dynamic range need to be balanced. Based on a series 
of explorations originating from IBM's Float8, the current 
implementation in the industry, and a large number of 
experiments we have conducted, the following conclusions 
can be drawn:

•	 A single Float8 data format with a fixed field bit 
width either has low computing precision or a small 
dynamic range (the exponent window is too narrow) 
and therefore cannot meet the network training 
requirements. The forward pass of training requires high 
computing precision, whereas the backward pass of 
training requires a large dynamic range.

•	 When multiple Float8 data formats with fixed field bit 
widths are dynamically mixed, the data and format still 
need to be matched if the selected Float8 data formats 
favor high computing precision and have small dynamic 
ranges. For example, the forward pass of training 
requires high computing precision. However, the training 
accuracy decreases dramatically if the dynamic range 
does not properly match the statistical characteristics of 
the data.

•	 There are two methods for matching data and formats. 
One is to scale data at the GEMM level so as to match 
the exponent window of Float8. The other is to set a 
GEMM-level SEB, that is, to move the exponent window 
of Float8 to match the data. Amazon and NVIDIA have 
chosen the former, whereas Tesla has chosen the latter.

The Float8 mixed precision solution based on a fixed field 
bit width has the following problems:

•	 In terms of hardware, extra overheads are introduced. 
For example, multiple Float8 data formats need to be 
identified by hardware. GEMM-level matching between 
formats and data requires the SEB or Transformer 
Engine.

•	 In terms of software, additional algorithms are required 
to select formats and match the data and formats.

•	 In terms of users, the fine-grained complexity (i.e., 
temporal locality and spatial locality) at the GEMM level 
can be perceived by users and is therefore not user-
friendly.

In the phase when Float16 was the research focus, the 16-
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bit posit is a decent exploration result among floating-
point formats with non-fixed field bit widths. Posit features 
tapered precision. Its mantissa bit width is relatively large 
within the data range in which the absolute value is close 
to 1, but gradually decreases to 0 as the absolute value is 
farther away from 1. However, posit encoding and decoding 
are too complex and require a relatively large multiplier bit 
width and high hardware overhead. Compared with BF16 
and FP16 which can achieve fair training effects, posit16 
slightly improves the training accuracy, but it has an obvious 
drawback of high hardware overhead. In the competition 
with Float8, a single posit8 data format cannot achieve a 
proper tradeoff between the dynamic range and computing 
precision. The applicable networks and datasets are still 
limited even if the operation of matching formats and data 
is performed [36, 37]. In addition to posit, another floating-
point format with non-fixed field bit widths — EFloat — 
was proposed by IBM [38]. EFloat collects information 
entropy statistics and then performs Huffman coding on 
the exponent, enabling the mantissa bit width to change 
dynamically. The complexity granularity of EFloat is finer 
than that of the preceding floating-point solutions, and 
therefore more details are not provided in this paper.

Inspired by the floating-point solutions with non-fixed field 
bit widths, we hold that a feasible approach to solving the 
problems of preceding Float8 solutions with fixed field bit 
widths is to explore the bit width allocation rules of the 
exponent and mantissa in a single Float8 data format. 
During AI training, data distribution presents a centralized 
characteristic similar to that of Gaussian distribution. 
Therefore, posit with tapered precision is a perfect choice. 
However, posit encoding and decoding are too complex, 
and a single posit8 data format has either a small dynamic 
range or low big data computing precision. Therefore, a 
new data format needs to be designed. Considering that 
FP16 mixed precision has achieved business success and 
automatically supports loss scaling in the backward pass of 
training, we hope to design a new data format that has the 
same 5-bit equivalent exponent as FP16 while maintaining 
tapered precision. Such a data format can maintain the 
same mode as FP16 mixed precision during AI chip design, 
deployment, and use. Therefore, it is user-friendly and its 
software and hardware deployment is simple.

3 HiFloat8

This section describes the definition of the novel 8-bit 
floating-point data format HiFloat8 (abbreviated as HiF8) 

and its support for special values. We then elaborate on the 
rounding support of HiF8, which is a focus of AI training 

and inference.

3.1 HiF8 Data Format

HiFloat is a new general-purpose floating-point encoding 
and decoding mode and data expression mode. The bit 
width, data range, and significant bits of HiFloat can be 
scaled based on scenario requirements. HiFloat applies to 
various fields such as general-purpose computing, high-
performance computing (HPC), and AI. This paper focuses 
on the 8-bit floating-point instance HiF8 of HiFloat in 
AI low-precision training and inference scenarios. HiF8 
defines an additional dot field on the basis of IEEE 754 
[17]. Therefore, HiF8 consists of the four fields listed in 
Table 2: a sign field, a dot field, an exponent field, and a 
mantissa field.

The following describes each field in detail:

•	 Sign field: 1 bit, indicating the positive and negative 
signs of HiF8 data. By default, 1 indicates the negative 
sign and 0 indicates the positive sign.

•	 Dot field: 2 or 3 bits used to code the five D values (0 
to 4). D explicitly indicates the number of bits occupied 
by the exponent field, and implies the number of bits 
occupied by the mantissa field. The dot field is coded 
by using unconventional prefix codes, that is, the 3-bit 
width is used for coding small values 0 and 1, whereas 
the 2-bit width is used for coding large values 2, 3, and 4. 
Table 3 describes the default mapping.

•	 Exponent field: D bits, where D is equal to the coded 
value of the dot field and D ∈ {0, 1, 2, 3, 4}. The 
exponent field uses signed-magnitude codes to represent 
values, but the most significant bit (MSB) of the 
magnitude is fixed to 1. The 1-bit sign of the exponent 
is marked as Se. By default, the exponent sign is positive 
when Se is 0, and negative when Se is 1. In binary mode, 

Table 2 Definition and bit width of each field in HiF8

Field Sign (S)
Dot (D): 

{Values}

Exponent 

(E)

Mantissa 

(M)

Width

1 2: {2, 3, 4} D 5 – D

1 3: {0, 1} D 4 – D
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Table 3 HiF8 dot field coding

Dot: Unconventional Prefix Code

Width Coding Value

2

11 4

10 3

01 2

3
00, 1 1

00, 0 0

the binary signed-magnitude code of the exponent can 
be completely expressed as Ei:

Ei = {Se, Mag[1:end]} = {Se, 1'b1, Mag[2:end]}

Since the MSB of the magnitude is fixed to 1, this bit can 
be hidden and Ei can be expressed as Es during storage:

Es = {Se, Mag[2:end]}

The number of bits in Es equals the value of D. When 
D is 0, Es does not occupy any bit width, indicating 
that the exponent value equals 0. Table 4 describes the 
exponent coding details of HiF8.

In Table 4, E is a decimal numerical representation of the 
exponent. The exponent window of HiF8 is [–15, +15], 
and therefore there are 31 exponent values in total.

•	 Mantissa field: (5–D) bits, where D is equal to the 
coded value of the dot field and D ∈ {0, 1, 2, 3, 4}. 
The mantissa field stores only M, that is, the value in 
fractional bits. The actual value is 1.M or 1 + M. The 
MSB of the significand is fixed to 1, hidden, and not 
stored. The mantissa field has four fractional bits when 
the exponent center of HiF8 equals 0 (i.e., E equals 0), 
as described in Table 4. When the absolute value of E 
gradually increases, the bit width of the mantissa field 
gradually decreases to 1.

A HiF8 floating-point number can be expressed by the 
following formula:

X = (–1)S × 2E × (1 + M)

Table 4 HiF8 code-value mapping details

Value of D 0 1 2 3 4

Es None Se Se, Mag[2] Se, Mag[2:3] Se, Mag[2:4]

Ei 0 Se, 1 Se, 1, Mag[2] Se, 1, Mag[2:3] Se, 1, Mag[2:4]

E 0 ±1 ±[2, 3] ±[4, 7] ±[8, 15]

Width of M 4 3 3 2 1

S, E, and M indicate the values of the sign, exponent, 
and mantissa fields of HiF8, respectively.

In addition, to cope with various special cases in HiF8 
numerical computation and facilitate debugging during 
AI training and inference, HiF8 defines four special 
values: Zero, not a number (NaN), and positive/negative 
infinity (±Inf). These special values are described as 
follows:

•	 If S = 0, D = 4, Es = 4'b1111 (E = –15), and M = 1'b0, 
then X = Zero.

•	 If S = 1, D = 4, Es = 4'b1111 (E = –15), and M = 1'b0, 
then X = NaN.

•	 If D = 4, Es = 4'b0111 (E = 15), and M = 1'b1, then X 
= ±Inf.

Figure 1 shows the distribution of significant bits (hidden 
1-bit integer + mantissa: 1.M) of HiF8 and HFP8 in the 
exponent window.

The maximum and minimum positive numbers that can 
be expressed by HiF8, that is, the dynamic range of the 
absolute values, are as follows:

Xmax_pos = 215 = 32768 (Including Inf)

Xmin_pos = 2–15 × 1.5 = 0.000045776367 (Including NaN & Zero)
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Figure 1 Significand precision on exponent of HiF8 and HFP8



82 | Communications of HUAWEI RESEARCH

Technological Foundation

June 2024

In summary, as a single Float8 data format, HiF8 
balances the dynamic range and computing precision. It 
has the following four major characteristics:

•	 Tapered precision: When the HiF8 exponent is 
extended from the center to both sides, the number 
of significant bits gradually changes from 5 to 2. 
HiF8 uses unconventional prefix codes for numerical 
coding of the dot field, preventing problems caused 
by using conventional prefix codes, including the 
precision jump problem and the problem that 
the number of significant bits of large values is  
too small.

•	 5-bit equivalent exponent: Same as FP16, HiF8 
has a 5-bit exponent equivalently. This helps HiF8 
maintain the same neural network training process 
as FP16 mixed precision. Therefore, HiF8 features 
easy software and hardware deployment and is  
user-friendly.

•	 No redundant information: HiF8 uses the signed-
magnitude representation for coding and hides the 
magnitude MSB that is fixed to 1 during exponent 
storage, ensuring that the exponent values under 
different D values are unique. HiF8 hides the integer 
bit that is fixed to 1 during mantissa storage.

•	 Support for various special values: HiF8 defines 
four key special values. These special values play a 
significant role in debugging during AI training and 
inference. However, commercial solutions usually use 
multiple Float8 data formats, making it difficult to 
define and support special values NaN and ±Inf in a 
unified manner.

3.2 HiF8 Rounding Support

In Float8 mixed precision training and inference, high-
precision floating-point format such as FP32 needs to be 
converted into low-precision format Float8 and then input 
to the GEMM, during which rounding is involved. As the 
precision of Float8 is low, the rounding method is extremely 
sensitive to the convergence and accuracy of neural network 
training. After theoretical analysis and a large number of 
experiments, we conclude that HiF8 supports two rounding 
methods during format conversion: round half to away (TA) 
and SR. In addition, to meet the requirements of certain AI 
algorithms, HiF8 also provides two options: saturation to 
boundary values upon overflow and NaN saturation to zero. 
The following describes the TA and SR rounding solutions 
used during the conversion from FP32 to HiF8:

•	 Round half TA

To reduce the computational error, HiF8 preferentially 
uses the rounding solution with an error of 0.5 unit of 
least precision (ulp) only, that is, round half. Directed 
rounding solutions with an error of 1 ulp, such as round 
up, round down, and round to zero, are not considered 
because they cause excessively large computational 
errors and severe mean shift during the training of 
neural networks, making it difficult for the training to 
converge. Round half is classified into round half to 
even (TE) and round half TA [17]. In TE rounding, if the 
MSB of the discarded bits is 1 and other discarded bits 
are 0, the last bit of the reserved bits is checked. If the 
last bit is 1, the reserved bits increase by 1. If the last 
bit is 0, the reserved bits remain unchanged, that is, the 
number obtained after rounding is even. If the MSB of 
the discarded bits is x (0 or 1) and the other bits are not 
0, x is added to the reserved bits. In most papers and 
commercial products, TE rounding is used by default 
because it maximizes the unbiasedness of round half. In 
contrast, TA rounding focuses only on the MSB (x) of the 
discarded bits and directly adds x to the reserved bits. 
Therefore, TA rounding is biased rounding in the special 
case of TE rounding (i.e., the case where the MSB of 
the discarded bits is 1 and other discarded bits are 0). 
In conclusion, TE rounding enhances the unbiasedness 
of round half, whereas TA rounding features easier 
hardware implementation.

The occurrence probability of the TE special case is 
extremely low during the conversion from FP32 to 
HiF8. For example, the probability is 2–20 if HiF8 needs 
to reserve three fractional bits. The biggest challenge 
of low-precision Float8 in AI training and inference 
is its limited data resolution capability. The analysis 
result shows that the data resolution capability of TA 
is slightly higher than that of TE during the conversion 
from FP32 to HiF8. In consideration of the TE special 
case, it is assumed that there are three 3-bit numbers 
with consecutive integer bits: 00.1, 01.1, and 10.1. The 
round half TE result of the three values is 00 and 10, 
whereas the round half TA result is 01, 10, and 11. 
Therefore, in the TE special case with an extremely 
low occurrence probability, TA enables a higher data 
resolution capability of Float8 than TE although TA is 
biased rounding, and the errors of TE and TA are both 0.5 
ulp. The simulation experiments of HiF8 mixed precision 
training show that the accuracy of networks trained 
based on TA is slightly higher than that of networks 
trained based on TE because TA enables a slightly 
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4.1 HiF8 AI Training Process

higher data resolution capability than TE. For example, 
the TA-based training accuracy of ResNet50 and that 
of MobileNet_V2 are 0.06% and 0.11% higher than the 
TE-based training accuracy of ResNet50 and that of 
MobileNet_V2, respectively.

In summary, compared with TE, TA features simpler 
hardware implementation and higher training accuracy. 
Therefore, HiF8 uses round half TA.

•	 SR

Large-scale HiF8 mixed precision training experiments 
show that global TA rounding applies to almost all 
DNNs, except YoLo_V3_Tiny. When only TA rounding was 
used for HiF8 training on YoLo_V3_Tiny, some segments 
crashed. As a result, the final accuracy was 1.67% lower 
than the FP32 baseline. After a lot of research and many 
experiments, we propose a HiF8 training solution that 
combines TA and SR (details will be provided later) and 
enables the YoLo_V3_Tiny network training accuracy to 
be close to the baseline value. Therefore, HiF8 supports 
both TA rounding and SR.

The error of SR is 1 ulp. Compared with TA rounding, SR 
has a significant advantage when data is processed in 
batches. Specifically, in SR, a uniformly distributed random  
number needs to be randomly generated and used 
as threshold T (T ∈ [0, 1)). All bits to be discarded are 
regarded as fractional bits and marked as F (F ∈ [0, 1)). 
F and T are then compared. If F ≥ T, 1 is added to the 
reserved bits (K). If F < T , 0 is added to the reserved 
bits (K), that is, K remains unchanged. As threshold T 
is uniformly distributed, the expected value after SR is 
expressed as follows:

(K + 1) × F + K × (1 – F) = K + F

SR can maintain the overall mean invariance during 
batch data rounding to the maximum extent [39].

Because DNNs need to generate a large number of 
uniformly distributed random numbers in parallel, 
both software and hardware implementations of 
SR hit a performance bottleneck [40]. To tackle the 
bottleneck, we come up with a simplified SR hardware 
implementation solution. Take the conversion from 
FP32 to HiF8 as an example. Assuming that the value 
of the most significant 14 bits (F14) of the discarded 
bits approximately equals F , the precision is high 
enough. Then, the least significant 14 bits (T14) of the 
discarded bits are used as the random number threshold 
for uniform distribution (both theoretical analysis and 
experiments show that the lower mantissa bits of 
floating-point numbers follow uniform distribution). 

Then, F14 and T14 are compared to complete simplified 
SR. A large amount of end-to-end (E2E) HiF8 training 
shows that the effect of this method is basically the 
same as that of the methods mentioned earlier.

In conclusion, the combination of TA rounding and SR can 
solve the convergence problem of very few special networks. 
In addition, the simplified SR hardware implementation 
solution proposed in this paper has a low overhead and 
does not hit any bottleneck during random number 
generation. Therefore, HiF8 also supports SR.

4 HiF8 AI Training

This section describes the HiF8 mixed precision training 
solution, including the HiF8 training process, the method for 
setting up a HiF8 simulation experiment platform that can 
be used for both training and inference, and two application 
scenarios of HiF8 AI training.

As mentioned above, the mantissa bit width of HiF8 
gradually decreases in the process of extending the 
exponent from the center to both sides, that is, HiF8 
features tapered precision. Based on this feature, HiF8 can 
balance the computing precision and dynamic range. The 
number of significant bits ranges from 2 to 5. The exponent 
bit width of HiF8 is 5, which is the same as that of FP16. The 
dynamic range of HiF8 is [–32768, +32768], which is quite 
close to that of FP16. Similar to FP16 training, HiF8 training 
does not require analysis of statistics at each network layer 
or matching between formats and data. Different from the 
training solution involving multiple Float8 data formats 
with fixed field bit widths, HiF8 is a single data format, and 
therefore switching between different Float8 data formats is 
not needed during training. To sum up, HiF8 can directly use 
the AI training solution of FP16 mixed precision to prevent 
an increase in the costs of user learning and transfer. Figure 
2 shows the training process of HiF8 mixed precision.

This paper describes the HiF8 mixed precision training 
solution from the following four aspects:

•	 Forward pass of training

For GEMM operat ions performed at the input 
and intermediate layers of the network, including 
Convolution, Convolution Transpose, Full Connection, 



84 | Communications of HUAWEI RESEARCH

Technological Foundation

June 2024

Figure 2 Training process of HiF8 mixed precision

and MatMul, the data of different formats (FP32, FP16, 
Int8, etc.) needs to be converted into HiF8 data and then 
input to the GEMM computing unit, which then outputs 
FP32 or FP16 data. The activation layer (ReLU, GeLU, 
etc.) and normalization layer (batch normalization, layer 
normalization, etc.) use the FP32 or FP16 data format 
for computing. The output layer of the neural network 
retains the FP16 or FP32 data format.

•	 Backward pass of training

HiF8 mixed precision inherits the loss scaling operation 
in the backward pass of FP16 training. That is, the loss is 
multiplied by a proper scaling value, and then derivation 
is performed in a backward manner. During the 
derivation of the feature map and weight, the GEMM 
input is of the HiF8 data type (FP16 or FP32 is still used 
at the output layer of the neural network), and the 
activation layer and normalization layer use the FP32 or 
FP16 data type.

•	 Weight update process

The gradient corresponding to the weight obtained 
in the backward pass is stored as FP32 data. The 
computation involved in the optimizer and the saved 
master weight, momentum, and other intermediate 
variables all use the FP32 data type. The updated weight 
output by the optimizer is converted into HiF8 data for 
the next training iteration.

•	 Rounding mode selection

As mentioned before, Float8 training is extremely 
sensitive to rounding. In this paper, two rounding 
solutions are used when data is converted to the HiF8 
data type. In rounding solution 1, TA rounding is used 
globally. In rounding solution 2, TA rounding is used 

in the forward pass of training and SR is used in the 
backward pass of training. The training accuracy of the 
two rounding solutions is basically the same, except 
in the case of the special network YoLo_V3_Tiny and 
other unknown networks. Because SR has uncertainty, 
it is recommended that rounding solution 1 be used 
by default and rounding solution 2 be used only when 
necessary. If it is difficult to implement rounding 
solution 2, using SR globally can serve as an alternative. 
However, the training accuracy will be slightly lower 
than that of rounding solution 2.

HiF8 mixed precision training is highly consistent with 
FP16 mixed precision training in terms of the process, 
except that the former converts the data type of GEMM 
input from FP16 to HiF8 and they use different rounding 
solutions, as shown in Figure 3. Therefore, users can switch 
from the FP16 mixed precision training mode to the HiF8 
mixed precision training mode, improving the training speed 
and energy efficiency without perceiving any difference or 
adding extra learning costs.

Currently, no hardware platform is available to support the 
HiF8 data format and complete the computation process. 
Therefore, the accuracy of HiF8 training on AI networks 
cannot be directly verified. The data range of HiF8 is a 
subset of the data range of FP16. Therefore, a conversion 
function can be used to convert FP16 numbers into a value 
range that can be expressed by the HiF8 data format. AI 

4.2 Simulation Experiment Platform 
for HiF8 Training and Inference
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Figure 3 Process of FP16 mixed precision training

Figure 4 Simulation experiment methods for HiF8 AI training and inference Figure 5 Convergence curves of HiF8 AI training

4.3 Scenario 1: HiF8 Training

hardware platforms, such as NVIDIA GPUs and Huawei 
Ascend NPUs, can be utilized to conduct the simulation 
experiments of HiF8 training and inference on AI networks.

A data type conversion operation needs to be inserted in 
the original computation process of the GEMM operation 
in the forward pass of training, as shown in Figure 4. The 
HiF8 converter is inserted before the matrix multiplication 
operator to convert the data types of the feature map and 
weight from FP16 or FP32, to HiF8. The FP32 data type is 
used for accumulation involved in matrix multiplication. 
The backward pass of training involves the derivation of 
the feature map (dx) and derivation of the weight (dw). 
The data type conversion in the dx process is similar to 
that in the forward pass of training, that is, the types of 
gradient data and weight data are converted to HiF8 before 
derivation. The input data of the dw process is the gradient 
and feature map, which need to be converted into the HiF8 
data type before derivation.

To verify the training performance of HiF8 in the AI field, 
we choose two main application directions for simulation 
experiments: computer vision and natural language 
processing (NLP). The subdivided application scenarios 
of computer vision include classification, detection, and 
segmentation. In this paper, the most widely used typical 
networks based on the CNN and Transformer structures 
are selected for the experiments, including ResNet series 
[41], ResNext [42], Vgg [43], MobileNet [44], Inception 
[45], EfficientNet [46], DenseNet [47], ViT series [48], YoLo 
series [49], DeepLab [50], and 3D U-Net [51]. For NLP, the 
mainstream Transformer model [2] is used.

Figure 5 compares the loss convergence of HiF8 mixed 
precision training and FP16 mixed precision training (base) 
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on the ResNet50, YoLo_V3_Tiny, ViT_base, and Transformer_
base network models. The convergence curve of HiF8 is 
highly overlapped with that of FP16, the convergence speed 
of HiF8 is the same as that of FP16, and both HiF8 network 
training and FP16 network training can be completed within 
the same number of epochs.

Table 5 lists the experiment results of the training 
accuracy of HiF8 mixed precision, half-precision HP/
FP16 mixed precision, and single-precision SP/FP32. For a 
fair comparison, the number of epochs of each network 

Category Model
HiF8 

Backward
SP Mean (HP)

Mean 
(HiF8)

HiF8 – HP HiF8 – SP

Classification: CNN

DenseNet121 TA 76.03% 76.04% 75.84% –0.20% –0.19%

EfficientNet-b0 TA 77.02% 77.33% 77.08% –0.25% 0.06%

Inception-v3 SR 77.94% 77.85% 77.79% –0.06% –0.15%

MobileNet-v2 TA 72.67% 72.41% 72.10% –0.31% –0.57%

ResNet18 TA 70.59% 70.78% 70.64% –0.14% 0.05%

ResNet34 SR 74.50% 74.34% 74.24% –0.10% –0.26%

ResNet50 TA 77.35% 77.36% 77.31% –0.05% –0.04%

ResNet101 TA 78.92% 78.84% 78.72% –0.12% –0.20%

ResNet152 SR 79.28% 79.42% 79.26% –0.16% –0.02%

ResNext50_32x4d TA 78.25% 78.14% 78.01% –0.13% –0.24%

Vgg16 SR 74.10% 74.19% 73.90% –0.29% –0.20%

Vgg16-BN TA 74.59% 74.59% 74.54% –0.05% –0.05%

Mean_CNN –0.16% –0.15%

Classification: 
Transformer

vit_base_patch16 SR / 79.19% 79.11% –0.06% /

vit_base_patch32 SR 74.13% 74.10% 74.22% 0.12% 0.09%

vit_large_patch16 SR / 76.08% 76.45% 0.37% /

vit_large_patch_32 SR / 71.77% 71.82% 0.05% /

Machine Translation Transformer-base TA 25.93% 25.92% 26.04% 0.12% 0.11%

Mean_Transformer 0.12% 0.10%

Detection
YoLo-V3 TA / 43.70% 43.60% –0.10% /

YoLo-V3-Tiny SR 16.63% 16.43% –0.20% /

Segmentation
DeepLab-V3 SR / 78.65% 78.51% –0.14% /

3D U-Net Stops when val_acc ≥ 90.70%. Epoch number is almost the same.

Mean_ALL –0.09% –0.12%

Table 5 Accuracy of HiF8 in AI training experiments

in different training solutions is the same. To avoid the 
jitter and deviation caused by the initial training value, 
the average value of four to six experiments is used as 
the training accuracy of HP and HiF8. In the CNN-based 
classification scenario of computer vision, the average 
accuracy of HiF8 mixed precision training on 12 typical 
networks is 0.16% lower than that of HP training and 
0.15% lower than that of SP training. In Transformer-
based classification and machine translation scenarios, the 
average accuracy of HiF8 mixed precision training on five 
typical networks is 0.12% higher than that of HP training 
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Category Pre-trained Model Epochs Metric Baseline HiF8_Retrain HiF8 – Baseline

Classification

ResNet50 3 Top 1 Acc 76.130% 75.816% –0.314%

Vgg16 3 Top 1 Acc 71.592% 71.510% –0.082%

Inception_v3 3 Top 1 Acc 77.212% 77.900% 0.688%

MobileNet_v2 10 Top 1 Acc 71.878% 71.310% –0.568%

Detection SSD300_Vgg16 [52] 10 bbox mAP 25.070% 24.750% –0.320%

NLP
BERT-Large-MRPC [53] 5 F1 87.437% 90.018% 2.581%

BERT-Large-SQuADv1.1 2 F1 91.388% 90.96% –0.425%

Segmentation 3D U-Net 5 mean_dice 90.983% 91.015% 0.032%

Mean 0.20%

GAN ESRGAN [54] 2 PSNR 26.627 26.0256 –0.6014

Speech Tacotron [55] 61 Loss 0.41657 0.46274 0.046171

Table 6 Accuracy of HiF8 in AI retraining experiments

and 0.10% higher than that of SP training. For all the 20 
neural networks (excluding 3D U-Net) in detection and 
segmentation scenarios, the average accuracy of HiF8 
mixed precision training is 0.09% and 0.12% lower than 
that of HP and SP training, respectively. The preceding 
experiment results are obtained on the prerequisite that 
other data types are converted to HiF8 at the input layer of 
each network. It is a common practice in academia to use 
high-precision data formats for training at the input layer. 
If the input layer is allowed to use the HP data format, the 
average accuracy of HiF8 mixed precision training is 0.12% 
lower than that of HP training on 12 experiment networks 
in the CNN-based classification scenario.

AI models trained from scratch using HiF8 mixed precision 
can be directly used for inference.

4.4 Scenario 2: Model Retraining 
After Conversion from SP/HP to HiF8

Currently, most open-source AI pre-training models are 
obtained through HP mixed precision training or SP training. 
After the parameters of all layers of an existing pre-trained 
model are converted to the HiF8 format, the training 
accuracy of the original model can be reached only after a 
small number of epochs. In this way, a high-precision model 
can be quickly converted into a HiF8 mixed precision model. 
Table 6 describes the retraining experiment results of HiF8 
mixed precision. The retraining accuracy of the HiF8 model 

is 0.20% higher on average than that of the original HP/SP 
baseline model in classification, detection, segmentation, 
and NLP tasks. In the generative adversarial network (GAN) 
scenario, the output layer has high requirements for data 
computing precision. After all the parameters are converted 
into the HiF8 format, the peak signal-to-noise ratio (PSNR) 
decreases during retraining. The subsequent sections about 
HiF8 inference and quantization will provide the model 
calibration accuracy achieved when the input and output 
layers use the HP format.

AI models retrained using HiF8 mixed precision can be 
directly used for inference.

5 HiF8 AI Inference

This section describes the HiF8 mixed precision inference 
solution. As mentioned above, AI models based on HiF8 
mixed precision training and retraining can be directly used 
for inference. Therefore, the inference solution described 
in this section is mainly used to implement HiF8 mixed 
precision inference on networks trained through non-HiF8 
(e.g., HP mixed precision and SP) mixed precision training 
in cases where retraining is not allowed. The following 
describes the HiF8 mixed precision calibration process, 
the Ascend hardware implementation solution for HiF8 
inference calibration, and simulation experiment results in 
HiF8 inference scenarios where retraining is not allowed.
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In traditional inference calibration solutions targeted to 
Int8, some Int8 data with large values but small proportions 
needs to be saturated. The saturated Int8 data is quantized 
using multiplication before the GEMM operation and 
dequantized using multiplication after the GEMM operation. 
In this way, the narrow dynamic range of Int8 can be utilized 
to the maximum extent [56]. As a floating-point format, 
HiF8 has a large dynamic range of [–32768, +32768]. 
Therefore, data saturation processing and the fine-grained 
matching between scale data and a narrow dynamic range 
are not needed. As shown in Figure 1, HiF8 with tapered 
precision has relatively high precision in the exponent range 
[–3, +3] and sub-high precision in the exponent range [–7, 
+7]. Therefore, the core of the HiF8 calibration solution lies 
in moving the exponent of data until the exponent falls 
into the high-precision exponent range of the HiF8 format. 
To be more specific, assume that the overall exponent 
center of the weight data or feature map data of a specific 
network layer is near integer Ec. High-precision floating-
point data is multiplied by 2–Ec (equivalent to subtracting Ec 
from the exponent of the high-precision floating-point data 
in hardware), then converted into HiF8 format, and finally 
input into the GEMM for computing. The exponent moving 
operation needs to be restored by multiplying the FP32 or 
FP16 output data of GEMM by 2Ec (equivalent to adding Ec 
to the exponent of the high-precision floating-point data in 
hardware). In conclusion, the core of HiF8 mixed precision 
calibration is to find a proper Ec value for each network 
layer in order to minimize the metric loss of HiF8 mixed 
precision inference.

This paper proposes a hierarchical calibration solution that 

5.1 HiF8 Calibration Process

Figure 6 HiF8 hierarchical calibration process that is target metric loss–oriented

is target metric loss–oriented based on the characteristics 
of the HiF8 data type and its inference performance 
on different types of networks. First, a metric decrease 
threshold needs to be specified. For example, the threshold 
of the accuracy decreases relative to the original networks 
can be set to 1% or 0.5% for evaluating whether the 
inference accuracy reaches the standard after calibration. 
Then, the hierarchical calibration process starts. The 
accuracy is tested once when each level of calibration 
is complete. If the accuracy reaches the standard, the 
calibration stops. Otherwise, the next level of calibration 
starts. Figure 6 shows the overall inference calibration 
process of HiF8 mixed precision. The dark purple, light blue, 
and light purple block diagrams indicate the level-1, level-2, 
and level-3 calibration processes, respectively. The red text 
and arrows indicate the default recommended settings for 
HiF8 inference calibration.

The input of the calibration process includes the following: 
neural network model that requires HiF8 quantization, 
metric type, metric loss threshold, calibration modes 
selected in the second and third phases, Ec search space 
involved in the calibration, and sensitivity statistics type 
used in the third phase to determine the subsequent layer 
skipping. The following describes the HiF8 hierarchical 
calibration by phase based on Figure 6.

•	 Phase 1: direct conversion to HiF8

The level-1 calibration process directly converts the 
feature map and weight of the neural network trained 
through HP mixed precision or SP into the HiF8 data 
type, in order to form the HiF8 mixed precision model 
and test its accuracy. If the metric loss is less than or 
equal to the input threshold, the calibration process 
ends in advance. If the metric loss is greater than the 
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Figure 7 IFMR and OFMR calibration modes

input threshold, the calibration process of the next level 
is triggered.

•	 Phase 2: direct conversion to HiF8 + calibration

HiF8 quantization is performed before data is input 
to the GEMM. In the quantization process, the high-
precision FP32 or FP16 data is multiplied by 2–Ec and 
then converted to the HiF8 data type. Dequantization is 
performed after data is output from the GEMM, that is, 
the output data is restored to the high-precision FP32 
or FP16 data type. Therefore, the core objective of the 
level-2 calibration process is to find two proper Ec values 
for HiF8 quantization of the feature map and weight 
of the neural network, layer by layer, in serial mode. 
The lower-layer HiF8 quantization needs to inherit the 
result of the upper-layer HiF8 quantization. Experiments 
show that the optimal Ec value does not vary greatly. 
We recommend three input search ranges: [–5, +4], [–4, 
+3], and [–3, +2]. The Ec degrees of freedom (DoFEc) for 
the three ranges are 10, 8, and 6, respectively. You are 
advised not to select an excessively large Ec search space 
because it slows down the level-2 calibration of HiF8 
inference but scarcely improves the inference accuracy. 
A quantization error characterization method needs 
to be determined to select proper Ec values. Through 
experiments and analysis, we conclude that the mean 
squared error (MSE), Kullback–Leibler divergence (KL_D), 
and cosine similarity (COS) methods are suitable for the 
HiF8 inference calibration process. MSE is recommended 
by default.

The level-2 calibration can be performed in two modes, 
depending on the types of data to which the error 

characterization method is applied: input feature map 
regression (IFMR) and output feature map regression 
(OFMR). As shown on the left of Figure 7, the IFMR 
calibration mode uses GEMM input data for regression 
judgment. In this case, HiF8 regression adjustment 
needs to be performed on the input (i.e., feature map 
data and weight data), to minimize the error of the 
two types of data after HiF8 quantization. The joint 
search space of IFMR is 2 × DoFEc. As shown on the right 
of Figure 7, the OFMR calibration mode uses GEMM 
output data for regression judgment. In this case, all 
the Ec values of both the feature map and weight 
need to be jointly traversed to minimize the error of 
the GEMM output. The joint search space of OFMR is 
DoFEc × DoFEc. Although the speed of OFMR calibration 
is lower than that of IFMR calibration, the duration of 
OFMR calibration is within the acceptable range. Given 
that the inference accuracy of OFMR is significantly 
higher than that of IFMR, the OFMR calibration mode is 
recommended by default.

After the most appropriate Ec value is selected for each 
layer, the inference accuracy of HiF8 level-2 calibration 
is tested. If the metric loss is less than or equal to the 
input threshold, the calibration process ends in advance. 
If the metric loss is greater than the input threshold, the 
calibration process of the next level is triggered.

•	 Phase 3: direct conversion to HiF8 + calibration + layer 
skipping

In the first two levels of calibration processes, the 
feature map and weight of each network layer are 
directly converted to HiF8, or HiF8 quantization is 

Conv/Linear

Inputs (FP32) Weights 
(FP32)

Optimization objective: 
Outputs (HiF8 – FP32)

HiF8Quant

Inputs 
(HiF8)

HiF8Quant

Weights 
(HiF8)
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Inputs (FP32) Weights 
(FP32)

Outputs_HiF8

HiF8Quant HiF8Quant

Optimization 
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Weights (HiF8 –
FP32)

Optimization 
objective 1: 

Inputs (HiF8 –
FP32)

IFMR OFMR
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performed on such data radically. However, the inference 
accuracy is not required to reach the standard. The 
level-3 calibration process is the last line of defense in 
the HiF8 hierarchical calibration solution. The inference 
accuracy must reach the preset target level in this 
process. To achieve this goal, the sensitivity of each 
feature map and weight that require HiF8 quantization 
to the overall error or network-wide inference accuracy 
needs to be evaluated, and a sensitivity ranking list 
needs to be generated. Then, the feature maps and 
weights with high sensitivity (i.e., which severely affect 
the network-wide inference accuracy) are skipped one 
by one and HiF8 quantization is not performed on them 
until the network inference accuracy reaches the target 
level.

•	 Solution 1: Evaluate the impact of the feature map 
and weight of each layer on the inference metrics 
of the entire network after HiF8 quantization in an 
E2E manner. As shown on the left of Figure 8, the 
convolution operation in the dashed-line box has 
a greater impact on the target accuracy than the 
other three convolution operations, and therefore 
has a higher ranking in the sensitivity ranking list. As 
shown on the right of Figure 8, the convolution block 
in the dashed-line box is skipped after calibration, 
and HiF8 quantization is not performed on this 
block, ensuring that the model inference accuracy is 
improved and close to the target accuracy level.

Conv
76.08

Conv
76.11

Conv
76.09

Conv
75.69 Metric sensitivity

Keep FP16.

Co
nv

Co
nv

Co
nv

Co
nv

HiF8FP16

Figure 8 E2E HiF8 quantization sensitivity evaluation

Figure 9 Ascend HiF8 inference hardware support solution

•	 Solution 2: Reuse the error characterization 
information of each network layer generated in 
the level-2 calibration process. This solution can 
quickly implement sensitivity evaluation and sorting 
after HiF8 quantization is performed on the feature 
map and weight of each network layer without 
re-computing errors. Then, the HiF8 quantization 
process is skipped layer by layer in descending order 
of the sensitivity based on the ranking list to improve 
the model inference accuracy until the accuracy 
reaches the preset target.

Experiments show that on most networks, the number 
of network layers for which HiF8 quantization is skipped 
is the same in the two solutions. For a few networks that 
are difficult to quantify, only one more layer is skipped in 
solution 2 than in solution 1. As the calibration based on 
solution 1 takes a long time, solution 2 is recommended 
for sensitivity statistics collection by default.

5.2 Ascend Hardware Solution for 
HiF8 Inference Calibration

To meet the hardware requirements of HiF8 inference 
calibration, the next-generation Ascend chip is expected 
to support the solution shown in Figure 9. The HiF8 
quantization and dequantization operations reuse the 
existing computing logic and are deployed in different 
processing units based on whether batch normalization 
(BN) is available or whether BN is fused. As shown on the 
top of Figure 9, in the non-fused BN scenario, the AI Vector 
processing unit performs HiF8 quantization on feature 
maps, and then FixPipe performs HiF8 dequantization 
on feature maps and weights. As a new processing unit 
of the next-generation Ascend chip, FixPipe immediately 
follows the Cube output and performs simple associated 
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Figure 10 HiF8 Cube implementation solution

5.3 Scenario 3: Model Retraining Not 
Allowed After Conversion from SP/
HP to HiF8

computation. As shown on the bottom of Figure 9, in 
the fused BN scenario, the FixPipe processing unit can 
simultaneously perform HiF8 dequantization on the feature 
map and weight of the previous network layer and perform 
HiF8 quantization on the feature map of the next network 
layer in fused mode at a time.

To verify the inference performance of the HiF8 format in 
the AI field, we also chose numerous neural networks in 
two directions: computer vision and NLP. The experiment 
platform has been introduced in section 4 "HiF8 AI 
Training." In this paper, the metric loss threshold in the HiF8 
hierarchical calibration process is set to 0.5%. Table 7 lists 
the experiment results.

•	 The purple text indicates that the accuracy of the 
corresponding neural network reaches the standard 
after level-1 calibration. All Transformer networks, 
including the ViT series [48] and BERT_Large series [53] 
networks, can be used for inference immediately after 
direct conversion to HiF8. Therefore, the HiF8 data type 
can implement online conversion from training models 
to inference models on Transformer networks. For a few 
CNNs, including MaskRCNN [57] and 3D U-Net [51], 
the accuracy can also reach the standard after direct 
conversion to HiF8.

•	 The blue text indicates that the accuracy of the 
corresponding neural network can reach the standard 
after level-2 calibration. Most CNNs, including ResNet 
series [41], DenseNet [47], ResNext [42], Vgg [43], 
SSD [52], and YoLo-V3 [49] networks, can be used for 
inference after direct conversion to HiF8 followed by 
calibration. For Transformer networks, the inference 
accuracy can be further improved or even surpass the 
accuracy of the original model after level-2 calibration.

•	 The red text indicates that the accuracy of the 
corresponding neural network can reach the standard 
after level-3 calibration. A small number of CNNs 
on which it is difficult to perform quantization and 
inference, including EfficientNet_B0 [46], Inception_V3 
[45], and ESRGAN [54], can be used for inference after 
direct conversion to HiF8 + calibration + layer skipping. 
The Tacotron2 [55] network based on a hybrid structure 
of LSTM + CNN is competent for inference after the 

HP data format is retained at the input and output 
layers. Experiments show that the identified layers to 
be skipped in the level-3 HiF8 inference calibration 
process are generally located at the front end and tail 
end of DNNs. These layers have a small number of 
weight parameters and have a limited impact on HiF8 

inference acceleration.

6 Ascend HiF8 Deployment 
Evaluation

As described above, the current HiF8 mixed precision AI 
training and inference solutions mainly change the input 
data type of the GEMM, enabling convenient hardware 
implementation. The Ascend DaVinci AI Core implements 
GEMM computing in inner product mode [19]. Assuming 
that the size of matrix multiplication is (M, K) × (K, N), 
a single computing slice of the Cube processing unit can 
complete the MAC operation on 16 pairs of FP16 input 
data at a time, that is, K equals 16. Compared with FP16, 
HiF8 requires lower computing resource overhead. The 
next-generation Ascend chip is expected to configure the 
Cube computing power of HiF8 to twice that of FP16, that 
is, K equals 32. The MAC operation is performed on 16 
pairs of HiF8 input data at a low cost by multiplexing the 
existing FP16 data path, as shown in Figure 10. The MAC 
operation on the other 16 pairs of HiF8 input data can be 
implemented using independent hardware. The following 
roughly evaluates the overhead and benefits of HiF8 
hardware implementation. Accurate data will be provided 
after subsequent tests.
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We evaluated the area overhead of HiF8 by using the 
register-transfer level (RTL) pilot code based on the 
microarchitecture of the Cube processing unit in Ascend 
XXX1 when K equals 32 and the chip manufacturing process 
is 12 nm. The experiment results show that the area of 
Cube computing slices increased by 14.69% after the slices 
supported HiF8. In Ascend XXX1, the area of Cube computing 
slices accounts for approximately 80% of the total area of 
Cube computing clusters, and 1% of the computing cluster 
area is used for HiF8 format decoding. Therefore, the area 
of Cube computing clusters increased by 12.75% (14.69% 
× 0.8 + 1%). The area of Cube computing clusters accounts 
for 32.7% of the total area of AI Core. In addition, 0.3% of 
the total area needs to be added on the Vector and FixPipe 
processing units for HiF8 format conversion. Therefore, 
when Ascend XXX1 serves as the baseline, the area overhead 
for supporting HiF8 AI training and inference is estimated 
to be approximately 4.5% (12.75% × 0.327 + 0.3%) of the 
total area of AI Core. Figure 11 shows the evaluation result. 
During the implementation of Ascend XXX2 in the future, 
we will consider making up for such area overhead from 
other aspects.

100% 100% 100%

114.69%
112.75%

104.50%

90%
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105%

110%

115%

120%

Cube Slice Cube Cluster AI Core

Normalized Area of XXX1 HiFloat8 on XXX1Normalized area of XXX1 HiF8 on XXX1
Cube slice Cube cluster AI Core

Figure 11 HiF8 normalized area overhead (12 nm manufacturing process)

6.2 Power Consumption Evaluation

6.3 Training Performance Evaluation

We tested the Cube power consumption (K equals 16) of 
HiF8 on the FP16 multiplexing path based on the preceding 
pilot code. The mantissa bit width of HiF8 is smaller 
than that of FP16, and the multiplier input data on the 
multiplexed path has many zero bits. Therefore, power-
saving gains can be achieved along the multiplexed path. 
Experiments using real data as test cases show that the 
Cube power consumption measured when the multiplexed 
path uses HiF8 input data was approximately 71.3% of 
that measured when the multiplexed path uses FP16 input 
data. Taking a single Cube processing unit for which the 

FP16 computing power is 4096 (163) as the baseline, the 
power consumption of FP16 mixed precision is 14.14 W. The 
power consumption of HiF8 on the multiplexed path is 10.08 
(14.14 × 71.3%) W. The power consumption of the other 
HiF8 path with independent hardware overhead (K equals 
16) was calculated to be approximately 3.67 W. Therefore, 
the total Cube power consumption of HiF8 mixed precision (K 
equals 32) is approximately 13.75 (10.08 + 3.67) W. Table 8 
compares the power consumption overheads of a single Cube 
unit in various computing formats. In terms of training, the 
power consumption of HiF8 is equivalent to that of FP16. In 
terms of inference, the power consumption of HiF8 is slightly 
higher than that of Int8. Both training and inference will be 
considered in the implementation to properly balance the 
area, power consumption, and performance.

Table 8 Evaluated power consumption of the Cube unit  
(12 nm manufacturing process)

Table 9 ESL model configurations of Ascend XXX1 and XXX2

Format: 
Computing 

Powerntional 
Prefix Code

FP16: 163 = 
4096

HiF8: 16 × 32 
× 16 = 8192

Int8: 16 × 32 
× 16 = 8192

Power 
Consumption 14.14 W 13.75 W 11.43 W

ESL 
Model

Freq. 
(GHz) #Core

L2 
Cache 
(MB)

L2 BW 
(B/s)

HBM 
(TB)

Ring 
Freq. 
(GHz)

XXX1 1.5 24 192 6.4 1.6 2.8

XXX2 1.2 24 150 5.2 1.92 1.9

In the paper, the ESL models of Ascend XXX1 and XXX2 are 
properly modified to evaluate the time benefits of HiF8 
mixed precision training based on simulation experiments. 
Table 9 describes the configurations of the two ESL models. 
Note that the ESL model of Ascend XXX2 is a phased model 
rather than the final version.

In this paper, two typical representative network models 
were selected as experiment samples: CNN-based ResNet50 
[41] and Transformer-based BERT [53]. The forward 
pass and backward pass of network-wide training were 
conducted on ResNet50, and those of one block (24 
identical blocks in total) were conducted on BERT. Table 10 
lists the experiment results.

HiF8 mixed precision training (K equals 32) leads to the 

6.1 Area Evaluation
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Comparison Item
XXX1 ESL Model XXX2 ESL Model

ResNet50 BERT ResNet50 BERT

Read Bytes
FP16 13075332912 11041507200000 13075332912 11041507200000

HiF8 9773923104 6684673920000 9773923104 6684673920000

Read Reduction 25% 39% 25% 39%

Write Bytes
FP16 6189563616 2560819440000 6189563616 2560819440000

HiF8 5330673360 2639462640000 5330673360 2639462640000

Write Reduction 14% –3% 14% –3%

Cube Cycles
FP16 5850340 5486670 7450100 6630180

HiF8 2257750 3316480 4422080 3832810

Cube Reduction 61% 40% 41% 42%

Vector Cycles
FP16 5257550 2435720 6176530 2711960

HiF8 5314640 2532780 6154260 2717400

Vector Reduction –1.08% –3.98% 0.36% 0.20%

Total Cycles
FP16 8136272 5588293 9972964 6750466

HiF8 6481540 3467137 7587942 4053308

Total Reduction 20% 38% 24% 40%

FP16 Cube/Vector 1.11 2.25 1.21 2.44

HiF8 Cube/Vector 0.42 1.31 0.72 1.41

Table 10 Details about HiF8 training performance evaluation

following changes compared with FP16 mixed precision 
training (K equals 16) after Cube supports HiF8 input:

•	 The amount of data in the interaction between AI Core 
and the out-of-core high bandwidth memory (HBM) 
decreased dramatically.

•	 The time for Cube to complete GEMM computing tasks 
(including data read and storage) was significantly 
reduced.

•	 The time for Vector to complete computing tasks 
(including data read and storage) basically remained 
unchanged.

As shown in Figure 12, the experiment results show that 
the training performance of HiF8 mixed precision can be 
improved by 26% and 31% on the ResNet50 network and 
by 61% and 67% on the BERT network for the ESL models 

of Ascend XXX1 and XXX2 respectively, when compared with 
FP16 mixed precision. The main reason for the training 
performance improvement on ResNet50 being lower than 
that on BERT was that the network performance bottleneck 
of ResNet50 changed from Cube Bound to Vector Bound, 
whereas the performance bottleneck of BERT remained 
Cube Bound after HiF8 mixed precision was used.
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Figure 12 Performance improvement of HiF8 normalized training

7 Comparison Between Ascend 
HiF8 and Hopper FP8

This section compares the similarities and differences 
between NVIDIA Hopper H100 with FP8 mixed precision 
[33] and Ascend HiF8 mixed precision. Hopper FP8 has 
two Float8 data formats with fixed field bit widths. The 
FP8 (1-4-3) format favors computing precision, whereas 
the FP8 (1-5-2) format favors dynamic range. As a single 
Float8 data format, Ascend HiF8 balances the computing 
precision and dynamic range. The essential differences in 
data representation capabilities determine the differences 
between the two formats in software and hardware 
deployment and user-friendliness, as described in Table 11. 
It can be concluded that Ascend HiF8 is simpler and easier 
to use than Hopper FP8.
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Hopper FP8 Ascend HiF8

Two formats: FP8 (1-4-3) and FP8 (1-5-2) Single data format

Poor generalization. The computing precision and dynamic 
range cannot be balanced.

Strong generalization. The computing precision and 
dynamic range are balanced.

Application in matrix multiplication: Tensor Core (TC) 
supports corresponding computations.

Application in matrix multiplication: Cube Core supports 
corresponding computations.

With the same computing power as FP16, the amount of 
GEMM input data is halved.

With the same computing power as FP16, the amount of 
GEMM input data is halved.

The training process is different from that of the existing 
FP16 + FP32 mixed precision. The data format needs to be 
selected, and the scaling value needs to be determined.

The training process is the same as that of the existing 
FP16 + FP32 mixed precision. The format is user-friendly, 
easy to use, and users are not required to know its details.

Transformer Engine is required for analyzing TC output 
statistics and determining the data format and scaling value.

No extra hardware overhead, statistics collection, data 
format selection, or scaling is required.

The training accuracy on Transformer networks is the 
same as that of FP16. Visual tasks are supported, but the 
neural network type is not open to public. The accuracy of 
the parameter-efficient model decreases by 1%.

The training accuracy on Transformer networks is slightly 
higher than that of FP16. The training accuracy of 
CNN models decreases by 0.16% on average, and by a 
maximum of 0.31%.

The Transformer model obtained through training can be 
directly used for FP8 inference without fine-tuning.

The Transformer or CNN model obtained through training 
can be directly used for HiF8 inference without fine-
tuning. The Transformer model obtained through SP or HP 
training can be used for inference without calibration after 
direct conversion to HiF8.

Table 11 Comparison between Hopper FP8 and Ascend HiF8

8 Conclusion and Outlook

This paper proposes the innovative HiF8 data format, 
HiF8 AI training solution, and HiF8 AI inference solution. 
Experiments show that HiF8 mixed precision has high 
training and inference accuracy on mainstream DNNs 
based on CNN and Transformer structures. This paper also 
evaluates the overhead and benefits of deploying the HiF8 
AI solution on Ascend chips. According to the evaluation 
based on Ascend XXX1, HiF8 mixed precision can improve 
the training performance on ResNet50 and BERT by 26% 
and 61%, respectively, with an AI Core area penalty of 
4.5% and power consumption close to that of FP16 mixed 
precision training.

In the future, while maintaining the user friendliness of HiF8 
mixed precision training, we will continue to explore ways 
to further improve the training accuracy on CNNs. Currently, 
some progress has been made in this direction. Experiments 
show that HiF8 mixed precision can achieve computing 
precision convergence for HPL_AI. Therefore, we will also 
consider exploring the possibility of applying HiF8 mixed 
precision to HPC scenarios in the future.

As one of the key features and core competencies of the 
next-generation Ascend chip, HiF8 AI mixed precision will 
further enable Huawei to realize the vision of "Bringing 
digital to every person, home and organization for a fully 
connected, intelligent world".
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In computationally intensive tasks, the complex CPU instruction for floating-point square root (FP SQRT) computation 
often becomes a bottleneck that limits the performance. Based on polynomial fast approximation and indirect error 
accurate rounding, this paper innovatively constructs an FP SQRT computation precision doubling method with high and 
low bits separated, and proposes a new double precision floating-point square root (DP SQRT) computation principle 
and its corresponding microarchitecture design. Compared with the existing Sweeney-Robertson-Tocher (SRT) algorithm, 
the proposed design can reduce the latency by 47% and increase the throughput by 9 times, significantly improving 
performance.
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1 Overview

FP SQRT computation, as one of the basic operations, 
has developed into a complex arithmetic logic unit (ALU) 
that must be supported by advanced CPUs. In particular, 
DP SQRT has the highest requirements for computation 
precision and is the most difficult to implement on 
hardware with high performance. The earliest FP SQRT 
implementation on hardware is bitwise iteration [1, 2] 
based on the manual computation process. This method 
accurately computes one bit in each iteration, leading 
to high latency. Therefore, this method has been phased 
out from the industry. Researchers are seeking various 
low-latency strategies [3–8] based on bitwise iteration. 
Among them, the SRT iteration method has the most far-
reaching influence [9, 10]. With this method, multiple 
bits are accurately computed in each iteration, and the 
final significant bit width is accumulated through multiple 
iterations. The more bits generated by each SRT iteration, 
the fewer the number of iterations. However, the complexity 
of selecting partial results during iteration limits the size of 
the radix. Currently, only SRT is used, with the radix up to 28. 
That is, a maximum of 8 bits are computed in each iteration. 
In this case, the latency is still high for DP SQRT. To address 
this problem, researchers propose an SRT-based very-high-
radix design method [6]. Its principle is to pre-scale the 
radicand first so that the radical result is closer to the final 
SQRT computation result. Then the logic of selecting partial 
results during SRT iteration becomes simple. According to 
research, a polynomial approximation pre-scaling factor can 
be used to increase the number of bits generated by each 
SRT iteration to 12.

The computation precision of SRT iteration is linearly 
converged. There are also some iteration methods that 
adopt quadratic convergence, such as Newton's method 
[11, 12], Goldschmidt’s algorithm [13, 14], and Babylonian 
algorithm [15, 16]. Although these methods have a faster 
convergence speed, the final latency depends on the 
precision of the initial estimate. If the precision of the 
initial estimate is not high, the latency is high. The biggest 
problem with these methods is that the error is difficult 
to control after multiple iterations. Currently, no accurate 
rounding can be implemented based on these methods, 
and hence these methods cannot meet the rounding 
requirements of the IEEE 754 [17] international standard.

This paper proposes a variant of the Babylonian algorithm 
and innovatively constructs an SQRT computation method 
with high and low bits separated, to greatly reduce 

the area and latency in iterative computation. For DP 
SQRT computation, we first use piecewise second-order 
polynomial fitting to achieve half of the required precision 
of DP SQRT at a time, that is, the high bits of DP SQRT are 
computed. Then, an iteration is performed using the variant 
of the Babylonian algorithm, which directly computes 
the low bits of DP SQRT. The high and low bits are added 
to obtain the full-precision result of DP SQRT. Finally, 
after strict error analysis and control, we propose the 
corresponding accurate rounding method, which meets the 
IEEE 754 standard.

The DP SQRT computation method proposed in this paper 
has a throughput of 1 sample per cycle, a latency of only 
7 to 8 cycles, and a performance far beyond the most 
advanced very-high-radix SRT iteration method.

For complex unary functions, such as transcendental 
functions ln, exp, sin, and cos, and non-transcendental 
functions, such as div and sqrt, piecewise polynomial 
approximation [18] is a common LUT-based low-latency 
hardware implementation method. It can be classified into 
uniform piecewise polynomial approximation [19, 20], non-
uniform piecewise polynomial approximation [21, 22], 
and error-flattened piecewise polynomial approximation 
[23, 24]. Among them, uniform piecewise polynomial 
approximation has the simplest method for indexing 
polynomial coefficients and is introduced as the basic design 
component in this paper.

Assume that the target computation function is f  (X ), 
where X is a T-bit fixed-point number. Uniform piecewise 
polynomial approximation divides T-bit X into address a 

with higher U bits and x with lower L (T minus U) bits, 
where x =  [0, 1). Address a partitions the target function 
f (X ) into 2U segments fi (X ) at equal intervals. Then, in each 
segment, fi (X ) is uniformly mapped to the low-bit x, and 
pi (x) is used for polynomial fitting, with the aim to solve the 
coefficient of each piecewise polynomial pi (x) and minimize 
the maximum absolute error (MAE).

min (max |fi(X)− pi(x)|)

Letting pi (x) be an n-order polynomial, Chebyshev's theorem 
[25] proves that when and only when n + 2 values exist:

0 ≤ x0 < x1 < ... < xn+1 < 1

2 Piecewise Polynomial 
Approximation
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Figure 1 Error curves of the Poly-2 segmenter and quantizer

The following formula is true:

|pi (xi)− fi (Xi)| = max |pi (xi)− fi (Xi)|

Fitting f i  (X ) by polynomial pi  (x) achieves the best 
performance. That is, for n-order polynomial fitting, the 
fitting curve and target curve can generate a maximum of 
n + 1 intersection points, and further result in n + 2 extreme 
points. The MAE of curve fitting is the smallest when and 
only when the absolute errors of the n + 2 extreme points 
are equal.

Based on Chebyshev nodes [26], a unary function fitting 
tool Poly-K suitable for any K-order piecewise polynomial 
is developed to achieve the best fitting performance. The 
Poly-K tool consists of a segmenter and a quantizer. The 
segmenter ensures that the MAEsw of the polynomial fitting 
the target function is less than 0.5 ulp in the case of the 
minimum number of segments (that is, the minimum U 
value) at high precision FP64. The quantizer quantizes the 
polynomial coefficient of each segment expressed by FP64 
and the intermediate results of polynomial computation 
into fixed-point numbers, and ensures that the MAEhw of 
target function fitting computed by hardware is less than 
1 ulp. The left part of Figure 1 shows an error curve of 
fitting the target function by using a 2-order polynomial by 
the segmenter. Each segment fitting curve and the target 
function have three intersection points and four extreme 
points, and the absolute errors of the four extreme points 
are equal. In this case, MAEsw is less than 0.5 ulp. The right 
part of the figure shows an error curve obtained after 
the quantizer performs fixed-point quantization on the 

3 DP SQRT Algorithm

For conventional iteration precision doubling algorithms, 
such as Newton's method, Goldschmidt's algorithm, and 
Babylonian algorithm, the precision bit width cost that 
was computed last time needs to be included in the next 
iterative computation. For example, if k-bit precision is 
output in the first iteration, 2k-bit precision needs to be 
output in the second iteration. In this way, the computation 
bit width of the next iteration always increases linearly 
based on the previous iteration, resulting in a significant 
increase of the area and latency. Based on the Babylonian 
algorithm, this paper proposes a method that successfully 
separates the total computation width of SRQT into the 
high and low parts. When the low bits are computed, the 
high bit width of the computation result does not need to 
be output with costs, which lowers the latency and reduces 
the area. On this basis, this paper further proposes a novel 
ultra-low-latency DP SQRT algorithm in combination with 
the Poly-K low-latency fast approximation capability and 
the theory of accurate rounding of indirect errors. The 
following sections will describe the algorithm in detail.

Segmenter: ulp_sw Quantizer: ulp_hw
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floating-point computation results, where MAEhw is less than 
1 ulp. The Poly-K tool and Remez algorithm [27, 28] can 
achieve basically the same error performance in piecewise 
polynomial fitting of complex functions.

In the following sections, Poly-K is used as a basic tool to 
achieve 1-ulp error computation for complex functions.
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3.1 Computation Principle

3.1.1 Babylonian Algorithm Variant

3.1.2 Error Analysis

In this section, x and x̃ are used to represent the floating-
point number form and real number (a number with infinite 
precision in the mathematical sense) form of the same 
number, respectively. Unless otherwise specified, addition, 
subtraction, multiplication, division, and SQRT computation 

represented by +,−,×,÷, /,
√

 are operations in the sense 
of real numbers.

The difficulty of the SQRT algorithm that adopts quadratic 
convergence lies in error control to meet the rounding 
requirements of IEEE 754. This paper parametrically 
constructs an error propagation model and parses  
the constraints on the parameters that are required to 
achieve the target precision. The following part describes it 
in detail.

1	 Truncation of input variable x

The initial input variable is used to compute fu because fu is 
only part of the exact SQRT value. Theoretically, only the 

higher bits of the mantissa of the input variable x ∈ [1, 2) 
need to be retained. Assume that m + 2 fractional bits are 
taken to form xt, and then Poly-K is used for computation. 
When the exponent of the input normal data of the FP 
SQRT or the exponent after denormal data is changed to 
normal data is an odd number, the mantissa needs to be 
multiplied by 2 before SQRT computation. In this case, only 
m + 1 fractional bits are retained for 2x. Therefore, when 
Poly-K computes fu and R in the case of x = xt and x = 2xt, 
there are two target functions and two tables internally. 
When the functions and tables are merged, the following 
formula can be obtained:

x = xt + xr ∈ [1, 4), xr ∈ [0, 2−(m+1))

2	 fu computation

The computation error of fu generated by the foregoing 
truncation operation is:

ẽt =
√
x−√

xt =
xr√

x+
√
xt

∈ [0, 2−(m+2))

When Poly-K is used to compute fu, m + 1 fractional bits are 
output, with a precision of 1 ulp:

f̃u = fu = SQRTPoly
[1,4)

(xt)

ε1 =
√
xt − fu, |ε1| < 2−(m+1)              (3)

Therefore, the total error of fu, that is, 

f̃l =
√
x− fu =

√
x− f̃u, can be expressed as:

∣∣f̃l
∣∣ = ∣∣√x− fu

∣∣ = ∣∣(√x−√
xt

)
+ (

√
xt − fu)

∣∣
= |ẽt+ ε1| < 2−(m+2) + 2−(m+1) = 3

2
· 2−(m+1)

     (4)

3	 R computation

When Poly-K is used to compute R, m + 1 fractional bits are 
output, with a precision of 1 ulp:

R = RSQRTPoly
[1,4)

(xt)

ε2 = 1√
xt

−R, |ε2| < 2−(m+1)               (5)

Based on formulas (3) and (5), we have:



fu =
√
xt − ε1

R = 1√
xt

− ε2

Further, the error γ̃ =
1

fu
−R of R approximating 

1

fu
 can 

be expressed as follows (identity (1) is an expression 
about fu):

|γ̃| =
∣∣∣ 1
fu

−R
∣∣∣ =

∣∣∣ 1√
xt−ε1

− 1√
xt

+ ε2
∣∣∣

=

∣∣∣∣ ε1

(
√

xt−ε1)
√
xt

+ ε2

∣∣∣∣ =
∣∣∣ ε1
fu

√
xt

+ ε2
∣∣∣

{
x = f̃2 ∈ [1, 4)

f̃2 = (f̃u + f̃l)
2

f̃l =
1
f̃u

× x−f̃2
u

2
− f̃2

l

2f̃u
                       (1)

f̃l ≈ 1
f̃u

× x−f̃2
u

2                             (2)

As shown in the preceding formulas, the variant of the 

Babylonian algorithm splits the exact SQRT value f̃  into two 
parts: high-bit f̃u and low-bit f̃l. When f̃u is known, the 
result of the low-bit f̃l can be approximately computed by 
using formula (2). With reference to the polynomial 
approximation theory, the foregoing process can be 
implemented in three steps:

1	 Use piecewise polynomial approximation (Poly-K) to 

compute f̃u ≈
√
x. The computation result is represented 

by floating-point number fu.

2	 Use Poly-K to compute R =
1
√
x

≈
1

f̃u
.

3	 Use formula (2) to compute f̃l. The computation result 
is represented by floating-point number fl.

Steps 1 and 2 can be performed in parallel.
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Because 1 ≤ fu,
√
xt < 2, we have:

|γ̃| =
∣∣∣∣
1

fu
−R

∣∣∣∣ ≤ |ε1|+ |ε2| < 2−(m+1) + 2−(m+1) = 2−m  (6)

4	 Computation of α =
x− f2

u

2

In this step, no rounding operation is performed, and 
therefore no error will be generated. According to formula 

(4), 
√
x = fu + f̃l, and 1 ≤ fu,

√
xt < 2, the value range of 

α =
x− f2

u

2
 can be determined as follows:

|α| =
∣∣∣∣
x− f2

u

2

∣∣∣∣ =
∣∣∣∣∣
f̃2
l + 2fuf̃l

2

∣∣∣∣∣ =
∣∣∣∣f̃l ·

(√
x

2
+

fu

2

)∣∣∣∣ <
3

2
· 2−m (7)

5	 Discarded term β̃ =
f̃2
l

2fu

With reference to formula (4) and fu ∈ [1, 2), the discarded 
term introduces the following error:

β̃ =
f2
l

2fu
∈
[
0,

9

8
· 2−(2m+2)

)
                   (8)

6	 Total error

By substituting formulas (6) to (8) into formula (1), we 
have:

f̃l = α(R+ γ̃)− β̃ = αR+
(
αγ̃ − β̃

)
= αR+ ẽ       (9)

where

ẽ = αγ̃ − β̃, |ẽ| =
∣∣αγ̃ − β̃

∣∣ ≤ |αγ̃|+
∣∣β̃∣∣ < 3

2
· 2−2m +

9

8
· 2−(2m+2)

During 
√
x computation, N fractional bits are retained in the 

output f . According to formula (9), fl ≈ αR and N fractional 
bits need to be retained for fl. To reduce errors, round half 
(RH) is used for multiplication operations, which will 

generate an error (ẽRH) of 
1

2
 ulp (2−(N+1)). Then formula (9) 

can be refined as follows:

f̃l = αR+ ẽ = RH(αR) + ẽRH + ẽ

Therefore, the total error err = fu + fl −
√
x = fl − f̃l is:

∣∣fl − f̃l
∣∣ = |e+ ẽRH | <

3

2
· 2−2m +

9

8
· 2−(2m+2) + 2−(N+1)  (10)

3.1.3 Error Control

3.1.4 Bit Width Analysis

In this section, the bit width expression is used. That is, A.(B) 
indicates the data format with A-bit integers and B-bit 
decimals. For example, 2.(B) indicates 2-bit integers and 
B-bit decimals. To avoid confusion, all real decimals are 
represented in a fractional form or a negative exponent 

form, for example, 3
4
 or 2−1.

1	 Poly-K: fu

Input :  decimal part of the xt mantissa,  including 

m+ 2 =
N

2
+ 3 bits and with a value range of [0, 1).

Output: 1.(m+ 1) = 1.

(
N

2
+ 2

)
, i.e. N

2
+ 3, with a value 

range of [1, 2).

We expect to control the error represented by formula (10) 
to stay within 1 ulp, that is,

|err| < 2−N                               (11)

According to formula (10), only the following condition 
must be met:

3

2
· 2−2m +

9

8
· 2−(2m+2) < 2−(N+1)

Let

m =
N

2
+ δ                              (12)

Only the following condition must be met:

3

2
· 2−2δ +

9

8
· 2−(2δ+2) ≤ 2−1

That is,

δ >
1

2
log2

(
57

16

)
≈ 0.9164

In formula (12), if we let δ = 1, that is,

m =
N

2
+ 1                              (13)

Then formula (11) is true. When Poly-K is used to compute 

fu and R, the input contains m+ 2 =
N

2
+ 3 fractional bits 

and the computation result contains m+ 1 =
N

2
+ 2 

fractional bits. The Poly-K's computation error is within 1 ulp 

(2−(N
2
+2)).

By substituting formula (13) into formula (10), we have:

|err| < 3
2
· 2−(N+2) + 9

8
· 2−(N+4) + 2−(N+1)

= 2−N ·
(
1
2
+ 3

8
+ 9

128

)
= 2−N · 121

128
< 2−N
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fractional bit. With reference to formula (14), it can be 

learned that a total of N + 5−
(
N

2
− 1

)
=

N

2
+ 6  least 

significant bits (LSBs) need to be retained.

In conclusion, during circuit computation, the following 
results can be obtained:

A	 xc: The lower 
N

2
+ 2 bits of 2. N-bit x are used.

B	 (f2
u)c: 1.

(
N

2
+ 2

)
× 1.

(
N

2
+ 2

)
− → 2.(N + 4)− →

N

2
+ 6. 

