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Introduction

Commutative algebra is essentially the study of commutative rings. Roughly
speaking, 1t has developed from two sources: (1) algebraic geometry and (2)
algebraic number theory. In (1) the prototype of the rings studied is the ring
k[xy, ..., x,] of polynomials in several variables over a field k: in (2) 1t 1s the
ring Z of rational integers. Of these two the algebro-geometric case is the more
far-reaching and, in its modern development by Grothendieck, it embraces much
of algebraic number theory. Commutative algebra is now one of the foundation
stones of this new algebraic geometry. It provides the complete local tools
for the subject in much the same way as differential analysis provides the tools
for differential geometry.

This book grew out of a course of lectures given to third year under-
graduates at Oxford University and it has the modest aim of providing a rapid
introduction to the subject. It is designed to be read by students who have had a
first elementary course in general algebra. On the other hand, it is not intended
as a substitute for the more voluminous tracts on commutative algebra such as
Zariski-Samuel [4] or Bourbaki [1]. We have concentrated on certain central
topics, and large areas, such as field theory, are not touched. In content we
cover rather more ground than Northcott [3] and our treatment 1s substantially
different in that, following the modern trend, we put more emphasis on modules
and localization.

The central notion in commutative algebra is that of a prime ideal. This
provides a common generalization of the primes of arithmetic and the pﬂint‘s. of
geometry. The geometric notion of concentrating attention “near a pm-nt”
has as its algebraic analogue the important process of /ocalizing a ring at a prime
ideal. It is not surprising, therefore, that results about localization can usfcfully
be thought of in geometric terms. This is done methodically in Grothendieck’s
theory of schemes and, partly as an introduction to Grothendieck’s work [2],
and partly because of the geometric insight it provides, we have added schematic
versions of many results in the form of exercises and remarks. '

The lecture-note origin of this book accounts for the rather terse style, with
little general padding, and for the condensed account of many proofs. We have
resisted the temptation to expand it in the hope that the brevity of our presenta-
tion will make clearer the mathematical structure of what is by now an elegant
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and attractive theory. Our philosophy has been to build up to the main theorems

i a succession of simple steps and to omit routine verifications. |
Anyone writing now on commutative algebra faces a dilemma in connection

with homological algebra, which plays such an important part in modern

s. A proper treatment of homological algebra is impossible within

velopment : : '
develop ensible to ignore it

the confines of a small book: on the other hand, it is hardly s |
completely. The compromise we have adopted is to use elementary homological

methods—exact sequences, diagrams, etc.—but to stop short of any results

requiring a deep study of homology. In this way we hope to prepare the ground
for a systematic course on homological algebra which the reader should under-

take if he wishes to pursue algebraic geometry 1n any d.cpth.
We have provided a substantial number of exercises at the end of each

chapter. Some of them are easy and some of them are hard. Usually we have
provided hints, and sometimes complete solutions, to the hard ones. We are
indebted to Mr. R. Y. Sharp, who worked through them all and saved us from

error more than once. -
We have made no attempt to describe the contributions of the many

mathematicians who have helped to develop the theory as expounded in this
book. We would, however, like to put on record our indebtedness to J.-P. Serre

and J. Tate from whom we learnt the subject, and whose influence was the
determining factor in our choice of material and mode of presentation.
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Notation and Terminology

Rings and modules are denoted by capital italic letters, elements of them by
small italic letters. A field is often denoted by k. Ideals are denoted by small
German characters. Z, Q, R, C denote respectively the ring of rational integers,
the field of rational numbers, the field of real numbers and the field of complex
numbers.

Mappings are consistently written on the /eft, thus the image of an element x
under a mapping f is written f(x) and not (x)f. The composition of mappings
f: X— Y, g: Y— Z 1s therefore g o f, not fo g.

A mapping f: X — Y is injective if f(x;) = f(x,) implies x, = x5, surjective
if f(X) = Y, bijective if both 1njective and surjective.

The end of a proof (or absence of proof) is marked thus m.

Inclusion of sets i1s denoted by the sign <. We reserve the sign < for strict
inclusion. Thus A < B means that A4 is contained in B and is not equal to B.

1 X




Rings and Ideals

We shall begin by reviewing rapidly the definition and alemcrﬁary properties of
rings. This will indicate how much we are going to assume of the reader and it
will also serve to fix notation and conventions. After this review we pass on
to a discussion of prime and maximal ideals. The remainder of the chapter is

devoted to explaining the various elementary operations which can be performed
on i1deals. The Grothendieck language of schemes is dealt with in the exercises
at the end.

RINGS AND RING HOMOMORPHISMS

A ring A 1s a set with two binary operations:(addition and multiplication) such
that

1) A is an abelian group with respect to addition (so that 4 has a zero element,
denoted by 0, and every x € A has an (additive) inverse, —Xx).

2) Multiplication is associative ((xy)z = x( yz)) and distributive over addition
(x(y + 2) = xy + xz, (¥ + 2)x = yx + zX).

We shall consider only rings which are commutative:

3) xy = yxforall x,ye A,

and have an identity element (denoted by 1):

4) 31 € A such that x1 = 1x = x for all x € A.
The identity element is then unique.

Throughout this book the word “ring” shall mean a commutative ring with an
identity element, that is, a ring satisfying axioms (1) to (4) above.
Remark. We do not exclude the possibility in (4) that 1 might be equal to 0.
If so, then for any x € A we have
x=xl=x0=0

and so A has only one element, 0. In this case 4 is the zero ring, denoted byq
(by abuse of notation). |




2 RINGS AND IDEALS

A ring homomorphism is a mapping f of a ring A into a ring B such that

) fx + ¥) =) + fO) (so that fis a homomorphism of abelian groups,
) ﬁr:i therefore also f(x — ¥) = f(x) — f(1), J(—=%) = —f(x), f(0) = 0),

i) f(xy) = f(x)S(D);
i) f(1) = 1.
In other words, f respects addition, multiplication and the identity element.
A subset S of a ring A is a subring of A if S is closed under addition and
multiplication and contains the identity element of A. The identity mapping of
S into A is then a ring homomorphism.
Iff: A— B,g: B— Care ring homomorphisms then so 1s their composition

gofid— C.

IDEALS. QUOTIENT RINGS

An ideal a of a ring A is a subset of 4 which is an additive subgroup and 1s such
that 4a < a (i.e., xeA and yea imply xy€a). The quotient group A/a
inherits a uniquely defined multiplication from A which makes it into a ring,
called the quotient ring (or residue-class ring) A/a. The elements of A/a are the
cosets of a in A, and the mapping ¢: A — A/a which maps each x € 4 to its
coset x + a is a surjective ring homomorphism.

We shall frequently use the following fact:

Proposition 1.1. There is a one-to-one order-preserving correspondence

between the ideals b of A which contain a, and the ideals b of Ala, given by

b = ¢-%(b). =

If f: A — Bis any ring homomorphism, the kernel of f(=/~*(0)) is an ideal
a of A, and the image of f(=f(A4)) is a subring C of B; and f induces a ring
isomorphism A/a ~ C.

We shall sometimes use the notation x =y (mod a); this means that
X — yEa,

ZERO-DIVISORS. NILPOTENT ELEMENTS. UNITS

A _zera«diuisar in a ring A4 is an element x which “divides 0", i.e., for which there
exists y # 0 in 4 such that xy = 0. A ring with no zero-divisors #0 (and In
which 1 # 0) is called an integral domain. For example, Z and k[x,, ..., Xn)
(k a field, x, indeterminates) are integral domains.

An ?lement x € A is nilpotent if x™ = 0 for some n > 0. A nilpotent
element is a zero-divisor (unless 4 = 0), but not conversely (in general).

A unit in 4 is an element x which “divides 17, i.e., an element x such that
gy ] for some y € A. The element y is then uniquely determined by x, and 18
written _x‘*". The units in 4 form a (multiplicative) abelian group,
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The multiples ax of an element x € 4 form a principal ideal, denoted by (x)

or Ax. x18 a unit‘ <> (x)‘ = A* = (1). The zero ideal (0) is usually denoted by 0.
A field is a ring A 1n which 1 # 0 and every non-zero element is a unit.
Every field is an integral domain (but not conversely: Z is not a field).

Proposition 1.2. Let A be a ring # 0. Then the following are equivalent:
i) Ais a field,
11) the only ideals in A are 0 and (1);

i) every homomorphism of A into a non-zero ring B is injective.

Proof. 1) = 11). Let a # 0 be an ideal in 4. Then a contains a non-zero
element x; x is a unit, hence a 2 (x) = (1), hence a = (1).

1) = i1). Let ¢: A — B be a ring homomorphism. Then Ker (¢) is an
ideal # (1) in A4, hence Ker (¢) = 0, hence ¢ is injective.

iii) = 1). Let x be an element of A4 which is not a unit. Then (x) # (1),
hence B = A/(x) 1s not the zero ring. Let ¢: A — B be the natural homo-

morphism of 4 onto B, with kernel (x). By hypothesis, ¢ is injective, hence
(x) =0,hencex =0. =

PRIME IDEALS AND MAXIMAL IDEALS

An ideal p in A is prime if p # (1) and if xyep == x€p or yep.
An ideal m in A is maximal if m s (1) and if there is no ideal a such that
m < a < (1) (strict inclusions). Equivalently:

p is prime <> A/p is an integral domain;
m is maximal <> 4/m is a field (by (1.1) and (1.2)).

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal
Is prime <> A is an integral domain.

If f: A — B is a ring homomorphism and q is a prime ideal in B, then
f~Yq) is a prime ideal in A, for 4/f~*(q) is isomorphic to a subring of B/q and
hence has no zero-divisor # 0. But if 1 is a maximal ideal of B it 1S not neces-
sarily true that f~*(n) is maximal in 4; all we can say for sure is that it is prime.
(Example: 4 = Z, B = Q,n = 0.) :

Prime ideals are fundamental to the whole of commutative algebra. The
following theorem and its corollaries ensure that there is always a sufficient

supply of them.

Theorem 1.3. Every ring A # 0 has at Jeast one maximal ideal. (Remember
that “ring”> means commutative ring with 1.)

Proof. This is a standard application of Zorn’s lemma.* Ijet 3 be the set of all
ideals # (1) in A. Order X by inclusion. 2 is not empty, SINCe 0eX. To apply

* Let S be a non-empty partially ordered set (i.c., we are given a relation x < yon S
which is reflexive and transitive and such that x <y and y < x together imply



| well-orderin
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4 RINGS AND IDEALS

Zorn’s lemma we must show that every chain in X has an upper bound in X;
let then (a,) be a chain of ideals in Z, so that for each pair of indices «, 8 we have
either a, < agora; € a,. Leta = | J. a.. Then ais an ideal (verify this) and
] ¢ a because 1 ¢ a, for all . Hence a € X, and a is an upper bound of the chain,
Hence by Zorn’s lemma 2 has a maximal element. =

Corollary 1.4. If a # (1) is an ideal of A, there exists a maximal ideal of A
containing q.
Proof. Apply (1.3) to A/a, bearing in mind (1.1). Alternatively, modify the
proof of (1.3). =

Corollary 1.5. Every non-unit of A is contained in a maximal ideal. m

Remarks. 1) 1If A is Noetherian (Chapter 7) we can avold the use of Zorn’s
lemma: the set of all ideals # (1) has a maximal element.

2) There exist rings with exactly one maximal ideal, for example fields.
A ring A with exactly one maximal ideal m is called a local ring. The field
k = Ajm is called the residue field of A.

Proposition 1.6. 1) Let A be a ring and m # (1) an ideal of A such ;-n':af
everyxe A — misaunitin A. Then A is alocal ring and m its maximal ideal.

i1) Let A be a ring and m a maximal ideal of A, such that every element of
] + m (i.e., every 1 + x, where x € m) is a unit in A. Then A is a local ring.

Proof. 1) Every ideal # (1) consists of non-units, hence is contained in m.
Hence m 1s the only maximal ideal of A.

i) Let xe 4 — m. Since m is maximal, the ideal generated by x and m is
(1), hence there exist ye 4 and f € m such that xy + ¢t = 1; hence xy = 1 — ¢
belongs to 1 + m and therefore is a unit. Now use i). =

A ring with only a finite number of maximal ideals is called semi-local.

Examples. 1) 4 = k[x,,
nomial. By unique factorization, the ideal (/) is prime.

?) A = Z. Every ideal in Z is of the form (m) for some m > 0. The ideal
(m) is prime <= m = 0 or a prime number. All the ideals (p), where p is a prime
number, are maximal: Z/(p) is the field of p elements.

The sam_ﬁ holds in Example 1) forn = 1, but not forn > 1. The ideal m of
all polynomials in 4 = k[x,, ..., X,] with zero constant term is maximal (sinw

X = y). Asubset T n'f S 1s a chain if either x < y or y < xfor every pair of elements
X,y mg;; Then Zorn’s lemma may be stated as follows: if every chain T of S has an
upper bound in S (1.e., if there exists x € S such that r < xfor allz e T) then S has
at least one maximal element.

For a proof of the equivalence of Zorn’s lemma with the axiom of choice, the

g principle, etc., see for example P. :
Van Nostrand (1960). ple P. R. Halmos, Naive Set Theory

..., X,), k a field. Let fe A be an irreducible poly-

NILRADICAL AND JACOBSON RADICAL 5

it is the kernel of the homomorphism 4 — k which maps f€ A to f(0)). But if
n > 1, mis not a principal ideal: in fact it requires at least n generators.

3) A principal ideal domain 1s an integral domain in which every ideal is
principal. In such a ring every non-zero prime ideal is maximal. For if (x) # 0
is a prime ideal and (y) = (x), we have x € (), say x = yz, so that yz € (x) and
y ¢ (x), hence z€(x): say z = tx. Then x = yz = yrx, so that yr = 1 and
therefore (y) = (1).

“NILRADICAL AND JACOBSON RADICAL

Proposition 1.7. The set N of all nilpotent elements in a ring A is an ideal,
and A/ has no nilpotent element # 0.

Proof. If xe M, clearlyaxe Nforallae A. Letx,yeN:say x™ = 0, y* = 0.
By the binomial theorem (which is valid in any commutative ring), (x + y)**"~*
is a sum of integer multiples of products x"y’, wherer + s=m + n — 1; we
cannot have both r < m and s < n, hence each of these products vanishes and
therefore (x + y)"*"~* = 0. Hence x + y € N and therefore N is an ideal.
Let ¥ € A/ be represented by x € A. Then X" is represented by x", so that
'=0=>x"eN=>(xYV =0forsomek >0=>xeN=>Xx=0 =

The ideal N is called the nilradical of A. The following proposition gives an
alternative definition of M:

Proposition 1.8. The nilradical of A is the intersection of all the prime ideals
of A.
Proof. Let N’ denote the intersection of all the prime ideals of 4. If fe 4 1s
nilpotent and if p is a prime ideal, then f* = 0ep for some n > 0, hence

fe p (because p is prime). Hence fe N’ .
Conversely, suppose that f is not nilpotent. Let ¥ be the set of ideals a

with the property
n>0=>/f"¢a,

Then ¥ is not empty because 0 € Z. As in (1.3) Zorn’s lcmn}a can be applied
to the set =, ordered by inclusion, and therefore 2 has a Tna)um?l cleﬁment. Let
b be a maximal element of £. We shall show that p is a prime ideal. Let

x,y ¢ p. Then the ideals p + (x), p + () strictly contain P and therefore do
not belong to %; hence

fmrep + (x), frep+ )
for some m, n. It follows that f"*"€p + (xy), hence the ideal p + (xp) is not
in £ and therefore xy ¢ p. Hence we have a prime ideal p such that f ¢ p, so that
féeN. m |
The Jacobson radical it of A is defined to be the intersection of all the maxi-
mal ideals of A. It can be characterized as follows:



- Clearly ab < a N b, hence
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Proposition 1.9. xe R <= 1 — xy is a unit in A for all y € A.
Proof. =: Suppose I — Xy is not a unit. By (1.5) it belongs to some maximal
ideal m; but x e it € m, hence xy e m and therefore 1 € m, which 1s absurd.
m for some maximal ideal m. Then m and x generate the
— | for some u e m and some y € 4.

<: Suppose X ¢
unit ideal (1), so that we have ¥ + Xy

Hence 1 — xy € m and is therefore not a unit. =

OPERATIONS ON IDEALS

If a, b are ideals in a ring A4, their sum a + b is the set of all x + y where x € a
and y € b. It is the smallest ideal containing a and b. More generally, we may

define the sum 3., a; of any family (possibly infinite) of 1deals a; of A4; its ele-
ments are all sums S x;, where x; € q; for all ie / and almost all of the x, (i.e.,
all but a finite set) are zero. It is the smallest ideal of A4 which contains all the

idEﬂIS ﬂi* :
The intersection of any family (a;),¢; of ideals is an ideal. Thus the 1deals of 4

form a complete lattice with respect to inclusion.
The product of two ideals a, b in A is the ideal ab generated by all products xy,

where x € a and y € b. It is the set of all finite sums 2 x,y; where each x; € a and

each y; € b. Similarly we define the product of any finite family of ideals. In
particular the powers a* (n > 0) of an ideal a are defined; conventionally,

a® = (1). Thus a® (n > 0) is the ideal generated by all products x;x;- - -x,
in which each factor x; belongs to a.

Examples. 1) If 4 = Z,a = (m),b = (n) then a + b is the 1deal generated by
the h.c.f. of m and n; a N b is the ideal generated by their l.c.m.; and ab = (mn).
Thus (in this case) ab = a N b <> m, n are coprime.

4 =kix,,...,x,], a =(x,..., x,) = ideal generated by x;,..., X,
Then a™ is the set of all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all
commutative and associative., Also there is the distributive law

a(b + ¢) = ab + ac.

) In the ring Z, N and + are distributive over each other. This is not the case
In general, and the best we have in this direction is the modular law

aNn(b +c)=anb+ancifa2boraec

Again, in Z, we have (a + b)(a N b) = ab; but in general we have only
(@ + b)(anb) < ab (since (@ + b)(an b) = a(anb) + b(a N b) < ab).

aNb = ab provided a + b = (1).
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Two ideals a, b are said to be coprime (or comaximal)ifa + b = (1). Thu
for coprime ideals we have a N b = ab. Clearly two ideals a, b are cnp.rime ii'
and only if there exist x € a and y € b such that x + y = 1.

Let A, ..., A, be rings. Their direct product

A=]{1Ai

is the set of all sequences x = (x,,..., x,) with x, € A;(1 € i € n) and com-
ponentwise addition and multiplication. 4 is a commutative ring with identity
element (1, 1,...,1). We have projections p;: 4 — A, defined by p(x) = x;

they are ring homomorphisms.
Let A be a ring and ay, ..., a, ideals of 4. Define a homomorphism

b:4— | [ (4/a)
i=1
by the rule ¢(x) = (x + a;,...,x + a,).
Proposition 1.10. 1) If a;, a; are coprime whenever i # j, then Tla, = (M) a,.
11) ¢ is surjective <= a;, a; are coprime whenever i # j.
i) ¢ is injective <= () a; = (0).
Proof. 1) by induction on n. The case n = 2 is dealt with above. Suppose

n > 2and the result truefora;,...,a,_;,andletdh = [[I=f a; = N\i= a. Since
a, + a, = (1)(1 < i £ n — 1) we have equations x; + y; = 1 (x;€ a;, y, € ay)

and therefore

n—-—1

n-=1
[[x=]10~y) =1(moda,)

=1

Hence a, + b = (1) and so

Hn[ =ba, =bNna,=()a.
i=1 t=1

ii) =: Let us show for example that a,, a, are coprime. There exists x € A

such that ¢(x) = (1,0,...,0); hence x = 1 (mod a,) and x = 0 (mod ay), so

that
l=(l~l’)+xEﬂ1+ﬂ2.

«: It is enough to show, for example, that there is an element x € A such that

$(x) = (1,0,...,0). Sincea, + a, = (1) (i > 1) wehaveequations ¢, + v, = 1
(u; € ay, v, € a,). Take x = [ -2 v;, then x = [1(1 — %) = 1 (mod a;), and

x = 0 (mod a), i > 1. Hence ¢(x) = (1,0,...,0) as required.
iii) Clear, since () a, is the kernel of . =

The union a U b of ideals is not in general an ideal.
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Proposition 1.11. i) Let by, .., b, be prime ideals and let a be an idea

contained in | Ji=1 v Then a < p, for some 1.

, . : ‘ . .
i) Let a,, ..., a, be ideals and let v be a prime ideal fﬂun‘f'mmg Mra1 a,.
Then p 2 ﬂtfﬂ'r some 1. U.p = m a, then p = [‘[i_fgr some 1.

Proof. 1) is proved by induction on » in the form
X = — ),
agp(<ism=ag Un

It is certainly true forn = 1. Ifn > 1 and the result is true forn — 1, then for

each i there exists x; € a such that x; ¢ p, whenever j # 1. [f for some i we have-

x; ¢ p;, we are through. If not, then x; € p, for all i, Consider the element
n

we have yeaand yé p; (1 <7< n). Hencea ¢ Ul-1 P

ii) Suppose p & a; for all /. Then there exist x, € a, x; ¢ p (1 < i< n),and

therefore Ilx, € ITa, < (M) a;; but Ilx; ¢ p (since p 1s prime). Hence p 2 M ay.
Finally, if p = () a;, then p < a, and hence p = q, for some /. =

If a, b are ideals in a ring A, their ideal quotient 1s
(a:b) = {xe A:xb € a}

which is an ideal. In particular, (0:0) 1s called the annihiilator of b and is also
denoted by Ann (b): it is the set of all x € 4 such that xb = 0. In this notation
the set of all zero-divisors in A4 is

D = U Ann (x).

x#0
If b is a principal ideal (x), we shall write (a : x) in place of (a : (x)).
Example. If 4 = Z, a = (m), b = (n), where say m = [[, p*», n = [, p’»,
then (a:b) = (g) where ¢ = [, p’» and
Yp = Max (P'p = 15, 0) = My = min (au'p: ""p)-

Hence ¢ = m/(m, n), where (m, n) is the h.c.f. of m and n.

Exercise 1.12. i) a < (a:b)

i) (a:6)b < a

i) ((a:b):¢) = (a:bc) = ((a:c):b)

1v) (M) = M), (a,:0)

v) (a:3,6) = ()i (a:b)).

If a is any ideal of 4, the radical of a is

r(a) = {xe A:x" € a for some n > 0}.

~ If¢: 4 — AJais the standard homomorohi = d-
T : phism, then r(a) = ¢-}(N,,,) and hence
- ra)is an ideal by (1.7). $ o Ru)

EXTENSION AND CONTRACTION 9

Exercise 1.13. 1) r(a) 2 a

ii) r(r(a)) = r(a)

iii) r(ab) = r(a N b) = r(a) N r(b)

iv) r(a) = (1) <= a = (1)

v) r(a + b) = r(r(a) + r(0))

vi) if v is prime, r(p") = p foralln > 0.

Proposition 1.14. The radical of an ideal a is the intersection of the prime
ideals which contain a.

Proof. Apply (1.8) to A/a. =

More generally, we may define the radical r(E) of any subset E of A in the

same way. It is nof an ideal in general. We have r(U« E) = U r(E,), for any
family of subsets £, of A.

Proposition 1.15. D = set of zero-divisors of A = | J, 4o r(Ann (x)).
Proof. D = r(D) = r(Ux:ﬁn Ann (x)) = Uxxo r(A”n (x)) =

Example. If A = Z, a = (m), let p; (1 < i < r) be the distinct prime divisors
of m. Then r(ﬂ) = (Pl' : 'Pr) — ﬂ?=1 (P!)-

Proposition 1.16. Let a,b be ideals in a ring A such that r(a), r(b) are
coprime. Then a, b are coprime.

Proof. r(a + b) = r(r(a) + r(6)) = r(1) = (1), hence a + b = (1) by (1.13).

EXTENSION AND CONTRACTION

Let /: A — B be a ring homomorphism. If a is an ideal in A4, the set f(a) is not
necessarily an ideal in B (e.g., let f be the embedding of Z in Q, the field of
rationals, and take a to be any non-zero ideal in Z.) We define the extension
a® of a to be the ideal Bf(a) generated by f(a) in B: explicitly, a® is the set of all
sums > y,f(x;) where x, € a, y, € B.

[f b 1s an 1deal of B, then f~1(b) is always an ideal of A, called the contrac-
tion b¢ of b. If b is prime, then b€ is prime. If a is prime, a® need not be prime
(for example, 1 Z — Q, a # 0; then a® = Q, which is not a prime ideal).

We can factorize f as follows:

A5 f(4) > B

where p is surjective and j is injective. For p the situation is very simple (1.1):
there is a one-to-one correspondence between ideals of f(A4) and ideals of A
which contain Ker (f), and prime ideals correspond to prime ideals. For j, on
the other hand, the general situation is very complicated. The classical example
1s from algebraic number theory.
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Example. Consider Z — Z[i], wherei = v/ —1. A prime id'cal (p)'nf‘z may or
may not stay prime when extended to Z[i]. In fact Z[i] is a principal ideal
domain (because it has a Euclidean algorithm) and the situation is as follows:
) (2)¢ = ((1 + i)?), the square of a prime ideal in Z[i];

ii) If p = 1 (mod 4) then (p)¢ is the product of two distinct prime ideals

(for example, (5)° = 2 + )2 — 1));

iii) If p = 3 (mod 4) then (p)¢ is prime in Z[i].
Of these, ii) is not a trivial result. It is effectively equivalent to a theorem of
Fermat which says that a prime p = 1 (mod 4) can be expressed, essentially
uniquely, as a sum of two integer squares (thus § = 22 + 12,97 = 9° + &,

etc.).
In fact the behavior of prime ideals under extensions of this sort 1s one of the

central problems of algebraic number theory.
Let /: A — B, a and b be as before. Then

Proposition 1.17. 1) a < a*, b 2 b
“) bt = I‘)-':-m:’r at = ﬂer:c;

iii) If C is the set of contracted ideals in A and if £ is the set of extended ideals
in B, then C = {a|a* = a}, E = {b|b*° = b},anda > a’isa bijective map
of C onto E, whose inverse is b — b°.