During multiplication operations, only the lower 
N

2
+ 6 

bits of the result are output to compute α.

C	 α = xc − (f2
u)c:

(
N

2
+ 2

)
−

{
1.

(
N

2
+ 2

)
× 1.

(
N

2
+ 2

)
− →

(
N

2
+ 6

)}
− →

N

2
+ 6 (15)

Note that the subtraction in formula (15) requires high-
bit alignment.

4	 fl ≈ RH(αR) computation: 
(
N

2
+ 6

)
×
(
N

2
+ 3

)
− →

N

2

During normal computation:

  (16)

2	 Poly-K: R =
1

√
xt

≈
1

fu

Input :  decimal part of the xt mantissa,  including 

m+ 2 =
N

2
+ 3 bits and with a value range of [0, 1).

Output: 1.(m+ 1) = 1.

(
N

2
+ 2

)
, i.e. N

2
+ 3, with a value 

range of [2-1, 1]. (Due to the Poly-K approximation, the left 
interval is enlarged to a closed interval.)

3	 Computation of α =
x− f2

u

2

Input: If the processed exponent is an odd number, it 
is equivalent to multiplying x with a 1. N bit width by a 
coefficient 2. The resulting x bit width is 2.  (N–1). Taking 
both even and odd exponents into consideration, the bit 
width of x should be 2. N.

α =
x−f2

u
2

=
2.N−1.(N

2
+2)×1.(N

2
+2)

2
=

2.N−2.(N+4)
2

= 1.(N + 1)− 1.(N + 5) = 1.(N + 5)
   (14)

Output: Formula (7) shows that |α| < 2−(m−1) = 2−
N
2 , i.e. 

the significant bits of α start from the 
N

2
+ 1-th fractional 

bit. Considering the sign bit, all fractional bits of the 

computation result need to be retained from the 
N

2
-th 
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3.2 Accurate Rounding

If the mantissa of a floating-point number is 1.N and the 
exponent is an odd number, the bit width changes to 2.(N–1). 
After both the even and odd exponents are considered, the 
bit width of x changes to 2.N, and the value range changes 
to x = [1, 4). In this case, we have:

f2 = (fu + fl)
2 ≈ x                        (18)

When FP SQRT computation complies with the rounding 
standard of IEEE 754, the special case of Tie To Even or Tie 
To Away will not occur in RH. Therefore, these two rounding 
modes can be combined into a simple RH, which will be 
proved in the next section. In addition, the output of FP 
SQRT computation must be non-negative, so To Zero and To 
Negative can be combined into a simple round down (RD). 
In conclusion, FP SQRT supports three rounding modes: 
round up (RU), RH, and RD.

Since we control the error of formula (18) within 1ulp = 2−N, 

i.e. 
∣∣f −

√
x
∣∣ < 2−N , formula (f + ulp)2 > x > (f − ulp)2 is 

true. The exact rounding value F must be selected from:




f = fu + fl

fp = f + ulp

fn = f − ulp

3.2.1 Rounding Logic

Assume that the accurate SQRT computation result is 
fb =

√
x  and the indirect error ie0 is defined as follows: 

ie0 = f2 − x                             (19)

2.N × 2.N − 2.N = 3.2N − 2.N− → 4.2N

1	 When ie0 == 0, F  in three rounding modes is selected 
from f .

2	 When ie0 > 0, f > fb > fn and F  is the one closer to fb 

in {f, fn}:

(f − fb)− (fb − fn) = (f + fn)− 2fb = (2f − ulp)− 2fb 

Because only the positive and negative properties of the 
preceding formula are concerned and f > ulp, the positive 

and negative properties of (2f − ulp)− 2fb are equivalent to 
those of ie0n.

ie0n =
[
(2f − ulp)2 − 4f2

b

]
/4

=
(
4f2 − 4ulp× f + ulp2 − 4x

)
/4 = ie0− ulp× f + ulp2/4

After RH is incorporated into the partial products matrix 

(PPM), the lower 
(
N

2
+ 7

)
 bits need to be truncated during 

multiplication.

According to formulas (4) and (11), the original value range 

of fl is |fl| <
3

2
· 2−(N

2
+2), and a jitter within the range of 

(−2−N , 2−N ) is generated if RH(αR) is directly used for 
approximation computation. Therefore, the value range of 
RH(αR) is:

|fl| <
3

2
· 2−(N

2
+2) + 2−N 

Letting N > 6, the value range of RH(αR) can be scaled to:

|fl| < 2−(N
2
+1) 

It can be learned that the significant bits of RH(αR) start 

from the 
N

2
+ 2-th fractional bit. Considering the sign bit, the 

significant bits need to be retained from the 
N

2
+ 1-th bit.

In conclusion, the output of formula (16) has a total of 
N

2
 

bits, ranging from the 
N

2
+ 1-th bit to the N-th bit after the 

decimal point.

According to formula (15), α in formula (16) can be 

represented by 
N

2
+ 6 bits, being retained from the 

N

2
-th 

fractional bit. Multiplying formula (16) by 2
N
2 , we have:

α− → α′ : 1.(N + 5)− → 1.

(
N

2
+ 5

)

RH(αR)− → RH(α′R) : 1.N− → 0.
N

2

At the circuit implementation level, formula (16) can be 
rewritten as follows:

   (17)

That is, 
(
N

2
+ 7

)
 decimals are truncated and N

2
 decimals 

are retained. Therefore, the bit width expression of the 
operation is as follows:

(
N

2
+ 6

)
×

(
N

2
+ 3

)
− →

N

2
 

5	 Computation of f ≈ fu + fl

1.

(
N

2
+ 2

)
+

(
0.
N

2

)
× 2−

N
2 − → 2.N

In the preceding formula, the first two bits of N/2-bit fl 
must be aligned with the last two bits of fu.
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RM
F

RU RH RD

fp ie0 < 0 iep0 < 0# /

f ie0 ≥ 0 else ie0 ≤ 0

fn / ie0n ≥ 0* ie0 > 0

*: ie0n = ie0 + ien ≥ 0− → ie0 ≥ −ien. When the error 
is within 1 ulp, ien < 0 is always true. Therefore, ie0n ≥ 0 
contains ie0 > 0.

#: iep0 = iep+ ie0 < 0− → ie0 < −iep. When the error 
is within 1 ulp, iep > 0 is always true. Therefore, iep0 < 0 
contains ie0 < 0.

Table 1 SQRT accurate rounding logic

4.2N − 2−N × 2.N + 2−(2N+2) = 4.2N − 0.2N + 2−(2N+2)

= 4.2N + 2−(2N+2)

It can be learned from the preceding formulas that the 
value of ie0n is equivalent to the value of 4.2N plus 2'b01. 
Therefore, the value of ie0n cannot be 0, indicating that the 
special case of Tie To Even or Tie To Away will not occur. As 
such, we can omit the computation of additional item 

ulp2/4:

ie0n = ie0− ulp× f                        (20)

3	 When ie0 < 0, f < fb < fp. F  is the one closer to fb in 
(f, fp):

(fp − fb)− (fb − f) = (fp + f)− 2fb = (2f + ulp)− 2fb 

Similarly,  the posit ive and negative propert ies of 
(2f + ulp)− 2fb are equivalent to those of iep0.

iep0 =
[
(2f + ulp)2 − 4f2

b

]
/4

=
(
4f2 + 4ulp× f + ulp2 − 4x

)
/4 = ie0 + ulp× f + ulp2/4

4.2N + 2−N × 2.N + 2−(2N+2)

= 4.2N + 0.2N + 2−(2N+2) = 4.2N + 2−(2N+2)

It can be learned from the preceding formulas that the 
value of iep0 is equivalent to the value of 4.2N plus 2'b01. 
Therefore, the value of iep0 cannot be 0, indicating that the 
special case of Tie To Even or Tie To Away will not occur. As 
such, we can omit the computation of additional item 

ulp2/4:

iep0 = ie0 + ulp× f                        (21)

The positive and negative properties of formulas (20) and 
(21) can express the error relationships of the options 
{fp, f, fn}. Considering the additional item, ie0n or ie0p will 

not be 0. However, after the additional item is omitted, ie0n
and ie0p can be 0. Table 1 represents the FP SQRT accurate 
rounding logic.

The options {fp, f, fn} are mutually exclusive. Therefore, the 
selection logic described in the preceding table can be 
further simplified. Assume that the selection signal of F  is a 
2-bit FS :

FS = {SP, SN}                          (22)

where SP  indicates selecting fp , and SN indicates selecting 
fn. They can be computed as follows:

SP = (RU&(ie0 < 0))|(RU&(iep0 < 0))          (23)

SN = (RH&(ie0n ≥ 0))|(RD&(ie0 > 0))          (24)

In this case, we have:

F =




fp, ifFS = 2′b10

fn, ifFS = 2′b01

f, ifFS = else

                 (25)

In conclusion, the rounding logic computation can be 
represented by formulas (19)–(21), and the rounding logic 
selection can be represented by formulas (22)–(25).

3.2.2 Computing Optimization and Bit
Width Analysis

1	 ie0

For formula (19), the value range of the computation result 
is analyzed as follows:

ie0 = f2 − x =
(
f −

√
x
) (

f +
√
x
)
=

(
−2−N , 2−N

)
×
(
2
√
x+

(
−2−N , 2−N

))

=
(
−2−N , 2−N

)
×
([

2, 2
√

2 (2− 2−N )
]
+

(
−2−N , 2−N

))

=
(
−2−N , 2−N

)
×

(
2− 2−N , 2

√
2 (2− 2−N ) + 2−N

)

=
(
−2−N , 2−N

)
×

(
2
√

2 (2− 2−N ) + 2−N
)
∈
(
−2−N , 2−N

)
× 4

=
(
−2−(N−2), 2−(N−2)

)

It can be learned that the significant bits of ie0 start from 
the N − 1-th fractional bit. Considering the sign bit, the 
significant bits of ie0 need to be retained from the N − 2-th 
fractional bit. In normal computation, the bit width 
expression of formula (19) is as follows:

ie0 = f2 − x = 2.N × 2.N − 2.N− → 3.(2N)− 2.N = 4.(2N)  (26)
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3.3 Summary of the General Model

For FP SQRT computation whose output contains N 

fractional bits, m is configured according to formula (13), fu 
and R are computed by using Poly-K, and a computation 
process of the Babylonian algorithm variant is completed 
according to formula (14)–(17) to obtain fl. The entire FP 
SQRT computation process has an error of 1 ulp. Finally, 
according to formula (31)–(33), the accurate rounding 
process of FP SQRT is completed.

In this paper, the software compiles the foregoing general 
computation model, sets the parameter N to a value from 

C	 2fufl: 
(
N

2
+ 3

)
×

N

2
− →

N

2
+ 4(LSB), starting from the 

N − 2-th fractional bit to the 
3N

2
+ 1-th fractional bit.

D	 x: 2.N− → 3(LSB), starting from the N − 2-th fractional 
bit to the N-th fractional bit.

Among the preceding four items, only B and C need to be 
computed, and the sum of A and D can be computed in 
advance. Finally, the sum of the four items is:

7 +N +

(
N

2
+ 4

)
− 3− → N + 3              (30)

2	 ie0n and ie0p

We perform the fol lowing shift  operat ion on the 
computation result of formula (19):

ie0s = ie0× 2N = 3.N                       (31)

Moving the computation results of formulas (20) and (21) 
to the left by N bits and combining them with formula (31), 
we have:

ie0ns = ie0n× 2N = 2N × ie0− 2N × ulp× f = ie0s− f  (32)

3.N − 2.N− → 4.N , where only the most significant sign bit 
is taken.

iep0s = iep0× 2N = 2N × ie0 + 2N × ulp× f = ie0s+ f   (33)

3.N + 2.N− → 4.N , where only the most significant sign bit 
is taken.

ie0ns and iep0s can be computed by using formulas (32) 
and (33). So far, the derivation of the accurate rounding 
computation model of the FP SQRT is completed based on 
formulas (31)–(33) and accurate rounding expressions 
(22)–(25).

Therefore, the significant bits of ie0 must be retained to the 
2N-th fractional bit, with a total of N + 3 bits. Similarly, the 
significant bits of all intermediate computation results of 
formula (26) only need to be retained to the 2N-th 
fractional bit from the N − 2-th fractional bit, with a total 
of N + 3 bits.

The bit width for the multiplication operation of formula (26) 
is reduced below. Since

ie0 = f2 − x = (fu + fl)
2 − x = f2

u + f2
l + 2fufl − x   (27)

It can be learned from formulas (14) and (15) that 

f2
u = 1.

(
N

2
+ 2

)
× 1.

(
N

2
+ 2

)
= 2. (N + 4), where the lower 

N

2
+ 6 bits have been computed. The last seven bits (from the 

N − 2-th fractional bit to the N + 4-th fractional bit) are taken 
for computation in formula (27).

In formula (27), f2
l  and 2fufl need to be computed. Based 

on formulas (16) and (17), we have:

f2
l =

(
0.

(
N

2

)
× 2−

N
2

)2

= 0.
N

2
× 0.

N

2
× 2−N = 0.N × 2−N  (28)

N

2
×

N

2
− → N

That is, the computation result of f2
l  has N  bits (from the 

N + 1-th fractional bit to the 2N -th fractional bit) and is 
completely within the valid output range of formula (27). 
Therefore, all bits of the computation result are retained. 
Similarly

2fufl = 2× 1.
(
N
2

+ 2
) (

0.N
2

× 2−
N
2

)

= 2× 1. (N + 2)× 2−
N
2 = 2. (N + 1)× 2−

N
2

        (29)

That is, the significant bits of 2fufl start from the 
N

2
− 1-th 

fractional bit and ends with the 
3N

2
+ 1-th fractional bit. 

Based on the output range of  formula (27) ,  the 
computation result of formula (29) must be retained to the 
3N

2
+ 1-th fractional bit from the N − 2-th fractional bit, 

with a total of 
N

2
+ 4 bits.

To sum up, circuit computation in formula (27) involves:

A	 f2
u: takes the last seven bits from the computed 

N

2
+ 6 

bits, starting from the N − 2-th fractional bit to the 
N + 4-th fractional bit.

B	 f2
l
: 
N

2
×

N

2
− → N , starting from the N + 1-th fractional 

bit to the 2N-th fractional bit.
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In this paper, Poly-K is utilized to compute the SQRT fu 
that contains 28 fractional bits (high bits of the DP SQRT) 
and the reciprocal SQRT R. Because the output precision is 
high, the piecewise second-order approximation, that is, 

4 Ultra-Low Latency 
Microarchitecture Design

Figure 2 DP SQRT microarchitecture

{30, 32, 34, 36, 38, 40}, and traverses all the input and output 
results to verify the model correctness. When N = 52, the 
software compiles the corresponding RTL Pilot Code and 
passes the smoke test.

In the general model, if N = 52 and m = 27, the DP SQRT can 
be computed.

Poly-2, is used. The Babylonian algorithm variant is then 
used to compute the 26-bit fl (low bits of the DP SQRT). 
Finally, the indirect error theory is used to achieve accurate 
rounding. For hardware design, this paper fully considers 
the timing question. For some multiplication and addition 
operations, the carry-save format is directly used to 
perform booth encoding [29, 30], rather than performing 
addition on the carry-save format before booth encoding, 
to reduce the latency. Figure 2 shows an ultra-low latency 
microarchitecture design corresponding to the DP SQRT 
algorithm proposed in this paper.

Some expressions are defined as follows:

•	 0p17: indicates the bit width, consisting of 0-bit integers 
and 17-bit decimals.



Communications of HUAWEI RESEARCH | 109

Technological Foundation

June 2024

{

4.2.2 Poly-2: RSQRT

•	 p14_13: indicates the position of significant bits, that is, 
a total of 13 significant bits are retained, starting from 
the 14th fractional bit.

•	 a, b, and c: represent the quadratic term coefficient, 
monomial term coeff ic ient ,  and constant term 
coefficient of Poly-2, respectively.

This design uses eight cycles to complete the DP SQRT 
computation for a 52-bit mantissa, and supports pipeline 
operations. Specifically, E1 stage formats floating-point 
numbers, E2 and E3 stages solve the SQRT that contains 28 
fractional bits and the reciprocal SQRT, E4 stage computes 
Alpha (α), E5 stage computes the low bits of DP SQRT, and 
E6–E8 stages complete the accurate rounding process.

In Figure 2, the two multipliers at E6 and E7 stages can 
be completed in parallel if the DP SQRT is independently 
implemented. In this way, a latency of one cycle can be 
reduced. In practice, this design is realized together with the 
double-precision floating-point divider (DP DIV) designed by 
the authors by means of resource reuse. In such a scenario, 
parallel-to-serial conversion is performed, and the reuse 
logic can reduce the cost of one multiplier. Therefore, this 
paper maintains the serial idea. The following parts will 
describe the DP SQRT microarchitecture design in detail.

4.1 Floating-Point Data 
Normalization: E1 Stage

After the input floating-point data is normalized, the 
mantissa is represented in the following form based on the 

parity feature of the exponent.

1. xxx … xxx, exp = even

1x. xxx … xx, exp = odd 

The parity flag bit and the 7 bits (for SRQT table lookup) 
and 8 bits (for reciprocal SRQT table lookup) after the 
mantissa integer 1 are combined to form the coefficient 
table lookup input for Poly-2 computation.

4.2 Poly-2 SQRT and Reciprocal 
Computation: E2 and E3 Stages

4.2.1 Poly-2: SQRT

E2: A 16×16 multiplier generates 32 bits, and the higher 18 
bits are taken as x2. A 23×22 multiplier generates 45 bits, 
and the higher 26 bits are taken as bx.

E3: Based on x2, a 14×18 multiplier generates 32 bits, and 
the higher 17 bits are taken as ax2. ax2, bx, and c are summed 
up to obtain a 1.28-bit result. The result is represented in 
the carry-save format, with booth encoding completed (four 
XOR logic depths estimated).

E2: A 16×16 multiplier generates 32 bits, and the higher 17 
bits are taken as x2. A 21×21 multiplier generates 42 bits, 
and the higher 22 bits are taken as bx.
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6 Summary

This paper proposes a novel DP SQRT algorithm and 
microarchitecture design based on polynomial fast 
approximation, separation of high and low bits, and 
accurate rounding of indirect errors. Compared with the 
SRT algorithm and hardware implementation used in 
the academia and industry, the DP SQRT algorithm and 
microarchitecture feature high throughput and ultra-low 
latency. The design idea can be used not only for DP SQRT 
computation, but also for high-precision complex function 
computation such as DP DIV and INT64 DIV, representing 
good scalability. This provides a chance for a new 
breakthrough for the long-standing, complex ALU research.

4.4 SRQT Low-Bit Computation:  
E5 Stage

4.5 Accurate Rounding: E6–E8 Stages

5 Performance Comparison

In table 2, the latency and throughput of the current 
advanced very-high-radix SRT implementation [6] is 
compared with those of the proposal and microarchitecture 
implementation. In the SRT microarchitecture design, 
pre-processing and post-processing require five cycles to 
iterate in time division multiplexing (TDM) mode. Each 
iteration requires two-cycle cost of latency and outputs 
12 bits. Therefore, it takes 15 cycles for the SRT algorithm 
to compute the DP SQRT. The ultra-low-latency DP SQRT 
implementation proposed in this paper has almost half the 
latency of the original implementation. In addition, due 
to its algorithm characteristics and pipeline design, the 
throughput can reach up to 1, which is 10 times that of the 
SRT algorithm. In high-performance CPU scalar units and 
vector/SIMD applications, high throughput and low latency 
are urgent requirements, substantiating the value of our 
research.

4.3 Alpha Computation: E4 Stage

At E6 stage, the following two computations are performed 
in parallel:

1	 A 26×29 booth multiplier computes 2fu fl and outputs a 
result in the carry-save format.

2	 A 26-bit adder completes summation for fl in the carry-
save format.

At E7 stage, three remainders and three SRQT options are 
computed in parallel.

1	 One 26×26 booth multiplier and three adders are used 
to compute ie0s, ie0ns, and ie0ps, and generate the SP (fp 
selected), SN (fn selected), and S (f selected) logic. This 
process is not shown in Figure 2.

2	 Three adders, combined with constants +1 and –1, are 
used to compute f, fp, and fn.

At E8 stage, f, fp, and fn are selected based on {SP, SN, S}.

Very High Radix (212) Proposal

Latency (Cycle) 15 8

Throughput 
(Samples per Cycle)

0.1 1

Table 2 Performance comparison between the very-high-radix SRT and proposal

E3: Based on x2, a 13×17 multiplier generates 30 bits, and 
the higher 17 bits are taken as ax2. Then ax2, bx, and c 

are summed up to obtain a 1.28-bit result. The result is 
represented in the carry-save format, with booth encoding 
completed (four XOR logic depths estimated).

The following three computations need to be performed in 
parallel at this stage:

1	 A 29-bit adder completes summation for RSQRT with 
carry-save encoding and outputs a 1.28-bit result.

2	 A 29-bit adder completes summation for SQRT with 
carry-save encoding and outputs a 1.28-bit result.

3	 A square booth multiplier, combined with a 32-bit 
partial product, computes Alpha (32 bits) in the carry-
save format.

A 32×29 booth multiplier is used to generate 26+3 bits in 
the carry-save format, and booth encoding is performed to 
obtain a result in the fl format.
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Modern language implementations leverage dynamic or just-in-time (JIT) compilation and take advantage of their unique 
opportunity to observe the state of a program as it is being executed. By collecting dynamic information about control 
flow, types, and values, the compiler is able to apply speculative optimizations when generating machine code. The more 
is known about the program's execution, the more aggressive the speculation can be for achieving a higher performance 
gain. However, speculations come at a cost. Profiling information about the program's state must be collected through 
instrumentation, which constitutes a run-time overhead. Furthermore, non-provable assumptions made by the compiler that 
enable speculations must be checked at run-time and a deoptimization mechanism must be provided if those speculations 
fail, further increasing the run-time overhead. As a result, current JIT compilers are very risk-averse. A reduction of both 
overheads would allow collecting more accurate profiles while also enabling more risk-seeking speculations in the compiler.

In this paper, we assert that language runtime implementations offer an interesting avenue for hardware-software co-
design to build better dynamic compilers and processors that execute dynamically compiled programs. While observing 
the increasing importance of high-productivity languages, we ask how one would build a hardware-assisted execution 
platform for them. While we acknowledge the value of better informed hardware, we also argue for better informed 
software. Software-directed narrowly focused profiling in hardware — either by using novel profiling units or by 
leveraging the existing performance monitoring units — provides profiles that are more detailed at low overhead. We also 
propose hardware-assisted deoptimization and assertions with user-level trap handlers to further lower the checks and 
deoptimization costs. We outline interesting areas in the Yin and Yang between JIT compilation and the execution, peak 
performance and overhead, and better hardware and JIT software for dynamically compiled languages.
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In dynamic compilation, the translation of programs is 
delayed until execution. Dynamic compilation is usually 
performed by a just-in-time (JIT) compiler while some 
functions of the program are already being executed. As 
a result, the JIT compiler can leverage dynamic program 
information that is not available to a static compiler, which 
produces executables ahead-of-time (AOT). Dynamic 
compilation is used for managed statically typed languages, 
such as Java and C#, and even more importantly, for 
dynamically typed languages (e.g., JavaScript). Run-time 
optimizations performed by JIT compilers are essential for 
executing programs written in dynamically typed languages 
efficiently. For example, modern JIT compilers in JavaScript 
engines, such as V8, JavaScriptCore, and SpiderMonkey, 
generate specialized machine code based on the data types 
encountered during execution.

The ability of the compiler to obtain information about 
the program's execution provides interesting optimization 
opportunit ies .  Unl ike in tradit ional profi le-guided 
optimization, this ability eliminates the need to choose a 
representative workload from which the profile information 
is captured. Instead, profile information is collected during 
the execution of the actual workload. The flip side of JIT 
compilation is that the profile information must be gathered 
before the program is translated to native code, increasing 
the start-up time and the overhead at the beginning of 
the execution. Nevertheless, we believe that the dynamic 
compilation overheads can be further reduced through 
a hardware-software co-design and, if combined with 
caching and AOT techniques, ultimately produce a superior 
execution performance over traditional static compilation.

In this article, we shed light on the space between 
compilation and execution, as well as between optimization 
and profiling. We discuss improvements to current JIT 
compilers and potential hardware extensions that enable 
better JITs and more efficient program execution.

1 Introduction

1.1 JITs Make Dynamic Languages 
Faster

JIT-based execution of dynamically typed languages offers 
a significant performance advantage over interpreted 
execution. In this section, we use a Python example to 
demonstrate such performance gains. Specifically, we 
implement a textbook version of the multiplication of 

two dense matrices in idiomatic Python, using only core 
features of the language itself without the help of any 
library. Because Python does not support arrays in its core 
language, let alone multi-dimensional arrays, we represent 
matrices with Python list objects. We provide two 
implementations. The first represents a matrix as a nested 
list (a list of lists, requiring five lines of Python code), which 
permits the use of the common index operator syntax 

mat[i][j]. In the second implementation, using seven 
lines of Python code, we flatten each matrix to a single list 
in a row-major format, such that element accesses are of 
the form mat[i * NUM_COLS + j].

We measure the performance of the two implementations 
in CPython, which is the reference implementation of the 
Python language. Even though CPython only contains an 
interpreter1 — the bytecode instructions are executed inside 
a large switch/case statement — it is the most widely 
used runtime today. We compare the CPython interpreter 
with two JIT-based Python runtimes, PyPy [1] and 
GraalPython [2]. For reference, we also compare against 
two native implementations: NumPy, a parallel and highly 
optimized library for numerical computing in Python, and a 
C++ implementation of the textbook algorithm exposed to 
Python. Both native variants use NumPy's array format and 
therefore cannot be considered a strictly idiomatic use of 
Python.

Figure 1 shows the different execution times for the 
multiplication of two 128×128 matrices. As can be seen 
from the figure, the JIT-based executions are about two 
orders of magnitude faster than CPython, with the flattened 
list implementation being faster. The key observation 
is that the JIT-based execution of the Python version is 
approximately on-par with the same implementation in 
C++. This means that a native implementation in C++ does 
not provide a performance advantage over regular Python 
in a JIT-based runtime. As such, we can achieve good 
performance for the textbook algorithm without changing 
the language and without C/C++ foreign-function binding 
to Python. For comparison, we also show the performance 
of a highly optimized implementation in NumPy based 
on the dgemm routine from the Intel Math Kernel Library 
(MKL) that leverages thread- and SIMD-parallelism. 
This implementation offers more than another order-of-
magnitude speedup on a 16-core system, but it is far from 
what could be considered a textbook implementation.  

1 At the time of writing, there are discussions to add a type of JIT-based 
execution to CPython 3.12 by specializing bytecode instructions for types 
(PEP 659).
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Figure 1 Matrix multiplication: textbook Python implementations in CPython, 
PyPy, and GraalPython. We also show the same implementation in C++/pybind11 
and the optimized version from NumPy (parallel, tuned SIMD) for comparison.

Of note is the fact that all the pure-Python implementations 
are single-threaded. In order to maintain compatibility with 
CPython's single-thread runtime and its global interpreter 
lock, there is no auto-parallelization in either of the Python 
JITs.

We are not suggesting that the use of optimized libraries 
such as NumPy be discontinued. Rather, we are making 
two important points: (1) an efficient JIT-enabled language 
runtime may provide sufficient performance such that 
the programmer does not need to fall back on an 
implementation in C++, and (2) Python itself is not a slow 
language. The example illustrates that JIT-based runtimes 
allow the use of high-productivity languages without 
sacrificing performance. In case of single-threaded execution, 
the performance of JIT-compiled Python is comparable with 
that of C++ native code. In this paper, we want to push JIT 
compilers further, addressing the aforementioned overheads 
from profiling and run-time checks from speculation. We 
provide a brief background on JIT compilation in the next 
section, and then propose techniques to build better JITs 
with the help of new hardware functionality.

secs

Matrix multiplication (128,128)x(128,128)
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PyPy listoflists

PyPy flatlist

CPython native simple
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2 Just-in-Time Compilation

There are different approaches to JIT compilation: trace-
based JITs , which compile code from application traces 
across functions; region-based JITs , which compile coarser 
regions of code; and method-based JITs, which operate on 
individual methods and functions at a time. PyPy, used in 
the example provided in the previous section, is a tracing 
JIT for Python. More precisely, it is a meta-tracing JIT, in 

which the JIT traces the Python interpreter interpreting the 
Python program. Tracing JITs are widely used in dynamic 
binary optimization, translation, and instrumentation [3, 4]. 
In this paper, we focus on method-based JITs because they 
are used in the HotSpot Java Virtual Machine (JVM) and V8 
JavaScript engine.

2.1 A Focus on Method-Based JITs

Practical JIT compilers typically require a trade-off between 
compilation effort and quality of the generated code in 
order to reduce the application start-up times. Spending 
more compilation effort on parts of a program that are 
frequently executed (also called "hot"), such as inner loops 
of methods, is more beneficial than spending it on other 
parts that are rarely executed. A baseline compiler provides 
sufficient performance for infrequently executed parts, 
whereas compilers that are more sophisticated are used for 
critical parts. Managed runtimes therefore do not usually 
consist of only one single JIT compiler. Instead, they contain 
multiple so-called compiler tiers , with each tier spending 
a different amount of compilation effort. When methods 
or loops have been executed more frequently, they are 
compiled by higher tiers. In other words, the code tiers up 
through the different compilers as it gets more frequently 
executed. Furthermore, program execution often begins 
in an interpreter. This has the advantage that instructions 
executed rarely (e.g., class initialization) do not need to be 
compiled at all.

In the process of tiering up, the language runtime collects 
information about the program. Such information includes 
the number of times a method was called, how often a 
then- and else-branch was taken, the number of iterations 
of unbounded loops, counts for each case clause in a 
switch/case statement, or the actual receiver types 
in virtual method calls. This information is collected 
by the interpreter and in the compiled code through 
instrumentation. The information is then made available for 
optimization in the higher compiler tiers.

Figure 2 shows the four compiler tiers of the HotSpot JVM. 
The tiers are provided by two different compilers, called C1 
and C2. C1 is the fast compiler that generates code quickly, 
whereas C2 is the best-optimizing compiler. While Tiers 1 
to 3 are served by the same C1 compiler, they differ in the 
amount of code instrumentation applied for profiling. Tier 
1 does not apply any profiling, whereas code generated by 
Tier 3 is fully instrumented and therefore has the highest 
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Figure 2 JIT-based language runtimes often consist of multiple JIT compilers with varying compilation efforts. As code gets 
"hotter," it tiers up to higher compiler tiers that spend more compilation effort but produce better code. If speculations made by 

the compilers fail at run-time, the execution of the code stops and it is resumed at a lower tier (deoptimization).

2.2 No Universal JIT: Implementation 
Matters

Interpreter Tier 1 Tier 2 Tier 3 Tier 4

Compiler effort and
performance of
generated code

Profiling effort
and overhead

C1 Compiler C2 CompilerJVM/HotSpot

Deoptimization 
(e.g., bad speculation)

Tier up

profiling overhead. The profiling data collected by executing 
Tier 3 code is used by the C2 compiler if the code transitions 
to the highest compiler tier. Note that tiering does not 
necessarily follow a strict order from Tier 1 to 4. Code 
starting from the interpreter usually moves directly to Tier 3 
(compilation with full profiling enabled) and then to Tier 4 
(full optimizing compiler). There are circumstances in which 
code follows a different order. For example, simple code — 
such as in getter methods — takes the path to Tiers 3 → 
1. This is because there is little useful information gained 
from profiling such simple methods, and these methods will 
likely be inlined soon anyway when compiling the calling 
methods. Tier 2 is generally used if the queues that hold 
compilation tasks for the C2 compiler threads become full. 
The JVM then applies back-pressure and moves code from 
Tier 3 to a lower Tier 2 until the pressure on the compiler 
threads eases up.

The highest compiler tier spends the highest optimization 
effort. It uses all available profiling data collected to produce 
the best performing code. Typically, the highest compiler 
tiers do not emit instructions for application profiling due 
to the overheads, which in this last phase of the tiering-up 
process would eliminate most of the optimization gains.

In method-based JITs, the code tiers up not only at the 
granularity of functions (methods) but also at the level 
of individual loops. Typically, loops get "hot" before 
methods. After the loop is compiled, execution resumes in 
the compiled code. Before the loop can be executed, the 
current interpreter stack frame needs to be converted into 

the native machine representation. This is called On-Stack 
Replacement (OSR).

The Tier 4 compiler also applies speculative optimizations; 
specifically, it applies optimizations on branches not taken 
or on encountered dynamic types. This generally simplifies 
the code and reduces its size but requires additional 
instructions — guard checks  — that assert that the 
speculative assumptions made by the compiler still hold. 
If an assumption no longer holds, the execution of the 
generated code needs to stop, the generated code needs 
to be discarded, and the execution needs to be resumed 
in a lower tier (e.g., in the interpreter). This step is called 
deoptimization or OSR Exit . Because this step requires 
translating the machine thread state (the call stack with the 
machine registers) into the abstract program state of the 
virtual machine, this operation is expensive.

From an application standpoint, not all JIT environments 
provide the same performance and optimizations out of 
the box. Given three different runtime implementations 
from the same family of languages (i.e., HotSpot, Graal 
Community Edition (CE), and OpenJ9 Java VMs), one would 
expect comparable performance when executing the same 
benchmark suite several times with the same options for 
the runtime and benchmarks. However, the results are quite 
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different from one JVM to another, as illustrated in Figure 3 
on the Renaissance benchmark suite [5]. The figure shows 
the wall-clock time per benchmark iteration.

We look at these performance numbers from the perspective 
of the average user, who sees the language runtime as a 
black-box and is unaware of any internal details. The first 
oddity is the very low performance of OpenJ9 for two of the 
workloads: als and movie-lens. Underneath, these two 
benchmarks implement the same algorithm, alternating 
least squares, and they both use a Spark engine. 

Setting these two applications aside, OpenJ9 consistently 
shows worse performance than the other two runtimes. One 
could argue that a better-tailored configuration of OpenJ9 
would provide increased performance. However, when the 
default parameters for JIT heuristics are poorly chosen, it 
is extremely difficult for the user to decide what would be 
a good selection, as there are numerous parameters that 
could be altered.

The HotSpot and Graal runtimes are similar in terms of 
performance, despite the maturity of the former and the 
novelty of the latter. Further parameter tuning for any of 
them would be as difficult as for OpenJ9. Reportedly, the 
Graal Enterprise Edition (EE) has better-tuned features than 
the CE version, but it is not open to the public.

With so much variability in related runtimes, the gap 
between different classes of languages is even larger. 
Dynamically typed languages need different optimizations 
than statically typed languages do. For example, while the 
V8 JavaScript engine focuses on type speculation, it makes 
little use of profiling, which is an important feature of the 
HotSpot compiler.

The takeaway here is that the performance of one JIT 
compiler does not allow any predictions to be made on 

Figure 3 Renaissance benchmarks‘ performance (wall-clock time) with three 
different JVMs, median/min/max over 11 runs with default options

the performance of another JIT compiler. Not all JITs are 
made equal. They not only strongly depend on whether the 
target language is statically or dynamically typed but also 
on a number of sensibly-chosen defaults and engineering 
subtleties. It is important to be aware of the specific 
characteristics of the runtime in order to avoid performance 
penalties.

2.3 JIT vs. DBO

Both JIT compilers and dynamic binary optimization (DBO) 
systems are a type of dynamic optimizer . While they are 
both capable of applying the same kind of optimizations 
to the code, the former operates on a directly interpretable 
representation , whereas the latter operates on a directly 
executable representation [6]. In other words, DBO systems 
need to lift the machine code into a type of intermediate 
representation (IR) in order to apply the required 
optimizations. Conversely, JIT-based platforms already 
operate on an IR, such as the Java bytecode for the JVM, 
and can directly employ it. Another difference between a 
JIT compiler and a DBO system is the degree of portability: 
DBOs are usually strictly tied to a specific architecture. 
Both JIT and DBO techniques use profiling (in software 
or in hardware) to identify optimization opportunities. 
As an interesting case for DBO, Zhou et al. [7] show how 
profile-guided optimization can be used for dynamic binary 
parallelization of single-threaded applications. They obtain 
up to 6× speedup on 8 threads over DynamoRIO [3].

A more generic version of a DBO is a dynamic binary 
translator (DBT) . While a DBO system is designed to do 
native-to-native binary translation and optimization in 
particular, DBT translates between different architectures, 
with or without optimizing the code in the process.

Another technique from the same family is feedback-driven 
optimization (FDO). Two large-scale studies from Google [8] 
and Facebook/Meta [9] give a sense of the gains obtained 
with FDO and post-link optimization in their respective data 
centers. More precisely, they perform fleetwide profiling of 
application binaries and deploy the new optimized code 
once it is generated. Google's FDO technique achieves a 
performance speedup of up to 10%, while Facebook/Meta's 
Bolt achieves up to 20% on top of FDO. However, because 
FDO-like systems are static optimizers, they miss out on 
many optimizations enabled by the dynamic nature of JIT or 
DBO.
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Figure 4 Shared language runtimes
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(a) Java HotSpot runtime (b) Truffle/GraalVM runtime with polyglot interop

In this paper, we focus on JIT compilers for high-productivity 
dynamic languages, where the profiling and feedback loop 
are readily included in the compilation mechanism. Being 
an integral component of a language runtime, the JIT 
compiler naturally optimizes the code as it goes, relying on 
speculation and recovery to generate correct and efficient 
code.

The implementations of efficient language runtimes are 
relatively complex, particularly if they are JIT-based. For 
example, the V8 JavaScript engine consists of about 1 
million lines of code, while OpenJDK — the open-source 
implementation of the HotSpot JVM — consists of about 
800 thousand lines. The implementation effort can be 
amortized by leveraging the runtime for multiple languages. 
This is possible if the language runtimes use the same 
intermediate representation. For the JVM, this is the Java 
bytecode. It is used as a compilation target for several high-
level languages besides Java, such as Kotlin, Scala, Groovy, 
JRuby, and Clojure (see Figure 4a). A further advantage of a 
common language runtime is that it creates an ecosystem 
in which libraries can be shared across languages. For 
example, a Clojure program may use a library written in 
Java.

Rather than compiling to the common bytecode [10], 
language implementations can also share code of higher-
level abstractions such as the abstract syntax tree. One 
notable example is Oracle's GraalVM with the Truffle 
language implementation framework [11] (see Figure 
4b). While GraalVM is based on the HotSpot VM, it 

replaces the C2 compiler with its own Graal compiler. For 
this discussion, the relevant component is Truffle, which 
provides a framework that can be leveraged by language 
implementers. When using Truffle, these implementers 
can create interpreters using Truffle's abstract Syntax trees 
and, in turn, obtain an optimizing JIT compiler provided by 
Truffle/GraalVM for free. Truffle implementations for several 
languages already exist, such as for JavaScript, Python, R, 
and with Sulong [12], even C++ and Rust through LLVM 
bitcode.

Besides providing a JIT compilation for interpreters, Truffle/
GraalVM is also a polyglot runtime that not only allows 
exchanging libraries but also provides interoperability 
between languages. Objects can be directly exchanged 
between programs written in different languages without 
serialization . An example is grCUDA [13]. This Truffle 
language for CUDA provides GPU-binding to all languages 
of the Truffle/Graal ecosystem.

We illustrate object sharing in an example between grCUDA 
and JavaScript (Listing 1). Existing GPU kernels, either in raw 
CUDA source code or compiled to binaries, can be brought 
into the Truffle ecosystem and bound as a callable Truffle 
object. Similarly, device arrays that hold data referenced by 
the GPU kernel can be allocated from any Truffle language 
(e.g., JavaScript) through interop with grCUDA. The 
resulting device array object is exposed to JavaScript as an 
ordinary JavaScript array. Zero-overhead access to this array, 
which is stored in Unified Memory, is provided through the 
JIT compiler. Once all the device arrays used by the GPU 
kernel are initialized by the JavaScript code, the kernel can 
be launched by simply invoking the callable object to which 
the kernel is bound and passing the references to the device 
arrays as arguments.
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Listing 1 grCUDA: using a C++ kernel from JavaScript through polyglot  
language interop

// C++: CUDA kernel compiled into kernel.cubin

__global__ void incr(int *arr, int n) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n)

arr[i] = 1;

}

// JavaScript: bind and use kernel

const cu = Polyglot.eval('grcuda', 'CU') 

const incKernel = cu.bindkernel('kernel.cubin',

// kernel signature

'cxx incr(arr: inout pointer sint32,n: sint32)'

)

// Allocate device array

const n = 100

const deviceArray = cu.DeviceArray('int', n)

for (let i = 0; i < numElements; i++) {

// access like an ordinary JS array

deviceArray[i] = i

}

// Launch kernel as 1 block with 128 threads

incKernel(1, 128)(deviceArray, n)

Truffle's ability to exchange objects even between 
dynamically typed languages comes from an additional 
abstraction besides the shared abstract syntax tree: objects 
are self-describing. The JIT compiler can query the objects 
about their properties (e.g., about the presence of certain 
members and whether they are indexable or callable) 
and speculatively generate machine code. In the grCUDA 
example in Listing 1, the compiler can map index accesses 
to loads and stores to the device array in Unified Memory. 
The legacy C foreign function interface that has traditionally 
been used between languages is no longer needed.

Because runtimes offer a vast range of optimization 
opportunities horizontally and vertically in the software 
stack, they are already regarded as central system 
components. And in cloud deployments, these components 
are increasingly important building blocks. We believe that 
they will gradually replace container and Micro VMs. A 
product already available in this direction is Compute@Edge 
by Fastly. It provides a WebAssembly runtime as a serverless 
environment onto which users can deploy microservices or 
functions written in any language that can be compiled to 
WebAssembly2. A possible use for shared runtimes is to co-
locate functions or services from the same tenant, thereby 
allowing cross-layer optimization through the language 
runtime. Stronger isolation of different tenants is possible 
by encapsulating the language runtimes themselves into 
isolation containers, such as the Nabla Containers [14], 
in which the language runtime runs on top of a small 
Unikernel (Library OS).

2 In order to use OS-like functionality, a WebAssembly System Interface 
(WASI) must be available and callable as a library from the respective 
languages.

The JIT compiler requires profiling data about frequently 
executed parts of a program in order to decide which 
methods and loops to compile. The profiling data includes 
invocation counts, number of loop trips, frequencies of 
taken paths in branch instructions, and encountered types 
or values in critical places in the program. Subsequent 
compilations will leverage this information in order to 
generate machine code that is more efficient.

Today, this profiling information is primarily collected 
through code instrumentation. For example, the C1 JIT 
compiler of HotSpot produces machine code that gathers 
profiling information for each method and at each program 
location in the bytecode — specifically, at each bytecode 
index (BCI) — for a number of bytecode instructions. Table 
1 lists the information collected per method per BCI. This 
information is written into the Method's Data Object (MDO) 
during the program's execution. The MDO is a vector that 
consists of one or more slots for each bytecode instruction 
for which profiling information is collected.

For methods, the generated code counts the number of 
invocations and deoptimizations, as well as the number of 
taken back-edges in the method (i.e., the total number of 
trips in a loop within the method). For branch instructions, 
the number of taken and fall-through paths is counted 
using two slots in the MDO. Similarly, for switch-case 

4 Profiling

Table 1 The HotSpot C1 JIT compiler collects specific profile data for 
each method and the following Java bytecode instructions.

Point of Instrumentation Profile Data (Slots)

per-method data
Invocations, back-edges and 

decompilation count

if <condition> Taken and not-taken count

goto Taken count

tableswitch
Count for each case, default 

count

instanceof, checkcast, 
invokeinterface, invokevirtual

Up to two concrete receiver 
types and counts, count 

others, count non-profiled

invokestatic, invokespecial Invocation count
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4.1 Profiling Overheads

Figure 5 (a) UML diagram showing the definition of the abstract class Base and 
two concrete subclasses, Foo and Bar. (b) Java code of the method test, which calls 
the virtual method foo. (c) The Java bytecode generated for the method test. (d) 
Snippet of the machine code generated by HotSpot JVM — the code shown in red 
is responsible for profiling the virtual call. (e) Snippet of the machine code using 
the proposed ISA extension to profile and update the metadata of the virtual call.

instructions (such as tableswitch), the number of times 
each case was selected is counted in a separate slot. One 
slot is used for unconditional jump instructions (i.e., goto). 
Virtual method calls (i.e., invokevirtual) and type casts 
(i.e., checkcast) use five slots, recording the first two 
types encountered and their respective counts as key-count 
pairs. The fifth slot is used to count "other" types (i.e., 
neither the first nor the second type). The compiler uses 
this information to make inlining decisions. It distinguishes 
between monomorphic call-sites (in which only one type is 
encountered), bimorphic sites (with only two distinct types), 
and megamorphic sites. In addition, static invocations, such 
as static methods or constructors, are also counted.

The profiling code generated by the C1 JIT compiler can 
be costly because it might be executed thousands of times 
before the method is identified as being sufficiently hot 
to be recompiled by the higher tier C2 compiler. In the 
next section, we quantify the overhead introduced by this 
profiling from two perspectives: (1) in terms of the extra 
instructions that are generated for profiling, and (2) in 
terms of performance overhead by comparing the execution 
times of the same Java workload, once with and once 
without profiling instrumentation.

We demonstrate the increase of the code size from the 
added profiling instrumentation on a small example with 
a virtual method call. Figure 5a shows two classes — Foo 
and Bar — that both implement the method foo defined in 
the abstract class Base. A reference of the type Base can 
point to an instance of Foo or Bar. Now, consider a call 
to foo as shown in the test method illustrated in Figure 
5b. The call to foo from the reference obj[i] is a virtual 
call because the implementation to be invoked is chosen at 
runtime based on the type of the referenced object: either 
Foo::foo or Bar::foo. When the C1 compiler in Tier 3 
generates code for invokevirtual to foo at BCI 3, shown 
in the bytecode snippet in Figure 5c, it also emits code that 
profiles the receiver type of the call. The emitted code for 
the invokevirtual is shown in Figure 5d. The additional 
instructions used to collect the type profile are shown in red. 
These instructions load the address of the test method's 
MDO (from the address 0x7f9be3caa918), compare the 
type (klass) of the obj[i] with the types stored in slots 
#1 and #2, and increment the respective counter if there is 
a match. If none of the slots match but one of the two slots 
has not yet been assigned to a type, this free slot is used, 

and its type and its counter are set. Otherwise, if none of 
the slots match and no free slot can be found, the generic 
slot "others" is incremented. Only after the code dedicated 
for profiling the type has been run is the virtual call made.

Of the 133 native instructions emitted for the method 
test, 35 of them are just for profiling purposes3. Besides 
increasing the size of the code footprint and the run-time 
overhead, the additional instructions can also disturb the 
micro-architectural state of the core, thrashing the cache 
hierarchy and putting more stress on other components, 
such as the branch predictors and address translation units.

In order to estimate the profiling overhead, we have devised 
an experiment in which we run the same Java workload 
once with profiling and once without. We allow or disallow 
profiling by limiting the tier to which HotSpot can tier up. 
Specifically, we only tier up to the C1 JIT compiler, namely, 
Tier 3 or Tier 1. In this way, if we stop tiering-up at Tier 1, 
there is no profiling code, but at Tier 3, the JIT compiler 
emits machine code that collects the full profile of the 

public int test(Base[] obj, int i) {

// virtual call

return obj[i].foo();

}

«abstract»
Base

+foo()

+foo() +foo()

Foo Bar

0: aload_ 1

1: iload_ 2

2: aaload

3: invokevirtual Base.foo

6: ireturn

(a) UML diagram                           (b) Java source code (c) Java bytecode

mov     %rsi,%rdi           ; rdi <- rsi    (rdi <- this = receiver)

movabs  $0x7f9be3caa918,%rbx; metadata for invokevirtual ‘foo’ @BCI3

mov     0x8(%rdi),%edi      ; lookup klass of obj[i]

movabs  $0x800000000,%r10   ; decompress reference of target's klass

add     %r10,%rdi           ; decompress reference of target's klass

cmp     0x180(%rbx),%rdi    ; check if target's klass match with slot #1

jne     0x00007f9c21cb6fe3  ; not equal, try slot #2

addq    $0x1,0x188(%rbx)    ; increment count in type slot #1

jmpq    0x00007f9c21cb7049  ; proceed to vcall

cmp     0x190(%rbx),%rdi    ; check if target's klass match with slot #2

jne     0x00007f9c21cb6ff9  ; not equal, proceed to check if slot #1 is empty

addq    $0x1,0x198(%rbx)    ; increment count in type slot #2

jmpq    0x00007f9c21cb7049  ; proceed to vcall

cmpq    $0x0,0x180(%rbx)    ; target’s klass didn’t match any slot

;   check if slot #1 is free

jne     0x00007f9c21cb701d  ; slot #1 is not free, try slot #2

mov     %rdi,0x180(%rbx)    ; store target's klass into the free slot #1

movq    $0x1,0x188(%rbx)    ; set slot #1 count to 1

jmpq    0x00007f9c21cb7049  ; proceed to vcall

cmpq    $0x0,0x190(%rbx)    ; check if slot #2 is free

jne     0x00007f9c21cb7041  ; slot #2 is not free, increment "other" slot

mov     %rdi,0x190(%rbx)    ; store target's klass into the free slot #2

movq    $0x1,0x198(%rbx)    ; set slot #2 count to 1

jmpq    0x00007f9c21cb7049  ; proceed to vcall

addq    $0x1,0x170(%rbx)    ; none of the slots matched and no free slot found

;   increment count in "other" slot

movabs  $0x80101f610,%rax   ; make virtual call via Inline Cache

callq   0x7f9c215a9ac0      ; *invokevirtual foo

(d) Assembly code with profiling instrumentation

mov     %rsi,%rdi           ; rdi <- rsi    (rdi <- this = receiver)

prof_dist64  2, %rdi, $0x7f9be3caa918; count distinct %rdi using 2 slots
;   using metadata at $0x7f9be3caa918

movabs  $0x80101f610,%rax   ; make virtual call via Inline Cache

callq   0x7f9c215a9ac0      ; *invokevirtual foo

(e) Assembly code with the proposed profiling instruction

3 Figure 5d does not show the entire native code generated for the test 
method, nor does it show the profiling instructions that precede or follow 
the virtual call.
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bytecode program. In both cases, the machine code is 
generated by the same compiler (C1) using the same level 
of optimizations. Figure 6 shows the execution times of 13 
benchmarks from the DaCapo benchmark suite [15] for the 
code generated by the HotSpot C1 JIT compiler limited at 
Tier 1 and at Tier 3. The overhead of profiling can have a 
significant performance impact in many workloads, resulting 
in up to a 77× higher execution time. On average, the code 
with profiling (Tier 3) is 8.5× slower than without it (Tier 1). 
These numbers explain why the highest optimizing compiler, 
C2 in Tier 4, does not emit any profiling code anymore — 
doing so would simply be too expensive.
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Figure 6 Execution time across 13 DaCapo benchmarks that are limited to 
using the C1 JIT compiler up-to Tier 1 and Tier 3, respectively. The difference in 
performance is due to the profiling code emitted in Tier 3 compared to Tier 1.

Figure 7 Hardware tracing methodology to extract branch traces used in OpenJ9

4.2 Current PMU-Based Profiling

As demonstrated in the previous section, collecting the 
profile data listed in Table 1 through instrumentation 
introduces a high run-time overhead. Ideally, the code 
profiling should be offloaded to dedicated hardware units 
that record the required data. In this section, we discuss 
the possibility of leveraging the performance monitoring 
units (PMUs) already existing in modern CPU cores to help 
collecting this information. In the next section, we will 
propose possible novel extensions to the PMUs to increase 
the coverage of the collected information, improve the 
accuracy, and further lower the run-time overheads.

OpenJ9 is the first JVM that takes advantage of hardware 
support for profiling. In OpenJ9, profiling combines 
both software- and hardware-based techniques. Similar 
to the HotSpot JVM, the OpenJ9 JVM performs code 
instrumentation in the highest profiling tier. However, code 
in the lower profiling compiler tiers can leverage hardware 
to identify hot methods. When OpenJ9 runs under Linux or 
AIX on an IBM POWER8 system, it leverages the CPU core's 
hardware capabilities [16, 17] for sample-based profiling 

and for tracing branch instructions in order to determine hot 
methods. First, the PMU is configured to randomly sample 
instructions. Then, the instruction addresses of the samples 
are mapped to methods and counted. The number of 
samples collected for a method provides a coarse indication 
of its hotness. Second, POWER8 provides an inexpensive 
mechanism for applications to obtain the addresses of 
the last branch instructions from the CPU core's Branch 
History Rolling Buffer (BHRB). OpenJ9 uses the addresses 
of jump instructions (bl) recorded in the BHRB to update 
the method invocation counts. The BHRB provides a buffer 
that stores the addresses of the last 32 branch instructions 
and their taken directions. The runtime retrieves the 
buffer entries through 32 special registers and a dedicated 
unprivileged machine instruction mfbhrbe <register>, 
<BHRBEntry>, without any need of context-switching.

Figure 7 shows the methodology to extract the branch 
history with minimal overhead. In this methodology, the 
application is continuously running, while a separate 
profiling thread is reading the BHRB and accounting each 
entry with the respective profile data. An event-based 
branch (EBB) wakes up the profiling thread when the BHRB 
is full. The profiling thread disables the BHRB to pause 
recording new entries while the thread copies the BHRB 
entries into the user-space buffer for further processing. 
The profiling thread then re-enables recording. Following 
that, the profiling thread processes the list of addresses for 
each branch instruction and increments the call count in the 
method data object of the called method. Then, the thread 
waits to be woken up by the next EBB. The advantage in 
the POWER8 architecture is that the interrupt handler (i.e., 
EBB) and the access to the buffer are in the user-space, 
and do not involve any overhead for privileged execution 
or context-switching. However, the BHRB is limited to 32 
entries and cannot continue recording branches taken by 
the application thread while the BHRB entries are drained 
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Table 2 Existing hardware mechanisms for tracing of memory accesses and branches

4.3 Proposed Hardware-Assisted 
Profiling

from the buffer by the profiling thread. This results in 
method invocations being counted inaccurately, which is 
one reason why OpenJ9 resorts to precise instrumentation-
based counting in the highest profiling tier.

Similar techniques are provided by Intel and ARM processors 
and could be leveraged in an analogous way. However, 
because each technique has very constraining drawbacks, 
these techniques are not suitable for replacing the code 
instrumentation approach. Table 2 compares the different 
hardware mechanisms and their key characteristics.

Intel® Branch Trace Store (Intel BTS) [18] uses a similar 
approach as the IBM BHRB. However, the notification of the 
buffer state requires not only an OS-level interrupt but also 
elevated privileges in order to access the buffer. Therefore, 
the necessary OS-context switch may introduce an 
enormous overhead. Furthermore, Intel BTS has the same 
issue as IBM's BHRB — it may not capture all branches.

Intel® Processor Trace (Intel PT) is a tracing mechanism that 
captures information about software execution flow using 
a dedicated hardware facility with minimal performance 
overhead during tracing. The trace includes information 
on the direction of each control flow instruction and the 
elapsed time between them. The challenge in using Intel 
PT is the overly expensive processing required to decode 
the collected trace and to extract the relevant information. 
Such information may include executed branches in the 
JIT-compiled code, how often they were executed, and the 
taken directions. The JPortal project [19] integrated Intel PT 
in HotSpot JVM but uses it only for debugging and crash 
analysis purposes.

IBM POWER8 Intel BTS Intel PT ARM CoreSight

Accurate count No No No Yes

Interface
User-level accessible 

counters and interrupt
OS-level interrupt & 
privileged accesses

Hardware in chip 
exposed as PMU

External hardware

Timing information No No Yes Yes

Overheads Minimal
Context switch

Copying trace

Tracing: Low

Decoding: High

Minimal

Decoding: Offline

Filtering
Based on the type of 

instruction
Type of branch and jump 

instructions
Based on the address (2 

address ranges)
Yes

ARM CoreSight is heavily dependent on its implementation 
on the specific core. The main purpose is to provide 
debugging capabilities for embedded processors, while using 
dedicated off-chip hardware to capture the trace. Extending 
ARM CoreSight with new instrumentation and tracing 
capabilities may be a viable solution to offload the profiling 
to the hardware.

There are several possible solutions that can reduce the 
profiling overhead. A promising approach, similar to the 
one in OpenJ9, is using specialized instructions and buffers 
to record the last branches. Dedicating area in the CPU 
core for specialized hardware profiling units can reduce the 
profiling overhead or even enable zero-overhead solutions, 
which in turn open up opportunities for profiling even in the 
highest tier. While such solutions must not disturb or slow 
down the processing in the regular CPU core, they also need 
to offer an efficient software interface that can be used to 
update the profiling metadata in the runtime with minimal 
overhead.

The data profiles currently collected in HotSpot are different 
types of counts — such as invocation count, taken/not-
taken counts in branches, and types used — as listed earlier 
in Table 1. The counts are updated in HotSpot JVM every 
time the method or the code for the corresponding bytecode 
instruction is executed. Primarily, an implementation that 
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uses hardware-assisted profiling must provide the same 
information to the JIT compiler as it currently obtains 
through instrumentation. The profiling hardware must 
support an arbitrary number of counters that count 
different types of events and that can be mapped to slots 
in the MDO. In some cases, however, it may be acceptable 
to use less expensive but approximate counters, such as 
the hardware implementation [20] of the SpaceSaving [21] 
algorithm for approximate frequent item counts.

One approach is to use the existing metadata MDO, in 
which the runtime stores the profile data. Figure 5e shows 
an example of an instruction that could be introduced and 
used for profiling in the JVM runtime. Such an instruction 
could replace the part of the code that is responsible for 
identifying whether the receiver type is already stored 
in a slot and could handle the incrementing of the 
respective counter. Such code is shown in red in Figure 
5d. The necessary arguments for such an instruction are 
the number of distinct types to count and the type of 
the specific instance (type of obj[i] is identified by the 
register rdi). The location of the metadata MDO (address 
0x7f9be3caa918) is known by the JIT compiler when 
native code is generated and passed in another immediate 
field of the instruction.

When the CPU core executes this new instruction, the 
requested profiling information is written into the MDO by 
a specialized profiling unit that can be loosely coupled with 

the core. That is, after sending the tuple (increment, rdi 
value, slot address) to the profiling unit that is coupled 

to the core through a FIFO queue, the core can resume 
executing application instructions while the profile units 
execute the increment operation similar to a remote-atomic 
instruction. By using such an approach, the profiling is 
outside of the critical path of the execution. Furthermore, 
replacing the 23 profiling instructions shown in red in Figure 
5d with one instruction also lowers the front-end pressure 
on the core.

We can expect such an instruction to radically reduce 
the overhead, meaning profiling could be enabled in the 
highest compilation tier. This continuous collecting of 
profiling information would allow the runtime to detect 
changes in the application behavior, such as changes in 
branch frequencies or encountered dynamic types. When 
the runtime detects that currently collected profile has 
significantly deviated from the profile that was used 
to generate the currently running code, it can request 
a recompilation of the code. The JIT compiler can then 

leverage the most recently collected profile data to produce 
code that is optimized for the current application behavior. 
Continuous profiling in JIT-based runtime allows continuous 
optimization of the executed code. Furthermore, profiling 
could be completely disabled by replacing the profiling 
instruction with a NOP instruction or by disabling it through 
setting a hardware mask.

5 Speculation: Cost When JIT Is 
Right

5.1 Overhead of Checks in V8

JIT compilers often make assumptions on a program's 
control-flow, types, and values in order to generate code 
that is more efficient. For example, they might omit special 
cases assumed not to be encountered during execution. 
However, in return for being able to create more efficient 
code, the compiler must include checks in the code to verify 
that the assumptions hold at run-time. In the unlikely case 
they fail, the program execution must halt and trigger a 
deoptimization event. With the new insight gained from 
the failed execution, the compiler then recompiles the 
loop or function with the failed assumption removed. 
For dynamically typed languages, speculation on types is 
crucial for obtaining a significant performance gain over 
threaded interpretation [22]. In this section, we discuss type 
speculation for JavaScript in the V8 engine and describe 
an ISA extension [23] (representative for other types of 
checks) in which the frequent SmallInteger (SMI) checks are 
offloaded to hardware.

The additional instructions that implement checks introduce 
a run-time overhead, regardless of whether the checks fail 
or succeed. In our previous work [23], we analyzed this 
overhead for the V8 JavaScript engine on the JetStream2 
benchmark suite. We found that about 4% of all the 
machine instructions emitted by the compiler were used 
to implement checks. Put differently, there is a check every 
20–25 instructions. In order to quantify their overhead in 
the noisy environment of the V8 engine, we followed a 
statistical approach and combined two different methods. 
In the first method, we used time-based sampling and 
determined the overhead as the fraction of samples that 
fall on instructions that are part of a check. In the second 
method, we measured the overhead directly by modifying 
the compiler to prevent the emission of checks in places 
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5.3 Hardware Offload of Guard Checks

5.2 Type Speculation in JavaScript

where we knew they would never trigger a deoptimization 
in the studied workloads (removing all checks is impossible 
because doing so would break the programs). Both methods 
are approximate. In the first case, an instruction may be 
used as part of a check as well as in regular application 
code. The second case is approximate since not all checks 
could be removed. By combining the results obtained from 
both methods and applying statistical significance testing, 
we found an average run-time overhead of 8% due to the 
checks, reaching up to 20% in extreme cases.

Consider the following JavaScript function4:

function add(a, b) {

return a + b

}

The function can be called with values of different types, 
for example, numbers and strings. The ECMAScript [24] 
specification requires that numbers are treated as values in 
double-precision floating-point. However, V8 — like other 
JavaScript engines — uses an optimization for SMI values, 
treating them as ordinary integers. This means that, if a and 
b are SMIs, the operation is an integer addition. And if one 
of the arguments is a floating-point number, the operation 
is a double-precision addition. However, if the arguments 
are strings, the + operation is a string concatenation.

Assume that the function has been called a number of times 
already while the code is executed in the V8 interpreter 
and, as such, it has become sufficiently hot to be compiled 
by the V8 JIT compiler. During execution in the interpreter, 
V8 keeps track of the actual type of the + operation. Also 
assume that the operation was always performed as an SMI 
addition (i.e., both operands were small integers). Based on 
this information, the compiler speculates that the function 
will continue to be called this way, and assumes that the 
parameters a and b will remain SMI values.

For the following description, we use V8 and enable the 
memory optimization that uses 32-bit compressed pointers 
on 64-bit platforms. With this optimization, pointers and 
SMIs are represented as tagged values in a 32-bit word. The 

4 Because this example is for illustration only, we disabled inlining and 
on-stack replacement optimizations to force the compiler to generate a 
function for this addition operation.

least significant bit in a tagged value is used to discriminate 
between pointers and SMIs. In this case, if the least-
significant bit is zero, the remaining 31 bits are interpreted 
as a signed 31-bit integer value; otherwise, the tagged value 
is a compressed pointer.

When generating the code for function add(a,b) and 
speculating that both parameters a and b are SMIs, the 
compiler needs to emit checks to verify that the values in 
a and b have their least-significant bits cleared. If one or 
both of the parameters have the bit set, the compiler needs 
to emit code that triggers a deoptimization event. This is 
because the speculation has failed.

Figure 8a shows the ARM64 code for the function generated 
by V8's JIT compiler. The instructions shown in red are the 
SMI checks for the two arguments passed to the function on 
the stack. The SMI check tests the least-significant bit and 
branches to the corresponding deoptimization trampoline. 
Here, we name arguments a and b as a_not_smi and b_
not_smi, respectively, for illustrative purposes. If the least-
significant bits of both parameters are zero, an untagging 
arithmetic right shift is applied to convert SMI into a 32-bit 
machine integer.

V8's JIT compiler uses 52 different types of checks. 
The checks that have the largest execution overhead 
are SMI and bounds checks in array accesses in the 
JetStream2 benchmark. Together, these checks account for 
approximately 50% of the overhead. Further analysis shows 
that the overhead does not originate from the branch 
instruction of the check. That is not surprising because 
the branches are only taken if the checks fail. Given the 
conservative speculations by the compiler, such failure 
happens only rarely. This means that the branches can be 
accurately predicted.

However, we believe that the use of branches here is not 
appropriate because, semantically, the checks more closely 
resemble assertions. Once triggered, execution will take 
an exception-like path into the runtime that handles the 
deoptimization. However, we found that removing the 
branches while leaving the instructions that compute the 
branch condition untouched provides only a small speedup 
of 1–2%. We also found that this speedup is solely due 
to the improvement of the misses on the application's 
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; in add() function

…
ldr   x2, [sp, #56] ; x2 <- parameter a

tst   w2, #0x1            ; test lsb of w2

b.ne  a_not_smi         ; not cleared -> deopt: a not a SMI

ldr   x3, [sp, #64]       ; x3 <- parameter b

tst   w3, #0x1            ; test lsb of w3

b.ne  b_not_smi ; not cleared -> deopt: b not a SMI

asr   w4, w2, #1          ; w4 <- w2 >> 1

adds  w4, w4, w3, asr #1  ; w4 <- w4 + (w3 >> 1)

…

; runtime call to set bailout handler address

adrp      x0, bailout_handler
add       x0, x0, :lo12:.bailout_handler
msr      REG_BA, x0

; in add() function

…
jsldursmi w2, [sp, #56]  ; w2 <- load_smi(a)
jsldursmi w3, [sp, #64]  ; w3 <- load_smi(b)
adds      w3, w2, w3    ; w3 <- w2 + w3

…

; in bailout_handler
.bailout_handler:
mrs       x0, REG_PC ; x0 <- PC failed load

mrs       x1, REG_RE       ; x1 <- bailout reason

b         runtime_bailout  ; call into runtime
…

(a) Original ARM64 code with SMI checks (b) ARM64 code with the jsldursmi offload instruction

Figure 8 (a) ARM64 assembly code generated by V8's JIT for the example function speculating that both parameters are SMI values. 
Instructions for SMI checks are shown in red. (b) ARM64 assembly code generated by V8's JIT using the ISA  offload instruction. 

Instructions and registers highlighted in green need to be introduced to support the proposed ISA extension.

branches because this removes 20% of the overall retired 
branches. In order to further reduce the overhead, we must 
also try to offload the computation of the check condition, 
the assertion, and the format conversion.

We proposed a small ISA extension and demonstrated it for 
SMIs in [23]. It is based on two ideas. The first idea is that 
SMIs are a memory optimization. Values are represented in 
SMI form when they are stored as fields of objects in the 
heap. However, as soon as they are loaded into a register, 
they should be converted into machine integers and remain 
in this format. Only when a machine integer needs to be 
written back into a heap object should it be converted 
back into the SMI representation. The second idea is to 
treat the check as a trap, which could then be handled in 
user-space. Our ISA extension consists of the specialized 
SMI-load-check-and-convert instructions jsldrsmi and 
jsldursmi, corresponding to the ARM64 ldr and ldur 
regular load instructions. They load the value, check that its 
least-significant bit is zero, and perform the untagging right 
shift. If the check fails, the core's exception mechanism is 
used to jump to a user-space bailout handler at instruction 
commit. Three additional machine-specific registers are 
introduced: REG_PC, which upon entry of the bailout 
handler contains the PC of the failed SMI-load and REG_RE, 
which contains the code of the bailout reason (similar to a 
syndrome register). The runtime sets the REG_BA register 
to the address of the bailout handler, which can handle 
deoptimization for several compiled functions. It reads the 
REG_PC and REG_RE, and calls into the runtime what is 
currently being done in the trampoline code (at a_not_smi 
and b_not_smi in the example above).

Figure 8b shows the compiled add(a,b) function with the 

initialization code that sets up the address of the bailout 
handler, and the code for the bailout handler itself. The ISA 
extension has a relatively low implementation complexity. 
Conceptually, it consists of a low-overhead data-path 
extension with a constant arithmetic shift, two multiplexers, 
and three additional registers.