Proof. 1) is trivial, and ii) follows from 1).

iii) If a € C, then a = b°.= b°° = a°*°; conversely if a = a*® then a is the

contraction of a®. Similarly for £. =
Exercise 1.18. If a,, a, are ideals of A and if b,, b, are ideals of B, then

(a; + a)° = af + a3,
(a; N az)® € af N a3,
(a;a2)° = ajas,
(a;:a5)® < (ai:a3),
r(a)* < r(a%),

(b + by)° 2 bf + b3,
(hl a {}E)E e bi a hgr
(hlbz)c = bi g:
(by:by) = (b1:D3),
r(b)® = r(b°).

The set of ideals E is closed under sum and product, and C is closed under
the other three operations.

EXERCISES

1. Let x be a nilpotent element of a ring 4. Show that I + xisaunit of A. Deduce 12.

that the sum of a nilpotent element and a unit is a unit.

2. Let 4 be a ring and let A[x] be the ring of polynomials in an indeterminate x, 13

with coefficients in 4. Let f = ao + a;x + -+ a,x" € A[x]. Prove that

EXERCISES 1]

i) fis a unit in A[x] <> ao 1s a unit in 4 and a,, .. .y G, are nilpotent f
bo + bix + <+ + bnx™ is the inverse of f, prove by induction on r‘ th[;t
a.ttbm-r = 0. Hence show that a, is nilpotent, and then use Ex. 1 ]

ii) fis nilpotent <= ay, a,, . . ., a, are nilpotent. ‘

i) fis a zero-divisor <> there exists @ # 0 in A4 such that af = 0. [Choose a
polynomial g = bo + byx + -+ byx™ of least degree m such that fg = 0
Then a,b, = 0, hence a,g = 0 (because a,g annihilates f and has degrm;.
< m). Now show by induction that a,_,g = 0(0 < r < n).]

iv) fissaidto be primitiveif (ao, ay, . .., a;) = (1). Provethatif f, g e A[x), then
fg is primitive <= fand g are primitive.

Generalize the results of Exercise 2 to a polynomial ring A[x;,

indeterminates.

..., X;] 1n several

In the ring A[x], the Jacobson radical is equal to the nilradical.

5 Let A be a ring and let A[[x]] be the ring of formal power series f = 37, a.x"

with coefficients in A. Show that
) fis a unit in A[[x]] <= ag 1S a unit in 4.
ii) If f is nilpotent, then a, is nilpotent for all n > 0.
(See Chapter 7, Exercise 2.)
iii) f belongs to the Jacobson radical of A[[x]] <= ao belongs to the Jacobson
radical of A.

[s the converse true?

" iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and

m is generated by m*© and x.
v) Every prime ideal of A4 is the contraction of a prime ideal of A[[x]].

A ring A is such that every ideal not contained in the nilradical contains a non-
zero idempotent (that is, an element e such that e* = e # 0). Prove that the
nilradical and Jacobson radical of A are equal.

Let A be a ring in which every element x satisfies x* = x for some n > i

. (depending on x). Show that every prime ideal in A4 is maximal.

10.

11.

. Let a be an ideal # (1) in a ring A. Show thata =

. Let A be a ring # 0. Show that the set of prime ideals of A has minimal ele-

ments with respect to inclusion.

r(a) <> a is an intersection
of prime 1deals.
Let A be a ring, 9 its nilradical. Show that the following are equivalent:
i) A has exactly one prime ideal;
ii) every element of A is either a unit or nilpotent;
i) A/ 1s a field.
A ring A is Boolean if x> = x forall x € 4. In a Boolean ring A, show that

i) 2x = 0 for all x € A4; _
ii) every prime ideal p is maximal, and A/p is a field with two elements;
iii) every finitely generated ideal in A is principal.

A local ring contains no idempotent # 0, 1.

Construction of an algebraic closure of a field (E. Artin).

Let K be a field and let & be the set of all irreducible monic polynomials fin on¢
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indeterminate with coefficients in K. Let A be the polynomial ri{1g over K
generated by indeterminates x,, one for each fe X. Let a be the ideal of A4

generated by the polynomials f(x,) for all fe X. Show thata # (1).
I et m be a maximal ideal of A4 containing a, and let K; = A/m. Then K| is

an extension field of X in which each f€ Y has a root. Repeat the construction
with K, in place of K, obtaining a field Ko, andsoon. Let L = Uy=1 K. Then
I is a field in which each f€ Z splits completely into linear factors. Let K be the
set of all elements of L which are algebraic over K. Then K is an algebraic

closure of X. |

14. In a ring A, let = be the set of all ideals in which every element is a zero-divisor,
Show that the set £ has maximal elements and that every maximal element of X is
a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals.

The prime spectrum of a ring
15. Let A be a ring and let X be the set of all prime ideals of 4. For each subset
E of A, let V(E) denote the set of all prime ideals of 4 which contain E. Prove
that :
i) if a is the ideal generated by E, then V(E) = V(a) = V(r(a)).
i) V(0) = X, V(1) = @.
1i) if (E)er 18 any family of subsets of A, then

Vi &) ={() V(EY).

iel jel
iv) V(anb) = V(ab) = V(a) v V(D) for any ideals a, b of A.
These results show that the sets V(FE) satisfy the axioms for closed sets
in a topological space. The resulting topology is called the Zariski topology.
The topological space X is called the prime spectrum of A, and is written Spec (A).

16. Draw pictures of Spec (Z), Spec (R), Spec (C[x]), Spec (R[x]), Spec (Z[x]).

17. For each f€ A, let X, denote the complement of V(f) in X = Spec (4). The

sets X; are open. Show that they form a basis of open sets for the Zariski
topology, and that

) Xy N Xy = Xy,

ii) X; = @ < fis nilpotent;
iii) X, = X < fis a unit;

W) X = X, = r((f) = r((8);

V) X is quasi-compact (that is, every open covering of X has a finite sub-
covering). \

vi) More generally, each X ¢ 18 quasi-compact.

vi1) :Eitlst}}en subset of X is quasi-compact if and only if it is a ﬁnitt::': union of
[

The sets X, are called basic open sets of X = Spec (A).

[To prove (v), remark that it is enough to consider a covering of X by basic

open sets Xy, (i e I). Show that the f, s
. : ; generate the u
is an equation of the for ! nit ideal and hence that there

| = ;guﬁ (g € A)

where J is some finite subset of I. Then the X, (i€ J) cover X.]

EXERCISES 13

18, For psychnlngical reasons it 1s sometimes convenient to denote a prime ideal
of A by a letter such as x or y when thinking of it as a point of X = Spec (A)

Wwhen thinking of x as a prime ideal of A4, we denote it by p, (logically, of course
it is the same thing). Show that ’

i) the set {x} is closed (we say that x is a *“‘closed point”) in Spec (A) = . is
maximal;

”) r_ﬂ' = V(:px):
iii) y €{x} = Px S Py
iv) X is a To-space (this means that if x, y are distinct points of X, then either

there is a neighborhood of x which does not contain y, or else there is a
neighborhood of y which does not contain x).

19. A topological space X is said to be irreducible if X # @ and if every pair of
non-empty open sets in X intersect, or equivalently if every non-empty open set
is dense in X. Show that Spec (A) is irreducible if and only if the nilradical of
A i1s a prime 1deal.

20. Let X be a topological space.
i) If Y is an irreducible (Exercise 19) subspace of X, thén the closure Y of Y

in X is irreducible.
ii) Every irreducible subspace of X is contained in a maximal irreducible

subspace.
iii) The maximal irreducible subspaces of X are closed and cover X. They are

called the irreducible components of X. What are the irreducible components

of a Hausdorff space?
iv) If 4 is a ring and X = Spec (A), then the irreducible components of X are

the closed sets V(p), where p is a minimal prime ideal of A4 (Exercise 8).

21. Let ¢: A — B be a ring homomorphism. Let X = Spec (4) and Y = Spec (B).
If q € Y, then ¢~ 1(q) is a prime ideal of 4, i.e., a point of X. Hence ¢ induces a
mapping ¢*: ¥ — X. Show that

i) If fe A then ¢*~1(X,) = Yy, and hence that ¢* is continuous.

ii) If a is an ideal of A, then ¢*~*(V(a)) = V(a°).

iii) If b is an ideal of B, then ¢*(¥ (b)) = V(b°).

iv) If 4 is surjective, then ¢* is a homeomorphism of Y onto the closed subset
V(Ker (¢)) of X. (In particular, Spec (4) and Spec (4/9) (where N is the
nilradical of A4) are naturally homeomorphic.) .

v) If ¢ is injective, then ¢*(Y) is dense in X. More precisely, ¢*(Y) is dense in
X <> Ker (¢) < .

vi) Let y: B — C be another ring homomorphism. Then (¢ ¢ $)* = ¢ o Y*.

vii) Let A be an integral domain with just one non-zero prime ideal , and let K
be the field of fractions of 4. Let B = (4/p) X K. Define ¢: A e B'b}'
#(x) = (&, x), where ¥ is the image of x In A/p. Show that ¢* is bijective
but not a homeomorphism.

22. Let A = []i., A, be the direct product of rings 4;. Show that Spec (4) is the
disjoint union of open (and closed) subspaces X, where ;1S canonically

homeomorphic with Spec (4,).
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Conversely, let A be any ring. Show that the following statements are

equivalent:
i) X = Spec(A4) is disconnected. 1 |
ii) A = Ay X Az where neither of the rings A;, Aq is the zero ring.

iii) A contains an idempotent % 0, 1. o |
In particular, the spectrum of a local ring is always connected (Exercise

12).

23. Let A be a Boolean ring (Exercise 11), and let X = Spec (A). |
i) For each f€ A4, the set X, (Exercise 17) 1s both open and closed in X.

ii) Let fi,..-»Jn€ A. Show that X, V.U X, = X, for some f€ A.

iii) The sets X, are the only subsets of X which are both open and closed.
[Let Y < X be both open and closed. Since Y is open, it is a union of basic
open sets X;. Since Y is closed and X is quasi-compact (Exercise 17), Y is
quasi-compact. Hence Y is a finite union of basic open sets; now use (ii)

above.]
iv) X is a compact Hausdorff space.

24. Let L be a lattice, in which the sup and inf of two elements a, b are denoted by

a v band a A b respectively. L is a Boolean lattice (or Boolean algebra) if
i) L has a least element and a greatest element (denoted by 0, 1 respectively).
ii) Each of v, A is distributive over the other.

iii) Each a € L has a unique “complement” a’ € L such that a V a’" = 1 and

anNa =0
(For example, the set of all subsets of a set, ordered by inclusion, is a Boolean
lattice.)

Let L be a Boolean lattice. Define addition and multiplication in L by the
rules

a+ b= (anAb)Vv (@ ADb), ab = a A b.

Verify that in this way L becomes a Boolean ring, say A(L).

Conversely, starting from a Boolean ring A, define an ordering on A as
follows: @ < b means that @ = ab. Show that, with respect to this ordering, 4
is a Boolean lattice. [The sup and inf are givenbya v b = a + b + ab and
a A b = ab, and the complement by @ = 1 — a.] In this way we obtain a
one-to-one correspondence between (isomorphism classes of ) Boolean rings and
(isomorphism classes of) Boolean lattices.

25. From the last two exercises deduce Stone’s theorem, that every Boolean lattice

is isomorphic to the lattice of open-and-closed subsets of some compact Haus-
dorff topological space.

EXERCISES 15

and multiplying their values). For each x e ¥

- - b | lct Inx b
such that f(x) = 0. The ideal m, is maximal, bﬂcaus: ::W: Sel'; of all fe C(x)
(surjective) homomorphism C(X) — R which $ the kernel of the

Max (20T, We havs theretire defived » e akes fto f(x). If ¥ denotes

in . —
We shall show that x is @ homeomorphism ﬂ?; u)ril’tg )??, namely x  m,.

1) Let m be any maximal ideal of C(X), and let v =
mon zeros of the functions in m: that is = Vm) be the set of com-

V ={xe X:f(x) = 0 for all fem),

Suppose that V' is empty. Then for each x € X there exists f. €1

f«(x) # 0. Since [ is continuous, there is an open neighb;h 11;11011 .
in X on which fx does not vanish. By compactness re i
neighborhoods, say U,,, ..., U, _, cover X. Let

' of x
a finite number of the

f:fxﬂl +f+f.3n
Then f does not vanish at any point of X, hence is a unit in C(X). But this

contradicts f € m, hence V is not empty.

Let x be a point of V. Then m < m,, hence m = m. because m is
maximal. Hence p 1s surjective.

ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argu-
ment) the continuous functions separate the points of X. Hence x # y =
m, # m,, and therefore p is injective.

1) Let fe C(X); let

Uy = {xe X:f(x) # 0}
and let

U, = {me X:f¢m)

Show that u(U;) = U,. The open sets Uy (resp. U,) form a basis of the top-
ology of X (resp. X) and therefore p is a homeomorphism.
Thus X can be reconstructed from the ring of functions C(X).

Affine algebraic varieties
27. Let k be an algebraically closed field and let

fl-:(!h- .« oy ‘rn) =0

be a set of polynomial equations in » variables with coefficients in k. The set X
of all points x = (xy,..., xn) € k* which satisty these equations is an affine
algebraic variety.

Consider the set of all polynomials g € k[f1, - - -, fal with the property that
g(x) = 0 for all xe X. This set is an ideal 7(X) in the polynomial ring, and is

Ll

- 26, Let A bearing. The subspace of Spec (4) consisting of the maximal ideals of A,
A with the induced topology, is called the maximal spectrum of A and is denoted by
. Max (4). For arbitrary commutative rings it does not have the nice functorial
e properties of Spec (4) (see Exercise 21), because the inverse image of a maximal
~ ideal under a ring homomorphism need not be maximal.
U Let X be a compact Hausdorff space and let C(X) denote the ring of all
: real-valued continuous functions on X (add and multiply functions by adding

w

1.,_- by ™
l'-_'. E',_-

called the ideal of the variety X. The quotient ring
P(X) T k['rh =ta) rn]/I(X)

is the ring of polynomial functions on X, because IW0 pqunnmials g h dfﬁﬂﬂfl;e
same polynomial function on X if and only if g — / vanishes at every point of 4,

that is, if and only if g — h € I(X).

e

=
Nl e
T
s
S
i Ly e
P
d
;
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Let ¢ be the image of # in P(X). The & (1 < § < n) are lh(.: coordinate 0
functions on X: if x € X, then ¢,(x) is the ith coordinate of x. P(X) is gencrated :
as a k-algebra by the coordinate functions, and is called the coordinate ring (or

ffine algebra) of X. . ,
; nzs irg'l Exercise 26, for each x € X let m, be the ideal of all f € P(X) such that

f(x) = 0; it is a maximal ideal of P(X). Hence, if X = Max (P(X)), we . Nlodules

have defined a mapping p: X — X, namely x > m,.
It is easy to show that p is injective: 1f x # y, we must have x; # y, for

for some i(1 < i < n), and hence § — x; Is in ni, but not in m,, so that
m, # m,. What is less obvious (but still true) is that u is surjective. This is one

form of Hilbert’s Nullstellensatz (see Chapter 7). One of t%m things which distiqguishes the modern approach to Commutatiye
28. Let /i, . .., [n be elements of K[fy, . . ., t,). They determine a polynomial mapping Algebra is the greater emphasis on modules, rather than just on ideals. The
$: k» — k™: if x € k", the coordinates of $(x) are fi(x), .. ., fu(x). extra “elbow-room™ that this gives makes for greater clarity and simplicity, For
Let X, Y be affine algebraic varieties in k", k™ respectively. A mapping instance, an ideal a and its quotient ring 4/a are both examples of deuIe; and
¢: X — Yis said to be regular if ¢ is the restriction to X of a polynomial map- so, to a certain extent, can be treated on an equal footing. In this chapter we ii
ping from k™ to k™. | ‘ the definition and elementary properties of modules. We also give a l:)gr.iu:?xi
If » is a polynomial function on Y, the*n n o ¢ is a polynomial function on X. treatment of tensor products, including a discussion of how they behave f
Hence ¢ induces a k-algebra homomorphism P(Y) — P(X), namely 5 b 50 4. exact sequences. &

Show that in this way we obtain a one-to-one correspondence between the

regular mappings X’ — Y and the k-algebra homomorphisms P(Y) — P(X).
MODULES AND MODULE HOMOMORPHISMS

Let A be a ring (commutative, as always). An A-module is an abelian group M
(written additively) on which A4 acts linearly: more precisely, it is a pair (M, ),
where M is an abelian group and u is a mapping of 4 x M into M such that, if
we write ax for pu(a, x)(a € A, x € M), the following axioms are satisfied :

a(x + y) = ax + ay,
(@ + b)x = ax + bx,
(ab)x = a(bx),
Ix = x (a,beA; x,yeM).

(Equivalently, M is an abelian group together with a ring homomorphism
A — E(M), where E(M) is the ring of endomorphisms of the abelian group M.)
The notion of a module is a common generalization of several familiar

concepts, as the following examples show:

Examples, 1) An ideal a of A4 is an A-module. In particular A itself 1s an
A-module,

2) If 4 is a field k, then A-module = k-vector space.
3) A = Z, then Z-module = abelian group (define nx to be x+ - + X).

4) A = k[x] where k is a field ; an A-module is a k-vector space with a linear
transformation.

_9) G = finite group, 4 = k[G] = group-algebra of G over the field k (thus
4 1s not commutative, unless G is). Then 4-module = k-representation of G.

17
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Let M, N be A-modules. A mapping f: M — N is an A-module homo.
morphism (or is A-linear) if
fix +p) =S+ )
flax) = a-f(x)
for all ae A and all x, y € M. Thus f is a homomorphism of abelian groups
which commutes with the action of each ae A. If A is a field, an A-module

homomorphism is the same thing as a linear transformation of vector spaces.
The composition of A-module homomorphisms is again an A-module

homomorphism. |
The set of all A-module homomorphisms {from M to N can be turned into an

4-module as follows: we define f + g and af by the rules
(f + @) = f(x) + g(x),
(af )(x) = a-f(x)
for all x € M. Itis a trivial matter to check that the axioms for an A-module are

satisfied. This 4-module is denoted by Hom, (M, N) (or just Hom (M, N) if
there is no ambiguity about the ring A4).

OPERATIONS ON SUBMODULES 19

and 15 @ submodule of N. The cokernel of f is

Coker (f) = N/Im (f)

which 1s a quoticnt module of N.
[(f M’ is a submodule of M such that M’ < Ker (f .
em 7 r i , the ;
t1on1c:nlnrpllL51nj: M|M" — N, defined as follows: if ¥ E) M/ﬂ?fiflf}fs rise to a
yeM, then f(¥) = f(x). The kernel of 'is Ker (NHIM'. ¢ image of

. _ The h :
is said to be induced by f. In particular, taking M’ = g &Tﬂﬁen?ah:sm f
] c an

somorphism of A-modules

M/Ker (f) = Im ().

OPERATIONS ON SUBMODULES

Most of the operations on ideals considered in Chapter 1 have their counter-
parts for modules. Let M be an A-module and let (M{)ie; be a family of sub-
modules of M. Their sum > M, is the set of all (finite) sums 3 x,, where x, € M
for all i € I, and almost all the x; (that is, all but a finite number) ar:eizem[

S M, is the smallest submodule of M which contains all the M,

The intersection () M| i1s again a submodule of M. Thus the submodules of
M form a complete lattice with respect to inclusion.

Homomorphisms u: M’ — M and v: N — N" induce mappings
i: Hom (M, N) - Hom (M', N) and #: Hom (M, N) — Hom (M, N")

defined as follows: o .
Proposition 2.1. 1) If L =2 M 2 N are A-modules, then

(L/IN)|[(M|N) = LIM.
i) If My, M, are submodules of M, then
(M, + My)IM, = My[(M, N M,).

Proof. 1) Define 6: L/N — L/M by 6(x + N) = x + M. Then 8 1s a well-
defined 4-module homomorphism of L/N onto L/M, and its kernel is M/N;
hence (i).

ii) The composite homomorphism M, — M, + M, — (M, + M,)[M, 1s
surjective, and its kernel is M, N M,; hence (ii)). =

a(f) = fou, (f) =vef
These mappings are A-module homomorphisms.
For any module M there is a natural isomorphism Hom (4, M) =~ M: any

A-module homomorphism f: A — M is uniquely determined by f(1), which
can be any element of M.

SUBMODULES AND QUOTIENT MODULES

A submodule M’ of M is a subgroup of M which is closed under multiplication by
elements of 4. The abelian group M/M' then inherits an A-module structure
from M, defined by a(x + M’) = ax + M'. The A-module M/M’ is the
quotient of M by M'. The natural map of M onto M/M' is an A-module homo-
morphism. There is a one-to-one order-preserving correspondence between
submodules of M which contain M’, and submodules of M” (just as for ideals;
the statement for ideals is a special case).
Iff: M — Nis an A-module homomorphism, the kernel of fis the set

Ker(f) = {xe M:f(x) = 0}
and 1s a submodule of M. The image of f is the set
Im (f) = f(M)

We cannot in general define the product of two submodules, but we can
define the product aM, where a is an ideal and M an A-module; it s the set of all
finite sums 3 a,x, with g, € a, x; € M, and is a submodule of M.

If N, P are submodules of M, we define (N:P) to be the set of all a € A such
that aP = N it is an ideal of A. In particular, (0: M) is the set of all a € 4 such
that @M = 0; this ideal is called the annihilator of M and is also denoted by
Ann (M). If a < Ann (M), we may regard M as an A/a-module, as follows:
if ¥ € A/a is represented by x € 4, define ¥m to be xm(m € M): this is independ-
ent of the choice of the representative x of X, since aM = 0.
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An A-module is faithful if Ann (M)=0. If Ann (M) = a, then M jg

faithful as an A/a-module.

Exercise 2.2. 1) Ann (M + N) = Ann (M) N Ann (N).
i) (N:P) = Ann ((N + P)/N).

If v is an element of M, the set of all multiples ax(a € A) 1s a submodule of
M, denoted by Ax or (x). If M = 3. Ax;, the x; are said to be a set of gen.
erators of M: this means that every element of M can be cxprcsscdﬁ (‘nnt neces.
sarily uniquely) as a finite linear combination of the x; with ‘cncihmm‘ﬂs in A,
An A-module M is said to be finitely generated if 1t has a finite set of genera-

tors.

DIRECT SUM AND PRODUCT

If M, N are A-modules, their direct sum M @ N is the set of all pairs (x, y) with
xe M, yeN. Thisis an A-module if we define addition and scalar multiplica-

tion in the obvious way:

(X1, Y1) + (xg, ya) = (X3 + Xg, )y + Ya)
a(x, y) = (ax, ay).

More generally, if (M), is any family of A-modules, we can define their direct
sum (P),.; M; its elements are families (x;);e; such that x; € M, foreach 7 € I and
almost all x, are 0. If we drop the restriction on the number of non-zero x’s we
have the direct product [ ],e; M;. Direct sum and direct product are therefore the

same if the index set 7 is finite, but not otherwise, in general.
Suppose that the ring A is‘a direct product [ [f.; A; (Chapter 1). Then the
set of all elements of 4 of the form

(0,...,0,&'!,0,..‘,0)

with @, € A, is an ideal a, of A (it is not a subring of A—except in trivial cases—
because it does not contain the identity element of 4). The ring A, considered as
an A-module, is the direct sum of the ideals a,,..., a,. Conversely, given a
module decomposition

A=0a D @D a,

of A as a direct sum of ideals, we have

AZ 11:’1 (A/Bl)

where b, = ), ,, a,, Each ideal q, is a ring (isomorphic to 4/6,). The identity

~ element ¢; of q; is an idempotent in A4, and a = (e).
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FINITELY GENERATED MODULES

A free A-module is one which is isomorphic to an A
i My wl.u:rr: each M, ~ A (as an A-m.ﬂdult:). The notation 4 g SOt
1sed. A finitely generated free A-module is therefore isomorphic to 4 @ 2
(n summands), which is denoted by A". (Conventionally, 40 i the zero n;:éi?lri
denoted by 0.) ule,

-module of the form

Proposition 2.3. M is a finitely generated A-modyle .
a quotient of A" for some integer n > 0.

proof. =: Let xi,..., x, generate M. Define ¢: 4" —, uf by ¢(a, a)=
axy + -+ @nxa. Then ¢ is an A-module homomorphism onto M, ant.;. ti’;ere-

fore M =~ A"[Ker (¢).
«=: We have an A-module homomorphism ¢ of A® onto M. If e, =
; =

©,...,0,1,0,...,0) (the 1 being in the ith place), then the ¢,(1 < i < )
generate A", hence the ¢(e,) generate M. =

M is isomorphic to

Proposition 2.4. Let M be a finitely generated A-module, let a be an ideal of
A, and let ¢ be an A-module endomorphism of M such that &(M) < a M. Then
¢ satisfies an equation of the form

" + a¢""t +.--+ a, =0

where the a, are in a.

Proof. Letx,, ..., x,bea setof generators of M. Then each ¢(x,) € aM, so that
we have say ¢é(x;) = 27, a,x;(1 € i < n;a,€q),lie,

z (O — ay)x; =0

i=1

where §,; is the Kronecker delta. By multiplying on the left by the adjoint of the
matrix (8,4 — ay) it follows that det (8,6 — ay;) annihilates each x;, hence is the
zero endomorphism of M. Expanding out the determinant, we have an equation
of the required form. m

Corollary 2.5. Let M be a finitely generated A-module and let a be an ideal
of A such that aM = M. Then there exists x = 1(mod a) such that xM = 0.

Proof. Take ¢ = identity, x = 1 + @, ++--+ a,in (24). =

Proposition 2.6. (Nakayama's lemma). Let M be a finitely generated
A-module and a an ideal of A contained in the Jacobson radical R of A. Then

aM = M implies M = 0.

First Proof. By (2.5) we have xM = 0 for some x = 1 (mod ). By (1.9) xisa
Unitin 4, hence M = x~'xM = 0. =
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Second Proof. Suppose M # 0, and let u,, ..., uy be a minimal set of
ators of M. Then u, € aM, hence we have an equation of the form u

.« - + auu,, with the @, € a. Hence

(1 — a)u, = ayuty +-+++ Gp-1Up-;

since a, € N, it follows from (1.9) that 1 — a, isaunitin A. Hence u, bﬁlnngg o

the submodule of M generated by u,, ..., u,_,: contradiction. m

Corollary 2.7. Let M be a finitely generated A-module, N a submodyle of M
a < Ranideal. Then M = aM + N = M = N. '

Proof. Apply (2.6) to M/N, observing that a(M/N) = (aM + N)/N. m
Let A be a local ring, m its maximal ideal, k = A/m its residue field, et M

be a finitely generated A-module. M/mM is annihilated by m, hence is naturaljy
an A/m-module, i.e., a k-vector space, and as such 1s finite-dimensional,

Proposition 2.8. Let x,(1 < i < n) be elements of M whose images |,
M/mM form a basis of this vector space. Then the x, generate M,

Proof. Let N be the submodule of M generated by the x;. Then the composi
map N - M — M/mM maps N onto M/mM, hence N + mM = M, henc
N=MbyR27. =

EXACT SEQUENCES

A sequence of 4A-modules and A-homomorphisms

s My, s M, T, My —— - 0)

i1 said to be exact at M, if Im (f}) = Ker (fi+1)- The sequence is exact if it is
exact at each M,. In particular:

0— M'L> M is exact <> f I8 injective: (1)
M = M" — 0 is exact <> g is surjective: (2)
F]-—:» M S ME M”50 is exact < f 1s injective, g is surjective and g
induces an isomorphism of Coker (f) = M/f(M’) onto M". (3

A sequence of type (3) is called a short exact sequence. Any long exacl
sequence (0) can be split up into short exact sequences: if N; = Im (f)) =
Ker (fi+1), we have short exact sequences 0 — N, — M, —» N, — 0 for eachi

Proposition 2.9. i) Let
M > M> M”50

be a sequence of A-modules and homomorphisms. Then the sequence (4) ¥
- exact <> for all A-modules N, the sequence

0 — Hom (M”", N) *> Hom (M, N) %> Hom (M’, N) (4)

Is exact.

gcﬂt‘:r,

(4)"

i) Lef
0> N >N N~
(5)

be a sequence of A-modules and homomorphisms. Then the Sequence (5) i
is

oxact <= for all A-modules M, the sequence

0 — Hom (M, N') =~ Hom (M, N) % Hom (M, N) (51
js exact.

All four parts of this prc:'-positiun are easy exercises. For ¢xample, suppose
that (4') is exact for all N. First of all, since 7 is injective for all N it follows that
» is surjective. Next, we have iio 5 = 0, thatisveuo f = ( for all f: M” — N
Taking N to be M” and f to be the identity mapping, it follows that p o y = 0
hence Im (1) < Ker (v). Next take N = M/Im (1) and let ¢: M — N be thé
projection. Then ¢ € Ker (1), hence there exists : M” — N such that ¢ = Yo,

Consequently Im () = Ker (¢) 2 Ker (v). m
Proposition 2.10. Let
0> M > M3 M" =0

g 1y, W
U—%N'u-,—)-NF:p- N "=

be a commutative diagram of A-modules and homomorphisms, with the rows
exact. Then there exists an exact sequence

0 — Ker (f') & Ker (f) > Ker (") <
Coker (f’) = Coker (f) => Coker (f/)—0  (6)

in which u, © are restrictions of u, v, and ', o' are induced by u', v'.

The boundary homomorphism d is defined as follows: if x* € Ker (f*), we have
x" = v(x) for some x € M, and v'(f(x)) = f"(v(x)) = 0, hence f(x) € Ker (') =
Im ('), so that f(x) = «'(y') for some y' € N'. Then d(x") is defined to be the
image of y’ in Coker (f’). The verification that d is well-defined, and th'at the
sequence (6) is exact, is a straightforward exercise in diagram-chasing which we
leave to the reader. m

Remark. (2.10) is a special case of the exact homology sequence of homological
algebra.

Let C be a class of 4-modules and let A be a function on C with val‘-'lcs 1: ﬁ
(or, more generally, with values in an abelian group G). The functmnt A
additive if, for each short exact sequence (3) in which all the terms belong to &,

we have A(M') — A(M) + A(M") = 0.

Example. Let 4 be a field k, and let C be the class of all finite-dimensional

k-vector spaces V. Then V — dim V is an additive function on C.
241LC.A.
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Proposition 2.11. Let 0 > My —- My, — - — M, — 0 be an exact g,
quence of A-modules in which all the modules M, and the kernels of all f.-‘
homomorphisms belong to C. Then for any additive function A on C f?fu*:

i (- 1'A(M,) = 0.

(=0
Proof. Split up the sequence into short exact sequences
O—->N—->-M —-N,,—0

(No = Npyy = 0). Then we have A(M;) = A(N,)) + A(N;41). Now take the
alternating sum of the A(M)), and everything cancels out. m

TENSOR PRODUCT OF MODULES

Let M, N, P be three A-modules. A mapping f/: M x N — P is said to be
A-bilinear if for each x € M the mapping y > f(x, y) of N into P is A-linear, ang
for each y € N the mapping x > f(x, y) of M into P is A-linear.

We shall construct an 4-module 7, called the tensor product of M and N,
with the property that the A-bilinear mappings M x N — P are in a natural
one-to-one correspondence with the A-linear mappings 7 — P, for all A-
modules P. More precisely:

Proposition 2.12. Let M, N be A-modules. Then there exists a pair (T, g)
consisting of an A-module T and an A-bilinear mapping g: M x N — T, with
the following property:

Given any A-module P and any A-bilinear mapping f: M x N — P,
there exists a unique A-linear mapping f*: T — P such that f = " o g (in
other words, every bilinear function on M x N Jactors through T).

Moreover, if (T, g) and (T", g') are two pairs with this property, then there
exists a unique isomorphism j: T — T’ such that Jog =g’

Proof. 1) Uniqueness. Replacing (P, f) by (T", g') we get a unique j: T — T
such thatg’ = jo g. Interchanging the roles of 7 and T', wegetj': T' — T such

that g = j"o g'. Each of the compositions j °j',J' o j must be the identity, and
therefore j is an isomorphism.

i) Existence. Let C denote the free A-module A*M_  The elements of C
are formal linear combinations of elements of M x N with coefficients in 4,
L.e. they are expressions of the form S7., a,- (x, y)(@a,€ 4, x,e M, y, e N).
~ Let D be the submodule of C generated by all elements of C of the follow-
Ing types:
x + x5y - (x,p) - (x, y)
(x:y > yf) S (I, )’) s (I: y!)
(ax,y) — a-(x, y)
(I, ay) B a-(x, y)

8

TENSOR PRODUCT oOF MODULEs

Let T = C/D. For each basis element (x,¥) of C
image in T. Then T is generated by the elements of the f,

our definitions we have

x+xX)®y=xQy+x @y, XU +y)=x@®y+ '
(ax) @y = x @ (ay) = a(x @ y) B

Equivalently, the mapping g: M x N — T defined by g(x, y
A-bilinear. |

Any map fof M x '{s’ Into an A-module P extends by lintarity to an A-
module homomorphism f: C — P. Suppose in particular that fis A-bilinear
Then, from the definitions, f vanishes on all the gencrators of D, hence on th.;.
whole of D, and therefore induces a well-defined A-homomorphism ' of
T = C/D into P such that f'(x ® y) = f(x, y). The mapping f* is uniquely
defined by this condition, and therefore the pair (T, g) satisfy the conditions of
the proposition. =

Remarks. 1) The module T constructed above is called the tensor product of M
and N, and 1s denoted by M &®, N, or just M @ N if there is no ambiguity
about the ring A. It is generated as an A-module by the “products” x ®y. If
(x)iers (¥9)ses are families of generators of M, N respectively, then the elements
x; ® y, generate M & N. In particular, if M and N are finitely generated, so is

M@ N.

if) The notation x & y 1s inherently ambiguous unless we specify the tensor
product to which 1t belongs. Let M’, N’ be submodules of M, N respectively,
and let xe M" and y € N'. Then it can happen that x ® y as an element of

M @ N is zero whilst x ® y as an element of M’ @ N’ is non-zero. For
example,take 4 = Z, M = Z, N = Z/2Z,and let M’ be the submodule 2Z of Z,

whilst N = N. Let x be the non-zero element of N and consider 2 ® x. Asan

element of M ® N, itiszerobecause2 @ x =1 ®2x =1 ® 0 = 0. But as
an element of M’ ® N' it is non-zero. See the example after (2.18).

)-_—I@yis

However, there is the following result:

Corollary 2.13. Let x,e M, y,€ N be such that 3 x, @y, =0in M ® N.
Then there exist finitely generated submodules M, of M and N, of N such that
2.X% @y =0in My, ® N,.

Proof. If 3 x;, ® y, = 0in M ® N, then in the notation of the proof of (2.11)

we have 3 (x,, y) € D, and therefore S (x;, y,) is a finite sum of generators of D.
Let M, be the submodule of M generated by the x; and all the elements of M
Which occur as first coordinates in these generators of D, and define N, simi-

larly, Then 2. X ® y, = 0 as an element of My @ No,. ®

1) We shall never again need to use the construction of the tensor pmd::::
§iven in (2.12), and the reader may safely forget it if he prefers. What s essen
t0 keep in mind is the defining property of the tensor product.
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iv) Instead of starting with bilinear mappings we C‘Dllfd have started With
multilinear mappings f: M, x ---x M, — P defined in the same way (j o
linear in each variable). Following through the proof of (2.12) we should eng UI;
with a “multi-tensor product” 7' = M; ®- - ® M,, generated by all prodyct,
X ® - ®x (xeM,1<is<r) The details may safely be left to the reader:

the result corresponding to (2.12) is

Proposition 2.12*. Let My, ..., M, be A-modules. Then there exists a pqj,
(T, g) consisting of an A-module T and an A-multilinear mapping g: M, x ...
x M, — T with the following properity:

Given any A-module P and any A-multilinear mapping f: M, x ...
x M.— T, there exists a unique A-homomorphism f':T — P such thg

e =1,
Moreover, if (T, g) and (T, g') are two pairs with this property, then there
exists a unique isomorphism j: T — T' such thatjo g = g'. =

There are various so-called ‘“‘canonical isomorphisms”, some of which we
state here:

Proposition 2.14. Let M, N, P be A-modules.
isomorphisms
) MQON-—->NQM
i) (MAIN) QP> MIWNKRP)->-MRINRQP
i) ( MAN) QP> (M Q@ P) DN Q P)
iv) AQM-—>M
such that, respectively,
) x@y+>y Qx
) x*®Y)®z>xQ(YR®2)>xQy®z
) (%) Qz>(xQzyQ2)
d) a ® x+— ax.

Proof. In each case the point is to show that the mappings so described are well
defined. The technique is to construct suitable bilinear or multilinear mappings,
and use the defining property (2.12) or (2.12%) to infer the existence of homo-
morphisms of tensor products. We shall prove half of ii) as an example of the
method, and leave the rest to the reader.

We shall construct homomorphisms

Then there exist unique

MRN)QPLMRAINQRP>(MQN) QP
suchthat f(* ® ) ®z) = x @y @ zandgx ® y ® z) = (x @ y) @ zfor
allxe M,ye N, zeP.

To construct £, fix the element z e P. The mapping (x,y) > x ® y @7
(x€ M, y € N) is bilinear in x and y and therefore induces a homomorphism
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MON—->MOND Psuchthat(x @ y) = x @ y @ 2. Next, consider

{im mapping (1, z) —> f(t) of (M @ N) x Pinto M @ N @ P. This s bilinear

. rand z and therefore induces a homomorphism
imn ¢

fMON)RP->-MOIN®P

such thutf((x Xy Z) =Xy R g
To construct g, consider 'th‘c: mapping (X, 9, 2) > (x & R e
. Pinto (M ® N) @ P. This s linear in each variable and therefore induces g

homomorphism
EMAIONQP>(MPN)QP

such that g(x ® y & z) = (x- X y.) R z.
Clearly f o g and g o fare identity maps, hence fand g are somorobiame

Exercise 2.15. Let A, B be rings, let M be an A-module, P a B-module and N an
(4, B)-bimodule (that is, N is simultaneously an A-module and a B-module and
the two structures are compatible in the sense that a(xb) = (ax)b foralla e A,
be B, xeN). Then M @, N is naturally a B-module, N @, P an A-module,
and we have

(M @, N) QP =M Q,(N ®;P).

Let 1 M—> M', g: N— N’ be homomorphisms of 4A-modules. Define
WM x N—-> M @ N byh(x,y) = f(x) @ g(y). Itis easily checked that 4 is
A-bilinear and therefore induces an A-module homomorphism

fRgMON->M QN

such that

FfRHAxV®y) =f(x) ®g(y) (xeM, yeN)

Let f': M’ — M" and g’: N' — N” be homomorphisms of A-medules.
Then clearly the homomorphisms (f'of) ® (g'cg) and (f' ® &) (f @ g)
agree on all elements of the form x ® y in M ® N. Since these elements
generate M & N, it follows that

fef) R g = ®8) (/B2

RESTRICTION AND EXTENSION OF SCALARS

Let f: A — B be a homomorphism of rings and let N be a B-module. Then N
has an 4-module structure defined as follows: if @ € 4 and x € N, then ax 1S ‘_iﬂ'
fined to be f(a)x. This A-module is said to be obtained from N by restriction
of scalars. In particular, f defines in this way an A-module structure on B.
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Proposition 2.16. Suppose N is finitely gw:erm:w! as a B-module and thq; p is

finitely generated as an A-module. T hen N is finitely generated as an A-mody,
Proof. Let y,,..., Y. generate N over B, and let xy, ..., X, generate B g an
A-module. Then the mn products x,y, generate N over A. =

Now let M be an A-module. Since, as we have just seen, B can be regardeg
as an A-module, we can form the A-module My = B @4 M. In fact M, Carrie
a B-module structure such that b(6’ @ x) = bb" @ x for all b, 6" € B anq g,
x € M. The B-module M} is said to be obtained from M by extension of scalars

Proposition 2.17. If M is finitely generated as an A-module, then M, is
finitely generated as a B-module.

Proof. Ifxy, ..., x,, generate M over A, then the | @ x; generate M, over B,

EXACTNESS PROPERTIES OF THE TENSOR PRODUCT

Let /: M x N — P be an A-bilinear mapping. For each x € M the mapping
y>f(x,y) of N into P is A-linear, hence f gives rise to a mapping M —,
Hom (N, P) which is A-linear because / is linear in the variable x. Conversely
any A-homomorphism ¢: M — Hom, (¥, P) defines a bilinear map, namely
(x, ») = ¢(x)(»). Hence the set S of A-bilinear mappings M x N — P is in
natural one-to-one correspondence with Hom (A4, Hom (N, P)). On the other
hand S is in one-to-one correspondence with Hom (M & N, P), by the de-
fining property of the tensor product. Hence we have a canonical iIsomorphism

Hom (M ® N, P) ~ Hom (M, Hom (N, P)). (1)
Proposition 2.18. Let

M 5S> M5 M -0 2)

be an exact sequence of A-modules and homomorphisms, and let N be any
A-module. Then the sequence

M'QNLI2 M QN2 M @ N — 0 (3)
(where 1 denotes the identity mapping on N) is exact.

Proof. Let E denote the sequence (2), and let £ ® N denote the sequence (3).
Let P be any 4-module. Since (2) is exact, the sequence Hom (E, Hom (N, P))

is exact by (2.9); hence by (1) the sequence Hom (£ @ N, P) is exact. By (2.9)
again, it follows that £ ® N is exact. m :

gi!::ﬂ;f;z-ft) Let T(M) = M ® N and let U(P) = Hom (N, P). Then (1)
g ]anngamefi?ﬁ;(T(M), P) = Hom (M, U(P))for all A-modules M and P.
g g€ Ol abstract nonsense, the functor 7'is the left adjoint of U, and U

€ right adjoint of 7% The proof of (2.18) shows that any functor which is 8

_le“ adjﬂlnt s right exaet. Likewise any functor which is a right adjoint is left
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s not in general true that, if M’ - M — M~ is an exa

momorphisms, the sequence M" @ N - M @ N _, M"
ing with an arbitrary A-module ¥ is exact.

i) It
,{.mndulcs and ho
nbtnincd by tensor

—— Take A = Z and consider the exact sequence 0 —. y AL
E(::,) _ 2x forall xe Z. 1f we tensor with N = Z/2Z. the sequence

je1, 7, @ N is not exact, because forany x @ ye Z @ N we have

FONX®Y)=2XxQy=xQ2y=xQ0 =0,

Z, where
017 ®

<o that f ® | is the zero mapping, whereas Z @ N # 0.

The functor Ty: M = M &, N on the category of A-modules and homo-
morphisms 18 therefore not in general exact. I_f I’y 18 exact, that is to say if
tensoring with ¥ transforms all exact sequences into exact sequences, then N is
said to be a flat A-module.

Proposition 2.19. The following are equivalent, for an A-module N:
) N is flat. |

i) If 0> M"— M — M"— 0 is any exact sequence of A-modules, the

tensored sequence 0 - M" @ N—- M @ N— M" @ N — 0 is exact.

i) If [+ M’ — M is injective, thenf @ 1: M’ Q N— M ® N is injective.

wv) If f: M" — M is injective and M, M' are finitely generated, then

fR1l: M @ N— M @ N is injective.
Proof. 1) <= ii) by splitting up a long exact sequence into short exact sequences.

ii) <= 111) by (2.18).

11) = 1v): clear.

Iv) = 1i1). Letf: M’ — M beinjectiveandletu = > x; @ y,e Ker (f ® 1),
so that > f(x;)) ® y, = 0in M ® N. Let M, be the submodule of M’ generated
by the x{ and let 1, denote 3 x; ® y, as an element of M; @ N. By (2.14) there
exists a finitely generated submodule M, of M containing f(M;) and such that
2.f(x) ® y, = 0as an element of M, ® N. If f: My — M, is the restriction

of f, this means that (f, ® 1)(uo) = 0. Since M, and M, are finitely generated,
Jo @ 1is injective and therefore u, = 0, hence v = 0. ®

Exercise 2.20. Iff: A — Bisa ring homomorphism and M is a flat A-matfu!e.
then My = B ®, M is a flat B-module. (Use the canonical isomorphisms
(2.14), (2.15).)

ALGEBRAS

Letf: 4 — Bbea ring homomorphism. If @ € 4 and b € B, define a product
ab = f(a)b.
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This definition of scalar multiplication makes the ring B into an A-mody]e (it iy
a particular example of restriction of scalars). Thus B has an A-mgd ule Structyr,
as well as a ring structure, and these two structures are compatible in 4 Sense

which the reader will be able to formulate for himself. The ring B, equippeq With
this A-module structure, is said to be an A-algebra. Thus an A-algebra g by

definition, a ring B together with a ring homomorphism f: A — B

Remarks. i) In particular, if A is a field K (and B # 0) then f'is injective p,
(1.2) and therefore X can be canonically identified with 1ts image in B. Thus 5

K-algebra (K a field) is effectively a ring containing K as a subring,

ii) Let A be any ring. Since 4 has an identity element there is a unique
homomorphism of the ring of integers Z into A, namely n+> n.1. Thus every
ring is automatically a Z-algebra.

Let f:A— B,g: A— C be two ring homomorphisms. An A-algebrq

homomorphism h: B — C is a ring homomorphism which is also an A-mody]a
homomorphism. The reader should verify that A is an A-algebra homomor.

phism if and only if Ao f = g.

A ring homomorphism f: A — B is finite, and B is a finite A-algebra, if p
is finitely generated as an A-module. The homomorphism f'is of finite type, and

B is a finitely-generated A-algebra, if there exists a finite set of elements x,, . . . X,
in B such that every element of B can be written as a polynomial in x,, .. vy X
with coefficients in f(A4); or equivalently if there is an A-algebra homomorphism

from a polynomial ring A[t,, ..., t,] onto B.
A ring A is said to be finitely generated if it is finitely generated as a Z-

algebra. This means that there exist finitely many elements X1y ..., X, 10 A such
that every element of A can be written as a polynomial in the x, with rational

integer coefficients.

TENSOR PRODUCT OF ALGEBRAS

Let B,‘C be thvo A-algebras, f: A — B, g: A — C the corresponding homo-
morphisms. Since B and C are 4-modules we may form their tensor product
D = B ®, C, which is an 4-module. We shall now define a multiplication

on D.
Consider the mapping B x C x B x C — D defined by

(b,c, b, ¢') > bb' ® cc'.

This is A-linear in each factor and therefore, by (2.12*), induces an A-module
homomorphism

BRQCQ®B®C— D,
hence by (2.14) an 4-module homomorphism

D® D— D

EXERCISES 3]

< in turn by (2.11) corresponds to an A-bilinear mapping

d thi
. u:D x D—D

wb @ ¢, b’ @ ¢’) = bb' & ce',

rse, we could have written down this formula directly, but without some

ou :
of c gument as We have given there would be no guarantee that u was well-

such ar

Ed- . . .
dcﬁllve have therefore defined a multiplication on the tensor product D =

B®.C: for elements of the form b @ c it is given by
- G
b@c)d @) =bb ® cc’,

(26 ® @)(2,¢) ® ) = g (b @ cic)).

The reader should check that with this multiplication D is a commutative ring,
with identity element 1 &@ 1. Furthermore, D is an A-algebra: the mapping

a+ f(a) ® g(a) is a ring homomorphism 4 — D,
In fact there is a commutative diagram of ring homomorphisms

B
y’\

\u
4 XD
AN A
a\ /v
/
C
in which u, for example, is defined by u(b) = b ® 1.

EXERCISES

1. Show that (Z/mZ) ®,(Z/nZ) = 0 if m, n are coprime.
2. Let A be aring, a an ideal, M an A-module. Show that (4/a) ® 4 M is isomor-

phic to M/aM.
[Tensor the exact sequence 0 — a — 4 — A/a — 0 with M.]
3 Let 4 be a local ring, M and N finitely generated A-modules. Prove that if

M®N=0,then M =0o0r N =0
[Let m be the maximal ideal, k = A/m the residue field. Let My = k 8, M =

M/mM by Exercise 2. By Nakayama’s lemma, M, = 0 = M = 0. But
MO\N=0= (MO Ni=0=M &N =0=M=00rN=0

since M, N, are vector spaces over a field.]
4. Let M, (i € I) be any family of 4-modules, and let M be their direct sum. Prove

2,that M is flat < each M, is fiat.
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5. Let A[x] be the ring of polynomials in one indeterminate over a ring 4. Brov
that A[x] is a flat A-algebra. [Use Exercisc 4.] ¢

6. For any A-module, let M[x] denote the set of all polynomials in x with co
efficients in M, that is to say expressions of the form "

me + myx + -+ mx’ (m € M).

Defining the product of an element of A[x]and an element of M [x]in the Obvigyg

way, show that M[x] is an A [x]-module.
Show that M[x] =~ A[x] ®. M.

7. Let b be a prime ideal in 4. Show that p[x] is a prime ideal in A[x]. If m js ,
maximal ideal in A, is m[x] a maximal ideal in A[x]?

8. i) If M and N are flat A-modules, thensois M ®, N.
ii) If Bis a flat A-algebra and N is a flat B-module, then N is flat as an A-moduyje

9 Jet0—> M’ — M — M”"— 0 be an exact sequence of A-modules. If M’ and

M" are finitely generated, then so is M.

10. Let A be a ring, a an ideal contained in the Jacobson radical of 4, let M be ap

11.

12.

13,

14.

A-module and N a finitely generated A-module, and let u: M — N be a homo.-
morphism. If the induced homomorphism M/aM — N/aN is surjective, then

u is surjective.

Let A be aring # 0. Show that A™ = A" = m = n.
[Let m be a maximal ideal of A4 and let ¢: A™ — A" be an isomorphism. Then
1 ® ¢:(A/m) ® A™ — (A/m) @ A" is an isomorphism between vector spaces
of dimensions m and »n over the field k = A/m. Hence m = n.] (Cf. Chapter 3,
Exercise 15.)

If §: A™ — A" is surjective, then m = n.

If : A™ — A" is injective, is it always the case that m < n?

Let M be a finitely generated A-module and ¢: M — A™ a surjective homo-
morphism. Show that Ker (¢) is finitely generated.

[Let e;,...,e, be a basis of A" and choose w, € M such that ¢(i) = e
(1 <i<n). Show that M is the direct sum of Ker (¢) and the submodule
generated by u,, ..., 4,.]

Let f: A — B be a ring homomorphism, and let N be a B-module. Regarding N
as an A-module by restriction of scalars, form the B-module Ny = B @4 N.
Show that the homomorphism g: N — Nz which maps y to 1 ® y is injective
and that g(N) is a direct summand of Nj.

[Define p: Ny — N by p(b ® y) = by, and show that Ny = Im (g) @ Ker (p).)

Direct limits

A partially ordered set 7 is said to be a direcred set if for each pair i, j in I there
exists k€ I'such that i < kand j < k.

Let A be a ring, let I be a directed set and let (M)),; be a family of A-modules
indexed by 1. For each pair 7,j in I such that i < j, let p,: M, — M, be an
A-homomorphism, and suppose that the following axioms are satisfied:

15.

16.

17.

18.

19.

20,
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(1) pu 18 (he identity mapping of My, forallie I,

2) e = P © P whenever I < j < k.

2) Mk g :

( 'he modules M, and homomorphisms y,, are said to form a direc system
Then

— (M, py) OVET the directed set 1.
M 1&!:: shall construct an A-module M called the direct limit of the S

M. Let C be the direct sum of the M|, and identify each module M, with
§};5u: nical image in C. Let D be the submodule of C generated by all elements
its canfﬂrm x, — my(x)) where i < jand x;e M. Let M = C/D,let u: C — M
of tlllﬂ ojection and let y be the restriction of x to M,

be t’ll“i*sz module M, or more correctly the pair consisting of M and the family of
hﬂmnmnrphisms w: My —~ M, is called the direct limit of the direct system M,

; : i . From the construction it i =
and is written lim M, It 1s clear that p = pyop,

[n the situation of Exercise 14, show that every element of M can be written in

the form p(x;) for some i € I and some x, € M,.
Show also that if p(x) = 0 then there exists j > i such that p,(x,) = 0

in M.