We implemented the extensions in the gem5 simulator and 
measured an average speedup of about 3% from the SMI ISA 
extension and a speedup of up to 10% in SMI-heavy micro-
benchmarks. Although the ISA extension is specific to V8, the 
instruction could be adapted to support value tagging used 
by other JavaScript engines. For example, it could support 
NaN-Tagging, which encodes bits in the redundant encoding 
of FP64 NaN values. A similar approach could also be applied 
to the other 51 checks in V8 (i.e., bounds, overflow, and type 
checks). From our analysis on the JetStream2 benchmark 
suite, we conclude that there is a potential speedup of 8% 
in the ideal case where all checks are offloaded and their 
implementation has zero run-time overhead.

6 Speculation: Cost When JIT Is 
Wrong

The mechanism responsible for guaranteeing correctness 
and continuity when a compiler speculation proves to 
be wrong is present under different names in the JIT 
compilers we discussed earlier. In HotSpot JVM, the term 
used for this situation is deoptimization, or deopt for short. 
Deoptimizations are expensive operations that require 
translating the machine thread state (i.e., the call stack 
with the machine registers) into the abstract program state 
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6.1 The Anatomy of Deoptimization

of the VM. More precisely, if an assumption made by the 
compiler no longer holds, the execution of the generated 
code needs to stop, the generated code must be discarded, 
and the execution must be resumed at a lower tier. In the 
case of the HotSpot JVM, the execution resumes in the 
Interpreter and, oftentimes, the method needs to be re-
profiled in order to tier up again.

The cost involved in deoptimization comes from multiple 
sources. These sources include the following: saving the 
current state, running interpreted code instead of highly 
optimized machine code, and the lag to tier up and 
reoptimize the code in question.

Consequently, most environments with JIT compilers are 
rather reluctant to employ speculation, even though it may 
potentially generate code that is more efficient. In particular, 
the JIT compiler in HotSpot JVM mostly speculates only 
when it is fairly certain that the assumption will hold. As 
such, many opportunities for optimizations that would 
require more aggressive speculation are missed. The extra 
performance they would have provided is the price paid for 
the deoptimization mechanism.

Deoptimizations can be synchronous or asynchronous. The 
former refers to those caused by an invalid assumption 
in the current thread, for example, a branch that is taken 
only once when the program execution is already stable. 
In HotSpot parlance, synchronous deoptimizations are also 
called uncommon traps. Asynchronous deoptimizations are 
usually requested by another thread, for example, when 
a subclass is loaded and the assumptions that allowed a 
virtual call to be devirtualized no longer hold, resulting in 
the need for deoptimization.

In the HotSpot JVM, a compiled method could be in any one 
of the states summarized in Table 3. Briefly, all compiled 
code starts out as not-installed , being just an entry in 
the code cache. The code cache is a memory area where 
generated native code is located. When code is in the not-
installed state, it is not yet associated with any particular 
method. When the code is registered with a method 
(i.e., a thread calls said method and executes this code), 
the state of the compiled code becomes in-use . Ideally, 
this code is optimal and will execute for the rest of the 

program. However, it normally takes a few optimization–
deoptimization iterations before the code is in its final state.

When a method needs to be deoptimized, it is marked as 
not-entrant . The thread that triggered the deoptimization 
continues its execution in the interpreter until it is ready 
to run optimized code again. No new threads are allowed 
to call to the not-entrant code. Threads that were already 
in the process of executing the now-not-entrant code 
are allowed to finish executing it. Before resuming the 
execution in the interpreter, the thread that transitioned 
the method into the not-entrant state also notifies a special 
sweeper thread of this state change. The sweeper thread is 
responsible for garbage-collecting the code cache.

The code cache is swept asynchronously with respect to the 
application threads that are switching between optimized 
and interpreted code. The sweeper thread is activated when 
the free space in the code cache drops below a certain 
threshold and checks each compiled method in turn — if 
the code is still in use by any thread, the sweeper thread 
marks the method as active . If the method is reported as 
not-entrant and the sweeper thread finds it active, the 
sweeper does not change the method's state. Otherwise, it 
transitions the method to zombie state. A zombie method 
is off-limits to all application threads. Finally, with the next 
iteration, the sweeper unloads the compiled method and 
removes the native code from the code cache.

State Description

Not-installed
The compiled code exists in the code cache, 
but it is not yet registered with the method.

In-use
The compiled method is in use and the code 
is correct; new threads can use this version 

of compiled code.

Not-entrant
This version of the code is not valid 
anymore. The method is still alive.

Zombie
The invalid code is not used by any thread 

anymore.

Unloaded
The code is unregistered and cleaned up 

from the code cache.

Table 3 The lifecycle of a compiled method in HotSpot JVM. A method is 
alive when the code is ready to be used by the application threads.
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Quantifying the true costs of deoptimizations is challenging 
due to the complexity that arises from the number of steps 
and threads involved. Besides the application thread's effort 
to translate the stack frames from native to interpreted, 
there is also the overhead of running in the interpreter 
until the code is recompiled. We could also try to account 
for the overhead of the sweeper thread: although it wakes 
up only occasionally and does not block the application, 
the sweeper does share resources with the application 
and intuitively should have an impact. Moreover, not all 
deoptimizations precisely follow the same typical sequence 
of events: depending on various internal heuristics, the 
method may or may not need to be reprofiled, recompiled 
(i.e., old code in the code cache is reused), etc. As such, 
different optimization reasons trigger deoptimization events 
with different costs. In addition to all of this, the workload 
itself influences the perceived cost of a deoptimization. The 
same deoptimization process will be seen as being more 
expensive for a simple application than for a long-running 
massive one.

A first step toward quantifying the cost of deoptimizations 
is to use a controlled environment in which deoptimization 
events can be explicitly triggered and their overhead 
measured. We employ a simple synthetic micro-benchmark 
that calls a method one million times in a loop. The method 
contains a conditional statement for which one of the 
branches is taken only once during the execution of the 
benchmark. This results in the native code being optimized 
to always take one branch. When the other branch is taken, 
an uncommon trap is triggered and, subsequently, the 
deoptimization process, that we want to measure, is also 
triggered. In order for the deoptimization event to be easily 
observable, we force the compiler to not inline the method. 
By nesting conditional statements and triggering uncommon 
traps every 2 × 105 iterations, we are able to control the 
number of deoptimizations. We specifically choose the 
interval between deoptimization events so that the code 
barely has time to tier up between any two deoptimizations. 
As soon as the code is compiled at Tier 4 again, a new 
uncommon trap is triggered. This is an adversarial scenario 
intended to stress the deoptimization process.

6.2 Estimating Deoptimization 
Overheads

As a baseline for the benchmark, we consider an execution 
that never deoptimizes the method in the main loop (i.e., 
the conditional statement inside the method always takes 
the same branch). We define the deoptimization cost as 
follows: the execution time overhead for the main loop 
of the benchmark when deopts occur compared with the 
baseline. We measure the overhead of up to five additional 
deoptimizations and execute each experiment 11 times. The 
results are stable across runs (see Figure 9). A single extra 
deoptimization incurs an overhead of about 7%, increasing 
almost linearly up to 37% for five deoptimization events.

It is important to note that the observed overhead is a 
function of the benchmark's complexity. In particular, the 
workload in our micro-benchmark can be made arbitrarily 
large, in which case the overhead of the deoptimization 
process will be perceived differently. Most of the time, real-
world applications do not have such an adversarial approach 
to deoptimizations as the one we employ in our synthetic 
design. Although the number of deoptimization events 
is normally much higher, these events are not triggered 
continuously back-to-back on a piece of code. Figure 10 gives 
an idea of the number of deoptimizations in more realistic 
scenarios, illustrating this on the Renaissance benchmark 
suite. The figure represents the distribution of deoptimization 
events over 11 runs with default parameters for the runtime 
and benchmarks. We observe that almost half of the 
applications have over 1,000 deoptimization events.

Ex
ec

ut
io

n 
tim

e 
(m

s)

Figure 9 Overhead of deoptimizations as measured on a synthetic micro-
benchmark. The Y axis represents the execution time of the main loop 
for the baseline (without deoptimization) and the time with up to five 

additional deoptimizations, which are marked on the X axis. The relative 
overhead with respect to the baseline is indicated above each data point.
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6.3 Opportunities for Hardware-
Software Co-Design

7 Speculation from Value Profiles

Figure 10 Distribution of the number of deoptimization events in 
the Renaissance benchmarks (data collected over 11 runs)

In a real-world application, part of the cost will potentially 
be hidden by the overall complexity of the execution. 
However, a next-to-linear increase in overhead with the 
number of deoptimizations, in addition to the activity of 
the sweeper thread, could eventually develop into a notable 
performance penalty. If the number of deoptimization 
events increases significantly, the cost may further 
become prohibitive. Due to this concern, the JIT compiler 
is prevented from engaging in speculation that is more 
aggressive and susceptible to generating large numbers of 
additional deoptimizations.
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When applying speculative techniques, the gains obtained 
through successful speculation must be balanced against 
the costs or penalties that occur when it fails. Here, we 
define gains as performance improvements, and costs 
as the additional run-time overhead resulting from 
deoptimizations. Speculation is beneficial if the following 
inequality holds:

Assuming that  the speculat ion of  interest  has a 

success probability of P(right) and achieves a gain of 
PerformanceGain, the only parameter left to control is 
the cost when the speculation fails, DeoptCost. If we can 

lower this cost, we can tolerate speculations that are more 
aggressive. We can then consider optimizations that have 

a lower success probability P(right). One contributor to the 

cost of deoptimizations is the translation of the machine 
execution state into the abstract virtual machine state used 
by the interpreter (e.g., the translation of the machine 
stack frames to stack frames of the JVM). A hardware-

(1)

software co-design approach to accelerate the switch from 
native to interpreted execution could be achieved by storing 
the machine state (e.g., stack frames and the content of 
CPU registers) in a format that can be directly used in the 
interpreter — the runtime would need to be modified to 
handle this new format. The challenge here is developing 
a representation format that is both simple to create in 
hardware and efficient for the interpreter to use.

The proposed hardware-software approach should also 
be used in the reverse direction. For example, it should 
be used for an OSR, in which a loop is compiled to native 
code before the entire method is compiled. In this case, 
the interpreter state needs to be converted into the native 
machine state.

In Section 5, we described how the V8 JavaScript engine can 
produce efficient code despite the dynamically typed system 
of JavaScript. The V8 engine collects type information 
during execution and its JIT compiler uses this information 
to generate specific code for the encountered types. This 
code is considerably faster than the generic code in which 
the individual, typically untyped, bytecode instructions 
are implemented. Such optimization can be regarded as a 
specialization that is based on types. Other specializations 
beyond types are also possible. In this section, we describe 
the specialization based on values.

Listing 2 Function deployed on a serverless platform. The recommend method can 
be specialized by the JIT compiler from the value profiles of the method arguments. 

For example, if two arguments are found to be constant, the specialized method 
takes only two arguments instead of four.

public class RecommendFunction {

private Backend backend;

public Recommendation[] handleRequest(Request 

req) {

return Recommendation.from(

backend.recommend(  // invoke backend

req.userId, req.requestId, 

req.numSuggestions, req.fromMobile));

// found always    =10    and    =true

}

static record Request(

String userId, int requestId,

int numSuggestions, boolean fromMobile) { }

...

}

P(right) ×PerformanceGain ≥
(
1 − P(right)

)
×DeoptCost (1)
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Take the Java code in Listing 2 as an example. It contains a 
snippet of the request handling function of a recommender 
microservice that could be deployed on a Function-as-
a-Service (FaaS) platform. The functions are exposed 
through a Web API, and the arguments for the requests are 
typically submitted as JSON payloads in HTTP requests. In 
this example, we assume that the FaaS hosting platform 
is parsing the JSON data into a Java container object 
of type Request, and it then passes this object to the 
handleRequest method that implements the service. The 
use of such request objects has the advantage that they can 
represent a large number of arguments, some of which can 
also be optional. In the example, the values of fields in the 
request are passed to the backend recommend method in a 
regular argument list.

Let us further assume that most of the requests originate 
from a mobile application that always fetches 10 
recommendations, such that numSuggestions=10 and 
fromMobile=true. If the JIT compiler knew this, it could 
create a specialized version of the recommend method 
that takes only two arguments but with the parameters 
numSuggestions=10 and fromMobile=true fixed to constants. 
This specialization is also known as partial evaluation [11, 
25] in which a program is specialized to part of the input.

Today, this specialization requires guidance from developers 
through annotations in the source code [11, 26]. Lima et 
al. [26] argue that developer guidance is needed because 
of the overhead of profiling values in the program and 
discovery of good profiling opportunities. However, we 
believe that the problem of expensive value profiles can 
be addressed by a hardware profiling unit that counts the 
distinct values and critical places in the code (such as at 
inlining boundaries), for example, in handleRequest.

The availability of a value profile offers new optimization 
opportunities for the JIT compiler. Lima et al. [26] reported 
a 2.5× speedup from properly placed specialization 
annotations in their implementation in the JavaScriptCore 
engine.

8 Conclusion

Up to this point, we have discussed the different aspects 
that impact the performance of managed code in a runtime 
system, and we have outlined possible hardware-based 
enhancements separately for each of them. Figure 11 

shows how all the pieces fall into place to form a balanced 
hardware-software co-design platform for dynamically 
compiled languages.

On the hardware side, we build on top of an existing state-
of-the-art CPU core. To this, our design adds a number 
of hardware extensions, with the goal of improving the 
execution of JIT-compiled code and the functionality of 
the JIT compiler itself. The right-hand side of Figure 11 
illustrates the hardware design. The components in the 
bottom part of the figure (shown in red) represent the 
newly proposed profiling infrastructure. The extensions are 
intended to incur minimal overhead and to permit narrowly 
focused profiling that can be steered from software. On 
the one hand, we envision profiling units that enable fine-
grained control over specific functions or loops, based on 
ranges of instruction addresses. To this end, current PMU 
functionality, as presented in Section 4, could be adapted to 
provide the necessary hardware information for our targeted 
profiling goals. On the other hand, we are considering new 
units responsible for aiding with value profiling and tracing. 
The latter can be used for trace-based JIT compilers.

The components shown in green, on the top side of the 
hardware design area, represent extensions that are involved 
in lowering the cost of speculation. We consider both 
overhead-inducing scenarios: when speculation is correct 
(as described in Section 5), and when the assumptions turn 
out to be wrong (addressed in Section 6). For the former, 
the costs are caused by always executing guard checks 
that succeed most of the time and do not contribute to the 
progress of the application code. We count on a hardware 
unit that enables the use of user-level trap handlers and 

JIT Traditional OoO Core

Tracing Unit

Profiling UnitProfiling
Data
Buffer

Language Runtime Core

Value Speculation

Instrumentation

Focused Profiling

User-level
Fast trap &

Asserts

Deopt
Helper

Exact Count

Freqltem
Count

VM

Figure 11 Proposed architecture for a hardware-software co-designed execution 
platform for dynamically compiled languages. Hardware extensions dedicated for 
profiling and speculation are added to typical CPU cores. The software directs the 

actions of the hardware and consumes the collected information as needed.
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assertions to reduce the amount of overhead incurred from 
this source. The latter specifically targets deoptimization 
costs. These costs could be reduced with a hardware-
assisted solution that captures the machine state (e.g., stack 
frames and registers) and converts it into an abstract state 
representation of the virtual machine.

The integration with a language runtime is represented 
by the left-hand side box in Figure 11. We modelled our 
approach on the functionality of HotSpot JVM. First, the 
existing instrumentation that provides profiling information 
should be replaced with the hardware-based profiling 
extensions. The expected outcome of this measure is 
twofold: (1) profiling at lower-level tiers, such as Tier 3 in 
HotSpot, will incur virtually no cost, and (2) profiling at the 
highest-level tier, such as Tier 4 in HotSpot, will become 
possible. The latter outcome also facilitates other types 
of optimization, such as addressing the issue of outdated 
profiles. In our approach, the VM must control the hardware 
profiling units and instruct them on what information is 
currently relevant for profiling and what information should 
be collected. For example, the hotness of functions and 
loops should be profiled first. The focus could then turn 
to collecting back-edge counts and finally to addressing 
value profiles. Subsequently, value profiles can be used in 
a new component that implements value speculation as 
part of the compilation process. This will enable frequently 
executed functions and loops to be specialized for particular 
values.

Although we describe a solution primarily based on the 
JIT compiler model of HotSpot JVM, our vision extends 
toward a unified approach that can be leveraged by other 
languages and runtimes as well. Overall, we propose a 
hardware-software design for JIT-based runtimes, where 
the hardware takes advantage of informed software just 
as much as the software benefits of informed hardware. 
We believe that such a design would be able to provide the 
perfect balance and interplay between typically disparate 
or opposed aspects of a runtime system: compilation and 
execution, performance and overhead, and software and 
hardware.
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Performance portability has always been an important aspect in the field of high-performance computing (HPC). Today, due 
to the rapid evolution of computation architectures, maintaining good performance on different target systems has become 
essential. The use of data-centric representations has shown the potential for improving performance while maintaining 
the portability of an application. In this paper, we present DCTuner, an auto-tuning method for optimizing HPC applications 
using a data-centric representation composed of our pruning and exploration algorithm. Our experimental results show that 
DCTuner improves the performance of real-world HPC applications compared to the state of the art by up to 14.67%, while 
maintaining a high degree of portability.
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1 Introduction

The pursuit of better performance often results in less 
portability [1, 2]. Rapid changes in architectures and 
computing systems are forcing users to modify the code 
in order to take advantage of new architectural features 
[3–5]. Such changes often specialize the code for a specific 
architecture and corrupt the application code, making it 
harder for developers to maintain it. Thus, performance 
portability , the ability of an application to deliver good 
performance on various architectures without any 
code modification, is becoming increasingly important 
in the high-performance computing field, as it could 
provide benefits to both application's maintainability and 
performance, while reducing development costs.

Two main components are generally required to realize a 
performance portable framework: an abstract representation 
of the application that captures all the relevant information 
— e.g., data movement, data dependencies — and a method 
to optimize such a representation given a target architecture.

Recent performance portable approaches, given the 
significant impact that data movements have on energy 
and performance in modern systems [6], adopt code 
representations that explicitly describe the data movement 
of an application. These data-centric representations 
can facilitate analysis and optimization of applications: 
leveraging the dataflow model, in which dependencies 
among operations are represented explicitly, parallelism 
opportunities emerge naturally, giving additional freedom 
to optimization tools. Some of these approaches evolved in 
the context of Machine Learning (ML) frameworks, such as 
TensorFlow [7], MetaFlow [8], TVM [9], TASO [10], while 
others were designed for the purpose of optimizing HPC 
applications [2, 11–13].

The optimization of a performance portable application for 
a set of target architectures can be performed manually 
or automatically. Manual optimization has the potential 
to achieve the best possible performance across various 
architectures; however, it requires expert knowledge of the 
platform and is time consuming.

Among the automatic optimization strategies auto-tuning 
has been shown to be a viable option to automatically 
tailor an application to a target architecture [14]. 
There are various types of auto-tuning methodologies. 
In the simplest methodologies, a user provides a set of 
parameters and a range of values for each parameter, the 
auto-tuner then explores the parameter space looking for 

the near-optimal combination of parameters [14]. Some 

optimization frameworks like DaCe allow an external tool 

to perform auto-tuning on a set of code transformations. 

The realization of an auto-tuning method that explores a 

space of code transformations needs to overcome two main 

challenges: the exploration of an implicitly defined solution 

space, and the detection and avoidance of equivalent 

sequences of transformations. Due to possible dependencies 

among transformations, the solution space to be explored 

by the auto-tuner might not be completely determined 

statically, because some transformations might be enabled 

after the application of an enabler transformation. Different 

sequences of transformations might generate equivalent 

implementations — redundant sequence of transformations. 

Or worse, a sequence of transformations might be cyclical 

— meaning that, starting from the implementation 

i 1 of an application, after applying a sequence of 

transformations t 1, ..., tn, we obtain an implementation in 
equivalent to i1, on which we could re-apply indefinitely 

the transformations t1, ..., tn.

To achieve better performance and maintain portability, 

in this work we present DCTuner, a method to auto-tune 

HPC applications integrated with the DaCe framework 

[2]. Our method is able to explore an implicitly defined 

transformation space performing deep optimization: 

progressively applying transformations to the initial 

implementation of an application, and recomputing 

after each transformation the new set of available 

transformations. Deep optimization allows DCTuner to 

explore a wider space of transformations compared to 

traditional methods that define statically the set of available 

transformations [8, 10], achieving a performance gain of 

up to 86%, when compared with using DaCe's automatic 

transformations. Moreover, to address the problem of 

redundancy and cyclic transformations, we propose a 

pruning strategy which reduces the set of transformations 

evaluated by removing redundant transformations and 

allows deep optimization to be used in practice.

In summary, the main contributions of this work are 

the following:

•	 An auto-tuning method (Chapter 3), able to evaluate 

combinations of iterative transformations — deep 

optimization, based on our greedy search algorithm 

(Section 3.1).

•	 A pruning strategy that effectively reduces the search 

space and guarantees the convergence of our approach 

(Section 3.2).
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•	 Extensive validation of DCTuner performed through three 
experiments: (1) comparison of our heuristic algorithm 
against extensive and random exploration of the 
transformation space (Section 4.2); (2) demonstration 
of performance portability using two different target 
architectures (Section 4.3); (3) improvement of DCTuner 
over the DaCe baseline on a real-world HPC kernel 
(Section 4.4).

2 Deep Optimization and Its 
Challenges

We refer to the example in Figure 1 to describe the 
problem we address using deep optimization. Figure 1a 
shows the original implementation of the covariance 
kernel from PolyBench [15]. After analyzing the original 
code looking for patterns that can be optimized — e.g., 
using the DaCe Framework —  we select, among other 
possible candidates, two transformations that we take as 
example: transformation 1, applying tiling on the loop nest 
at line 1 , and transformation 2, applying tiling to the 
loop nest at line 6. If we apply transformation 2 to the 
original code, the resulting implementation will suffer a 
50% slowdown compared with the original code. Instead, 
if we apply transformation 1, we obtain the code shown 
in Figure 1b. We can then perform a new analysis on the 
code in Figure 1b and the result would show that a new 
set of transformations was enabled after the application 
of transformation 1. One of these new transformations, 
introducing a tile-sized transient for the mean array, shown 
in Figure 1c, once applied, leads to a 130% improvement 
over the original implementation.

Deep Optimization is a methodology to explore the 
transformation space in which the set of possible 
transformations is re-computed after each transformation 
is applied. Using this methodology, the sequence of 

1 for (j = 0; j < M; j++) { 

2   for (i = 0; i < N; i++) 

3     mean[j] += data[i][j]; 

4   mean[j] /= float_n; 

5 } 

6 for (i = 0; i < N; i++) 

7   for (j = 0; j < M; j++) 

8     data[i][j] -= mean[j]; 

(1) Fragment of covariance in C++

(2) 

1 for (j_tile = 0; j_tile < ceil(M/128); j_tile++) { 

2  for (j = (128 * j_tile); j < min(M,(128 * j_tile)); j++) { 

3   for (i = 0; i < N; i++) 

4   mean[j] += data[i][j]; 

5    mean[j] /= float_n; 

6  } 

7 } 

8 for (i = 0; i < N; i++) 

9   for (j = 0; j < M; j++) 

10     data[i][j] -= mean[j]; 

(3) Tile for-loop (line 1) with 128 

1 for (j_tile = 0; j_tile < ceil(M/128); j_tile++) { 

2  double transient_mean = new int[128] 

3  for (j = (128 * j_tile); j < min(M,(128 * j_tile)); j++) { 

4   for (i = 0; i < N; i++) 

5   transient_mean[j] += data[i][j]; 

6    transient_mean[j] /= float_n; 

7  } 

8  memcpy(mean[128 * j_tile], transient_mean, 128 * sizeof(int)); 

9 } 

10 for (i = 0; i < N; i++) 

11   for (j = 0; j < M; j++) 

12     data[i][j] -= mean[j]; 

(4) Introduce a transient for array mean
(a) Initial source (b) Tile the for-loop with 128

Figure 1 The covariance kernel from PolyBench [15], and the results of applying a sequence of two transformations

(c) Further introduce a transient for the array mean

transformations shown in Figure 1 can be discovered. 
Related auto-tuning tools, without using deep optimization, 
would only explore the set of transformations directly 
applicable to the original implementation in Figure 
1a, and would not be able to find the combination of 

transformations leading to the implementation in Figure 1c.

2.1 Challenges 

The example in Figure 1, discussed in Chapter 2, showed 
that it is not possible to generate the deep transformation 
space — the space composed by the iterative combination 
of multiple transformations — by analyzing only the 
initial kernel implementation. This happens because 
a transformation might require a previous enabler 
transformation to be applicable. It is, therefore, required 
to analyze the transformed code and generate a new set 
of enabled transformations after each transformation is 
applied to explore the deep transformation space, making 
this an implicitly  defined solution space [16].

There are two main challenges that need to be 
addressed in order to efficiently explore the deep 
transformation space. The first challenge comes from the 
fact that the exploration of an implicit transformation 
space requires analysis steps to be performed, from every 
point of this space, to generate the next set of possible 
transformations. The increased amount of computation 
required, combined with the increased size of the explored 
space makes the exploration of the deep transformation 
space expensive. To address this problem, we propose a 
greedy algorithm (Section 3.1) that focuses the exploration 
of the transformation space by analyzing only the paths 
that are more likely to lead to the best solution. The second 
challenge arises from the possible existence of cycles in the 
transformation space that might cause an exploration strategy 
to loop endlessly when applying inverting transformations. 
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An example of a pair of cyclic transformations is shown in 
Figure 2, MapExpansion — a transformation that converts 
an N-dimensional map into N unidimensional maps, and its 
inverse, the MapCollapse — a transformation that converts 
multiple unidimensional maps into a single multi-dimensional 
map [17]. We address this challenge, proposing a pruning 
strategy (Section 3.2) that allows us to avoid the application 
of cyclic transformations.

(1) (2)

MapExpansion

MapCollapse

Figure 3 DCTuner method

Figure 2 Example of cyclic transformations: MapExpansion and MapCollapse

phase (1): using a transformation log — a list of already 

applied transformations (initially empty) — and, according 

to our strategy, some of the transformations matched 

by DaCe are discarded. The remaining transformations 

are then sent to the evaluation phase (2), executed on 

the target architecture, and the performance metrics of 

these candidate transformations are collected. Finally, in 

the selection phase (3) the best SDFG implementation is 

selected, it is then sent to the DaCe framework to start 

a new iteration, and the last applied transformation is 

added to the transformation log. The above steps are repeated 

until either no suitable transformation is found or the number 

of iterations reaches a set threshold. DCTuner outputs the global 

best SDFG found.

The remaining part of this section describes in detail the 

search algorithm (Section 3.1) and the pruning strategy 

(Section 3.2).

3.1 The Search Algorithm

As discussed in Section 2.1, the exploration of the implicit 

transformation space of an application is computationally 

expensive. For this reason, DCTuner uses a greedy search 

algorithm to perform its exploration, selecting and applying 

only the candidate transformation that is likely to generate 

the best result at each iteration.

Algorithm 1 shows the pseudo-code of our greedy search 

algorithm. The variable sg' represents the SDFG to be 

transformed at each iteration —  the first iteration sg' 
is initialized with the original implementation, bestsg 
and bestgraph are the global and current best SDFG, and 

their performance is best_sgperf and bestperf , respectively. 

The variable apptf  records the history of the applied 

transformations, and threshold is set by the user to control 

the maximum number of iterations to be performed. 

The function Generate_TF generates all transformations 

matched by DaCe on the current SDFG (sg') and outputs 

Matched 
Transf.

Current 
SDFG

Original 
SDFG

DCTuner
Optimized 

SDFG2. Evaluation1. Pruning 3. Selection

DaCe

3 DCTuner

DCTuner is an auto-tuning method, built around the DaCe 

framework [2], that explores in a greedy fashion the 

deep transformation space, leveraging a greedy search 

algorithm and a pruning strategy. Figure 3 shows the main 

components of the iterative method — (1) pruning, (2) 

evaluation, and (3) selection — as well as the connection 

points between DCTuner and the DaCe framework.

We start from a dataflow implementation of the original 

application expressed as a Stateful DataFlow Multi-Graph 

(SDFG) [2]. We input the Original SDFG in the DaCe 

framework to obtain a list of suitable transformations. 

Table 1 lists the DaCe's transformations used by DCTuner, 

the set of applicable transformations is generated by DaCe 

based on the characteristics of the input application, so it 

is input dependent. DCTuner then performs the pruning 

(a) (b)
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them into a list containing the candidate transformations 
called candidates . The function Prune takes apptf and 
candidates and removes the redundant solutions according 

to our pruning strategy described in Section 3.2.

The function Apply applies the candidate transformations 
from the list candidates to sg' . The implementations resulting 
after the application of each candidate transformation 
are stored in the list sglist. The function Eva takes as 
input list sglist, outputs the current best implementation 
(bestgraph), its performance (bestperf), and deletes other 
implementations to reduce algorithmic space cost. After 
evaluation, to prevent our search from getting stuck 
in local minima, even if bestgraph is worse than the current 
implementation (sg'), DCTuner updates sg' with bestgraph 
and continues its exploration. This allows DCTuner to 
explore more, possibly better, solutions. The last applied 
transformation is recorded into apptf, and bestsg is updated if 
bestperf is better than best_sgperf.

The above steps are repeated until candidates is empty or 
the number of iterations is equal to threshold. Finally, the 
function Generate_Implement outputs the global best 
SDFG found (bestsg).

Table 1 DaCe Transformations used by DCTuner (More information can be found in the DaCe documentation [17].)

Transformation Explanation Parameter

InLocalStorage adds a transient data node between two scope entry nodes. None

OutLocalStorage adds a transient data node between two scope exit nodes. None

MapCollapse
takes two nested maps with M and N dimensions respectively, and collapses them 
to a single M+N-dimensional map.

None

MapExpansion takes an N-dimensional map and expands it to N unidimensional maps. None

MapFission replicates the map into maps in all of its internal components. None

MapFusion
fuses the patterns MapExit -> AccessNode -> MapEntry and removes the transient 
in between.

None

MapInterchange takes two nested maps and interchanges their position. None

MergeArrays merges duplicate arrays connected to the same scope entry. None

RedundantArray removes the redundant array. None

StripMining takes as input a map dimension and splits it into two dimensions. tile size = 64

MapTiling tiles in every dimension of the matched Map. tile size = 128

InlineSDFG inlines a single-state nested SDFG into a top-level SDFG. None

StateFusion
takes two states that are connected through a single edge, and fuses them into 
one state.

None

TransientReuse
finds all possible reuses of arrays, decides for a valid combination and changes 
SDFG accordingly.

None

We further analyze the time complexity. Given an initial 

SDFG, assuming that the threshold is set to n iterations 

and each iteration has m candidates at most. Our search 

algorithm selects the current best implementation at 

each iteration and explores its matched transformations 

during the successive iteration, thus having O(n ∗ m) 

time complexity.

The exhaustive search has a time complexity of O(mn) 

as it is required to visit all candidate transformations. The 

complexity of a backtracking based algorithm is instead 

between O(n ∗ m) and O(nm).

In summary, our search algorithm employs a greedy search 

algorithm to achieve two key advantages:

•	 It can automatically perform a search in the implicit 

transformation space, addressing the challenges 

mentioned in Section 2.1 with a greedy search method 

and a pruning strategy.

•	 Compared to the exhaustive search or the backtracking 

algorithm, our search method enjoys lower algorithmic 

complexity.
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Table 2 Example of pruning rules

Transformation History Candidate to Be Pruned

Exchange Loop A and B Exchange Loop B and A

Expand Loop A to A1, A2 Collapse Loop A1 and A2

Collapse Loop A, B to AB Expand Loop AB

Fission Loop A to A1, A2 Fusion Loop A1 and A2

Fusion Loop A and B to C Fission Loop C

Tile Loop A to A and A1 Tile Loop A or A1

Strip Loop A to A and Sub-
Loops

Strip Loop A or Sub-Loops

Algorithm 1 DCTuner's search algorithm

Require: initial SDFG: sg
Ensure: optimized implementation

1: sg', bestsg, apptf , threshold, it, best_sgperf = Init(sg)
2: while it ≤ threshold do
3:	 candidates = Generate_TF(sg')
4:	 candidates = Prune(candidates, apptf , threshold)
5:	 if candidates ≠ ∅ then
6:	 //Evaluate performance
7:	 sglist = Apply(candidates, sg')
8:	 bestgraph, bestperf = Eva(sglist)
9:	 //Update current SDFG and global best SDFG

10:	 sg', apptf = Update(bestgraph)
11:	 if bestperf ≥ best_sgperf then
12:	 bestsg ← bestgraph

13:	 end if
14:	 it ← it + 1
15:	 else
16:	 break while
17:	 end if
18:	 return Generate_Implement(bestsg)
 19: end while

there is the first part of the rule to be matched in the 

transformation log. The Candidate to Be Pruned column 

contains the second part of the rule. Intuitively, if any 
of the pair of transformations in Table 2 is applied in 
sequence, the second transformation will invert the effect 
of the first transformation. For example, if we take the 
first rule, applying the transformation Exchange Loop 
B and A would invert the effect of the already applied 
transformation Exchange Loop A and B. 

The last two rules in Table 2, relative to the tiling and strip 
transformations are different from the others. The aim of 
these rules is not to avoid cyclic transformation but to limit 
the application of the tiling and strip transformations which 
could otherwise be indefinitely applied to the same loop 
nest. We found these rules to be beneficial in enhancing 
the search speed in most of the cases at the cost of a small 
performance degradation for a small set of kernels (e.g., 
Matrix Multiplication).

Figure 4 illustrates how our pruning strategy integrates 
with our search algorithm. The example contains the 
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Figure 4 Application of the pruning rules

3.2 The Pruning Strategy

A crucial part of the DCTuner method is the pruning 

strategy. This strategy is used to remove some of the 

candidate transformat ions matched by the DaCe 

framework, allowing the search algorithm to avoid cyclic 
transformations (see Section 2.1) and the re-evaluation of 

equivalent SDFGs. The core idea behind the pruning strategy 

is to remove candidate transformations, which would invert 

the effect of a previously applied transformation. To do this 

we use a transformation log, containing the history of all 

the transformations already explored, and we use a set of 

pruning rules.

Each pruning rule is composed by two parts. The first part 

matches transformations already applied to the current 

SDFG which are recorded in the transformation log —
referred to as apptf in Algorithm 1. The second part of the 

rule matches instead the transformations to be applied 

to the current SDFG, which is proposed by DaCe (these 

are represented in Figure 3 by the arrow labeled Matched 
Transf. ). If both parts of a rule are matched, in the 

transformation log and in the transformation list proposed 

by DaCe, respectively, the pruning rule is triggered and the 

transformation that triggered the rule is discarded.

Table 2 contains some of the pruning rules used by our 

pruning strategy. In the Transformation History column 
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first three iterations of an auto-tuning process where the 
circles represent different SDFG implementations and the 
highlighted circles represent the best candidates found 
in each iteration. In iteration 1, the transformation log 
— containing the previously applied transformation — is 
empty, hence no candidates are pruned. The evaluation 
phase determines that the best transformation to apply in 
iteration 1 is Expand Loop A; so Expand Loop A is applied 
and recorded in the transformation log. The SDFG obtained 
after the application of the transformation is analyzed using 
DaCe, which provides a new set of transformations that 
could be applied in iteration 2.

The pruning phase of iteration 2, after the analysis of 
the transformation log and the current transformation 
candidates, triggers the second rule in Table 2 and 
therefore removes the Collapse Loop A1 and A2 from 
the list of transformations to be evaluated. Finally, in 
the pruning phase of iteration 3, two of the candidate 
transformations trigger the first and second pruning rule 
and are then discarded.

4 Experimental Evaluations

In this section, we present three experiments to evaluate the 
benefits of DCTuner. Section 4.1 describes the experimental 
environment used to carry out the three experiments.

The first experiment, discussed in Section 4.2, aims to 
evaluate the greedy exploration algorithm used by DCTuner. 
To assess the benefit of our greedy method we compare the 
performance and optimization times of DCTuner against 
an exhaustive exploration algorithm using 10 kernels 
from PolyBench; our experiments show that DCTuner 
greedy algorithm has on average only a 2% performance 
decrement compared to the exhaustive search while taking 
a fraction of the time to perform the auto-tuning.

In Section 4.3, we test the level of portability of a 
real-world HPC application — the Weather Research and 
Forecasting (WRF) 3.4.1 [18] — optimized using DCTuner. 
The experiment targets two different architectures (Intel 
and ARM) and compares the performance before and after 
DCTuner's auto-tuning. Finally, in Section 4.4, we further 
demonstrate the use of DCTuner on another real-world 
HPC application, the Community Earth System Model 
(CESM) 2.1.1 [19], and we compare the performance 
against the original version, the version optimized by 
DaCe and the version optimized with DCTuner.

4.1 Experimental Setup

Table 3 shows the details of the architectures used in 
our experiments. The experiments in Section 4.2 and Section 
4.4 use a Kunpeng 920 node (ARM). The experiment in 
Section 4.3 compares the performance of both target 
platforms, ARM and Intel.

Table 3 Target platforms

Platform Hardware Software

aarch64

998.4 GFLOPS (10.39 GFLOPS/
core)
NUMA nodes: 4
Memory: 512 GB
L1: 128 KB, L2: 512 KB, L3: 
49152 KB

CentOS 7.6
HCC Compiler 
OpenMPI 4.0.3
CMake 3.15.0
Python 3.7.4

x86_64

768 GFLOPS (32 GFLOPS/core)
NUMA nodes: 2
Memory: 384 GB
L1: 64 KB, L2: 1024 KB, L3: 
36608 KB

CentOS 7.6
GCC 9.3.0
OpenMPI 4.0.3
CMake 3.15.0
Python 3.7.4

As target applications, we used the PolyBench benchmark 
and two real-world HPC applications: WRF and CESM. 
We first ran a profiling step using Perf to determine the 
hot-spots and focus on the optimization of the hot-spots. 
Because the original implementations of the WRF and CESM 
are in FORTRAN, to be able to use our method, we had to 
transform the implementation of the identified hot-spots 
in SDFG. In the future, we plan to automate the extraction 
of the SDFG from FORTRAN and C applications. The 
PolyBench kernels were instead entirely translated to SDFGs. 
For all of the experiments shown, we used the highest 
optimization level (i.e. O3), the tile-sizes used in MapTiling 
and StripMining are respectively 128 and 64 as per DaCe 
default parameters (see Table 1).

4.2 Evaluation of DCTuner Search 
Algorithm

To evaluate the goodness of DCTuner search algorithm we 
compare the performance gain obtained by DCTuner against 
the optimal combination of transformations obtained by 
performing an exhaustive search in the transformation 
space. To complete this experiment in a feasible amount of 
time, we first perform the auto-tuning procedure using 
the DCTuner auto-tuning algorithm, we record how 
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many iterations were needed to find the global best 
implementation, then we perform an exhaustive search 
in the transformation space for the same number 
of iterations to compare the optimization effects (a 
search up to N  iterations in this context refers to the 
evaluation of N transformations applied sequentially to 
the original implementation).

We ran the experiment on 10 PolyBench kernels. We 
selected these kernels among all PolyBench kernels as 
these were the only ones able to successfully conclude 
the exhaustive search; for the remaining kernels the 
transformation space was too large — containing 100,000 
to 400,000 candidate transformations — to evaluate in 
the budgeted time. The results shown in Figure 5a, show 
that the execution time of the kernel optimized using 
DCTuner is comparable to that of the kernels optimized 
using exhaustive search, with an average performance 
degradation of only 2.16% compared to the optimal 
solution found using the exhaustive search. The ADI 
kernel had the biggest performance gap between greedy 
and exhaustive search, where the implementation 
obtained using the greedy search was 6.96% slower than 
the optimal solution. Figure 5b shows the execution time 
of performing T  iterations of the exhaustive search, in 
which T is the number of iterations where the optimal 
solution appears.

Even with this comparison, the time overhead of exhaustive 
search is still impractical, taking on average 30x more 
time compared to our search algorithm. In the worst-case 
scenario (FDTD-2D), the exhaustive search took 79x more 
time. The Deriche kernel was the only kernel for which the 
exhaustive search took less time than DCTuner's; this was 
caused by the fact that the optimal solution appears in 
the first iteration, i.e., this is just the time to perform one 
iteration of the exhaustive search.

Additionally, we compared the performance obtained 
using DaCe without our auto-tuning optimization 
(Figure 5a). The results show that DCTuner is able 
to improve the performance of every kernel, with an 
average increase in performance of 37.67% over DaCe. 
The implementation generated by DCTuner of the BICG 
kernel was the one that showed the biggest performance 
gap compared to the version generated by DaCe, with 
an improvement of 86.54%.

In summary, this experiment showed that the greedy 
search strategy used by DCTuner was able to find 
solutions close to optimal — with an average performance 
degradation of 2.16% — in a fraction of the time required 
by an exhaustive search — 30x less auto-tuning time on 
average, and that our solutions were consistently better 
than the solutions proposed by DaCe without auto-tuning 
— 37.67% better on average.

4.3 Evaluation of DCTuner Portability 
on WRF

To assess the performance portability of applications 
auto- tuned using DCTuner we measured the performance of 
WRF on the ARM architecture and on the Intel architecture 
(Table 3), with and without the DCTuner auto-tuning step. 
The results are shown in Figure 6. In both plots, the y-axis 
shows the execution time on the two architectures, while 
the x-axis shows the "Simulation Time", a parameter of WRF 
that specifies the length of the simulation expressed in hours. 
Figure 6a shows the results obtained on the ARM architecture; 
we observe that DCTuner improves the performance of the 
original application by 13.98% on average, and up to 15.01%. 
Moreover, the performance obtained by DaCe is almost 
equivalent to that of the original implementation, and we 
obtain a similar performance improvement over DaCe of 
13.76% on average, and up to 14.67%.
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Figure 5 Comparison between DCTuner search algorithm and Exhaustive search and DaCe

(a) Execution time (lower is better, time shown in log-scale) (b) Optimization time (lower is better, time shown in log-scale)
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The experiment on the Intel architecture shows us different 
results, as shown in Figure 6b. In this case, our auto- tuning 
method was still able to improve the performance of the 
original implementation by 3.42% on average, but has a 
negligible improvement over DaCe — 0.14% on average.

From this experiment, we conclude that DCTuner is 
able to improve the performance of WRF on the ARM 
architecture, and produces similar results on the Intel 
architecture if compared to DaCe. We are still investigating the 
data of this experiment; however, we believe that these results 
might be explained by an affinity of DaCe to Intel architectures 
and that DCTuner — through the auto-tuning process — is able 

to bridge the performance gap on ARM architectures.

4.4 Evaluation of DCTuner on CESM

In this experiment, we wish to show that DCTuner can 
fruitfully be used to optimize another real-world HPC 
application: CESM. We measured the performance 
on the ARM architecture (Table 3) and compared the 
implementation optimized using DCTuner against the 
original implementation and against DaCe without our 
auto-tuning method.

Figure 6 Evaluation of performance portability, Intel vs ARM

Figure 7 CESM execution time on the ARM architecture (lower is better)

(a) Execution time on ARM (lower is better) (b) Execution time on Intel (lower is better)
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times were measured on the ARM architecture. The results 
show an average performance improvement obtained 
using DCTuner over the original implementation of 6.15% 
and minor performance improvement compared to DaCe 
without auto-tuning of 1.01% on average.

In summary, these results show that our method can be 
applied to real-world HPC applications. We observed 
that the optimization performed by DaCe without our auto-
tuning step generates high-quality solutions, however, 
in all cases, DCTuner was able to provide an additional 
performance gain.

5 Related Work

A data-centric representation describes the semantics 
of an application using a graph which is interpreted 
according to the dataflow model. The edges of these graphs 
explicitly represent data movements and the use of 
this information facilitates the analysis of applications 
and provides more opportunities for optimization. Many 
optimization approaches using data-centric representation 
have been proposed in the machine learning field. 
TensorFlow [7] and PyTorch [20] directly apply all matched 
transformations to the original graph. TVM [9] has two 
optimization levels: using the graph-level it performs graph 
transformations, using the operator-level it auto-tunes the 
program parameters. MetaFlow [8] and TASO [10] deeply 
explore possible transformations to find an optimized graph 
implementation. However, these works are only suitable 
for computations and data layouts used in deep learning. 
Some studies use data-centric representation to describe 
HPC applications. Kodukla et al. use such a representation 
to improve the data locality [21]. Bamboo [11] introduces 
a programming language and a compiler that uses three 
transformations to optimize applications for many-core 
implementations. MODESTO [12] performs exhaustive 
exploration of the transformation space, but it only targets 

Figure 7 shows the results we obtained on the CESM 
application using DCTuner and DaCe without auto-tuning 
compared to the original implementation. The execution 
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stencil kernels and it does not perform deep optimization. Our 
work integrates and extends DaCe [2] adding auto-tuning 
capabilities and addressing the challenges described in 
Chapter 2. DaCe is a framework that expresses applications 
as an SDFG using a domain-specific language. DaCe can 
automatically apply a set of transformations (called strict 
transformations), however, it also provides a manual process 
for users to perform deep optimization. Recently, DaCe was 
applied to an extreme-scale quantum transport simulation 
application in [4] and obtained excellent results.

5.1 Program Auto-tuning

The idea behind program auto-tuning is to explore a 
parameter space and to find a (close-to) optimal 
parameter combination. Normally, the parameter space 
is explicitly defined by the user (for example compilation 
options, tile size, vector length, and their ranges) [14, 
22–25]. Many general-purpose methodologies have been 
studied, for instance, OpenTuner [14]: a mature auto-
tuning architecture that employs many algorithms to 
search for the best solution in parallel. There are several 
core differences between our method and OpenTuner. 
Our method performs (fully) automatically program 
transformations. The way we achieve this is by leveraging a 
data-centric code representation and the DaCe framework 
to find areas of the application that can be optimized 
automatically. In OpenTuner, a user needs to instrument 
the application to expose optimization knobs and the user 
also needs to determine (statically) the set of parameters 
to be explored. This means that the space explored by 
OpenTuner is determined statically by the user. On the 
other hand, the space explored by DCTuner is determined 
automatically from the characteristic of the applications, 
and dynamically, as after each transformation we analyze 
the obtained implementation to find a new set of applicable 
transformations. These generic technologies are not 
restricted to specified applications or architectures, and 
effectively save laborious manual effort. Domain-specific 
and architecture-specific auto-tuners are also gaining 
traction. There are, for example, several works focusing on 
the optimization of stencil computation [24, 26, 27]. Other 
works focus on the auto-tuning of linear algebra programs 
[28, 29]. There are auto-tuners specific for the Fast Fourier 
Transformation [30, 31]. Finally, some auto-tuners specialize 
in tensor computation [32, 33]. Some methodologies use 
architecture features to auto-tune applications, and these 
have been applied on GPUs [34–36], FPGAs [36, 37], and 
NUMA architectures [38, 39].

To our best knowledge, the existing program auto-tuning 
methods do not perform deep optimization on data-centric 
representations. Performing deep optimization on data-centric 
representation is challenging (see Chapter 2). The 
auto-tuner needs to explore an implicit transformation 
space — which is computationally expensive, and avoid the 
application of inverting transformations.

6 Conclusion and Future Work

This work focuses on performance and portability improvement 
of high-performance computing applications using the auto-
tuning methodology. We presented DCTuner, an auto-tuning 
method that integrates with the DaCe framework and 
enables deep optimization of data-centric applications. To 
this end, we introduced a greedy exploration algorithm that 
we use to explore the space of application transformations 
— each element of such a space represents the iterative 
application of multiple transformations to the original 
application — and a pruning strategy that avoids the 
evaluation of equivalent sequences of transformations.

We performed three experiments to evaluate our method. 
In the first experiment, we demonstrated the goodness of 
our greedy search strategy by using 10 kernels selected 
from PolyBench. We showed that the best solution found 
by DCTuner performs on average 2% worse than the 
optimal combination of transformations — determined 
through exhaustive search of the solution space, while 
being up to 30 times faster than the exhaustive search. 
We also showed that auto-tuning kernels with DCTuner 
were able to achieve up to 37% additional performance 
improvement over kernels optimized using DaCe. In a 
second experiment, we used a real-world HPC application 
(WRF) to evaluate the performance portabil ity of 
applications auto-tuned with DCTuner. We compared the 
performance benefit on two target architectures, ARM and 
Intel. The experimental data shows that by using our auto-
tuning method, we were able to bridge a performance gap 
between Intel and ARM, obtaining over 13% performance 
improvement on ARM architecture. Finally, in our last 
experiment, we tested our method using another real-
world HPC application (CESM). Our results showed that 
using DaCe to optimize the applications provides the 
main performance improvement — above 5%. However, 
using our auto-tuning method we were able to gain an 
additional improvement of 1%.

In the near future, we plan to evaluate various performance 
metrics to replace or complement our evaluation phase, 
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aiming to increase the overall auto-tuning speed of 
DCTuner. Additionally, we wish to automate the extraction 
of an SDFG representation from an application, that is 
currently extracted manually, in order to obtain a fully 
automated procedure.
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The concept of a humble programmer, coined by Dijkstra in the 1970s, fully acknowledges the complexity of programming, 
deeming it unsuitable for the human mind. This concept leads to the design of humble programming frameworks that not 
only simplify the implementation of algorithms, but also automate the optimization and scalability of algorithms across 
compute units. Such humble frameworks typically favor productivity over performance.

By contrast, hero programmers are experts with in-depth knowledge of parallel algorithms, applicable lower bounds, 
coding, and hardware, typically seeking to achieve the highest possible efficiency on any given system. Given that hardware 
complexity and diversity are set to increase in the years to come, humble programmers will not be able to drive increasingly 
more complex and larger-scale systems using contemporary software technologies. This, combined with the scarcity of hero 
programmers at the present time and in the foreseeable future, highlights the need for humble programming models that 
can achieve good performance.

This paper starts by outlining the successful humble MapReduce and Pregel vertex-centric frameworks and identifies the 
common design factors that they share with the novel Algebraic Programming (ALP) paradigm. Satisfying the need for 
supporting multiple humble programming models while reducing demands on hero programmers, this paper proposes 
a vertex-centric programming model on top of ALP, demonstrating that multiple humble programming models can be 
supported by a single software stack. Thus, fewer heroes may support a greater number of humble programmers.

Experiments demonstrate that the resulting ALP/Pregel paradigm scales well on a shared-memory parallel system, achieving 
speedups of up to 17.8x on common graph workloads. Even though vertex-centric algorithms that solve a given problem 
commonly differ from their canonical solutions, this paper compares such an algorithm (used for ranking web pages) with a 
highly optimized canonical solution for completing the same task. The result shows that in sequential execution ALP/Pregel 
achieves up to a 8.99x speedup, outperforming the canonical solution in 12 out of 13 datasets tested. In shared-memory 
parallel execution, ALP/Pregel achieves a 0.276–5.76 times speedup over a highly optimized implementation of the canonical 
PageRank algorithm. The slowdowns, which are down to 0.276x, are mostly due to the workspace not fitting in L3 cache for 
the vertex-centric algorithm. For the smallest and largest datasets where such cache effects are less apparent, ALP/Pregel 
is faster in 3 out of 6 instances with speedups of up to 5.73x. This indicates that humble algorithms may still achieve hero 
performance, contributing a solution to the looming crisis in software productivity.

Abstract 

A. N. Yzelman

Humble Heroes
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1 Introduction

The perhaps esoteric title of "Humble Heroes" relates to 
one of the major challenges in computing: programming 
potentially highly parallel and highly heterogeneous 
resources, without complicating the task to the point where 
only a small percentage of highly skilled programmers can 
write efficient programs.

Writing software grows more and more difficult due to 
the increasing complexity of computer architectures, 
coupled with a diverse and growing range of architectures 
that programs should cope with. The recent hardware 
trends show increase both in the number of non-uniform 
memory access (NUMA) designs and the degree of non-
uniformity  — there are already four to eight NUMA domains 
on a modern CPU — while both the per-core memory 
capacity and bandwidth are decreasing. These factors will 
significantly increase pressure on future software design 
for any given architecture. Additionally, heterogeneity may 
appear on a wide spectrum from a single chip consisting 
of different types of processing units to large-scale data 
centers connecting a diverse range of architectures. Within 
and between these extremes, heterogeneity will realistically 
continue to appear.

With the diversification of architectures and the increase of 
their design complexity and heterogeneity, contemporary 
software technologies no longer scale. Maintaining standard 
libraries, for example, requires dedicated programmers 
with theoretical, algorithmic, domain, programming, 
and hardware expertise in order to achieve acceptable 
performance on a given architecture. The required breadth 
of expertise for maintaining standard libraries sets this class 
of programmers apart from the majority — colloquially, we 
call them hero programmers.

1.1 Humble Programming

1.2 The Software Bottleneck

1.3 Outline

In contrast to hero programmers, Dijkstra first coined 
the concept of a humble programmer . Paraphrasing his 
monologue [Dij72], this concept entails approaching 
programming while fully recognizing the incredible 
complexity of the task, by preferring modest and elegant 
programming languages that respect the limitations of the 
human mind . Perhaps implicit in humble programming, 
there is acceptance of a performance trade-off, favoring 
programming productivity over performance. This paper, 
however, provides evidence that performance and 

productivity need not be mutually exclusive.

Contemporary examples of humble programming models 
that scale across large-scale computational resources include 
MapReduce [DG08], Pregel [MAB+10], and Spark [ZCF+10], 
all of which make it possible to drive complex large-scale 
systems using simple, elegant, and easy-to-use abstractions 
that any programmer can understand. These programming 
models have been extremely successful in providing parallel 
compute power to humble programmers, allowing them to 
quickly deploy and scale up a variety of workloads.

Hero programmers, by contrast, strive to achieve peak 
performance — or as close to it as possible — for any given 
workload on any given architecture. They embrace the 
complexity that comes with the task, using low-level interfaces 
such as assembly language, intrinsics, threading interfaces, 
remote direct memory access, and message passing. The 
resulting code requires significant time and effort to build and 
is costly to maintain. Updating the code to novel versions of 
the architecture it was originally written for remains costly, 
while supporting completely novel architectures requires a 
ground-up duplication of all these efforts.

If the future is to be increasingly heterogeneous in nature, 
then the future software stack must not be dependent 
on hero programmers: there will never be enough expert 
programmers to support the many application domains 
that require mapping to different architectures. Instead, 
the future software stack must speak primarily to humble 
programmers, be deployable on different architectures, 
and achieve good performance — all while avoiding the 
software bottleneck.

Section 2 reviews the MapReduce and the vertex-centric 
Pregel [MAB+10] programming interfaces, providing a more 
in-depth characterization of the properties of successful 
humble programming models. Section 3 describes the 
novel Algebraic Programming (ALP) humble programming 
paradigm, and in particular ALP/GraphBLAS, which achieves 
hero-level performance on both shared- and distributed-
memory systems [YDNNS20].

Section 4 notes that, while ALP may be a significant leap 
forward for anyone comfortable with using algebraic 
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annotations to express algorithms, some humble programmers 
may prefer to use alternative paradigms. The section 
asserts that neither forcing a single paradigm on humble 
programmers nor support ing an unchecked set of 
potentially many humble paradigms solves the challenge of 
productively using future large-scale heterogeneous systems. 
Instead, it advocates the alternative approach this paper 
takes: automatic translation of one humble programming 
model into another.

Section 5 realizes this ideal for Pregel and ALP, by introducing 
a C++ API for translating vertex-centric programming into 
ALP at compile time, thus supporting multiple humble 
paradigms with a single software stack. Section 6 presents 
experimental results, showing that the cost of simulating a 
Pregel interface on top of ALP is negligible and that such 
an interface achieves comparable performance to direct 
programming in ALP/GraphBLAS — it even outperforms 
direct programming if some relaxations are permissible. 
Section 7 concludes this paper and presents a future outlook.

2 Influential Humble Programming 
Models

This section discusses two pivotal humble programming 
models that have made massively parallel computing 
accessible to the public rather than to a limited group of 
parallel programming experts: MapReduce and Pregel.

2.1 MapReduce

In MapReduce, data items are key-value pairs (k, v) from 
domains K and V, respectively, and programs are a sequence 
of two alternating phases: map and reduce.

Let D0 ⊂ K × V  be the set of initial data items. The i-th map 
phase takes each key-value pair dk from D2i, where the 

integer k is in the range of [0, |D2i|), and maps it to a 
possibly empty set of new pairs fi(dk). Then, one of the 
following may happen: the original pair dk is filtered out, 
one new pair is generated, or an arbitrary number of new 
pa i r s  i s  genera ted .  The  mapp ing  func t ion  fi :

K × V → P(K × V ) is user-defined and may be different for 
each round i. The original set of data D2i is discarded and 
replaced by the set of transformed entries D2i+1.

The i-th reduce phase operates on all keys in the current data 

set D2i+1, specifically, the set Ki = {k ∈ K s.t. ∃(k, v) ∈ D2i+1}. 

For a key k , assume there are r > 0 key-value pairs 

(k, v0), . . . , (k, vr−1), then the reduction operation computes 

v′ = �r−1
i=0 vi and produces an entry (k, v′) in D2(i+1). The 

entry replaces all key-value pairs with key k in D2i+1 — this 

repeats for each key in Ki . As with the user-defined 

mapping function, the reduction operator � is user-defined 

and may differ for each round.

While the mapping operations may be arbitrary, it is 
helpful if the reduction operators are associative, in which 
case the reduction can be automatically parallelized by 
systems like ALP; otherwise, the reduce phase can only be 
parallelized over each key k ∈ Ki , limiting the amount of 
parallelism exposed.

The round-based nature of a MapReduce communication, 
which consists of the map phase and the reduce phase, 
is closely related to the bulk synchronous parallel (BSP) 
paradigm of parallel computing [Val90]. The map phase 
induces no communication between parallel compute units 
whereas the reduce  phase does require communication. 
BSP models a parallel system as local compute units with 
local memory, interconnected by a full-duplex network. 
Each local compute unit executes a program in two rounds 
— like MapReduce does. Each round includes two phases: 
1) local computations using local memory elements, and 
2) arbitrary data movement patterns between memory 
elements. On any one compute unit, a next round may only 
proceed when all incoming and outgoing messages have 
been received and sent, respectively. This does not imply 
that a global synchronization barrier exists between rounds.

There are two differences between direct-mode BSP and 
MapReduce: 1) BSP operates at the coarse granularity of one 
task per process while MapReduce operates at the 

granularity of the dataset sizes |Di|; 2) BSP allows arbitrary 
communication patterns while MapReduce always sorts on 
keys. L. G. Valiant [Val90], however, proposed an automatic 
mode of BSP that allows the simulation of PRAM algorithms 
on a BSP architecture. The hashing mechanism employed in 
this mode is typically mirrored in MapReduce implementations 
such as Hadoop [SKRC10], in Pregel realizations such as 
Giraph [Ave11], and in the Spark framework [ZCF+10].

Such simulation techniques come at a cost and preclude the 
application of communication-optimal algorithms. Thus, 
orders of magnitude performance differences between 
humble programming frameworks and the direct-mode 
BSP are not uncommon. Suijlen and Yzelman made a 
performance comparison between ALP/GraphBLAS and 
Spark [SY19] (when both use ten nodes) and reported 



Communications of HUAWEI RESEARCH | 149

Collaborative Optimization

June 2024

2.2 Pregel

a two-orders of magnitude performance difference for 
the PageRank algorithm on a moderate data size (of 
approximately 298 million edges).

number of unique identifiers that remain, and the 
component to which each vertex belongs is indicated by its 
identifier.

This vertex-centric algorithm and its termination criterion 
are intuitive to understand and therefore fit the bill of a 
humble solution for solving the SCC problem. However, if 
the input to this algorithm is an undirected line graph, the 

number of rounds required will be |V |, which means that |V | 
vertex programs will be active per round, and that the work 

for this SCC algorithm amounts to Ω(|V |2). By contrast, the 
Awerbuch-Shiloach [SV80, AS87] algorithm for SCC can 

achieve O(|E| log |V |) work complexity. Algorithms with such 
improved bounds can be implemented on top of a vertex-
centric framework but will be far less humble in nature 
[SW14]. The same holds for ALP and GraphBLAS; consider, 
for example, the linear-algebraic variant of Awerbuch-
Shiloach by Zhang et al. [ZAB20]. 

Since adversarial graph structures such as line graphs do not 
naturally occur in the real world, the quadratic algorithm 
may be acceptable in practice — in which case the humble 
choice suffices. This paper, in line with its motivation, thus 
considers only easy-to-understand humble algorithms, 
leaving the important task of finding and realizing 
asymptotically optimal algorithms to the hero programmers.

2.3 Common Factors

The concepts shared by the successful MapReduce and 
Pregel programming models are as follows: First, they both 
operate on sets of data and express parallelism mainly 
by operating concurrently on data elements within those 
sets, which is known as a data-centric  approach. Second, 
both their ways of expressing parallelism are implicit. 
Programmers express operations by mutating one set of 
data into another without considering their parallelization. 
Third, operations proceed round-by-round, thus exposing 
a sequential view of the final programs. This is similar 
to the direct-mode of BSP and traditional imperative 
programming. Fourth, efficient implementations of these 
two models exploit the imposed program structure to 
enable both scalable execution and a high degree of 
overlap between executing rounds and phases — this is 
achieved by overlapping communication with computation 
and exploiting parallel slackness [Val90, MAB+10]. These 
four concepts are furthermore also shared with another 
successful humble programming model: Spark [ZCF+10].

Pregel is a programming model for graph computations 

[MAB+10]. Assume the data graph G = (V,E), then Pregel 
allows defining a round-based computation for each vertex 
v ∈ V  to execute. Each round consists of two steps: 1) 
execution of the user-defined program on each vertex; and 
2) exchange of messages via the edges E. Messages are 
broadcast from vertices v ∈ V , that is, a message m ∈ M  is 

sent to all neighbors N(v) = {w ∈ V | (v, w) ∈ E} of v.

Such vertex-centric  programming models have achieved 
great success and inspired a significant number of vertex- 
and edge-centric programming frameworks [MWM15]. The 
round-based nature of vertex-centric programming, like that 
of MapReduce, is also a variation of the BSP model — like 
MapReduce, vertex-centric programming applies parallelism 
in a fine-grained fashion by mapping the programs on the 
input data itself. Most variants of Pregel follow the principle 
that while the algorithm is strictly round-based, the 
execution of such a program need not be. As such, latency 
may be hidden by overlapping the message communication 
phase of one set of vertices with the computational phase 
of other sets of vertices. This resonates with Valiant's 
automatic-mode BSP, which performs similar latency hiding 
through overlapping communication and computation 
phases [Val90].

Consider, as an example of a vertex-centric program, the 
problem of determining the strongly connected components 

(SCCs) of an undirected graph G = (V,E), that is, identifying 
the minimum number of subsets Vk ∈ V  where (Vi, E), are 
strongly connected1. A simple vertex-centric program 
determines these subsets in two stages: 1) Each v ∈ V  is 
assigned a unique identifier; 2) During each round, each 
vertex sends its current identifier to its neighboring vertices, 
and overwrites the current identifier to the largest value 
contained in all incoming messages if that value is strictly 
larger than the current identifier. If the current identifier is 
not overwritten in the second stage, the vertex votes to halt 
the program. When all vertex programs vote to halt the 
program, the execution terminates. Once the execution 
terminates, the number of SCCs k corresponds to the   

1 A graph or subgraph is strongly connected only if there is a path 
between any two of its vertices.
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3.1 Algebraic Containers

3.2 Algebraic Structures and 
Algebraic Type Traits

The ALP paradigm provides a data-centric, sequential, and 
imperative programming approach based on algebraic 
concepts and annotations. Designed to be humble, this 
paradigm presents three algebraic concepts to programmers: 
containers, structures, and primitives. ALP/GraphBLAS, 
introduced by Yzelman et al. as a C++ realization of the 
GraphBLAS [YDNNS20, BMM+17, BBM+19], focuses on 
sparse linear algebra. In ALP/GraphBLAS, containers take 
the form of vectors and matrices; structures can be binary 
operators, monoids, or semirings; and operations can be 
element-level applications of a binary operator, a matrix–
matrix multiplication, and so on.

grb::Vector< double > x( n );

grb::Vector< bool > s( n, 1 );

grb::Matrix< void > A( m, n, parser.nz() );

Note that the element type of an ALP container appears as 
a template argument, as with the STL.

The extraction of data from ALP containers proceeds using 
iterators that can be retrieved through the begin, cbegin, 
end, and cend functions. These output iterators also 
conform to the STL, but support only the const−variants, 
that is, values in containers cannot be adapted through 
iterators. In addition to data ingestion through iterators, 
programmers may also set a vector to be a dense one with 
all its values set to a specific given value:

grb::set( x, 1.0 );

Likewise, one may set a single element of a container:

grb::setElement( s, true, n / 2 );

In the preceding examples, x corresponds to a dense vector 
(1, 1, ..., 1), while s corresponds to a sparse vector where 
only one nonzero exists at position n/2 with the value (true).

Containers in ALP, when declared, are initially empty  — 
meaning that they contain no values. By default, the 
minimum capacity of a container equals its maximum 
dimension. That is, a newly created vector of size n holds no 
values but has the capacity for n values. Similarly, a novel 

m× n matrix holds no values, and its default capacity is at 

least max{m,n}. Larger or smaller capacities may be set 
when new containers are created, while existing containers 
can be resized to hold more or fewer values through 
grb::resize . An ALP implementation may assign 
capacities that are larger than requested, but not smaller. If 
a requested minimum capacity cannot be guaranteed, an 
error will be returned.

Using standard template library (STL) compatible iterators to 
C++ STL containers, data can be ingested into ALP containers 
via the two primitives: grb::buildVectorUnique and 
grb::buildMatrixUnique. The 'Unique' suffix in these 
primitives indicates that a source container shall not contain 
duplicate entries, i.e., multiple values shall not map the 
same container coordinate. The current size of a vector is 
returned via grb::size, the row size and column size of 
a matrix are returned via grb::nrows and grb::ncols, 
respectively, and the current number of values in a container 
can be referenced via grb::nnz. All values can be erased 
via grb::clear.

The following three statements are examples of creating a 
vector with the default capacity, a vector with potentially 
smaller capacity, and a matrix with the exact initial capacity 
as returned by a matrix file parser, respectively:

An example of a binary operator is addition of double-
precision floating point numbers, which ALP exposes as a 
C++ class template:

grb::operators::add< double >

An operator � may have algebraic properties such as 

associat iv i t y  (a� (b� c) = (a� b)� c),  commutat iv i t y 
(a� b = b� a), and idempotency (a� a = a). ALP/GraphBLAS 
exposes such properties through algebraic type traits , for 
example,

•	 grb::is_associative< grb::operators::add< double > 
>::value, which reads true;

•	 grb::is_commutative< grb::operators::divide< float 
> >::value, which reads false; or

•	 grb::is_idempotent< grb:operators::min< unsigned int 
> >::value, which reads true.

Algebraic type traits can be inspected at compile-time, thus 
enabling semantic checks and compile-time optimizations 
guided by algebraic properties.

Richer algebraic structures include monoids and semirings, 
which may be composed of operators and identities. For 
example,

3 Algebraic Programming
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3.3 Algebraic Primitives

grb::Semiring<

    grb::operators::add< double >, 

    grb::operators::mul< double >

    grb::identities::zero, grb::identities::one

>

describes the standard numerical addition and multiplication 
over doubles, also called the plus-times semiring. Operators 
each have a domain name attached as a template argument. 
Identities must have an element in those domains and 
otherwise the code will not compile.