Show that the direct limit is characterized (up to isomorphism) by the following
property. Let N be an A-module and for each i€ [ let «;: M; — N be an A-
module homomorphism such that ¢, = « ¢ pyy whenever i < j. Then there exists
a unique homomorphism «: M — N such that ¢ = ao y,foralliel

Let (M,).e; be a family of submodules of an A-module, such that for each pair of
ndices i, j in I there exists k € I such that M, + M; & M,. Define i< to
mean M, € M, and let py;: My — M, be the embedding of M, in M;. Show that

liITlM¢= 2M1=UM;.
—>

In particular, any A-module is the direct limit of its finitely generated sub-

modules.

Let M = (M|, i), N = (N, vy) be direct systems of A-modules over the same
directed set. Let M, N be the direct limits and p: M, — M, vi: Ny — N the

associated homomorphisms.
A homomorphism ¢: M — N is by definition a family of A-module homo-

morphisms ¢,: M; — N, such that ¢; o pj; = vy © @ whenever i < i. Show that

—

¢ defines a unique homomorphism ¢ = l'in}:ﬁ.: M — N such that ¢opu =
vied for all i e 1.

A sequence of direct systems and homomorphisms
M—->N-—P
is exact if the corresponding sequence of modules and module homomorphisms

is exact for each i € . Show that the sequence M N — P of direct limits is
then exact. [Use Exercise 15.]

Tensor products commute with direct limits

Keeping the same notation as in Exercise 14, let N be any
(M, ® N, iy @ 1)is a direct system; let P = El; (M; @ N) be

A-module. Then
its direct limit.
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21.

22.

Jhy & 1: M, ® N—""'M@Njhcnc

chie I wehavea homomorphism :
For ea N. Show that ¢ is an isomorp},

Exercise 16 a homomorphism ¢: P — M &
so that

e hy
ism,

lim(M; ® N) = (lim M;) @ N.
L —>

let gi: My x N— M @ N be the canonical bilinear Mapping

limit we obtain a mapping & M x N—»P. Show that .
omomorphism ¢: M & N — P, Verify that

[For each i € /,

Passing to the
A-bilinear and hence define a h

é o ¢ and ¢ o ¢ are identity mappings. ]

be a family of rings indexed by a directed set /, and for each pair ; < j
be a ring homomorphism, satisfying conditions (1) and (3
as a Z-module we can then form the direg
a ring structure from the A4, so that tp,

LCt (AI)IEI
in 7 let ey A — A;
of Exercise 14. Regarding each A,
limit A = lim A;. Show that A inherits

_...+ .
mappings A, — A are ring homomorphi

system (A, ay).
If A = 0 prove that A4,

identity elements!]
Let (A,, «;;) be a direct system of rings and let 2 be the nilradical of 4,. Show
that lim %; is the nilradical of lim .A;.

= —.}. . . . 2

If each A, is an integral domain, then lin} A, is an integral domain.

sms. The ring A is the direct limit of th,

— 0 for some i € I. [Remember that all rings hay,

Let (By)aea be a family of A-algebras. For each finite subset of A let B; denote
the tensor product (over A) of the B, for A€ J. If J’ is another finite subset of A
and J < J’, there is a canonical A-algebra homomorphism B; — B;.. Let B
denote the direct limit of the rings B, as J runs through all finite subsets of A.
The ring B has a natural A-algebra structure for which the homomorphisms
B, — B are A-algebra homomorphisms. The A-algebra B is the rensor product

of the fﬂlnﬂy (B‘\),t,gn_

Flatness and Tor
In these Exercises it will be assumed that the reader is familiar with the definition

and basic properties of the Tor functor.

If M is an A-module, the following are equivalent:

i) M is flat;

ii) Tord (M, N) = 0 for all #» > 0 and all 4-modules N;
iii) Tor{ (M, N) = 0 for all A-modules N.
[To show that (i) = (ii), take a free resolution of N and tensor it with M. Since
M is flat, the resulting sequence is exact and therefore its homology groups,
which are the Tor? (M, N), are zero for n > 0. To show that (iii) = (i), let
00—+ N — N-—>N"— 0 be an exact sequence. Then, from the Tor exact
sequence,

Tory M,N)—+ M @N - M@N—->M®N" —0
1s exact. Since Tor; (M, N") = 0 it follows that M is flat.]

25, Let 0— N’ — N — N” - 0 be an exact sequence, with N” flat. Then N’ s

flat <= N is flat. [Use Exercise 24 and the Tor exact sequence. ]

27.

28.

. Let ND
guncmtc
[ShoW ﬁ::
M, by using
of M, and'
the successive qu
i['Tﬂr;_ (M, N) =2
element, @i
to reduc

Aring Al
equivalcnt:
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e an A-module. Then N is flat = Tor, (4/a, N) = 0 for al| finitely

4 ideals a in A.
st that N is flat if Tor, (M, N) = 0 for all finitely generated A-modules
(2.19). If M is finitely generated, let x4, . . ., x, be a set of generator
let M, be the submodule generated by x,,..., x,, By Cﬂﬂﬁideﬁnﬁ
otients M /M-, and using Exercise 25, deduce that N is ﬂagt
0 for all cyclic A-modules M, i.e., all M generated by a single
d therefore of the form A/a for some ideal a. Finally use (2.19) again
e to the casc where a is a finitely generated ideal.]

s absolutely flat if every A-module is flat. Prove that the following are

i) A1s absolutely flat.
ii) Every principal ideal is idempotent.
iii) Every finitely generated ideal is a direct summand of A.

(i) = ii). Let x€ A. Then A/(x) is a flat A-module, hence in the diagram

(x) ® 42 (x) ® Al(x)

| o

A - Al

the mapping « 18 injective. Hence Im (8) = 0, hence (x) = (x?). ii) = iii). Let
ve A. Then x = ax® for some a € A, hence e = ax is idempotent and we have
(e) = (x). Now if e, fare idempotents, then (e, f) = (e + f — ef). Hence every
finitely generated ideal 1s principal, and generated by an idempotent e, hence 1s a
direct summand because 4 = (e) ® (1 — e). 1) = i). Use the criterion of

Exercise 26.]

A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 is absolutely
flat. Every homomorphic image of an absolutely flat ring is absolutely flat. If a

local ring is absolutely flat, then it is a field.
If A is absolutely flat, every non-unitin 4 is a zero-divisor.




&2

Rings and Modules of Fractions

The formation of rings of fractions and the associated process of localizatjq,
are perhaps the most important technical tools in commutatjve algebra. They
correspond in the algebro-geometric picture to concentrating attention op an
open set or near a point, and the importance of these notions should be self.
evident. This chapter gives the definitions and simple properties of the formatjqy

of fractions.

The procedure by which one constructs the rational field Q from the ring
of integers Z (and embeds Z in Q) extends easily to any integral domain 4 and
produces the field of fractions of A. The construction consists in taking al|
ordered pairs (a, s) where a,s€ A and s # 0, and setting up an equivalence

relation between such pairs:
(a,s) = (b,t) <> at — bs = 0.

This works only if 4 is an integral domain, because the verification that the
relation is transitive involves canceling, i.e. the fact that 4 has no zero-divisor
# 0. However, it can be generalized as follows:

Let A be any ring. A multiplicatively closed subset of A is a subset § of 4
such that 1 € S and S is closed under multiplication: in other words S is a sub-
semigroup of the multiplicative semigroup of 4. Define a relation = on A4 X A
as follows:

(a,s) = (b, t) <= (at — bs)u = 0 for some u € S.

Clearly this relation is reflexive and symmetric. To show that it 1s transitive,
suppose (¢, 5) = (b, 1) and (b, 1) = (¢, ). Then there exist v, w in S such th
(at — bs)v = 0 and (bu — ct)w = 0. Eliminate b from these two equations
and we have (au — ¢s)tow = 0. Since S is closed under multiplication, We have

fow € S, hence (4, 5) = (¢, w). Thus we have an equivalence relation. Let /¢
denote the equivalence class of (a, ), and let S A4 denote the set of equivalenct
ation

classes. ‘fﬂ puta ring structure on . ~*4 by defining addition and multiplic
of these “fractions” a/s in the same way as in elementary algebra: that 1S,

(als) + (b/t) = (at + bs)/st,
(a/s)(b/t) = ab/st.

36
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Verify that these definitions are independent of the choices of rep-
(a, s) and (b, 1), and that S “1A satisfies the axioms of a com-
h identity.

Exercise.
resentatives ‘
mutative ring wil

we also have a ring homomorphism f: A — §~'4 defined by f(x) = x/1.

This is 10! in gcncral injective.

The ring ¢-14 is called the ring of fractions of A with respect to S. It has a

universal property:

Proposition 3.1. Let g: A— B be a ring homomorphism such that g(s)
is a unit in B for all s € S. Then there exists a unique ring homomorphism

e S-1A — B such that g = hof.

Proof. 1) Uniqueness. If h satisfies the conditions, then A(a/l) = hf(a) = g(a)
tor all a € A; hence, if 5 €5,

h(l/s) = h((s/1)~*) = h(s/1)™* = g(s)~*

and therefore h(a/s) = h(a[l)-h(l/s) = g(a)g(s)~*, so that h is uniquely
determined by g.

i) Existence. Let h(a/s) = g(a)g(s)~*. Then A will clearly be a ring homo-
morphism provided that it is well-defined. Suppose then that a/s = a'[s’; then

there exists ¢ € S such that (as’ — a’s)t = 0, hence

(gla)g(s) — gla)g(s))g) = 0;
now g(¢) is a unit in B, hence g(a)g(s) ™" = g@a)g(s)™* =
The ring S~*4 and the homomorphism f: A — S-14 have the following

properties:
) se S = f(s)is aunitin S '4;
2) f(a) = 0 = as = 0 for some 5 €S,

3) Every element of S ~*A4 is of the form f(a)f(s)~* for some a € A and some
sES.

Conversely, these three conditions determine the ring S ~*A up to iso-

morphism. Precisely:
Corollary 3.2. Ifg: A — B is a ring homomorphism such that
) s€S = g(s) is a unit in B;
i) gl@) = 0 = as = O for some SE S,
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iii) Every element of B is of the form g(a)g(s)™*, then there s o
- ; . g1 B such that g = hoe /. Nigye
isomorphism h: S ' A = g
Proof. By (3.1) we have to show that 4: S ~*A4 — B, defined by
h(a/s) = g(a)g(s)™"

(this definition USES i)) is an isomorphism. By iii), /2 1s surjective. To shqy, "
injective, look at the kernel of A: if h(a/s) = O, then g(a@) = 0, hence by 1i) “ts
have at = 0 for some # € S, hence @ s) =(01),ie,a/s =0in§-14 . ¢

Let p be a prime ideal of 4. Then S = A — p is multiplicatjye

closed (in fact A — p 18 multiplicatively closed <> p is Prime). We write 4, &i

¢ -14 in this case. The elements alswitha e p ffzsr*m an 1deal min Ay, If p/y -

then b ¢ p, hence b € S and therefore b/t is a u‘mt n {Ip. It follows that if q js m;

ideal in Ap and a §& m, then a contains a unit and is therefore the whole ring

Hence m is the only maximal ideal in Ay; in other words, Ay is a local ring.
The process of passing from A to Ay is called localization at p.

Examples. 1)

2) §~1A is the zero ring <> 0esS.
3) LetfeAandlet S = {f"ln»o. We write A, for S ~*A 1n this case.

4) Let a be any ideal in A4, and let S = 1 + a = set of all 1 + x where
xea. Clearly S is multiplicatively closed.

5) Special cases of 1) and 3):
VA=Zp=(p,pa prime number; Ay = set of all rational numbers

m/n where n is prime to p; if fe Z and f # 0, then A, 1s the set of all rational
numbers whose denominator is a power of f.

if) A = klt,, ..., t.), where k is a field and the # are independent indeter-
minates, p a prime ideal in 4. Then A, is the ring of all rational functions f/g,
where g ¢ p. If V is the variety defined by the ideal p, that is to say the set of all
x = (x;,..., x;) €k" such that f(x) = 0 whenever f€ p, then (provided k is
infinite) 4, can be identified with the ring of all rational functions on k" which
are defined at almost all points of V; it is the local ring of k™ along the variety V.
This is the prototype of the local rings which arise in algebraic geometry.

The cuns!:ruction of S-1A4 can be carried through with an A-module M in
place of the ring 4. Define a relation = on M x S as follows:

(m,s) = (m', s") < 3t € S such that t(sm’ — s'm) = 0.

As bcfurcf, this is an equivalence relation. Let m/s denote the equivalence class
?f the pair (m, s), let S ~*M denote the set of such fractions, and make S M
into an S:'lA-modula with the obvious definitions of addition and scalar
multiplication. As in Examples 1) and 3) above, we write M, instead of S 1M
when § = A — p (p prime) and M, when S = {f"}, .

_ILet u: M — N be an A-module homomorphism. Then it gives rise t0 2°
S ~*4-module homomorphism S ~1u: S -1M — S -IN namely S ~*u maps mjs
- to u(m)/s. We have S-'(vo u) = (S~10) o (S~ ). ’

D
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; =1 3 . : o f
3. The operation S-1 is exact, ie, if M' - M 2 M" is

ition 3 - s
propos g 0 S-IM 2> S-1M" is exact at S~ M.

at M: fhl?n S-—
Exﬂi:fc have § of = 0, hence S~ ige S = §710) = 0, hence Im (S~)

To prove the reverse inclusion, let m/s € Ker (S ~'g), then
‘«-1)f" hence there exists t € S such that tg(m) = 0in M”. But

g(m)/s = (tm) since .« an A-module homomorphism, hence tm e Ker (g) =
efore tm = f(m') for some m' e M’'. Hence in S ~*M we have

her
m (f) and,tm _ (S-lf)(;n'/sf) e Im (S ~*f). Hence Ker (S'g) < Im (S -f).
i

.+ follows from (3.3) that if M" 1s a submodule of M, the map-

[n particular, 1t ) s
oM’ > S -1M is injective and therefore S “*M'’ can be regarded as a
p:;i'lgdulﬂ of S-1M. With this convention,
S
Corollary 3.4. Formation of fractions commutes with formation of finite
sums, finite intersections and quotients. Precisely, if N, P are submodules

of an A-module M, then

) STYN + P) = ST'(N) + S~(P)

i) ST(NNP) = SN N S ~(P)

iii) the S ~*A-modules S -Y(M/N) and (S ~*M)/(S ~*N) are isomorphic.
from the definitions and ii) is easy to verify:
if y/s =z[t (YEN, ZE P, s, teS) then u(ty — sz) = 0 for some u € S, hence
w = uty = usz € N N P and therefore y/s = w/stu € S~*(N N P). Consequently
S-INAS-P < S (NN P), and the reverse inclusion is obvious.

iii) Apply S ! to the exact sequence O>N—->M->MN—>0 =

Proof. i) follows readily

Proposition 3.5. Let M be an A-module. Then the S —*A modules S~ M and
S-'4 ®, M are isomorphic; more precisely, there exists a unique 1so-

morphism [+ S~*A @, M — S ~*M for which
f((a/s) ® m) = am|s for allae A, mE€ M, s€S. (1)
Proof. The mapping S -4 x M — S~ *M defined by
(a/s, m) — am/s

?5 A-bilinear, and therefore by the universal property (2. 12) of the tensor product
Induces an A-homomorphism

1S4 QM—>S M

satisfying (1). Clearly fis surjective, and is uniquely defined by (1)
Let 5, (a/s) ® m, be any element of S™'4 @ M If §=

= T4 55, we have

[lisi€ S,
ly

Z‘Ei®”“ = Za.‘—f* RQm = 2£®ﬂ1flrri - %@Zﬂi’im*

BE i i
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so that every element of S~'4 ® M is of the form (1/s) ® m. Suppose '
f((l/&) ® m) = 0. Then m/s = 0, hence tm = 0 for some ¢ € S, and ”H:ru]‘{:?l
¢

1 5 _ 1 _ X oo
}®mﬂﬂ®m“Sf®””_ﬂ®0u0'

Hence f is injective and therefore an isomorphism. =

Corollary 3.6. S~ *A is a flat A-module.
Proof. (3.3),(3.5). =
Proposition 3.7. If M, N are A~nindm’es, riierc Is a unique isomorphism .
S -1 g-modules f: S *M ®s-14 SN —> 05 (M &, N) such that
f((m/s) ® (n/t)) = (m @ n)/st.

In particular, if p is any prime ideal, then
My @4y Ny~ (M ®4 Ny

as Ay-modules.
Proof. Use (3.5) and the canonical isomorphisms of Chapter 2. =

LOCAL PROPERTIES

A property P of a ring A (or of an A-module M) is said to be a local property

if the following 1s true:
A (or M) has P <> Ay (or My) has P, for each prime ideal p of A. The

following propositions give examples of local properties:

Proposition 3.8. Let M be an A-module. Then the following are equivalent:
i) M = 0;

i) My = 0 for all prime ideals b of A;

iii) Mwm = 0 for all maximal ideals m of A.

Proof. Clearly i) = ii) = iii). Suppose iii) satisfied and M # 0. Let x bea
non-zero element of M, and let a = Ann (x); a is an ideal # (1), hence 15
contained in a maximal ideal m by (1.4). Consider x/1 € M. Since My = 0 we
have x/1 = 0, hence x is killed by some element of 4 — 1 ; but this is impossible

since Ann(x) S m. =

Proposition 3.9. Let ¢: M — N be an A-module homomorphism. Then the
following are equivalent:

1) ¢ Is injective,

11) ¢p: My — N,y is injective for each prime ideal p,
1) éw: My — Ny is injective for each maximal ideal m.
Similarly with “injective” replaced by “‘surjective” throughout.
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EXTEND
Prﬂﬂf- i) = ii). 0 — M —» N is exact, hence 0> My, — Ny 1s exact, Le.,
gy is injective: o
ii) = iii) because 4 maximal i1deal i1s prime.

i) = 1. Let M' = Ker ($), thcrll the sequence 0 - M' - M — N ig
e 00— M'w—> Mgy — Nm 1S exact b}’ (33) and therefore My ~
since ¢m 18 injective. I'FE-HEE M’ = 0 by (3.8), hence ¢ is injectivE
her part of the proposition, just reverse all the arrows. wm '

L‘.‘iﬂct! henc

Ker ('?"m) =0
For the ot

Flatness 1s @ local property:

proposition 3.1 0. For any A-module M, the following statements are
equivalent.
) M is a flat A-module:

i) My isa flat Ay-module for each prime ideal p;

i) My is a flat An-module for each maximal ideal m.,
Proof. 1) = 11) by (3.5) and (2.20).

i) = iii) O.K.

i) = i) f N—>P is a homomorphism of A-modules, and m is any
maximal ideal of A, then

N — P injective = Ny — Py injective, by (3.9)
= m @;]]“ jPh(ﬂ'n = Pm @;'lm M“'L iﬁjECll‘.’E‘,, b}! (2'19)

= (N QA Jr1“f)m —r (-P XA ﬂ’f)m injCCtiVC, b}’ (37)
= N @4 M — P @, M injective, by (3.9).

Hence M is flat by (2.19). =

EXTENDED AND CONTRACTED IDEALS IN RINGS OF FRACTIONS

Let 4 be a ring, S a multiplicatively closed subset of 4 and f: 4 — § ™4 the
natural homomorphism, defined by f(a) = a/1. Let C be the set of contracted
{deals‘m A, and let E be the set of extended idealsin S ™' A4 (cf. (1.17)). If ais an
Ideal in A, its extension a®in S 14 is S ~'a (for any y € a® is of the form 2 a/s;,
Where ¢, € a and s, € S; bring this fraction to a common denominator).

Proposition 3.11. i) Every ideal in S~'A is an extended ideal.

.“) If ais an ideal in A, then a®® = | J,es (a:5). Hence a* = (1) if and only
if @ meets S.

) a € C < no element of S is a zero-divisor in Ala.

w? The prime ideals of S ~*A are in one-to-one correspondence (p <> S 'p)
With the prime ideals of A which don’t meet S.
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v) The operation S~ commutes with formation of finite

intersections and radicals.
Proof. i) Let b be an ideal in S7°4, and let x/s €b. Then x/1 ep
x € b° and therefore x/s € b°¢, Since b =2 b 1n any case (1.17), it follo
b = b,

ii) x€a® = (S 'a)f <= x/]1 = a/s for some ga€q,s€§ <« (x5 — i
for some 1 €S < xst€a <> X € (Uses (a:5).

iii) ae C <> a* € a <> (SxEQ for some SES = x€a) = ngo ;¢ S is 4
zero-divisor in A/a.

iv) If q is a prime ideal in S ~*A4, then q° 1s a prime ideal in A (this much i
true for any ring l1nmnmnrphjsn1). Conversely, 1if p 1s a prime ideal ip A, thep
A/p is an integral domain; if S is the image of § in A/p, we have S - UALS <150
S -3(A/p) which is either 0 or else is contained in the field of fractions of 4y ;”:j
is therefore an integral domain, and therefore S ~'p is either prime or is the unit
ideal; by i) the latter possibility occurs if and only if p meets S,

v) For sums and products, this follows from (1.18); for intersectiops
from (3.4). As to radicals, we have S~ 'r(a) < r(S~*a) from (1.18), and th,
proof of the reverse inclusion is a routine verification which we leave to the

reader. =

sums, pmducu

WS tha,

=0

Remarks. 1) If a, b are ideals of A4, the formula
S~}a:b) = (§ " *a:5"1b)

is true provided the ideal b 1s finitely generated: see (3.15).

2) The proof in (1.8) that if fe€ A i1s not nilpotent there is a prime ideal
of A which does not contain f can be expressed more concisely 1n the language
of rings of fractions. Since the set S = (f"),», does not contain 0, the ring
S~'4 = A, is not the zero ring and therefore by (1.3) has a maximal ideal,
whose contraction in 4 is a prime ideal p which does not meet S by (3.11),

hence f ¢ p.
Corollary 3.12. IfRis the nilradical of A, the nilradical of S ~*A is S 't

Corollary 3.13. If p is a prime ideal of A, the prime ideals of the local ring
Ay are in one-to-one correspondence with the prime ideals of A contained inp.

Proof. Take S = A — pin (3.11) (iv). m

Remark. Thus the passage from A4 to Ay cuts out all prime ideals except those
contained in p. In the other direction, the passage from A4 to A/p cuts out all
prime ideals except those containing p. Hence if b, q are prime ideals such that
p 2 q, then by localizing with respect to p and taking the quotient mod ¢
(in either order: these two operations commute, by (3.4)), we restrict our atierr
tion to those prime ideals which lie between p and q. In particular, if p = @ w
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field, called the residue field at p, which can be obtained either as

nth a A . .
ond UP witl ctions of the integral domain A/p or as the residue field of the

(he field of fra

local ring Av
- 1 be a finitely generated A-module, S a multiplicati
osition 3.14. Lel A s Plicatively
f:’?iﬁd subset of A. Then S~ ‘(Ann (M)) = Ann (S ' M).
¢

[f this is true for two A-modules, M, N, 1t 1s true for M + N:

s-1(Ann (M + N)) =S “'(Ann (M) N Ann (N)) by (2.2)
- S-'(Ann (M))N S~*(Ann (N)) by (3.4)
Ann (S7'M) N Ann (S 'N) by hypothesis
= Ann(S™'M + S7'N) = Ann (S} (M + N)).

proof.

|

|

Hence it is enough to prove (3.14) for M generated by a single element: then
v ~ Ala (as A-module), where a = Ann (M); S7T'M =~ (S~'4)/(Sa) by
(3_41 <0 that Ann (§ *M) = S 'a = S~*(Ann (M)). =

Corollary 3.15. If N, P are submodules of an A-module M and if P is
finitely generated, then S ~INEP) = (8 “AN:S 1P),

proof. (N:P) = Ann ((N + P)/N)by (2.2); now apply (3.14). =

Proposition 3.16. Let A — B be a ring homomorphism and let p be a prime
ideal of A. Then Y is the contraction of a prime ideal of B if and only if
pet = P.
Proof. If p = q° then p*© = p by (1.17). Conversely, if p© = p, let S be the
image of A — p in B. Then p® does not meet S, therefore by (3.11) its extension
in $ !B is a proper ideal and hence is contained in a maximal ideal m of S ~!B.
If q 1s the contraction of m in B, then q is prime, a 2 p*and aN S = .
Hence g = p. =

EXERCISES

I. Let § be a multiplicatively closed subset of a ring A, and let M be a finitely

generated A-module. Prove that S ~*M = 0 if and only if there exists s € S such
[hﬂt sM = 0.

2, .Lf:t @ be an ideal of a ring A4, and let S = 1 + a. Show that S ~'a is contained
In the Jacobson radical of S -1A.
Use this result and Nakayama’s lemma to give a proof of (2.5) which does
ot depend on determinants. [If M = aM, then S~*M = (S~ 'a)(§ ~*M),
hence by Nakayama we have $-*M = 0. Now use Exercise 1.]

Let A be a ring, let § and T be two multiplicatively closed subsets of A, and let

'U be the image of Tin $-14. Show that the rings (ST)~*A and U (S ~'4) are
IS0morphic,
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4

5. Let A be a ring. Supposc that, for each pri

6.

7.

10.

11.

% &7 2 £
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4 — B be a homomorphism of rings and let S be a Multiplicayjy |
i PE}'

closed subset of A. Let 7 = f(S). Show that S ~*B and T°'B are IS0morp,
¢

as S ~'A-modules.
me ideal p, the local ring

nilpotent clement # 0. Show that A has no nilpotent clement # 0,
is an integral domain, 15 A necessarily an integral domain?

e a ring # 0 and let T be the sct of all multiplicatively closed Subsets ¢

Let A Db | |
of A such that 0 ¢ .S. Show that £ has maximal elements, and that §¢y .
al prime ideal of A, 1S

maximal if and only if A — S is a minim
icatively closed subset S of a ring A is said to be saturated if

xye S < x€S§and y €S,

Ap has No
If cach A,

A multipl

Prove that ' . _
i) S is saturated <= A — S is a union of prime ideals.

ii) If S is any multiplicatively closed subset of A, there is a unique sma|jg
saturated multiplicatively closed subset S containing S, and that § js ,

complement in A of the union of the prime ideals which do not meet §

(3 is called the saturation of S.)
If S = 1 + a, where a is an ideal of 4, find S.

Let S, T be multiplicatively closed subsets of A, such that S = 7. Let¢: 5-1
—, T-14 be the homomorphism which maps each a/s € §~'4 to a/s considered
as an element of 7-'A4. Show that the following statements are equivalent:
i) ¢ is bijective.
ii) For each r€ T, t/1 is a unit in S =14,
iii) For each r € T there exists x € A such that xt € §.
iv) T is contained in the saturation of S (Exercise 7).
v) Every prime ideal which meets 7 also meets S.

The set S, of all non-zero-divisors in A is a saturated multiplicatively closed
subset of A. Hence the set D of zero-divisors in A is a union of prime ideals (see
Chapter 1, Exercise 14). Show that cvery minimal prime ideal of A is contained

in D. [Use Exercise 6.]
The ring So A is called the total ring of fractions of A. Prove that

i) S, is the largest multiplicatively closed subset of A4 for which the homo-
morphism A — Sg *4 is injective.
ii) Every element in Sg *A4 is either a zero-divisor or a unit.
iii) Every ring in which every non-unit is a zero-divisor is equal to its total ring
of fractions (i.e., A — S5 *A is bijective).

Let A be a ring. |
i) If A is absolutely flat (Chapter 2, Exercise 27) and S 1s any multiplicatively

closed subset of A4, then S ~'A is absolutely flat.
ii) A is absolutely flat <+ Ay, is a field for each maximal ideal .

LFI A be a ring. Prove that the following are equivalent:
1) AR is absolutely flat (9 being the nilradical of A).
i) Every prime ideal of A4 is maximal.

12.

1.

14,

15.

16,
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(A)isa r,-space (i.€., every subset consisting of a single point is closed),
) 9P S e HausdorT.
iv) Spec Efi-).;;ndiliﬂﬂﬁ are satisfied, show that Spec (4) is compact and totally
[f these he only connected subsets of Spec (A4) are those consisting of a
disconnet

single point)

an integral domain and M an A-module. Anelement x € M is a trorsion
L

f M if Ann (x) # 0, that is if x is killed by some non-zero element of A,
{ the torsion elements of M form a submodule of M. This submodule
he torsion submodule of M and is denoted by T(M). If T(M) = 0,
M is said to be torsion-free. .’?‘;huw that

N 1f M is any A-module, then M|T(M) is torsion-free.

) _» N is a module homomorphism, then f(T(M)) = T(N).

IIJ Iff*,r"rf » o avart ep » l ]
iy 160 — M’ — M—- M"isan exact sequence, then the sequence 0 — T(M”)
! L T(M) — T(M") is exact,

iv) If M is any 4-module, then 7(M) is the kernel of the mapping x» 1 @ x

of Minto K ®4 M, where K is the field of fractions of A.
[For iv), show that K may be rcgardcd as the dihrcct limit of its submodules
Af (¢ € K); using Chapter 1, Exercise 15 and Exercise 20, show thatif ]l @ x =0
ink ® Mthenl ® x = 0in Af @ Mforsome ¢ # 0. Deduce that ¢ 'x = 0.]

Let S be a multiplicatively closed subset of an integral domain 4. In the notation
of Exercise 12, show that 7(S ~*M) = S ~(TM). Deduce that the following are

Let A bC
,q’.,rrrm:nr 0
ghow tha
is called t
the module

equivalent:
i) M is torsion-free.
ii) My is torsion-free for all prime ideals p.
iii) M is torsion-free for all maximal ideals m,

Let M be an A-module and a an ideal of 4. Suppose that My = 0 for all
maximal ideals m 2 a. Prove that M = aM. [Pass to the A/a-module M/aM

and use (3.8).]

Let A be a ring, and let F be the A-module A". Show that every set of n gen-
erators of Fis a basis of F. [Let x,,..., x, be a set of generators and ey, ..., €,
the canonical basis of F. Define ¢: F — F by ¢(e;) = x;. Then ¢ is surjective
fmd we have to prove that it is an isomorphism. By (3.9) we may assume that A4
salocalring. Let N be the kernel of ¢ and let k = A/m be the residue field of 4.
Since Fis a flat 4-module, the exact sequence 0 — N — F — F — 0 gives an

exactsequence 0 —> k @ N—> k © Fﬂik @ F—>0. Nowk @ F= k"
s an n-dimensional vector space over k; 1 ® ¢ is surjective, hence bijective,
hencek @ N = 0.
Nuki‘]m ,;x:' 1s finitely generatc'd, bY_ Chaptcr_ 2, Exercise 12, hence N = 0 by
yama's lemma. Hence ¢ is an isomorphism.]
Deduce that every set of generators of F has at least n elements.

Lif;l Ifml::n: a flat A-algebra. Then the following conditions are equivalent:
3 = a for all ideals a of A.
1:3 Isfﬂic (B) — SDFC (A) is surjective.

tvery maximal ideal m of 4 we have m® # (1).
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iv) If M is any non-z€ro A-module, then My # 0.
v) For every A-module M, the mapping x » 1 ® x of M into as. .. .

[For i) = ii), use (3.16). ii) = iii) is clear. o 18 Injectjy,

iii) = iv): Let x be a non-zero element of M and let M’ = 4y Sine

over A it is enough to show that Mz # 0. We have M’ >~ 4/q fo, S; s fly

a # (1), hence Mj = B/a*. Now a < m for some maximal jdegq “Ilnehldﬁa]
¥ Enﬁ!}

a¢ < m¢ # (1). Hence My # 0.
iv) = v): Let M’ be the kernel of M — Mjy. Since B is flat over A, the

0 — M}, — My — (Mp)p is exact. But (Chapter 2, Exercise 13, with p A
=M

_—

the mapping Mz — (Mp)s 15 injective, hence M = 0 and therefore ppr _ h

v) = i): Take M = Ala.]
B is said to be faithfully flat over A.

17. Let A 2> B %> C be ring homomorphisms. 1f g o fis flat and g is faithfuy g,

then f is flat.

18. Let f: A — B be a flat homomorphism of rings, let q be a prime ideal of B anq |,
p = q°. Then f*: Spec (Bg) — Spec (dp) is surjective. [For By is flat over 4, },
(3.10), and B is a local ring of By, hence is flat over By. Hence By is flat over A}

v

and satisfies condition (3) of Exercise 16.]
19. Let A be a ring, M an A-module. The support of M is defined to be the g
Supp (M) of prime ideals p of A such that Mp # 0. Prove the following results.

i) M # 0 <> Supp (M) # 2.
ii) ¥V(a) = Supp (A/a).

iii) If 0— M’ — M — M”"— 0 is an exact sequence, then Supp (M) = |

Supp (M") U Supp (M").
iv) If M = 3 M,, then Supp (M) = U Supp (M)).
v) If M is finitely generated, then Supp (M) = ¥(Ann (M)) (and is therefore
a closed subset of Spec (4)).
vi) If M, N are finitely generated, then Supp (M ®4 N) = Supp(M)n
Supp (N). [Use Chapter 2, Exercise 3.]
vii) If M is finitely generated and a is an ideal of 4, then Supp (M/aM) =
V(a + Ann (M)).
viii) If f: A — B is a ring homomorphism and M is a
module, then Supp (B ®, M) = f*~*(Supp (M)).

20. Let f: A — B be a ring homomorphism, f*: Spec (B) — Spec (4) the a

mapping. Show that
i) Every prime ideal of 4 is a contracted ideal <> f* 1s surjective.

ii) Every prime ideal of B is an extended ideal = f* 1s injective.
Is the converse of ii) true?

finitely generated A

gsociated

1
21. i) Let A be a ring, S a multiplicatively closed subset of 4, and ¢: A~ S .Si
the canonical homomorphism. Show that ¢*: Spec (S ~*4) — Spec (4) lhis

Spec (A). Let!

homeomorphism of Spec (S ~*4) onto its image in X =
image be denoted by S~ X,

In particular, if fe A, the image of Spec (4,) in X i
(Chapter 1, Exercise 17).

s the basic open ¢! X
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ng homomorphism. Let X = Spec(A4) and Y =
_, X be the mapping associated with f. Identifying
~14) with its canonical image S""Xl in X, and Spec (S~'B)
(.5'}“15)) with 1ts canunlcalln}a_gc S~'Y in Y, show that S-1f*:
(= spcfl(é) , Spec (§-1A) is the restriction of f* to S™'Y, and that

_IY:I*-I(S-lx)' . . "
5 an ideal of A4 and let b = a° be its extension in B. Let f: A/a — BJb
c

hﬂmgmﬂrphiﬁm induced by f. If Spec (.A[ﬂ) 1s identified with its
cal image V(a) in X, and Spec (B/b) with its image V(b) in Y, show
0 :

Cﬂnt f* is the restriction of f* to V(D). -

tha be a prime ideal of A. Take S = A — p in ii) and then reduce
jv) Let ¥ iii). Deduce that the subspace f* " *(p) of Y is naturally

mod §-1'p as In |
homeomorphic t0 Spec (By/pBy) = Spec (k(p) @4 B), where k(p) is the
residue field of the local ring Ap.

spec (k(p) @a B) is called the fiber of f* over p.

a prime ideal of A. Then the canonical image of Spec (Ay)

be a ring and P _ :
22. ilftsscﬂ (A) is equal to the intersection of all the open neighborhoods of p in

Spec (A).
let X = Spec (A) and let U be a basic open set in X(i.e., U = X,

73, Let A bea ring, '
for some f€ A: Chapter 1, Exercise 17).
show that the ring A(U) = A; depends only on U and not on f.

I) If U = X}'t ;
be another basic open set such that U’ < U. Show that there

i) Let U" = Xg :
is an equation of the form g" = uf for some integer n > 0 and some u € A,
and use this to define a homomorphism p: A(U) — A(U") (i.e., A, — A;) by

mapping a/f™ to au™/g™. Show that p depends only on U and U’. This
homomorphism is called the restriction homomorphism.

iii) If U = U’, then p 1s the identity map.
iv) If U 2 U’ = U"” are basic open sets in X, show that the diagram

A(U) > A(U")
e 1R
A(U")
(in which the arrows are restriction homomorphisms) is commutative.
v) Let x (= p) be a point of X. Show that
lim A(U) = Ap.
——>

Uax

. . A—+ B be a
if) Lﬂlcj;f;’)' and let f*:

) Letab

il
be the

The assignment of the ring A(U) to each basic open set U of X, and the

restriction homomorphisms p, satisfying the conditions iii) and iv) above,

constitutes a presheaf of rings on the basis of open sets (X’ Drea- V)
stalk of this presheaf at x € X is the corresponding local ring Ap.

24, Shﬂwithat the presheaf of Exercise 23 has the following property. Let (U)
Cﬂvﬁrlng of X by basic open sets. For each i € I let s,
:’E*’-’h pair of indices 7, j, the images of s, and s; in A(U, :

tre exists a unique se A (= A(X)) whose image in A(UY) 15 s
(This essentially implies that the presheaf is a sheaf.)

for all iel

says that the

Iilbea

e A(U)) be such that, for
N Uj) are equal. Then
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e - 4 — C be ring homomorphisms and let 4: 4 —. g
25. dL:!;:;dAby h&)-ﬁ; f(x) ® g(x). Let X, Y, Z, T be the prime spectra of _;Ag (f
B ®, C respectively. Then A% (1) = f'_}"”" g*(Z). ] | »
[Let p € X, and let k = k(p) be the residue ficld at p. By Exercise 21, (5 fibe
h*-(p) is the spectrum of (B @4 C) ®ak = (B®4K) ®x (C @, k). N
pE};*(T) = (B @Jk) Ok (C®Ak) # 0B ®sk # 0 and C @k 2 0.

pef*(Y)ng*Z)]

26. Let (Ba, gap) be a direct system of rings and B the direct limit. For each , |,
fur A— By be a ring homomorphism such that ggs °_{a = fp whenever < p
(i.c. the B, form a direct system of A-algebras). The foinduce /2 4 — B, gpq,

that
f*(Spec (B)) = N f&(Spec (Ba)),

[Let p € Spec (A). Then f*~(p) is the spectrum of
B @4 k(p) = H_ﬂl(ﬁn @4 k(p))

(since tensor products commute with direct limits: Chapter 2, Exercise 20)
By Exercise 21 of Chapter 2 it follows that f*(p) = @ if and only
B, ®, k(p) = 0 for some «, i.e., if and only if /& ~'(p) = @.]

27. i) Let f;: A — B, be any family of A-algebras and let f: 4 — B be their
tensor product over A (Chapter 2, Exercise 23). Then

S*(Spec (B)) = f&(Spec (Ba)).

[Use Examples 25 and 26.]

ii) Let f,: A — B, be any finite family of A-algebras and let B = [|[; B..
Define f: A — B by f(x) = (fo(x)). Then f*(Spec (B)) = U« fa*(Spec(B.)).

iii) Hence the subsets of X = Spec (A) of the form f*(Spec (B)), where f: A — B
1s a ring homomorphism, satisfy the axioms for closed sets in a topological
space. The associated topology is the constructible topology on X. It is finer
than the Zariski topology (i.c., there are more open sets, or equivalently more
closed sets).

iv) Let X; denote the set X endowed with the constructible topology. Show that
X¢ 1s quasi-compact.

28. (Continuation of Exercise 27.)
1) For each g € 4, the set X, (Chapter 1, Exercise 17) is both open and closed
~in the constructible topology.
1) Let C’ denote the smallest topology on X for which the sets X, are both open

and closed, and let X, denote the set X endowed with this topology. ShoV
that Xc. is Hausdorff,

iii) Deduce that the identity mapping X¢ — X is a homeomorphism. Henced

?ubsct Eof X'is of the form f*(Spec (B)) for some f: A — B if and only if it
is closed in the topology C".

Iv) The topological space X is compact, HausdorfT and totally disconnected:

30. Sh'ﬂ
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orphism. Show that f*: Spec (B) — Spec (4) is

. 2 ring homom
4 — B bearnnk maps closed sets to closed sets) for the con-

tinuous closed mapping (1.€.,
topology-

19' Lel f:
a {:Dl]
structible

w that the
if and on

11.]

zariski topoloBy and the constructible topology on Spec (A4) are
a ly if AN is absolutely flat (where 9t is the nilradical of A).

the same ™
(Use Exercise

A TN R L By
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q is said to be p-primary.

4.
—~ r(a), then e
imary ideals In Z are (0) and (p"), where p is prime. For
1he pr ith prime radical, and it is immediately checked

imary. : :
( they are RER (x, y*). Then Alqa =~ k[y]/(¥*), in which the zero-

P mlary DE‘-CO]H})OSitiOI'I 9) Let A = k[x, vk a = hence are nilpotent. Hence q is primary, and
givisors arc 2 }). We have p2 < q < p (strict inclusions), so that a primary
: X, V)

a1l the multiples of y,
sarily a prime-powcr.
a prime power p” is not necessarily primary, although its
4r of ide ) = e prime ideal p. For example, let A = k[x, y, z}/(xy — z*) and let
eal .dical 15 ‘e imBges of x, y, z respectively in A. Then p = (X, 2) is prime
an integral domain); we have Xy = z% € p? but x ¢ p? and
s not primary. However, there is the following result:

'll"hc demmpnsitif}n of an ideal into primary ideals is g traditiong] p;
tle:‘:::ry.- It i?rcn'ftdcs tl?e algebraic foundation for dccun1pusir1g[fill
x;E{rlety into its !T‘I'Edl_]{.‘.lb]f: c::ompunenls—-ulthﬂugh 1t IS only fair ;n dlgebraa’c f}-;'fdﬂnﬂtﬂ

that the algebraic picture is more complicated than najye ge ° Point out ‘{siina::c Alp = k[y)

suggest. From another point of view primary decomposition Ometry woy4 ér(p?) = P hence p* 1

eralization of the factorization of an integer as a product of pn'I:-trDWdES 4 gen. | vion 4.2. If r(a) is maximal, then a is primary. In particular, the

_thc modern treatment, with its emphasis on lﬂcalizatian, primary szuwm.' .I" Prﬂfmf;a m.ax:'ma! ideal m are m-primary.

IS no lﬂngfrr such a central tool in the theory. It is still, however D?T’“Dnsmgn power — m. The image of m in A/a 1s the nilradical of A4/a, hence 4/a

itself and in this chapter we establish the classical uniqueness thr;nrcri?sterm ! Prod) Lct;(ﬂgin:e id-{.’:ﬂl, by (1.8). Hence every element of A4/a is either a unit or
| e so every zero-divisor in A/a is nilpotent. =

nilpotent, and

The prototypes of commutative rings are Z and the ring of polynomigy
as ] L & - .
We are going to study presentations of an ideal as an intersection of primary

k[,x_'l,'. .5 Xp] Where k is a field: both these are unique factorization domains
This is not true of arbitrary commutative rings, even if they are integral dnmains: ideals. First, a couple of lemmas:

(the classical example is the ring Z[V/ —35], in which
, the element 6 has 1y, ; ' ' ' '
: e " Lemma 4.3. If i (1 < i < n)arep-primary, then q = (=, q,is p-primary.
[e;sent_mlly drstlnﬁt fﬂCtGI‘IZﬂIID‘I}S, 2:3 and (1 & "V -—”5)(1 — V' =5)). However, Proof. r(q) = r(Nf.1a) = (N r(a) = p. Let xyeq, y¢gaq. Then for some i
€re 1s a generalized form of “‘unique factorization’ of ideals (not of elements) we hi;ve xy € q, and y ¢ q,, hence x € p, since q; Is primary. ™

In a wide class of rings (the Noetherian rings).
A prime ideal in a ring A4 is in some sense a generalization of a prime num. Lemma 4.4. Let q be a p-primary ideal, x an element of A. Then
ber. The corresponding generalization of a power of a prime number is 2

primary ideal. An ideal q in a ring 4 is primaryif q # A and if

1) if xeq then (q:x) = (1);
i) if x & q then (q:x) is p-primary, and therefore r(q:x) = p;

ni) if x ¢ p then (q:x) = q.
In other words, Proof. 1) and 1) follow immediately from the definitions.
): if y e (q:x) then xy € q, hence (as x ¢ q) we have y € p.

IS primar A 0 -divisor i 1s nilpotent. : : :
qisp y <> A/q # 0 and every zero-divisor in A4/q is nilpo (9:x) < p; taking radicals, we get r(q:x) = p. Let pz € (q:x) with y ¢ p; then
Xyz€q, hence xze q, hence ze (q:x). =

Xy € q = either x € q or y" € q for some n > 0.
Hence q S

Clearly every prime ideal is primary. Also the contraction of a primary
ideal is primary, for if f: A — B and if q is a primary ideal in B, then A/q" s
isomorphic to a subring of B/q.

Proposition 4.1. Let q be a primary ideal in a ring A. Then r(q) is the smallest :

prime ideal containing q. a =) a (1)

Proof. By (1.8) it is enough to show that p = :
(xy)" e q for some m > 0, and therefore either x™ € q or y™ € q for 0

n > 0; i.e., either xer(q) oryer(q). m
50

| A primary decomposition of an ideal a in A is an expression of a as a finite
Intersection of primary ideals, say

-

is prime. Let xy € r(q), then : Y] ]
r(q) is p (In general such a primary decomposition need not exist; in this chapter we shall
restrict our attention to ideals which have a primary decomposition.) If more-
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ct, and (i1) we have q; 2 ()4 0, (1 < ¢ <

ot : n
aid to be minimal (or irredundant, or reqy, ) the

) are all distin

ition (') 1S 8
decom ns:tmn( )1 . : » i -
p”mixry ) BI; (4.3) we can achieve (i) and then we can omit any superq,; "
normal, . . .). imary decomposition can be redyceg t -
0 g

achieve (ii); thus any pr

terms to hat a i decomposable if 1t has a primary deco,

minimal one. We

tion.
Theorem 4.5. (Ist uniquencss theorem). Let a be a decomposable ideal gy,

_ . q bea minimal primary decomposition of a. Let yp, —
let a = (V=1 qi , J : ‘deals whicl k r(‘h)
(1<is n). Then the p,are precisely the prime 1dedis WRICit occur in the g,
of ideals r(a:X) (x€ A), and hence are independent of the particular g,

composition of a.
Proof. For any x€ A W

shall say t Npos;.

¢ have (ﬂ.:.":) — (ﬂ fh:-"f) = ﬂ _(fh:-l‘), hence r(n;_‘_.) =
Yoy F(02%) = (Mxea, Py DY (4.4). Suppose r(n.: x) is prime; then by (1.11) y,
have r(a:x) = b, for some j. Hence evcry_prlmc ideal of the form r(n_::::) is one of
the p,. Conversely, for each i there exists X; ¢ G, X(€ [ )z q; since the de.

composition 18 minimal; and we have r(a:x;)) = p.. ®

Remarks. 1) The above proof, coupled with the lus'_,t part of (4.4), shows that
for each i there exists x; in A such that (a:x;) IS p,-primary.

1 as an A-module, (4.5) is equivalent to saying that the p,

2) Considering A/ : o
ideals which occur as radicals of annthilators of elements

are precisely the prime
of A/a.

Example. Leta = (x*, xy)in A4 = k[x, y]. Thena = p; N p3 where p, = (x),
p, = (x,y). The ideal p3 is primary by (4.2). So the prime ideals are p,, p,.
In this example p; < py; we have r(a) = Py N Py = Py, but a is not a primary

ideal.

The prime ideals p, in (4.5) are said to belong to a, or to be associated with q.
The ideal a is primary if and only if it has only one associated prime ideal. The
minimal elements of the set {9y, . .., p,} are called the minimal or isolated prime

ideals belonging to a. The others are called embedded prime ideals. In the

example above, p, = (x, y) is embedded.

Proposition 4.6. Let a be a decomposable ideal. Then any prime ideal |

P 2 a contains a minimal prime ideal belonging to a, and thus the minimal

prime ideals of a are precisely the minimal elements in the set of all prime |
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arieties embedded in the irreducibl
ese, i€ VE . . ducible components,
b fore (4.6) the variety defined by a is the line x = 0 anii t

E;mgl " - (x, ¥) corresponds to the origin (0, 0).

ide , o

7) It 18 not true that dtllI tlu,”pnmary romponents are independent of

jecomposition R BRNLPES (Y%, ) = (x) N (x, y)? = (x) N (X2, ) are f}hc

distinct minimal primary decompositions. However, there are SUITIE; unique -
* n

oropertics: see (4.10). ess

osition 4.7. Let a be a decomposable ideal — A\n
Prop , let a = =1 q; be g

minimal pr imary decomposition, and let r(q,) = p,. Then
}:Jl P = {xed:(a:x) # a}.

np articular, if the zero ideal is decomposable, the set D of zero-divisors

is the union of the prime ideals belonging 10 0. of A
proof. 1f ais decmmpﬂszﬂ?le, then O is decomposable in A4/a: namely 0 = N g
where d; is the image of q,in A/a, and is primary. Hence it is enough to prove thqe1
last statement of (4.7). By (1.15) we have D = |, ,, F(U':x); from the proof of
(4.5), we have r(0:x) = (Nxea, ¥; S ¥y for some j, hence D < UL, p, But
1lso from (4.5) each p, is of the form r(0: x) for some x € 4, hence \ yp, < D. m

Thus (the zero ideal being decomposable)
D = set of zero-divisors
= |J of all prime ideals belonging to 0;
N = set of nilpotent elements
= () of all minimal primes belonging to 0.

Next we investigate the behavior of primary ideals under localization.

Proposition 4.8. Let S be a multiplicatively closed subset of A, and let q
be a p-primary ideal.

) IfSNyp # &, then S 1q = §1A.

W IfSNny = @, then S~1q is S ~'p-primary and its contraction in A is q.
Hence primary ideals correspond to primary ideals in the correspondence
(3.11) between ideals in S ~*A and contracted ideals in A.

Proof. 1) If se S N p, then s" € S N q for some n > 0; hence §™'q contains

ideals containing a. ; $"/1, which is a unit in S 4.
Proof. If p 2 a = M.y, then p = r(p) 2 Nr(q) = () v Hence by l ) fSNp = o, thense Sandase qimply a € q, hence q° = q by (3.11).

(1.11) we have p 2 p, for some i; hence p contains a minimal prime ideal of a. ® | Also from (-3.1 1) we have r(q¢) = r(S ~q) = S~ *r(q) = S~ 'p. The verification
if | that §=1q is primary is straightforward. Finally, the contraction of a primary

Remarks. 1) The names isolated and embedded come from geometry. Thus | ideal js primary. m
A = k[xy,..., x,] Wh':':rc k is a field, the ideal a gives rise to a variety X s K '
(see Chapter 1, Exercise 25). The minimal primes p, correspond to the 1rre

For any ideal a and iplicati ' tion
i . 4t any multiplicatively closed subset S in A, the contractio
ducible components of X, and the embedded primes correspond to subvaricti® | ;

N 4 of the ideal S -1qa is denoted by S(a).
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Proposition 4.9. Let S be a multiplicatively closed subset of A and [,

decomposable ideal. Let a = (=1 G be a minimal primary decompos; ;;ﬂbe a
a. Let p, = r(q,) and suppose the q, numbered so that S meets p, " of
but not Py, . . - Pm- Then cop,
i m
S~ la = Iﬂ S “*a, S(a) = M qai
-1 (=)

and these are minimal primary decompositions.
Proof, S~'a = (=15 ' by (3.11) = N1 S~'q, by (4.8), and S-1q
S ~1p,-primary for i = [,..., m. Since the p; are distinct, so are the S-1,
(1 <i< m), hence we have a minimal primary decomposition. C‘Jntrﬂctingl

both sides, we get

S(a) = (S = (S = (o

by (4.8) again. =

A set T of prime ideals belonging to a is said to be isolated if it satisfies the
following condition: if p’ is a prime ideal belonging to a and p’ < p for some
p e, then p’' € 2.