For any binary operator � : D1 ×D2 → D3 , the three 
domains potentially differ. Take a look at the following 
example:

typedef grb::operators::argmax< 

    std::pair< size_t, float >,
    std::pair< size_t, float >,
    size_t
> ArgmaxUINT_FP32;

This example describes the argmax operator over tuples of 
integers and floating point numbers, resulting in an integer 
as per

argmax((i0, α0), (i1, α0)) =



i0, if α1 ≤ α0

i1, otherwise.

Such binary operators may still form monoids or semirings, 
for example,

grb::Monoid< ArgmaxUINT_FP32,
    grb::identities::infinity >

depicts a valid monoid where "infinity" over unsigned 
integers will be interpreted as the maximum representable 
value maxint , while "infinity" over a tuple is composed by 
recursion over the tuple types — which, in this case, resolves 

to (maxint ,∞).

Consider element-wise application in the sparse case: 

grb::Vector< double > d( n, 1 );

grb::operators::assign_left_if< double, bool, double > 
myOp;

grb::eWiseApply( d, x, s, myOp );

While x is dense, s contains only a single nonzero. Because 
the algebraic structure of a simple binary operator does not 
allow for the interpretation of missing values from a 
container, ALP will only apply the requested binary 
operation on nonzeroes xi and si that appear on the same 
coordinate i, ignoring any values in x that do not have a 
matching value in s and vice versa. Consequently, the above 

results in a single entry, namely, dn/2 = xn/2.

An associative operator, joined with an identity, forms a 
monoid, which allows algebraic primitives to interpret missing 
values in sparse containers. The following example shows the 
behaviors of numerical multiplication as an operator rather 
than a monoid, under element-wise application:

grb::Vector< double > oneTwo( n, 1 );

grb::setElement( oneTwo, 2.0, n/2 );

grb::operations::mul< double > mulOp;

grb::Monoid<

    grb::operations::mul< double >,

    grb::identities::one

> mulMon;

grb::eWiseApply( y, x, oneTwo, mulOp );  

// y = oneTwo

grb::eWiseApply( y, x, oneTwo, mulMon ); 

// y = (1,..., 1,2,1,...1)

The grb::eWiseApply is an out-of-place primitive. The 
grb::foldl and grb::foldr provide in-place variants 
instead:

grb::foldl( y, oneTwo, mulMon );         

// y = (1,..., 1,4,1,...,1 )

Some operations require richer algebraic structures. 
Consider, for example, the sparse matrix–vector (SpMV) 
multiplication y = Ax:

grb::Semiring<

    grb::operators::add< double >, 

    grb::operators::mul< double >,

    grb::identities::zero, grb::identities::one

> mySemiring;

grb::clear( y );

grb::mxv( y, A, x, mySemiring );

ALP defines that only grb::set and grb::eWiseApply 
can operate in out-of-place fashion, whereas all other 
primitives have in-place semantics. For example, the above 
grb::mxv sets y to y ⊕Ax — with ⊕ being the additive 
operator of the given semiring — and does not set y to Ax. 
If the latter is intended, the output container must be 
cleared first, as in the above example.

An algebraic primitive combines containers and structures, 
modifying the former in a way that depends on the latter. 
Perhaps the most simplistic operation takes two input 
vectors and generates one output vector by applying a given 
binary operator in an element-wise fashion. For example, 

grb::Vector< double > y( n );

grb::eWiseApply( y, x, x, 

    grb::operators::add< double >() );

computes y = x� x, where � is given by the algebraic 
structure provided (simple numerical addition, in this 
example). Using the earlier examples that defined and 
populated x and after executing the above, y reads (2, 2, … 2).



152 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

All primitives with container output support masking. Since 
the vector s evaluates true only at position n/2,

grb::mxv( y, s, A, x, mySemiring );

requests only the computation of yn/2, leaving any other 
elements as-is. We may also invert the effective mask 
through descriptors , which provide mechanisms that 
modify the interpretation of input containers such as 
masks, and will prove useful later in this paper. The 
following example updates all entries of y except the one 
at position yn/2

:

grb::mxv< grb::descriptors::invert_mask >( y, s, A, x, 
mySemiring );

Yzelman et al. recognized that in the blocking mode 
of execution where every primitive call must complete 
before returning [BMM+17], performance may suffer 
due to unnecessary data movement in memory-bound 
computations. Take the following code for example.

grb::operators::min< double > minOp;

grb::eWiseApply( y, x, x, minOp );

grb::eWiseApply( x, y, y, addOp );

If the two primitives are executed one by one, elements 
from x and y are brought from the main memory to the 
CPU core(s) twice2. However, this could be reduced to 
once if the two calls were fused. Hence, Yzelman et al. 
introduced the grb::eWiseLambda primitive that allows 
the execution of arbitrary lambda functions on one or more 
vector containers. The above snippet, for example, could be 
replaced with a semantical equivalent as below:

grb::operators::min< double > minOp;

grb::eWiseLambda( [&x, &y] (const size_t i) {

        grb::apply( y[ i ], x[ i ], x[ i ], minOp );

        grb::apply( x[ i ], y[ i ], y[ i ], addOp );

    }, x, y

);

This fuses the calls to y and x and may complete up to 2× 
faster than the preceding code.

The square bracket vector operator (e.g., x[ i ]) in ALP is only 
valid when 1) it is used inside a lambda function passed to 
grb::eWiseLambda, and 2) index i refers to a nonzero value 
that was already present in the related container when the 
eWiseLambda was invoked. Any other use invites undefined 

2 This assumes a large enough n compared to the last-level cache of the 
target architecture.

behavior. The first vector argument to grb::eWiseLambda 
(x on the second-to-last line) defines which indices the 
eWiseLambda shall iterate over. The other vector arguments 
(such as y on that same line) must correspond to any vectors 
that are captured in the lambda. For example, the following 
snippet will only set xn/2 equal to 3.14, while leaving any other 
non-zero value of x unmodified:

grb::eWiseLambda( [&x] (const size_t i) {
        x[ i ] = 3.14;

    }, s, x

);

This element-wise lambda, apart from its intended use 
case of manually fusing ALP operations, provides critical 
functionality for translating vertex-centric programs into 
ALP (demonstrated in Section 5.4). Moreover, in the context 
of humble programming, recent work by Mastoras et 
al. provides mechanisms by which ALP/GraphBLAS may 
automatically fuse operations [MAY23, MAY22] — Section 
7.2 discusses the implications of this recent development for 
vertex-centric programs.

3.4 Element-wise Lambdas

3.5 Final Remarks

4 Motivation

The ALP paradigm expresses programs as sequential, data-
centric, and standard C++ programs. It also automatically 
manages performance and takes care of the corresponding 
code optimizations and parallelization. For example, ALP 
enables distributed-memory parallel computations that 

All ALP primitives return error codes, which this paper does 
not discuss for the sake of brevity. A special note, however, 
is that the program must guarantee sufficient capacities in 
output containers, as otherwise the related operation may 
fail. For example,

grb::set( s, false );

may fail because the requested capacity of s during 
construction was 1, which is smaller than its total size 
n. This work assumes, and in implementation ensures, 
sufficient vector capacities.

While this section has not introduced the ALP/GraphBLAS 
API or other ALP extensions in full, it lays the foundation 
for the remainder of this paper. For full details of the ALP/
GraphBLAS API and other ALP extensions, read the papers 
[BMM+17, YDNNS20, MAY23, MAY22].
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No programming model or language has been successful 
without educating programmers on its use. In the case 
of ALP/GraphBLAS, education may be relatively simple 
because most programmers already make implicit use 
of algebraic concepts, for example, linear algebra and its 
implicit use of the real semiring, or set algebraic concepts 
like orders implicitly used when sorting. Moreover, the idea 
that programming should closely follow mathematical 
concepts is not new; it forms the basis behind the design of 
the STL and generic programming [DS00, SM09, SR14] — 
standard tools and languages used by a significant portion 
of programmers. Algebraic concepts also appear in standard 
computer science texts, with the earliest references to the 
explicit use of semirings in programming included in the 
seminal works by Aho, Hopcroft, and Ullman [AHU74] and 
Cormen, Leiserson, and Rivest [CLR92].

4.1 Educate

4.2 Extend

4.3 Expand

process graphs of up to 42.5 billion edges over multiple 
multi-socket nodes using simple humble algorithms. This is 
made possible by the basic algebraic concepts with which 
ALP programmers annotate their programs. ALP makes use 
of those high-level annotations to select the appropriate 
optimizations automatically, allowing programmers to focus 
entirely on the mathematics [YDNNS20].

However, while most programmers have studied linear 
algebra at some point during their studies, most programmers 
do not consciously use linear algebraic concepts — such as 
monoids and semirings — on a daily basis. This limits the 
humble appeal of ALP. Separately, a key question is how many 
practical workloads naturally map to the ALP paradigm.

In motivating the broader use of ALP and other humble 
programming paradigms, this section identifies three broad 
approaches:

•	 educate programmers on the use of algebraic concepts 
in programming;

•	 extend ALP functionalities to support broader ranges of 
workloads; and

•	 expand other humble programming models into ALP.

This paper primarily focuses on the third approach.

However well programmers may prove to be in handling 
algebraic concepts explicitly, and however broad the 
scope of applicability of the ALP paradigm may prove to 
become, the humble mindset dictates that programmers 
should always be allowed to use the tools that they 
consider most intuitively suitable for different programming 
tasks. Nevertheless, unchecked growth in software stacks 
supporting different programming paradigms, many 
architectures, and many heterogeneous configurations, does 
not scale. This implies that the number of programming 
tools with distinct software stacks should be minimized.

Breaking the paradox of these seemingly conflicting demands, 
this paper proposes that humble programming models can 
be automatically expanded into other, more fundamental 
humble programming models. With such a mindset, many 
humble programming models could exist, though only very 
few should be fundamental. The many humble models 
should automatically translate to a fundamental one, and 
only fundamental programming models should be backed 
by an automatically optimizing, parallelizing, and ideally 
architecture-portable software stack.

This paper prototypes this vision by automatically 
translating the successful, scalable, and humble vertex-
centric programming model Pregel [MAB+10] into the ALP 
paradigm. It shows how automatic translation enables 
multiple humble programming paradigms that share the 
same software stack, demonstrates both the performance 
and scalability of this approach, and consequently proposes 
ALP as a fundamental humble programming model. With 
this solution, humble programmers can rely on multiple 
programming interfaces and select the most suitable ones 
for each job, while hero programmers can focus their efforts 
on a limited number of fundamental programming models 
and software stacks.

data [KG11, KJ18]. This paper already makes use of extensions 
over the C GraphBLAS standard [BMM+17, BBM+19] 
introduced by Yzelman et al. [YDNNS20], while Section 7.3 
proposes two other extensions that would enable automatic 
translation of MapReduce programs into ALP. Similar 
extensions are set to enlarge the scope of ALP applicability 
and are the subject of ongoing research. It is important that 
such extensions remain minimal as well as faithful, that is, the 
core set of ALP primitives should remain as few as possible, 
while ALP containers, structures, and primitives must have 
clear corresponding concepts in mathematics.

Ongoing research should push the boundaries of ALP 
applicability beyond linear algebra, graph computing, and big 
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5 ALP/Pregel

This section first describes the programming interface 
for a vertex-centric programming model on top of ALP/
GraphBLAS. It is a pure vertex-centric interface that does 
not expose ALP concepts, except for a commutative monoid 
over which incoming messages are to be reduced. Using 
this interface, the SCC algorithm is revisited and precisely 
formulated, and an ALP/Pregel program is introduced 
for web page ranking based on the canonical PageRank 
algorithm [PBMW99].

5.1 Interface

5.2 SCC AlgorithmThe C++ interface supports two termination mechanisms: 
vote-to-halt and inactivation of vertex programs. For the 
former, all vertex programs vote on whether to halt the 
program, which is terminated only if all active vertices vote 
to halt it. For the latter, vertex programs can set themselves 
inactive, after which point they shall no longer participate in 
subsequent rounds. If all vertex programs are inactive, then 
the overall program terminates.

Algorithm 1 shows the SCC algorithm in our vertex-centric API, 
and Algorithm 2 shows a simplified PageRank algorithm. Both 

algorithms are located in the grb::algorithms::pregel 
namespace and provide a concise way of introducing the 
ALP/Pregel interface.

For both examples, the vertex-centric program corresponds 
to the program static member function defined. Each 
program 1) operates on given vertex data of a program-
defined type, 2) expects an incoming message of a 
potentially different type, 3) generates an outgoing message 
of a potentially third different type, 4) has read access to 
program-specific data and other parameters, and 5) has 
access to a predefined PregelState type instance providing 
read access to Pregel metadata and write access to Pregel 
termination controls.

Briefly summarizing the earlier SCC example for undirected 
graphs, every vertex is initially assigned a unique identifier 
(ID) integer. Each vertex then broadcasts its ID, overwriting 
its local ID by the maximum ID received. If the current ID 
is already the maximum and no update is performed, the 
program votes to halt the execution. One may intuitively 
find that, in line with being a humble programming model, 
this algorithm indeed converges to a correct solution where 

Algorithm 1 Vertex-centric SCC algorithm

template< typename VertexIDType >

struct ConnectedComponents {

	 struct Data {};

	 static void program(

		  VertexIDType &current_max_ID,
		  const VertexIDType &incoming_message,
		  VertexIDType &outgoing_message,
		  const Data &parameters,

		  grb::interfaces::PregelState &pregel

	 ) {

		  if( pregel.round > 0 ) {

			   if( pregel.indegree == 0 ) {

				    pregel.voteToHalt = true;

			   } else if( current_max_ID < incoming_message ) {
				    current_max_ID = incoming_message;
			   } else {

				    pregel.voteToHalt = true;

			   }

		  }

		  if( pregel.outdegree > 0 ) {

			   outgoing_message = current_max_ID;
		  } else {

			   pregel.voteToHalt = true;

		  }

	 }

};
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every component is assigned a unique ID that corresponds 
to the maximum of values initially assigned to all vertices in 
the component.

The ID type may be any integer, such as unsigned int or 
size_t, and incoming and outgoing messages are of the 
same type. The algorithm does not require any algorithm-
specific parameters (hence the empty Data class on line 
4 of Algorithm 1). It exemplifies the use of the in-degree 
(line 2 of the program body) and out-degree (line 10 of the 
program body) metadata that our Pregel API provides, and 
makes use of the vote-to-halt mechanism. The program 
terminates within d steps, where d is the maximum diameter 
of all components in G.

Execution of the strongly connected algorithm requires 
the Pregel interface to be initialized over a specific 
graph. Conversely, in ALP/GraphBLAS, a graph file is 
typically opened using a parser and then ingested into a 
grb::Matrix instance, for example, by

grb::Matrix< void > A( parser.m(), parser.n(), parser.

nz() );

grb::buildMatrixUnique( A, parser.begin(), parser.end() 

);

The same graph file should now be ingested into a Pregel 
instance:

grb::interfaces::Pregel< void > pregel(

	 parser.n(), parser.m(),

	 parser.begin(), parser.end()

); 

The void template parameter to the Pregel interface 
indicates that edge weights must be ignored. This is because 
Pregel algorithms determine the message patterns based on 
the edge structures. Nevertheless, the template argument 
remains for future extensions that may be considered edge-
centric, or vertex- and edge-centric, programming paradigms.

Once the Pregel instance is instantiated, it may execute any 
Pregel algorithm on the underlying graph. The execution 
employs the execute member function of the Pregel 

Algorithm 2 Vertex-centric PageRank algorithm

template< typename IOType >

struct PageRank {

	 struct Data {

		  IOType alpha = 0.15;

		  IOType tolerance = 0.00001;

	 };

	 static void program(

		  IOType &current_score,
		  const IOType &incoming_message,
		  IOType &outgoing_message,
		  const Data &parameters,

		  grb::interfaces::PregelState &pregel

	 ) {

		  // initialise

		  if( pregel.round == 0 ) {

			   current_score = static_cast< IOType >(1) /
				    static_cast< IOType >(pregel.num_vertices); 
		  }

		  // compute

		  if( pregel.round > 0 ) {

			   const IOType old_score = current_score;
			   current_score = parameters.alpha +
				    ( static_cast< IOType >(1) - parameters.alpha ) * incoming_message;
			   if( fabs(current_score-old_score) < parameters.tolerance ) {
				    pregel.active = false;

			   }

		  }

		  // broadcast

		  if( pregel.outdegree > 0 ) {

			   outgoing_message = current_score / static_cast< IOType >(pregel.outdegree);
		  }

	 }

};
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the underlying graph, and grb::ILLEGAL will be returned 
if any of the passed vectors do not have full capacity.

5.3 Vertex-centric PageRank Algorithm

In the second example, the vertex-centric PageRank in 
Algorithm 2 is simplified to the point where it no longer 
corresponds to the canonical algorithm [PBMW99]. Despite 
this, it is a common approximation that appears in vertex-
centric and Spark-based literature, for example, Gonzalez 
et al. [GXD+14]. The algorithm has two canonical algorithm 
parameters: α and tol. The former, α, can be viewed as the 
regularization parameter, or more intuitively, the probability 
that someone viewing a web page visits another web page 
at random rather than via a link on the current page. The 
latter, tol, signifies a desired local tolerance. Once it is met, 
the current vertex will be set to inactive.

The local state of every vertex is its PageRank score, 
represented here by the value of IOType (e.g., double). In 
each round, the vertex-centric program distributes the local 
score equally to all neighbors of the current node. 
Specifically, the local score s is divided across all neighboring 
vertices as an outgoing message with value s/d, where d is 
the out-degree. Incoming messages are aggregated via the 
standard additive monoid, resulting in an incoming score of 
s'. Finally, the vertex-centric program determines the new 

local score as α+ (1− α)s′. If the difference with the 
previous local score is less than tol, the program considers 
the local vertex converged and removes it from further 
rounds of computation. In this case, the local vertex's active 
neighboring nodes assume that the now-inactive vertex 
keeps sending the aggregator monoid identity as its 
outgoing message.

In this example, the out-degree of each vertex is used 
in computing an outgoing message. This example 
demonstrates the use of the PregelState::round 
field — used to keep track of the current round of 
computation — to initialize the vertex weights during the 
first round (lines 1–5 of the program body). Furthermore, 
this example demonstrates that in initialization, global 
information on the total number of vertices in the program 
(PregelState::num_vertices) can be employed within 
vertex-centric programs by normalizing the initial PageRank 
score3. The inner if-statement of the compute block shows 
how a vertex removes itself from computation. And, in 
this example, no novel concepts are introduced as to the 

3 This normalization is didactic – it is not necessary for this PageRank-like 
algorithm to converge.

instance. For example, in the case of starting Algorithm 1,

const size_t n = pregel.num_vertices();
const size_t max_steps = n;
size_t steps_taken;
grb::Vector< size_t > component_IDs( n ), in_msgs( n ), 
out_msgs( n );
grb::RC error_code = pregel.template execute<
	 grb::operators::max< VertexIDType >,

	 grb::identities::negative_infinity
> (

       &(grb::algorithms::pregel::ConnectedComponents:: 

program),

       component_IDs,
       grb::algorithms::pregel::ConnectedComponents:: 

Data(),

       in_msgs, out_msgs,
       steps_taken, max_steps
);

the execute function is a templated member function whose 
template arguments define the commutative monoid under 
which incoming messages are aggregated. Its domains must 
match that of the outgoing and incoming messages. For SCC, 
all domains should be of the same integer type. For a specific 
vertex, using a monoid structure rather than an arbitrary 
message combiner operator helps ensure the following:

•	 In cases when no incoming messages are received (e.g., 
because a vertex in-degree is zero or all vertices with 
edges incident to this vertex have become inactive), 
the monoid identity can be substituted as a received 
message, thus ensuring consistent behavior while 
monoid associativity ensures scalable reduction.

•	 In cases when multiple messages are received in 
an order that potentially differs across rounds and 
executions, the commutativity of the combiner monoid 
ensures consistent behavior.

In the SCC example, we selected the maximum component 
ID. As such, Algorithm 1 demonstrates how the max-monoid 
for message aggregation is passed to the executor. The 
non-template arguments include, in order: 1) the vertex-
centric program, 2) the vertex states as a dense vector, 3) 
the program parameters, 4) buffers for the incoming and 
outgoing messages, and 5) an output field that records the 
number of rounds the program took before termination. An 
optional argument, max_steps, limits this number of rounds. 
If max_steps is not provided, the program will run until a 
termination condition arises.

The error_code grb::SUCCESS will be returned if the 
algorithm terminates correctly, and grb::FAILED will 
be returned if the algorithm did not reach a termination 
condition after the maximum number of rounds was 
completed. grb::MISMATCH will be returned if the message 
buffers do not match the size of the number of vertices in 
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mechanisms used to broadcast outgoing messages (lines 
17–20 of the program body).

As shown in the preceding example, the PageRank program 
is executed on a Pregel instance. However, the vertex weights 
and messages are of type double instead of size_t, and a 
regular additive monoid is used instead of a max monoid. As 
per convention, ALP/Pregel algorithms also provide a static 
member function::execute that constructs the necessary 
communication buffers and monoid definition. With a Pregel 
instance constructed over some input graph as before, the 
following executes the ALP/Pregel PageRank algorithm using 
the default algorithm parameters and an unlimited number 
of rounds:

grb::Vector< double > pr_scores( n );
grb::set( pr_scores, 0 );
grb::algorithms::pregel::PageRank< double >::execute(

     pregel, pr_scores, rounds_taken
);

Theoretically, termination of this program is not guaranteed, 
especially when rounds are limited to a small number 
or when a low α is chosen [LM11]. Section 6 takes care 
to report only experiments where program executions 
terminate successfully.

As noted earlier, this PageRank algorithm does not 
correspond to the canonical version by Page et al. in that 
it lacks contributions from the dangling nodes4. A common 
extension to the original Pregel framework [MAB+10] adds 
global aggregation mechanisms, which would allow for 
correct implementation of the PageRank algorithm. The 
addition of these mechanisms corrects the PageRank updates 
with contributions from the dangling nodes and enables 
global convergence detection. Such mechanisms are provided, 
for example, by the Giraph [Ave11] vertex-centric framework. 
ALP/Pregel, however, does not provide such mechanisms, as 
the author believes they will limit the potential of automatic 
overlap of message exchanges with the execution of rounds. 
This is discussed in more detail in Section 7.2.

ALP/Pregel supports permanently removing vertices from 
execution by setting them inactive. Although this is a 
known optimization for improving convergence for the 
PageRank algorithm [LM11], it is not supported by all 
vertex-centric frameworks. While this mechanism may 
accelerate convergence for the PageRank algorithm, ALP/
Pregel also exploits inactive vertices to accelerate per-
round computations, as described in Section 5.4. The 
examples thus far have introduced all fields available in 
grb::interfaces::PregelState, except for num_edges. 

4 Nodes with out-degree zero.

Field name read or write Description

active write Set to false to become inactive 
in subsequent rounds

voteToHalt write Set to true to vote for halting 
the program

round read The current computation 
round 

num_vertices read The total number of vertices 
in the current graph

num_edges read The total number of edges in 
the current graph

indegree read The in-degree of the current 
vertex

outdegree read The out-degree of the current 
vertex

vertexID read The unique ID of the current 
vertex

Table 1  All fields available to a vertex-centric program during computation rounds. 
The fields are sorted from writable ones that control program termination, to read-

only global constants and variables, and finally to read-only constant numbers 
regarding local vertex properties.

The implementation of the vertex-centric ALP/Pregel 
interface translates the program to a while-loop around 
standard ALP/GraphBLAS primitives at compilation time. 
Each execution of the body of the while loop corresponds to 
the execution of one round of computation as well as the 
subsequent termination detection and message exchange. 
Prior to the first round, all vertices are added to the active 
list , and the outgoing message buffer is reset to the monoid 
identity. During each round, the following operations take 
place for vertices that are in the active list:

1	 reset the outgoing message buffers using the aggregation 
monoid identity;

2	 call the user-defined vertex-centric program, passing 
in the current vertex state the program operates on, 
the buffers for incoming and outgoing messages, the 
algorithm-specific global data (e.g., α and tol for the 
vertex-centric PageRank), and the PregelState instance;

3	 determine whether all active vertices have voted to halt;

4	 remove the vertices that have set themselves inactive 
from the active list;

5	 determine whether all vertices have become inactive;

6	 increment the round counter;

5.4 Implementation

Table 1 summarizes all available fields.
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user must be allowed to set an active node to false, which 
does require that actual Boolean values be present in the 
active list. Therefore, the update of active vertices takes place 
directly after calling the user program, and is implemented 
using grb::set (buffer, activeList, true) without 
passing in a structural descriptor. This operation is the only 
step primitive in the ALP/Pregel implementation without a 
structural descriptor. The use of the masked set operation 
ensures that there are fewer non-zeroes in the buffer. Finally, 
the buffer is swapped with the active list to be used as the 
new mask for subsequent steps of the algorithm.

An extra buffer is maintained to support this update step. 
According to the performance semantics defined by ALP/
GraphBLAS, the grb::set on a non-empty container 
implies a cost proportional to the number of non-zeroes 
before the update, plus a cost proportional to the number 
of non-zeroes after the update [YDNNS20]. As such, while 

the buffer takes up Θ(n) memory, the overhead of this 
update step is bounded as Θ(k), with k being the number of 
active vertices before the update.

Termination detection.  Termination detection using the 
vote-to-halt mechanism takes place via a reduction of the 
voteToHalt vector into a Boolean scalar using the logical 
AND monoid, whereas termination detection using the 
inactive mechanism takes place by counting the number of 
non-zeroes in the updated active list.

Message exchange. Describing how to perform message 
exchange and aggregation using vector–matrix multiplication 
may be unclear if the semiring under which this proceeds is 
not described. The given aggregation monoid functions as 
the additive monoid of such a semiring, from whence the 
requirement that the aggregation monoid needs to be a 
commutative monoid. The semiring multiplicative operator is

grb::operators::left_assign_if<
        IncomingMessageType, bool, IncomingMessageType

>

with the Boolean true as its identity element. Denoting the 
application of this multiplicative monoid operation as 
x⊗ y = left assign if (x, y), with x from a user-defined 

domain D and y ∈ {false, true}, then left assign if :

D × {false, true} → D is defined as follows:

x⊗ y = left assign if (x, y) =



x, if y equals true

0, otherwise.

In the latter case, 0 corresponds to the additive monoid 
identity.

7	 reset the incoming message buffers using the aggregation 
monoid identity; and

8	 exchange messages and aggregate incoming messages 
via grb::vxm. 

Steps 5–8 use the updated active list from step 4.

Data structures. The active list, incoming messages, 
outgoing message, vertex states, in-degrees, out-degrees, 
and vertex IDs are all maintained as grb::Vectors with 
non-zeroes of the following types: bool for the active list, 
user-defined for the message and state vectors, and size_
t for the degree and ID vectors. All vector sizes equal the 
number of vertices in the graph, n. On initialization of a 
grb::interfaces::Pregel instance, the active list is 
initialized to true for all vertices, and the in-degrees and 
out-degrees are computed using SpMV multiplication of the 
graph adjacency matrix with a vector of ones. The vertex 
IDs are computed via

grb::set< grb::descriptors::use_index >( 
    vertexIDs, 0 );

The use_index descriptor writes the index i to each element 
of vertexIDs, instead of the given scalar value 0.

The values of the outgoing (and incoming) message vector 
are reset each round via

grb::set< grb::descriptors::structural >(

    outgoingMessages, activeList, id

);

Here, id is the identity of the aggregation monoid, which is 
of the same type as that of outgoing messages. Note that 
the preceding code resets only the outgoingMessages of 
active vertices and throws away entries corresponding to 
inactive vertices.

Calling the user program. The user program executes 
through a call to grb::eWiseLambda. The lambda function 
passed into the eWiseLambda captures a reference to the 
active list, incoming and outgoing messages, state, in-degrees 
and out-degrees, and vertex IDs. It then calls the user-defined 
program. The eWiseLambda only executes for the vertices 
that remain active in every round by passing activeList as the 
leading mask of the element-wise lambda primitive.

Updating the active list. For efficiency, the active list 
should be maintained as a sparse vector where the number 
of non-zeroes equals the number of active vertices at the 
start of each round. All masked operations can then take 
the structural descriptor, which prevents touching the actual 
Boolean values of each entry in the active list. However, the 
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overhead, again translating to O(k) costs per round. The 
cost of executing a vector program is determined by the 
user, and is linear with k. Specifically, for a vertex-centric 
program that locally takes Θ(1) time, executing all active 
programs costs Θ(k) work.

Again in the worst-case scenario, data movement complexities 

in a shared-memory setting correspond to Θ(k) with regard 
to accessing internal vector states. The persistent state of a 
single vertex and how much of it is touched during each 

round is user-defined. However, if we assume Θ(1) memory 
movement by a vertex-centric program during any round, 

the total memory movement is also Θ(k) per round. Assume 
that the sizes of incoming and outgoing messages are Θ(1), 
the message exchange costs

O
(
k +

∑
i∈activeList

di

)
                        (1)

data movement per round, where di is the in-degree of the 
i-th vertex. Although perhaps counterintuitive, exchanging 
messages also implies work. For ALP/GraphBLAS, the work 
bound equals that of Eqn. (1), except that the bound is big-
Theta instead of big-Oh.

For shared-memory parallelization, the above work bounds 
may be divided by T , where T  is the number of threads. 

Parallelization also adds a factor O(T ) to all storage, work, 
and data movement bounds. Consequently, the work bound 
corresponds to the per-thread work, while data movement 
bound considers the data volume moved across the whole 
system.

Likewise, for distributed-memory parallelization, work can 
be divided by P, which is the number of distributed-memory 

processes, while adding a factor O(P ) to all storage, work, 
and data movement bounds. Additionally, the active list 
update and the vote-to-halt termination check each amount 

to a collective reduction across all nodes. This induces O(P ) 
inter-process data movement and work, and as many as 
O(logP ) synchronization steps, where P  is the number of 
distributed processes. The message exchange adds O(k) 
inter-process data movement, assuming an  Θ(1) storage for 
the outgoing messages. Tables 2 and 3 summarize all costs.

These per-round costings are a direct application of the 
ALP/GraphBLAS performance semantics [YDNNS20]. They 
confirm that, for an increasing number of inactive vertices, 
bounds for work and both intra- and inter-process data 
movement improve.

5.5 Summary and Costing

The resulting semiring is, in fact, an improper one — 
because the aggregator identity may be user-defined, 
it may not annihilate under the multiplicative operator. 
However, if the additive monoid is the logical OR with false 
as the additive identity, the resulting semiring with left_
assign_if is, in fact, proper since it reduces to the standard 
Boolean semiring.

The way we use semiring guarantees that the multiplicative 
operator is only ever called using the multiplicative identity 
as the right-hand side input argument, thereby ensuring 
that improper cases for non-logical-OR aggregators are not 
triggered. This must be proceeded carefully as follows: The 

grb::vxm operation in = outG matches non-zeroes gij ∈ G 
to corresponding elements outi from the outgoing message 
buffer, and first applies the multiplicative operator to form a 

temporary tmp = outi ⊗Gij. Because G is a void matrix, gij 
resolves to the semiring identity, true, so that

tmp = outi ⊗ true = assign left if (outi, true) = outi.

This temporary value is then aggregated into inj using the 
user-def ined aggregator monoid.  The ALP/Pregel 
implementation thus ensures that explicit multiplication 
with zero (which may not annihilate) never occurs.

The implementation of vertex-centric programming in ALP/
GraphBLAS makes ample use of its main features:

•	 composability of monoids and semirings provides the 
flexibility to integrate user-defined aggregation into the 
richer algebraic semiring structure;

•	  grb::eWiseLambda allows the execution of any user-
defined operation on the vertex data;

•	 sparsity, masks, and algebraic structures are exploited to 
achieve high performance automatically.

The implementation requires one ALP/GraphBLAS vector 
container for each of the entries in Table 1, as well as one 
buffer vector for the active list. Through these containers, 

ALP/Pregel uses Θ(n) memory for executing any Pregel 
program. Execution neither allocates nor frees any memory. 

Computing termination conditions costs Θ(k) work, with k 
being the number of active vertices in a given round. In the 
worst-case scenario, capturing vector elements as 
arguments to user-defined vertex-centric programs has O(1) 
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Storage Work Data movement

Round computation Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Active list update Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Termination check Θ(T ) O(k/T + T − 1) O(k + T − 1)

Message exchange Θ(n+m+ T − 1) Θ((k +
∑

i
di)/T + T − 1) O(k + [

∑
i
di] + T − 1)

Total Θ(n+m+ T − 1) Θ((k +
∑

i
di)/T + T − 1) O(k + [

∑
i
di] + T − 1)

Work Data movement Synchronizations

Round computation 0 0 0

Active list update O(P ) O(P ) O(logP )

Termination check O(P ) O(P ) O(logP )

Message exchange Θ(k) Θ(k) 1

Total Θ(k) +O(P ) Θ(k) +O(P ) O(logP )

Table 2  Costs of executing a single round of an ALP/Pregel program on a shared-memory machine. This assumes there are n vertices, of which k are active, m edges, 
Θ(1) execution time of a vertex-centric program, and Θ(1) storage for each of a single vertex state, incoming message, and outgoing message. The work corresponds 

to that of a single thread, and the data movement corresponds to that across the entire machine. The sum 
∑

i di is as in Eqn. (1), while T  indicates the number of 
threads within a shared-memory machine. Sequential costs correspond to T = 1.

Table 3  Additional costs of executing a single round of an ALP/Pregel program on a distributed-memory architecture. The costs are in addition to those listed in Table 2, 
only that T should be replaced with the number of threads available at each process multiplied by the number of distributed-memory processes P. Additionally, all its 

data movement costings should be divided by P, and each of storage, work, and data movement adds a factor O(P ).

Experiments are conducted for two purposes: 1) to show 
that humble ALP/Pregel programs can achieve the scalability 
predicted in the previous section, and 2) to show that ALP/
Pregel is competitive against state-of-the-art frameworks. 
For the first purpose, the SCC algorithm is investigated, 
comparing the sequential and parallel results. Then, using 
two variants of the PageRank algorithm, the behavior of 
ALP/Pregel under an increasing number of inactive vertices 
is investigated. Finally, a scalability experiment using 
PageRank algorithms demonstrates that shared-memory 
auto-parallelization of ALP/Pregel behaves as expected also 
when the number of inactive vertices increases.

For the second purpose of comparing ALP/Pregel with state-
of-the-art frameworks, this section first summarizes the ALP/
GraphBLAS performance from the recent work by Mastoras 
et al. [MAY23], who provide an in-depth comparison of ALP/
GraphBLAS against the GNU Scientific Library (GSL), Eigen 
[GJ+10], and SuiteSparse:GraphBLAS [Dav19]. They show 
that the ALP/GraphBLAS PageRank implementation sketched 
in Algorithm 3 is 0.96–9.82 times faster than a PageRank 

6 Experiments implemented in SuiteSparse:GraphBLAS, and 0.64–14 times 
faster than one written using Eigen on shared-memory 
parallel architectures. Both SuiteSparse and Eigen auto-
parallelize over shared-memory architectures, while GSL does 
not. Eigen additionally performs loop fusion, which leads 
to speedups over the blocking ALP/GraphBLAS for small 
matrices. The nonblocking ALP/GraphBLAS implementation 
that Mastoras et al. contribute also achieves loop fusion 
and achieves speedups beyond Eigen for both smaller and 
larger matrices, but will not be considered as part of the 
experiments in this section. Mastoras et al. obtain similar 
results for two other sparse matrix and graph algorithms.

This paper focuses on comparing the ALP/Pregel PageRank-
like algorithm with the canonical ALP/GraphBLAS variant, 
which is taken as the state-of-the-art baseline. This 
paper does not compare ALP/Pregel against the existing 
vertex-centric frameworks such as Giraph [Ave11], since 
such frameworks typically exhibit orders-of-magnitude 
performance losses versus the optimized code [SY19] because 
they rely on file-based fault tolerance. Such comparisons 
are out of our scope because what we look for are humble 
programming models that achieve hero-level performance.
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Experiments are run on a dual-socket Intel x86 machine, 
consisting of two Intel Xeon 6238T processors, each having 
22 cores, a 32 kB private L1 cache per core, a 1 MB private L2 
cache per core, and a 30.25 MB shared L3 cache. The cores, 
clocked at 1.9 GHz, have hyperthreading enabled and turbo 
boost disabled. Each processor has six memory channels 
clocked at 2,933 MT/s, producing 262.2 GB/s of theoretical 
throughput across the total machine. The combined 
computational throughput of all AVX-512 enabled cores is 
2,675 Gflop/s. The single-core memory throughput ranges 
from 9.95 (vector-to-scalar reduction) to 18.4 (triad) Gbyte/s. 
These figures are relevant because ALP/Pregel computations 
are typically memory-bound, achieving far lower speedup 
than the total number of cores would indicate. Indeed, for 
this architecture, a bandwidth-bound application is expected 
to achieve 14.3–26.4 times of speedup.

Our experiments are implemented on v0.6 of ALP/GraphBLAS, 
which is available on GitHub and Gitee [Alg21a, Alg21b]. Its 
sequential reference and shared-memory parallel reference_
omp backends are used both to compile ALP/Pregel programs 
and to provide a baseline PageRank implementation. 
All software is compiled using GCC 9.3.1 with the -O3 
-mtune=native-march=native -DNDEBUG -funroll-loops 
compiler flags. All compilations and experiments are executed 
on Linux kernel version 5.8.18. Experiments using OpenMP 
define OMP_PROC_BIND=true.

Experiments on small datasets such as gyro_m are repeated 
multiple times to ensure that one timing takes at least 
100 milliseconds. Then, experiments are further repeated 
at least 10 times in order to compute the sample standard 
deviation across all timings. All reported timings have a 
sample standard deviation of less than 3% of the measured 
average time. Timings with sample standard deviation being 
1% higher than the average time are printed in italics, and 
the tables only show three significant digits of each of the 
obtained averages. As such, timings printed in non-italics are 
accurate to a significant degree, while for timings printed in 
italics the least significant digit is likely to be inaccurate.

In this paper, the presented methodology is only not applied 
to three experiments benchmarking the sequential ALP/
Pregel SCC due to a very long run time.

6.1 Methodology

Dataset Name #Vertices #Edges Edges/Vertex Structured

1 gyro_m 17 361 340 431 19.6 no

2 vanbody 47 072 2 336 898 49.6 yes

3 G2_circuit 150 102 726 674 4.84 mixed

4 bundle_adj 513 351 20 208 051 39.4 adverse

5 apache2 715 176 4 817 870 6.74 yes

6 ecology2 999 999 4 995 991 5.00 yes

7 Emilia_923 923 136 41 005 206 44.4 yes

8 Serena 1 391 349 64 531 701 46.4 yes

9 G3_circuit 1 585 478 7 660 826 4.83 mixed

10 Queen_4147 4 147 110 329 499 284 79.5 yes

11 wikipedia-20070206 3 566 907 45 030 389 12.6 no

12 uk-2002 18 520 486 298 113 762 16.1 no

13 road_usa 23 947 347 57 708 624 2.41 no

Table 4  Graphs used in the experiments. All except 11 and 12 are undirected.

6.2 Datasets

Our experiments require input graphs on which to run the 
vertex-centric algorithms. Typical datasets that vertex-
centric frameworks operate on include knowledge graphs 
and graph representations from the Web and other types 
of networks. To also compare against structures that differ 
significantly from typical graphs so that we can gauge the 
effectiveness when faced with problems originating from 
other domains, we include both graphs and sparse matrices 
from various scientific computing domains in our dataset, 
as shown in Table 4.
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Dataset Sequential Shmem. parallel Speedup

1 39.3 (47) 38.6 (47) 1.03×

2 183 (53) 56.2 (53) 3.26×

3 755 (162) 255 (162) 2.96×

4 4 910 (140) 568 (140) 8.64×

5 11 100 (447) 1 970 (447) 5.63×

6 52 300 (2000) 11 400 (2000) 4.59×

7 6 930 (111) 774 (111) 8.95×

8 6 090 (59) 618 (59) 9.84×

9 27 400 (523) 4 500 (523) 6.09×

10 76 200 (178) 5 620 (178) 13.6×

11 189 000 (461) 10 800 (461) 17.5×

12 131 000 (116) 11 900 (116) 11.0×

13 6 080 000 (5681) 668 000 (5681) 9.10×

Table 5  The runtime in milliseconds for executing the ALP/Pregel SCC, Algorithm 1, compiled using the sequential and shared-memory parallel ALP/GraphBLAS backends. The 
numbers of iterations are listed in the parentheses following each timing, and the last column reports the speedup of parallel execution over sequential execution.

All datasets are from the SuiteSparse MatrixMarket collection 
[DH11], and are ordered by the number of vertices they 
contain. In the architecture described earlier, 128k 64-bit 
words (doubles or size_ts) fit into private L2 caches. As such, 
we expect significant data reuse by algorithms operating on 
datasets 1 and 2. Approximately 4M words fit into shared L3 
caches. Given that all algorithms require multiple vectors to 
operate, significant reuse of data in L3 caches should occur 
for datasets 3–10. Datasets above number 10 will always 
induce out-of-cache behavior because the corresponding 
vectors do not fit in L3 caches. As we will describe later in this 
section, performance differences between some PageRank 
implementations results from the difference in the number of 
edges per vertex (also reported in Table 4).

Apart from differences in the number of vertices and edges, 
we augment graphs that have no discernible structure 
when plotting its corresponding adjacency matrix with 
structured matrices. Discernible structures in such matrices 
include having a fixed number of diagonals in the adjacency 
matrix, and with only non-zeroes within a fixed bandwidth 
around the main diagonal. Structured matrices and graphs 
with structured corresponding adjacency matrices induce 
favorable data access patterns that modern hardware 
prefetchers implicitly exploit, which results in very different 
behavior during computations on such graphs. These 
effects are well-known in high-performance computing 

research that deals with sparse matrices. Some datasets, 
such as G3_Circuit, have both structured and unstructured 
components in the adjacency matrix, whereas bundle_
adj has an adversarial structure that has a major impact 
on the performance of linear algebraic libraries and 
programming frameworks [MAY23]. All graphs represented 
by the adjacency matrices are undirected, except 
wikipedia-20070206 and uk-2002.

6.3 SCC Algorithm

We first consider the scalability of ALP/Pregel using the SCC 
for undirected graphs in Algorithm 1. For directed graphs 
this algorithm still terminates, and returns connected 
components where for each vertex v in a given component, 
there exists at least one other vertex u in that same 
component with a path to u to v. Given Algorithm 1 over 
directed inputs retains a meaningful interpretation, our 
experiments use the full dataset in Table 4.

Table 5 compares the wall-clock time of executing the 
related ALP/Pregel SCC algorithm between two modes: 
using the sequential ALP/GraphBLAS backend and using 
the shared-memory parallel OpenMP-enabled backend. We 
emphasize that parallelization is fully automatic and the 
code presented in Algorithm 1 does not need to be changed.
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The number of rounds required by the algorithm is shown in 
the parentheses. In addition, the table also reports speedup 
obtained by shared-memory parallelization. 

The SCC algorithm employs only the vote-to-halt termination 
mechanism so that each round runs with all vertices being 
active. Moreover, parallelization should not affect the number 
of rounds computation requires. This experiment therefore 
measures only the scalability of the shared-memory parallel 
backend using the SCC algorithm.

Parallelization involves unavoidable overheads of at least 
Ω(log T ) .  In ALP/GraphBLAS, it  is bounded by O(T ) 
[YDNNS20]. Therefore, it is certain that for smaller datasets 
on a full system with 88 hyperthreads and two NUMA 
domains, speedups are expected to be far below 26.4x, which 
is achieved by the triad benchmarks5. Since the vote-to-halt 
termination mechanism depends on the vector-to-scalar 
reduction, a significant portion of the vertex-centric paradigm 
will be bound by the 14.3x of speedup for the reduction 
benchmark5. However, as the size of datasets increases, 
speedups are expected to reach the 14.3–26.4 range.

Table 5 reports the same number of rounds for both the 
sequential and shared-memory parallel ALP/Pregel SCC 
algorithms. The maximum speedup, 17.5x for dataset 11, 
falls within the upper range, indicating that parallelization 
of the non-reduction parts of the ALP/Pregel program 
achieves speedups closer to the best-case triad benchmark. 
This indicates that the ALP/Pregel implementation scales on 
shared-memory architectures for the particular case when 
all vertices remain active throughout the computation.

By contrast, the PageRank in Algorithm 2 does make use 
of the inactive vertices. In this case, as the computation 
proceeds, fewer and fewer vertices will partake in the 
computation. Termination of this program does not 
guarantee convergence in the classical 2−norm, nor in the 
inf-norm, even if dangling nodes were accounted for properly.

To compare the impact of the vertex inactivation mechanism 
on the speed of computation, we introduce a global variant 
of the ALP/Pregel PageRank by modifying Algorithm 2. 
Specifically, instead of using the inactivation mechanism, 
the algorithm is modified to use vote-to-halt on local 
convergence detection. As such, we subsequently refer to 
the original Algorithm 2 as the local variant, because it does 

5 See Section 6.1.

not consider a global inf-norm computation but a greedy 
local version of it.

Both the global and local ALP/Pregel PageRank algorithms 
are further compared against the standard PageRank 
implementation using and bundled with ALP/GraphBLAS. 
This algorithm does account for dangling nodes and 
implements convergence detection in the standard 2−
norm [YDNNS20]. Algorithm 3 provides a simplified listing 
of that algorithm for the sake of completeness6. Because 
of the algorithmic differences relating to dangling nodes, 
the standard equivalence of norms does not apply, and 
we therefore cannot directly compare errors between the 
ALP/Pregel implementations and the ALP/GraphBLAS 
implementation (the algorithms are different and converge 
to different values). As described in Section 5.3, the vertex-
centric PageRank is commonly applied, and its global 
variant is most often applied. Table 6 therefore compares 
the local vertex-centric variant against its global variant 
in terms of performance and speed of convergence. It also 
compares both Pregel variants and the canonical PageRank 
approaches to web page ranking in terms of performance.

In terms of the number of iterations, among the three 
different algorithms we compare, it is not the case that the 
vertex-centric algorithms always incur fewer iterations than 
the canonical PageRank, nor that the local variant of the 
ALP/Pregel PageRank always incurs fewer iterations than 
its global variant. Indeed, as Table 6 shows, any algorithm 
can incur the fewest number of iterations, depending on 
the input graphs. The vertex-centric variants do require 
significantly more iterations for the large undirected graphs, 
IDs 11 and 12, to converge, but this may well be due to the 
common presence of dangling nodes in those graphs.

In terms of the execution speed, the local variant is faster 
than the global variant. This is because, as the rounds 
progress, increasingly more vertices become inactive. This is 
confirmed by the time per iteration reported in Table 6. As 
such, we may conclude that our ALP/Pregel implementation 
becomes faster as the number of active nodes decreases. 
One disadvantage of using the element-wise lambda noted 
by Yzelman et al. is that the compiler is no longer able to 
apply vectorization when possible [YDNNS20]. Thus, the 
ALP/GraphBLAS PageRank may be faster than the global 
ALP/Pregel variant even though the former performs more 
operations7. This benefit is expected to decrease as the 
number of edges per vertex increases.

6 See the ALP/GraphBLAS repository [Alg21a] for the full algorithm.
7 i.e., dangling node corrections and 2−norm computations.

6.4 Sequential PageRank
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6.5 Shared-memory Parallel PageRank

The time per iteration reported in the preceding table shows 
that the ALP/GraphBLAS outperforms the global variant, and 
even the local vertex-centric variant in 6 out of 13 cases. For 
the larger graphs, the latter is explained by the observation 
that low edge count per vertex favors vectorization (datasets 
6, 9, and 13). Additionally, a performance gain for the pure 
ALP/GraphBLAS algorithm on small graphs is observed. 
This gain increases on the shared-memory parallel ALP/
GraphBLAS variant, as presented and analyzed in more detail 
in the next section.

In summary, in terms of the time per iteration, the local ALP/
Pregel PageRank is up to 16.8x faster than its global variant, 
and up to 6.84x faster than a state-of-the-art canonical 
PageRank algorithm. In terms of the end-to-end runtime, the 
local variant is up to 7.48x faster than the global one, and 
up to 8.99x faster than the state-of-the-art baseline — the 
biggest slowdown is limited at 0.95x. The local ALP/Pregel 
algorithm is fastest overall in 12 out of 13 cases.

when the arithmetic, including both its precision and order, 
remains unchanged. Although numerical error propagation 
could cause minor variations, comparison of Tables 6 and 
7 reveals no difference in the required number of iterations 
for our algorithms and datasets.

In terms of the execution speed, including both the end-to-
end runtime and the time per iteration, there is no instance 
where the global variant outperforms the local variant. 
In terms of the end-to-end runtime, the state-of-the-art 
PageRank implemented directly on top of ALP/GraphBLAS is 
fastest in eight cases, which are exactly the ones where the 
canonical PageRank achieves the fastest time per iteration. 
However, there is one exception where the local variant does 
achieve the fastest end-to-end runtime, even though in terms 
of the time per iteration the baseline outperforms the local 
variant. Indeed, differences in the time per iteration are more 
pronounced between the state-of-the-art baseline and the 
local variant, with speedups ranging 0.403–10 times.

Table 8 collects the speedups for all variants, similar to 
the SCC study in Section 6.3. The speedups ALP/Pregel 
achieves on bundle_adj (9.24-11.0x) are significantly higher 
than the speedups achieved by the baseline (1.81x). This 
is due to the adversarial structure of the graphs, which 

ALP/Pregel ms. per iteration

Dataset Global Local Baseline Global Local Baseline

1 34.8 (40) 24.7 (39) 31.4 (52) 0.870 0.633 0.604

2 192 (43) 118 (41) 197 (52) 4.47 2.88 3.79

3 175 (38) 78.8 (36) 90.0 (48) 4.61 2.19 1.88

4 3 070 (66) 2 070 (51) 2 330 (60) 46.5 40.6 38.8

5 707 (31) 456 (33) 434 (43) 22.8 13.8 10.1

6 976 (31) 63.5 (34) 375 (30) 31.5 1.87 12.5

7 2 840 (36) 1 180 (36) 2 960 (45) 78.9 32.8 65.8

8 5 090 (40) 2 500 (33) 4 750 (44) 127 75.8 108

9 1 960 (38) 987 (36) 1 100 (48) 51.6 27.4 22.9

10 20 800 (35) 2 780 (35) 25 000 (46) 594 79.4 543

11 40 500 (103) 11 400 (96) 18 100 (55) 393 119 329

12 153 000 (115) 46 100 (104) 72 100 (73) 1330 443 988

13 87 600 (78) 58 800 (72) 62 200 (78) 1120 817 797

Table 6  Results, in milliseconds, of executing sequential PageRank algorithms, comparing the ALP/Pregel variants using global and local convergence against the baseline 
ALP/GraphBLAS PageRank implementation. The numbers of iterations implemented before convergence are listed in the parentheses. The last three columns report the time 

per iteration, with the fastest marked in bold.

Similar to the SCC algorithm, in the case of parallelization 
of PageRank, the number of iterations will not change 
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groups high-degree vertices in one cluster. Since the ALP/
GraphBLAS baseline employs dense unmasked vectors only, 
the shared-memory parallel ALP backend reverts to static 
scheduling during SpMV multiplication. The ALP/Pregel 
variants, however, use a sparse structural mask for which 
the backend reverts to dynamic scheduling during SpMV 
multiplication. This, in turn, avoids the imbalance induced 
by the adversarial graph structure.

The ALP/GraphBLAS PageRank algorithm generally achieves 
better speedups than the ALP/Pregel variants, and the 
global variant tends to achieve better speedups than the 
local variants. While all implementations rely on the same 
OpenMP-enabled ALP/GraphBLAS backend, they rely on 
different OpenMP scheduling: as discussed earlier, the 
ALP/GraphBLAS variant employs static scheduling during 
sparse matrix–vector multiplication, whereas the ALP/
Pregel variants employ dynamic scheduling. Additionally, 
ALP/Pregel employs dynamic scheduling while executing 
the vertex-centric program through the element-wise 
lambda. This is because the user-defined lambda may 

Algorithm 3 A simplified representation of the ALP/GraphBLAS PageRank

using namespace grb;

void pagerank(

    Vector< double > &pr, const Matrix< NonzeroT > &L,

    Vector< double > &temp, Vector< double > &pr_buffer,
    Vector< double > &row_sum,
    const double alpha,

    const double conv

) {

    Monoid< operators::add< double >, identities::zero > addM;

    Semiring< operators::add< double >, operators::mul< double >,

        identities::zero, identities::one > realRing;

    const size_t n = nrows( L );
    set( temp, 1 );

    set( row_sum, 0 );
    vxm< descriptors::dense | descriptors::transpose_matrix >( row_sum, temp, L, realRing );
    eWiseLambda( [ &row_sum, &alpha, &zero ]( const size_t i ) {
            if( row_sum[ i ] > 0 ) { row_sum[ i ] = alpha / row_sum[ i ]; }
        }, row_sum );

    double dangling, residual;

    do {

        residual = dangling = 0;

        foldl< descriptors::invert_mask >( dangling, pr, row_sum, addM );
        set( temp, 0 );

        eWiseApply( temp, pr, row_sum, operators::mul< double >() );
        dangling = ( alpha * dangling + 1 - alpha ) / static_cast< double >( n );
        set( pr_buffer, 0 );
        vxm( pr_buffer, temp, L, realRing );
        foldl< descriptors::dense >( pr_buffer, dangling, addM );
        dot< descriptors::dense >( residual, pr, pr_buffer, addM, operators::abs_diff< double >() );
        if( residual <= conv ) { break; }

        std::swap( pr, pr_buffer );
    } while( true );

}

induce varying workload, depending on the index on which 
it operates. Moreover, some dense vector–vector operations 
in the baseline revert to static scheduling, while the same 
operations in the ALP/Pregel variants are part of the 
dynamically scheduled element-wise lambda. Some ALP/
Pregel metadata updates performed via level-1 operations 
in the global variant also employ static scheduling, whereas 
in the local variants they revert to dynamic scheduling.

Another major effect is regarding the workspace of the 
ALP/Pregel programs. Recall that executing any Pregel 
program requires eight vectors, whereas the ALP/GraphBLAS 
PageRank implementation in Algorithm 3 requires only 
four. This translates to a benefit for smaller graphs, as the 
baseline implementation induces higher data reuse for 
the same problems within the same limited caches. This is 
compounded by an explicit materialization of the messages 
between vertices in the form of incoming and outgoing 
messages, meaning that computed values are copied twice 
as many times as in the baseline implementation, which 
holds zero such copies.
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Speedup vs. Itself Speedup vs. Baseline

Dataset Global Local Baseline Global Local

1 1.12 0.846 0.835 1.21 1.29

2 4.43 3.19 3.66 1.24 1.45

3 2.98 2.03 3.10 0.493 0.746

4 11.0 9.24 1.81 4.61 5.76

5 4.50 3.59 12.4 0.224 0.276

6 4.81 1.02 11.7 0.158 0.515

7 10.8 7.24 31.8 0.354 0.571

8 12.4 9.19 32.5 0.354 0.537

9 5.34 4.06 12.5 0.239 0.361

10 17.8 8.35 35.7 0.599 2.11

11 16.6 13.0 3.60 2.06 5.73

12 13.3 10.4 26.2 0.239 0.622

13 8.94 7.78 23.2 0.273 0.354

Table 8  Speedups of the parallel PageRank variants from Table 7 versus the sequential variants from Table 6.

ALP/Pregel ms. per Iteration

Dataset Global Local Baseline Global Local Baseline

1 31.1 ( 40 ) 29.2 ( 39 ) 37 .6 ( 52 ) 0.778 0.749 0.723

2 43.3 ( 43 ) 37.0 ( 41 ) 53 .8 ( 52 ) 1.01 0.902 1.03

3 58.8 ( 38 ) 38.9 ( 36 ) 29.0 ( 48 ) 1.55 1.08 0.604

4 280 ( 66 ) 224 ( 51 ) 1290 ( 60 ) 4.24 4.39 21.5

5 157 ( 31 ) 127 ( 33 ) 35.1 ( 43 ) 5.06 3.85 0.816

6 203 ( 31 ) 62 .3 ( 34 ) 32.1 ( 30 ) 6.55 1.83 1.07

7 263 ( 36 ) 163 ( 36 ) 93 .0 ( 45 ) 7.31 4.53 2.07

8 412 ( 40 ) 272 ( 33 ) 146 ( 44 ) 10.3 8.24 3.32

9 367 ( 38 ) 243 ( 36 ) 87.7 ( 48 ) 9.66 6.75 1.83

10 1170 ( 35 ) 333 ( 35 ) 701 ( 46 ) 33.4 9.51 15.2

11 2440 (103) 878 ( 96 ) 5030 ( 55 ) 23.7 9.15 91.5

12 11500 (115) 4420 (104) 2750 ( 73 ) 100 42.5 37.7

13 9800 ( 78 ) 7560 ( 72 ) 2680 ( 78 ) 126 105 34.4

Table 7  Results, in milliseconds, of executing shared-memory parallel PageRank algorithms. Like in Table 6, this table compares the ALP/Pregel variants 
against the baseline shared-memory parallel ALP/GraphBLAS variant.
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7 Conclusions

The paramount challenge in contemporary research on 
programming models and compilers lies in striking a balance 
between providing easy-to-use programming interfaces that 
make future highly parallel and heterogeneous compute 
systems accessible to humble programmers, and the 
necessity to:

•	 support an ever-increasing number of architectures,

•	 deploy over increasingly large-scale systems that involve 
multiple architectures, and

•	 deal with a mixture of shared- and distributed-memory 
connectivity across compute units.

In the interest of exposing humble programming models 
that are usable by the vast majority of programmers, a hit 
in performance and scalability may be acceptable. Ideally, 
however, humble code — once compiled — should perform 
on par with expert code, thus turning humble programmers 
into heroes. A recent study shows that the humble ALP/
GraphBLAS outperforms the state-of-the-art frameworks for 
three graph and sparse matrix algorithms [MAY23]. ALP/
Pregel exposes a vertex-centric programming model and 
translates vertex-centric programs into ALP/GraphBLAS at 
compile time, while offering benefits in terms of its shared- 
and distributed-memory auto-parallelization and other 
optimizations. This work demonstrates that a vertex-centric 
SCC algorithm implemented using ALP/Pregel obtains up 
to 17.5× speedup on a dual-socket Intel Xeon machine. 

7.1 Outlook

Similarly, an auto-parallelized vertex-centric PageRank-
like algorithm obtains speedups up to 17.8×, confirming 
that ALP/Pregel programs are able to scale. Furthermore, 
comparing the vertex-centric program against a highly 
optimized canonical PageRank algorithm results in faster 
sequential execution in 12 out of 13 cases, and speedups 
of up to 8.99×. In shared-memory parallel execution, 
the ALP/Pregel algorithm is fastest in 5 out of 13 cases, 
with speedups of up to 5.76×. These results confirm that 
humble programs may achieve hero-level performance, and 
demonstrate that novel approaches based on such humble 
programming interfaces may even outperform highly 
optimized canonical solutions.

Different groups of humble programmers may prefer 
different humble programming interfaces. As such, the 
compute industry and researchers should strive to identify a 
set of humble programming models that together appeal to 
the vast majority of programmers. Furthermore, in an ideal 
scenario, only a few humble programming interfaces with 
corresponding optimized software stacks would be required. 
This paradox can be resolved by translating many useful 
humble programming interfaces into just a few optimized 
humble software stacks.

The reported speedups from the ALP/Pregel programs are 
achieved even though those programs are expanded into an 
ALP program, making use of its standard implementation. This 
not only validates the notion of supporting multiple humble 
programming models on top of a single software stack, but 
also demonstrates that this is possible without significant 
performance overheads. It also solves the software bottleneck 
as it frees hero programmers of addressing optimization and 
portability concerns for the few fundamental software stacks 
only — in this case, the ALP stack.

Even so, this paper does not argue that ALP should be 
the only fundamental programming model. It remains an 
open question as to how much of the general-purpose 
programming demands can be covered by ALP, as well as 
how many popular humble programming interfaces can be 
implemented on top of ALP without incurring significant 
performance overheads. Instead, this paper humbly argues 
that the future of software would be vastly improved if the 
industry and research communities explore more scalable 
humble programming interfaces, as well as identify the 
smallest possible subsets of foundational software stacks 
into which these humble programming models translate.

The switch from static to dynamic scheduling, the loss of 
data locality, and the explicit materialization of messages 
result in a worst-case slowdown of 0.340×, comparing the 
baseline with global variants. Additional uses of dynamic 
instead of static scheduling in vector–vector and vector–scalar 
operations compound the worst-case slowdown to 0.212×, 
comparing the baseline with local variants. The effects of 
losing data locality should be reduced for larger problems.

Although these slowdowns indicate that ALP/Pregel 
programs scale worse than pure ALP/GraphBLAS ones, 
this may be resolved partially by investigating alternative 
dynamic scheduling techniques within ALP. However, the 
overheads incurred from copying messages and the loss 
of data reuse opportunities for small problems remain 
unavoidable. Nevertheless, the local variant leads to the 
fastest end-to-end shared-memory parallel execution in 5 
out of 13 cases, with speedups of up to 5.76× compared to 
the baseline.
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7.3 Beyond ALP/Pregel

7.2 Improving ALP/Pregel

Pregel programs are naturally loosely coupled. At any point in 
time during execution, not all vertices are required to be 
executing the same round. Specifically, vertices whose round-i 
messages have been received can immediately continue with 
round i+ 1, regardless of whether other vertices have yet to 
execute the ith computation phase or whether they are 
waiting on incoming round-i messages. This insight can be 
applied recursively to realize pipelines of arbitrary length, 
bounded only by the underlying graph structure and the 
available memory for caching in-flight messages.

For example, a Pregel program running on the source vertex 
of a line graph can progress arbitrary round numbers ahead 
of other vertices. This leads to a pipeline depth bounded by 
the length of the graph. However, a Pregel program running 
on any vertex of a fully connected graph must execute in 
lock-step with all other programs due to being connected 
in an all-to-all fashion. While ALP/Pregel transforms the 
program into a series of level-1 operations separated by a 
message exchange driven by an SpMV multiplication, the 
use of a nonblocking implementation of ALP/GraphBLAS 
such as by Mastoras et al. [MAY23, MAY22] realizes overlap 
between the communication and computation phases of a 
single round. Introducing buffers for incoming messages in 
ALP/GraphBLAS may likewise enable overlapping rounds of 
vertex-centric computations. This will be the next step to take 
to enhance the ALP/Pregel performance. Such overlapping 
should be particularly effective on distributed-memory 
architectures, which, although supported by the current ALP/
Pregel implementation, has not been evaluated in this work. 
Such comparison will be included in our future work, in which 
we will also compare the effects of loosely coupled execution. 
However, this requires bringing the nonblocking ALP/
GraphBLAS capabilities to the distributed-memory parallel 
case. From the single-node perspective, a nonblocking variant 
that exploits the underlying graph structure in order to 
eliminate the need for caching incoming messages — thereby 

While this paper shows that realizing the Pregel humble 
programming model on top of ALP is possible and thus 
may benefit from the high performance and scalability 
guaranteed by ALP, not all algorithms and workloads are 
amenable to either pure ALP or vertex-centric programming. 
We need to expand the range of humble models that we 
can automatically translate into ALP. For MapReduce, for 
example, the following insights may automatically translate 
MapReduce programs into ALP:

•	 a one-to-one map phase corresponds to the element-
wise lambda function;

•	 one-to-none or one-to-many maps may be realized by 
the parallel I/O mode introduced by ALP/GraphBLAS 
[YDNNS20]; and

•	 a reduce phase may be realized by a four-step process:

(1)	 unzipping a key-value ALP/GraphBLAS vector of 
length n into two vectors of n keys and n values,

(2)	 zipping the two vectors into an ALP/GraphBLAS 
matrix of size k × n,

(3)	 performing the reduction via an SpMV multiplication, 
and

(4)	 transforming the resulting vector of values back 
into a vector of key-value pairs.

This ALP/MapReduce approach is currently under 
implementation and will be evaluated and released as the 
next additional humble programming interface to ALP. 
Inspirations to further humble interfaces on top of ALP 
include NumPy [ADH+01] and Spark [ZCF+10] as other 
examples of high-impact humble programming models, as 
well as programming models based on set algebra [BVSS+21, 
BKK+21] and commutative sets [KPW+07, PGZ+11].

saving memory resources and increasing data reuse — seems 
a most promising direction.
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Large neural network training with model parallel (MP) pipeline execution leads to asynchronous training with significant 
levels of gradient staleness. This poses high memory requirements that limit model size and therefore undermine the 
goal of MP execution. In this paper, we present an extended overview of the recent asynchronous training techniques and 
then propose the Momentum Reconstruction (MoRe) optimization technique, yielding an a-SlowMo family of algorithms, 
including SGD with momentum, Adam, and AdamW. This allows us to achieve the convergence rates and generalization 
properties of SotA ASGD methods, while reducing their memory requirements by a factor of two. In turn, we can unleash 
the potential of training larger models on the same hardware, while paying a small computational overhead. We provide 
experimental validation of our solution on large CNN and Transformer architectures, and this includes training GPT models.

Keywords

optimization, distributed optimization, model parallel pipeline training, synchronous SGD

Abstract 

Roman Talyansky, Zach Melamed, Pavel Kisilev, Ido Hakimi

Asynchronous Training and MoRe: 
Momentum Reconstruction for Reduced 
Memory Model Parallel Pipeline Training
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2 Overview of the Synchronous and 
Asynchronous Training Techniques

1 Introduction 

Deep neural networks (DNN) have solved problems in 
various application domains, including image [1, 2, 3], video  
[4, 5, 6], and language models [7, 8]. In the quest for higher 
accuracy, the number of DNN model parameters has grown 
tremendously in recent years, making DNN training an 
extremely time-consuming and resource-hungry task [9]. 

With the growing size of DNN models, the memory capacity 
of a training device, or worker, has become a limiting factor 
in solutions, where each device keeps an entire model 
replica [10, 11]. To relax the memory capacity constraint 
within pipelined parallelism, we partition the model layers 
into stages, and assign them to the workers [12, 10]. Each 
worker runs the forward and backward pass for the stage it 
is assigned to and sends layer output and propagated error 
for computing gradients to the next worker node in the 
pipeline for the forward and backward pass computation. 
This basically forms pipelined processing for computing the 
entire forward and backward pass within DNN training. 
When a DNN model grows in the depth dimension with 
more layers, more stages and worker nodes are allocated in 
the pipeline, eliminating the memory capacity per worker as 
a limiting factor in the pipelined training strategy.

To improve the pipelined training efficiency, a minibatch 
is split into several microbatches that are fed into the 
pipeline sequentially, enabling different workers to work on 
the forward or backward passes of different microbatches 
simultaneously [10]. In synchronous SGD (SSGD), all 
workers must be synchronized on every minibatch boundary 
for the optimization step. This leads to the pipeline flush 
[10], which in addition to being expensive also has a 
significant impact on worker node utilization.

Asynchronous SGD (ASGD) enables workers to compute 
gradients over different model versions and minibatches to 
train several iterations simultaneously and therefore spares 
the need of synchronization on the minibatch boundary. 
In this way, pipeline flushing is eliminated, considerably 
improving the worker node utilization.

While ASGD reduces the idle time of workers, it introduces 
two additional problems. The first is gradient staleness, 
which can impact the convergence rate and final test 
accuracy, thereby negating the benefits of improved worker 
node utilization [13, 14]. The second problem is caused by 
multiple model versions. Specifically, multiple gradients and 
optimizer states co-exist in the training system, increasing 
the overall memory footprint [14, 12].

In this paper, we propose a MoRe framework to develop an 
algorithm family for MP pipeline training. The algorithm 
family achieves the convergence rate and final testing 
accuracy of SotA algorithms and reduces their memory 
requirements by a factor of almost 2. To demonstrate our 
framework, we developed two popular algorithms: SGD 
with momentum and AdamW.

Next, we describe the structure of the paper. We start 
with the related work and then point out the motivation 
for our research and its contributions. Then, we describe 
the essence of our proposed method and detail our MoRe 
algorithm family. For each optimizer variant among SGD 
with momentum and AdamW, we describe its master-based 
asynchronous variant and then demonstrate how to turn it 
into an equivalent master-less MoRe MP pipeline memory-
efficient algorithm. We conclude with experimental results, 
showing the merits of our solution.

[15] provides a practical low-rank gradient compression 
technique called PowerSGD for efficient distributed 
training. PowerSGD works by approximating each layer 
in a model independently using a low-rank singular value 
decomposition (SVD). Previous gradient compression works 
such as [16, 17] are incompatible with NVIDIA Collective 
Communications Library (NCCL) AllReduce operations; 
therefore, their speedups vanish with a fast network and 
highly optimized communication backend. On the other 
hand, PowerSGD is fully compatible with NCCL AllReduce 
and thus reduces the communication time (including 
coding and decoding) by 54% for ResNet-18 on CIFAR-10. 
PowerSGD features open-source code and is fully integrated 
in the standard PyTorch library today.

Massive parallelism is required to complete large-scale 
training within a reasonable amount of time. Large batch 
training is the key enabler of massive parallelism, but it 
often compromises generalization performance. Adaptive 
batching is a key technique for training neural networks 
with a very large average batch size while balancing the 
generalization trade-off. Recent work focuses on utilizing 
the gradient noise variance information to adjust batch sizes 
through various rules and measurements. Due to the high 

2.1 Synchronous Methods
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While synchronous methods are based on computing 
gradients from the same central point in the weight search 
space, more recent approaches advocate a new type of 
settings where gradients are computed from different points 
located in a small proximity of the weight search space. 
These settings include Local SGD [22], Decentralized SGD 
[23]], and Delayed Gradient Averaging (DGA) [24]. We 
refer to these settings as sampling staleness, as computing 
gradients from different points of the search space may be 
viewed as sampling gradients from different points, and it 
also resembles gradient staleness that emerges in ASGD 
solutions [25]. The main common goal behind sampling 
staleness approaches is to reduce the idle time of workers 
during gradient merging in SSGD solutions.

cost of analyzing the gradient variance and the second order 
information, existing methods can adapt the batch size only 
at a coarse-grained level. Due to these issues, the batch size 
usually needs to be compromised and large-scale training 
methods that achieve SotA performance still heavily rely on 
manual tuning efforts. [18] provides a practical algorithm 
called SimiGrad for fine-grained adaptive batching that 
supports swift batch size adaption at the iteration level. The 
core component of SimiGrad is a novel lightweight gradient 
variance measurement that can capture the gradient 
variance change per iteration without expensive analysis. 
They theoretically prove why cosine similarity is a good 
measure for gradient variance. SimiGrad is open source and 
is available in PyTorch.

[19] presents Adasum, a new distributed gradient 
aggregation algorithm for large-scale training that attempts 
to emulate a sequential execution in parallel. Its basic idea 
involves combining the individual model updates from 
nodes, each obtained by running a (small) minibatch from 
a starting model, into an update that would result from 
successively running these nodes from the same starting 
model, as in sequential training. They theoretically derive 
a simple Adasum formulation, which works without any 
additional hyperparameters. One of the key aspects of 
Adasum is that it boosts orthogonal gradient settings, that 
is when the workers have orthogonal gradients. The paper 
theoretically justifies Adasum and empirically demonstrates 
that it has a faster convergence rate and can work with 
larger average batch sizes than SSGD. The authors evaluate 
Adasum on both computer vision (ResNet-50 on ImageNet) 
and NLP (BERT) tasks and demonstrate that it is compatible 
with various optimizers such as Momentum-SGD, Adam, 
and LAMB. They provide open-source code with support 
for multiple deep learning frameworks (PyTorch and 
TensorFlow). They also claim that Adasum has been used by 
their company (Microsoft) in production for over three years 
to train various models.

[20] presents a unified framework — Cooperative-SGD —
for the design and analysis of local-update SGD algorithms. 
Cooperative-SGD subsumes existing communication-
efficient SGD algorithms such as periodic-averaging (Local 
SGD), Elastic Averaging SGD (EASGD), and Decentralized 
SGD (DPSGD), providing convergence guarantees. 
C o o p e ra t i v e - S G D  e n a b l e s  t h e  d e s i g n  o f  n e w 
communication-efficient SGD algorithms that strike the best 
balance between reducing communication overhead and 
achieving fast error convergence with a low error floor. The 
core of the framework is a mixing matrix W  that defines the 
communication connectivity between different workers. This 

mixing matrix can be quite flexible, and it supports auxiliary 
variables such as anchor parameters. It requires the 
magnitudes of all eigenvalues except the largest one to be 
strictly less than one. The framework theoretically derives 
the trade-off between synchronization frequency and the 
mixing matrix sparsity. The paper later validates this with 
empirical experiments on CIFAR-10. The framework derives 
a theoretical optimal hyper-parameter α for the EASGD 
algorithm, indicating the elasticity of the algorithm.

[21] proposes a new distributed algorithm — Leader SGD 
(LSGD) — that is heavily based on the previous EASGD 
algorithm. In LSGD, parameter updates rely on two factors: 
a regular gradient step and a corrective direction dictated 
by the currently best-performing worker (leader). They 
theoretically analyze LSGD under the strongly convex 
setting and claim that LSGD is communication efficient as 
only the leader needs to broadcast all of its parameters. 
They evaluate LSGD on matrix completion, CIFAR-10, and 
ImageNet .  The LSGD algor i thm also supports an 
asynchronous variation. In the LSGD setting, workers are 
d iv ided in to  loca l  groups  based on the  re la t i ve 
communication speed. The key concept of LSGD is that 
workers are pulled toward the local/global leader rather 
than the central mass. In LSGD, workers are pulled toward 
the local leader in every τ  iterations and pulled toward the 
global leader in every τG iterations. Adjusting these 
synchronization frequencies allows LSGD to adjust the 
amount of exploration. On CIFAR-10, LSGD outperforms the 
EASGD and SSGD algorithms; however, on ImageNet, it fails 
to achieve high accuracy and is outperformed by SSGD.

2.2 Hybrid Sync-Async Methods
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Figure 1 D-SGD example

There are two camps in optimization literature. In most 
optimization approaches, sampling staleness is viewed 
as a noise, whose negative impact should be minimized. 
However, a few recent approaches show that sampling 
staleness, when managed deliberately, does not compromise 
the convergence rate and generalization, but instead, 
improves them over the single-worker baseline. In the 
following section, we review some work from both camps.

D-SGD paper

The first paper we cover is on consensus control in 
decentralized training [23]. In Decentralized SGD (D-SGD), 
as opposed to SSGD, nodes are only partially connected and 
several iterations are required to propagate a gradient from 
one node to all other nodes, as shown in Figure 1. In 
general, the higher the graph connectivity is, the fewer the 
iterations are needed to perform this gradient propagation. 

N nodes solve the following problem:

f∗ = min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) , (1)

where fi(x) = Eξ∈Di
[Fi(x, ξ)].

Each worker i ∈ [n] maintains local parameters xt
i ∈ Rd and 

updates them as

xt+1
i =

∑
j

= 1nwi,j(x
t
j − η∇Fj(x

t
j , ξ

t
j))

through a stochastic gradient step based on a sample, 
followed by gossip averaging with neighboring nodes in the 
network encoded by the mixing weights wi,j.

We define x̄ = 1

n

∑
n

i=1
xi ,  X = [x1, . . . , xn] ∈ R

d×n ,  and 
X̄ = [x̄, . . . , x̄] = X

1

n
11

T .

The D-SGD analysis requires the following assumptions:
•	 Assumption 1: (Mixing matrix). Every sample of the 

(possibly randomized) mixing matrix W = {wi,j} ∈ Rn×n 
is doublly stochastic and there is a parameter p > 0, s.t. 

EW [||XW − X̄||2F ] ≤ (1− p)||X − X̄||2F  for any X ∈ Rd×n.

•	 Assumption 2: (L-smoothness) ||∇fi(x)−∇fi(y)|| ≤ L||x− y|| .

•	 Assumption 3: (Bounded noise and diversity). There are 

constants σ2 and ξ2, s.t. for any x1, . . . , xn ∈ R
d, 

1

n

n∑
i=1

Eξi [||∇Fi(xi, ξi)−∇fi(xi))||22] ≤ σ2

 

and

1

n

n∑
i=1

Eξi [||∇fi(xi)−∇f(xi)||22] ≤ ξ2
.

Next, we point out the gap in the convergence rate between 
D-SGD and SSGD. To ensure 

1

T

T−1∑
t=0

E[||∇f(x̄t)||22] ≤ ϵ ,
 

D-SGD requires O( σ2

ηϵ2
+

√

pσ+ξ

pϵ3/2
+ 1

pϵ
) steps for step size 

γ ≤ O( p

L
), while SSGD requires O( σ2

ηϵ2
+ 1

ϵ
) steps for step 

size γ ≤ O( 1

L
).

To reduce the gap between the convergence rate of D-SGD 
and SSGD, we first introduce the consensus distance

Ξ2
t =

1

n

n∑
i=1

||x̄t − xt
i||

and define Critical Consensus Distance (CCD) 

Γ2
t =

1

Ln
γσ2 +

1

8L2
||∇f(x̄t)||2.

The paper's analysis shows that if Ξ2

t
≤ Γ2

t , we can choose a 

larger step size γ ≤ O( 1

L
) and recover the convergence rate 

of SSGD to O( σ2

ησ2
).

These results conclude the analytical part of the paper. We 
then start the empirical validation of importance for CCD.

For CNN experiments, this paper chooses CIFAR-10 and 
ImageNet problems and the step decay learning rate (LR) 
schedule. Let Ξmax be the typical consensus distance in an 
uncontrolled D-SGD experiment. Then, in a controlled 
experiment, one of the LR constant spans is chosen, and its 

consensus distance is set to α · Ξmax , for α ∈ (0, 1], e.g. 

1, 1

2
,
1

4
,
1

8
, etc., as shown in Figure 2. More gossip iterations 

are used to control the consensus distance. For the other 
spans, the experiments used SSGD, which ensures α = 0.

0.00
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0.08

1.00

0 25 50 75 100 125 150

Step decay

for the middle step

Figure 2 Controlled CCD experiment

(1)
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The preceding experiments lead to the fol lowing 
observations. The initial LR span is the most critical one. 
Large consensus distances at the initial LR span may lead 
to generalization loss that cannot be recovered with more 
iterations. The preceding findings are consistent with 
the findings in Local SGD [26]. When a large consensus 
distance is allowed at the middle of LR spans, the accuracy 
of the CCD training surpasses the accuracy of a single-
worker baseline. The last LR spans are mostly unaffected by 
consensus distance.

To conclude, our review of this paper confirms that it 
supports our intuition: If used in a controlled manner, 
sampl ing sta leness i s  harmless and can improve 
generalization and convergence rate, compared to a single-
worker baseline.

Local SGD paper

Next, we cover paper [22] from the realm of Local SGD. 
Within Local SGD, each worker performs τ  local steps, as 
depicted in Figure 3, where τ  is a parameter of the 
algorithm. The problem setting of this paper follows 
problem definition (1).

Figure 3 Local SGD

Next, we list the assumptions of this paper.

•	 Assumption 1 (Heterogeneity). {fi}ni=1 is second-order  
ζ-heterogeneous, i.e., for any i; i′ ∈ [n],

||∇2fi(x)−∇2fi′ (x)|| ≤ ζ, ∀x ∈ Rd .

•	 Assumption 2 (Smoothness). For any i ∈ [n] and 
ξ ∈ supp(Di), �(·, ξ) is L-smooth, i.e.,

||∇ℓ(x, ξ)−∇ℓ(y, ξ)|| ≤ L||x− y||, ∀x, y ∈ Rd .

•	 Assumption 3 (Existence of global minimum). f  has a 

global minimizer x∗ ∈ Rd .

•	 Assumption 4 (Bounded gradient variance). For every 
p ∈ [P ],

Ez∼Dp ||∇�(x, ξ)−∇fp(x)2||2 ≤ σ2 .

Note that the authors of this paper point out that 
Assumption 2 implies ξ ≤ 2L, i.e., the heterogeneity is 

bounded by the smoothness. The paper views sampling 
staleness as noise and examines four techniques to reduce 
i ts  negat ive impact :  local izat ion,  b ias reduct ion, 
stochastization, and variance reduction. Next, we discuss 
each technique separately.

•	 Loca l i za t ion .  In  loca l  methods ,  each  worke r 
independently optimizes the local objective and 
periodically communicates the current solution, as 
shown in Figure 3. To an extent, the local gradient 
∇fi(x) can be regard as a biased estimator of the global 
gradient ∇f(x). One of the limitations of Local SGD is 
the existence of the local gradient's ∇fi(x) potential bias 
to approximate the global one ∇f(x) for heterogeneous 

l o ca l  ob j e c t i ve s  {fi}ni=1 .  The  i n t roduced  b i a s 
||∇fi(x)−∇f(x)|| does not usually converge to zero as 
x → x

∗

.

•	 Bias reduction. The paper introduces a bias reduction 
technique for the local gradient. Concretely, the local 

estimator is constructed ∇fi(x)−∇fi(x) +∇f(x0) to 
approx imate ∇f(x) .  Here ,  x0  i s  the prev ious ly 
communicated solution. Under the second order  
ζ -heterogene i t y,  the b ias  can be bounded as 
||∇fi(x)−∇fi(x0) +∇f(x0)−∇f(x)|| ≤ ζ||x− x0||

meaning that the bias converges to zero as x  and 
x0 → x∗. Therefore, the bias of the introduced estimator 
is reduced by utilizing the periodically computed global 

gradient ∇f(x).

•	 Stochastization. To avoid expensive computation of the 

gradient over the entire training set, gradient ∇ℓ(x, ξ) 
can be computed over a single sample ξ ∼ Di  to 

approximate ∇f(x) = Ez∼D[∇ℓ(x, ξ)]. While stochastization 
reduces the computational cost of gradient computation, 
it leads to higher variance, affecting convergence speed. 
Stochastization can be introduced into the bias-reduced 

e s t ima to r  a s  ℓ(x, ξ)− ℓ(x0, ξ) + (1/n)
∑

n

i=1
ℓ(x0, ξi′ ) , 

where ξ ∼ Di, ξ
′ ∼ Di′ for i′ ∈ [n].

•	 Variance reduction. The authors of this paper introduce 
a variance reduction technique to reduce the variance of 
the gradient estimator due to local gradient estimation. 
The essence of variance reduction is utilization of the 

periodically computed full gradient ∇f(x). In non-
distributed cases, a variance-reduced estimator is 

defined as ∇ℓ(x, ξ)−∇ℓ(x0, ξ) +∇f(x0) with ξ ∼ D. The 
e s t i m a t o r  i s  u n b i a s e d ,  a n d  i t s  v a r i a n c e 

Eξ∼D||∇ℓ(x, ξ)−∇ℓ(x0, ξ) +∇f(x0)−∇f(x)||2  c an  be 
bounded by L2||x− x0||

2, where L is the smoothness 
parameter of ℓ. If x and x0 → x

∗

, the variance converges 
to zero. Therefore, the estimator reduces the variance 

,
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caused by stochastization and maintains computational 
efficiency by using periodically computed global full 
gradients. Next, the authors of this paper show an 
algorithm that uses variance reduction twice: once prior 
to the local steps and then at the local steps. The 
algorithm runs on a single-layer neural network 
architecture and CIFAR-10 dataset. The authors of this 
paper show that their method is first to break the 

barrier of the 1/ϵ barrier of communication complexity, 
when the local computation budget is → ∞.

Algorithm 2.1: DGA

Initialize: each worker with xi
1,1 = x1 for i ∈ [N ], the 

number of local updates K , and the delayed parameter 
D ≥ 1. Define s = (D − 1)//K  as the integer quotient.
1:  for rounds t = 1, ..., T  do
2:     for client i in parallel do

3:        Set xi
t,1 = xi

t−1,K+1 as the last iterate at round (t− 1)

4:        for k = 1, . . . ,K  do

5:            Sample the stochastic gradient git,k at the previous 
iterate xi

t,k and update
6:           if k ̸= D( mod K) or t− 1− s < 1 then

7:              xi
t,k+1 = xi

t,k − ηgit,k

8:           else if k = D( mod K) and t− 1− s ≥ 1 then

9:             xi
t,k+1 = xi

t,k − η(git,k −mi
t−1−s + m̄t−1−s)

10:          end if

11:         where mi

t−1−s is the accumulated gradient (see 
line 13) at the earlier round t− 1− s, m̄t−1−s is 

the average of mi

t−1−s among all clients, i.e., 
m̄

i

t−1−s
= 1

N

∑
i
m

i

t−1−s.
12:      end for
13:      Send the t-th round accumulated gradient 

mi
t =

∑K
k=1 g

i
t,k to all other clients.

14:   end for
15: end for

16: return x̄T = 1
N

∑N
i=1 x

i
T,K+1

DGA paper

Next, we turn to delayed gradient techniques [24]. One 
of the pains of synchronous training is worker idle time 
during gradient merging, especially in federated learning 
scenarios. Delayed gradient approaches reduce this pain by 
overlapping gradient computation and gradient merging or 
averaging.

The problem setting of this paper also follows problem 
definition (1). Let τg be the time needed to compute a 
single gradient, and τc be the communication time, and  

D = ⌈ τc
τg

⌉ be normalized communication cost — one 
communication round takes the same time as D gradient 
updates. 

Next, we describe the assumptions of the paper.

•	 Assumption 1 (L-smoothness). 
||ℓ(x, ξ)− ℓ(y, ξ)|| ≤ L||x− y||.

•	 Assumption 2 (Bounded gradients and variances). 

E||∇ℓi(x, ξ)||2 ≤ G and E||∇ℓi(x, ξ)−∇fi(x)||2 ≤ σ2.

To simplify the description of the paper, we assume that the 
number of local steps K  is equal to D, i.e., K = D. Now, we 
describe the DGA algorithm in Algorithm 2.1. To hide the 
communication latency, at each round, DGA in parallel allows 
each worker to compute K  gradients, advancing local 
weights along the path of K  gradients, and aggregates the 
paths of length K  from each worker of the previous round.

Note that when the aggregated paths from the previous 
round arrive, each worker applies the variance reduction 
technique from [22] in line 9 to reduce the variance of using 
a smaller local minibatch.

Next, the authors of this paper analyze the convergence 
rate of DGA and prove the following result:

Corollary 2.3.1. When the function f  is lower bounded with 
f(w1)− f

∗ ≤ ∆  and the number of rounds T  is large 
enough such that T > N/(K +D), then set the step size 
η =

√

N

L

√
T (K+D) yields 

1

TK

T∑
t=1

K∑
k=1

E[||∇f(x̄t,k)||2] =

O

(
2L∆+ σ2

√
NTK

·
√

1 +
D

K
+

N(K +D)

T

)
.

Note that this result is better than the results of SotA 

FedAvg algorithm by a factor of K+D
K .

Finally, the authors of this paper show, via experiments on 
CIFAR-10 and ImageNet, that they can withstand delays of 
up to 20 gradients without significant loss in test accuracy, 
compared with the completely synchronous counterpart.

3 MoRe Related Work

3.1 MP Pipeline Variants

In this section, we summarize the main ideas of pipelined 
training, which are related to our setting. [12] proposed 
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4 Motivation
5 Contributions

4.1 High Levels of Staleness

4.2 High Memory Requirements

3.2 ASGD Methods for MP Pipeline 
Training

PipeDream — an efficient asynchronous pipeline training 
algorithm. PipeDream uses weight stashing and vertical 
sync, which result in asynchronous updates of weights with 
a constant staleness above one. [27] proposed PipeDream-
2BW — a memory-efficient pipeline training algorithm. 
It assumes the number of microbatches per minibatch is 
at least the same as the number of stages. [27] uses this 
assumption to develop a double-buffered weights scheme to 
ensure a small memory footprint and maintain the gradient 
staleness at 1. PipeMare [28] adapts the model weights and 
reduces the learning rate in the subsequent pipeline stages. 
On the one hand, this reduces the memory requirements. On 
the other hand, it may lead to a slower convergence rate.

In this section, we summarize the ASGD algorithms used for 
pipeline training. The Delay Compensation method [29] 
obtains a stale gradient, and uses it to approximate the 
gradient at the current iterate and make the optimization 
step. At a high scale, the approximation quality drops, 
leading to poor generalization. Staleness-aware ASGD [13] 
penalizes a gradient by its staleness. Since staleness is not 
always the right penalty measure, generalization with this 
method rapidly degrades as the number of workers increases. 
DANA-GA [25] uses a combination of parameter prediction 
and gradient penalization using a gap as a more appropriate 
penalization measure. While this method excels at good 
generalization, even at a high scale, it uses SGD with the 
momentum optimizer for each worker, needing two buffers 
per worker to store weights and momentum with the total 
memory requirement of at least 2N  buffers for N workers.

As we mentioned, [27] assumes the number of microbatches 
per minibatch is at least the same as the number of stages. 
[27] uses this assumption to develop a memory-efficient 
solution. In this section, we show that the continuously 
increasing model depth and limitations on minibatch and 
microbatch sizes lead to the setting in which the above 
assumption of [27] does not hold, i.e. setting, where there 
are fewer microbatches per minibatch than stages, making 
the solution of [27] inapplicable.

As we focus on a setting with a high level of staleness, we 
need an asynchronous solution to cope with this staleness 
without compromising test accuracy. As demonstrated 
in section 3.2, DANA-GA [25] is the only asynchronous 
solution that meets this demand but with high memory 
requirements, limiting the affordable model size and 
therefore compromising the goal of MP pipeline execution 
when training very large models. Table 1 summarizes the 
memory requirements of DANA-GA.

DANA-GA [25] is the SotA in ASGD training. However, its 
memory requirements are considerably high — at least 2N  
memory buffers for N workers.  In this work, we develop 
MoRe — a family of ASGD algorithms for pipelined training 
that achieve a better trade-off than DANA-GA . As 
demonstrated in section 8, for the SGD with momentum 
optimizer, the MoRe framework significantly reduces the 
memory requirements without compromis ing the 
convergence rate and final test accuracy. For the AdamW 
optimizer, MoRe improves the final test accuracy with only a 

First, in large-scale DNN training, the minibatch size is 
limited from above, since minibatches that are too large 
may affect the convergence rate [30]. On the other hand, 
for efficient processing, the microbatch size is limited from 
below. The preceding upper bound on the minibatch size 
and lower bound on the microbatch size lead to an upper 
bound on the number of microbatches per minibatch.

Next , we examine a lower limit on the number of 
microbatches to fill in the pipeline. In pipelined training, 
each microbatch traverses each stage twice for forward and 
backward passes, before a gradient is computed for all the 
stages [10, 27]. For this reason, to minimize the pipeline 
bubbles, at least twice as many microbatches as stages 
should be concurrently processed in the pipeline [27].

As very large DNN models are likely to be split into more 
stages, more microbatches are required to fill in the pipeline. 
With a limited number of microbatches per minibatch, we 
need more minibatches to fill in the pipeline, leading to a 
setting where there are fewer microbatches per minibatch 
than stages and the staleness increases to above one. In this 
work, we focus on providing a solution for this setting.
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6 Proposed Method

6.1 Momentum Reconstruction 
Foundation

6.3 Simulating MP Pipeline Execution

6.2 Bridging over DP and MP 
Terminology

minor increase in memory requirements, compared to 
DANA-GA. Also, Table 1 shows that MoRe and DANA-GA 
have a similar computational overhead.

In DANA-GA [25], each worker manages two buffers: for 
the parameters and the momentum, leading to a high 
memory demand. To cope with this problem, we developed 
the Momentum Reconstruction (MoRe) technique, which 
allows us to compute the value of per-worker momentum 
from the parameters of two workers. Therefore, if the 
algorithm stores per-worker parameters, it can compute the 
value of the per-worker momentum on the fly, eliminating 
the need of the momentum buffer. For this reconstruction, 
MoRe relies on the round-robin order of worker updates.

Note that the term worker  has different meanings in data 
parallel (DP) and MP pipeline settings. In DP settings, a 
worker denotes a separate computational unit that stores a 
model replica and has access to training data for computing 
gradients. In the context of the MP pipeline execution, a 
worker is a set of devices responsible for computing the 
forward and backward passes of a stage — a part of the 
model. In this paper, we discuss ASGD algorithms in the 
context of the MP pipeline execution and associate a worker 
with a model version that the pipeline manages at a certain 

Figure 4 Pipeline execution example with four stages

Let L denote the loss function and x(i)
t  denote the model 

parameters of worker i, which were assigned to this worker 
at time t. We assign worker indexes i as iteration t modulo 
the number of workers, i.e., i = t mod (N). Let us recall that 
according to our definition of a worker in the pipeline 
setting, the pipeline with N  workers manages at each 
moment N model versions. We arrange them in a cyclic 
buffer of length N . Figure 5 illustrates this representation. 
The pipeline updates the workers' parameters in a round-
robin manner. According to the MP pipeline execution 
model, at iteration t , worker i  completes computing 

gradient g(i)

t−N
= ∇L(x

(i)

t−N
; ξt−N ) over its parameters x(i)

t−N
 

and minibatch ξt−N  and uses it to update the up-to-date 

model in the pipeline, i.e., x(i−1)

t−1
, resulting in the following 

updated parameters of worker i: 

x
(i)
t = x

(i−1)
t−1 − f(g

(i)
t−N ), (2)

where f  represents any optimization technique, such as 
momentum, Adam, etc. As gradient g(i)

t−N
 is computed on 

parameters x(i)

t−N
 and merged into x(i−1)

t−1
, the staleness in 

MP pipeline computation with N workers is N − 1.

time. In other words, the term worker, in our context, refers 
to a logical entity associated with a model version that the 
pipeline uses to compute a gradient. Let us consider Figure 4, 
where wi is worker i, Mj is model j, and tk is time k. When 
at times t12 and t15, the pipeline starts the forward pass on 
model M0, using microbatches 5 and 6. We associate worker 
w3 with this model. In DP terminology, we say that worker 
w3  starts the forward pass at t imes t12 and t15 on 
microbatches 5 and 6, finishes the backward pass, and 
merges the resulting gradient into model M2 at time t26. 

(2)
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Update 
direction

Figure 5 Cyclic execution in the pipeline with the current update 
x
(1)
t = x

(4)
t−1 − f(g

(i)
t−N

)

7 a-SlowMo Algorithm Family

SlowMo [31] is a synchronous framework that allows 
unification of numerous existing SotA training algorithms, 
e.g., Lookahead Optimizer [32] and Local SGD [33]. Based 
on the SlowMo foundation, we develop a new family of 
ASGD algorithms.

7.1 a-SlowMo

7.2 a-SlowMo SGD with Momentum

7.3 Proposed MoRe SGD with 
Momentum

We start by turning SlowMo, Algorithm A .1, into its 
asynchronous variant (a-SlowMo) in Algorithm 7.1. To 
achieve this goal, we remove the workers' synchronization 
after the inner loop is over. 

DANA-GA uses prediction of the master parameters, based 
on the sum of the per-worker momentum, for staleness 
mitigation. Our a-SlowMo variant achieves the same goal 
using the slow momentum, making a-SlowMo particularly 
suitable for asynchronous training.

Algorithm 7.1: Asynchronous SlowMo: a-SlowMo

Input: Base optimizer with learning rate γt; Inner loop steps 
τ ; Slow learning rate α; Slow momentum factor β; Number 
of worker nodes m. Initial point x0,0 and initial slow 
momentum buffer u0 = 0.

1:   for t ∈ {0, 1, ..., T − 1}, where worker i = t mod (N) do
2:     Reset/Maintain/Average base optimizer buffers of 

worker i
3:       for k ∈ {0, 1, ..., τ − 1} do

4:           Base optimizer step: x(i)
t,k+1 = x

(i)
t,k − γtd

(i)
t,k 

5:       end for

6:       Update master:  xt+1 = xt + α(x
(i)
t,τ − x

(i)
t,0) 

7:       Update slow momentum: ut+1 = βut +
1
γt

(x
(i)
t,0 − x

(i)
t,τ ) 

8:       Update outer iterates of worker i: x(i)
t+1,0 = xt+1 − αγtut+1 

9:   end for

Next, we specialize the general formulation of a-SlowMo, 
Algorithm 7.1, resulting in Algorithm 7.2. First, we assume 
that τ = 1 and remove the inner loop. We follow DANA-GA 
and allow each worker to maintain its own momentum in 

the buffer m(i)
t  with m(i)

t = d
(i)
t,0 . For this reason, each 

worker manages two buffers: one for the model parameters 
and one for momentum.

We add weight decay in line 4 and gradient normalization in 
line 5, as we described in section 7.4. Note that we added the 

term −α(γt−1 − γtβ)ut to the master update rule in line 7, 
which does not show up in Algorithm 7.1. This term allows us 
to reconstruct the value of the per-worker momentum, as we 
show in Lemma 7.1.

Algorithm 7.2 uses the master weights and slow momentum, 
and it does not follow the pipeline execution model as 
in PipeDream. Next, we transform Algorithm 7.2 into an 
equivalent algorithm that follows this model.

Algorithm 7.2: a-SlowMo SGD with momentum
Input: Base optimizer with learning rate γt; Slow learning 
rate α; Slow momentum factor β; Fast momentum factor µ; 
Initial parameters x as initial master parameters and initial 
parameters of each worker, initial per worker momentum 
m

(i)
t,k ← 0 and initial slow momentum buffer u0 = 0.

1:   for t ∈ {0, 1, ..., T − 1}, where worker i = t mod (N)  do
2:      Base optimizer step:

3:      Compute gradient: g(i)

t
 of worker i 

4:      Add weight decay: g(i)

t
= g

(i)

t
+ λx

(i)

t+1−N

5:      g
(i)

t
← normalize gradient

(
g
(i)

t

)

6:       Update momentum: m(i)

t
= µm

(i)

t−N
+ g

(i)

t

7:       Update master: xt+1 = xt − αγtm
(i)

t
− α(γt−1 − γtβ)ut 

8:       Update slow momentum: ut+1 = βut +m
(i)

t
 

9:       Update outer iterates of worker i: 
x
(i)

t+1
= xt+1 − αγtut+1 

10:   end for

In this section we show how to shape Algorithm 7.2 into 
MoRe MP pipeline version. Lemma 7.1 shows how to 
reconstruct per-worker momentum.

Lemma 7.1. (Proof in Appendix B) In Algorithm 7.2

m
(i)
t = −

1

2αγt
(x

(i)
t+1 − x

(i−1)
t ). (3)(3)
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Next, Lemma 7.2 allows us to shape Algorithm 7.2 into the 
MP pipeline form. It shows a recursive expression to 
compute the parameters of worker i at iteration t+ 1 from 
the parameters of worker i− 1 at iteration t.

Lemma 7.2. (Proof in Appendix B) In Algorithm 7.2, lines 7, 8, 

and 9, we can replace the computation of x(i)
t+1,0 with the 

following equivalent recursive expression:

x
(i)
t+1 = x

(i−1)
t + µ

γt

γt−N
(x

(i)
t−N+1 − xprev)− 2αγtg

(i)
t . (4)

Now, we use Lemma 7.2 to re-write Algorithm 7.2 in an 
equivalent form that suits MP pipeline execution model, 
resulting in Algorithm 7.3. Note that Algorithm 7.3 does not 
operate with the master parameters and slow momentum. 
However, they are still used implicitly due to the equivalence 
of Algorithms 7.2 and 7.3.

Algorithm 7.3: MoRe SGD with momentum
Input: Base optimizer with learning rate γt; Slow learning 
rate α; Fast momentum factor µ; Initial point x0,0.

1:   for t ∈ {0, 1, ..., T − 1}, where worker i = t mod (N) do

2:       Compute gradient g(i)

t
 of worker i 

3:       Add weight decay: g(i)

t
= g

(i)

t
+ λx

(i)

t+1−N

4:       Reconstruct momentum of the previous round: 
∆t−N = −(x

(i)

t−N+1
− xprev)

5:       Store weights of worker i: xprev = x
(i)

t−N+1 

6:       g
(i)

t
← normalize gradient

(
g
(i)

t

)

7:       Update outer iterates of worker i: 
x
(i)
t+1 = x

(i−1)
t − µ γt

γt−N
∆t−N − 2αγtg

(i)
t  

8:  end for

Memory analysis

Algorithm 7.3 uses one memory buffer to store the previous 
parameters in line 5. Procedure normalize gradient uses 
two buffers, as shown in section 7.4, leading to three buffers 
for the entire algorithm. In addition, each worker uses a 
single buffer to store weights. Therefore, Algorithm 7.3 
requires N + 3 buffers for N workers.

In ASGD settings, we can observe short growth bursts in a 
certain entry of gradients along consecutive optimization 
iterations. Figure 6 shows such a burst at entry j. Gradient 

g
(i)
t−τ is computed at time t− τ , at the burst, and merged 

at time t, when the burst is over. Therefore, at time t, the 
value of the gradient at entry j significantly different 

7.4 Gradient Burst Problem and its 
Solution with Normalization

f rom i t s  va lue  a t  t ime  t− τ ,  wh i ch  can  l ead  to 
optimization instability. 

Figure 6 Burst of gradient growth

To cope with the burst problem, we propose gradient 
normalization, as outlined in Algorithm 7.4. When the 
momentum factor β1 of the second moment zt is much larger 
than the momentum factor β  of the normalization 
momentum vt, e.g., β1 = 0.999 and β = 0.9, the second 
moment zt is almost unaltered by a short burst, while the 
normalization momentum vt might be amplified by it. In this 
case, entry j of the normalization vector V  is large; therefore, 

it normalizes the outdated value at entry j of gradient g(i)

t
.

Algorithm 7.4: Procedure: normalize gradient

Context; Learning rate γt of the base optimizer;  Normalization 
momentum factor β; Second moment factor β1; Momentum 

m
(i)

t−N
 of worker i.

Input: Gradient g(i)

t
 of worker i.

Output: Normalized gradient g(i)

t
.

1:   Update second moment: zt+1 ← β1zt + (1− β1)(m
(i)

t−N
)2 

2:   Compute the bias-corrected second moment: 

ẑt+1 ← zt+1/(1− βt+1

1
) 

3:   Calculate normalization vector:  V = γt

γ0

|v̂t|√
ẑt+1+ǫ

+ 1
d
 

4:   Normalize gradient: g(i)

t
= 1

V
· g

(i)

t  
5:   Update normalization momentum: vt+1 = βvt + g

(i)

t
 

6:   Update bias-corrected normalization momentum: 
v̂t+1 ←

vt+1

1−βt+1  
7:   Return normalized gradient: g(i)

t

7.5 a-SlowMo AdamW, Master-Based

In this section, we extend a-SlowMo to the Adam [34] and 
AdamW algorithms [35]. We start with adapting Algorithm 
7.2 to AdamW, resulting in Algorithm 7.5. 

Algorithm 7.3 reconstructs the momentum of a worker 
using linear operations. However, the Adam update rule 

(4)
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7.6 Proposed MoRe AdamWinvolves element-wise division of the first moment by the 
second moment, which is not linear, breaking the basis of 
our momentum reconstruction. To cope with this non-
linearity, we note that to estimate the second moment, the 
Adam algorithm uses a large constant, e.g., 0.999, leading 
to a very slow change in the second moment estimation. 
This allows us to freeze the value of the second moment 
estimation in line 8 for N  consecutive iterations with a 
negligible effect on the convergence rate. In turn, the 
freezing enables us to reconstruct the first moment of a 
worker by falling back to linear operations.

Note that we use expressions of the form mt+1 = µmt + gt+1  
to compute moment estimations. In Appendix E, we follow [34] 
and show that we should use bias correction via division of 

the momentum by 1−µt

1−µ .

Algorithm 7.5 uses master weights and slow momentum, 
and it does not follow the pipeline execution model as in 
PipeDream. In the next section, we transform Algorithm 7.5 
into an equivalent algorithm that follows this model.

Algorithm 7.5: AdamW in a-SlowMo framework
Input: Base optimizer with learning rate γt; Slow learning 
rate α; Slow momentum factor β; Fast momentum factor µ; 
Initial parameters x of master and each worker; Initial per 

worker momentum m(i)

t
← 0 ; Initial slow momentum 

buffer u0 = 0. [g(i)

t
]2 indicates the element-wise square 

g
(i)

t

⊙
g
(i)

t
.  Constants β2 = 0.999 and ϵ = 10−8;  Second 

moment estimate y0
= 0; Weight decay factor λ.

1:  for t ∈ {1, 2, ..., T}, where worker i = t mod (N) do

2:    Compute gradient: g(i)
t  of worker i

3:    g
(i)
t ← normalize gradient

(
g
(i)
t

)
 

4:    Update first moment estimate: m(i)
t = µm

(i)
t−N + g

(i)
t  

5:    Update second moment estimate: yt = β2yt−1 + [g
(i)
t ]2

6:    Compute bias-corrected first moment estimate: 

m̂
(i)
t = m

(i)
t (1− µ)/(1− µ�t/N�)

7:    if (t− 1) mod N = 0 then
8:    Discretize bias-corrected second moment estimate: 

ŷ = yt(1− β2)/(1− βt
2)

9:     end if

10:   Compute ratio: rt = m̂
(i)
t /(

√
ŷ + ε) + λx

(i−1)
t,0

11:   Update master: xt+1 = xt − αγtrt − α(γt−1 − γtβ)ut 
12:   Update slow momentum: ut+1 = βut + rt

13:   Update outer iterates of worker i: 

x
(i)
t+1 = xt+1 − αγtut+1 

14:  end for

Lemma 7.3 shows that in Algorithm 7.5, it is redundant 
to store momentum buffers since their values may be 
calculated from the values of per-worker parameters.

Lemma 7.3. (Proof in Appendix B) In Algorithm 7.5

m
(i)
t = −V̄t

1− µ�t/N�

1− µ

(√
ŷ + ε

)⊙

(
1

2αγt
(x

(i)
t+1 − x

(i−1)
t ) + λx

(i−1)
t

)
. (5)

Lemma 7.4 allows computing the parameters of worker i at 
iteration t+ 1 from the parameters of worker i− 1 at 
iteration t, shaping Algorithm 7.5 into MP pipeline form.

Lemma 7.4. (Proof in Appendix B) In Algorithm 7.5, line 13, 

we can replace the computation of x(i)
t+1,0 with the following 

equivalent recursive expression:

x
(i)
t+1 = x

(i−1)
t + STEPt ,

where

STEPt = µat

√
ŷprev + ε√
ŷ + ε

⊙(
−bt∆t−N + ctx

(i−1)
t−N

)

− dt
g
(i)
t√
ŷ + ε

− ctx
(i−1)
t ,

at =
V̄t−N

V̄t

1− µ�(t−N)/N�

1− µ�t/N� , bt =
γt

γt−N
,

ct = 2αγtλ , dt =
2αγt

V̄t

1− µ

1− µ�t/N�

We use Lemma 7.4 to shape Algorithm 7.5 in an MP 
pipeline form, as in PipeDream, resulting in Algorithm 7.6.

Algorithm 7.6: MoRe Adam
Step: STEPt is computed according to Lemma 7.4.
Input: Base optimizer with learning rate γt; Fast momentum 
factor µ; Initial parameters x as initial master parameters 
and initial parameters of each worker; Initial slow 

momentum buffer u0 = 0. [g(i)

t
]2 indicates the element-wise 

square g(i)

t

⊙
g
(i)

t
. Constants β2 = 0.999 and ǫ = 10−8; 

Second moment estimate y0
= 0, previous discrete second 

moment estimate ỹprev
= 1.

1:  for t ∈ {0, 1, ..., T − 1}, where worker i = t mod (N) do

2:      Compute gradient: g(i)
t  of worker i

3:      if (t− 1) mod N = 0 then
4:         Store the previous bias-corrected discrete second 

moment estimate: ŷprev = ŷ

(5)



182 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

5:      end if
6:      Compute the difference of the parameters: 

∆t−N = −(x
(i)
t−N+1 − xprev)

7:      Store the weights of worker i: xprev = x
(i)
t−N+1

8:      g
(i)
t ← normalize gradient

(
g
(i)
t

)

9:      Update second moment estimate: 

yt = β2yt−1 + [g
(i)
t ]2

10:    if (t− 1) mod N = 0 then
11:       Discretize bias-corrected second moment estimate: 

ŷ = yt(1− β2)/(1− βt
2)

12:    end if
13:    Update outer iterates of worker i: 

x
(i)
t+1 = x

(i−1)
t + STEPt

14:  end for

Memory analysis

Procedure gradient normalization uses two memory buffers. 
Algorithm 7.6 uses three memory buffers to store the 
previous value of the discretized second moment estimation 
in line 4, the value of the discrete second moment 
estimation in line 11, and the previous parameters of worker 
i in line 7. Therefore, Algorithm 7.6 uses five memory 
buffers for the entire algorithm and a buffer per each 
worker, resulting in N + 5 buffers for N workers.

8 Experiments

We test MoRe on large scale vision and language tasks, 

using SGD with momentum and AdamW optimizers, 

respectively. We keep the canonical hyper-parameters used 

to train the networks, except for scaling of the minibatch 

sizes and the learning rate.

Table 1 summarizes the memory requirements of MoRe 

and DANA-GA as a function of the number of workers. For 

SGD with momentum, MoRe reduces memory requirements 

nearly by a factor of two, as compared to DANA-GA, while 

closely following the final test accuracy and convergence 

rate of the baseline, as shown in Table 2. For Adam, the 

memory requirements of MoRe and DANA-GA are almost 

the same. However, Table 3 shows that MoRe closely 

follows the convergence rate and the validation loss of the 

baseline while Table 4 shows that the convergence rate and 

final test accuracy of DANA-GA rapidly drop as the number 

of workers increase.

The most t ime-consuming operations are gradient 

computation and vector operations do not add a significant 

computational overhead. Still, Table 1 shows that MoRe 
and DANA-GA have a similar number of vector operations. 
Appendix G details the counting of vector operations.

Optimizer #Buffers #Vector Ops

DANA-GA, SGD 2N + 3 23

MoRe, SGD N + 3 20

DANA-GA, Adam N + 4 28

MoRe, Adam N + 5 30

Table 1 DANA-GA and MoRe computational overhead and memory 
requirements in the number of memory buffers for N workers, for SGD with 

momentum and Adam variants.

While MoRe is designed for pipelined execution, our 
experiments take the cyclic-buffer simulation approach 
described in section 6.3, effectively reducing the problem 
into a DP ASGD equivalent with a predefined round-robin 
order of updates without requiring us to split the model 
for pipelined training. In turn, this enables us to isolate and 
benchmark the resulting convergence without introducing 
additional noise stemming from cumbersome model-
splitting issues.

8.1 Experimental Setup

Since our experiments take the DP ASGD approach with 
a round-robin order of updates, we run them on a cluster 
of servers, each corresponding to a single asynchronous 
worker. On such a cluster, gradients can be simultaneously 
calculated on each server separately, and once calculated, 
a pipelined procedure can go over the gradients in a serial 
order and use them to update the worker models. However, 
for the sake of mathematical accuracy, the simultaneity 
of the execution is not important. Executing the algorithm 
on a real cluster with numerous nodes will clearly yield 
a significant wall-clock time speedup, but this makes the 
translation from MP to DP unnecessarily complex. It is much 
simpler to test the algorithm on a single server, iterating 
over the workers with each one computing its gradient from 
its current model. Such a procedure carefully maintains 
each worker's state outside the GPU memory and activates 
the state when the worker's turn arrives. Essentially, this is 
a more straightforward implementation of the cyclic-buffer 
approach described in section 6.3.
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8.2 Total vs. Local Minibatch Size

8.3 Results

For a certain number of workers in an experiment, as is the 
case for SSGD, we regard the total minibatch size as the per-
worker local minibatch size multiplied by the number of 
workers, because all workers in ASGD compute gradients in 
parallel. Indeed, the only difference in this regard between 
ASGD and SSGD is that gradient computations at different 
workers are not synchronized in the former. For this reason, 
for a baseline with a minibatch of size M , we run the MoRe 

experiment on N workers with a local minibatch of size M/N .

ImageNet

For image classification over the ImageNet ILSVRC2012 
dataset [36], we use the ResNet-50 variant from NVIDIA's 
implementation [38] of ResNet v1.5 [37]. We run 
experiments on the total minibatch size of 2048 for 90 
epochs, using Goyal's [30] canonical parameterization. In 
Appendix F.1, we provide training details.

In Table 2, we compare the final test accuracy and memory 
requirements of the baseline, MoRe, and DANA-GA. Since 
DANA-GA closely follows the baseline with SGD with 
momentum, we do not show its final test accuracy. The 

MoRe DANA-GA

#Workers Test 
Accuracy STD #Buffers Test 

Accuracy #Buffers

2w 76.37% 0.063 5 - 7

4w 76.29% 0.092 7 - 11

8w 76.28% 0.085 11 - 19

Table 2 Top-1 validation accuracy on ResNet50+ImageNet, SGD with momentum. 
Each row is based on five experiments. Baseline validation accuracy is 76.54%.

table shows that MoRe reduces the memory requirements 
almost by a factor of two, compared to DANA-GA, while 
closely following the final test accuracy of the baseline, 
as in DANA-GA. We provide more experimental results in 
Appendix C.1.

GPT-3

We base our implementation on NVIDIA's Megatron-LM 
GPT-3 [39] by replacing its internal optimizer step with 
MoRe's update rule. The dataset used for training is English 
Wikipedia [40]. We run two GPT variants — Small and 
Medium — and compare several scales, i.e., the number 
of MoRe workers against their respective baseline, keeping 
the total batch size constant at 512 sequences. The total 
number of samples used for training in all experiments is 
19,200,000. We provide full training details in Appendix F.2.

In all scales, the validation loss of MoRe is comparable to 
its baseline, as can be seen from our experiments on GPT-3 
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Loss  
GPT Small

Loss  
GPT Medium #Buffers

Baseline 1.4732 1.356 -

MoRe 2w 1.4466 1.343 7

DANA-GA 2w - - 6

MoRe 4w 1.474 1.368 9

DANA-GA 4w - - 8

MoRe 8w 1.4872 1.384 13

DANA-GA 8w - - 12

Test Perplexity Degradation in %

Baseline 24.25 -

DANA-GA 4w 26.48 8.4%

DANA-GA 8w 28.7 15.5%

Table 4 Final test perplexity of DANA-GA, Adam, using Transformer-XL 
on WikiText-103 and the degradation of the final test perplexity in %

Small and Medium in Table 3, where we summarize the final 
validation loss of MoRe and the memory requirements of 
MoRe and DANA-GA. We see that MoRe closely follows the 
baseline, while using nearly the same number of memory 
buffers as DANA-GA. We provide more experimental details 
in Appendix C.2.

Table 3 Final validation loss and the number of 
memory buffers of GPT-3 Small and Medium

9 Conclusion

Next, we point out that DANA-GA, Adam does not use the 
prediction of the master parameters like DANA-GA, SGD with 
momentum. For this reason, its test accuracy is expected to 
drop, compared to the baseline. Indeed, Table 4 shows the 
experimental results from [25, Table 2], which demonstrate 
that the final test perplexity rapidly falls as the number of 
workers increase. MoRe, on the other hand, uses almost the 
same amount of memory, while its validation loss closely 
follows the baseline.

We propose MoRe — a new asynchronous training 
technique — and develop the family of asynchronous MP 
pipeline algorithms that achieve the convergence properties 
of SotA ASGD algorithms while reducing their memory 
requirements by a factor of two. This allows us to train 
larger models on the same hardware with a negligible 
computational overhead. We validate our findings via 
experiments over various large problems and show that for 
the ImageNet task, MoRe closely follows the convergence 

rate and the final test accuracy of the baseline, while 
reducing the memory requirements of DANA-GA almost 
by a factor of two. For the large Transformer architecture, 
MoRe and DANA-GA have similar memory requirements on 
the one hand, but on the other hand, MoRe closely follows 
the convergence rate and the validation loss of its baseline, 
while the convergence rate and the final test accuracy of 
DANA-GA rapidly degrade as the workers increase.
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We present the original SlowMo framework in Algorithm 
A.1. For completeness, we reiterate its main details. Each 

worker maintains a local copy of the parameters, x(i)

t,k
. Base 

optimizer buffers, such as momentum buffers, may be either 
reset, maintained or averaged across workers. Each such an 
alternative result in a separate instantiation of the SlowMo 
a lgor i thm.  S low momentum buffer  ut  i s  a lways 
synchronized across all workers. After the τ  base optimizer 

steps, the workers compute average of their weights x(i)

t,k
 in 

line 6, e.g., using AllReduce. Then, the workers perform slow 
momentum update of model weights by computing 
momentum ut+1 and concluding the iteration in line 8 with 

updating their parameters x(i)

t+1,0.

Algorithm A.1: SlowMo
Input: Base optimizer with learning rate γt; Inner loop steps τ ; 
Slow learning rate α; Slow momentum factor β; Number of 
worker nodes m.  Init ial point x0,0  and init ial slow 
momentum buffer u0 = 0.

1:  for t ∈ {0, 1, ..., T − 1} at worker i in parallel do
2:     Reset/Maintain/Average base optimizer buffers

3:     for k ∈ {0, 1, ..., τ − 1} do

4:         Base optimizer step: x(i)
t,k+1 = x

(i)
t,k − γtd

(i)
t,k

5:     end for

6:     Exact-Average: xt,τ = 1
m

∑m
i=1 x

(i)
t,τ

7:     Update slow momentum: ut+1 = βut +
1
γt

(xt,0 − xt,τ )

8:     Update outer iterates: xt+1,0 = xt,0 − αγtut+1

9:  end for

A SlowMo Algorithm

B Proofs

Proof of Lemma 7.1:

Proof.

x
(i)
t+1 − x

(i−1)
t

(a)
= xt+1 − αγtut+1 − xt + αγt−1ut

(b)
= xt − αγtm

(i)
t − α(γt−1 − γtβ)ut

− αγt(βut +m
(i)
t )− xt + αγt−1ut

= −2αγtm
(i)
t ,

where (a) follows from line 9 of Algorithm 7.2, and (b) 
follows from lines 7 and 8.

Proof of Lemma 7.2.

Proof. We start by expanding x(i)
t+1 in line 9 of Algorithm 7.2:

x
(i)
t+1 = xt+1 − αγtut+1

(a)
= xt − αγtm

(i)
t − α(γt−1 − γtβ)ut

− αγt(βut +m
(i)
t )

= xt − αγt−1ut − 2αγtm
(i)
t

(b)
= x

(i−1)
t − 2αγtm

(i)
t

(c)
= x

(i−1)
t − 2αγt(µm

(i)
t−N + g

(i)
t )

(d)
= x

(i−1)
t − 2αγt(
−

µ

2αγt−N
(x

(i)
t−N+1 − xprev) + g

(i)
t

)

= x
(i−1)
t + µ

γt

γt−N
(x

(i)
t−N+1 − xprev)− 2αγtg

(i)
t , (6)

where (a) follows from lines 7 and 8, (b) from line 9, (c) 
from line 6, and (d) from Lemma 7.1.

Proof of Lemma 7.3.

Proof.  We start by developing the difference of two 
consecutive workers' parameters:

x
(i)
t+1 − x

(i−1)
t

(a)
= xt+1 − αγtut+1 − xt + αγt−1ut

(b)
= xt − αγtrt − α(γt−1 − γtβ)ut−

αγt(βut + rt)− xt + αγt−1ut

= −2αγtrt
(c)
= −2αγt

(
1

V̄t

m̂
(i)
t√

ŷ + ε
+ λx

(i−1)
t

)

(d)
= −2αγt

(
1

V̄t

1− µ

1− µ�t/N�
m

(i)
t√

ŷ + ε
+ λx

(i−1)
t

)
,

where (a) follows from line 13 of Algorithm 7.5, (b) follows 
from lines 11 and 12, (c) follows from line 10, and (d) 
follows from line 6.

Proof of Lemma 7.4.

Proof. We start by expanding x(i)
t+1 in line 13 of Algorithm 7.5:

x
(i)
t+1 = xt+1 − αγtut+1

(a)
= xt − αγtrt − α(γt−1 − γtβ)ut − αγt(βut + rt)

= xt − αγt−1ut − 2αγtrt
(b)
= x

(i−1)
t − 2αγtrt

(c)
= x

(i−1)
t − 2αγt

(
1

V̄t

m̂
(i)
t√

ŷ + ε
+ λx

(i−1)
t

)

(d)
= x

(i−1)
t −

2αγt

V̄t

1− µ

1− µ�t/N�
m

(i)
t√

ŷ + ε
− 2αγtλx

(i−1)
t

= x
(i−1)
t −

2αγt

V̄t

1− µ

1− µ�t/N�

µm
(i)
t−N + g

(i)
t√

ŷ + ε

− 2αγtλx
(i−1)
t

= x
(i−1)
t −

2αγt

V̄t

1− µ

1− µ�t/N�

µm
(i)
t−N√

ŷ + ε
−

2αγt

V̄t

1− µ

1− µ�t/N�
g
(i)
t√
ŷ + ε

− 2αγtλx
(i−1)
t , (7)

where (a) follows from lines 11 and 12, (b) from line 11, (c) 
from line 10, and (d) follows from line 6. Next, we develop 
the second summand in (7):

(6)

(7)
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C More Experimental Results

D Memory Requirements of the 
DANA-GA Algorithm

2αγt

V̄t

1− µ

1− µ�t/N�

µm
(i)
t−N√

ŷ + ε

(a)
= −µ

2αγt

V̄t

1− µ

1− µ�t/N�
1√
ŷ + ε

V̄t−N

1− µ�(t−N)/N�

1− µ
(
√

ŷprev + ε)

⊙(
−

1

2αγt−N
∆t−N + λx

(i−1)
t−N

)

= −µ
V̄t−N

V̄t

1− µ�(t−N)/N�

1− µ�t/N�

√
ŷprev + ε√
ŷ + ε

⊙

(
−

γt

γt−N
∆t−N + 2αγtλx

(i−1)
t−N

)
, (8)

where (a) follows from Lemma 7.3. Now, we assign (8) into (7)

x
(i)
t+1 = x

(i−1)
t + µ

V̄t−N

V̄t

1− µ�(t−N)/N�

1− µ�t/N�

√
ŷprev + ε√
ŷ + ε

⊙(
−

γt

γt−N
∆t−N + 2αγtλx

(i−1)
t−N

)

−
2αγt

V̄t

1− µ

1− µ�t/N�
g
(i)
t√
ŷ + ε

− 2αγtλx
(i−1)
t

As shown in Figure 7, while the convergence path of MoRe 
is slower than the baseline, it closes the gap and reaches the 
same final top-1 accuracy.

C.1 ImageNet Experimental Results

D.1 DANA-GA for SGD with Momentum

C.2 GPT Experimental Results
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Figure 7 Top-1 validation accuracy on ResNet50+ImageNet

Figure 9 Validation loss of GPT-3 Medium, mean value

Figure 8 Validation loss of GPT-3 Small, mean value

In all scales, it appears that the performance of MoRe 
is comparable to its baseline, as demonstrated by our 
experiments on GPT-3 Small and Medium in Figure 8 and 
Figure 9, respectively.
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In this section, we analyze DANA-GA for SGD with 
momentum [25, Algorithm 8, DANA-Gap-Aware: master] to 
find out the number of memory buffers that it requires for 
running with N workers. 

First, we present DANA-GA for SGD with momentum in 
Algorithms D.1, D.2 and D.3.

Now, we count the number of memory buffers in DANA-GA. 
One buffer is required to store the second moment estimate 
of C  coefficient calculation, one is required to store the 
master weights, and one is required to manage the sum of 
the momentum values of all workers. Therefore, DANA-GA 
requires three buffers per entire algorithm. Now, each 

(8)
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3:   Get B  training samples ξk−τk , [1 . . . B]

4:   Compute gradient: gi
k ←

∑B
b=1

∇F (θk−τk
;ξk−τk

,b)

B

5:   Send gi
k to the master

Algorithm D.2: DANA-Gap-Aware: master

1:   Initialize the given weights for each worker: θi = θ0

2:   for k = 1..K do

3:        Receive gradient gik from worker i
4:        Calculate Gap: Gk =

|θk−θi|
C

+ 1d

5:        Update worker's momentum vi ← γvi +
(

1
Gk

)⊙
gik

6:        Update master's weights θk+1 ← θk − ηvi

7:        Save and send estimate θi ← θk+1 − ηγ
∑N

j=1 v
j to 

worker i
8:   end for

worker needs to store two buffers for weights and 
momentum. Therefore, for N workers, DANA-GA requires 
2N + 3 buffers.

Algorithm D.1: DANA-Gap-Aware: worker
1:   Always do:

2:   Receive parameters θk−τk from the master 

D.2 DANA-GA for Adam

In this section, we analyze DANA-GA for the Adam optimizer 
[25, Algorithm 11, Adam-Gap-Aware: master] to find the 
number of memory buffers it requires to run with N workers.

First, we present DANA-GA for Adam.

Now, we count the number of memory buffers in DANA-GA 
for Adam. One buffer is required to store the second 
moment estimate of C  coefficient calculation, one is 
required to store the master weights, and two are required 
to store the first and second moment estimations. Therefore, 
DANA-GA requires four buffers per entire algorithm. Now, 
each worker needs to store one buffer for weights. 
Therefore, for N workers, DANA-GA requires N + 4 buffers.

E Bias Correction

First, we show how to adapt initialization bias correction 
from [34] to our momentum calculation. In our algorithms, 

we update momentum according to mt+1 = µmt + gt+1, 
which may be written as a function of the previous 
gradients

mt =

t∑
n=1

µt−ngn. (9)

Algorithm D.3: C  coefficient calculation

Input:  ηmax (usually ηmax = η1), β1 ∈ [0, 1) exponential 
decay rates for the moment estimates
Initialize: C ← 0d , m0 ← 0

1:   for k = 1..K do

2:        Receive gradient gik from worker i
3:        Calculate update step: vk+1 = γvk + gik

4:        Update biased second moment estimate 
mk ← β1mk−1 + (1− β1)v2k+1

5:        Compute bias-corrected second moment estimate 
m̂k ← mk

1−βk
1

6:        Calculate coefficient C ← ηmax

(√
m̂k + ε

)

7:   end for

Algorithm D.4: Adam-Gap-Aware: master
Require: η1 . . . ηK : step lengths 

Require: β1, β2 ∈ [0, 1): exponential decay rates for the 
moment estimates 
Initialize: m0 ← 0, v0 ← 0 
Initialize: θi = θ0: parameters for every worker
1:   for k = 1..K do

2:        Receive gradient gik from worker i
3:        Calculate Gap: Gk =

|θk−θi|
C

+ 1d

4:        Update the biased first moment estimate 
mk ← β1mk−1 +

(
1−β1
Gk

)⊙
gi
k

5:        Update biased second moment estimate 
vk ← β2vk−1 + (1− β2)(gi

k)
2

6:        Compute the bias-corrected first moment estimate  
m̂k ← mk

1−βk
1

7:        Compute the bias-corrected secwond moment 
estimate v̂k ← vk

1−βk
2

8:        Update master's weights θk+1 ← θk − ηk·m̂k√
v̂k+ε

9:        Send θk+1 to worker i

10:      Save worker i's given parameters θi ← θk+1

11:   end for

Taking expectations of the left- and right-hand sides of (9)

E[mt] =

t∑
n=1

µt−n E[gn]
(a)
= E[gt]

t∑
n=1

µt−n + ξ

= E[gt]

t−1∑
n=0

µn + ξ = E[gt] ·
1− µt

1− µ
+ ξ, (10)

where (a) holds because E[gn
] is not the same for all n and 

ξ = 0 if E[gn
] is stationary; otherwise ξ can be kept small 

since the exponential decay rate µ can and should be 
chosen such that the exponential moving average assigns 
small weights to gradients gn, whose indexes n are 
significantly smaller than t. Expression (10) leads to the 
initialization bias correction via the division of the 

momentum by 1−µt

1−µ .(9)

(10)
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F.1 ImageNet

F.2 GPT-3

F Training Details

G Counting Vector Operations

Specifically, the base learning rate is 0.8, decayed by a factor 
of 0.1 on epochs 30, 60, and 80, and warmed up linearly 
over the first five epochs. The weight decay is 1e− 4 and the 
SGD momentum factor is 0.9. In MoRe experiments, each 
worker's minibatch size and learning rate are set as the 
respective value in the baseline divided by the number of 
workers (i.e., linear scaling).

The base learning rate is 1.5e− 4, warmed up for 2% of the 
total number of iterations, and decayed with a cosine 
schedule. In MoRe experiments, each worker's minibatch 
size and learning rate are set as the respective value in the 
baseline divided by the number of workers (i.e., linear 
scaling). The total number of iterations is 37,500 in the 
baseline, as well as in MoRe, considering that an iteration in 
MoRe comprises a full round of per-worker iterations. 
Therefore, the total number of samples used for training in 
all experiments is 19,200,000.

In this section, we detail the computational overhead of 
MoRe, compared to DANA-GA. To show this overhead, for 
each algorithm, we count the number of vector/vector and 
scalar/vector operations for a single iteration of the algorithm.

Note that in Algorithm 7.6, we can discretize the value 

ŷ =
√

yt(1− β2)/(1− βt
2) + ε in line 11. This discretization 

will lead to a simplified version of computing STEPt, 
defined in Lemma 7.4. Therefore, we count the number of 
vector operations for Algorithm 7.6 assuming this 
simplification. The resulting counts are shown in Table 1.
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Hierarchical Circuit Simulation
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Abstract 

Keywords

Equations system constructors of hierarchical circuits play a central role in device modeling, nonlinear equations solving, 
and circuit design automation. However, existing constructors present limitations in applications to different extents. 
For example, the costs of developing and reusing device models — especially coarse-grained equivalent models of 
circuit modules — remain high while parameter sensitivity analysis is complex and inefficient. Inspired by differentiable 
programming and leveraging the ecosystem benefits of open-source software, we propose an equations system constructor 
using the computational graph representation, along with its JSON format netlist, to address these limitations. This 
representation allows for runtime dependencies between signals and subcircuit/device parameters. The proposed method 
streamlines the model development process and facilitates end-to-end computation of gradients of equations remainders 
with respect to parameters. This paper discusses in detail the overarching concept of hierarchical subcircuit/device 
decomposition and nested invocation by drawing parallels to functions in programming languages, and introduces rules 
for parameters passing and gradient propagation across hierarchical circuit modules. The presented numerical examples, 
including (1) an uncoupled CMOS model representation using "equivalent circuit decomposition+dynamic parameters" 
and (2) operational amplifier (OpAmp) auto device sizing, have demonstrated that the proposed method supports circuit 
simulation and design and particularly subcircuit modeling with improved efficiency, simplicity, and decoupling compared to 
existing techniques.
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differentiation, circuit behavior model, MOS sizing
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1 Introduction

Analog circuit simulation (Figure 1) [1–3] has become 
one of the most important tools in the analog circuit EDA 
toolchain to assist verification and design. This is due to 
long-term research accumulation in algebraic differential 
equation theory [4–6], device modeling [7–9], equations 
system construction [10–12], nonlinear equations solvers 
[13, 14], hardware description languages (HDLs) [15–19], 
and more. However, we still see inconveniences with 
popular HDLs and simulators in reusing coarse-grained 
circuit module behavior models, introducing multi-physical 
effects, and applying gradient optimization methods to 
automatic design.

•	 For device and circuit modeling, HDL technology is 
often used to create a device behavior model, which is 
then compiled [17] into a program that the simulator 
can invoke. In particular, multi-port circuit behavior 
modeling often goes through two steps: function fitting 
and HDL implementation, for example, neural network 
fitting [20, 21]+HDL or Volterra polynomial [22]+SPICE 
netlists [23, 24].

•	 To achieve an opt imal  combinat ion of  c i rcu i t 
parameters in the automation of analog circuit design 
[25–27], it is necessary to first optimize the device 
size. Prior to 2010, researchers developed solutions 
based on gradient optimization using parameter 
sensitivity analysis [28, 29]. To tune design variables, 
modern process and software technologies require that 
software uses callbacks to modify model parameters. 
However, such an approach hinders users from 
obtaining gradient information of the variables. This 
has pushed recent research to shift its focus toward 
black-box methods, such as local sampling for gradient 
reconstruction [30–32], surrogate models [33–36], and 
reinforcement learning [37].

Netlist: parameters 
+node connections

If converge

Equations system 
constructor: 

Nonlinear
equations solver

If not
converge

Compile & Link
device model:

Constructing equations  Solving equations         

Hierarchical 
circuit 

module 
instance

Parser

Intermediate 
representation

HDL: device 
behavior model Compile

Figure 1 Simulator flowchart

Many works attempt to address the above inconveniences 
from both the model compilation and the gradient 
acquisition perspectives. For example, Mahmutoglu et al. 
[38] developed the Verilog-AMS compiler that can run 
using Matlab/Octave, Kuthe et al.  [39] can obtain more 
information about the equations and internal derivatives 
when the Verilog-AMS circuit module is compiled, and Hu 
et al.  [40] provides an efficient implementation of adjoint 
equations for transient simulation. However, none of these 
works explore functional support possibilities from the 
perspective of systems equations construction.

Indeed, one significant cause of these inconveniences is 
that the analog HDLs contain many complex and even 
bloated features, which are necessary for these HDLs to 
simultaneously support the representation of structural 
and behavioral information. Such features include the 
automatic differentiation required for analog simulation, 
and polynomial interpolation that may be used in 
modeling [15, Sections 4.5.6, 9.21]. The intertwining of 
structural and behavioral information has isolated analog 
HDLs from the open ecosystems of other programming 
languages and tools, and also created high barriers for 
developing analog EDA tools. Furthermore, only static 
circuit parameters independent of signal values can be 
passed between nested circuit modules and simulation 
runtime variables are allowed only within modules ([15, 
Sections 3.4, 6],[16, Section 4.10]) — this is not conducive 
to reuse and development of coarse-grained circuit 
models.

Thriving technologies such as deep learning [41] and 
automatic differential programming [42] have contributed 
to a number of research fields in scientific computing, 
including datadriven multi-scale modeling and inverse 
problems [43–45]. Inspired by such works, this paper 
proposes a computational graph implementation of an 
equations system constructor that works in hierarchical 
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circuit simulation [12, 46–48], along with the corresponding 
JSON netlist and compilation method (Figure 2). The 
internal and external variables, design variables, model 
input parameters, and corresponding gradients of circuit 
modules are processed in a unified manner. This work 
takes circuit modules as the basic units of a computational 
graph and supports decoupled representation of circuit 
models using "equivalent circuit decomposition using JSON 
netlist+submodel for computing dynamic parameters". The 
advantages of this approach are twofold: (1) JSON format 
is easy to parse, and its basic data types "dictionary+list" 
are sufficient to represent circuit structure information. And 
(2), a submodel can be implemented with the help of the 
automatic differentiation capability of Julia[49]. Based on 
these two advantages, the proposed method in this paper 
simplifies circuit modeling and enhances the gradient 
acquisition capability of simulation tools.