Let T be an isolated set of prime ideals belonging to a, and let § = 4 -
Upez . Then S'is multiplicatively closed and, for any prime ideal p’ belonging

to a, we have
pel=>pPNS=40;

e =p & U pby (1)) =>p NS # I

pes

Hence, from (4.9), we deduce

Theorem 4.10. (2nd uniqueness theorem). Letabea decomposable ideal, let

n_, q, be @ minimal primary decomposition of a, and let {py,, - - s Vil |

a =
is independent of

be an isolated set of prime ideals of a. Then q, N+ ‘N qy,
the decomposition. !

In particular: |
Corollary 4.11. The isolated primary components (i.e., the primary Cf?m‘f
ponents ; corresponding to minimal prime ideals p,) are uniquely determintt

by a.
Proof of (4.10). We have q, NN Gy, = S(a) where S = 4 — Py U
hence depends only on a (since the P depend only on a). ™

Remark. On the other hand, the embedded primary components a I s
not uniquely determined by a. If A is a Noctherian ring, there arc H}sell
infinitely many choices for each embedded component (see Chapter 8, Exerc

re In gﬁﬂﬂfﬂi

---Upfﬁm i
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ExERCISEs

ll-

| e

5. In the

(f an ideal @ has & primary decomposition, then Spec (4/a
:reducible components.
r(Q), then a has no embedded prime ideals.

) has only finitely many

(f Ais Jbsolutely flat, every primary ideal is maximal.

i ' Z[t], the ideal - :
pﬂlynﬂmtal ring ) eal m = (2.1) is max;
= (4,1)1s m-primary, but is not a power of m, aximal and the jdea)

pulynumial ring K[x, y, z] where K is a field and x ¥, z are independ
k- pendent

‘ndeterminates, let p1 = (%, ), P2 = (x,2),m = (x,y,2); p, and P2 are pri
' rime,

.. maximal. Let a = p,p,. Show th — j
and M 1S ata =P, Np,Nm?is g reduced

primary decomposition of a. Which components are isolated and which
gmbﬂddﬁd? are

Let X be an inﬁ{]im compact Hausdorff space, C(X) the ring of real-valyed
continuous functions on X (Chapter 1, Exercise 26). Is the zero ideal udae

composable in this ring?

1 Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate

8 Let k be a field. Show that in the polynomial ring k[x,,..

over A. For each ideal a of 4, let a[x] denote the set of all polynomials in A[x]

with coefficients in a.

i) a[x] is the extension of a to Alx].

ii) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].

iii) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x)].
rUse Chapter 1, Exercise 2.]

iv) If a = (=1 Qi is a minimal primary decomposition in A, then a[x] =
Nr=1 qulx]1s a minimal primary decomposition in A[x].

v) If b is a minimal prime ideal of a, then p[x]is a minimal prime ideal of a[x].

., X,] the ideals
b = (x,...,x) (1 < i< n) are prime and all their powers are primary.
[Use Exercise 7.]

9. Inaring 4, let D(A) denote the set of prime ideals p which satisfy the following

10. For any prime ideal b in a ring 4, let Sp(0) d

condition: there exists @ € A4 such that p is minimal in the set of prime ideals
containing (0:@). Show that x € A is a zero divisor <= x € p for some p € D(A).

Let S be a multiplicatively closed subset of 4, and identify Spec (S™'4)
with its image in Spec (4) (Chapter 3, Exercise 21). Show that

D(S-1A) = D(A) N Spec (S74).

If the zero ideal has a primary decomposition, show that D(A) is the set of

associated prime ideals of 0.
enote the kernel of the homo-

morphism 4 — Ap. Prove that

1) 5y(0) < p.

") r(Sp(0)) = p <> p is a minimal prime ideal of A.
) If p 2 p’, then Sp(0) < Sy, (0).

o) (eoce Sy(0) = 0, where D(A) is defined i Exercise 9.
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11.

12,

13.

14.

15.

16.

17.

PRIMARY DECOMPOSITION
' ini . o ideal of a ring A, show that Su(0) (Exerci: _
If p is a minimal prime ide e 10} N

smallest p-primary ideal. :
Let ::ch the intersection of the ideals Sp(0) as p runs through the

prime ideals of A. Show that a is contained in the nilradical of A4,
Suppose that the zero ideal is decomposable. Prove thata = 0if anq only i

every prime ideal of 0 is isolated.

Let Abearing, Sa multiplicatively closed subset of {I. For any ideal q, |y S(a)
denote the contraction of S lq in A. The ideal S(a) is called the sarturgyj, of o

with respect to S. Prove that
i) S(a)N Sb) = S(a N D)

i) S(r(@) = r(S(a))
iii) S(a) = (1) <= a meets S

1v) 51(52(‘1]) = (5:52)(a). |
If a has a primary decomposition, prove that the set of ideals S(a) (where § rung

through all multiplicatively closed subsets of A) is finite.

Let A be a ring and p a prime ideal of A. The nth symbolic power of v is defineg
to be the ideal (in the notation of Exercise 12)

- p™ = Sp((p")

where Sy = A — p. Show that
i) p™ is a p-primary ideal;
i) if p has a primary decomposition, then p™ is its p-primary component;
iii) if p™p™ has a primary decomposition, then p™*™ is its p-primary compo-

Nimg|

nent,
iv) p™ = p" < p™ js p-primary.
Let a be a decomposable ideal in a ring A4 and let p be a maximal element of the
set of ideals (a:x), where x € A and x ¢ a. Show that p is a prime ideal belonging

to q.

Let a be a decomposable ideal in a ring A, let Z be an isolated set of prime ideals
belonging to a, and let q; be the intersection of the corresponding primary
components. Let fbe an element of A4 such that, for each prime ideal p belonging
to a, we have fep <= p ¢ X, and let S, be the set of all powers of f. Show that

az = S;(a) = (a:f") for all large n.

If A is a ring in which every ideal has a primary decomposition, show that every
ring of fractions S ~*A4 has the same property.

Let A be a ring with the following property.
(L1) For every ideala # (1) in 4 and every prime ideal p, there exists X ¢ ¥ such
that Sp(a) = (a:x), where Sy = 4 — p.
Then every ideal in A is an intersection of (possibly infinitely many) primar
ideals.
[Let a be an ideal # (1) in A4, and let p, be a minimal element of the set of Pr
ideals containing a. Then q, = Sy, (a) is p,-primary (by Exercise 11), and a:
(a:x) for some x ¢ p,. Show thata = q;, N (a + (x)). t
Now let a, be a maximal element of the set of ideals b 2 @ such thi?e
q: Nb = a, and choose a, so that x € a,, and therefore a, § 1. Repeat !

o — — e M5

e

ime |

—
—

o

18.

19.

20,

U,

E}{ERCIS ES ST

canstructiﬂn starting with a;, and so on. At the nth stage we ha
v

O O where the q, are primary ideals, a, is maxima] i) g
I

(@ining @n-1 = 0, Nassuchthata = g, A...qn Qn N b
L

tage we have Qn = {1)1 Ihﬂ process 5‘.[}‘]51 and .
Sl:irn.ﬂl‘l" ideals. If not, continue by transfinite induction

strictly cont
the following condition on a ring A4-
E 52 = W gy

(L2) Given an ideal a and a descending chain S,
‘nlicati losed subsets of 4. th : : = -~ IR0
mull:pllcatwclyc , there exists an inte
gf (@) =" Prove that the following are EE{Uival{:nt‘ger n such that §,(q) =
i; Every ideal in A has a primar}f decomposition:
i) A satisfies (L1) and (L2).
i) = i e Exercises 12 and 15. For ii) = j :
[For 1) i), use E _ b 0 il 1
‘he proof of Exercise 17, that if S, = Sy, N...~ Sv, then §. m;{zuéausn of
S.(,) = {l),‘and thﬂrcfmr? Sa(@) = 41NN q,. Now use L2 1o shna;w?}:cﬂ
the construction must terminate after a finite number of Slﬂps-,] at

ﬂins A, - 1*]

Consider

et Abearing and p a prime ideal of 4. Show t SIS
uI:dnntains S»(0), the kernel of the canonical hnmnmnrp};inivjrip,qpnmdry )
Suppose that A4 satisfies the following condition: for every prin'ft.: ideal b, th
intersection of all p-primary ideals of A is equal to $,(0). (Noetherian xjin z
satisfy this condition: see Chapter 10.) Let p,, ..., p, be distinct prime idealgs
none of which is a minimal prime ideal of 4. Then there exists an ideal a in A
whose associated prime ideals are p,, ..., p,.
[Proof by induction on n. The case n = 1 is trivial (take a = p,). Suppose
n > 1 and let p, be maximal in the set {p,, ..., b,}. By the inductive hypothesis
there exists an ideal b and a minimal primary decomposition b = q, A - -
N Qn-1, Where each q; 1s pi-primary. If b < Sy (0), let p be a minimal prime
ideal of 4 contained in p,. Then Sy (0) = Sy(0), hence b = Sy(0). Taking
radicals and using Exercise 10, we have p, n---Np,_; € b, hence some
P € b, hence P, = p since p is minimal. This is a contradiction since no b, is
minimal. Hence b ¢ Sy (0) and therefore there exists a p,-primary ideal q,
such that b ¢ q,. Show that a = q, N---N q, has the required properties.]

Primary decomposition of modules
Practically the whole of this chapter can be transposed to the context of
modules over a ring A. The following exercises indicate how this is done.

Let M be a fixed A-module, N a submodule of M. The radical of N in M is
defined to be

ru(N) = {xe A:xM < N for some g > O}.

Show that rM(N) = r(N:M) = r(Ann (M/N)). In particular, ry(N) 1s an

deal.
State and prove the formulas for ry analogous to (1.13).

of M, namely m b xm. The

An ;
clement x ¢ 4 defines an endomorphism ¢, o
. is not injective

cle is sai n M i
MeNt x is said to be a zero-divisor (resp. nilpotent) in M if ¢

—
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(resp. Is nilpotent). A submodule Q of M is primary in M if Q # a4 giid
zero-divisor in M/Q is nilpotent. Cver,
Show that if Q is primary in M, then (Q:M) is a primary ideal g,
ru(Q) is a prime ideal p. We say that Q is p-primary (in M).
Prove the analogues of (4.3) and (4.4).

d h[:nt{.

. o 1 T » = Tl ] F . o ] . i
A primary decomposition of N in M is a representation of N as an mtmtﬂlign
N = Ql ¥ o Qu

of primary submodules of M; it ils a minimal primary decomposition if the ideg]
p, = ru(Q) are all distinct and if none of the components Q, can be ﬂmitfa
from the intersection, that isif Ot 2 My#» Q1 <1< n. «

Prove the analoguc of (4.5), that the prime ideals b, depend only g, '
(and M). They are called the prime ideals belonging to N in M. Show that lh;-.-

are also the prime ideals belonging to 0 in M/N.

State and prove the analogues of (4.6)—-(4.11) inclusive. (There is no loss
generality 1n taking N = 0.)

Integral Dependence and
Valuations

In classical algebraic gﬂﬂmﬂ?l‘}’ curves were frequently studied by projectin
them onto 2 line and regarding the curve as a (ramified) covering of the lineg

This is quite analogous to the relationship between a number field and the

rational field—or rather -b::twet_:n their rings of integers—and the common
algebraic featurc is the notion of integral dependence. In this chapter we prove a
qumber of results about integral dependence. In particular we prove the theo-
rems Of Cohen-Seidenberg (the “going-up” and *“‘going-down” theorems)
concerning prime ideals 1in an integral extension. In the exercises at the end we
discuss the algebro-geometric situation and in particular the Normalization

Lemma.
We also give a brief treatment of valuations.

INTEGRAL DEPENDENCE

Let B be a ring, A a subring of B (so that 1 € A). An element x of B is said to
be integral over A if x is a root of a monic polynomial with coefficients in 4, that
is if x satisfies an equation of the form

x" +a’1:c“"1 e R = ﬂn=0 (1)
where the g, are elements of A. Clearly every element of A is integral over A.

Example 50. 4 = Z, B = Q. Ifa rational number x = r/s1s integral over Z,
where r, s have no common factor, we have from (1)

Pt ot 4 oo 4 Gt =0

the @, being rational integers. Hence s divides r", hence § = + 1, hence X € Z.

Proposition 5.1. The following are equivalent:
) x € B is integral over A;
W) A[x] is a finitely generated A-module;

i) A[x] is contained in a subring C of B such that
A-module

C is a finitely generared

59
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iv) There exisis a faithful A[x]-module M which is finitely generateq 4 an
v ere : ‘

A-module.

Proof. i) = ii). From (1)
n+r — -—'(ﬂ]_.r

we have
n+r-1 4 ...+ gnx")

X
: : itive powers of x lie in the 4-m
. hence, by induction, all posl ' Odule
;Z;:lr;:;jbg’lﬂx ,_,,y:f“'l- Hence A[x] is gcnerated (as an A-mﬂdule) by
B, s X »

i) = iil). Take C = Alx]- |
iii) = iv). Take M = C, which is a faithful A[x]-module (since yC = ¢ _

y-1 = 0).
iv) = i). This follow
a = A (we have xM S M
have 2 + @i x0T Ga
Corollary 5.2. Lel X (1<isn be elements of B, each integral over 4
Then the ring A[Xy, .. -» Xa] i5 @ finitely-generated A-module.

Proof. By induction on n. The case 7 = | is part of (5.1). Assumen > 1, le
A, = A[xy, ..., X;]; then by the inductive hypothesis 4, _, 1s a finitely generated
A. = A, _i[x,] is a finitely generated A,_,-module (by the case

A-module. A4, : .
n = 1, since x, is integral over 4,-,). Hence by (2.16) A, is finitely generated

as an A-module. =

Corollary 5.3. The set C of elements of B which are integral over A is a

subring of B containing A.
Proof. If x, y € C then A[x, y] is a finitely generated 4-module by (5.2). Hence
x + y and xy are integral over 4, by ii1) of (5.1). =

s from (2.4): take ¢ to be multiplication by x, apg
since M is an A[x]-module); since M is faithful, we

— O for suitable g€ A. =

The ring C in (5.3) is called the integral closure of A in B. If C = A, then 4
is said to be integrally closed in B. 1f C = B, the ring B 1s said to be integral

over A.

Remurk_. Lc?t f: A — B be a ring homomorphism, so that B is an A-algebra.
Then £ is said to be integral, and B is said to be an integral A-algebra, if Bis
integral over its subring f(4). In this terminology, the above results show that

finite type + integral = finite.

F‘nrallary 54. If A < B < Care rings and if B is integral over A, and Cis
integral over B, then C is integral over A (transitivity of integral dependence)

Proof. Let x € C, then we have an equation
X+ bx" ' 4o+ b, =0 (b, € B).

;h:ﬁr?g IBI il . 2 b,] is a finitely generated A-module by (5.2), and Bf{l']
itely generated B'-module (since x is integral over B’). Hence B’ (x] 1s @

d A-module by (2.16) and th *
‘ gcngralc crefore x is int
nitely teral over 4 py jis
f(ﬁ-l)' 5.5 Let A S B be ri d o
!!ﬂry o P - HES an {Ef C b
f;ﬂ e C is integra Iy closed ins B ¢ the integral clogyre of A
| . ;
tegral over C. B oy
Let X € B be In Yy (5.4) x is int
proof. cgral over 4
el 5 ition shows that i 5
qext proposition shows thatintegral dependence
IW d to rings of fractions: pencencels preserved on Passing

{0 flunticnts an
Proposition 5.6. Let A < B be rings, B integral over 4.
) If b is an ideal of B anda = b = A N Db, then B[b is
W is a multiplicatively closed subset of A, then
§74.

proof. 1) 1 xe B we have, say, x" + g, x""! 4+... 4 4

Reduce this equation mod. b.
i) Let x/s € S-1B(x € B, s € §). Then the equation above gives

(x/s)* + (ay/s)(x/s)" "' +---+ a,/s" =0

Integral over A|q.

-1 . g
S 7B is integral oper

= 01 'W'ith H{EA_

which shows that x/s is integral over S™'4. =

THE GOING-UP THEOREM

Proposition 5.7. Let A < B be integral domains, B integral over A. Then B
is a field if and only if A is a field.

Proof. Suppose A is a field; let ye B,y # 0. Let
Pyt it gy =0 (a € A)

F}ean equation of integral dependence for y of smallest possible degree. Since B
san integral domain we have a, # 0, hencey™* = —a;'()""* +ay"* +- -
+ d,-;) € B. Hence B is a field.

Conversely, suppose B is a field; let x € A, x # 0. Then x~* € B, hence 1S

integral over A, so that we have an equation
| X7 4 gix "t o+ a, =0 (g€ A).
tollows that x~! = —(a, + ajx + -+ apx™"*)€ A, hence A is a field. ®

Corollary 5.8. Let A < B be rings, B integral over A; let q be a prime ideal
ofBandletp = q¢ = q N A. Then q is maximal if and only if ¥ is maximal.

P ™ L3
dfaﬁ. By (5.6), B/q is integral over A/p, and both these rings are integral

I,C;r?ua’y 5.9. Let A < B be rings, B integral over A; let q,q" be prime
“ais of B such that ¢ < o' and ¢ = q'¢ = p say. Thenq = 4
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Proof. By (5.6), Byis integral over Ap. Let m be the f:.:-.:tc:nsi.ﬂn of in Ay and let
ol a0 respectively in By. Then ntis the maxima] ideg]

n, n’ be the extensl : :
of Ap; n < 1, and n° = n'e = m. By (5.8) it follows that 1, 1" are maximg,

hence n = n’, hence by (3.11)(v) 9 = q’. =
Theorem 5.10. Let A < B be rings, B integral over A, and let Y be a prip,
ideal of A. Then there exists a prime ideal q of B such that q N A = yp

Proof. By (5.6), By is integral over Ay, and the diagram
A— B

b 4
Ap—}'Bp

(in which the horizontal arrows are injections) is commutative. Let 1 be a maxi.
mal ideal of By; then m = 1N Ay is maximal by (5.8), hence is the unique
maximal ideal of the local ring Ay. If q = B~1(n), then q is prime and we have
agNA=cal(m=p =
Theorem 5.11. (“‘Going-up theorem’). Let A = B be rings, B integral
over A: letp, -+ S prbea chain of prime ideals of A and g <---<q,
(m < n) a chain of prime ideals of B such that quN A =p (1 < i< m)
Then the chain q; S+ -+ S qQn can be extended to a chain q;, S+ < q, such

that N A = p forl S i< n
Proof. By induction we reduce immediately to the case m = 1, n = 2. Let
A = Alp,, B = Blq,; then 4 = B, and B is integral over A by (5.6). Hence, by
(5.10), there exists a prime ideal d, of B such that q; N A = P,, the image of p,
i 7. Lift back . to B and we have a prime ideal q; with the required pro-

perties. o

INTEGRALLY CLOSED INTEGRAL DOMAINS.
THE GOING-DOWN THEOREM

Proposition (5.6)(ii) can be sharpened:

Proposition 5.12. Let A < B be rings, C the integral closure of A in B. Let S
be a multiplicatively closed subset of A. Then S ~'C is the integral closure of
S-'Ain S™'B.
f"rnnf. By (5.6), S*C is integral over S~*4. Conversely, if bjse S 'B1s
integral over S ~*4, then we have an equation of the form

(b/s)* + (ay/s)(B/s)** + -+ ay/s, = 0

where a,€ 4, s,€ S(1 < i < n). Lett = s, - -5, and multiply this equation Dy
(st)* throughout. Then it becomes an equation of integral dependence for bt
over A. Hence bt € C and therefore b/s = bt/ste S™'C. =

ys ‘?ﬂ'iﬂtcgral domain is said to be integrally closed (without qualiﬁcatiﬂﬂ)
if it is integrally closed in its field of fractions. For example, Z 1 integrally

e

|NTEGR!‘LLLY CLOSED INTEGRAL DOMAINS GOING-DOW
A N THEQR
EM
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5.0)). The same argument show
ﬂd (Sﬂﬂ ( = S thﬂt an -
d::mi s integrally closed. In particular, a polynomia ‘:‘_’ir‘:gﬂlﬁu:: factorizatigp
feld is integrally cl_ﬂsed. [x, ... £ o
a [ntegral closure is a local property:
Prﬂ}’mfﬁﬂn 5.13. Let 4 be an integral domain, Then the .
gqufua!ﬂﬂ-' following e

i) A is integrally closed;
i) Ap is integrally closed, for each prime ideql D;
iii) Am IS integrally closed, for each maximal idea] .

proof. Let K be the field le frac:tiﬂns of 4, let C be the inte
Bt f: A — C I:u::_thc identity mapping of A4 into C,
closed < f1s Surjcictwf.':, and by (5.12) Ay (resp. Ap)
(resp. fu) 18 surjective. Now use (3.9). =

gral closure of 4 in K
2 Then 4 is Integrally
'S integrally closed < f,

Let A = Bberings and let a be an ideal of A. An element of B is sajd
integral over @ if it satisfies an equation of integral dependence over AB{I t-::;1 .be
oIl the coefficients lie in a. The integral closure of ain B is the set of all ?‘ﬁ-' ich
of B which are integral over a. elements

Lemma 5.14. Let C be the integral closure of A in B and let a* denote the

extension of a in C. Then the integral closure of a in B is the radical of a*
(and is therefore closed under addition and multiplication).

Proof. If x € B is integral over a, we have an equation of the form
x*+ax*t+--+a,=0

with g, ..., a, in a. Hence x € C and x" € a¢, that is x € r(a®). Conversely, if
xer(a®) then x® = 3 a,x, for some n > 0, where the g, are elements of a and the
x, are elements of C. Since each x, is integral over A it follows from (5.2) that
M = A[x,,..., x,] is a finitely generated A-module, and we have x"M < aM.
Hence by (2.4) (taking ¢ there to be multiplication by x") we see that x™ 1s
Integral over q, hence x is integral over a. =

Proposition 5.15. Let A < B be integral domains, A integrally closed, and
let x € B be integral over an ideal a of A. Then x is algebraic over the field of
fractions K of A, and if its minimal polynomial over K4 at> e
T ay, then ay, . . ., a, lie in r(a). *
Z;g Clearly x iS‘algebraic over K. Let L be an ext?nsiun field of K wl:}ch
i intl:s all the conjugates x;, ..., x, of x. Each X, s‘ansﬁes the same ef{qs: ;1:::
eﬂjgieﬂ%:al dEPeﬂﬁlﬂpcc as x does, hence each Xx; 1S mtegral'nvcr a.
by of the minimal polynomial of x over K are polynomid

G.14)are integral over a, Since A is integrally closed, they must

14) agai
" ) again, B

s in the x;, hence
lie in r(a), bY
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Mﬂrfm 5.16: (uGﬂing_dﬂwn thcﬂrcm”). Let A < B be f”fﬂgraf do

Mmaj
A integrally closed, B integral over A. Let p, 2 -+ 2 v, be a chaiy, Qing

. . {}f ri :
ideals of A, and let 9, 2" > g, (m < n) be a chain of prime l'de.gffﬂj.”ﬁ
such that q N A = Py (1 <1< Hl). Then the chain 0 2D q S !B

m he

extended to a chain a; 2= fn such that ;N A = p (1l < i < n).

Proof. Asin (5.11) we reduce immediately to the casem = l,n =2, T, -
have to show that p; is the contraction of a prime ideal in the ring B, ¢
equivalently (3.16) that Bq,ps 1 A = Pa.

Every x € Bq,Pa 18 of the form y/s, xvl?erc yE€ By, and s € B — q,. By .14
y is integral over Pa, and hence by (5.15) its minimal equation over K, the fie|q ﬂ'f

fractions of A, is of the form
y+uwy t4tu=0 "

1+ Of

with uy, . . ., 4, 10 P2. e
Now suppose that x € By, P2 N A. Thens = yx~% with x™% € K, 50 that

minimal equation for s over K1s obtained by dividing (1) by x", and is therefore,
say,

ST+ ot 4+, =0 Q)
where v, = u/x". Consequently
x'vy = U € Py (1 <i<r) 3)

But s is integral over A, hence by (5.15) (with a = (1)) each v, is in 4,
Suppose x ¢ p,. Then (3) shows that each v, € p,, hence (2) shows that s" ¢ By,
< By, < q,, and therefore s € q;, which is a contradiction. Hence x € p, and
therefore By, po N A = Pg as required. =

The proof of the next proposition assumes some standard facts from field

theory.
Proposition 5.17. Let A be an integrally closed domain, K its field of fractions,
L a finite separable algebraic extension of K, B the integral closure of A in L.
Then there exists a basis vy, . . ., v, of L over K such that B < 27, Av;.

Proof. If vis any element of L, then v is algebraic over K and therefore satisfies
an equation of the form

ag’ + av'" +---+ a, = 0(a, € A).

Multiplying this equation by ap~*, we see that a0 = u is integral over 4, and
hence is in B. Thus, given any basis of L over K we may multiply the basis ele-
ments by suitable elements of A to get a basis uy, . . ., #, such that each u € B.

Let T denote trace (from L to K). Since L/K is separable, the bilinear form
(x, ) > T'(xy) on L (considered as a vector space over K) is non-degenerate,
and hence we have a dual basis v,, .. ., v, of L over K, defined by T(up;) = %
Let x€ B, say x = 3, x;v,(x, € K). We have xu, € B(since u, € B) and therefore
T(xu,) € A by (5.15) (for the trace of an element is a multiple of one of the co-
efficients in the minimal polynomial). But T'(xu,) = 3, T(xuw;) = 2.9 x,T (140}
= >, X, 8, = x;, hence x,€ A. Consequently B < >, Av,, =

VALUATION Rings 6

vALU‘mON o

n integral domain, K its field of fractions.

a - Bisau '
v ! A Borx-'€ B (o ey 1S 2 valuation ring of K if

proposi! ,
0 i/ B is @ ring such that B < B' < K. then B is v

luati )
Iy closed (in K). aluation ring of K.

jon 5.18. 1) B is a local ring.

T bl
Let m be the set of non-units of B, 5o thay x

M <= g
[fae Band x em we have ax € m, for otherwise G ¢ither x = ¢

x)-1
)-1 € B. Next let x, y be non-zero elements of m )The B and therefore

-1yEB- If xy"'€B then x + y = (1 + xy~Y)y e Bm :En EltherxJ’HIEB

p. Hence mt 1s an ideal and therefore B is a ocal ring b;’n('l :;1':1 Similarly

or X
ifx7 € N
i) Clear from the definitions.

i) Let X € K be integral over B. Then we have, say
.1'”‘ + bl.).‘:”"l +---+ bn —

with the bi € B. If x € B there is nothing to prove.

If not, then x-1
X = -"'(bi +’b2x—1 RN bnxl_ﬂ)EB. EB: htI’lCﬂ

Let K be a field, Q an algebraically closed field. Let T be

(4, f), where A is a subring of K and fis a homomorphism of A4 ;
r the set = as follows:

(A,f) <A, f)=A<c Aand f'|4 = f.

The conditions of Zorn’s lemma are clearly satisfied and therefore the set T has at
least one maximal element.

the set of all pairs

nto £2. We partially
orde

Let (B, g) be a maximal element of 2. We want to prove that B is a valuation
ring of K. The first step in the proof is

Lemma 5.19. B is a local ring and m = Ker (g) is its maximal ideal.

Proof. Since g(B) is a subring of a field and therefore an integral domain, the ideal
m = Ker (g) is prime. We can extend g to a homomorphism g: B — { by putting
#(b/s) = g(b)/g(s) for all b € B and all s € B — m, since g(s) will not be zero. Since

the pair (B, g) is maximal it follows that B = By, hence B is a local ring and mt is its
maximal ideal. =

Lemma 5.20. Let x be a non-zero element of K. Let B[x] be the subring of K
generated by x over B, and let m[x] be the extension of m in B[x]. Then either
mlx] # B[x] or m[x~1] # B[x"1].

Proof. Suppose that m[x] = B[x] and m[x~!] = B[x~']. Then we shall have
¢quations

U + Uyx + -+ Upx™ = 1 (4, € m) ()

GoF ix 2 Fised oxt =1 - (o€M) (2)

::;hich We may assume that the degrees m, n are as small as possible. Suppose that
™, and multiply (2) through by x":

(1 == uu)x" = len-*l + -+ Un

(3)

S T——
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Since v, € m, it follows from (5.19) that 1 — vois a unit in B, and (3) My
be written in the form er
X" = wyx" " 4t oWy

(w; € m),

Hence we can replace x™ in (1) by wix
the minimality of the exponent m. H

Theorem 5.21. Let (B, g) be a maximal element of X. Then B is q
“f”f{m

ring of the field K.
Proof. We have to show that if x # 0 is an element of X, then either x ¢ p
x-1 e B. By (5.20) we may as well assume that m[x] is not the unit idea] of the or
B’ = B[x]. Then m[x] is contained in a maximal ideal m’ of B’| and s, ]““E
m’ A B = m (because m’ N B is a proper ideal of B and contains m). I-Icnccmrt
embedding of B in B’ induces an embedding of the field &k = B/m in the field kjlhf:
B’/m’; also k' = k[X] where X is the image of x in k', hence X is algebraic over y
therefore &’ is a finite algebraic extension of k. » and

Now the homomorphism g induces an embedding & of k in Q, since by (5|9
m is the kernel of g. Since {2 is algebraically closed, & can be extended to ap ;:m}
bedding #’ of k” into 2. Composing ¢’ with the natural homomorphism B’ — }’ m:,
have, say, g’: B’ — £ which extends g. Since the pair (B, g) 1s maximal, it fnlll:;ws

that B’ = B and therefore xe B. B

Corollary 5.22. Let A be a subring of a field K. Then the integral closure A of 4
in K is the intersection of all the valuation rings of K which contain A.

Proof. Let B be a valuation ring of X such that A = B. Since B s integrally closed

by (5.18) iii), it follows that s B,

Conversely, let x ¢ A. Then x is not in the ring A’ = A[x~']. Hence x~!'isa
non-unit in A’ and is therefore contained in a maximal ideal m” of A”. Let € be an
algebraic closure of the field k' = A’/m’. Then the restriction to A of the natural

homomorphism A” — k’ defines a homomorphism of A into . By (5.21) this can
be extended to some valuation ring B 2 A. Since x~! maps to zero, it follows that

x¢B =W
Proposition 5.23. Let A < B be integral domains, B finitely generated over A.
Let v be a non-zero element of B. Then there exists u # 0 in A with the following

property: any homomorphism f of A into an algebraically closed field C such that
f(u) # 0 can be extended to a homomorphism g of B into Q such that g(v) # 0.

Proof. By induction on the number of generators of B over A we reduce immediately

to the case where B is generated over A by a single element X.

i) Suppose x is transcendental over 4, i.e., that no non-zero polynomial with
coefficients in 4 has x as a root. Let v = aox™ + ax"~! 4+ -+ an, and take
u = ap. Thenif f: A — Q is such that f(u) # 0, there exists { € Q such that f(a0)¢’
+ fla)é*=* + -+ + f(a,) # 0, because £ is infinite. Define g: B — {1 extending /
by putting g(x) = ¢ Then g(v) # 0, as required.

ii) Now suppose x is algebraic over A4 (i.e. over the field of fractions of 4). Then
s0 is v~1, because v is a polynomial in x. Hence we have equations of the form

Aox™ + HII""1 e A = 0 (ﬁ'{EA)
aruv—n + ﬂil}'l-" X TP & a’n =0 (H;EA).

1 - - " * 1 -
m + "I" 1”“.\. ¥ llnd t]]ls Cﬂ”trﬂdii t
l’.l

A E—— e ———— e —

el and let f: A —a-_lfl be such that f(u) # 0.
_momorphism fi: Alu™] = Q (with fi(u-1) =
0.8 b9 yorphism h: C — £, where Cis a valuation rj

n . rin .. ;
q homo intﬂgfﬂl over A[u~1'], hence by (5.22) x e C & containing Ay~

C. On the other hand, from (2), U'“ 1‘_ 180 that C contai

=
Eu]ﬂ'r v " . 2 » - .
22) again 15 in C. Therefore vis a unit in

fore bY : striction of ito B. ®m

524, Let k be a field and B q finitely
it is a finite algebraic extension of k.

A=kv= ] and Q = algebraic closure of &

Cﬂfﬂ”ﬂry
ﬁfm then

proof. Take
: : ) of Hilbert’s Nullstellensatz. F
(5,24) is one forn Satz. For another proof, see (19).

generated k-algebrg If Bi
: is g

EXERCISES

{ Letf: A — Bbean integral homomorphism of rings. Show that f*: g (B
* I}EE :l—Jr

spec (A) is @ closed mapping, i.c. that it maps closed sets to closed sets. (This
’ 1S1Sa

geometrical equivalent of (5.10).)

7, Let A be @ subring of a ring B such that B is integral over A, and et fid—Q

be a homomorphism of 4 into an algebraically closed field
be extended to a homomorphism of Binto Q. [Use (5.10).] . Show that f can

3, Let f: B— B  bea homomorphism of A-algebras, and let C be
i ’ an A-

If is integral, prove that f ® 1: B ®, C — B’ @, Ciis integral. (This ?;gi:béa.
(5.6) i) as a special case.) cludes

4. Let A be a subring of a ring B such that B is integral over A. Let n be a maximal
ideal of B and let m = n N A be the corresponding maximal ideal of 4. Is B
necessarily integral over Am? ' :
[Consider the subring k[x* — 1] of k[x], where k is a field, and letn = (x — 1).
Can the element 1/(x + 1) be integral?]

5, Let A < B be rings, B integral over A.
1) If xe A 1s a unit in B then it 1s a unit in A.
ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.

6. Let B, .
algebra.

1, l_t?l A. be a subring of a ring B, such that the set B — A 1s closed under multi-
plication. Show that A is integrally closed in B.

8. i) Let 4 be a subring of an integral domain B, and let C be the integral closure
of Ain B. Let f, g be monic polynomials in B[x] such that fg € C[x]. Then
f:g are in C[x]. [Take a field containing B in which the pnlynunﬂalsf,g
split into linear factors: say f = I (x — &), & = I (x - ;). Each & and
each v, is a root of fg, hence is integral over C. Hence the coefficients of f

i ;“d g are integral over C.] ;
rove the sgme result without assuming that B (or A) is an integral domain.

.., B, be integral A-algebras. Show that []{., B is an integral A-




10. A ring homomorphism f: A — B is said to have the going-

11.

12,

13.

where /i, = (x)™ + g1(x)""' +--- 4+ gn € A[x]. Now

apply Exercj
polynomials —f; and "' + Iy /"% + -+ -+ h,_,.] S¢ 8 10 1,

. A ; 4 up property (I‘E5p the
going-down property) if the conclusion of the going-up theorem (5. ) (rESpl [hL

going-down theorem (5.16)) holds for B and its subring f(A).
Let f*: Spec (B) — Spec (A) be the mapping associated with f.
i) Consider the following three statements:
(a) f* is a closed mapping.
(b) f has the going-up property.
(¢c) Let q be any prime ideal of B and let p = q°<.
Spec (A/p) is surjective.
Prove that (a) = (b) <= (¢). (See also Chapter 6, Exercise 11.)
i1) Consider the following three statements:
(a’) f* is an open mapping.
(b’) f has the going-down property.
(c’) For any prime ideal q of B, if p = qF, then f*: Spec (84) — Spec (4y) is
surjective.
Prove that (a’) = (b’) <= (¢’). (See also Chapter 7, Exercise 23.)
[To prove that (a’) = (c¢’), observe that By is the direct limit of the rings B,
where r € B — q; hence, by Chapter 3, Exercise 26, we have f*(Spec (By)) =
e f*(Spec (B)) = N f*(Y:). Since Y, is an open neighborhood of q in Y, and
since f* is open, it follows that f*(Y,) is an open neighborhood of p in X and
therefore contains Spec (Ayp).]

Let f: A — B be a flat homomorphism of rings. Then / has the going-down
property. [Chapter 3, Exercise 18.]

Let G be a finite group of automorphisms of a ring 4, and let A° denote the
subring of G-invariants, that is of all x € A such that o(x) = x for all c€0G.
Prove that A is integral over 4°. [If x € A, observe that x is a root of the poly-
nomial Il ¢ (1 — o(x)).] .

Let S be a multiplicatively closed subset of A such that o(5) < S for @
o€ G, and let S¢ = SN A% Show that the action of G on 4 extends to af
action on S “'A4, and that (89 ~14% ~ (5§ ~14)°.

In the situation of Exercise 12, let p be a prime ideal of A%,
of prime ideals of 4 whose contraction is p. Show that G act
In particular, P is finite.

Then f*: Spec (B/q) —

and let P be the sl
s transitively OO P.

— L TR o — =Tl
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9. Let A4 be a subring of a ring B and let C be the integral closure of 4 .
that C[x] is the integral closure of A[x] in B[x]. [If fe B(x) _:‘i_m B, Pro,
A[x], then TS integrg) o, *
[PAHSTT ot g =0 (g€ A,
Let r be an integer larger than m and the degrees of o
51""‘!’##:1 ﬂnd l" 14.
f — x7, so that 18 .
Lt x ) + S + XY +..c 4 2. =0
or say
lm -4 !flﬁm"l 4+ 00 4 “fm = 0, 15.

16.

17,

EXERCISEg 69
p and let x € P;. Then 11, a(X) € P, N 46 —
Let piba © duce that i v = P S Py he
i['ﬂl' some g E G. De P, is contained In Uﬂqg a(p:),ﬂa Nce U(x}Ept

(1.11) and (5.9)-] °d then apply

A be an integrally closed domain, K jts
Let R separable extension of K. Let G be the :

nurrﬂthc integral closure of A in L. Show that D) = B fp of L over K ang let

be
K be as in Exercise 14, let L be any finite extens;
be the integral closure of A in L. Show that, if y is ap

« of prime ideals q of B ‘:thch contract to p s
;’«; oc (B) — Spec ( A) has finite fibers),

yce to the two cases (a) L separable over K and (b : -
g::f K. In case (a), embed L in a ﬁnil"a nﬂrn‘}al acparabli e)xﬁ:rfsl:::};fl i?giiabh |
Exercises 13 and 14. In case (b), if q is a prime idea] of B such that q r:. A *use,
<how that q is the set of all x € Bsuch that x> € p for some m > 0, where i;ﬂ?‘
-haracteristic of K, and hence that Spec (B) — Spec (4) is bijective ir thi: cas:i

Let A,

y ;'::rim'e ideal of A, then the
finite (in other words, that

Noether's normalization lemma

Let k be a field and let A # 0 be a finitely generated k-algebra. Then there exist
elements y1, - - -» ¥r € A which are algebraically independent over k ang such that
A is integral over k[yi, ..., y:].

We shall assume that k is infinite. (The result is still true if & is finite, but a
different proof is needed.) Let x,,..., x, generate A4 as a k-algebra. We can
renumber the x; so that x,, ..., x, are algebraically independent over & and each
of X;+1, - - -» Xn 18 @lgebraic over k[x,, ..., x;]. Now proceed by induction on n.
If n = r there is nothing to do, so suppose n > r and the result true for n — 1
generators. The generator x, is algebraic over k[x,,..., x,_,], hence there
exists a polynomial f # 0 in n variables such that f(x,,..., x,-1, x,) = 0. Let
F be the homogeneous part of highest degree in f. Since k is infinite, there exist
AM,..., An—1 €k such that F(Ay, ..., A1, 1) # 0. Put xi = x — Ax,
(1<i<n-—1). Show that x, 1s integral over the ring A" = k[xi,..., Xr-1],
and hence that A is integral over A’. Then apply the inductive hypothesis to A’
to complete the proof.

From the proof it follows that y,, ..., y, may be chosen to be linear com-
binations of x,, . . ., x,. This has the following geometrical interpretation: if  is
algebraically closed and X is an affine algebraic variety in k" with coordinate
ring A # 0, then there exists a linear subspace L of dimension r in k™ and a linear
mapping of k" onto L which maps X onto L. [Use Exercise 2.]

Nullstellensatz (weak form).

Let X be an affine algebraic variety in k", where k is an algebraically closed field,
and let 7(X) be the ideal of X in the polynomial ring K[fs, . .-, fx] (Chapter 1,
Exercise 27). If 7(X) # (1) then X is not empty. [Let A = klts, - - e I(X)
be the coordinate ring of X. Then A # 0, hence by Exercise 16 there exists a

{i’:{lear subspace L of dimension > 0 in k" and a mapping of X onie L. Hence
# 2.]

B



18. Let k be a field a

19.
20.

21.

22.

Deduce that every maximal ideal in the ring k[fy, ..

(ty — A1y o»rIn — a,) where a € k.
nd let B be a finitely generated k-algebra. Suppose - 1
is a field. Then Bisa finite algebraic extension of k. (This is another vul‘lﬁiuﬂ |

of Hilbert's Nullstellensatz. The following proof is due to Zariski.

fs, sce (524); (79)) | /
pmi:t X1, -+ <5 Xn generate B as a k-algebra. The proof is by induction g n

If n =1 the result is clearly tfuc, so assume 7 > . L.ct A = k[x,] ang i
K = k(x;) be the field of fractions of A. By the induclwc- hypothesis, B j, . |
finite algebraic extension of K, hcf‘lcc faﬁch of X2y oy Xn satisfies a monic poly.
nomial equation with coefficients in K, 1.c. CD{.’:ﬂI.CIEﬂIS of the form a/b where , |
and b are in A. If fis the product of the denominators of all thesc coefficiens
X 18 integral over A;. Hence B and therefore K is intcgmi

"y J'n] iS [}[‘ t
he lor,

F'Dl' Glhl:r

then each of xa, . .

over Ay. o
Suppose X 1S transcendental over k. Then A is integrally closed, because it

a unique factorization domain. Hence A, is integrally closed (5.12), and there.
fore A, = K, which is clearly absurd. Hence x; is algebraic over k, hence k

(and therefore B) is a finite extension of k.

Deduce the result of Exercise 17 from Exercise 18.

Let A be a subring of an integral domain B such that B is finitely generated over
4. Show that there exists s # 0in A and elements yy, ..., ¥» in B, algebraically

independent over 4 and such that B, is integral over B;, where B’ =
Alys, -« o ya]. [Let S = A — {0}and let K = S -1 A, the field of fractions of 4,

Then S !B is a finitely generated K-algebra and therefore by the normalization
lemma (Exercise 16) there exist X1, ..., Xn in S -1B algebraically independent
over K and such that S-1B is integral over KEBbiis vopXanle  L8E Ziye
generate B as an A-algebra. Then each z; (regarded as an clement of S~1B)is
integral over K[xy, .. ., x,]. By writing an equation of integral dependence
for each z,, show that there exists s € .S such that x; = y/s (1 < i < n) with
y, € B, and such that each sz, is integral over B’. Deduce that this s satisfies the

conditions stated.]

Let A, B be as in Exercise 20. Show that there exists s # 0 in A4 such th.at,
if O is an algebraically closed field and f:A—Qisa homomorphism for which
f(s) # 0, then f can be extended to a homomorphism B — Q. [With the
notation of Exercise 20, f can be extended first of all to B’, for example by
mapping each y, to 0; then to B; (because f(s) # 0), and finally to B: (by
Exercise 2, because B, is integral over B;).]

Let A, B be as in Exercise 20. If the Jacobson radical of A is zero, then SO
Jacobson radical of B. i
[Ley v # O be an element of B. We have to show that there is a maximal 1d¢d
of B which does not contain v. By applying Exercise 21 to the ring B, and ”;j
subring 4, we obtain an element s # 0 in 4. Letm be a maximal ideal ﬂfdg
such that s ¢ m, and let k = A/m. Then the canonical mapping 4 — K exten 0
to a homomorphism g of B, into an algebraic closure £ of k. Show that g(t) 7
and that Ker (g) N B is a maximal ideal of B.]

o —————

i
l,i..rl‘

s the

23.

26,

Let
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Abea ring. Show that the following are ¢quivalent

1) EV':IY primf: idcﬂl in A1s an iﬂlETEQCIiUH of maximal

very homomorphic image of ideals,

i) In ¢ A the nilradical s €qual to th
radical ; : L ¢ Jacobsonp
Every prime ideal in A Which is not maximal js

of the prime ideals which contain it strictly.
The only hard part is 11) = 11). Suppose ii) false, then
which 18 not an 1ntcr5£:c:tmn '_Jf maximal ideals, Passing to th :

we may assume that A 1s an integral domain whose Jaco © quotient ring

sero. Let f be a non-zero clement of M. Then 4, £ ¢ he?-z:l'adical R is not
‘ f

 deal, whose contraction irf A 1s a prime ideal b such that f¢
maximal with T espect to this property. Then p is not maximal
to the :ntersection of the prime rdf:als strictly containing p.]

A ring A with the three equivalent properties

iii) equal to the intetscctic.

haﬂ d ma:‘:imal
p" aﬂd Whiﬂh 18
and is not equal

above is called a Jacobson
ring.

Let A be a Jacobson ring (Exercise 23) and B an A-algebra. Show that if B
either (i) integral over A or (ii) finitely generated as an A-algebra tht‘.‘.l B s
Jacobson. [Use Exercise 22 for (ii).] , then B is

§n parteuiar, STELY finitely generated ring, and every finitely generated
algebra over a field, is a Jacobson ring. e

Let A be a ring. Show that the following are equivalent:

) A isa Jacobson ring;

ii) Every finitely generated A-algebra B which is a field is finite over A.

[i) = ii). Reduce to the case where A is a subring of B, and use Exercise 21.

If s€ A is as in Exercise 21, then there exists a maximal ideal m of A not con-

taining s, and the homomorphism 4 — A/m = k extends to a homomorphism

g of B into the al gebraic closure of k. Since B is a field, g is injective, and g(B)
is algebraic over k, hence finite algebraic over k.

ij) = i). Use criterion 1ii) of Exercise 23. Let b be a prime ideal of 4 which is
not maximal, and let B = A/p. Let f be a non-zero element of B. Then Byisa
finitely generated A-algebra. If it is a field it is finite over B, hence integral
over B and therefore B is a field by (5.7). Hence B, is not a field and therefore
has a non-zero prime ideal, whose contraction in B is a non-zero ideal p’ such

that f¢ p".]

Let X be a topological space. A subset of X is locally closed if it is the inter-
section of an open set and a closed set, or equivalently if it 1s open in its closure.
The following conditions on a subset X, of X are equivalent:
(1) Every non-empty locally closed subset of X meets Xo;
(2) For every closed set E in X we have EN X, = E;
(3) The mapping U+ U N X, of the collection of open sets of X onto the col-
lection of open sets of X, is bijective.
A subset X, satisfying these conditions is said to be very
: If A is a ring, show that the following are equivalent:
.'.} 4 is a Jacobson ring;
) The set of maximal ideals of A is very dense in Spec (A);

dense in X.




72

27.

29.

31.

32.

33.

INTEGRAL DEPENDENCE AND VALUATIONS

sed subset of Spec (A) consisting of a single point jg

trical formulations of conditions i) and iii) of Exerc; loseq,

iii) Every locally clo
43

(ii) and iii) are geome

Valuation rings and paluations
Let A, B be two local rings. B 1S said to dominate A if A is a subring of p .

the maximal ideal M of A is contained in the maximal ideal n of B (or i

lently, if m = nN A). Let Kbe a field and let £ be the set of all local EUhr;;a‘
of X. If X gs

is ordered by the relation of domination, show that £ hag max;
elements and that A S is maximal if and only if A is a valuation ringlﬂ?ﬁ}
[Use (5.21).] .

Let A be an integral d

equivalent:
(1) Aisa valuation ring of K;
(2) If a, b are any IWO :deals of A, then either a = D or b < 4

Deduce that if 4 1s a valuation ring and p is a prime ideal of 4, then A, apq
A/p are valuation rings of their fields of fractions.

omain, K its field of fractions. Show that the following ,
re

Let A be a valuation ring of a field K. Show that every subring of K which

contains A is a local ring of A.
Let A be a valuation ring of a field K. The group U of units of A is a subgroup

of the multiplicative group K* of K.
let T = K*/U. If £§,7€ I" are represented by X, Y € K, define ¢ > 4 to

mean xy~* € A. Show that this defines a total ordering on I which is compatible
with the group structure i.e, £ 279 = fw =@ for all w € I'). In other words,

I is a totally ordered abelian group. It is called the value group of A.
Let v: K* — T be the canonical homomorphism. Show that v(x + y)2

min (v(x), v(»)) for all x, y € K*.

tally ordered abelian group (written additively), and let

Conversely, let I' be a to
is a mapping v: K* — I' such that

K be a field. A valuation of K with values in 1’
(1) v(xy) = v(x) + v(¥),
v(¥)),

(2) v(x + y) = min (v(x),
for all x, y € K*. Show that the set of elements x € K* such that v(x) = O1sa

valuation ring of K. This ring is called the valuation ring of v, and the subgroup

o(K*) of T is the value group of v.

Thus the concepts of valuation ring and valuation are essentially equivalent.

Let T be a totally ordered abelian group. A subgroup A of I' is isolated in T 1f,
whenever 0 < B < « and «a €A, we have f cA. Let A be a valuation ring of a
field K, with value group I' (Exercise 31). If p is a prime ideal of A, show that
v(A — p) is the set of elements = 0 in an isolated subgroup A of I, and that the
fnapping so defined of Spec (A) into the set of isolated subgroups ©
jective,

If p is a prime ideal of 4, what are the value
Alp, Ap?

Let I be a totally ordered abelian group. We shall show how to con
K and a valuation v of K with T' as value group. Let k be any

f T is bi-
groups of the valuation rings

struct a field
field and let

v

i —

35.

_ k[T') be the
_vector Space =7
integral lenim. e

= MXa = nta, 15 AN -’
dl m‘- < .-+ < ay, define i}{:ﬁ“tsm;;ultmum of A
_, I" satisfies conditions (1) and (2) Dufl.E -
the field of fractions of 4. Show that Xercise 31
l

A
js an
If u
| # 08
311:"4 T {0}
et K b€

» Wh
Show th ore the

¢ Uniquely extended

¥ . a 3’ .
(et Abed valuation ring a*nd K 1ts field of fractions Let f:
;mmumurphlsm such that f*: Spec (B) — Spec ( Lis.o Cfﬂsed‘ r;-:;,-'ﬂ be a ring
APPINg. Then i

: -algebra homon i JET

B— K is any A-a 10rphism (i.c., if g

g 7) we have g(B) = A e
. iously C 2 . :

(B); obviously A. Let n be a maximal idea

closed, M = n N A is the maximal ideal of 4, whence 4
dominates Am. Hence by Exercise 27 we haw:m(?

°fis the ¢mbedding of

Lof C. Since f+ i
= A. Also the local
n = A and thﬂfﬁfﬂre

| and 3 it follows that, if f: 4 — B is Integral and C ;
1S any

{-algebra, then

map-
Conversely, suppose that fi 4 — B has this property and that B i
IS an in-

regral domain. Then f is integral. [Replacing A4 G ;
thgf: case where 4 € B and f is the injm:tic:m.g Le?};{ It[:: :hmﬂaﬁzltlin ;'B;- red}l o
Bandlet A" be a valuation ring of K containing 4. By (5.22)it s ﬂ{:'ll} ra;l:tmns of
‘hat A’ contains B. By hypothesis Spec (B ®, A’) — Spec (A" I:SE to show
map. Apply the result of Exercise 34 to the homomorphism B @ a;lusedi
defined by b ® a’' v ba’. It follows that ba’ € A" for all b € B and aﬁ a E_iih
taking @’ = 1, we have what we want.] ’

Show that the result just proved remains valid if B is a ring with onl
finitely many minimal prime ideals (e.g., 1f B is Noetherian). [Let p; be th:;,
minimal prime ideals. Then each composite homomorphism A — B — Bfv
is integral, hence A4 — Il (B/p,) is integral, hence 4 — B[R is integral (wher;
% is the nilradical of B), hence finally 4 — B is integral.]



Chain Conditions

So far we have considered quite arbitrary commutative rings (with idcnm},)‘
To go further, however, and obtain deeper theorems we need to impose some
finiteness conditions. The most convenient way is in the form of “‘chain cqp,.
ditions”. These apply both to rings and modules, and in this chapter we
consider the case of modules. Most of the arguments are of a rather formal kipg
and because of this there is a symmetry between the ascending and dcscending
chains—a symmetry which disappears in the case of rings as we shall see ip

subsequent chapters.