Section 2 describes the processing of structural information 
related to circuit modules in a computational graph. Similar 
to defining, compiling, representing, and executing functions 
in a programming language [50–52], the process involves 

JSON Netlist: node & 
parameter mapping

Equations system constructor
Computational graph: Compile & Link

Hierarchical 
circuit 

module 
instance

Parser

Intermediate 
representation

SubModel: 
interpolation/Fitting

Figure 2 Flowchart: creating a computational graph from a JSON netlist

Figure 3 Equations system constructor for hierarchical circuits: existing method v.s. computational graph. Each computing unit corresponds to a subcircuit, which can 
be decomposed into smaller subcircuits – the smallest granularity subcircuit are the "basic elements". e(··· ) denotes the internal and external nodes of a subcircuit, 

x a generalized signal, such as node bias or branch current, p(··· ) the input parameters of a subcircuit, for example, the device size (alternatively, a non-linear 
capacitance, inductance, or current value of a basic element, functioning as a dynamic parameter), and f(··· ) the contribution of a subcircuit to the remainder of 
the simulation equations. Calculation of the Jacobian matrix is omitted in this schematic. In the existing method, a lower-layer parameter of a circuit module does 
not depend on the signal value (x[e]), and calculation of ParamExpr can be completed when the netlist is built. In the computational graph method, the dynamic 
parameters are derived from the ntrinsic parameters output by SubModel – these parameters are obtained at the calculation runtime of the systems of equations.

Top-Layer 
Circuit

Layer-1 
subcircuit

Equations 
remainder of 

each subcircuit

Layer-2 
subcircuit

SubModel
e.g., 

Subcircuit module

Assembly & pass

Calculate intrinsic 
parameters
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Layer-1 
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remainder of 

each subcircuit

Layer-2 
subcircuit

ParamExpr
e.g., 

Subcircuit module

Assembly & pass

Calculate 
parameters

(a) Existing method using static parameters (b) Computational graph using dynamic parameters

the following steps: module definition (netlist), parsing and 
compilation, data structures of module instances, and graph 
executor (Figure 3). Additionally, Section 2.4 introduces how 
to define and use SubModel for computing intrinsic dynamic 
parameters to provide behavioral information of each circuit 
module. Section 3 presents two application examples, one 
for device modeling and the other for a joint solution of 
DC/AC analysis and device sizing under different process, 
voltage, and temperature (PVT) combinations.

2 Hierarchical Circuit 
Equations System Constructor: 
Computational Graph

For any N generalized signals (i.e., equation unknowns) 

x ∈ RN  and M  signal-independent input variables or 

parameters p ∈ RM , the mathematical meaning of circuit 
simulation is constructing and solving the following 
conservation algebraic differential equations [6, 14, 40]
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f(ẋ(t),x(t),p) ≜ dQ(x,p)

dt
+ F (x,p) = 0, (Flat)

where, Q denotes the dynamic part of the remainder of 
the equation (e.g., the charge of different capacitors and 
magnetic flux of different inductors) and F  denotes the 
static part of the remainder of the equation (e.g., the 
total input DC current at each node and the voltage drop 
equation). Modern simulators tend to decompose and 
construct Equation (Flat) based on circuit hierarchy, which 
are easier to understand and parallelize:

f(ẋ,x,p) = f (1)(ẋ(1),x(1),p(1)) + f (2)(ẋ(2),x(2),p(2)) + · · ·

= f (1,1) + f (1,2) + · · ·+ f (2,1) + f (2,2) + · · · ,

· · ·

(1)

where, x(i), p(i), and f (i) respectively denote the input 
signals, parameters or variables, and contribution to the 
remainder of the equation of subcircuit i of the given 

circuit. The overlapping part between x(i) and f (i) depends 
on the common nodes of the subcircuits. As shown in 

Eq (Hierarchical), f (i) may be further decomposed into 
f
(i,1)

,f
(i,2)

, · · · as required.

Note that Equation (Flat) represents only transient (TRAN) 
equations, and Equation (Flat) is usually discretized in the 
time direction during numerical solution. At each time 
step, the system of algebraic equations is solved using the 
Newton-Raphson method [12, Section 7.1]

Solve x, Subject to
1

β∆t
Q(x,p) + F (x,p) + b = 0,

where Q,F , and sparse Jacobian matrix ∇xQ,∇xF  need to 
be repeatedly calculated. For other types of simulation such 
as DC analysis and AC small signal analysis, Equation (Flat) 
must be converted (Appendix A). Because the processing of 
each analysis equation is similar, the following uses TRAN 
analysis and a simple JSON netlist subcircuit definition (Code 
1) as an example to describe how to denote the calculation 

of Q(··· ),F (··· ), ∇x(··· ) or p(··· )Q(··· ), and ∇x(··· ) or p(··· )F (··· ) 
in hierarchical circuit simulation as the forward and backward 
pass of a computational graph (Figure 3b).

(Hierarchical)

2.1 Subcircuit Module Definition in 
JSON Format Netlist

Similar to Verilog-AMS [15, Section 6], we define a circuit 
module that contains five parts of information (Table 1): 
(1) external nodes; (2) internal nodes; (3) input parameters; 
(4) decomposition of internal subcircuits; and (5) intrinsic 
parameters.

Code 1: User-defined subcircuit named SizeDepResistor in 
the netlist: a resistor whose resistance is sizedependent

"SizeDepResistor":{ # Define the subcircuit module.

  "ExternalNodes":["l","r"],

  "InputParams":["Rlength","Rwidth"],

  "InternalNodes":[],

  "SubModel":{

    "Expr":"[1e2*Rlength/Rwidth,]",

    "IntrinsicParams":["RValue"]

  },

  "Schematic":{

    # Instantiate each subcircuit or element in the 

module.

    "instanceR":{

      "MasterName":"resistor",

      "ExternalNodes":{"left":"l","right":"r"},

      "InputParams":{"resistance":"RValue"}

    }

  }

}

The "Schematic" field represents internal subcircuit 
decomposition, which includes zero or more instantiation 
statements of subcircuits/devices. Each instantiation 
statement in "Schematic" is composed of (1) an instance 
name; (2) a class name (or master name); (3) external 
node connections; and (4) input parameter values. Code 1 
provides an example, where the subcircuit decomposition 
part involves only one instance.

•	 "instanceR" indicates the instance name.

•	 "MasterName" indicates that the instance is of the 

Table 1 Subcircuit module definition

Information Content Field Required or Not 

Structural information 
(dictionary+list)

List of external node names
List of internal node names

List of input parameter names
Internal subcircuit decomposition

ExternalNodes
InternalNodes
InputParams
Schematic

Required
Required
Required
Required

Behavioral information 
(differentiable function)

Submodel for calculating intrinsic 
parameters

SubModel Optional



Communications of HUAWEI RESEARCH | 195

Collaborative Optimization

June 2024

"resistor" class. The class, or master, can be a 
subcircuit module or a type of built-in supported basic 
element.

•	 "ExternalNodes" indicates that the two external nodes 
"left" and "right" of the instance are respectively 
connected to ports "l" and "r" of the module, i.e., 
"SizeDepResistor" here. In general case, the nodes 
connected to each instance in "Schematic" must come 
from "ExternalNodes" and "InternalNodes" of the 
given module.

•	 "InputParams" indicates that the parameter of the 
instance is the internal variable "RValue" calculated 
by "SubModel". The parameters referenced by the 
instance in "Schematic" must come from: (1) global 
variables; (2) "InputParams" of the module; (3) 
"IntrinsicParams" under "SubModel" (if any) of the 
model.

Fo r  more  i n fo rmat ion  abou t  SubMode l  and  i t s 
functionality, see Section 2.4.

Instance : circuit module rule 

Internal nodes

Internal subcircuits

: : :

Hierarchical circuit module instances

Top-layer circuit

Layer 1 
circuit

Layer x
circuit

Instance : circuit module rule 

Internal nodes

Internal subcircuits

Instance : circuit module rule 

Internal nodes

Internal subcircuits

Computation rules

Internal subcircuits:
class, connections,
parameter indexes

Constants and global 
variables in the module

Internal basic elements:  
type, connections,
parameter indexes

Internal subcircuits:
class, connections,
parameter indexes

Constants and global 
variables in the module

Internal basic elements: 
type, connections,
parameter indexes

Figure 4 Schematic diagram of hierarchical subcircuit module instances and computation rules. Text in red indicates the parts that mark the 
differences from the existing method [48]. Because the existing method does not need to support dynamic parameters, it is only necessary to 
store the fixed parameters of the devices in the computation rules of each circuit module. However, because the proposed method requires 

that parameters passed to lower-layer instances and devices be calculated during runtime, parameter indexing is necessary.

Table 2 Subcircuit module definition

Symbol Description

rule
in

subckts

Pointer to the corresponding computation rules (Table 3)
Internal nodes

Pointers to lower-layer subcircuit instances

2.2 Representation of Subcircuit 
Module Instances in a Program

The subcircuit definition should be compiled into an 
appropriate hierarchical data structure (Figure 4) so that 
the equations system constructor can efficiently invoke 
subcircuit modules. A compiled subcircuit module contains 
two parts: common computation rules of subcircuits of the 
same master (Table 3) and instance private data (Table 2) 
There are a few points to note:

1	 The external nodes of a subcircuit are from its upper-
layer subcircuits. The top-layer circuit is a closed system 
without external nodes.

2	 Subcircuit instances may share external nodes with one 
another, but the internal nodes of a subcircuit instance 
are exclusive to itself. When instantiating a subcircuit, 
ensure that its internal nodes do not conflict with each 
other.
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Table 3 Computation rule of a subcircuit module

Symbol Description

c
gv

SubModel
SubCktsInfo

BasicElementInfo

Constants
Global variables

SubModel for calculating intrinsic parameters
Lower-layer subcircuit nodes and parameter indexes

Basic element nodes and parameter indexes

3	 Global variables and system signals x are globally visible 
to all subcircuit modules. Only the indexes gv of global 
variables need to be stored in the module's computation 
rules (Table 3). The internal and external nodes of a 
module are also indexed for easy storage and passing.

4	 If interactive analysis and debugging require more 
support information, the subcircuit master names, 
internal and external node parameter names, and lower-
layer subcircuit instantiation statements can be added 
to a computation rule (Table 3). Additionally, the input 
parameters can be dynamically recorded in an instance 
(Table 2).

2.3 Instance Compilation from 
Subcircuit Module Definition

A JSON netlist file can be parsed using JSON parser tools 
available in a variety of programming languages. The 
compilation of the subcircuit module definition (Section 2.1) 
involves two steps:

1	 Compile the computation rules of all subcircuit modules 
(Figure 5a). SubModel finishes parsing and compilation 
based on the compiler's implementation. To process 
other structural information (i.e., to create nodes and 
parameters indexes), only basic algorithms and data 
structures such as lists and dictionaries are needed.

Input: Definition of a subcircuit module in JSON netlist

Numbering internal 
and external nodes 

of the subcircuit

Classification of internal instances:
subcircuits or basic elements

Output: Computation rules of the given subcircuit module

CompileSubCktRule

Numbering all subcircuit parameters: 
input parameters, intrinsic parameters, 

global variables gv, constants c

Create indexes mapping between nodes/parameters of 
internal instances and all nodes/parameters numbering:

SubCktsInfo, BasicElementInfo

SubModel: Compile an expression or 
Link an external library

Input: Computation rule of the given module , 
node indexes offset , computation rules of all 

subcircuit modules 

Output: Subcircuit module instances , 
final internal nodes offset 

CktRule2SubCkt

Initialize the subcircuit module instance 

Denote internal nodes number of as 
Initialize the internal nodes offset 

Set internal node of as in: 
Initialize internal instances subckts

Traverse and instantiate the computation rules of 
internal instances of :  subckts[ ], = CktRule2SubCkt( , ,  )

Figure 5 Compiling circuit modules

(a) Compiling the computation rules of a module (b) Recursive instantiation

2	 Recursively instantiate the hierarchical circuit modules 
(Figure 5b. The indexes of the input nodes are offset 
by n = 0  if the instantiation program was launched 
at top layer circuit. The proposed method ensures 
that the internal nodes of each subcircuit module are 
independent of each other.

Note that the internal subcircuit decomposition of a circuit 
module may include both basic elements and other circuit 
modules defined in the netlist. As such, the compiler should 
be able to distinguish between these two types of instances 
before it creates indexes for nodes and parameters. This is 
in addition to the compiler being able to check that there 
are no circular definitions of subcircuit class, undefined 
subcircuit modules, disconnected subcircuits, and unused 
nodes in the circuit.

Basic Elements Basic elements are the smallest grained 
subcircuits without internal nodes or devices. Table 4 
provides a brief list of supported basic elements. To add 
a type of basic elements, we need to define the electrical 
response function for each analysis and then provide 
information such as external nodes and input parameters to 
the compiler.

According to the modified nodal analysis method [11], the 
basic elements of the voltage source type must take the 
branch current as one of the degrees of freedom — this 
branch current is processed as an external GALV node in 
the compiler. At compile time, the GALV node needs to be 
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Table 4 Supported basic elements

Figure 6 Schematic diagram of steps 1 to 5 of Algorithm 1, also a zoom-in view of the calls to the top-layer to layer-1 subcircuits in Figure 3b. In the existing 
method, the input and intrinsic parameters are computed at compile time, and no gradient of parameters are propagated backward at runtime.

MasterName ExternalNodes InputParams Remarks

resistor
capacitor
inductor

CS
VS

VCCS
CCCS
VCVS
CCVS

left,right
input,output
input,output
input,output
input,output

left,right,input,output
iorigin,input,output

left,right,input,output
iorigin,input,output

resistance
capacitance
inductance

current
voltage

MF
MF
MF
MF

Resistor
Capacitor
Inductor

Current Source
Voltage Source

Voltage Controlled Current Source
Current Controlled Current Source
Voltage Controlled Voltage Source
Current Controlled Voltage Source

added to the upper-layer module as an internal node. A 
generalized external GALV node can also be added for basic 
elements of a non-voltage source type such as resistors, to 
indicate the current flowing through the element branch. 
Consider a TRAN analysis example, with the resistance of 
the resistor denoted as R , the left and right nodes l and r

, the voltage value xl and xr, and with or without the GALV 
node and current value i, xi, we can present the remainder 
of the equation corresponding to the resistor using a sparse 
vector as follows:

Without external GALV: Q = 0,F = [(l,−xl−xr
R

), (r, xl−xr
R

)]

With external GALV: Q = 0,F = [(l,−xi), (r, xi), (i, xr − xl +R · xi)]

The two equations correspond to the so-called "element 
stamps" of the same type of elements described in [14, 
Section 2.4.4]. We may also consider them as two network 
analysis methods [10, 11] for the same type of elements, 
which requires the support of both the compiler and 
the equations system constructor. For different analysis 
type, the calculation of remainder terms and that of the 
gradients in the basic element simulation equation must be 
distinguished — we will not discuss that in detail here.

2.4 Execution: Forward and Backward 
Pass of a Computational Graph

Each basic computing unit of the computational graph 
(Figure 3b) corresponds to a subcircuit instance. When 
the subcircuit is invoked in a computational graph, the 
computing unit first takes external nodes and input 
variables as input from upper layer circuit. The compute 
unit then traverses the internal subcircuit and basic devices 
to calculate the equation remainder and the signal and 
variable gradients. Finally, these results are returned to the 
upper layer. See Algorithm 1 for the internal process details.

Figure 6 shows steps 1 to 5 of Algorithm 1, where en, ip, in, 
gv, and intrp stand for external nodes, input parameters, 
internal nodes, global variables, and intrinsic parameters, 
respectively. The internal and external nodes en, in of 
the circuit may be used to index the generalized signal 

values x[en],x[in], respectively. The variables/parameters p 
involved in the circuit module consists of four parts: ip, gv, 
intrp, and c.

en[1]
en[2]
en[3]

…

en[1]
en[2]
en[3]

…
in[1]
in[2]

…

ip[1]
ip[2]
ip[3]

…

ip[1]
ip[2]

…
intrp[1]
intrp[2]

…
gv[1]
gv[2]

…
c[1]
…

[1]
[2]

…
[1]
[2]

…

[1]
[2]

…
[1]
[2]

…SubModel

…

Input Assemble 
nodes

Input for lower-
layer subcircuit

Assemble 
params
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Algorithm 1: Calling a Subcircuit 

equations remainder, signal gradient, variable gradient =

EREvalCompositeSubCkt(x,ckt,en,ip)

Input: System signals x, subcircuit instance ckt, external 
node indexes en, input parameters ip;
# Internal information of ckt: Internal nodes in, SubModel, 
global variables gv, constants c;
1.  Assemble the internal nodes in and external nodes en of 

ckt, resulting in nodes=[en, in];
2. Calculate the intrinsic parameters according to the 

internal and external signals and input parameters: intrp 
= SubModel(x [nodes], ip);

3.  Assemble all variables and parameters of ckt, resulting in 
params= [ip, intrp, gv, c];

4. Extract the external nodes suben ⊂ nodes and input 
parameters subip ⊂ params of each subcircuit (subckt) in 
ckt from nodes, params} and call EvalCompositeSubCkt 
(x, subckt, suben, subip);

5. Extract the external nodes and input parameters of each 
basic element in ckt from nodes, params, and calculate the 
equation remainder and gradient of each basic element;

6. Collect the remainder terms of all equations in steps 4 and 5;
7. Propagate signal and variable gradients of lower-layer 

subcircuits and basic elements backward according to the 
index mapping of steps 1 to 5;

Output: Equations remainder, signal gradient, variable 
gradient

SubModel and Intrinsic Parameters In the computational 
graph, SubModel takes the internal and external signals 
and input parameters of the module as inputs, and outputs 
all intrinsic parameters  via intrp=SubModel(signals,ip), 
where nodes=[en,in], signals=x[nodes], which can be 
passed to the lower-layer subcircuits and basic elements. 
This setup is based on the Assumption 1: "The behavior of 
a circuit module is and only is determined by the internal 
and external signals as well as input variables." Thus, 
for a SubModel, there is no need to perceive the internal 
signals of lower-layer subcircuits nor the node signals or 
parameters of other irrelevant modules. This setting can 
cover a considerably wide range of nonlinear effects and is 
easy to program.

Assumption 1. The intrinsic parameters in a subcircuit 
module are uniquely determined by the bias signals of the 
internal and external nodes and the input parameters of the 
module.

The submodel in the circuit definition should provide 
sufficient information so that the compiler can register the 
SubModel with the common rules (Table 3). In addition, 
there should be some protocol between the computational 
graph and the SubModel for obtaining the Jacobian matrix 
of intrp with respect to signals,ip

Js = ∇signalsintrp, Jip = ∇ipintrp, (1)                (1)

The specific implementation depends on the programming 
language used. As such, details are not provided here.

Layer-wise Gradient Backpropagation A computational 
graph completes the computation process by calling 
subcircuits. The computing logic differs from that involved 
in the existing method (Figure 3) in one major aspect: In 
the computational graph, the input parameters subip of 
lower-layer modules or elements come from a subset of the 
assembled parameters params (Figure 6). Consequently, 
gradient backpropagation for subip is required. The 
following describes the gradient backpropagation process in 
Algorithm 1 for TRAN simulation as an example.

For TRAN analysis, the returned value of Algorithm 1 
contains the following eight items: Q,F ,∇xQ,∇xF ,  
∇gvQ,∇ipQ , ∇gvF , and ∇ipF . Because the gradient 
backpropagation of Q is the same as that of F , only Q is 
considered for simplicity. The computation results of all 

subcircuits of Algorithm 1 are recorded as {Qi
}, {∇xQ

i}, 
{∇gvQ

i}, and {∇subipiQi}, where the superscript i denotes 
the sequence number of the internal subcircuit or basic 

element. Qi, ∇xQ
i, and ∇gvQ

i can be directly assembled as

Q =
∑
i

Qi,∇xQ =
∑
i

∇xQ
i,∇gvQ =

∑
i

∇gvQ
i,

while the gradient backpropagation of ∇subipiQi needs to 
be processed differently based on the index of subipi to 
params = [ip, intrp, gv, c].

1	 If subipi[j] ∈ c, backpropagation is not performed.

2	 If subipi[j] ∈ ip ∪ gv, then ∇subipi[j]Q
i is propagated to 

the corresponding ∇ipQ or ∇gvQ.

3	 If subipi[j] = intrp[l] for any index l (Figure 6), given 
Assumption 1 and the Jacobian matrix of the intrinsic 
parameters with respect to the signal and input 

parameters (Equation 1), then (let g � ∇subipi[j]Q
i)

∇x[nodes]Q += Js[:, l]⊗ g,∇ipQ += Jip[:, l]⊗ g. (1)       (2)

where, ⊗ represents the outer product of two vectors.
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3 Applications

3.1 CMOS Device Model: Equivalent 
Circuit Decomposition + Dynamic 
Parameters

As mentioned earlier, any subcircuit module (e.g. , 
CMOS) that satisfies Assumption 1 can be modeled as 
a submodel-based representation featuring "equivalent 
circuit decomposition + dynamic parameters". This section 
provides an implementation example based on a lookup 
table. Reimplementing BSIM model [7] as a SubModel is a 
conventional method that offers better compatibility with 
the existing method, but it is not adopted in this work. The 
CMOS module definition consists of the following elements 
(details about the definition are provided in Appendix B and 
the equivalent circuit diagram under AC analysis is given in 
Figure 7):

1	 Internal and external nodes: nodes = [gate, source, 
drain, bulk];

2	 Input parameters for the device size: ip = [MosL, MosW];

3	 Intrinsic parameters output by SubModel: intrp = [ID, 
GDS, CDD, CSS, CGG, CGS, CGD, GM, GMB], whose value 
is determined by the four bias voltage values (nodes) 
and device size (ip).

The compiler loads external libraries and generates a 
function object of class "lut.MosLookup" to register it as 
a submodel in the subcircuit rule (Table 3). Among the 
intrinsic parameters, ID indicates the DC current between 
source and drain under DC analysis, and GDS, CDD, GM, etc. 
are equivalent small-signal parameters under AC analysis. 
There are a few points to note:

Figure 7 CMOS equivalent small-signal model [25, Figure 2.39], where, Ro is a resistor with resistance 1
GDS

.

1	 The role of built-in basic elements ICS and ACVCCS 
(Appendix B) is to ensure that ID only functions under 
DC analysis, while GDS, GM and GMB only function 
under AC analysis.

2	 The DCAC hybrid analysis or DC analysis computational 
graph of the equation constructor can execute 
this circuit module. However, the pure AC analysis 
computational graph cannot independently run this 
circuit module: In order to establish the AC analysis 
equations, it is necessary to first compute [GDS,GM], 
etc., which are determined by the DC bias voltage. This 
is different from directly inducing small signal linear 
equations through TRAN analysis equations (Appendix  
A). In fact, Assumption 1 also stipulates that internal 
variables can depend on the bias voltage signal, but not 
on the small signals in linear analysis.

3	 The SubModel can freely call external programs, 
such as using three-dimensional spline interpolation, 
provided that it ensures compliance with the interface 
requirements of  the corresponding automat ic 
differentiation system.

This submodel-based device model representation method 
features "equivalent circuit decomposition + dynamic 
parameters" and shows the following advantages:

1	 Decoupled from circuit network analysis or simulation, 
the submodel is only responsible for calculating the 
intrinsic parameters and Jacobian matrix (Section 2.2). 
Circuit connectivity is not the submodel's concern.

2	 The syntax and capability boundary of a submodel 
in calculating intrinsic parameters depend on the 
compiler's processing of the "SubModel" field in the 
netlist. This can be implemented easily using various 
external programs and automatic differential tools.
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Figure 8 Manual device sizing: an iterative process

Figure 9 Automatic device sizing
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3.2 OpAmp Device Sizing: DC 
Operating Points Optimization Under 
Different PVT Combinations

Figure 8 shows the device sizing process in analog circuit 
design. Specifically, designers connect available devices 
accessible to the target process into circuits, and adjust 
the size of each device (such as a CMOS device) based on 
specific methodologies and experience so that a circuit can 
fulfill specification requirements under a given area and 
power consumption constraints. In this process, repeated 
circuit simulation is done to quantitatively inspect the 
behavior and performance of a circuit without the need to 
manufacture the physical circuit.

This process can be naturally converted into an optimization 
problem. The optimization strategy varies depending 
on whether the gradient is acquirable [28–37]. Take DC 
simulation as an example. To obtain the gradient, the DC 

steady-state equations F (x,p) = 0  naturally provide an 
implicit mapping from the parameter p to the solution 

xsolution of the systems of equations, with the Jacobian 

matrix of this mapping being ∇px
solution = −∇xF \∇pF , 

 where ∇xF ,∇pF  may be directly given by the equations 
system construction method (computational graph 
3b) described in Section 2. With this information, the 
gradient optimization method (Figure 9) can be used. 
Note that in an optimization process, the inverse of 

∇xF  does not need to be completely solved. Instead, 
it is sufficient to solve a set of linear equations only 
once during each iteration's gradient backpropagation 

for a given loss function or constraint function l : 

∇pl(xsolution) = (∇px)T · ∇xl = −(∇pF )T ·
(
∇xF T \∇xl

)

Taking an OpAmp (Figure 10a) as an example, consider the 
design variables of the circuit (i.e., the channel length and 
width of each MOSFET) as the variables to be optimized. 
Given the external current and voltage sources Ibias0, Ibias1, 
and Vdd, V+, V− and the load resistance and capacitance 

RL = 200Ω, CL = 10−10F, set the optimization goals as 
follows:

1	 The DC operating points of all MOSFETs must be 
saturated under nine PVT conditions defined by 
Corner ∈ [tt, ff, ss], T emperature ∈ [27,−40, 125] . For 
example, for an NMOS, its DC bias voltage must satisfy

 min(Vgs, Vds, Vsb, Vgs − Vth) ≥ 0,

where, Vth is subject to MosL,Vgs, Vds . For different 
PVT conditions, the SubModel needs to load different 
databases, and therefore the final simulation solutions 
obtained are also different.

2	 Under the typical condition of Corner = tt, T emperature = 27, 
slight fluctuation is allowed for voltage sources V+, V

− 
as long as V+ + V

−

= 5v is satisfied. For the DC bias of 
Vout, the maximum must be greater than 4.35 V, and 
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VS+

VOUT
V+
V–

VS–
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(a) OpAmp schematic diagram [53]

(b) Input and output frequency response curves of the OpAmp after sizing

Figure 10 (a): OpAmp schematic diagram, including the bias circuit and the main circuit, and a total of 17 n-MOSFET and 17 p-MOSFET devices. At the DC 
operating point, when small-signal disturbance with a given frequency is applied at V+, V−, an output signal is detected at Vout. (b): Frequency response 

curves of OpAmp after sizing under Corner = tt, Temperature = 27 conditions, where, va4 and va5 are the two internal nodes in the circuit.

the minimum must be less than 0.3 V. Because our 
model (Section 3.1) is not used in the TRAN analysis, 
this requirement plays a similar role as the output swing 
indicator of circuits.

3	 AC analysis is performed on the circuit under the 
typical condition Corner = tt, Temperature = 27 and 
a vin+, vin−

= ±0.5 signal is applied at V+, V
−. The DC 

gain gain = 20 · log
10
(|vout|) of Vout must reach 100.

4	 The design variables of each device meet given symmetry 
constraints. For example, the input MOSFET pair  
Mn0 in,Mn0 ip  have the same size (MosL,MosW), and the 

current mirrors Mp30 mirr,Mp20 mirr,Mp10 mirr,Mp50 mirr,Mp60 mirr have the 
same channel length (MosL).

min
p

l = max(5− log10(|v[out]|), 0)2

s. t. ∀c ∈ [tt, ff, ss], t ∈ [27,−40, 125],

xL � xc,t � xU ;Saturation(xc,t,p) � 0;

xdown[out] ≤ 0.3;xup[out] ≥ 4.35;

v = Att,27\btt,27; C · p = 0.

(1)
                                                                                    (3)

This design task can be expressed as a constrained 

opt imiza t ion  p rob lem (3) .  p → {xc,t},xdown
,x

up  i s 
obtained by solving the system of DC equations under 
corresponding PVT conditions with input bias V+, V

−.  

And v = A
tt,27

\b
tt,27 � A \b solves the system of AC linear 

equations under the Corner = tt,temperature = 27 condition, 
where the matrix elements of A are GM, GDS, etc. of each 

device subject to xtt,27
,p. We can use a computational 

graph of mixed DCAC analysis to calculate A, b,∇xA,∇xb 1,  

1 A = iω · ∇xQ+∇xF . For a simpler graph implementation, use the 
DCAC computational graph (instead of ∇Q,∇F ) to calculate ∇A. This 
avoids calculating and propagating backward the second derivative of 
Q,F  with regard to x.

which can further enable the calculation of ∇xl,∇pl 
(Appendix C). C · p = 0 represents the direct constraints on 
design variables, such as a symmetry constraint.

The optimization algorithm is implemented by using the 
open-source software Ipopt [54] and includes 72 variables, 
27 equality constraints, and 308 inequality constraints to 
be solved. It took 356 seconds to run the whole process 
(including compiling Julia code and parsing netlist, etc.) 
on six threads on Intel(R) Core(TM) i7-8700 CPU at 3.20 
GHz. Figure 10b shows the frequency response curve of the 
optimized circuit. The experimental results show that:

1	 In hierarchical circuit simulation or sizing based on the 
computational graph, the device model and solution 
algorithm are decoupled from each other, allowing for 
high flexibility and efficiency.

2	 The parameters in the computational graph are 
processed to function as variables, making gradient 
optimization of many indicators simpler and easier.

Note that the preceding experiments only consider the 
operation points of devices and circuit DC gains under 
typical conditions. To complete the design, more indicators 
(even discrete value indicators) need to be introduced into 
the optimization problem. There is no shortcut to properly 
integrating all indicators into the optimization framework, 
which however will not be addressed here.

4 Conclusion

In this paper, the static parameters of the circuit are 
processed as runtime variables in simulation, and the 
structural information and behavioral information of 
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the circuit module/device are decoupled as "equivalent 
subcircuit decomposition + submodel-computed dynamic 
parameters". These further derive the computational graph 
representation of the equations system constructor for 
hierarchical circuits with circuit modules as the compute 
units of the computational graph. According to the two 
simple examples, this approach facilitates the decoupling 
and flexible interaction between netlists, models, and 
simulation and optimization algorithms. However, some 
problems exist with this approach. For example, because 
the variable gradient will be passed across the layers of a 
circuit, the topology analysis for circuit equations solvability 
and DAE-Index no longer works, requiring a more general 
hierarchical analysis theory. In the future, this approach will 
gain better generalization by supporting BSIM and more 
simulation types with more effects (i.e., S parameter or 
thermal effect) considered. Faster simulation is also possible 
if the program itself is optimized and the support for fast-
SPICE technology is added.
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Appendix

A TRAN Analysis Induced AC Analysis 
Equation

To solve the transient equation (Flat) and the DC steady-

s ta te  equat ion  F (x,p) = 0 ,  t he  Newton-Raphson 

method calculates Q,F ∈ RN  and the Jacobian matrix 
∇xQ,∇xF ∈ RN×N  repeatedly. In AC small-signal analysis, 
consider applying perturbation δx, δp  around the steady-
state solution x,p and linearizing Equation (Flat) as follows:

∇xQ · δ̇x+∇pQ · δ̇p+∇xF · δx+∇pF · δp = 0

Let δx, δp  be a small signal with an angular frequency of 

ω: δx = εx · eiωt, δp = εp · eiωt . Then the system of linear 
equations of AC small-signal analysis is

(iω · ∇xQ+∇xF ) · εx = (iω · ∇pQ+∇pF ) · εp (1)      (4)

B CMOS Subcircuit

Code 2: CMOS subcircuit

"NMOSTYPE":{

  "ExternalNodes":["gate","source","drain","bulk"],

  "InputParams":["MosL","MosW"],

  "InternalNodes":[],

  "SubModel":{

    "Analysis":["DC","TRAN"],

    "ModelLoader":"SimInfo->lut.MosLookup(\"NMOSTYPE\",      

/path/to/data; SimInfo=SimInfo)",

    "IntrinsicParams":

      

["ID","GDS","CDD","CSS","CGG","CGS","CGD","GM","GMB"]

  },

  "Schematic":{

    "ids":{

      "MasterName":"ICS",

      

"ExternalNodes":{"input":"source","output":"drain"},

      "InputParams":{"dc":"ID","ac":0}

    },

    "template":{

      "MasterName":"MosSmallSignalTemplate",

      "ExternalNodes":{

        "gate":"gate","source":"source",

        "drain":"drain","bulk":"bulk"

      },

      "InputParams":{

        

"GDS":"GDS","CDD":"CDD","CSS":"CSS","CGG":"CGG",

        "CGS":"CGS","CGD":"CGD","GM":"GM","GMB":"GMB"

      }

    }

  }

}
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Code 3: MosSmallSignalTemplate: Small signal equivalent 
circuit decomposition

"MosSmallSignalTemplate":{

  "ExternalNodes":["gate","source","drain","bulk"],

  "InputParams":["GDS","CDD","CSS","CGG","CGS","CGD", 

"GM","GMB"],

  "InternalNodes":[],

  "Schematic":{

    "infr":{

      "MasterName":"resistor",

      

"ExternalNodes":{"left":"drain","right":"source"},

      "InputParams":{"resistance":1e1000}

    },

    "gds":{

      "MasterName":"ACVCCS",

      "ExternalNodes":{"left":"drain","right":"source", 

"input":"drain","output":"source"},

      "InputParams":{"MF":"GDS"}

    },

    "cdd":{

      "MasterName":"capacitor",

      

"ExternalNodes":{"input":"drain","output":"bulk"},

      "InputParams":{"capacitance":"CDD"}

    },

    "css":{

      "MasterName":"capacitor",

      

"ExternalNodes":{"input":"source","output":"bulk"},

      "InputParams":{"capacitance":"CSS"}

    },

    "cgg":{

      "MasterName":"capacitor",

      "ExternalNodes":{"input":"gate","output":"bulk"},

      "InputParams":{"capacitance":"CGG"}

    },

    "cgs":{

      "MasterName":"capacitor",

      

"ExternalNodes":{"input":"gate","output":"source"},

      "InputParams":{"capacitance":"CGS"}

    },

    "cgd":{

      "MasterName":"capacitor",

      

"ExternalNodes":{"input":"gate","output":"drain"},

      "InputParams":{"capacitance":"CGD"}

    },

    "gm":{

      "MasterName":"ACVCCS",

      "ExternalNodes":{

        "left":"gate","right":"source","input":"drain", 

"output":"source"

      },

      "InputParams":{"MF":"GM"}

    },

    "gmb":{

      "MasterName":"ACVCCS",

      "ExternalNodes":{

        "left":"bulk","right":"source","input":"drain", 

"output":"source"

      },

      "InputParams":{"MF":"GMB"}

    }

  }

}

C Gradient Backpropagation of 
the Solution of a Linear Equations 
System

Consider a system of real linear equations A(x)v = b(x) 
with respect to v , where A, b  are nonlinearly dependent 
on x being a sparse matrix/vector, and ∇xA,∇xb are 
computable, then v  will also be nonlinearly dependent on 
x. Differentiating the system of equations yields:

(A+∇xA · dx) · (v +∇xv · dx) = b+∇xb · dx

When the zeroth and second order terms are dropped, the 
following equation holds for any dx

∇xA · dx · v +A · ∇xv · dx = ∇xb · dx, (1)        (5)

Assume a loss function l(v), whose gradient ∇vl can be 
calculated. Backpropagating the gradient to x is equivalent 
to finding the solution of ∇xl = ∇vl · ∇xv. In fact, we do 
not need to actually calculate ∇xv and store the data, 
which can be rather dense. According to Equation 5, we 
have

∇xv · dx = A−1 ·
(
∇xb · dx−∇xA · dx · v

)
,∀dx,

⇒∇vl · ∇xv · dx = (∇vl ·A−1) ·
(
∇xb · dx−∇xA · dx · v

)
, ∀dx,

Therefore, in order to calculate ∇vl · ∇xv, we only need to 
solve the sparse matrix linear equations system ∇vl ·A

−1 
once in advance, element-wisely set the values of dx to 1 
and the rest to 0. Then, we obtain ∇xl = ∇vl · ∇xv.

For the case of a set of complex linear equations, a similar 
discussion can also be carried out using the Wirtinger 
derivative.



Communications of HUAWEI RESEARCH | 207

Theory Frontiers

June 2024

In this work we present a new state-of-the-art on the text-to-video retrieval task on MSR-VTT, LSMDC, MSVD, YouCook2 
and TGIF obtained by a single model. Three different data sources are combined: weakly-supervised videos, crowd-labeled 
text-image pairs, and text-video pairs. A careful analysis of available pretrained networks helps to choose the best  
prior-knowledge networks. We introduce three-stage training procedure that provides high transfer knowledge efficiency 
and allows the usage of noisy datasets during training without prior knowledge degradation. Double positional encoding 
is used for better fusion of different modalities, and a simple method for non-square inputs processing is suggested. 
Additionally, we introduce two methods for training multilingual text-to-video models.

Keywords

video, language, retrieval, multimodal, transformer, attention, transfer learning, multilingual

Abstract 

Maksim Dzabraev, Alexander Kunitsyn, Maksim Kalashnikov, Andrei Ivaniuta

MDMMT-2: Multidomain Multimodal 
Transformer for Video Retrieval, One 
More Step Towards Generalization
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1 Introduction 

The text-to-video retrieval task is defined as searching 
for the most relevant video segments for an arbitrary 
natural language text query. A search query may contain 
a description of arbitrary actions, objects, sounds, or a 
combination of them. Note that an arbitrary search query 
means zero-shot search. A specific search query might not 
exist in the training database. Despite this, the model should 
be able to successfully perform the search operation.

The text-to-video retrieval technology can be used for 
semantic search within a single long video. For example, 
inside a full-length movie or a streaming video. After 
describing the event, the user can easily find the appropriate 
video segment. A more general task is the search for a 
relevant video segment within a large video gallery, such as 
a video hosting platform like YouTube or Vimeo.

Another application is the search for a specific event in a 
surveillance cameras dataset or a real-time video stream. 
This can be useful for identifying illegal actions, accidents, 
or any other important events.

An important requirement for a text-to-video retrieval 
system is its scalability to a large video gallery. A good 
example of an efficient architecture is the two-stream 
models (see Figure 1b). Within this approach the video 
segment and the text query are encoded independently by 
the video and text models respectively. Separate processing 
allows to compute embeddings for the entire video gallery 
beforehand. During the inference time, the system calculates 
the embedding for the search query. Next, it calculates the 
similarity function between query embedding and each 
embedding from the gallery. The most common choice for 
similarity function is the cosine similarity. In the case of a 
single-stream model, visual and text inputs are fused and 

Figure 1 Two types of fusion

(b) Scheme for a two-stream model(a) Scheme for a single-stream model

processed within the same network (see Figure 1a). Because 
all inputs are joint at the very beginning of the process, such 
models, in theory, provide stronger interaction between text 
and video than in multi-stream models. However, there is 
no known work that demonstrates this. This could be 
explained by the fact that single-stream models have more 
capacity and therefore are more likely to overfit to the 
training dataset. The amount of available public data is not 
sufficient to prevent this overfitting. A significant downside 
of the single-stream model for real-world applications is 
that it does not allow to precompute video embeddings in 
advance. The data required for the training consists of pairs 
of video segment and text description. Noise Contrastive 
Estimation (NCE) is currently the most common framework 
for this task [14, 33, 37, 28, 13, 6, 15]. Within the 
framework, the model learns to distinguish a positive pair 
from a set of negative pairs. The most popular loss 
functions used in NCE are bi-directional max-margin 
ranking loss [20] and symmetric cross entropy loss [43, 35, 
50]. The mentioned loss functions are based on the 
following idea. Assume that there is a set of pairs: (texttextk, videok, 
videotextk, videok) where texttextk, videok describes videotextk, videok. Let (uk, vk) be the 
text and video embeddings correspondingly. The objective is 

to maximize cosine skk = cos(uk, vk) =
uk · vk

‖uk‖2‖vk‖2  for 
posit ive pairs and minimize sij = cos(ui, vj), i �= j  for 

negative pairs. All sij form the score matrix, Eq. 1.

In terms of the score matrix the objective is to maximize 
diagonal elements and minimize non-diagonal ones.

The bi-directional max-margin ranking loss sets a following 
optimization problem:

Parameter m is used to filter out easy examples. The 

condition sii > sij +m means that the positive pair (i, i) and 
negative pair (i, j) are far enough. Such pairs are counted as 
easy examples and filtered out. The pairs that are closer to 
each than m other are used for training. Formally this 
condition can be represented as 

u1 ... un

v1 s11 ... s1n
...

...
. . .

...

vn sn1 ... snn

(1)(1)

∑
i

∑
j �=i

[
max(0, sij − sii +m) + max(0, sji − sii +m)

]
→ min (1)(2)

max(0, sij − sii +m) (1)(3)
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Another popular objective is symmetric cross-entropy loss. 
Similar to maxmargin ranking loss, it deals with the score 
matrix and tries to maximize diagonal elements while 
minimizing non-diagonal ones.

Because a search query may describe a sound or a visual 
component, it is important to capture information from both the 
visual stream and the audio stream of the input video. In this 
work we fuse information from three modalities: RGB modality 
(processes each frame independently), motion modality 
(processes multiple consecutive frames) and audio modality.

2 Related Work

The text-to-video retrieval task is originated in 2016 from 
the work [40]. 

Nowadays, there is a large number of high-quality crowd-
labeled datasets (captions were created manually by 
humans) suitable for the text-to-video retrieval task [45, 
12, 26, 40, 4, 44, 23, 1, 51, 18], and numerous works using 
these datasets [15, 6, 13, 28, 19, 11, 14, 46]. In paper [32] 
the authors leverage large amount of weakly-supervised 
data (HT100M dataset) from YouTube to train a model. In 
[14, 11] both weakly-supervised data for pre-training and 
crowd-labeled datasets for fine-tuning are used.

The task requires a large amount of data, and looking for 
alternative data sources is reasonable. Because the visual 
stream of a video is a sequence of frames (images), any 
individual image can be considered as a one-frame video. In 
the work [31] the authors successfully use both image-text 
and video-text datasets.

Impressive results are achieved in the text-to-image retrieval 
by the Contrastive Language-Image Pre-training (CLIP) model, 
which is trained with a large amount of web-crawled data [39].

In order to create a text-to-video retrieval model for general 
application (without specialization for a particular domain) 
a large amount of data is required. For example, the authors 
of CLIP used hundreds of millions of data units for their 
models. Because the video domain is more complex than the 
image domain, training a general application text-to-video 
retrieval model presumably requires even more data.

Unfortunately, combining all crowd-labeled text-video and 
text-image datasets does not allow to approach to the  

high-quality general application model. In paper [32], the 
authors attempt to use large amount of weakly-supervised 
data but the result is still far from that obtained using 
models trained on crowd-labeled datasets.

It is getting increasingly popular to apply transfer learning-
based methods or this task. One of the first successful 
applications of transfer learning for the text-tovideo retrieval 
task can be attributed to [30], where several pre-trained 
networks are used to extract features from video. In the 
work [14] the authors additionally adopted the Bidirectional 
Encoder Representations from Transformers (BERT) model [8] 
as an initialization for the text encoder. Later works [15, 6, 
13, 28, 11] use CLIP model as an initialization for both text 
and vision encoders.

Pre-trained models suitable for the text-to-video ret rieval 
task can be divided into two classes. The first class is 
trained using crowd-labeled datasets such as Imagenet 
[7] or Kinetics [21] datasets. Usually, such models produce 
taskspecific embeddings, which does not allow to achieve 
high quality in the text-to-video retrieval task. The second 
class is trained with a large amount of weaklysupervised 
data collected from the Internet. The most popular are 
CLIP, BERT, and irCSN152, which are trained with the IG65M 
dataset (irCSN152-IG65M) [16].

The analysis of pre-trained models in [11] and our 
experience show that models trained with a large amount 
of web-crawled data are able to produce embeddings for 
general applications and allow to reach better quality in the 
text-to-video retrieval task.

Using CLIP as an initialization or a feature extractor 
significantly improves the results in the text-to-video 
retrieval task [15, 6, 13, 28, 11]. The CLIP model family has 
several different architectures. All of them have independent 
text encoders and visual encoders.

In this work we manage to use the text-video, text-image 
and text-video weakly-supervised (HT100M) datasets 
together in the same training. In addition, we used the best 
pre-trained models. This allows us to achieve state-of-the-
art results with a single model on many benchmarks.

3 Methodology

Our model follows the idea of MDMMT [14, 11]. However, 
we suggest an advanced multistage training approach, as 
well as perform analysis of existing prior knowledge and 
choose optimal backbones.

(4)−

∑

i

(

log
exp(sii/T )∑
j exp(sij/T )

+ log
exp(sii/T )∑
j exp(sji/T )

)

→ min
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Figure 2 High-level MDMMT-2 architecture. CLIP represents RGB modality, irCSN152 
(-IG65M) represents motion modality, SlowFast represents sound modality

Figure 3 Scheme for video network branch. CLIP represents RGB modality, VMZ 
(irCSN152-IG65M) represents motion modality, SF (SlowFast) represents sound modality

Figure 4 A detailed scheme of aggregator's input. CLIP represents RGB modality, VMZ 
(irCSN152-IG65M) represents motion modality, SF (SlowFast) represents sound modality

3.1 Architecture

The architecture consists of four parts: pre-trained experts, 
aggregator, text encoder and text embedding projection.

Experts A pre-trained expert is a frozen pre-trained network 
that produces a sequence of features for input video. In this 
work we use three experts, each for a different modality. 
The first one is for image (RGB modality) processes video 
frames independently. The second one is for motion. It deals 
with several sequential frames together. The third one is for 
audio. A general scheme is shown in Figure 2.

For a given video, each expert extracts a sequence 
F = [F1, . . . , Fn] of features. For computation efficiency, we 
limit the video length to 30 seconds, so, for example, if an 
expert extracts a single feature once every second, a total 
length n of the feature sequence is not greater than 30.

The features extracted by experts encode the semantics of 
the video. Each expert outputs features in Rdexpert. In order 
to project the different expert features into a common 
dimension dmodel, we learn a linear layer for each expert to 
project all the features into Rdmodel.

Aggregator The aggregator accepts embeddings made by 
experts and produces a single embedding for each video. 
A global view of the aggregator is shown in Figure 3 and a 
detailed view of aggregator's input is shown in Figure 4.

The aggregator follows the architecture of the transformer 
encoder. It consists of stacked self-attention layers and fully 
connected layers.

Aggregator's input Ω(v) is a set of embeddings, all of the 
same dimension dmodel. Each of them embeds the semantics 
of a feature, its modality, and the time in the video when 
the feature was extracted. This input is given by:

We define these components below.

Features F The aggregator produces an embedding for each 
of its feature inputs, resulting in several embeddings for an 
expert. In order to obtain a unique embedding for each 

expert, we define an aggregated embedding F expert
cls  (expert 

CLS token) that will collect and contextualize the expert's 
information. We initialize this embedding with a max 
pooling aggregation of all the corresponding expert's 
features. The sequence of input features to the aggregator 
then takes the form:

Expert embeddings E In order to process cross-modality 
information, our aggregator needs to identify which expert 
it is attending to. We learn embeddings Eexpert of size 
dmodel to distinguish between embeddings of different 
experts. Thus, the sequence of expert embeddings to our 
video encoder takes the form:

Double positional encoding Tstart + Tend  Each expert 
takes a different type and shape of data as input. For 
example, CLIP takes a single image frame to produce an 

Ω(v) = F (v) + E(v) + Tstart(v) + Tend(v) (1)(5)

E(v) = [Eclip, Eclip, . . . , Evmz , Evmz , . . . , Esf , Esf ], . . . (1)(7)

F (v) = [F clip
cls , F clip

0 , . . . , F clip
29 , F vmz

cls , F vmz
0−1 , . . . , F vmz

29−30, F
sf
cls, F

sf
0−5, . . . , F

sf
25−30] (1)(6)
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embedding. irCSN152-IG65M (VMZ) produces a single 
embedding from a sequence of 32 consecutive frames (32 
fps). Slow-Fast (SF) [22] takes a Mel spectrogram of a 5 
seconds long audio frame to produce an embedding.

Positional encoding is used in the transformer encoder 
architecture to provide information about the order of 
tokens in the input sequence. In our case, the positional 
(temporal) encoding has to provide information not only 
about the order of tokens but also about the time length of 
each individual token. 

We introduce double positional encoding: for each 
embedding we add two biases in Rdmodel. The first bias 
Tstart(v) stands for the beginning timestamp of the video 
segment and the second one Tend(v) stands for the ending 
timestamp.

This way we ensure that different time lengths per expert 
embedding are processed correctly. The results in Table 2 
(Section 4) support this novelty when compared with the 
single temporal encoding used in previous works [14, 11], 
where by single temporal encoding we mean averaging 
timestamps of the beginning and the ending of a segment, 
instead of using them separately.

We also learn additional temporal embeddings Tcls which 
encode aggregated features. The sequence of temporal 
embeddings then takes the form:

Video embedding Final video embedding is a concatenation 
of expert CLS tokens, processed by the aggregator (see 
Figure 3). Given N  experts, video embedding size is 
N × dmodel. 

Text encoder and text embedding projection The text 
encoder takes arbitrary English natural language text and 
produces embedding in  Rdtext . In order to match the size 
dtext of the text embedding with video embedding, the text 
embedding projection part maps the text embedding to the 
distinct space Rdmodel for each modality (see Figure 5). For 
projection we use the gated embedding module [31], which 
consists of fully-connected, activation and normalization layers.

Each projection of size dmodel is then scaled by a mixture 
weight wexpert (one scalar weight per expert projection), 
which is computed by applying a single linear layer to the 
text embedding, and passing the result through a softmax to 

ensure that the mixture weights total to 1. For example, 
given a query "a man is talking", the biggest weight is 
assigned to audio modality, whereas for a query "a man 
shakes his head", the model focuses most on motion 
modality.

Final text embedding is a concatenation of expert 
projections, multiplied by corresponding mixture weights. 
Given N experts, video embedding size is N × dmodel. 

Note that this architecture is flexible. It is possible to add or 
remove additional modalities. Also, it is possible to replace 
a given pre-trained text encoder with another one. For 
example, it is possible to use CLIP ViT-B/32 as an RGB expert 
and the text part of CLIP ViT-B/16 as a text encoder.

Figure 5 Scheme for text network branch. CLIP represents RGB modality, VMZ 
(irCSN152-IG65M) represents motion modality, SF (SlowFast) represents sound modality

Table 1 "Num videos" is the number of video clips (images) in the dataset, 
"Num pairs" is the total number of video-caption (image-caption) pairs, and 

"Num unique captions" is the number of unique captions in the dataset

Dataset
Num 

videos  
(images)

Num 
pairs

Num 
unique 

captions

MSR-VTT [45]

ActivityNet [12]

LSMDC [40]

TwitterVines [1]

YouCook2 [51]

MSVD [4]

TGIF [26]

SomethingV2 [18]

VATEX [44]

TVQA [23]

Sum above 

10k

14k

101k

6.5k

1.5k

2k

102k

193k

28k

20k

477k

200k

70k

101k

23k

12k

80k

125k

193k

278k

179k

1261k

167k

69k

101k

23k

12k

64k

125k

124k

278k

178k

Flicker30k [47]

COCO [5]

Conceptual Captions [42]

32k

123k

3M

159k

617k

3M

158k

592k

2M

Tstart(v) = [Tcls, T0, . . . , T29, Tcls, T0, . . . , T29, Tcls, T0, . . . , T25] (1)(8)

Tend(v) = [Tcls, T0, . . . , T29, Tcls, T1, . . . , T30, Tcls, T5, . . . , T30] (1)(9)
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Temporal 
Embedding

Text → Video  
 R@1↑      R@5↑      R@10↑    MdR↓ 

Single 

Double

22.1±0.1      48.2±0.0      60.0±0.1      6.0±0.0 

22.2±0.1      48.5±0.2      60.3±0.2      6.0±0.0

RN50 RN50x4 RN50x16 RN50x64 ViT-B/32 ViT-B/16 ViT-L/14

RN50

RN50x4

RN50x16

RN50x64

ViT-B/32

ViT-B/16

ViT-L/14

40.1

42.8

43.9

44.6

42.0

44.4

46.2

38.7

41.9

43.5

43.9

41.2

43.8

45.7

39.3

42.5

43.6

44.1

40.9

43.4

45.3

39.3

42.5

43.0

44.2

40.9

43.3

45.3

40.1

43.2

44.4

44.8

42.5

44.8

46.5

39.8

43.1

44.5

45.2

42.4

45.4

46.8

39.8

43.2

44.4

45.4

42.2

44.9

47.2

Table 2 Comparison of a standard positional encoding with the proposed 
double positional encoding. Dataset: MSR-VTT full clean split; Text 

backbone: CLIP ViT-B/32; Experts: CLIP ViT-L/14, irCSN152-IG65M, SF

Table 3 Comparison of CLIP visual and text backbones combinations. Experts: CLIP; Metric: R@5

3.2 Datasets

A list of datasets used in this work is provided in Table 
1. Only training splits of the listed datasets are used in 
the training dataset. Note that we use both text-video 
and text-image datasets. In Section 4.4 we show results 
for video-only datasets and image+video datasets. 
Since each dataset has a different number of videos 
and captions, it is important to combine datasets 
properly [11].

In the following experiments MSR-VTT full clean split is 
used. This split is introduced in [11]. The test part of a full 
clean split is the same as the test part of a full split. The 
training part of a full clean split is mostly similar to a full 
split but some videos are removed. All removed videos have 
a corresponding duplicate in the test part.

3.3 Loss

The MDMMT-2 is trained with the bi-directional max-
margin ranking loss [20] (see Equation 2).

In our experiments we compare bi-directional max-margin 
ranking loss and symmetric cross-entropy loss. Both 
objectives show the same result, but the first objective 
converges faster.

4 Experiments

In sections 4.1 - 4.3 all experiments are made on the MSR-
VTT full clean split (see Section 3.2) for 50 epochs and 60k 
examples per epoch. The initial learning rate is 5e-5. After 
each epoch we multiply the learning rate by γ = 0.95. In these 
experiments we freeze the text backbone and train only the 
aggregator model and the text embedding projection part. 

For the MSR-VTT training we use an aggregator with 4 
layers and 4 heads. On a larger dataset (see Section 4.4 - 
4.6) the aggregator has 9 layers and 8 heads. We set 
dmodel = 512 in all experiments.

Results are reported as mean
±std  or just mean over 3 

experiments. By R@k, MnR, MdR we denote recall at k, 
mean rank, and median rank correspondingly.

4.1 CLIP

In paper [11], it is shown that CLIP works as a strong visual 
feature extractor and outperforms other available models by 
a large margin. We found out that the CLIP text backbone 
also works better than other available text models, such as 
BERT [8], which was originally used in [14], or GPT [3].

Currently there are several publicly available CLIP models. 
In this section we compare their performance to make 
sure that we use the best possible combination. Results are 
presented in Table 3.

Our observations:

•	 Suppose we have a pre-trained CLIP: text backbone and 
the corresponding visual backbone. We observe that if 
we replace the original visual backbone with a bigger/
deeper one, we obtain a better video retrieval system.

Visual
Text
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Table 4 Experts combinations. Text backbone: CLIP ViT-B/32 Table 5 Comparison of different techniques for extracting features from nonsquare 
videos. Text backbone: CLIP ViT-B/32; Experts: CLIP ViT-L/14; Metric: R@5

Experts  
CLIP irCSN152-IG65M SF

Text → Video 
  R@1↑       R@5↑      MdR↓

√ 10.2±0.0 29.3±0.1 17.3±0.5

√        √ 11.2±0.1 31.5±0.2 15.0±0.0

  √ 21.3±0.1 46.5±0.2 7.0±0.0

  √ √ 21.5±0.1 46.7±0.1 7.0±0.0

  √        √ 22.0±0.1 47.8±0.1 6.0±0.0

  √ √        √ 22.2±0.1 48.5±0.2 6.0±0.0

Squeeze
Center 
crop

Padding Mean

Squeeze 46.3 46.0 46.0 47.1

Center Crop 46.0 46.5 46.0 47.3

Padding 46.0 46.2 46.7 47.0

Mean 45.9 46.4 45.9 47.4

•	 If we use the same visual backbone with different text 
backbones, a text backbone of a bigger/deeper model does 
not necessarily show better results. Tab. 3 demonstrates 
that among residual neural networks (ResNets) the best 
result (in bold) is achieved with a combination of the 
deepest visual backbone (RN50x64) and the text backbone 
from the most shallow model (RN50).

•	 CLIP ViT-L/14 shows the overall best performance both as 
a visual backbone and a text backbone (in bold).

4.2 Experts Combination

Using combination of different experts allows to achieve 
a better performance. In Table 4 various combinations of 
experts are presented. Usage of all three modalities gives 
the best result.

4.3 Dealing with Non-square Videos

Both irCSN152-IG65M and CLIP take videos (images) of 
square shape as input. Therefore, it is not possible to directly 
use information from the whole video frame. It may happen 
that objects or actions are taking place in the corner (out 
of the center crop) of the video. If we use center crop to 
compute embeddings, the information from the corners will 
be lost. There are several possible solutions to this problem:

•	 Squeeze a video to a square without saving the aspect 
ratio (squeeze)

•	 Pad a video to a square with blackbars (padding)

•	 Take several crops from the video, average the 
embeddings of these crops, and use this average as the 
embedding (mean)

For the mean technique we take three crops: left or bottom, 
center, right or top (depending on the video orientation) 
and then average the embeddings of these crops.

Train

Text

Experiments in Table 5 show that squeeze  works worse 
than the center crop, padding works slightly better than the 
center crop, and mean works the best.

We want to emphasize that using mean  during test 
improves video-retrieval performance even if other methods 
are used during training.

4.4 Adding Images

In paper [11], it is shown that the proper combination of 
datasets allows to train a single model that can capture the 
knowledge from all used datasets. In most cases the model 
trained on the combination of datasets is better than the 
model trained on a single dataset.

In Table 7 we show that a proper combination of text-video 
and text-image datasets allows to improve video-retrieval 
performance. Hyperparameters are specified in Section 4.5, 
stage S1.

Weights that are used to combine all datasets are specified 
in Table 6. First 10 rows are video datasets (denoted as 10V) 
and last 3 are image datasets (denoted as 3I). A weight for 
each dataset is proportional to the number and quality of 
video-caption pairs in this dataset, though there is no strict 
formula and small adjustments to the weights values do not 
significantly change the result.

4.5 Pre-training and Fine-tuning

Note that in our work the aggregator is initialized from 
scratch, whereas text backbone is pre-trained. If we 
simultaneously train a randomly initialized aggregator 
and a pre-trained text backbone, then during the time the 
aggregator is trained, the text backbone might degrade. This 
is why, for the final result we introduce a training procedure 
that consists of three stages (denoted as S0, S1, S2).

During stage S0, we use the noisy HT100M dataset. The 
text backbone is frozen, and only the aggregator and text 
embedding projection part are trained.



214 | Communications of HUAWEI RESEARCH

Theory Frontiers

June 2024

Table 6 Datasets used in train procedure. "Weight" describes how often we 
sample examples from the dataset. The probability of obtaining an example from 

the dataset with the weight w equals to w divided by the sum of all weights

Table 9 Test results for train stages on MSR-VTT full clean split. Text 
backbone: CLIP ViT-B/32; Experts: CLIP ViT-L/14, irCSN152-IG65M, SF

Table 8 Hyperparameters for different stages

Table 7 Test results on MSR-VTT full clean split. Text backbone: 
CLIP ViTB/32; Experts: CLIP ViT-L/14, irCSN152-IG65M, SF

Train stages Text → Video

S0 S1 S2 R@1↑ R@5↑ MdR↓

√ 7.7 19.0 60.0

√ 29.0 55.3 4.0

√ √ 30.5 56.9 4.0

√ √ 31.2 57.8 4.0

√ √ √ 32.5 59.4 3.0

Train 
stage

Examples 
per epoch

Num. 
epochs

Learning 
rate

γ Datasets

S0 60k 200 5e-5 0.98 HT100M

S1 380k 45 5e-5 0.95 10V+3I

S2 200k 20 2e-5 0.8 10V+3I

Dataset
Text → Video 

    R@1↑       R@5↑       R@10↑       MdR↓

10V 30.2 56.6 67.1 4.0

10V+3I 30.9 57.4 67.8 4.0

Dataset Weight Type

MSR-VTT

ActivityNet

LSMDC

Twitter Vines

YouCook2

MSVD

TGIF

SomethingV2

VATEX

TVQA

140

100

70

60

20

20

102

169

260

150

Text-video  

datasets  

(10V)

COCO

Flicker30k

Conceptual Captions

280

200

160

Text-image  

datasets  

(3I)

During stage S1, we use crowd-labeled datasets 10V+3I. Same 
as in S0, the text backbone is frozen, and only the aggregator 
and the text embedding projection part are trained.

During stage S2, same as in S1, we use crowd-labeled 
datasets 10V+3I. Now, however, we unfreeze the text 
backbone and train all three main components: aggregator, 
text backbone and text embedding projection.

Hyperparameters for these stages are listed in Table 8. 
They were selected in accordance with a following idea 
– we want to extract as much knowledge as possible till 
the model does not start to overfit. Results for different 
combinations of stages are listed in Table 9.

4.6 Final Result

In this section we compare our solution with the prior art. 
Our best solution uses three modalities: CLIP ViT-L/14 (RGB 
modality), irCSN152-IG65M (motion modality), Slow-Fast 

trained on VGG-Sound (audio modality). Text backbone is used 
from CLIP ViT-L/14. To fuse modalities we use an aggregator 
with 9 layers and 8 heads. The training procedure is described 
in Section 4.5. Results are shown in Table 10 - Table 15.

The center crop is used for visual features extraction 
during training and testing for all datasets except MSR-
VTT (see Table 11), where we report two results on testing 
set: center crop and mean methods (see Section 4.3). On 
other datasets, mean technique didn't bring significant 
improvement. This is most probably due to the fact that 
MSR-VTT has 60k captions in its test set, which is by an 
order of magnitude more than in other test sets used in 
this work. So, in other datasets, there are just not enough 
captions with the required context to see the improvement.

In order to avoid repetitive decoding of the same videos, we 
first extract all required expert embeddings and train our 
model on these embeddings instead of raw videos. 

Results on MSR-VTT, LSMDC, MSVD, YouCook2, TGIF are 
obtained by using a single model. Our model outperforms 
SOTA by 1.6%, 0.6%, 3.9%, 4.3%, 1.1% correspondingly on 
R@5. On MSR-VTT-1kA (see Table 10) we report two results 
with different training splits: full(7k) and 1k-A(9k). The first 
result approaches SOTA and the second result outperforms 
SOTA by 0.8% on R@5.
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Table 10 Test results on the MSR-VTT-1k-A dataset. Results that were obtained using original testing protocol (without dual softmax [6, 15] 
on inference) are shown. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-msr-vtt-1ka

Table 11 Test results on the MSR-VTT dataset. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-msr-vtt

Model
MSR-VTT-1k-A text → video

R@1↑  R@5↑ R@10↑ MnR↓ MdR↓

JSFusion [48] 10.2 31.2 43.2 — 13.0

E2E [32] 9.9 24.0 32.4 — 29.5

HT [33] 14.9 40.2 52.8 — 9.0

CE [27] 20.9 48.8 62.4 28.2 6.0

CLIP [38] 22.5 44.3 53.7 61.7 8.0

MMT [14] 26.6 57.1 69.6 24.0 4.0

AVLnet[41] 27.1 55.6 66.6 — 4.0

SSB [36] 30.1 58.5 69.3 — 3.0

CLIP agg [37] 31.2 53.7 64.2 — 4.0

MDMMT [11] 38.9 69.0 79.7 16.5 2.0

CLIP4Clip [28] 44.5 71.4 81.6 15.3 2.0

CLIP2Video [13] 45.6 72.6 81.7 14.6 2.0

LAFF [19] 45.8 71.5 82.0 — —

CAMoE [6] 44.6 72.6 81.8 13.3 2.0

MDMMT-2 full (Ours) 46.5±0.8 74.3±0.6 83.3±0.2 14.1±0.1 2.0±0.0

QB-Norm+CLIP2Video [2] 47.2 73.0 83.0 — 2.0

CLIP2TV [15] 48.3 74.6 82.8 14.9 2.0

MDMMT-2 1k-A (Ours) 48.5±0.3 75.4±0.3 83.9±0.5 13.8±0.3 2.0±0.0

Model Split
MSR-VTT text → video

R@1↑  R@5↑ R@10↑ MnR↓ MdR↓

VSE [34]

full

5.0 16.4 24.6 — 47.0

VSE++ [34] 5.7 17.1 24.8 — 65.0

Multi Cues [34] 7.0 20.9 29.7 — 38.0

W2VV [9] 6.1 18.7 27.5 — 45.0

Dual Enc. [10] 7.7 22.0 31.8 — 32.0

CE [27] 10.0 29.0 41.2 86.8 16.0

MMT [14] 10.7 31.1 43.4 88.2 15.0

CLIP [38] 15.1 31.8 40.4 184.2 21.0

CLIP agg [37] 21.5 41.1 50.4 — 4.0

MDMMT [11] 23.1 49.8 61.8 52.8 6.0

TACo [46] 24.8 52.1 64.0 — 5.0

LAFF [19] 29.1 54.9 65.8 — —

CLIP2Video [13] 29.8 55.5 66.2 45.4 4.0

CAMoE [6] 32.9 58.3 68.4 42.6 3.0

CLIP2TV [15] 33.1 58.9 68.9 44.7 3.0

MDMMT-2 (Ours) 33.4±0.1 60.1±0.1 70.5±0.1 39.2±0.2 3.0±0.0

MDMMT-2 test mean (Ours) 33.7±0.1 60.5±0.0 70.8±0.1 37.8±0.3 3.0±0.0

MMT [14]

full clean

10.4 30.2 42.3 89.4 16.0

MDMMT [11] 10.4 49.5 61.5 53.8 6.0

MDMMT-2 (Ours) 33.3 59.8 70.2 38.7 3.0
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Table 12 Test results on the LSMDC dataset. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-lsmdc

Table 13 Test results on the MSVD dataset. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-msvd

Table 14 Test results on the YouCook2 dataset. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-youcook2

Table 15 Test results on the TGIF dataset. Results are collected from articles and https://paperswithcode.com/sota/video-retrieval-on-tgif

Model
LSMDC text → video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

CT-SAN [49] 5.1 16.3 25.2 — 46.0

JSFusion [48] 9.1 21.2 34.1 — 36.0

MEE [31] 9.3 25.1 33.4 — 27.0

MEE-COCO [31] 10.1 25.6 34.6 — 27.0

CE [27] 11.2 26.9 34.8 96.8 25.3

CLIP agg [37] 11.3 22.7 29.2 — 56.5

CLIP [38] 12.4 23.7 31.0 142.5 45.0

MMT [14] 12.9 29.9 40.1 75.0 19.3

MDMMT [11] 18.8 38.5 47.9 58.0 12.3

CLIP4Clip [28] 21.6 41.8 49.8 58.0 —

QB-Norm+CLIP4Clip [2] 22.4 40.1 49.5 — 11.0

CAMoE [6] 25.9 46.1 53.7 54.4 —

MDMMT-2 (Ours) 26.9±0.6 46.7±0.5 55.9±0.4 48.0±0.5 6.7±0.5

Model
MSVD text → video

R@1↑  R@5↑ R@10↑ MnR↓ MdR↓

LAFF [19] 45.4 76.0 84.6 — —

CLIP4Clip [28] 46.2 76.1 84.6 10.0 2.0

CLIP2Video [13] 47.0 76.8 85.9 9.6 2.0

QB-Norm+CLIP2Video [2] 48.0 77.9 86.2 — 2.0

CAMoE [6] 49.8 79.2 87.0 9.4 —

MDMMT-2 (Ours) 56.8±0.2 83.1±0.2 89.2±0.1 8.8±0.0 1.0±0.0

Model
YouCook2 text → video

R@1↑  R@5↑ R@10↑ MnR↓ MdR↓

Text-Video Embedding [33] 8.2 24.5 35.3 — 24.0

COOT [17] 16.7 — 52.3 — —

UniVL [29] 28.9 57.6 70.0 — 4.0

TACo [46] 29.6 59.7 72.7 — 4.0

MDMMT-2 (Ours) 32.0±0.7 64.0±0.3 74.8±0.2 12.7±0.3 3.0±0.0

Model
TGIF text → video

R@1↑  R@5↑ R@10↑ MnR↓ MdR↓

W2VV++ [25] 9.4 22.3 29.8 — —

SEA [24] 11.1 25.2 32.8 — —

LAFF [19] 24.5 45.0 54.5 — —

MDMMT-2 (Ours) 25.5±0.1 46.1±0.0 55.7±0.1 94.1±0.3 7.0±0.0
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5 Multilingual Text Backbone

In this section we present two approaches for creating 
multilingual models:

•	 Multilingual text-video training database

•	 Text backbone distillation (applicable only for two-
stream models)

5.1 Multilingual Training Database

Most of the text-to-video datasets use English-only captions. 
Modern translation systems allow to translate the caption 
from English to almost any other language with decent 
quality, so it is possible to translate each caption in the 
dataset and thus create a multilingual training database.

If we use several languages, it is required to use a 
multilingual tokenizer, which, in turn, requires us to change 
the pretrained text backbone. For example, if bert-base-
uncased model is used for English-only captions, then in 
order to work with multilingual captions we need to switch 
to bert-base-multilingual-uncased with the corresponding 
multilingual tokenizer. Although, if we use the CLIP text 
backbone, this method cannot be applied as there are no 
publicly available multilingual CLIP models.

Consequently, the same training procedure can be applied 
for both monolingual and multilingual datasets. It requires 
translating dataset captions to desired languages and 
replacing both the tokenizer and the text backbone.

Figure 6 shows that training on two languages shows a 
slight decrease in the original language (EN) and a two-
percent decrease in the translated language (ZH). This 

Figure 6 Experiments on multilingual training database. Text backbone:  
bertbase- multilingual-uncased; Experts: CLIP ViT-B/32, irCSN152-IG65M, SlowFast. Both 
video aggregator and text backbone are trained in a setting similar to S1 (see Table 8)

Figure 7 Multilingual text backbone distillation. Source: https://github.com/FreddeFrallan/Multilingual-CLIP

decrease occurs because of machine translation, which is 
not perfectly accurate and may introduce some noise.

5.2 English Model Knowledge 
Distillation

The two-stream architecture allows to apply the distillation 
procedure to the text model. Within this approach, the 
visual part does not change. Instead, a new text model is 
trained for the existing visual part. This model accepts texts 
in target languages as input. The original model is called 
a teacher and the new model for the target languages is 
called a student. The method does not require retraining 
of the visual backbone, which means that no recalculation 
of precomputed visual embeddings is required. This leads 
to the original model distillation possibility with few 
computational resources.

Multilingual
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There are no strict requirements for the student model 
architecture, initialization, or tokenizer as long as it is 
applicable for target languages. The only restriction is that 
the text query must be encoded into a single embedding 
with a shape similar to the teacher model embedding.

The training procedure is performed with the teacher model 
frozen. The text textsrc from the original dataset is selected 
randomly. Then the corresponding translation to the target 
language is texttgt. textsrc  is processed by the teacher 
model and texttgt by the student model. Next, we apply 
Mean Squared Error (MSE) loss to the obtained embeddings 
(teacher embedding is the ground truth).

The dataset, which was used for the original system training, 
can be considered as a good dataset for the distillation. 
Additionally, we want to highlight that the student model 
cannot outperform the teacher because the teacher model 
output is the only training signal.

In this work the teacher model understands only English 
input. The target languages are English and Chinese. The 
Chinese texts are obtained by a machine translation system. 
The quality is measured with the original MSR-VTT dataset 
(English) and translated into Chinese.

In our experiments the teacher model is a transformer 
encoder network with 12 layers, 8 heads, and width equal 
to 512 (based on CLIP ViT-B/16). The student model has the 
same architecture with a different tokenizer (for English and 
Chinese) and a different number of token embeddings.

As we can see in Table 16, which represents our distillation 
results, the performance of the student model on the 
original English MSR-VTT benchmark almost reached the 
performance of the teacher model. The result of the student 
model on MSR-VTT translated to Chinese is worse by 2%. 
This performance decrease can be explained by the fact that 
the machine translation system does not work perfectly and 
produces errors.

Table 16 Knowledge distillation

Model
MSR-VTT → video

R@5↑ EN R@5↑ ZH

teacher 57.3 —

student ENZH 57.12 55.3

6 Conclusions

We performed a refined study of each conceptual part of 
the transformer application for the text-to-video retrieval 
task. The analysis of the prior knowledge allows to choose 
optimal existing backbone experts. The combination of 
different types of data sources allows to significantly 
increase the overall training data amount. Also we suggest 
a multi-stage training procedure without experts fine-
tuning, which prevents their overfitting on a particular 
domain. The usage of expanded data and optimal experts 
leads to a great increase in the generalization ability. It 
allows to obtain a model, which simultaneously performs 
well in multiple domains and benefits with the growth 
of domains diversity. We demonstrate a significant  
novelty – a possibility to obtain SOTA results in different 
domains by using the same model, instead of preparing a 
domain-specific model for each domain. In particular, we 
obtained new SOTA results in MSR-VTT, LSMDC, MSVD, 
YouCook2 and TGIF with a single model that was trained 
only once.

Two different approaches for training multilingual models 
are suggested. We show that it is possible to obtain a 
multilingual retrieval model with almost indistinguishable 
performance on the original language and competitive 
performance on target languages.

∑
k

(teacher(textsrc)k − student(texttgt)k)
2 → min (1)(10)
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Despite their success, reinforcement learning (RL) algorithms tend to overfit to training environments, hampering their 
application in the real world. In this paper, we propose a robust RL algorithm that achieves significant robust performance 
on low- and high-dimensional control tasks. We formalize robust RL as a max-min game with a constraint derived from 
Wasserstein distance. Our efficient and scalable algorithm — called WR²L — is designed to solve this game by applying 
a novel zero-order optimization method. We empirically demonstrate significant gains compared to standard and robust 
state-of-the-art algorithms on high-dimensional MuJoCo environments.
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2 Background

1 Introduction 

Reinforcement learning (RL) has become a standard tool for 
solving decision-making problems with feedback. Although 
there has been significant progress, RL algorithms often 
overfit to training environments and fail to generalize 
across even slight variations of transition dynamics [1, 2]. 
However, robustness to changes in transition dynamics is a 
crucial component for adaptive and safe RL in real-world 
environments.

To address the preceding problems, recent literature has 
proposed a plethora of algorithms for robust decision-
making [3–5]. Most of these techniques borrow from 
game theory to analyze — typically in discrete state and 
action spaces — worst-case deviations of agents' policies 
and environments. For some examples, see [6–9] and 
the references therein. These methods have also been 
extended to linear function approximators [10] and deep 
neural networks [11], showing modest improvements in 
performance gain across a variety of disturbances such as 
action uncertainties and dynamics model variations.

In this paper, we propose a generic framework — one 
designed to handle both discrete and continuous state and 
action spaces — for robust RL. Our algorithm, termed 
Wasserstein robust reinforcement learning  (WR²L), judges 
any given policy against the worst-case dynamics among all 
candidate dynamics in a certain set in order to find the best 
policy. This set is essentially the average Wasserstein ball 
around the reference dynamics P0. The constraints make 
the problem well-defined, as searching over arbitrary 
dynamics can only result in system failure. The measure of 
performance is the standard RL objective, namely, the 
expected return. Both the policy and the dynamics are 
parameterized: the policy parameters θk may be the weights 

of a deep neural network, and the dynamics parameters ϕj 
may be the settings of a simulator or differential equation 
solver. The algorithm performs estimated descent steps in 
the ϕ space and — after convergence is complete or 
approaching completion — updates policy parameters in 

the θ space. Because ϕj may be high-dimensional, we adapt 
a zero-order sampling method based on [12] to estimate 
gradients. Furthermore, in order to define the constraint set 

that ϕj is bounded by, we generalize the method to estimate 
Hessians (Proposition 2). Although access to a simulator 
with parameterizable dynamics is required, it is important to 
note that the reference dynamics P0 needs not be known 
explicitly nor learned by our algorithm. Put another way, we 
are in the ''RL setting,'' not the "Markov decision process 

(MDP) setting" where the transition probability matrix is 
known a priori. The difference is made obvious, for 
example, in the fact that we cannot perform dynamics 
programming, and that the determination of a particular 
probability transition can only be estimated from sampling 
(not retrieved explicitly). As such, our algorithm is not 
model-based in the traditional sense of learning a model to 
perform planning.

We believe our contribution is useful and novel for two 
main reasons. First, our framing of the robust learning 
problem is in terms of dynamics uncertainty sets defined 
by Wasserstein distance. Although we are not the first to 
introduce Wasserstein distance into the context of MDPs 
(e.g., see [13, 14]), we believe our formulation is one of 
the first that can be applied to the demanding application 
space we desire — high-dimensional, continuous state and 
action space. Second, we believe our solution approach is 
both novel and effective (as evidenced by experiments in 
Section 5), and does not place a great demand on model 
or domain knowledge. Instead, it only needs access to a 
simulator or differentiable equation solver that allows for 
the parameterization of dynamics. Furthermore, it is not 
computationally demanding, especially because it does 
not build a model of the dynamics and because operations 
involving matrices are efficiently executable using the 
Jacobian-vector product facility of automatic differentiation 
engines.

A Markov decis ion process (MDP)¹ is  denoted by 

M = ⟨S,A,P,R, γ⟩, where S ⊆ Rd denotes the state space, 
A ⊆ Rn denotes the action space, P : S ×A× S → [0, 1] is a 
state transition probability describing the system's dynamics, 
R : S ×A → R is the reward function measuring the agent's 

performance, and γ ∈ [0, 1) specifies the degree to which 
rewards are discounted over time.

At each time step t, the agent is in state st ∈ S  and must 
choose an action at ∈ A, transitioning itself to a new state 
st+1 ∼ P (st+1|st,at) and yielding a reward R(st,at) . A 
po l i cy  π : S ×A → [0, 1] i s  def ined as  a  probabi l i t y 
distribution over state-action pairs, where π(at|st) 
represents the density of selecting action at in state st. 
Upon subsequent interactions with the environment, the 

1 Please note that we present RL with continuous states and actions. This 
allows us to easily draw similarities to optimal control as detailed later. 
Extending these notions to discrete settings is relatively straightforward.
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agent collects a trajectory τ  of state-action pairs. The goal 
is to determine an optimal policy π⋆ by solving:

π� = argmax
π

Eτ∼pπ(τ) [RTotal(τ )] , (1)

where pπ(τ ) denotes the trajectory density function induced 
by P and π, and RTotal(τ ) is the return:

RTotal(τ ) =

T−1∑
t=0

γtR(st,at).

We make use of Wasserstein distance to quantify 

variations from a reference transition density P0(·). Because 
this density is a probability distribution, one may consider 
other divergences, such as Kullback-Leibler (KL) or total 
variation (TV). We explain the main reasoning behind why 
we chose Wasserstein distance later, but here we point out 
a number of its desirable properties: First, it is symmetric 

(Wp(µ, ν) = Wp(ν, µ), a property that KL lacks. Second, it is 
well-defined for measures with different supports (which KL 
also lacks). Indeed, Wasserstein distance is flexible in the 
forms of measures that can be compared: discrete, 
continuous, or a mixture. And third, it considers the 
underlying geometry of the space on which the distributions 
are defined, allowing valuable information to be encoded. 
This space is defined as follows: Let X  be a metric space 

with metric d(·, ·), C(X ) be the space of continuous functions 
on X , and M(X ) be the set of probability measures on X . In 
addit ion, let µ, ν ∈ M(X ),  and K(µ, ν) be the set of 
couplings between µ, ν:

K(µ, ν) :={κ ∈ M(X × X ) ; ∀(A,B) ⊂ X × X ,

κ(A×X ) = µ(A), κ(X ×B) = ν(B)}
(2)

That is, the set of joint distributions κ ∈ M(X × X ) whose 
marginals agree with µ and ν . Given a metric (serving as a 

cost function) d(·, ·) for X , the p'th Wasserstein distance 
Wp(µ, ν) for p ≥ 1 between µ and ν  is defined as:

Wp(µ, ν) :=

(
min

κ∈K(µ,ν)

∫

X×Y
d(x, y)pdκ(x, y)

)1/p

(3)

In this paper, and mostly for computational convenience, we 
use p = 2, though other values of p are applicable.

3 WR²L

modelling the dynamics of a system, it may be reasonable 
to concede that there could be a systemic error — or bias 
— in the model. However, such bias should not be too large. 
It is also reasonable to suppose that the behavior of the 
system may occasionally deviate from the model, but this 
should be a low-probability event. A model that is 
frequently wrong by a large amount is of no use. In a sense, 
the Wasserstein ball formalizes these assumptions.

3.1 Problem Definition: Robust 
Objectives and Constraints

Given the continuous nature of the state and action spaces 
considered in this paper, we utilize deep neural networks to 

parameterize policies. We write these policies as  πθ(at|st), 
where θ ∈ Rd1 is a set of tunable hyperparameters to 
optimize. For instance, these policies can correspond to 
multilayer perceptrons for MuJoCo environments, or to 
convolutional neural networks in case of high-dimensional 
states depicted as images. Ultimately, the exact details of 
policies are application-dependent; as such, we discuss 
those details in the relevant experiment sections.

In principle, one can similarly parameterize dynamics models 
using deep neural networks (e.g., LSTM-type models) 
to provide one or more action-conditioned future state 
predictions. Though appealing, our initial experiments 
with this approach gave rise to transition models that 
lack valid physical meaning. For example, CartPole 
ended up involving transitions that alter angles without 
changing angular velocities. These effects became more 
apparent in high-dimensional settings where the number 
of potential minimizers increases significantly. It is worth 
noting that we are not the first to realize such effects when 
attempting to model physics-based dynamics using deep 
neural networks. Authors in [15] remedy these problems by 
introducing Lagrangian mechanics to deep neural networks, 
while others [16, 17] argue for the need to directly model 
dynamics given by differential equation structures.

Though incorporating physics-based priors into deep neural 
networks is an important and challenging task that holds 
the promise of scaling model-based RL for efficient solvers, 
we study an alternative direction in this paper. We focus on 
perturbing differential equation solvers and simulators with 

respect to the dynamics specification parameters ϕ ∈ Rd2, 
which would not only reduce the dimensions of parameter 
spaces representing transition models, but also guarantee 
valid dynamics due to the nature of the simulator. In 

The desirable properties of Wasserstein distance aside, the 
main reasoning behind why we chose it is as follows: 
According to the preceding definition, constraining the 
possible dynamics to be within an ϵ-Wasserstein ball of the 

reference dynamics P0(·) means constraining it in a certain 
way. Wasserstein distance has the form of mass × distance. 
If this quantity is constrained to be less than a constant ϵ, 
the distance is small if the mass is large, and conversely, the 
mass is small if the distance is large. Intuitively, when 

(1)

(2)

(3)
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3.2 Solution Methodology

tackling some of the preceding problems, such a direction 
involves a new set of challenges related to computing 
gradients and Hessians of black-box solvers. In Section 4, we 
develop an efficient and scalable zero-order optimization 
method for valid and accurate model updates.

Borrowing from robust optimal control, we define robust RL 
as an algorithm that learns best-case policies under worst-
case transitions:

max
θ

[
min
φ

E
τ∼p

φ
θ
(τ)

[Rtotal(τ )]

]
, (4)

where pφθ (τ ) is a trajectory density function parameterized 
by both policies θ and transition models φ:

pφθ (τ ) =

µ0(s0)π(a0|s0)
T−1∏
t=1

Pφ(st+1|st,at)︸ ︷︷ ︸
specs vector and diff. solver

πθ(at|st)︸ ︷︷ ︸
deep network

where µ0(·) is the initial state distribution. Although inspired 
by robust optimal control, our formulation is more generic 
because it allows for parameterized classes of transition 
models without incorporating additional restrictions on the 
structure or the scope by which variations are executed². 

Due to the arbitrary class of parameterized transitions, the 
problem in Equation 4 is ill-defined. To ensure well-behaved 
optimization objectives, we introduce constraints to bound 
search spaces and ensure convergence to feasible transition 
models. For a valid constraint set, our method assumes 
access to samples from a reference dynamics model 
P0(·|s,a), and bounds learned transitions in an ϵ-Wasserstein 
ball around P0(·|s,a), i.e., the set is defined as:

Wε

(
Pφ(·),P0(·)

)
=

{
Pφ(·) :

W2
2

(
Pφ(·|s,a),P0(·|s,a)

)
≤ ε, ∀(s,a) ∈ S ×A }

(5)

where ϵ ∈ R+ is a hyperparameter used to specify the 
"degree of robustness" like maximum norm bounds in 
robust optimal control. Although we have access to samples 
from a reference simulator, our setting is by no means 
restricted to model-based RL in an MDP setting. That is, our 
algorithm operates successfully with only traces from P0 
accompanied with its specification parameters (e.g., pole 
length and torso mass) — it does not require full model 
learners and is therefore more flexible. Note that Equation 5 
introduces an infinite number of constraints when 
cons ider ing cont inuous state and act ion spaces . 
Consequently, we consider a relaxation of average 
Wasserstein distance bounded by a hyperparameter ϵ:

Ŵ(average)
ε

(
Pφ(·),P0(·)

)
=

{
Pφ(·) :∫

(s,a)

P(s,a)W2
2

(
Pφ(·|s,a),P0(·|s,a)

)
d(s,a) ≤ ε }

=
{
Pφ(·) : E(s,a)

[
W2

2

(
Pφ(·|s,a),P0(·|s,a)

)]
≤ ε

}
.

(6)

The sampling (s,a) in the expectation is done as follows: 
We sample trajectories using reference dynamics P0 and a 
policy π that chooses actions uniformly at random (UAR). 

Then (s,a) pairs are sampled UAR from those collected 

trajectories. For a given pair (s,a), W2
2

(
Pϕ(·|s,a),P0(·|s,a)

)
 

is approximated through the empirical distribution: we use 

the state that followed (s,a) in the collected trajectories as 
a data point. Estimating Wasserstein distance using 
empirical data is standard practice (e.g., see [18]). One 
approach that worked well in our experiments was to 
assume that the dynamics is given by deterministic 
functions plus Gaussian noise with diagonal covariance 
matrices. This makes estimation easier in high dimensions 
because sampling in each dimension is independent of 
others, and the total number of samples needed is a 
constant factor of the number of dimensions. Gaussian 
distributions also have closed-form expressions for 
Wasserstein distance, given in terms of mean and 
covariance.

As such, we arrive at WR²L's optimization problem allowing 
for the best policies to be found under worst-case yet 
bounded transition models:

WR²L Objective:

max
θ

[
min
φ

E
τ∼p

φ
θ
(τ)

[Rtotal(τ )]

]

s.t. E(s,a)

[
W2

2

(
Pφ(·|s,a),P0(·|s,a)

)]
≤ ε

(7)

Our solution alternates between updates of θ  and φ , 
keeping one fixed while updating the other. When dynamics 

parameters φ are fixed, policy parameters θ can be updated 
b y  s o l v i n g  maxθ E

τ∼p
ϕ
θ
(τ)

[Rtotal(τ )] ,  w h i c h  i s  t h e 
formulation of a standard RL problem. Consequently, it is 
easy to adapt any policy search method for updating 
policies under fixed dynamics models. As described later in 
Section 4, we make use of proximal policy optimization 
(PPO) [19]. When updating ϕ with the given θ , we must 
respect the Wasserstein constraint. Unfortunately, even with 
the simplification introduced in Section 3.1, the constraint is 
still difficult to compute. We therefore approximate the 
constraint in (7) by its Taylor expansion up to second order. 

That is, defining W (ϕ) := E(s,a)

[
W2

2

(
Pϕ(·|s,a),P0(·|s,a)

)]
, 

2 Ultimately, allowed perturbations are constrained by the hypothesis 
space. Even so, our model is more generic compared to robust optimal 
control that assumes additive, multiplicative, or other forms of 
disturbances.

(4)

(5)

(6)

(7)
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the constraint can be approximated around ϕ0 by a second-
order Taylor expansion as:

W (φ) ≈ W (φ0) +∇φW (φ0)
T (φ− φ0)+

1

2
(φ− φ0)

T ∇2
φW (φ0) (φ− φ0) .

Because W (φ
0
) = 0 (zero distance between a density and 

itself ) and ∇φW (φ
0
) = 0 (φ0 minimizes W (φ)), we can 

s impl i f y  the  Hess ian  approx imat ion  as  fo l lows : 

W (φ) ≈ 1

2
(φ− φ

0
)T∇2

φ
W (φ

0
)(φ− φ

0
). Given θ , the inner 

minimization becomes
min
φ

E
τ∼p

φ
θ
(τ)

[Rtotal(τ )] s.t.
1

2
(φ− φ0)

TH0(φ− φ0) ≤ ε, (8)

where H0 = ∇2

φ
E(s,a)

[
W2

2

(
Pφ(·|s,a),P0(·|s,a)

)] ∣∣∣∣
φ=φ0

 is  

the Hessian of the expected squared 2-Wasserstein distance 
evaluated at φ0. Optimization problems with quadratic 
constraints can be efficiently solved using interior-point 
methods. To do so, one typically approximates the loss with 
a first-order expansion and determines a closed-form 

solution. Consider a pair of parameters θ[k] and φ[j] (which 
correspond to parameters of the k'th outer loop and the j'th 
inner loop, respectively, in the algorithm we present). To 

find φ[j+1], we solve:

min
φ

∇φEτ∼p
φ
θ
(τ)

[Rtotal(τ )]

∣∣∣∣∣
T

θ[k],φ[j]

(φ− φ[j])

s.t.
1

2
(φ− φ0)

TH0(φ− φ0) ≤ ε.

A minimizer to the above equation can be derived in a 
closed form as:

φ[j+1] = φ0 −

√
2ε

g[k,j]TH−1
0 g[k,j]

H−1
0 g[k,j], (9)

with g[k,j] denoting the gradient³ evaluated at θ[k] and φ[j], 
specifically, g[k,j] = ∇φEτ∼p

φ
θ
(τ)

E [R
total

(τ )] |
θ[k],φ[j].

Generic Algorithm: Having described the two main steps 
needed for updating policies and models, we now 
summarize these findings in the pseudocode in Algorithm 1. 
As the Hessian⁴ of the Wasserstein distance is evaluated 
based on reference dynamics and any policy π, we pass it 
(together with ǫ and φ0) as an input. Then Algorithm 1 
operates in a descent-ascent fashion in two main phases. In 
the first phase (lines 5–10), dynamics parameters are 
updated using (9), while ensuring that learning rates abide 
by step-size conditions (we used Wolfe conditions [21]). 
The second phase (line 11) utilizes any state-of-the-art RL 

method to adapt policy parameters that generate θ[k+1]. 
Regarding the termination condition for the inner loop, we 
leave this as a decision for the user. It could be, for example, 

a large finite time-out, or the norm of the gradient g[k,j] 
being below a threshold, or whichever occurs first.

Algorithm 1 WR²L

1: Inputs: Wasserstein distance Hessian, H0 evaluated at φ0 
under any policy π, radius of the Wasserstein ball ǫ, and 
the reference simulator specification parameters φ0

2: Initialize φ[0] with φ0 and policy parameters θ[0] arbitrarily
3: for k = 0, 1, . . . do
4:    x[0] ← φ[0], and j ← 0 and x[0] ← φ[0], and j ← 0

5:   Phase I: Update model parameters while fixing the  
   policy:

6:    while termination condition not met do
7:      Compute the descent direction for model parameters  

      as given by Equation 9:

p[j] ← φ0 −

√
2ε

g[k,j]TH−1
0 g[k,j]

H−1
0 g[k,j] − x[j]

8:     Update candidate solutions while satisfying step-size  
     conditions (see discussion below) on the learning rate  

     α: x[j+1] ← x[j] + αp[j] and j ← j + 1 and x[j+1] ← x[j] + αp[j] and j ← j + 1

9:    end while

10:  Perform model update setting φ[k+1] ← x[j]

11:  Phase II: Update the policy with the new model  
 parameters:

12:  Use any standard RL algorithm for ascending in the  
 gradient direction, for example,  

 θ
[k+1] ← θ[k] + β[k]∇θEτ∼p

φ
θ
(τ)

[Rtotal(τ )] |θ[k],φ[k+1],  
 with β[k] being the learning rate.

13: end for

4 Zero-Order WR²L

Consider a simulator (or differential equation solver) Sφ for 
which the dynamics are parameterized by a real vector φ, 
and for which we can execute steps of a trajectory (i.e., the 
simulator takes an action a as input and returns a successor 
state and reward). To generate novel physics-grounded 
transitions, one can simply alter φ  and execute the 

instruction in Sφ from some state s ∈ S, while applying an 
action a ∈ A . This not only ensures valid (under mechanics) 
transitions, but also promises scalability because specification 
parameters typically reside in lower-dimensional spaces 
compared to the number of tunable weights when using 
deep neural networks as transition models.

Recalling the update rule in Phase I of Algorithm 1, we 
realize the need for estimating the gradient of the loss 

³ Remark: Superficially, this looks similar to an approximation made in 
trust region policy optimization (TRPO) [20]. However, the latter aims to 
optimize the policy parameter rather than dynamics. Furthermore, the 
constraint is based on KL divergence rather than Wasserstein distance.
⁴ Note that our algorithm does not need to store the Hessian matrix; 
we require only Hessian-vector products. These products can be easily 
computed using computational graphs without having access to the full 
matrix.

(8)

(9)
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5 Experiments & Results

function with respect to the vector specifying the dynamics 
of the environment, specifically, 

g[k,j] = ∇φEτ∼p
φ
θ
(τ)

[Rtotal(τ )]

∣∣∣∣∣
θ[k],φ[j]

 at each iteration of 

the inner loop j. Handling simulators as black-box models, 
we estimate the gradients as follows (which is relatively 
easy to prove):

Proposition 1 (Zero-Order Gradient Estimate). For a fixed  θ 
and φ, the gradient can be computed as:  

∇φEτ∼p
φ
θ
(τ)

[Rtotal(τ )] =

1

σ2
Eξ∼N (0,σ2I)

[
ξ

∫

τ

pφ+ξ
θ (τ )Rtotal(τ )dτ

]
.

We can extend the above for Hessians with the following: 
Proposition 2 (Zero-Order Hessian Estimate). The Hessian 
of the Wasserstein distance around φ0 can be estimated 
ba sed  on  f unc t i on  e va lua t i on s .  Re ca l l i ng  t ha t 

H0 = ∇2

φ
E
(s,a)∼π(·)ρ

φ0
π (·)

[
W2

2

(
Pφ(·|s,a),P0(·|s,a)

)] ∣∣∣∣
φ=φ0

, 

and def ining  W(s,a)(φ) := W
2

2

(
Pφ(·|s,a),P0(·|s,a)

)
,  we 

prove:

H0 =
1

σ2
Eξ∼N (0,σ2I)

[
1

σ2
ξ
(
E
(s,a)∼π(·)ρφ0

π (·)

[
W(s,a) (φ0 + ξ)

])
ξT

− E
(s,a)∼π(·)ρφ0

π (·)

[
W(s,a)(φ0 + ξ)

]
I

]
.

We reiterate that the Hessian estimation needs to be made 
once only — before executing the instructions in Algorithm 
1 (i.e., H0 is passed as an input). With the above, gradients  
and Hessian estimates can be simply based on simulator 
value evaluations while perturbing φ and φ0. This requires 

evaluation of E
(s,a)∼π(·)ρ

φ0
π (·)

[
W(s,a)(φ0

)
]
 under random ξ 

perturbations sampled from N (0, σ2I), which can be done 
through empirical estimations. That is, approximating µ by 

µn = 1

n

∑
n

i=1
δxi where xi is i.i.d sampled from µ , and 

similarly for ν , we have⁵ W2(µ, ν) ≈ W2(µn, νn).

⁵ If the dynamics is assumed to be Gaussian, a similar procedure can be 
followed or a closed form can be used — see [22].

outperforms state-of-the-art algorithms from both standard 
and robust RL. We are primarily interested in policy 
generalization across environments with varying dynamics, 
which we measure with average test returns on novel 
systems. The comparison against standard RL algorithms 
allows us to understand whether the lack of robustness is 
a critical challenge for sequential decision making. At the 
same time, the comparison against robust RL algorithms 
tests if we outperform state-of-the-art algorithms that 
consider a similar setting to ours. From standard RL 
algorithms, we compare against PPO [19], and TRPO [20]; 
an algorithm based on natural actor-critic [23, 24]. From 
robust RL algorithms, we demonstrate how WR²L favors 
against robust adversarial reinforcement learning (RARL) 
[4], and action-perturbed Markov decision processes (PR-MDP) 
proposed in [5]. It is worth noting that we attempted to 
include deep deterministic policy gradients (DDPG) [25] in 
our comparisons. However, results including DDPG were 
omitted as DDPG failed to show any significant robustness 
performance even on relatively simple systems, such as the 
inverted pendulum. During initial trials, we also performed 
experiments to parameterize models using deep neural 
networks. Results demonstrated that these models, though 
minimizing training data error, failed to provide valid 
physics-grounded dynamics. For instance, we arrived at 
inverted pendulum models that varied pole angles without 
exerting any angular speeds. This problem became even 
more apparent in high-dimensional systems (e.g., Hopper 
and Walker) due to the increased number of possible 
minima. As such, results presented in this section make use 
of our zero-order method that can be regarded as a scalable 
alternative for robust solutions.

5.1 MuJoCo Benchmarks

We evaluate our method both in low- and high-
dimensional MuJoCo tasks [26]. We consider a variety of 
benchmarks including CartPole, Hopper, and Walker2D, all 
of which require direct joint-torque control. Keeping with 
the generality of our method, we utilize these benchmarks 
as-is with no additional alterations. Specifically, we use 
the exact setting of these benchmarks as that shipped 
with OpenAI gym without any reward shaping, state-space 
augmentation, feature extraction, or any other similar 
modifications.

Results for one-dimensional parameter variations show that 
WR²L outperforms both robust and non-robust algorithms 
when one-dimensional simulator variations are considered.

We evaluate WR²L on a variety of continuous control 
benchmarks from the MuJoCo environment. Dynamics in 
our benchmarks was parameterized by variables defining 
physical behavior (e.g., density of the robot's torso and 
friction of the ground). We consider both low- and high-
dimensional dynamics and demonstrate that our algorithm 
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Figure 1 shows results for dynamics variations along 
two dimensions. Here again, our method demonstrates 
considerable robustness. The fourth row, "PPO-DR", refers 
to experiments where PPO is trained on dynamics sampled 
UAR from the range of parameters displayed. For example, 
PPO-DR in the Hopper column is trained with pairs of 
<torso density, ground friction> in the range [500, 3000] × 
[1.5, 2.5]. It displays more robustness than when trained on 
just the reference dynamics. However, as can be seen from 
Figure 2, our method performs better in high dimensions, 
which is the main strength of our algorithm.

Results with High-Dimensional Model Variations: 
Although the preceding results demonstrate robustness, 
an argument against a min-max objective can be made 
especially when only low-dimensional changes in the 
simulator are considered. Specifically, one can argue the 
need for such an objective as opposed to simply sampling a 
set of systems and determining policies performing well on 
average similar to the approach proposed in [27].

A counterargument is that a gradient-based optimization 
scheme is more efficient than a sampling-based one 

when high-dimensional changes are considered. In other 
words, a sampling procedure is hardly applicable when 
more than a few parameters are altered, while WR²L can 
remain suitable. To assess these claims, we conducted two 
additional experiments on the Hopper and HalfCheetah 
benchmarks. In the first, we trained robustly while changing 
friction and torso densities, and tested on 1000 systems 
generated by varying all 11 dimensional parameters of the 
Hopper benchmark, and 21 dimensional parameters of the 
HalfCheetah benchmark.

Figure 1 Two-dimensional dynamics variations. Numbers in the graded 
scale are scores that the tasks can generate. Darker is better.

Figure 2 High-dimensional dynamics variations for 
Hopper (a–d) and HalfCheetah (e–h)

Hopper

PPO PPO PPO

(a) PPO Test High

(c) Train High Test High

(e) PPO Test High

(g) Train High Test High

(b) Train Low Test High

(d) PPO-DR

(f) Train Low Test High

(h) PPO-DR

Walker HalfCheetah

PPO-DR PPO-DR PPO-DR

The histograms in Figures 2b and f demonstrate that 
the empirical densities of the average test returns are 
mostly centered on 3000 for Hopper, and on 4500 for 
HalfCheetah. This is an improvement over PPO trained on 
reference dynamics (Figures 2a and e) with return masses 
mostly accumulated at around 1000 in the case of the 
Hopper benchmark and almost equally distributed when 
considering HalfCheetah. Such improvements, however, can 
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6 Related Work

Work on robust MDPs (e.g., [8, 7, 28–30]), while valuable in 
its own right, is not sufficient for the RL setting due to the 
need in RL to give efficient solutions for large state and 
action spaces, and the fact that the dynamics is not known 
a priori. Closer to our problem space is a number of papers 
that do not assume known dynamics (e.g., [31–34]). [32] 
extended most conventional RL algorithms, including 
Q-learning, SARSA, and TD-learning, to their robust 
v e r s i on s .  Conve rgence  p roo f s  o f  t wo  f un c t i on 
approximations for large-scale MDPs were also conducted 
in [32]. However, two difficulties arise in robust RL. The first 
one inherits from the robust MDP framework in which the 
assumption of rectangular ambiguity sets⁶ (i.e., dynamics) 
results in conservative policies. Second, further study is 
required on how to estimate the ambiguity sets for large-
scale MDPs in a model-free setting [30, 33]. In our work, 
the dynamics is parameterized and the corresponding 
ambiguity set is non-rectangular. The ambiguity set is 
mapped to a subset in the model parameter space, which is 
assumed to a ₂-ball around a nominal parameter. 
Proposition 2 gives a method to estimate the ambiguity set 
through sampling. Unlike most value-based algorithms 
discussed here, we exploit a policy gradient approach that 

generalizes to complex systems with continuous state and 
action spaces. There are other robust RL frameworks that 
consider robustness under adversarial action noises: Pinto et 
al. [4] and Tessler et al. [5]. We tested against both of these 
algorithms and found they lacked performance even in the 
one-dimensional case. Rajeswaran et al. [27] approaches 
the robustness problem by performing alternating 
optimization for environment and policy parameters, 
choosing the dynamics sampled from a probability 
distribution over the parameter space, and using a fixed 
fraction of the worst-performing trajectories to update the 
policy. Despite some resemblance to our algorithm, there 
are crucial differences. First, it does not utilize Wasserstein 
distance. Second, our algorithm takes descent steps in the 
φ space. These differences are important when the dynamics 
parameters sit in a high-dimensional space. This is because, 
in that case, optimization-from-sampling could demand a 
considerable number of samples. In any case, our 
experiments demonstrate our algorithm performs well even 
in these high dimensions. Unfortunately, we were unable to 
find the code for the Rajeswaran et al. paper [27], and did 
not attempt to implement it ourselves.

In [14], a non-stationary MDP is considered, where the 
dynamics can change from one time step to another. It is 
assumed the dynamics is known at each time step but not 
how it will change. It is also assumed that the dynamics 
variation is bounded, specifically, the Wasserstein distance 
between dynamics at time t and t′ is Lipschitz. [14] 
approaches the problem by treating nature as an adversary 
and implementing a min-max algorithm. The resulting 
algorithm, known as Risk Averse Tree Search, is — as the 
name implies — a tree search algorithm. The algorithm was 
tested on a small grid world, and does not appear to be 
readily extendable to the continuous state and action spaces 
our algorithm addresses. To summarize, our paper uses 
Wasserstein distance for quantifying variations in possible 
dynamics, in common with [14], but is suited to applying 
deep neural networks for continuous state and action 
spaces. Our algorithm also does not require full dynamics; 
instead, it requires mere parameterizable dynamics. It 
competes well with the preceding papers, and operates well 
for high-dimensional problems, as evidenced by the 
experiments.

Domain Randomization: Domain randomization is 
an important technique to bridge the gap between 
the simulator and the real-world system [35, 11]. The 
objective has a max-expectation form in which the policy 
performance is evaluated over a distribution of simulator 
parameters. This distribution is manually designed at first 

⁶ This means the choice of the transition probability at any ( ) pair is 
completely independent on choices made at other pairs.

be an artifact of the careful choice of the low-dimensional 
degrees of freedom allowed to be modified during Phase 
I of Algorithm 1. For further insights, Figures 2c and g 
demonstrate the effectiveness of our method trained and 
tested while allowing to tune all 11 dimensional parameters 
of the Hopper benchmark, and 21 dimensional parameters 
of the HalfCheetah benchmark. Indeed, our results comply 
with those of the previous experiment, indicating that most 
of the test returns' mass remains around 3000 for Hopper, 
and improves to accumulate around 4500 for HalfCheetah. 
Interestingly, our algorithm can acquire higher returns on 
all systems because it is allowed to alter all parameters 
defining the simulators. As such, we conclude that WR²L 
outperforms others when high-dimensional simulator 
variations are considered. In Figures 2d and h, we see the 
results for PPO trained with dynamics sampled UAR from 
the Wasserstein constraint set. Although this training 
method works well in the two-dimensional variation case, 
it does not scale well to high dimensions. Our method 
achieves better results. 
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and can then be adapted [27, 36, 37]. Our experimental 
setup is similar to that in domain randomization, which 
uses a parameterized simulator. That said, our method is 
distinguishable from two perspectives. First, we follow the 
max-min formula in the robust RL framework and take 
gradient steps to search the worst-case scenario. However, 
the max-expectation objective from domain randomization 
requires sampling simulator parameters from a distribution. 
This means that the objective suffers from the curse of 
dimensionality when applied to complex systems with many 
parameters (as shown in the empirical demonstration in the 
experiment section). Second, the ambiguity set (the support 
of the parameter distribution) in domain randomization is 
usually handcrafted, requiring additional expert knowledge. 
We learn the ambiguity set from data and consider it as a 
constraint.

7 Conclusion & Future Work

In this paper, we proposed a robust RL algorithm capable 
of outperforming others in terms of test returns on 
unseen dynamics. The algorithm makes use of Wasserstein 
constraints for policy generalization across varying domains, 
and considers a zero-order method for scalable solutions. 
Empirically, we demonstrated superior performance against 
state-of-the-art algorithms from both standard and robust 
RL on low- and high-dimensional MuJoCo environments. 
In future work, we aim to consider robustness in terms 
of other components of MDPs, for example, state 
representations, reward functions, and others. Furthermore, 
we will implement WR²L on real hardware, considering sim-
to-real experiments.
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Tensors have received a lot of attention recently due to their various applications and their generality property. Yet, our 
understanding of their theoretical properties is still limited and many of the ideas developed for matrices do not easily 
extend to high-dimensional tensors. In this paper, we present some basic tensor properties along with a set of classical 
tensor decomposition methods. We further provide a brief survey of the applications of such methods in the field of 
machine learning. In this context, numerous applications of tensor methods rely on extracting low-rank tensor structures 
from raw high-dimensional data. This motivates the analysis of random tensors with a hidden low-rank structure (also 
known as spiked random tensor models). We also present some recent theoretical advances describing the behavior of such 
models. Finally, we discuss the application of random tensor theory to the performance characterization of supervised and 
unsupervised learning with tensors. 

Abstract 

Mohamed El Amine Seddik, Maxime Guillaud

Random Tensor Theory, 
Algorithms and Applications
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2 Tensors and Decomposition 
Algorithms

1 Introduction 

In the fields of signal processing and machine learning, 
there are many techniques that rely on retrieving latent (e.g. 
low-rank) structures from raw data. The idea of exploiting 
the low-rank structure of matrices started in 1904 with 
the work of the psychologist Charles Spearman [1] on his 
theory of intelligence. He suggested that there are two 
types of intelligence: eductive which defines the ability to 
make sense out of complexity, and reproductive , which 
represents the ability to store and reproduce information. 
To test his theory, he invented the notion of factor analysis , 
which consists of decomposing a given matrix into a sum 
of rank one matrices. Specifically, Spearman considered 
a 10×1000 matrix where each column (associated to a 
student) corresponds to the student's grades in 10 tests. 
He found that such a matrix decomposes into a sum of 
two rank-one components, which he interpreted as the two 
types of intelligence.

Matrix decomposition suffers from the lack of uniqueness 

— a fundamental limitation. Indeed, given a rank-r matrix 

M =
∑

r

i=1
ai ⊗ bi = AB

⊤, where the {ai}i∈[r] and {bi}i∈[r] 
are the column vectors of A  and B , respectively, and ⊗ 

denotes the outer product, the decomposition of M  is not 

unique unless other constraints are imposed on the 

components. This can be demonstrated by noticing that

M = AB⊤ = (AR)(R−1B⊤)

for any invertible matrix R . Interestingly, multi-way arrays 
(tensors ) that generalize matrices (which have two 
modes: columns and rows) to more than two modes yield 
more favorable properties, in the sense that the unique 
decomposition property holds under milder conditions [2]. 
For instance, for tensors of sub-generic rank (i.e., those that 
contain data arising from a structured model), the low-
rank tensor decomposition is essentially unique. This is in 
contrast to the matrix case. In such a case, for instance, the 
QR or the singular value decompositions, the orthogonality 
conditions imposed on the factors in order to make matrix 
decompositions unique are merely technical and do not 
always correspond to a meaningful constraint in the 
considered problem. No such orthogonality conditions are 
required to make the tensor decomposition unique.

The uniqueness properties of low-rank tensor decomposition 
can be leveraged in the context of blind source separation, 
where they can work with relaxed assumptions compared 

to the classical approaches (in particular, much shorter 

data samples than methods based on high-order statistics 

[3]), and with a larger number of sources. The blind source 
separation capability is also at the core of the non-coherent, 
non-orthogonal multi-user wireless communication 
approach proposed in [4].

Tensor methods also find applications in the broader 

domain of machine learning. This will be the main focus of 

this paper as detailed in Section 3. But before we explore 

that, we will first recall some classical tensor operations and 

decomposition algorithms in Section 2. Then in Section 4, 

we will provide some recent findings about the analysis of 

random tensors. Finally, in Section 5, we will present a direct 

application of these findings to supervised and unsupervised 

learning where we highlight and quantify the benefit of 

using tensor methods on a simple framework.

In its simplest incarnation, a tensor can be construed as a 
D-dimensional (order) data structure. This is, akin to the 
generalization of vectors (1 dimension) and matrices (2 
dimensions) to more than 2 dimensions (In classical linear 
algebra, vectors are single-dimensional data structures, 
whereas matrices have two dimensions: rows and columns.) 
The resulting D-way array can be interpreted either as the 
representation of a multilinear application (as in Newtonian 
physics, where coordinate-free tensor representations 
are used to model physical laws), or as a data structure 
that is naturally indexed by D dimensions (or modes) [5]. 
The tensor decomposition problem was first introduced 
in the late 1920s [6]. Interestingly, it is deeply rooted in 
experimental sciences: the decomposition of a given tensor 
into the sum of rank-1 components (known as the canonical 
polyadic, or CP, decomposition) has practical significance 
in numerous applications because it reveals the internal 
structure of the data. Indeed, low-rank tensor decomposition 
was re-discovered in the field of psychometrics in the 1970s 
where it was given the name PARAFAC [7], and then again 
in the field of chemometrics in the 1980s [8]. Tensor algebra 
is underpinned by a profound mathematical theory. Despite 
the relatively familiar setup provided by the analogy with 
the matrix case, the properties of the CP decomposition 
depart in major ways from the intuitions available in the 
matrix case [9]. For example, high-order (D  ≥ 3) tensors can 
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have high rank even for moderate tensor sizes1. Unlike for 

matrices where the rank is bounded by the minimum of the 

row and column dimensions, the expected rank of a generic 
tensor can be greater than the dimension along each mode 
— in fact, the expected rank scales super-linearly [2].

Contemporary extensions of tensor theory tackle increasingly 
complex setups, such as the case of coupled CP decompositions 
[10] (where the coupling arises from the considered 
application), or the storage-efficient tensor-train decomposition 
[11] applicable to large size, high-order tensor problems. 
Recent theoretical developments include the study of random 
tensors, focusing in particular on spiked models. In the context 
of such models, the goal is to analytically characterize the 
conditions under which a low-rank informative component 
can be reliably separated from additive measurement noise 
through low-rank tensor approximation, and to predict the 
achievable accuracy. One approach is to make use of tools 
from statistical physics [12]. Attempts at developing a clean-
slate spectral theory (singular vectors) of random tensors —
a notoriously difficult problem — are also emerging [13]. The 
generalization capability of low-rank tensor decomposition 
is also being investigated in the context of "missing data" 
formulations [14]. In the remainder of this section, we will 
present some basic notions of tensor algebra, as well as 
classical decomposition algorithms. 

•	 The normal distribution with mean m and variance σ2 is 

denoted as N (m,σ2)

•	 Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt corresponds to the Gaussian tail 
function

•	 a.s.−−→ stands for the almost sure convergence and D−→ for 
the convergence in distribution

•	 The d-dimensional unit sphere is denoted as Sd−1

Inner product and norm: The inner product of two same-

sized order D tensors T,T′ ∈ Rd1×···×dD is the sum of the 
products of their entries and is denoted as

⟨T,T′⟩ =
∑

i1,...,iD

Ti1···iDT ′
i1···iD (1)

The norm ∥T∥ of T ∈ Rd1×···×dD is given as ∥T∥2 = ⟨T,T⟩.

Rank-one tensors: A rank-1 tensor of order D is defined in 
a way analogous to the matrix case, as the outer product of 

D vectors of appropriate dimensions (while a rank-1 matrix 
is defined by the outer product of only two vectors: a 
column vector and a row vector). For D = 3, a rank-1 tensor 

T ∈ Rd1×d2×d3  i s  t h e  o u t e r  p r o d u c t  o f  3  v e c t o r s 
a ∈ Rd1 , b ∈ Rd2 and c ∈ Rd3. As such, we write

T = a⊗ b⊗ c (2)

Figure 1 Rank-1 third-order tensor. T = a ⊗ b ⊗ c .  
The (i, j, k)-th entry of T is given by Tijk = aibjck.

2.1 Tensor Operations

Here, we recall some tensor notations and operations that 
will be used throughout the paper.

Symbolic notations:

•	 The set {1, . . . , n} is denoted as [n]

•	 Scalars are denoted by lowercase letters as a, b, c

•	 Vectors are denoted by bold lowercase letters as a , b , c

•	 Matrices are denoted by bold uppercase letters as A , B , C

•	 Tensors are denoted as A, B, C

•	 The entry (i1, . . . , id) of the tensor T is denoted as Ti1,...,id

•	 The scalar product between u and v is denoted as 
⟨u,v⟩ =

∑
i
uivi

•	 The ℓ2-norm of a vector u is denoted as ∥u∥2 = ⟨u,u⟩

1 For instance, a tensor of dimensions 5×5×5×5 can have rank 37, while 
a matrix of dimensions 25×25 which contains the same number of scalar 
coefficients as the tensor, has rank 25 at most.

or entry-wise Tijk = aibjck. Figure 1 provides an illustration 
for a rank-1 tensor of order D = 3 .

More generally, an order D tensor T ∈ Rd1×···×dD is said to 
be a rank-one  tensor if it can be written as the outer 
product of D vectors a1, . . . ,aD of respective dimensions 
d1, . . . , dD. Specifically,

T =

D⊗
j=1

aj = a1 ⊗ · · · ⊗ aD (3)

where the outer product 
⊗

 i s  def ined such that (⊗D
j=1 aj

)
i1...iD

=
∏D

j=1(aj)ij , i.e., each element of the 

rank-one tensor is the product of the corresponding vectors 
entries.

（1）

（2）

（3）
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Tensor multiplication: The j-mode tensor product between 

two tensors T ∈ Rd1×···×dD  and T′

∈ R
d
′

1
×···×d

′

D′ (with 
dj = d

′

j) is denoted by T ×j T′ which is a tensor of size 
d1 × · · · × dj−1 × dj+1 × · · · × dD × d

′

1
× · · · × d

′

j−1
× d

′

j+1
× · · · × d

′

D′  
whose entries are given by

(T ×j T′)i1···ij−1ij+1···iDi′1···i
′
j−1i

′
j+1···i

′
D′

=

dj∑
ij=1

Ti1···iDT ′
i′1···i

′
D′

In the case where T′ is a matrix that we denote as 

M ∈ R
m×dj, the (matrix) product of a tensor T ∈ Rd1×···×dD 

with M  is denoted by T ×j M  and is a tensor of size 
d1 × · · · × dj−1 ×m× dj+1 × · · · × dD. Entry-wise, the j-mode 
(matrix) product is defined as

(T ×j M)i1···ij−1kij+1···iD
=

dj∑
ij=1

Ti1···iDMkij (4)

Similarly, the j-mode (vector) product or contraction of an 

order D  tensor T ∈ Rd1×···×dD with a vector v ∈ R
dj is 

denoted by T ×j v and results in a tensor of order D − 1 of 
dimension d1 × · · · × dj−1 × dj+1 × · · · × dD. Element-wise, 
the j-mode contraction is defined as

(T ×j v)i1···ij−1ij+1···iD
=

dj∑
ij=1

Ti1···iDvij (5)

which, essentially, involves computing the inner product of 
each mode-j fiber  — seeing the tensor as stacked vectors 
(fibers) along its j-th mode — with the vector v.

Tensor unfolding: The j-mode unfolding or matricization of 

a tensor T ∈ Rd1×···×dD is denoted by Matj(T) and involves 
arranging the mode-j slices of T to be the block columns of 

the resulting matrix. Entry-wise, Matj(T) is constructed as

[Matj(T)]ij ,k = Ti1,...,iD (6)

where k = 1 +
∑D

ℓ ̸=j(iℓ − 1)Jℓ with Jℓ =
∏ℓ−1

m ̸=j dm. Figure 2 
depicts the unfolding operation of a third-order tensor.

Tensor Rank and the CANDECOMP/PARAFAC Decomposition 

(CPD): Given a third-order tensor T ∈ Rd1×d2×d3 , the CP 
decomposition [6, 15] involves decomposing T into a sum of 
rank-one tensors with the minimal number of terms. 
Specifically,

T =

R∑
i=1

ai ⊗ bi ⊗ ci (7)

The rank of T denoted by rank(T) is defined as the smallest 
integer R  for which T decomposes as above. Figure 3 
depicts the CP decomposition of a third-order tensor. More 
generally, a CP decomposition of a D -order tensor 

T ∈ Rd1×···×dD is written as

T =

R∑
i=1

D⊗
j=1

a
(i)
j =

R∑
i=1

a
(i)
1 ⊗ · · · ⊗ a

(i)
D (8)

Figure 2 Unfolding of a third-order tensor along its three modes

（4）

（5）

（6）

（7）

（8）
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Figure 3 CP decomposition of a rank-R third-order tensor

Figure 4 Tucker decomposition of a third-order tensor

Figure 5 TT decomposition of a D-order tensor

2.2 Tensor Decomposition Algorithms

The aim of CP decomposition algorithms is to identify the R  
rank-one components in equation 8 given T. However, even 
in the presence of low-rank data, observation noise typically 
increases the rank of the observation beyond R . In that 
case, if R  is known a priori, one can attempt to find a rank-

R  approximation of a given generic tensor. Specifically, for a 

given third-order tensor T ∈ Rd1×d2×d3, we would like to 
approximate it by M such that

T ≈ M =

R∑
i=1

ai ⊗ bi ⊗ ci (11)

where ai ∈ Rd1 , bi ∈ Rd2 and ci ∈ Rd3. The goal is to identify 
the best approximation2, often in the sense of minimizing 
the mean squared error between T and M. The integer R  is 
fixed by some initial procedure, and coincides with the rank 
of T if the approximation is consistent. We will present in 
the sequel various tensor decomposition algorithms that 
provide such approximation.

Let us first focus on the rank-one case. Suppose that we are 

given a rank-one tensor T = a⊗ b⊗ c ∈ Rd1×d2×d3 and we 

want to recover its components a ∈ Rd1 , b ∈ Rd2 and c ∈ Rd3. 
These components are assumed to be of unit Euclidean 
norm for simplicity.

Tensor unfolding: The most basic approach involves 
unfolding the tensor T into a rectangular matrix and then 
computing its components via singular value decomposition 
(SVD). Indeed, unfolding T along each of the D dimensions 
yields the following linearizations:

2 Note that the best approximation does not always exist. This is because 
the Eckart-Young theorem does not generalize from matrices to tensors 
in a straightforward manner. For details, see [17, 18].

2.2.1 Rank-One Approximation Methods

Tucker decomposition: The Tucker decomposition [16] is a 
generalization of the standard principal component analysis 
(PCA) to higher-order arrays. Essentially, it involves 

decomposing a given tensor T ∈ Rd1×···×dD into a core 
tensor G ∈ RR1×···×RD multiplied mode-wise by a matrix of 
size di ×Ri for each i ∈ [D]. For a third-order tensor 
(illustrated in Figure 4), we have

T = G ×1 A×2 B ×3 C

=

R1∑
i1=1

R2∑
i2=1

R3∑
i3=1

Gi1i2i3ai1 ⊗ bi2 ⊗ ci3

(9)

where A ∈ Rd1×R1 ,B ∈ Rd2×R2 and C ∈ Rd3×R3 with ai, bj 
and ck are the column vectors of A,B and C respectively. 
Entry-wise, we have

Tijk =

R1∑
i1=1

R2∑
i2=1

R3∑
i3=1

Gi1i2i3Aii1Bji2Cki3 (10)

Tensor train decomposition: Tensor networks are a more 
general type of tensor decompositions. The most classical 
of these is known as tensor train (TT) decomposition, which 
consists in compressing a given tensor T in terms of a set of 
smaller tensors. The TT decomposition takes the following 
form

Ti1,...,iD
=

R1∑
r1=1

R2∑
r2=1

· · ·

RD−1∑
rD−1=1

G
(1)

i1r1
G

(2)

r1i2r2
· · ·G

(D)

rD−1,iD

where the G(i) for i ∈ [D] are the factors to optimize. Figure 
5 illustrates the TT decomposition of an order D tensor T.

（9）

（10）

（11）
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Newton method: The newton method mainly involves 
finding the zero of a given function through recursive 
Newton iterations [22]. Computing the singular vectors of 
a tensor can be reformulated in terms of finding the zero of 
the following mapping

G : (u,v,w) �→ concat(u,v,w)− F (u,v,w)

where concat(u,v,w) = [u⊤

,v
⊤

,w
⊤]⊤ ∈ Rd1+d2+d3 is the 

concatenation mapping and 

F : (u,v,w) �→ concat(T ×2 v ×3 w,T ×1 u×3 w,T ×1 u×2 v) . 
Therefore, the Jacobian of G is

∇G(u,v,w) =




Ip1 −T ×3 w −T ×2 v

−(T ×3 w)⊤ Ip2 −T ×1 u

−(T ×2 v)⊤ −(T ×1 u)⊤ Ip3




Hence, the Newton iterations are given as

concat(u(t+1),v(t+1),w(t+1)) ← concat(u(t),v(t),w(t))

−∇G(u(t),v(t),w(t))−1G(u(t),v(t),w(t))

followed by a scaling of the vectors u(t+1),v(t+1),w(t+1) to be 
of unit norm. The Newton method is described in Algorithm 3.

Algor i thm 3  Newton method for  best  rank-one 
approximation [22]

Require: An order 3 tensor T ∈ Rd1×d2×d3 and initialization 
components a0, b0, c0.
Output: Rank-one approximation of T.

(â, b̂, ĉ) ← (a0, b0, c0)

while Not converged do

concat(â, b̂, ĉ) ← concat(â, b̂, ĉ)−∇G(â, b̂, ĉ)−1
G(â, b̂, ĉ)

â ← a

∥a∥

, b̂ ← b

∥b∥
, ĉ ← c

∥c∥

end while

Mat1(T) = a vec(b⊗ c)⊤, Mat2(T) = b vec(a⊗ c)⊤,

Mat3(T) = c vec(a⊗ b)⊤.

Therefore, the components a, b and c  can be recovered as 
the dominant left singular vector of Mat1(T), Mat2(T) and 
Mat3(T) respectively. The tensor unfolding method is 
described in Algorithm 1.

Algorithm 1 Tensor unfolding [19]

Require: An order 3 tensor T ∈ Rd1×d2×d3.

Output: Rank-one approximation of T.

for i ∈ [3] do
Set vi the dominant left singular vector of Mati(T)

end for

â ← v1, b̂ ← v2, ĉ ← v3

Tensor power iteration: Finding the best rank-one approximation 
of T can be formulated via a variational approach [20] that 
involves optimizing the following objective:

argmax
∥u∥=1,∥v∥=1,∥w∥=1

|⟨T,u⊗ v ⊗w⟩| (12)

Writing the KKT conditions of the above optimization 
problem allows us to generalize the concept of singular 
values and vectors to tensors. Specifically, the singular 
vectors u,v,w and the singular value λ > 0 of T are defined 
as the solutions of the system of equations

T ×2 v ×3 w = λu, T ×1 u×3 w = λv,

T ×1 u×2 v = λw.
(13)

In practice, as for matrices, the components (a, b and c) of 

T can be estimated via power iteration by alternating the 
following operations (starting from a random initialization):

â ←
T ×2 b̂×3 ĉ

∥T ×2 b̂×3 ĉ∥
, b̂ ←

T ×1 â×3 ĉ

∥T ×1 â×3 ĉ∥
,

ĉ ←
T ×1 â×2 b̂

∥T ×1 â×2 b̂∥

The tensor power iteration method is described in Algorithm 
2. We will discuss the convergence properties and accuracy 
of this method in Section 4.

Algorithm 2 Tensor power iteration [21]

Require: An order 3 tensor T ∈ Rd1×d2×d3 and initialization 
components a0, b0, c0.

Output: Rank-one approximation of T.

(â, b̂, ĉ) ← (a0, b0, c0)

while Not converged do

â ← T×2b̂×3ĉ

∥T×2b̂×3ĉ∥
, b̂ ← T×1â×3ĉ

∥T×1â×3ĉ∥
, ĉ ← T×1â×2b̂

∥T×1â×2b̂∥

end while

Figure 6 Singular values and vectors of a third-order tensor

（12）

（13）
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Let us now consider a more general case with a given rank-R 

tensor T =
∑

R

i=1
λiai ⊗ bi ⊗ ci ∈ Rd1×d2×d3, for which we 

seek to recover the normalized components ai ∈ Rd1 , bi ∈ Rd2 
and ci ∈ Rd3 for all i ∈ [R] from the observation T. The 
scalars λ1 ≥ · · · ≥ λR are the generalization of the concept of 
singular values for tensors.

Deflation algorithm: The first approach involves performing 
iterative rank-one approximations of the tensor T [23], and 
subtracting the identified rank-one component at each 
iteration. Specifically, given some algorithm (mapping) 

φ : Rd1×d2×d3 → Rd1 × Rd2 × Rd3 that outputs the normalized 
components of the best rank-one approximation of a tensor: 

for the tensor T above, (â1, b̂1, ĉ1) = φ(T) with â1, b̂1, ĉ1 being 
estimates of a1, b1, c1 respectively. The deflation method is 
detailed in Algorithm 4.

Algorithm 4 Deflation algorithm [23]

Require: An order 3 tensor T tensor T ∈ Rd1×d2×d3, rank R  
and a best rank-one approximation method φ.

Output: Rank-R  approximation of T.

Y ← T
for i ∈ [R] do

(âi, b̂i, ĉi) = φ(Y)

λ̂i ← ⟨Y, âi ⊗ b̂i ⊗ ĉi⟩

Xi ← λ̂iâi ⊗ b̂i ⊗ ĉi

Y ← Y − Xi

end for
E ← Y
while Not converged do

for i ∈ [R] do
E ← E + Xi

(âi, b̂i, ĉi) = φ(E)
λ̂i ← ⟨Y, âi ⊗ b̂i ⊗ ĉi⟩

Xi ← λ̂iâi ⊗ b̂i ⊗ ĉi

E ← E − Xi

end for

end while

Alternating least squares (ALS): This method [9] attempts 
to solve equation 11 by minimizing the mean squared error 
between T and M — considered a non-convex optimization 
problem — as follows

min
A,B,C

∑
ijk

(Tijk − Mijk)
2
= min

A,B,C

∑
ijk

(
Tijk −

R∑
r=1

airbjrckr

)2

2.2.2 Low-Rank Approximation Methods where M  is constructed in terms of the three matrices 

A ∈ Rd1×R
,B ∈ Rd2×R and C ∈ Rd3×R with columns ai, bi 

and ci respectively. The ALS method involves optimizing 
these matrices in an alternative manner by rewriting the 
objective for each matrix as shown below. This allows to 
transform the non-convex optimization problem into many 
easier ones which enjoy the property of being convex 
(linear) problems. Indeed, the unfolding operation allows 
the following linearizations

min
A

∑
ijk

(
Tijk −

R∑
r=1

airbjrckr

)2

= min
A

∥ Mat1(T)− A(B ⊙ C)⊤ ∥2F

min
B

∑
ijk

(
Tijk −

R∑
r=1

airbjrckr

)2

= min
B

∥ Mat2(T)− B(A⊙ C)⊤ ∥2F

min
C

∑
ijk

(
Tijk −

R∑
r=1

airbjrckr

)2

= min
C

∥ Mat3(T)− C(A⊙ B)⊤ ∥2F

where B ⊙C denotes the Khatri-Rao product between B 

and C, yielding a matrix of size (d2d3)×R  defined as

B ⊙C =
[
b1 ◦ c1 b2 ◦ c2 · · · bR ◦ cR

]
(14)

and u ◦ v stands for the Kronecker product between u and v. 
The objectives can therefore be optimized by alternatively solving 
the above linear systems of equations in the least-squares sense. 

These objectives are of the form argminW ∥Y −WX∥2
F , the 

solution of which in closed form is

W [Y ,X] ≡ Y X⊤ (
XX⊤)−1 (15)

provided that XX⊤  is invertible. The ALS method is 
described in Algorithm 5.

Algorithm 5 Alternating Least Squares (ALS) [9]

Require: An order 3 tensor T ∈ Rd1×d2×d3, rank R  and 
number of iterations Niter.

Output: Rank-R  approximation of T.
Initialize B  and C  randomly

for t ∈ [Niter ] do

A ← W
[
Mat1(T), (B ⊙C)⊤

]

B ← W
[
Mat2(T), (A⊙C)⊤

]

C ← W
[
Mat3(T), (A⊙B)⊤

]

end for

Simultaneous diagonalization algorithm (SDA): SDA is an 
alternative to ALS first introduced in [24] and is based on 
the eigendecomposition of matrices constructed through 
random contractions of the initial tensor. Specifically, given 
some random (unitary) Gaussian vector w(1) ∈ Rd3, the 
contraction of T with w(1) is

T ×3 w(1) =

R∑
i=1

⟨ci,w(1)⟩ai ⊗ bi = AD1B
⊤ (16)

（14）

（15）

（16）
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3 Applications to Machine Learning

3.1 Learning Gaussian Mixtures

where D1 ∈ RR×R is a diagonal matrix with diagonal entries 

⟨ci,w
(1)⟩ for i ∈ [R]. Sampling another random (unit-norm) 

Gaussian vector w(2) and contracting it with T yields 

T ×3 w
(2) = AD2B

⊤ where similarly D2 ∈ RR×R is a diagonal 

matrix with diagonal entries ⟨ci,w(2)⟩ for i ∈ [R]. Assuming 

T ×3 w
(2) is invertible (otherwise consider the pseudo-inverse 

or the Moore-Penrose inverse denoted M†), we have

T ×3 w
(1)

(
T ×3 w

(2)

)
−1

= AD1B
⊤

(
B

⊤

)
−1

D
−1

2
A

−1

= AD1D
−1

2
A

−1

and therefore the components ai can be recovered through 

eigendecomposition of T ×3 w
(1)

(
T ×3 w

(2)
)
−1. The SDA 

procedure is detailed in Algorithm 6.

Algorithm 6 Simultaneous diagonalization algorithm [24]

Require: An order 3 tensor T ∈ Rd1×d2×d3 and rank R .
Output: Rank-R  approximation of T.

Sample w(1)
,w

(2) ∼ N (0, d−1

3
Ip3 ) independently.

Set M1 ← T ×3 w
(1)

, M2 ← T ×3 w
(2).

For i ∈ [R] set âi and b̂i to be the dominant eigenvectors 

of M1(M2)† and ((M2)†M1)⊤ respectively.

Pair up âi, b̂i according to their eigenvalues.

Solve the linear system T =
∑

R

i=1
âi ⊗ b̂i ⊗ ĉi to recover 

the vectors ĉi.

Return the factor matrices A ∈ Rd1×R
,B ∈ Rd2×R and 

C ∈ Rd3×R.

Higher order singular value decomposition (HOSVD): 
This method was introduced in order to recover the 
components of the Tucker decomposition in equation 9. 
Indeed, like the standard PCA, the HOSVD method seeks 
to capture the maximum variation in each mode of the 
input tensor. Essentially, it leverages on performing SVD on 
matrices obtained by unfolding the tensor along each mode.

Algorithm 7 HOSVD [25]

Require: An order 3 tensor T ∈ Rd1×d2×d3 and ranks R1, R2, R3.
Output: Tucker decomposition of T.

Set the columns of A as the R1 leading left singular 

vectors of Mat1(T).
Set the columns of B as the R2 leading left singular 

vectors of Mat2(T).
Set the columns of C as the R3 leading left singular 

vectors of Mat3(T).
Compute the core tensor as G ← T ×1 A⊤ ×2 B⊤ ×3 C⊤.

Tensor decomposition methods find various applications 
in the modern machine learning paradigm. Indeed, the 
extraction of latent low-dimensional structures from high-
dimensional arrays appears as a key step in various machine 
learning settings. In this section, we discuss some typical 
applications of tensor methods in the context of machine 
learning. There are several other applications that be found 
in the literature — for a more complete overview, see [26].

One of the main topics where tensor methods have proven 
to be successful is the problem of learning Gaussian 
mixtures [21]. We start by recalling the concepts of this 
learning problem. A Gaussian (spherical) mixture model is a 
probabilistic model whereby data is assumed to be 
generated from a mixture of k different multivariate 
Gaussian distributions (each representing a cluster or class) 
with hidden parameters or statistics (e.g. mean or 
covariance matrix). The density function of the spherical 
Gaussian mixture model is

p(x) =

k∑
i=1

wiN (x;µi, σ
2Id) (17)

where wi ∈ [0, 1] represents the class proportion (with ∑
i
wi = 1). This is generally referred to as the hidden state 

or latent variable, whereas the µi ∈ Rd for each i ∈ [k] 
represents the means of the different clusters. For simplicity, 
we consider the covariances of all Gaussian components to 
be isotropic with variance parameter σ2 which is further 
assumed to be known.

Observing n independent samples x1, . . . ,xn ∈ Rd following 
the distribution p(x), the learning task aims to recover the 
model parameters {wi,µi}. The classical approach to 
complete this task relies on maximum likelihood (ML) 
estimation, which is widely employed for parameter 
estimation. However, such a learning problem can be 
reformulated as a tensor decomposition problem through 
the method of moments [21], which interestingly does not 
require the Gaussianity assumption on data. Indeed, this 
classical approach rel ies on extract ing the model 
information by computing empirical higher order moments 
(by averaging over the observed data samples) of the 
underlying data distribution. Such moments yield higher-
order tensors, enabling recovery of the model parameters 

（17）
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using tensor decomposition methods. Specifically, assuming 
the variance σ2 is known, consider

T = E [x⊗ x⊗ x]− σ2
d∑

j=1

Mj =

k∑
i=1

wiµi ⊗ µi ⊗ µi (18)

where Mj = E[x]⊗ ej ⊗ ej + ej ⊗ E[x]⊗ ej + ej ⊗ ej ⊗ E[x]. 

T can be approximated through the empirical moments of x. 
These moments are given by

Ê[x] =
1

n

n∑
i=1

xi, Ê[x⊗ x⊗ x] =
1

n

n∑
i=1

xi ⊗ xi ⊗ xi.

Hence, the symmetric tensor T̂ decomposes as

T̂ = T + E =

k∑
i=1

wiµi ⊗ µi ⊗ µi + E (19)

where E is a residual error tensor that vanishes if n → ∞ 
(with d  being fixed). Thus, the model parameters can be 

estimated by computing the best rank-k approximation of T̂.

The same concept generalizes to multi-view mixture models 
where multiple modalities (views) of the data are observed 
(text, audio, image, etc.) [25]. Specifically, these models 
suppose that the observed modalities are independent given 
some (latent) discrete categorical random variable h 

characterized by P(h = j) = wj ∈ (0, 1) for j ∈ [k] with k 
being the number of clusters. For simplicity, let us assume 
that there are three views represented by three random 

vectors x(1)
,x

(2) and x(3). The multi-view mixture model 
supposes that the x(ℓ) ∈ Rd are conditionally independent 
given the k-categorical latent variable h ∈ [k]. The conditional 
expectations for the three modalities are denoted by

ah = E
[
x(1) | h

]
, bh = E

[
x(2) | h

]
, ch = E

[
x(3) | h

]
.

Let us also assume that the random variables x(ℓ) are 
conditionally (regarding h) normally distributed. Specifically,

x(1) | h ∼ N (ah, σ
2Id), x(2) | h ∼ N (bh, σ

2Id),

x(3) | h ∼ N (ch, σ
2Id).

(20)

Then, similarly to the learning Gaussian mixtures task, the 
multi-view model parameters wi,ai, bi, ci can be recovered 
through tensor decomposition of the empirical third 

moment non-symmetric tensor T̂, the expectation of which 
is given by

T = E[x(1) ⊗ x(2) ⊗ x(3)] = E[E[x(1) ⊗ x(2) ⊗ x(3)] | h]

=

k∑
i=1

wiai ⊗ bi ⊗ ci

Because it is possible to compute only empirical estimates of 
such moments, the resulting tensors are random tensors with 
a hidden low-rank structure — referred to as spiked random 
tensors. We will describe such tensors in more detail in Section 4.

Another challenging topic that leverages low-rank tensor 
representations is the tensor completion task, illustrated in 
Figure 7. Such a task involves a subset of a tensor’s entries 
being observed and then recovering its missing entries. This 
generalizes the well-known matrix completion problem that 
has been widely considered in recommendation systems, e.g. 
the Netflix challenge [27], which involves designing a system 
that recommends movies for users based on a very sparse 
score matrix. The rows and columns of the score matrix 
correspond to users and movies, respectively, with its entries 
being the score given by each user for the watched movie. 
In case of multiple observed modalities (movies, songs, 
books, etc.), such a score matrix becomes a score tensor and 
therefore the task becomes a tensor completion problem.

The tensor completion task involves recovering the missing 

entries of a high dimensional tensor3 T ∈ Rd×d×d with d 
being large. T is assumed to have (approximately) low 
Tucker-rank R , specifically, it decomposes as

T =

R∑
i=1

R∑
j=1

R∑
k=1

Gijkai ⊗ bj ⊗ ck (21)

where the core tensor G ∈ RR×R×R is assumed to be cubic 
for convenience. We suppose that we observe n entries of T

yℓ = Toℓ , ℓ ∈ [n] (22)

where the oℓ's are independent and identically distributed 

(i.i.d.) uniformly sampled from {(i, j, k) : 1 ≤ i, j, k ≤ d} . 
Therefore, the goal is to recover the missing unobserved 

entries of T given the observed data {(oi, yi) : i ∈ [n]}.

Before discussing the tensor completion problem, we start 
by recalling the matrix completion formulation. Even for 
matrices, the natural formulation is non-convex and NP-
hard. This is because it involves finding the matrix with the 
smallest possible rank that matches the observed data by 
solving the following optimization problem:

min
X∈Rd×d

rank(X) s.t. 1

|Ω|

∑
(i,j)∈Ω

|Xij −Mij | ≤ ε (23)

Figure 7 Illustration of the tensor completion task

3.2 Tensor Completion

3 We assume that all the modes have the same dimension d for simplicity.

（18）
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where Ω is the set of observed indices, M is the matrix we 
want to recover (analog of T above in the case of tensor 
completion), and ε is a fixed error tolerance parameter. The 
above problem admits a convex relaxation in terms of the 
nuclear norm4 that can be solved efficiently in polynomial 

time. Indeed, replacing rank(X) by the nuclear norm ∥X∥
∗ in 

the objective equation 23 yields a possible recovery of the 
unobserved entries provided that the set Ω is of size 
n ≫ Rd log(d).

A basic approach to solve the tensor completion problem 
involves using tensor unfolding to map this problem to a 
matrix completion problem. The idea is to solve the following

min
A∈Rd×d×d

3∑
j=1

∥Matj(A)∥∗ s.t. 1

|Ω|

∑
(i,j,k)∈Ω

|Aijk − Tijk| ≤ ε

However, because this approach does not rely on the low-
rank tensor structure, it requires a sample size of order  

n ≫ Rd
2 polylog(d), which is significantly larger than the 

dimension of (Tucker) rank-R  tensors, that is, it of order 

O(R3 +Rd).

The nuclear norm generalizes to tensors in the following 

way: for a D-order tensor A ∈ Rd1×···×dD, the nuclear norm 
of A is defined by [28]

∥A∥∗ = inf
R,λi,u

(d)
i

{
R∑

i=1

|λi| :A =

R∑
i=1

λiu
(1)
i ⊗ · · · ⊗ u

(D)
i ,

∥u(k)
i ∥ = 1, R ∈ N}

which coincides with the definition of the nuclear norm for 
matrices (i.e. D = 2). The tensor completion problem can be 
formulated in terms of the tensor nuclear norm as

min
A∈Rd×d×d

∥A∥∗ s.t. 1

|Ω|

∑
(i,j,k)∈Ω

|Aijk − Tijk| ≤ ε (24)

Solving the optimization problem in equation 24 ensures 
exact recovery of the missing entries with high probability 

provided that n ≫
(
R

1
2 d

3
2 +R2d

)
polylog(d) which improves 

upon the unfolding approach by order O((Rd)−
1
2 ). However, 

tensor nuclear norm is NP hard to compute in the worst 
case scenario — the same is true for most tensor problems 
[29]. To overcome this issue, many relaxations have been 
proposed (e.g., Θ-norm or sum of squares [30–32]) that 
yield practical methods yet do not scale well for high 
dimensional tensors. Other techniques relying on non-
convex optimization have shown to be computationally 
successful while approaching the sample complexity of the 
nuclear norm approach [33, 34].

The tensor completion problem incorporates two sources 
of randomness: the underlying tensor is supposed to be 
approximately low-rank (i.e., a sum of a low-rank tensor 
and a random noise tensor), and the observed entries are 
randomly sampled.

4 We recall that the nuclear norm ∥.∥∗ of a matrix is the dual norm of its 
spectral norm and coincides with the sum of its singular values.

5 In decreasing order of the corresponding eigenvalues.

3.3 Community Detection on Hypergraphs

The classical community detection task can be mapped 
to a tensor problem if data is represented as high-order 
networks with generalized pair-wise interactions. Such a 
task, essentially, involves finding a partition into K groups of 
a collection of graph data.

We start by recalling the case of simple pair-wise interactions 
that yield a graph defined through its adjacency matrix. The 
classical probabilistic model used to analyze such graphs is 
the so-called stochastic block model (SBM) which defines a 
(two communities) graph by three parameters: the number 
of edges n, the inter-community interaction probability p and 
the intra-community interaction probability q with q < p . In 
this setting, the adjacency matrix A is constructed as a 
random matrix with Bernoulli entries and the expectation of 

A has a block-wise structure as (for n = 4)

where vi(M) is the i-th eigenvector5 of M . As such, the 
second eigenvector of EA provides information about the 
partition of the graph. However, it is possible to access only 
the adjacency matrix A which decomposes as follows

A = EA︸︷︷︸
Low-rank

+(A− EA)︸ ︷︷ ︸
noise

(25)

A concentrates around its expectation, perturbation analysis 

indicates that v2(A) ≈ v2(EA), yielding the classical 
spectral method that involves the following: 1) observing A, 

2) computing v2(A) and 3) using the signs of the entries of 
v2(A) to recover the communities.

（24）
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The same ideas generalize to the concept of hypergraphs 

which define high-order interactions. A hypergraph G = (V,H) 
is defined by its vertex set V  and its hyperedge set H. The 
SBM also generalizes to hypergraphs in the following way: G 

is a (q-uniform) hypergraph if each hyperedge e = {v1, . . . , vq} 
is of the same size q and appears with probability pout or 

with pin if C(v1) = · · · = C(vn), where C : [n] → {−1, 1} is the 
community assignment function.

Observing such G , the task involves finding a label 
estimator Ĉ  which correlates with the true assignment 
function C . Simple graphs can be achieved with spectral 
methods that rely on the adjacency tensor T defined as a 
sparse tensor of order q  with nq  entries, such that 
Ti1...iq

= 1 if {i1, . . . , iq} is a hyperedge. As in the previous 
examples, understanding the spectral behavior of such 
random tensor T is of central interest in order to quantify 
the performance of hypergraph spectral community 
detection methods. This motivates the need for random 
tensor theory tools to analyze such objects.

we consider a framework where the data is assumed to 
be low-rank tensors perturbed by some additive noise. 
Based on the random tensor theory results (which will 
be presented in the next section), we characterize the 
theoretical performance of simple linear methods (in both 
supervised and unsupervised settings) with and without 
incorporating the knowledge of the low-rank structure. We 
show analytically that the incorporation of this knowledge 
enables a denoising approach that considerably improves 
the performance of the studied methods. In particular, 
performance improvements are achieved when a limited 
number of training samples is available or when data is of 
high-dimension. Exploiting the structure of the data allows 
us to obtain equivalent performance with far fewer samples.   
Such analysis relies on a specific statistical model on the 
data — this model is described as follows.

Statistical data model: Let the training samples be n 

independent tensor-structured data X1, . . . ,Xn, with each 
being of order D and of dimension d1 × · · · × dD (illustrated 

in Figure 8). We denote the dimensions d =
∑D

j=1
dj and 

p =
∏D

j=1
dj. We assume that the Xi

's are distributed in two 
classes C1 and C2 (of cardinality n1 and n2, respectively, i.e., 

n = n1 + n2), such that for Xi ∈ Ca with a ∈ {1, 2},

Xi = (−1)a
D⊗

j=1

µj + Zi ∈ Rd1×···×dD (26)

where Zi is a random tensor with i.i.d. standard Gaussian 

entries, µj ∈ R
dj for j ∈ [D] are independent from the Zi's 

and M =
⊗D

j=1
µj stands for the outer product between all 

the µj's. In the context of supervised binary classification, 

we are further given a vector of labels y ∈ Rn such that 
yi = −1 for Xi ∈ C1 and yi = 1 for Xi ∈ C2.

We denote the training data tensor X = [X1, . . . ,Xn] ∈ Rd1×···×dD×n 
by concatenating all the Xis along the (D + 1)-th mode of 
dimension n. X is expressed in tensor form as

X = M ⊗ y + Z (27)

where Z = [Z1, . . . ,Zn] ∈ Rd1×···×dD×n. Given the rank-one 
structure of the tensor mean M, the outer product M ⊗ y 
results in a rank-one tensor of order D + 1. As such, the data 

tensor X is a rank-one spiked random tensor model of order 

D + 1, where the signal part is M ⊗ y and Z corresponds to 
the noise part. In order to characterize the behavior of 

learning methods applied on the above data model, it is 

necessary to understand the behavior of spiked random 

tensors which will be the subject of the following section.

3.4 Supervised and Unsupervised 
Learning on Low-Rank Tensors

In addition to the applications presented earlier, many works 
in the literature leverage the low-rank tensor structure to 
design learning systems — for example tensor regression is 
used in a supervised setting [35], and clustering is used in 
an unsupervised setting [36]. The tensor structure has been 
shown to enhance the performance of learning models and is 
a key ingredient in more complex learning architectures. For 
example, it is employed in multi-modal data or multi-spectral 
images [37, 38] and in the design of advanced neural 
network architectures (it replaces the flattening operation in 
fully connected layers of a convolutional neural network with 
CP-based operations [39]).

As well as the performance gain shown by [39], there is a 
significant reduction in the number of parameters needed to 
describe the learned model. Indeed, the gain in the size of 
the parameter space can be seen when the data samples are 
order D tensors and have for example a rank-one underlying 
structure. In this case, if the tensors dimensions are 
d1 × · · · × dD, the dimension of the parameter space can be 

significantly reduced from 
∏D

j=1
dj to 

∑D
j=1

dj.

This motivates the analysis of learning algorithms when 
processing low-rank tensor structured data. To do so, 

（26）

（27）
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As discussed in the previous section, the simplest case of 
rank-1 random tensors appears naturally in many machine 
learning problems. Although random matrix models have 
been extensively studied and well understood in the 
literature, the understanding of random tensor models 
is still in its infancy and the ideas from random matrix 
theory do not easily extend to higher-order random tensors. 
Therefore, analyzing higher-order random tensors requires 
the development of new approaches such as the one we 
will describe in this section.

To better illustrate and understand the effect of randomly 
perturbed low-rank tensor models, we consider the 
asymmetric spiked tensor model, which involves a D-order 

tensor T ∈ Rd1×···×dD of the form (illustrated in Figure 9)

T = βx1 ⊗ · · · ⊗ xD +
1
√
d

X (29)

where (x1, . . . ,xD) ∈ Sd1−1 × · · · × SdD−1 with Sd−1 denoting 
the unit sphere of dimension d, X is a random tensor with i.i.d. 

standard Gaussian entries Xi1...iD
∼ N (0, 1), d =

∑
D

i=1
di and 

β ∈ R  is a parameter controlling the signal-to-noise ratio 
(SNR). Typically, observing such T, one aims to recover the 
hidden rank-one information tensor (or spike) βx1 ⊗ · · · ⊗ xD.

Because of the noise X, it is possible to estimate the signal 
component and the quality of such estimation depends on 
the SNR β. In this work, we are interested in studying the 
performance of the ML estimator of the spike given T, 
which is formally defined by

(λ∗,u∗
1, . . . ,u

∗
D) = argmin

λ∈R+,ui∈Rdi−1

∥T − λu1 ⊗ · · · ⊗ uD∥2F. (30)

Under the assumptions we describe later, it is possible to 
characterize the asymptotic limits of the singular value λ∗ 

and the alignments ⟨u∗

i
,xi⟩ (which measure the degree of 

correlation between the estimated components u∗

i and the 
true spike components xi), when the dimensions of the 
tensor tend to infinity, specifically, di → ∞ with dimension 

ratios di
d

→ ci ∈ (0, 1).

To this end, the random tensor T can be mapped to a 

symmetric random matrix T ∗

D
∈ Rd×d, which is constructed 

from contractions of T along D − 2 directions with its 

singular vectors u∗

1
, . . . ,u

∗

D  [40]. Leveraging tools from 
random matrix theory, the limiting distribution of the 

eigenvalues of T ∗

D (also called spectral measure) can be 
characterized, and the exact expressions of the asymptotic 

limits of the singular value λ∗ and the alignments ⟨xi,u
∗

i
⟩ 

can be established. Indeed, the singular value and vectors λ∗ 

and u∗

i can be characterized through a variational approach. 
Specifically, in equation 30, λ can be interpreted as the 
generalization to the tensor case of the concepts of 
dominant singular value, while the ui can be interpreted as 
the associated singular vectors [20]. Following the 
variational arguments of [20], equation 30 can be 
reformulated using contractions of T as

max∏D
i=1 ∥ui∥=1

|⟨T,u1 ⊗ · · · ⊗ uD⟩| (31)

Figure 8 Illustration of the statistical data model

Figure 9 Illustration of the rank-one spiked random tensor of order three

4 Random Tensor Theory (RTT)

（29）

（31）

（28）

（30）
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whose Lagrangian is given by T(u1, . . . ,uD)− λ

(∏
D

i=1
∥ui∥ − 1

)
 

with λ > 0. Thus, the stationary points (λ,u1, . . . ,uD), with 
each ui being a unit vector, must satisfy the following 
Karush-Kuhn-Tucker conditions that generalize the 

conditions in equation 13 for any order D tensor, for i ∈ [D]




T ×1 u1 · · · ×i−1 ui−1 ×i+1 ui+1 · · · ×D uD = λui

λ = T ×1 u1 ×2 u2 · · · ×D uD

(32)

Leveraging the identities in equation 32 which are also 

satisfied by (λ∗,u∗
1, . . . ,u

∗
D) yields the following central 

result. Such a result characterizes the solution of equation 
30 in terms of the estimated dominant eigenvalue and the 
alignment of the associated estimated eigenvectors with the 
spike x1 ⊗ · · · ⊗ xD.

Theorem 4.1 (See [40]). For all  D ≥ 3, there exists βs > 0 
such that for β > βs

where λ∞ satisfies f(λ∞, β) = 0 with f  and qi being defined 
through the deterministic fixed-point equations in equation 28.

Note that the above result is asymptotic in the tensor dimensions 
but not in the SNR. Consequently, such a result is particularly 
relevant in the context of practical big data problems.

4.1 Main Approach

The main approach to obtain the result in Theorem 4.1 
relies on transforming the random tensor problem into a 
random matrix problem. This is achieved by studying an 
equivalent random matrix to the spiked random tensor T. 
Indeed, relying on simple random matrix theory tools (e.g. 
Stein’s lemma [41]), T can be associated to a random 
matrix that is constructed through contractions of T with its 
singular vectors. This mainly follows from equation 33, 
which defines such an associated random matrix that we 

will denote as ΦD(T,u∗
1, · · · ,u∗

D) for a generic order D 
tensor (for its exact definition, see [40]). Figure 10 illustrates 
such a matrix for a third-order tensor.

The main approach involves studying this random block-
wise contraction matrix, leveraging classical tools from 
random matrix theory. Typically, the tool used for this is 
Stieltjes transform, which is defined as follows.

Definition 4.2 Given some probability measure ν , the Stieltjes 

transform of ν  is defined by gν(z) =
∫ dν(λ)

λ−z
, z ∈ C \ S(ν) 

where S(ν) stands for the support of ν .

Limiting spectral measure: To demonstrate how random 
matrix theory applies in this context, we subsequently 
provide the limits of the functions we are interested in and 
specifically the limiting Stieltjes transform describing the 

distribution of the eigenvalues of ΦD(T,u∗
1, · · · ,u∗

D) . 
Indeed, exploiting some matrix algebraic identities allows us 
to obtain the following result, which characterizes the 

limiting spectral measure of the matrix ΦD(T,u∗
1, · · · ,u∗

D) 
(i.e., the limiting distribution of its eigenvalues).

Theorem 4.3 Assume di → ∞ with di∑
j dj

→ ci ∈ (0, 1), the 

empirical spectral measure of ΦD(T,u
∗

1
, · · · ,u

∗

D
) converges 

to a deterministic measure ν  whose Stieltjes transform is 

given by g(z) =
∑

D
i=1gi(z) such that ℑ[g(z)] > 0 for ℑ[z] > 0, 

where 1
d
trRii(z)gi(z) =

g(z) + z

2
−

√
4ci + (g(z) + z)2

2
.

Theorem 4.3 expresses the limiting Stieltjes transform 
implicitly through a fixed-point equation. In the case where 
all the tensor dimensions are equal (hypercubic tensors), 
g(z)  can be expressed explic it ly.  Furthermore, the 
corresponding distribution describes a semicircle law whose 

density has compact support S(ν) =
[
−2

√
D−1
D

, 2
√

D−1
D

]
. This 

law is expressed as

ν(dx) =
D

2(D − 1)π

√(
4(D − 1)

D
− x2

)+

. (34)

Figure 11 depicts the empirical spectrum of the matrix 
Φ3(T,u1,u2,u3), where T is a cubic tensor (D = 3 ) of 
dimension di = 100 with β = 0 , and u1,u2 and u3 are first 
randomly sampled from the unit sphere and then updated 
with the tensor power iteration procedure in Algorithm 2. At 

initialization the spectrum of Φ3(T,u
0

1
,u

0

2
,u

0

3
) converges to 

a semicircle law which is described by equation 34. Moreover, 
at each iteration t of the power method the spectrum of 
Φ3(T,u

t

1
,u

t

2
,u

t

3
) keeps converging to the semicircle law 

while it exhibits an isolated eigenvalue due to the statistical 

dependency between T and the iterations ut

1
,u

t

2
,u

t

3. Finally, 
at convergence the isolated eigenvalue appears at the 

position 2λ∗ — as depicted in Figure 11 (right) — and λ∗ is 

asymptotically bounded by 2
√

2

3  when β = 0 .

By introducing some technical matrix identities it is possible 
to evaluate the limits of the singular value λ∗ and 
corresponding alignments ⟨xi,u

∗

i
⟩, yielding the result of 

Theorem 4.1. Moreover, in the case of cubic tensors (i.e., 

D = 3 and ci = 1

3
), one can find explicit expressions of the 

asymptotic limits of the above quantities (i.e., tensor 
singular value and alignments) in terms of the SNR 
parameter β. From this, we obtain

（32）

（34）
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Corollary 0.1. 4.4 If D = 3 and ci =
1
3

, for β > βs = 2
√

3
3

λ
∗ a.s.−−→

√√√√β2

2
+ 2 +

√
3
√

(3β2 − 4)3

18β

∣∣⟨xi,u
∗
i ⟩

∣∣ a.s.−−→

√
9β2 − 12 +

√
3
√
(3β2−4)3

β +

√
9β2 + 36 +

√
3
√
(3β2−4)3

β

6
√
2β

Theorem 4.1 also allows us to describe the behavior of 

spiked random matrices. In fact, although the formulas are 

not defined for D = 2 (see expression of qi(z, β) in equation 

28), the matrix case can be recovered by taking D = 3 with 

for example c3 = 0. In such a case, the spiked tensor model 

becomes a spiked matrix model (d3 = 1). This yields the 

following corollary which describes the behavior of spiked 

random matrices with explicit formulas for the largest 

singular value and the corresponding alignments.
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Figure 11 Spectrum of Φ3(T,u1,u2,u3) at iterations 0, 5,∞ of tensor power 
iteration (see Algorithm 2) applied to T. d1 = d2 = d3 = 100 and β = 0. The 

limiting distribution is described by equation 34.

Figure 10 Block-wise contraction matrix Φ3(T,u1,u2,u3) associated to a third-order tensor

Corollary 0.1. Let c ∈ (0, 1), if D = 3 with c1 = c and c2 = 1 − c, then for β > βs =

4
√

c(1− c) and for all i ∈ {1, 2}

λ∗ a.s.−−→

√
β2 + 1 +

c(1− c)

β2
, |⟨xi,u

∗
i ⟩|

a.s.−−→
1

κ(β, ci)

where

κ(β, c) = β

√
β2 (β2 + 1)− c (c− 1)

(β4 + c(c− 1)) (β2 + 1− c)

while for β ∈ [0, βs], λ∗ a.s.−−→
√

1 + 2
√

c(1− c).




∂u1

∂Xijk

∂u2

∂Xijk

∂u3

∂Xijk


 = − 1√

d







0n1×n1 T×3u3 T×2u3

(T×3u3)
T

0n2×n2 T×1u1

(T×2u2)
T

(T×1u1)
T

0n3×n3




︸ ︷︷ ︸
Φ3(T,u1,u2,u3)

−λId




−1




u2ju3k

(
ed1i − u1iu1

)
u1iu3k

(
ed2j − u2ju2

)
u1iu2j

(
ed3k − u3ku3

)


 ∈ ny ∈ Rn (33)
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Spiked random tensors: Extensive efforts have been made 
to study the performance of mainly rank-one tensor 
approximation methods in the large dimensional regime — 
when the tensor dimensions di → ∞ [19, 42, 12, 43, 44, 45, 
46, 40].

In particular, in the matrix case (i.e., D = 2), the spiked 
tensor model in equation 29 becomes a so-called spiked 
matrix model. For this model, in the large dimensional 
regime, there exists an order one critical value βc of the 
SNR below which it is information-theoretically impossible 
to detect or recover the spike, while above βc, it is possible 
to detect the spike and approximately recover the 
corresponding components in (at least) polynomial time 
us ing s ingular  va lue  decompos i t ion (SVD) .  Th i s 
phenomenon is sometimes known as the BBP (Baik, Ben 
Arous, and Péché) phase transition [47–50].

In the (symmetric) spiked tensor model for D ≥ 3 , there 

also exists an order one critical value6  βc(D) (in the high-
dimensional asymptotic) below which it is information-
theoretically impossible to detect or recover the spike, while 

above βc(D) recovery is theoretically possible with the ML 
estimator. Computing the ML estimation in the matrix case 
corresponds to the computation of the largest singular 
vectors of the considered matrix which has a polynomial 
time complexity, while for D ≥ 3, ML estimation is NP-hard 
[19, 51]. As such, a more practical phase transition for 
tensors is to characterize the algorithmic critical value 
βa(D, d) (which might depend on the tensor dimension d) 
above which the recovery of the spike is possible in 
polynomial time. Montanari and Richard [19] first 
introduced the symmetric spiked tensor model (of the form 

Y = µx⊗D + W ∈
⊗

D
Rd  with symmetric W ) and also 

considered the related algorithmic aspects. In particular, 
they used heuristics to highlight that spike recovery is 
possible, with Approximate Message Passing (AMP) or the 
tensor power iteration method, in polynomial time7 provided 

µ ≳ d
D−1

2 . This phase transition was later proven rigorously 
for AMP by [12, 44] and recently for tensor power iteration 

by [52].

Montanari and Richard [19] further introduced a method 

for tensor decomposition based on tensor unfolding. This 

method involves unfolding Y  to a d× d
D−1 matrix 

Mat3(Y) = µxy⊤ +Mat3(W),  on which an SVD is then 
performed. They predicted that their proposed method 

successfully recovers the spike if µ ≳ d
D−2

4 . In a recent work 
by Ben Arous et al. [53], a study of spiked long rectangular 

random matrices8 has been proposed under fairly general 

(bounded fourth-order moment) noise distribution 

assumptions. Therein, they proved the existence of a critical 

SNR for which the extreme singular value and singular 

vectors exhibit a BBP-type phase transition. They applied 

their result for the asymmetric rank-one spiked model in 

equation 29 (with equal dimensions) using their tensor 

unfolding method, and found the exact threshold obtained 

by [19] — specifically, β ≳ d
D−2

4  — for tensor unfolding to 
succeed in signal recovery. More recently, the authors in [40] 

have studied the asymmetric rank-one spiked model in 

equation 29 using a random matrix approach. In their work, 

they also described the behavior of the tensor unfolding 

method, yielding the same algorithmic threshold β ≳ d
D−2

4 .

Tensor singular values and vectors: Recalling the identities 

in equation 32, an interesting question concerns the 

characterization of the stationary points (local optima or 

saddle points) that satisfy these identities. In particular, [54] 

has studied the loss landscape of a symmetric spiked tensor 

model, when its dimensions tend to infinity. The authors 

found that there exists βc > 0 such that for β < βc the 

values taken by the objective function in equation 31 for all 

local maxima (including the global one) tend to concentrate 

in a small interval, thus the global maximum is not easily 

identifiable. Conversely, for β > βc the value reached by the 

global maximum goes out of this interval and increases 

with β . More recently, Goulart et al. [46] studied a 

symmetric spiked random tensor Y using a random matrix 

theory approach. They showed that there exists a threshold 
0 < βs < βc such that for β ∈ [βs, βc] there exists a local 

optimum of the maximum likelihood problem correlating 

with the spike and that such a local optimum coincides with 

the global optimum for β > βc.

4.2 Further Results on Random Tensors

6 Depending on the tensor order D . We will sometimes omit the 
dependence on D if there is no ambiguity.

7 Using tensor power iteration or AMP with random initialization.

8 Number of rows m are allowed to grow polynomially in the number of 
columns 
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The preceding observations are conjectured to extend to 
asymmetric spiked random tensors, implying that there is a 
critical value — βc > 0 — above which the maximum 
likelihood objective in equation 30 admits a global 
maximum. As for [46], the random matrix theory approach 
does not allow us to express such βc . However, for 
asymmetric spiked random tensors, Theorem 4.1 also 
exhibits a threshold βs such that for β > βs, there exists a 
local optimum of the maximum likelihood problem 
correlating with the underlying signal but βs does not 
coincide a priori with βc.

Interestingly, combining the two methods (tensor power 
iteration initialized with tensor unfolding) allows us to 
achieve both a better estimation threshold and the optimal 
correlation (see the black dots), as proved in [45].

At this stage, an open question concerns whether it is 
possible to design an algorithm that can recover the signal 
in the yellow region of Figure 12, specifically, below the 

algorithmic threshold β > D−D
4 d

D−2
4 .

9 We use the notation di = d/D for consistency with our previous 
notation d =

∑D
i=1 di.

4.3 Algorithmic Implications

The theoretical results from [46, 40] allow us to describe the 
performance of the maximum likelihood estimator (MLE) for 
symmetric and non-symmetric tensors respectively, providing 
the best rank-one approximation of T. However, as we 
previously discussed, computing the MLE is NP-hard in the 
worst case scenario [29]. This raises the question of whether 
it is possible to recover the rank-one components in 
polynomial time. The tensor unfolding method (Algorithm 
1) introduced by Ben Arous et al. [53] allows polynomial 

time complexity provided that the SNR β ≳ d
D−2

4 . In turn, 
Theorem 4.1 allows us to provide the same algorithmic 
recovery threshold for the tensor unfolding method (through 
Corollary 4.5). The latter involves computing the dominant 
left singular vector of the matricized T (assuming that all 
di = d/D are equal9)

Mati(T) = βxiyi +
1
√
d
Mati(X) ∈ R(d/D)×(d/D)D−1

where yi = vec(x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xD) ∈ RdD−1. 
The application of Corollary 4.5 demonstrates that signal 
recovery is possible if the SNR β satisfies

β > D−D
4 d

D−2
4 (35)

Figure 12 depicts the asymptotic alignments and their 
simulated counterparts. While the tensor unfolding method 
has a polynomial time complexity, it does not achieve the 
performance of the MLE (in terms of correlation with the 
true signal). Conversely, while the tensor power iteration 
method achieves the optimal performance, it does not 
systematically converge (see the red dots at level 0). 

Figure 12 The different thresholds of the SNR represented in different regions. The 
asymptotic alignments for a cubic tensor and its unfolded version are represented in 

black and blue curves respectively (corresponding to Corollaries 4.4 and 4.5). Simulations 
are obtained using the tensor unfolding and tensor power iteration methods  

(Algorithms 1 and 2), and are applied to a cubic tensor of dimensions di = 70.

0 54321

0.0

0.2

0.4

0.6

0.8

1.0

Impossible NP-hard Possible in polynomial time

Threshold βs

Tensor Unfolding ɸ-trans
PI or AMP ɸ-trans
MLE - theory
Tensor Unfolding - theory
Tensor Unfolding (TU) - simu.
Power Iteration (PI) - simu.
PI with TU init. - simu.O(1)

O(n  𝒅−𝟐𝟒 )
O(n  𝒅−𝟏𝟐 )

〈
X i

, U
i 〉

2

β

5 Application of RTT to Supervised 
and Unsupervised Learning

As discussed in Section 3, a large part of previous works on 
tensor theory being applied to machine learning problems 
assume a low-rank representation of input data [21, 55] 
and estimate this representation using the CANDECOMP/
PARAFAC decomposition (CPD) [6] as the main ingredient. 
Indeed, the low-rank tensor structure is a sparsity hypothesis 
that is natural in modeling of real data seen through high-
dimensional inputs [56]. However, faced with tensor-
structured data, a simple and commonly used approach 
involves neglecting the structure and reshaping it into a set 
of vector samples, to which a classical machine learning 
algorithm is then applied. This section challenges such 
an approach by highlighting the fact that a considerable 
gain can be obtained by taking advantage of the low-rank 
tensor structure of the processed data through a denoising 
approach, rather than treating the data as mere vectors .

In the following sections, we analyze examples of both 
supervised and unsupervised learning problems based on 
the statistical model in equation 26 and using the random 
tensor tools introduced previously. In these examples, a 
high-dimensional regime is assumed, that is, the number of 
training samples n  scales l inearly with the tensor 

dimensions dj while ∥µj∥ remains constant.

（35）
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Assumption 5.1 (Growth rate). For all j ∈ [k], dj
n

= On(1) 
and ∥µj∥ = On(1)10.

Note that, in the field of random matrix theory, many 
classical results [57–62] assume that the feature size scales 

linearly with the number of samples, implying that 
∏D

j=1
dj 

must scale linearly with n in the supposed case of tensor 
data. However, for D ≥ 2, this requirement imposes a large 
number of training samples n which might be difficult to 
achieve in practical settings. As such Assumption 5.1 is more 
realistic from a practical perspective.

Theorem 5.2 states that the performance of the matched 
filter classifier depends solely on ∥M∥ and the dimension 

ratios nd  and pd. Moreover, because the data is zero-mean as 
per equation 26, the theoretical optimal decision threshold 

is m1+m2

2
= 0. Consequently, the optimal classification is 

simply obtained by taking the sign of the decision function. 
Figure 13 provides a histogram of the decision function of 
the matched filter classifier and its theoretical estimate 
through Theorem 5.2. Under Assumption 5.1, the mean ma 
remains constant while the variance σ increases due to the 

term pd as the dimension of data increases.

CP-based approach: The low-rank structure can be 
recovered by performing a tensor decomposition of the 
weights tensor W because this tensor is a noisy version of 

M. Specifically, recalling the definition of W in equation 37 
and X in equation 27, we have

W =

√
n

d

D⊗
j=1

µj +
1
√
d

Z̃ (38)

Algorithm 8 CP-based matched filter classifier

Require: Tensor data X, labels y and test datum X̃i.

Output: Predicted label ỹi = sign(gCP(X̃i)).

Compute the matched filter W = 1
√

nd
X ×D+1 y

Extract rank-1 approx of W: 
⊗D

j=1
µ̂j = CPD(W, 1)

Set the decision function as gCP(X̃i) = ⟨
⊗D

j=1
µ̂j , X̃i⟩

where Z̃ = 1
√

n
Z ×D+1 y = 1

√

n

∑
n

i=1
yiZi. Because Z̃ is a 

sum of n i.i.d. random tensors normalized by 
√
n, Z̃ is also a 

random tensor with i.i.d. standard Gaussian entries.

5.1 Supervised Learning

Given the training data tensor X in equation 27 and the 
corresponding labels vector y, a basic learning approach 
[ 63 ]  i n vo l v e s  re s hap i ng  X  i n t o  a  da t a  ma t r i x 

MatD+1(X) ∈ Rn×p with p =
∏D

j=1
dj , and then learning a 

matched filter classifier whose parameters w ≡ vec(W) ∈ Rp 

(W ∈ Rd1×···×dD) are obtained as11

w =
1

√
nd

MatD+1(X)⊤y (36)

where we recall that d =
∑D

j=1
dj. The decision function (for 

a new datum X̃i ∈ Ca) is given by g(X̃i) = ⟨w, vec(X̃i)⟩ which 
is equivalent in tensor notation to

g(X̃i) = ⟨W, X̃i⟩
C1

≶
C2

0, W =
1

√
nd

X ×D+1 y. (37)

As such, the matched filter classifier does not consider the 
low-rank tensor structure of the underlying data model and 
instead treats the data as mere vectors. Its performance is 
characterized by the following theorem.

Theorem 5.2 (Performance of the matched filter classifier). 

Under Assumption 5.1, for X̃i ∈ Ca with a ∈ {1, 2} independent 
from the training set X,

1

σ

(
g(X̃i)−ma

)
D
−→N (0, 1)

where ma = (−1)a∥M∥2
√

n

d
 and σ =

√
n
d
∥M∥2 + p

d  . Moreover, 

the misclassification is given by Q
(

|ma|
σ

)
 where Q is the 

Gaussian tail distribution function.

10 The notation  means that a converges to a constant not 
depending on n if n → ∞.
11 The normalization by  is adopted for convenience and does not 
affect the performances of the considered methods. Moreover, under 
Assumption 5.1, the quantities n and d are of the same order which — 
equivalent to the standard normalization by n.
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Figure 13 Theoretical versus empirical histogram of the decision function g(X̃i) for 
the matched filter classifier as per Theorem 5.2. We considered n = 200 training 

data (n1 = n2 = 100) that are tensors of order 3 and of dimensions 
d1 = d2 = d3 = 20, distributed as the rank-one tensor model in equation 26 

with the µj's being randomly sampled vectors from a sphere such that ∥M∥ = 3.

（36）

（38）

（37）
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12 The oracle classifier is defined as ⟨M, X̃i⟩, which assumed that M is 
perfectly known.

Remark 5.3 Note that for the supervised learning setting, 

the Gaussianity assumption on the Zi might be relaxed to 
any symmetric distribution with zero mean and unit 
variance, for which Z remains a random tensor with i.i.d. 
standard Gaussian entries by the central limit theorem.

As such, W  is precisely a spiked random tensor model 
following equation 29. In order to leverage the low-rank 
structure of W , we apply a rank-one CP approximation, 
yielding estimates of the µjs and then replace the weights W 
in the decision function by their rank-one approximation. This 
approach is outlined in Algorithm 8. In essence, extracting the 
rank-one component constitutes a denoising step that allows 
us to considerably reduce the variance of the decision 
function, thereby improving classification accuracy. The 
following result characterizes the theoretical performance of 
the CP-based matched filter classifier, by means of the 
random tensor theory results described in Section 4.

Theorem 5.4 (Performance of the CP-based matched filter 

classifier [64]). Under Assumption 5.1, for X̃i ∈ Ca with 
a ∈ {1, 2} independent from the training set X,

1

σ

(
gCP(X̃i)−ma

)
D−→N (0, 1)

where ma = (−1)aσ∥M∥
∏k

j=1
qj

(
σ, ∥M∥

√
n
d

)
 and σ satisfies 

f
(
σ, ∥M∥

√
n

d

)
= 0 where qj and f  are defined in equation 28. 

Furthermore, the misclassification error is given by Q
(

|ma|
σ

)
.

Theorem 5.4 states that the performance of the CP-based 

matched filter classifier depends on ∥M∥ and the ratio d

n
, 

but not on the ratio pd as was the case for the matched filter 
in Theorem 5.2. We stress that the variance σ for the CP-

based classifier depends on the ratio n

p  which remains 
constant under Assumption 5.1. This yields a better 
classification accuracy compared to the naive approach 

where the variance scales as pd , as we discussed previously. 
Indeed, Figure 14 depicts the theoretical versus empirical 
misclassification error for both methods, from which we 
observe that the CP-based matched filter classifier yields 
drastically better performances (almost identical to the 
oracle12 which assumes perfect knowledge of M) when n is 
small, or alternatively when the dimension of data is high. 
Indeed, Figure 16 depicts the misclassification error of both 

methods as a function of the ratio nd  and ∥M∥, where we 
observe that the CP-based matched filter classifier performs 

better when nd  is not large. This example clearly demonstrates 
that one can benefit from the underlying low-rank data 
structure, if such information is available. We will see that 
these conclusions also extend to an unsupervised setting, 
where no labels are provided.
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Figure 14 Theoretical versus empirical histogram of the decision function g(X̃i) for the 
matched filter classifier as per Theorem 5.4. We considered n = 200 training data 

(n1 = n2 = 100) that are tensors of order 3 and of dimensions d1 = d2 = d3 = 20, 
distributed as the rank-one tensor model in equation 26 with the µj's being randomly 

sampled vectors from a sphere such that ∥M∥ = 3.

5.2 Unsupervised Learning

In a setting where only n training samples X1, . . . ,Xn are 
provided without their corresponding labels, one can rely on 
unsupervised learning to classify them. Given the data 
model in equation 27, a simple unsupervised learning 
approach [65] involves unfolding X as

X = MatD+1(X) = y vec(M)⊤ +MatD+1(Z) ∈ Rn×p

then estimating the labels y  through the dominant 
eigenvector of the Gram matrix XX⊤ denoted by ŷ, which 
coincides with the dominant left singular vector of X . 
Therefore, Corollary 4.5 allows us to characterize the 
performance of this linear spectral method, yielding the 
following result.

Theorem 5.5 (Performance of linear spectral clustering). Let 
ŷ be the right singular vector of X corresponding to its 
largest singular value. The estimated class for the datum Xi 
is given as Ĉi = sign(ŷi). Then under Assumption 5.1,

1

σ

(√
nŷi − αyi

) D−→N (0, 1)

where α = κ

(
∥M∥

√
n

p+n
, n

p+n

)
−1

, σ =
√
1− α2  and κ(·, ·) is 

defined in Corollary 4.5. The misclassification error is given 

by Q
(

α√
1−α2

)
.
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Theorem 5.5 states that the entries of the estimated left 
singular vector corresponding to the largest singular value 
of X are Gaussian random variables, whose mean and 

variance depend on ∥M∥ and the ratio c = n

p+n. Essentially, 
in order to obtain a non-zero correlation between ŷ and y, 

the signal strength ∥M∥ must be greater than 
4
√

c(1−c)
√

c
 (see 

Corollary 4.5). However, under Assumption 5.1, the ratio 
n

p+n
→ 0 if n → ∞, thereby yielding a high misclassification 

error. Figure 17 (left) depicts the 2D projection space 
corresponding to the two largest eigenvectors of XX⊤ along 
with its theoretical mean and fluctuations as per Theorem 5.5. 
In contrast, extracting the low-rank structure of the data tensor 
allows us to improve the classification performance. Indeed, 
given the data model in 27, computing a rank-1 approximation 

of X and extracting the corresponding (D + 1)-th mode 
component yields an estimation of the labels vector y. The 

following result characterizes the performance of this CP-based 
clustering method.

Theorem 5.6 (Performance of CP-based clustering [64]). Let 
ŷ be the (D + 1)-th mode component of the rank-1 tensor 
approximation of X. The estimated class for the datum Xi is 
given as Ĉi = sign(ŷi). Then under Assumption 5.1

1

σ

(√
nŷi − αyi

) D−→N (0, 1)

w h e r e  α = qD+1

(
λ∞, ∥M∥

√
n

d+n

)
,  σ =

√
1− α2  w i t h 

qD+1(·, ·) defined by equation 28 for a (D + 1)-th order tensor 

and λ∞ is the unique solution to f
(
λ∞, ∥M∥

√
n

d+n

)
= 0. 

Furthermore, the misclassification error is given by Q
(

α√
1−α2

)
.

As for the linear clustering approach, the vector ŷ of labels 

Figure 15 Theoretical versus empirical misclassification error of both matched filter (MF) and CP-based matched filter (CP-MF) classifiers. The performance of a neural network with 

10 hidden neurons and ReLU activation is shown in cyan. We considered n training data as order 3 tensors of dimensions d1 = d2 = d3 = 20 having a rank-one structure as in 
equation 26 with the µj's being randomly sampled vectors.

Figure 16 Theoretical misclassification error in terms of the signal strength ∥M∥ 

and the ratio nd  for both MF and CP-MF as per Theorems 5.2 and 5.4 respectively

Figure 17 Left: the 2D projection space obtained by linear clustering. Right: the 2D 

projection space by CP-based clustering obtained through a rank-two CP decomposition 

of X. We considered D = 2 and n1 = n2 = 75 square matrices Xi of size 150 

generated as the model in equation 26 with ∥M∥ = 5. The ellipses correspond to the 
theoretical means and fluctuations according to Theorems 5.5 and 5.6 respectively.
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estimated with CP decomposition has Gaussian entries 
centered on the scaled labels y with a scaling factor α and 
fluctuations depending on such α. However, now the 

clustering performance depends on ∥M∥ and the ratio n

d+n, 
thereby yielding the same clustering performance as n 
increases and d  being at least of the same order as n. 
Figure 17 (right) depicts the 2D projection space obtained 
by a rank-two CP decomposition of X with its theoretical 
mean and fluctuations as per Theorem 5.6. From Figure 17, 
we observe that denoising through computing the 
approximate CP decomposition yields lower variance 
compared to a classical linear approach, thereby allowing 
better clustering performance.

To best illustrate the comparison between linear clustering 
and CP-based clustering, let us suppose that the training 

data is matrices of dimension d1 = d2 = n, hence n

d+n
= 1

3 . 
In this case, the performance of CP-based clustering is given 

in closed form by 4.4. Theoretically, in order to have a 

correlation between ŷ and y, the signal strength ∥M∥ must 
be greater than 2. However, as we saw from the previous 
section, in order to estimate the signal in practice in 

polynomial time, ∥M∥ must be greater than 
4
√

c(1−c)
√

c
 with 

c = 1

n+1, which corresponds to the phase transition of linear 

clustering. Figure 18 depicts the theoretical versus empirical 
misclassification errors along with the different thresholds 

for ∥M∥. This figure clearly shows the benefit of CP-based 
clustering upon linear clustering.

Figure 18 Theoretical versus empirical misclassification errors in terms of the signal 

strength ∥M∥ for both linear clustering and CP-based clustering as per Theorems 5.5 
and 5.6 respectively. We considered data to be matrices such that d1 = d2 = n = 70 .
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6 Conclusion

This paper has presented a new and promising direction of 
research to understand the theoretical behavior of tensor 
methods, with expected impact in the field of wireless 
communications, signal processing, machine learning and 
beyond. Indeed, assessing and understanding the behavior 
of methods that rely on random high-dimensional tensors 
is of central importance in order to have theoretical 
guarantees about their efficiency and optimality. As 
illustrated in the last part of this paper, we explicitly 
demonstrated the application of random tensor theory 
to evaluate the performance of simple learning methods 
(such as the CP-based matched filter), whose behavior was 
not yet theoretically understood. This paves the way for 
more systematic theoretical analysis and improvement of 
sophisticated machine learning algorithms when dealing 
with tensor-structured data.

Beyond the application aspects, further work is required 
to set up a comprehensive theory of random tensors, 
by extending the developed results to more general 
decompositions or even to methods that rely on implicit 
formulations (i.e., methods that are defined through generic 
optimization objectives beyond the maximum likelihood 
formulation). There are also many open questions about 
the algorithmic aspects: for instance, is it possible to beat 
the algorithmic threshold in Figure 12 — specifically, is it 
possible to find a polynomial time algorithm that could 
recover the signal below this threshold?
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We present an alternative view of computation based on dynamical systems and control theory. In particular, we formulate 
computation as a problem of driving a dynamical system from its initial state to some final state that represents the 
target output. In this sense, a physical computation system can be interpreted as a control system, where external energy 
is inserted to ensure that the system's dynamics evolve toward its desired target: the output of the computation. In digital 
computation, this control is typically employed at every logic gate to ensure the highest level of accuracy per Boolean step. 
On the other hand, in analog computation, the amount and frequency of control is less demanding, thus requiring less 
physical energy but at the expense of higher error rates per single step. Neither takes full advantage of the nature of the 
physical systems underlying computation. We offer some perspectives from dynamical systems and control theory, which 
shed light on the potential development of a new theoretical framework for designing hybrid physical systems that can 
achieve optimal trade-off between energy consumption and accuracy, paving the way for achieving significantly reduced 
energy cost for large-scale computation.
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1 Introduction 

"Computers are physical systems: the laws of physics 
dictate what they can and cannot do. In particular, 
the speed with which a physical device can process 
information is limited by its energy and the amount of 
information that it can process is limited by the number 
of degrees of freedom it possesses."

Seth Lloyd, in "Ultimate physical limits to computation"

Nature 406, pp. 1047-1054 (2000).

A fundamental breakthrough which enables modern, 
large-scale computing is through the realization that, 
conceptually, a computational task can be decomposed 
into a series of basic operations, for example, Boolean 
(logical) operations defined on 0's and 1's [1, 2]. Under 
this framework, and taking into account the fact that 
computation of any sort relies upon physical processes, 
computational speedup can be generally achieved from 
two distinct lines of research. One line of research concerns 
improving the physical process that realizes the basic 
operations, typically the logic gates [3]. The other line of 
research focuses on designing efficient algorithms, that is, 
constructing some appropriate series of operations that 
achieve a prescribed function [4]. From this point of view, 
the optimization of computational efficiency can be clearly 
separated into two stages: a physical stage concerned with 
physical implementation, and a mathematical/logic stage 
concerned with the logic combination of gates to achieve 
a particular functional dependence. In fact, each of those 
two lines has formed its own research field, the former 
leading to integrated circuits and the latter corresponding 
to algorithm research [5].

We ask, what defines computation? The mainstream 
viewpoint interprets the process of computation as a 
sequence of operations to transform an input to some 
desired output. This perspective, while valid, restricts the 
discussion of computation only to its logical layer, leaving 
the physical process underlying the basic operations intact. 
The purpose of this article is to provide an alternative 
viewpoint of computation with an attempt to bring in the 
physical process together with the logical operations for joint 
consideration. Interestingly, we found such joint modeling 
corresponds to a well-established field of research in 
mathematics, called dynamical systems which typically arise 
in the modeling of physical processes. Figure 1 provides a 
visual illustration to compare the classical versus dynamics-
based view of computation. From this perspective, we 
propose that the physical energy required for carrying out a 
particular computation can be decomposed into two parts, 
one contributing to driving the dynamics of the physical 
process and the other serving for control purposes to ensure 
self-correction of the dynamical trajectory. This viewpoint 
offers an opportunity to reconcile the seemingly distinct types 
of computation, namely digital computation and analog 
computation. Both are dynamical systems subject to control.

Input space Output space 

Standard computation
(logic gates)

Dynamics-based computation
(dynamical systems)

(a)

(b) (c)

Figure 1 Dynamical system view of computation. (a) Computation is interpreted as a mapping Q from an input space X  to an output space Y.  
(b) In the standard model of computation, the mapping Q is implemented by a circuit of logic gates and the software that runs on it.  

(c) In the view of computation based on dynamical systems, the mapping Q is implemented through the landscape of a dynamical system; inputs 
converge to the stable states of the system, which represent the outputs of computation.

2 Dynamical Systems Viewpoint of 
Computation 

Instead of analyzing the intermediate steps of computation, 
we focus on the purpose of computation, which generally 
means to achieve some particular end-to-end transformation 
from input to output [6]. Mathematically, we interpret it as 
a mapping Q from some element x in the input space X  to 
an element y in the output space Y ,
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determination of the dominant eigenvector of a matrix [8], 
where we denote the matrix as G ∈ Rn×n. Such problems 
arise naturally in a number of important applications including 
search engines [9], partitioning graphs and networks [10], as 
well as principal component analysis [11]. For simplicity of 
discussion, let us assume that G  is (1) symmetric, (2)  
admits an eigenvalue decomposition: G = PΛP−1 and (3) 
contains a non-degenerate maximum eigenvalue denoted 
as λ1 > 0 whereas the rest of the eigenvalues satisfy 
|λi| < λ1 (∀i = 2, 3, . . . , n) .  Denote  the  cor respond ing 
(normalized) eigenvectors as {v1,v2, . . . ,vn}, defining the 
matrix P = [v1, . . . ,vn]. Suppose that we are given this 
matrix G  as input and wish to compute  its dominant 

eigenvector v1(G) corresponding to λ1. In our notation, we 
would write Q(G) = v1(G). This is a standard eigenvector 
computation problem, with many alternative methods of 
computation [12]. Here we show that this task of 
computation can also be formulated using dynamical 
systems following the recipes described in [13] by 
attempting to embed the target output of computation as a 
stable state of a controlled dynamical system. One 
possibility is to construct a linear time-varying system with 
control imposed to adjust the overall magnitude of the 
state, as follows,

dx/dt = u(t)Gx. (4)

The idea is that the operator G , when applied iteratively, 
keeps driving the state of the system toward a direction 
aligned with v1 but its magnitude can become unbounded 

(when |λ1| > 1) or diminishing (when |λ1| < 1) and thus 

requires external control. By the change of basis: y = P
−1

x, 
it follows that the solution of the dynamical system (4) is 
given by

yi(t) = yi(0)e
λite−

∫ t
0 u(τ)dτ . (5)

We can design a control input as follows,

u(t) =
1

‖x(t)‖2
∑
i

xi(t)ẋi(t) (6)

from which we can show that the solution of the dynamical 
system satisfies x → v1 as t → ∞, thus producing the 
desired output.

Note that in this example, no explicit Boolean logic is 
involved, nor is there need to choose a precise time to end 
the dynamics. Virtually all is needed is a (physical) process 
that implements a simple linear differential equation with 
some scalar feedback control. In fact, one can design more 
sophisticated coupled systems from the basic equations to 
solve for the other eigenvectors as well.

(4)

(5)

(6)

y = Q(x). (1)

For instance, given the coefficients (a, b) ∈ R2 that define a 
linear equation az + b = 0, its solution can be computed as 
z = −b/a as  long as a �= 0 .  In  th is  part icular  case , 

x = (x1, x2) ∈ R2 and y = Q(x) = −x2/x1. As an alternative 
example, suppose that f(x;µ) = (x− µ1)2 + µ2 which is 
completely specified by the parameter vector µ = (µ1, µ2), 
and we wish to compute the value of x for which f(x) is 
minimized — obviously this is when x = µ1, that is, for this 

example y = Q(µ) = µ1. In this second case, the form of 
computation is representative of a projection or some type 
of targeted embedding from the input space to a lower 
dimensional manifold. In general we assume that the 
desired mapping, i.e., the ideal output of the computation, 
is deterministic — extension to random variables would 
require additional set of theoretical tools from probability 
theory and functional analysis.

Because most computational platforms and devices rely 
essentially on physical processes, it is useful to introduce some 
standard mathematical tools. Typically, a physical process can 
be represented by a time-evolving system characterized by 
states whose dynamics follow certain physical laws [7],

ẋ =
dx

dt
= f(x;u(t)), (2)

where x ∈ D  represents the state of the system, f  models 

the evolution dynamics, and u(t) denotes external control 
which enables modification of the system dynamics. In the 
absence of control, we simply write the right-hand side of 

the equation as f(x) and denote the solution trajectory as 
φ(t;x0), which satisfies the conditions



φ(0;x) = x0,

dφ(t;x)/dt = f(φ(t;x)).
(3)

This particular mapping φ is often referred to as the flow  of 
the dynamical system [7]. To utilize a dynamical system for 
computation, control is generally required, except for very 
rare cases where the natural dynamics spontaneously evolve 
toward its final state that coincides with the desired target 
of computation. Indeed, even for those cases where the 
dynamical system is carefully chosen or designed to 
correspond to an exact computation, several factors 
including noise and multistability often render the flow of 
the system away from the ideal trajectory. In either case, a 
control scheme is typically needed to drive the system 
toward its desired output.

Example. As a concrete example, let us consider a commonly 
encountered problem in large-scale computation, namely the 

(2)

(3)

(1)
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Interestingly, the above example, simple as it seems, 
encompasses the fundamental equations of motion for 
(both classical and quantum) physical systems. For instance, 

the  dynamica l  equat ion dx/dt = cH(t)x  y ie lds  the 
Schrödinger equation for the choice of constant c = −i�, 

where H(t) is the Hamiltonian of the system. In such 
scenario, Equation (4) would amount to u(t)G = H(t) as a 
time dependent Hamiltonian of the physical system 
describing the interaction and drive of the dynamics. [14, 15]

Physical systems, despite their complexity, often exhibit low-
dimensional behavior [16]. For example, an unforced simple 
pendulum oscillates periodically around its equilibrium 
position. For the purpose of computation, we are usually 
interested in and concerned with the asymptotic behavior of 
the system. Richness of the asymptotic states then directly 
determines the level of flexibility, or in some sense the 
capacity when such a system is used for computation. In 
dynamical systems, the phenomenon that a system can, 
under different initial conditions and perturbations, evolve 
toward different final stable states is called multistability [17].

Example. To demonstrate the notion of multistability [18, 19], 
let us consider a simple yet concrete example, where the 
dynamics of the system are bistable in the absence of control, 
and denote by D0 and D1 the set of initial states from which 
the system evolves toward the corresponding two stable 

3 Multistability as a Source of 
Computational Capacity

states s0 and s1, that is,

Di = {x0|φ(t;x0) → si (t → ∞)}. (7)

Suppose that the system is at a particular state x0 ∈ D0 but 
we wish instead for the system to evolve toward s1. One way 
to accomplish this is by inserting an impulse control, 
u01 ∈ {u|u+ x0 ∈ D1}. We demonstrate this by a simple toy 
example, with a one-dimensional system [20]

ẋ = dx/dt = f(x) = x(1− x2), (8)

with two stable states (s0, s1) = (−1, 1) and corresponding 
basins of attraction D0 = (−∞, 0) and D1 = (0,∞). If the 
system initiates from the state x0, by inserting a positive 
(negative) control signal to alter the initial state, the system 
evolves toward 1(−1) which can be used to represent a binary 
output, encoding 1(0), as illustrated in Figure 2 (a–b). 
Furthermore, by using two such systems, one obtains a pair of 
binary outputs which can then be used to represent any 
pairwise Boolean operation (AND, OR, XOR, etc.).

Next, we demonstrate how one can couple several such 
continuous dynamics into a more complex system that is 
capable of information processing and computation [21, 22]. 
In particular, consider a coupled system with n units where 
the dynamics of the i-th unit follows the equation

ẋi = F (x) = f(xi) + κ
∑
j

[f(xj)− f(xi)] , (9)

where x = (x1, . . . , xn) ∈ Rn  and f(x) = x(1− x
2)  as  in 

Equation (8). Since f(±1) = 0, it follows that each state x 
for which |xi| = 1(∀i) is an equilibrium state of the system. 
For κ ≪ 1, we can show that each such state is locally 

(a) (b)

(c) (d)

Figure 2 Examples of dynamical systems. (a) Phase portrait for the dynamical system in Equation (8). (b) Solution curves for 
different initial conditions; the solutions converge to ±1 depending on the initial condition. (c–d) Phase portraits for a 2D dynamical 

system as in Equation (11) with f(x) = x(1 − x
2
), for a weak coupling κ = 0.05 (c) and a strong coupling κ = 0.5 (d); the 

boundaries of the basins of attraction are shown in red dashed lines.

(7)

(8)

(9)
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stable. Thus, for small values of κ, the coupled dynamical 
system (9) contains at least 2n stable states of the set

Sn = {x = (x1, . . . , xn)|xi = ±1, ∀i} = {s1, s2, . . . , s2n}. (10)

For κ = 0, the system is uncoupled with n isolated units 
which need to be individually controlled — in fact, to reach 

any particular final state (x1, . . . , xn) with |xi| = 1, it is 
necessary to individually control the state of each variable 

to either positive or negative based on sign(xi). On the 
other hand, when κ ̸= 0, the system is coupled and even if 
the equilibrium states are the same their corresponding 
basins of attraction can become more complicated. The 
behavior of the coupled system is illustrated in Figure 2 (c–d) 
for different coupling strengths.

The coupling in the system can be made more general, for 
example, by imposing a network structure represented by 

some matrix G = [Gij ], thus extending Equation (9) to a 
network coupled system [23]

ẋi = F (x) = f(xi) + κ
∑
j

Gij [f(xj)− f(xi)] , (11)

where, in addition to the effect of coupling strength κ, the 
coupling matrix G allows one to modify the symmetry in the 
system — effectively biasing its dynamics toward some of the 
equilibrium states. In principle, by choosing G appropriately 
one can achieve larger basins of attraction than the 
uncoupled case, making it easier for the system to evolve 
toward a selected set of final states [24], thus improving the 
overall efficiency of computation if those states are 
representative of the desired computational results.

In conclusion, coupling a system's states can generally lead 
to increased capacity since the existence of several 
multistable states allows a system to represent multiple 
solutions. In general, let us denote the basin of attraction of 
each stable state sk ∈ Sn as

B(sk) = {x0|ϕ(t;x0) → sk (t → ∞)}. (12)

The final solution found by a system will depend on these 
basins of attraction, whose shapes can be changed through 
the coupling matrix G .

For a given input x, the desired computation output Q(x) 
can be obtained from the stable state sk to which the 
system converges. For example, if the goal of computation 
is to classify  the inputs, then this can be achieved by 
assigning each of the multistable states a class label. Then, 
instead of designing some sophisticated Boolean logic, all 
we need is to encode the data into the input of the 

dynamical system, wait for transient dynamics to wash out, 
and finally read off the output based on which state the 
system converged to. In fact, such computation is even 
noise-resilient to some extent, because as long as the 
trajectory of the system stays within its original basin of 
attraction, the classification output is always going to be 
correct [25]. Such ideas have led to an interesting venue of 
research called reservoir computing  [26], where rich 
information of the desired computation is embedded in a 
pre-wired (physical) dynamical system called a reservoir 
leaving a few linear parameters that are trained/adjusted to 
meet particular computation requirements.

4 Optimal Control Perspective of 
the (Energy) Cost of Computation

Given plenty of examples where a dynamical system can 
serve as a computing device where control is used to drive 
the system from its initial state to a final state encoding the 
target output of computation [27, 28, 29, 30, 22], it is 
natural to ask what might be a good or even optimal way 
of setting the control input? Acknowledging that the 
particular objective of control is itself challenging to 
uniquely define due sometimes to unavoidable gaps 
between theoret ica l  and numer ica l  measures  of 
controllability and control trajectories [31], we argue that at 
least conceptually the question above can be formulated 
mathematically as an optimal control problem [32, 33], 

where the "best" u(t) is sought to minimize a cost 
functional J . Assume that the computation runs for a time 
interval tf > 0 (when no constraint is imposed we set 
tf = ∞). Our cost functional J  will be composed of two 
elements: first, an endpoint cost S  associated to the final 
state of the dynamical system; and second, a running cost 
that measures the control cost incurred during each step of 
the computation (measured by a functional V ). Then, the 

"best" u(t) is sought to minimize the functional

J = S(x(tf ), tf ) +

∫ tf

0

V (x(t),u(t))dt, (13)

where S  and V  are cost functions which jointly determine the 
objective of control optimization and "cost" here reflects the 
total control efforts incurred during the entire time interval.

"All stable processes we shall predict. All unstable 
processes we shall control."

John von Neumann

(10)

(11)

(13)

(12)
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From this viewpoint, we interpret computation as a control 
problem by identifying the input of the computation as x0 

and thus the desired output becomes Q(x0). First, we 
choose an endpoint cost that quantifies how far the final 
state is from the desired solution, for instance by letting 

S(x(tf ), tf ) = ∥Q(x0)− x(tf )∥
2. Then, we select a running 

cost that measures the energy spent by the control function, 

one example being V (x(t),u(t)) = αu(t)⊤u(t). Then we 
arrive at the optimal control problem




minu J [u] = ∥Q(x0)− x(tf )∥2 + α

∫ tf
0 u(t)⊤u(t)dt,

subject to: dx/dt = f(x;u(t)), x(0) = x0.
(14)

The goal is to design an appropriate control input u(t) such 
that the state of the system evolves toward the desired 

computation output, Q(x0), with minimal cost of control. 
Here the parameter α serves to achieve a trade-off between 
controlling (computation) accuracy and controlling cost, 
similar to the so-called regularization parameter often 
encountered in learning theory [34]: for α ≪ 1, the focus is 
placed on ensuring the final state of the system reaching 

the target Q(x0), (almost) ignoring the cost of control; on 
the other hand, for α ≫ 1, little emphasis is given to the 
state of the system but more on ensuring that the control 
input is minimal.

5 Control as a Form of Error-
Correction

Any realistic physical process is subject to noise and 
perturbations, thus transforming into a non-zero probability 
of error, as represented by the system evolving toward a 
state that differs from its desired state. This type of error, 
when it accumulates, can become disastrous because a 
large number of basic operation units are generally needed 
to perform a single computational task.

In digital computation, the process of error-correction is 
generally done at the logic gate level, to ensure that every 
logic gate outputs the correct binary result at high 
probability. In contrast, to illustrate the case of dynamical 
systems, we take the cubic bistable system (8) as an 
example. In the absence of noise, to obtain a desired output 
only requires diminishing energy: setting the initial state of 
the system to either +ϵ or −ϵ with arbitrarily small ϵ will be 
sufficient. However, noise is unavoidable in physical process. 
For instance, assume there is additive (but not necessarily 

Gaussian) noise represented by η, and so the system 
dynamics are

ẋ = f(x; η) = x(1− x2) + η. (15)

Then, because of the presence of noise, the control u would 
need to change to ensure the system state is kept in the 
correct basin [35]. In fact, if noise is persistent, a single 
impulse control at the initial state is no longer sufficient. 
Instead, later-on control is generally needed in case noise 
kicks the state of the system to a different basin [36]. In this 
case, the control u would need to be larger and require 
more physical energy. In other cases, noise itself can even 
serve to regulate behavior of the system toward the desired 
output [37].

A more subtle question arises when considering a non-
negligible effect of noise that might sometimes cause the 
state of the system to converge to the wrong stable state — 

this can happen, for instance, when η(t) has large variance 
at the beginning which gradually decreases over time. In 
this case, one idea to correct the possible error is to follow 
the simple "repetition" trick, by evolving multiple copies of 
such systems, from different starting points. Depending on 
the characterist ics of the dynamical system under 
consideration, two general strategies are possible. One 
possibility is to use completely independent systems 
followed by some aggregation (e.g. average or "majority 
vote") to collect the results of all and determine the final 
output. A second strategy is to use correlated dynamics, in 
fact adopting a network of coupled individual systems 
defining network dynamics as in Equation (11) with noise. 
Such an approach has proven successful for instance for 
accelerating the search of optimal solutions by employing 
correlated Monte Carlo simulations in methods known as  
replica exchange MCMC [38].

In general, under the dynamical systems framework of 
computation, we can treat error correction as a particular 
goal of control where additional control — beyond what is 
normally needed in the absence of "error" — is imposed to 
ensure robustness of the computation. For instance, in the 
optimal control equation (14), suppose that in the absence 

of disturbance we have limt→∞

x(t) = Q(x0) but, because 
of various types of disturbance, this limit equation is 
violated. Then, the problem of error correction becomes one 

of designing the control signal u(t) so that the trajectory of 
the dynamics returns to its nominal path toward Q(x0).

(14)

(15)
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6 Discussion and Outlook

Modern computation has seen an explosive growth and its 
success forms a key element of the information age. Being able 
to precisely define and exercise a particular sequence of logic 
operations — a defining feature of digital computation — has 
dominated the thinking and industrial design of algorithms 
as well as computation hardware. After almost eighty years 
of progress since the birth of the first general-purpose 
digital computer ENIAC, the world surrounding us has 
witnessed significant changes and progress. It is not clear if 
the computational needs of the future could be addressed 
with current computational paradigms, or whether next-
generation techniques of computation need to be developed. 
Indeed, current technological trends show an increasing shift 
toward special-purpose hardware, both digital hardware (e.g. 
FPGAs, GPUs, DPUs) and analog (e.g. quantum annealers), 
due to scaling limitations of current technologies. Moreover, 
it is becoming increasingly clear that, in many scenarios, 
large-scale computation does not necessarily require a 
completely precise, step-by-step accuracy. Instead, for many 

problems, only an end-to-end and sometimes a "good-
enough" output would be acceptable. In these cases, 
alternative means of computation through physical systems 
could take advantage of these requirements to provide 
faster and more energy-efficient — albeit approximate — 
results. Representative directions include heuristic dynamics 
for large-scale optimization problems [39, 40].

To fully unlock the efficiency of physical systems for 
computation, a new type of framework and mathematical 
language is likely needed. Here we offer some viewpoints 
from dynamical systems and control theory together with a 
few lines of preliminary thoughts on what might be useful 
to define computation beyond Boolean. We hope that our 
perspectives, premature as they might be at this early stage, 
nevertheless serve to provide different ways to think of 
computation beyond mainstream approaches and inspire 
new ideas and research efforts that potentially revolutionize 
the theory and practice of computation.
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