Let = be a set partially ordered by a relation < (1.e., < is reflexive and
transitive and is such that x € y and y < x together imply x = y).

Proposition 6.1. The following conditions on X are equivalent:

i) Every increasing sequence X, < X < -+ in X is stationary (i.e., there
exists n such that x, = X,.1 =+*).
ii) Every non-empty subset of X has a maximal element.
Proof. 1) = i1). Ifi1) is false there is a non-empty subset 7" of 2 with no maximal
element, and we can construct inductively a non-terminating strictly increasing

sequence 1n 7.
i) = i). The set (x,).>1 has a maximal element, say x,. m

If X is the set of submodules of a module M, ordered by the relation <, then
i) is called the ascending chain condition (a.c.c. for short) and ii) the maximal
condition. A module M satisfying either of these equivalent conditions is said
to be Noetherian (after Emmy Noether). If T is ordered by 2, then i) is the
descending chain condition (d.c.c. for short) and ii) the minimal condition. A
module M satisfying these is said to be Artinian (after Emil Artin).

Examples. 1) A finite abelian group (as Z-module) satisfies both a.c.c. and
d.c.c.

2) The ring Z (as Z-module) satisfies a.c.c. but not d.c.c. For if a € Z and
a # 0 we have (@) > (¢*) ---> (@") - (strict inclusions).

3) Let G be the subgroup of Q/Z consisting of all elements whose order is @

power of p, where p is a fixed prime. Then G has exactly one subgroup G, of
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nfurcuchn;?-(],and(?ncGl{:.”CGc
ot satisfy the a.c.c. On the other hary v
so that G does satisfy d ¢ ¢

ef
f}::t Gpd”ﬂs .
of G are the G |
4) The group H of all rational numbers of
o5 neither chain condition. For we have 4
hat H doesn’t satisfy d.c.c. pec

qtisfy a.¢.C because G doesn’t.
s

5) The ring k[x] (k a field, x an Indeterminate) Satisfies a.c.c, b
*+L. DUt not ¢ c.c

on ideals.

6) The Pﬂl}’"‘}mlﬂl_fmg k[.%‘l:, X2, ... ]in an infinite number of ind :
¢ satisfies neither chain condition on ideals- Indetermingates
'

for the se
_ . . uen
... is strictly increasing, and the sequence (x,) :?(I:;:Z(Il)ac: (xy, x,)
strictly decreasing. V=) > g

7) We shall see later that a ring which satisfies
satisfy a.c.c. on ideals. (This is not true in general

2, 3 above.)

d.c.c. on ideals must also

for modules: see Examples

Proposition 6.2. M is a Noetherian A
finitely generated.

Proof. =: Let N be a submodule of M, and let T be the set of all finite]
generated submodules of N. Then X is not empty (since 0 € ¥) and thcrI:fcy
has a maximal element, say N,. If N, # N, consider the submodule N, + i:;
where x € N, x & Ny; this is finitely generated and strictly contains Nu SO we
have a contradiction. Hence N = N, and therefore N is finitely gener:ted‘

-module < every submodule of M js

<. Let M, € M, <--- be an ascending chain of submodules of M.
Then N = (U, M, is a submodule of M, hence is finitely generated, say by
Yoo X Say x,e M, and let n = maxji., n;; then each x,e M, hence
M, = M and therefore the chain is stationary. m

Because of (6.2), Noetherian modules are more important than Artinian
;‘“;’;‘tﬂiﬂfs ;hfhe Noetherian condition is just the right finiteness condition to make
corems work. However, many of the elementary formal properties

3pply equally to Noetherian and Artinian modules.

Proposition 6.3. Let 0 —> M' % M2 M”— 0 be an exact sequence of
A-modules. T hen

.f) M is Noetherian < M’ and M" are Noetherian,
I - B
a.;') A\:f” Artinian <> M’ and M" are Artinian.

* Weshall prove i); the proof of ii) is similar.

In Mai; o ascending chain of submodules of M’ (or M ") gives rise t0 chain
» Nence g Stationary,

Pro
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<: Let (L,).»1: be an ascending chain of submodules of Af

Le : AR , then (-
is a chain in M, and (ﬁ(Ln)) is a chain in M”. For large ¢nough nnlmtl !
]

chains are stationary, and it follows that the chain (L,) is Stationary, g these

(Z,))

Corollary 6.4. If M, (1 < i < n)are Noetherian (resp. A rtinian) 4
so is Pl-1 M,.
Proof. Apply induction and (6.3) to the exact sequence

“Modyfe,

n n-—1
O—>M,—»> D M —> P M, —>0. n
! (=1

A ring A is said to be Noetherian (resp. Artinian) if it is so as an

i : . A-mod
i.e., if it satisfies a.c.c. (resp. d.c.c.) on ideals. Ule,

Examples. 1) Any field is both Artinian and Noetherian; so is the ring 7(
(n % 0). The ring Z 1s Noetherian, but not Artinian (Exercise 2 before (6.2)) n)
2) Any principal ideal domain is Noetherian (hy (6.2): every ideal is finitely
generated). )
3) The ring k[x,, X, ...] I1s not Noetherian (Exercise 6 above). But jt s
an integral domain, hence has a field of fractions. Thus a subring of a Noetherian
ring need not be Noetherian.

4) Let X be a compact infinite Hausdorft space, C(X) the ring of reql.
valued continuous functions on X. Take a strictly decreasing sequence F, >

F, - of closed sets in X, and let a, = {fe C(X):f(F,) = 0}. Then the

a, form a strictly increasing sequence of ideals in C(X): so C(X) is not 3
Noetherian ring.

Proposition 6.5. Let A be a Noetherian (resp. Artinian) ring, M a finitely-
generated A-module. Then M is Noetherian (resp. Artinian).

Proof. M is a quotient of A" for some n: apply (6.4) and (6.3). =

Proposition 6.6. Let A be Noetherian (resp. Artinian), a an ideal of A
Then Ala is a Noetherian (resp. Artinian) ring.

Proof. By (6.3) A/a is Noetherian (resp. Artinian) as an A-module, hence also
as an A/a-module. =

A chain of submodules of a module M is a sequence (M;) (0 < i < n) of
submodules of M such that |

M= M, > M, ©---2 M, = 0 (strict inclusions).

The length of the chain is n (the number of “links”). A composition series of M
is a maximal chain, that is one in which no extra submodules can be inserted;
this is equivalent to saying that each quotient M,_,/M, (1 < i < n) is simpl
(that is, has no submodules except 0 and itself).

e
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57, Suppose that M has a composition series of length n. Then
0 ﬂfmang‘g}rf;?n series of M has length n, and every chain in M can pe
, comp

(0 a cmnpasfrfﬂn series. e |
(M) denote the least lﬂflgtl'i Gfﬂ: composition series of a modyle M.

proof Let it M has 1o composition series. ) 0y
(f(M) ;IM = I(N) < I(JM)* Let (M) be a composition series of M of
i length, and consider ll}c su_bnmdulcs Ny = Nn f‘”{: of 'N. - Since
pinimum e M, and the latter is a simple module, we have either N;_,/N, =
N{_I/N, c M-1 N N,; hence, removing repeated terms, we have a com-

m—rfndﬂd

else
*_mﬂ_l_/df., ?;ESDfN’ sothat/(N) < I(M). If I(N) = I(M) = n, then N,_,/N, =
nsmﬂ‘l}“fm each i =1,2,...,n; hence M,_, = N,_,  hence M.
J'rl(i-lfj t and ﬁnﬂll}’ M = N. |
Ne-pr " n in M has length < I(M). Let M = My > M, >... pe 4

ii) Any chai

1 of length . Then by 1) we have /(M) > I(My) > ... > I(M,) = 0,

chai

nence [(M) > k- " o5 of M. 1fit has}
jii) Consider any composition series ol M. 11 it has length &, then k < (M)
by i), hence k = I(M) by the definition of /(M). Hence all composition serjes

have the same length. Finally, consider any chain. Ifits length is [(M) it must be
1 composition series, by ii); if its length 1s < /(M) it is not a composition series,
ence not maximal, and therefore new terms can be inserted until the length is

!(1”) i
Proposition 6.8. M has a composition series < M satisfies both chain

conditions.
Proof. =: All chains in M are of bounded length, hence both a.c.c. and d.c.c.

hold.

«: Construct a composition series of M as follows. Since M = M,
satisfies the maximum condition by (6.1), it has a maximal submodule M, < M,
Similarly M, has a maximal submodule M, < M,, and so on. Thus we have a
strictly descending chain My, > M, > ... which by d.c.c. must be finite, and
hence 1s a composition series of M. m

A module satisfying both a.c.c. and d.c.c. is therefore called a module of
fimite length. By (6.7) all composition series of M have the same length /(M),
called tl?e length of M. The Jordan—-Hélder theorem applies to modules of finite
il?:ag:;];: 1{ (Moci<n and (M{)o<; <, are any two composition series of M, there
v tﬁ-ﬂ?—ﬂne t‘fﬂrrespm{dence,betwcen the set of quotients (z’l’{ (-1/M :)1..:1::; and
& - quotients (A:{l_l/Ml)Hm, such that corresponding quotients are

orphic. The proof is the same as for finite groups.

irupasi{fan 6.9. The length I(M) is an additive function on the class of all
-}'HﬂdHIES ﬂfﬁ”ﬂﬂ' zf:’ﬂgfh_

Pr
th::ﬁ(g ¢ have to show thatif 0 — M’ % M 2. M” — 0is an exact sequence,
. )= (M) + I(M "). Take the image under « of any composition
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series of A’ and the inverse image under £ of any composition

: Gy : Serj
these fit together to give a composition series of M, hence the rcsultﬁcs of Ag».
- m :

Consider the particular case of modules over a field K16k vect
vy = b Dr.s

Paces;

Proposition 6.10. For k-vector spaces V the following conditions gy
€e

lent:
1) finite dimension,

i1) finite length;

1) a.c.c.;

Guipg.

1v) d.c.c.

Moreover, if these conditions are satisfied, length = dimension
Proof. 1) = 1i) is elementary; 11) = 111), 11) = iv) from (6.8). Remains tq Proy
iii) = i) and iv) = 1‘).\ Suppose 1) is false, then there exists an infinite sequ;;
(x,)n>1 of linearly independent elements of V. Let U, (resp. V,) be the vector

space spanned by xj,..., X, (resp., X,4+1, Xn+2,...). Then the chain (U,)

(resp. (V4)a»1) is infinite and strictly ascending (resp. strictly descending), n31

Corollary 6.11. Let A be aring in which the zero ideal is a product m, - . ‘m, of

(not necessarily distinct) maximal ideals. Then A is Noetherian if and only if 4
is Artinian.

Proof. Consider the chain of ideals 4 > m; 2 mym, 2---2 m;--.m_ =,
Each factor m, -« -my_,/m, .. -my 1s a vector space over the field 4/m;,. Hence
a.c.c. < d.c.c. for each factor. But a.c.c. (resp. d.c.c.) for each factor <= a.cc,

(resp. d.c.c.) for 4, by repeated application of (6.3). Hence a.c.c. <= d.cc.
for A. =

EXERCISES

1. i) Let M be a Noetherian 4-module and u: M — M a module homomorphism.
If u is surjective, then « is an isomorphism.
ii) If M is Artinian and u is injective, then again « is an isomorphism.
[For (i), consider the submodules Ker («"); for (ii), the quotient modules
Coker (u™).]

2. Let M be an A-module. If every non-empty set of finitely generated submodules
of M has a maximal element, then M is Noetherian.

3. Let M be an A-module and let N;, N, be submodules of M. If M/N: ﬂﬁ
M]N, are Noetherian, so is M/(Ny N N). Similarly with Artinian in place
Noetherian.

4. Let M be a Noetherian 4-module and let a be the annihilator of M in
that 4/a is a Noetherian ring. S
If we replace “Noetherian” by “Artinian” in this result, is it still

A. Prove

ue’

v

5 A topolo

10.

11.

EXERCIsEs

o 19
gical space X is said to be Noetherian if th

; % , € o

ding chain condition (or, Cquivalently, the maz?;;umm of x Satisfy
Conditig

t Comes tg . n).

Scending ch

If X is Noet

ﬂ5ﬂﬂn
the ybsets are complements of open subsets, i
¥

ay that the closed subsets '?F A salisfy the desc
' E'vﬂlcntlb’, the minimalicnndlllan). Show that,
cq;;pﬂcc of X is Noetherian, and that X is quasi
su

Prove that the fnllﬂwing arc Equivalent:

i Y is Noectherian. | |

j) Every open subspace of X is quasi-compac
iiii) Every subspace of X 1s quasi-compact,

A Noetherian space is a finite union of irreducible ¢
the set T of closed subsets of X which are not fipjte

Since
thing

ed S
clo? he samg

herian, thep every

If A is a Noetherian ring then Spec (A4) is a Noetherian topological space. s th
converse true? ' ;

Deduce from Exercise 8 that the set of minimal prime ideals in a Noetherian ring
is finite.

IfMisa Noetherian module (over an arbitrary ring A) then Supp (M) is a closed
Noetherian subspace of Spec (A4).

Let f: A — Bbe aring homomorphism and suppose that Spec (B)is a Noetherian
space (Exercise 5). Prove that f*: Spec (B) — Spec (4) is a closed mapping if
and only if f has the going-up property (Chapter 5, Exercise 10).

Let A be a ring such that Spec (A) is a Noetherian space. Show that the set of
prime ideals of A satisfies the ascending chain condition. Is the converse true?




Noetherian Rings

We recall that a ring A 1s said to be Noetherian if it satisfies the f'ollmwing th
equivalent conditions: ree

1) Every non-empty set of ideals in 4 has a maximal element,
2) Every ascending chain of ideals in A is stationary.
3) Every ideal in A is finitely generated.

(The equivalence of these conditions was proved in (6.1) and (6.2).)
Noetherian rings are by far the most important class of rings in Commutatiye
algebra: we have seen some examples already in Chapter 6. In this chapter e
shall first show that Noetherian rings reproduce themselves under varjoys
familiar operations—in particular we prove the famous basis theorem of Hilbert
We then proceed to make a number of important deductions from the
Noetherian condition, including the existence of primary decompositions.

Proposition 7.1. If A is Noetherian and ¢ is a homomorphism of 4 onto 4
ring B, then B is Noetherian.

Proof. This follows from (6.6), since B >~ A/a, where a = Ker (). =

Proposition 7.2. Let A be a subring of B; suppose that A is Noetherian and
that B is finitely generated as an A-module. Then B is Noetherian (as a ring).

Proof. By (6.5) B is Noetherian as an 4-module, hence also as a B-module. =

Example. B = Z[i], the ring of Gaussian integers. By (7.2) B is Noetherian.
More generally, the ring of integers in any algebraic number field is Noetherian.

Proposition 7.3. If A is Noetherian and S is any multiplicatively closed
subset of A, then S~'A is Noetherian.

Proof. By (3.11—i) and (1.17—iii) the ideals of S~'A4 are in one-to-one order-
preserving correspondence with the contracted ideals of A, hence satisfy the max-
imal condition. (Alternative proof: if a is any ideal of A, then a has a finite set
of generators, say x,, ..., x,, and it is clear that S-'a is generated by x,/1,. .-

x./1.) =

Corollary 7.4. If A is Noetherian and p is a prime ideal of A, then Ay
Noetherian. m

80

rem 7.3 (Hilbert’s Basis Theorem).

Theo " ial ring A[x] is Noetherian.

paf)’;t a be an ideal in A[x]. The leading coefficients of the
proef an ideal 1in A. bince A 1s NGEFhE]‘ian, Lis finitely geney
; fﬂfﬂla " For each i = 1,...,n there is a Polynomia £ ¢ Alx] fz?d, say by
H”‘“:.l":“*’ (lower terms). Let r = Maxf., r.. The Ji generate ;hne Egrer;l
Sy <P
a EL;}lj[;’im + (lower terms) be any element of a; we have g ¢ | (e

s Shay Wi wh:_:rc u € A; then f — S U fix™-r i Wy dﬂd‘hasnclj £ I,
wrlm Prgcﬂﬂdi“g n th1.s way, W€ can go on Subtracting elements of a’ f:Dg:e
:nul we get a polynomial g, say, of degree < r; thay s, we have f — g+ hf,

where hes- the A-module generated by | 71
Let M be th » 4., X'7 0 then what we have

ved is that @ = (aNn M) + a’. Now M 1s a finitely generated 4-modyle
P .« Noetherian by (6.5), hence a N M is finitely generated (as an A-mndulei

hencc ] ) ;o b
oy (6.2). 1[81, - +» &m generate a M M it is clear that the f; and the g, generate o

Hence a is finitely generated and so A[x] is Noetherian. m

Remark. 1t is also true that A I\'Iﬂether'ian = A[[x]] Noetherian (A[[x]] being
the ring of formal power series in x with coefficients in A). The proof runs
almost parallel to that‘uf (7.5) ef(cept that one starts with the terms of lowest
degree in the power series belonging to a. See also (10.27).

Corollary 7.6. If A is Noetherian so is A[x,, . Y |
Proof. By induction on n from (7.5). m

Corollary 7.7. Let B be a finitely-generated A-algebra. If A is Noetherian,
then so is B.

In particular, every finitely-generated ring, and every finitely generated
algebra over a field, is Noetherian.

Proof. Bis a homomorphic image of a polynomial ring A[x,, ..., x,], which is
Noetherian by (7.6). =

Proposition 7.8. Let A < B < C be rings. Suppose that A is Noetherian,
that C is finitely generated as an A-algebra and that C is either (i) finitely

generated as a B-module or (ii) integral over B. Then B is finitely generated
as an A-algebra,

Pfﬂﬂ!f It follows from (3.1) and (5.2) that the conditions (i) and (ii) are equiva-
lent in this situation. So we may concentrate on (i).

Letxy, .. ., Xm génerate C as an A-algebra, and let y,, .. ., y, generate Cas a
B-module, Then there exist expressions of the form

X = > byy,; (byeB) (1)
!

ylyf o Z biﬂv:yk (biﬂt S B)-. (2)
k
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Let B, be the algebra generated over A by the b, and the b, S

Noetherian, so is B, by (7.7), and A S {i‘n o B
Any element of C is a polynomial in the x; with coeflicients in 4 <
i ub

stituting (1) and making repeated use of (2) shows that each elemeny N
linear combination of the y, with coeflicients in B;, and hence ¢ i ﬁn'ls a
generated as a By-module. Since B, is Noetherian, and B is a submody]e nl:‘{:l

it follows (by (6.5) and (6.2)) that B is finitely generated as a By-module. S C,
B, is finitely generated as an A-algebra, it follows that B is ﬁni[c]y_gcnurmcdnz:

an A-algebra. =

Proposition 7.9. Let k be a field, E a finitely generated k-algebrq.
field then it is a finite algebraic extension of k.
Proof. Let E = k[x,...,x,]). If E is not algebraic over & then we can re.

number the x; so that x;,..., x, are algebraically independent over k, where
r > 1, and each of x,.,,..., X, Is algebraic over the field F = k(x, . )
Hence E is a finite algebraic extension of F and therefore finitely genecrated g5 an

F-module. Applying (7.8)to k < F < E, 1t follows that Fis a finitely generated
k-algebra, say F = k[y,,...,y,]. Each y,is of the form f;/g,, where f, ang g,

‘UELE{]'

are polynomials in xy, ..., X,.
Now there are infinitely many irreducible polynomials in the ring

k[xi, ..., x,] (adapt Euclid’s proof of the existence of infinitely many prime
numbers). Hence there is an irreducible polynomial /4 which is prime to each

of the g, (for example, # = g,82 - -g, + 1 would do) and the element 4~ of F
could not be a polynomial in the y,. This is a contradiction. Hence E is alge-

braic over k, and therefore finite algebraic. m

Corollary 7.10. Let k be a field, A a finitely generated k-algebra. Let m be a
maximal ideal of A. Then the field A/m is a finite algebraic extension of k.

In particular, if k is algebraically closed then Ajm =~ k.
Proof. Take E = A/min(7.9). m=m

(7.10) is the so-called ‘“weak’ version of Hilbert’s Nullstellensatz
(= theorem of the zeros). The proof given here is due to Artin and Tate. For

PRIMARY DECOMPOSITION |
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7.11. In @ Noetherian ring A every ideal is a finite inte

Le deals.
,'rrff"”cf t; then the set of ideals in A for which

s¢ no ;
of. SuppP© has a maximal element q.

mpty> T dc © a. He :
ca A ¢ where b = @ an " SO eaThiof b, cin s Aty fiutess

a gduﬁiblﬂ ideals and therefore so is a: contradiction, g
7

pro
not

12. In a Noetherian ring every irreducible ideal is primary

Lemma £ to the quotient ring, it is enough to sh
ing to , ough to show that if :
By passing ** ; e . a1l the zero id
J[}rf:mj:ci111c:i|::llc then 1t 18 pnn’iary » L8t xy = Owith y » 0, and consider the uhzial
e Ann(x?) < ---. By thea.c.c,, this chain i stationary, j.e WI;

s Ann(x) < 2y .
have Ann(x") = Ann(x"*?) = - for some n. It follows that (") N (3) = 0;

= 0,and if g € (x") thena = px" } n+1
o gily) then ax . i _ , hence bx = 0, hen
for ﬁﬁn(x"“) = Ann(x"), hence bx™ = 0; thatis, a = 0. Since (0) is irraduci’;z
b€ 0 we must therefore have x™ = 0, and this shows that (0) is primary. w

and () #

From these tWO lemmas we have at once

Theorem 7.13. In a Noetherian ring A every ideal has a primary decomposi-

tion. ®
Hence all the results of Chapter 4 apply to Noetherian rings.

Proposition 7.14. In a Noetherian ring A, every ideal a contains a power of

its radical.
Proof. Let xy,..., Xk generate r(a): say xpiea(l <i<k). Let m=
k (m — 1) + 1. Then r(a)" 1s generated by the products x7t---x{* with
Sr, = m; from the definition of m we must have r; > n, for at least one index i,

hence each such monomial lies in a, and therefore r(a)” < a. =

Corollary 7.15. In a Noetherian ring the nilradical is nilpotent.

Proof, Take a = (0) in (7.14). =
Corollary 7.16. Let A be a Noetherian ring, m a maximal ideal of A, q any

ideal of A. Then the following are equivalent:
1) q is m-primary;

its geometrical meaning, and the “strong’’ form of the theorem, see the Exercises
at the end of this chapter.

PRIMARY DECOMPOSITION IN NOETHERIAN RINGS

The next two lemmas show that every ideal # (1) in a Noetherian ring has 4

primary decomposition.
An ideal a is said to be irreducible if

a=bNne¢e=>(a=Dbora = ¢).

i) r(q) = m;
i) m* < q < m for somen > 0.

Proof. i) = ii) is clear; ii) = i) from (4.2); ii) = iii) from (7.14); il}) = ii) by
laking radicals: m = r m) < r(q) € r(m) =m. =
Proposition 7.17. Let a # (1) be an ideal in a Noetherian rf'ng. Thﬂf! i:z
prime ideals which belong to a are precisely the prime ideals which occur it

Set of ideals (a:x) (x € A).
~ 0. Let My q=0be

Proof. By :
. 7+ DY passing to A/a we may assume that a . 4 oo
inima} Primary decomposition of the zero ideal, and let p, be the radical of 4

S T
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Let a, = ()4 4y # 0. Then from the proof of (4.5) we have r(Ann(
for any x # 0 in a, so that Ann(x) < p,.

Since q, is p-primary, by (7.14) there exists an integer /1 such that PN
and therefore apr < aNpP S anNnq =0. Let m =1 be the 5”1;?]&,"
integer such that a;p" = 0, and let x be a non-zero element in q,pp-1 Th;t
p.x = 0, therefore for such an x we have Ann(x) 2 p,, and hence Ann(x) = ' /

Conversely, if Ann(x) is a prime ideal p, then r(Ann(x)) = pand so by (4 lé)
p is a prime ideal belonging to 0. = :

X)) =y

EXERCISES

1. Let A be a non-Noetherian ring and let £ be the set of ideals in 4 which are not
finitely generated. Show that £ has maximal elements and that the maxjmy
elements of £ are prime ideals.

[Let a be a maximal element of £, and suppose that there exist x, y € A such thai
x¢a and y¢ a and xyea. Show that there exists a finitely generated jde
a, < a such that ap + (x) = a + (x), and that a = ao + x-(a:x).

al
Sin[_‘c

(a:x) strictly contains a, it is finitely generated and therefore so is a.]
Hence a ring in which every prime ideal 1s finitely generated is Noetherian

(I. S. Cohen).

2. Let A be a Noetherian ring and let f = > .o a,x" € A[[x]].
nilpotent if and only if each a, is nilpotent. [ See page 11]

Prove that f s

3. Let a be an irreducible ideal in a ring A. Then the following are equivalent :
1) ais primary;
ii) for every multiplicatively closed subset S of 4 we have (S ~'a)® = (a:x) for
some X € .S;
iii) the sequence (a:x") is stationary, for every x € A.

4. Which of the following rings are Noetherian?
i) The ring of rational functions of z having no pole on the circle |z| = 1.

11) The ring of power series in z with a positive radius of convergence.

i) The ring of power series in z with an infinite radius of convergence.

iv) The ring of polynomials in z whose first & derivatives vanish at the origin
(k being a fixed integer).

v) The ring of polynomials in z, w all of whose partial derivatives with respect
to w vanish for z = 0.
In all cases the coefficients are complex numbers.

5. Let 4 be a Noetherian ring, B a finitely generated A-algebra, G a finite group of
A-automorphisms of B, and B the set of all elements of B which are left fixed
by every element of G. Show that B is a finitely generated A-algebra.

6. If a finitely generated ring K is a field, it is a finite field.
[If K has characteristic 0, we have Z < Q < K. Since K is finitely genera
over Z it is finitely generated over Q, hence by (7.9) is a finitely generated Q-

ted

10.

11,

12,

13.

14,

Now apply (7.8) to obtain a contradiction.

He :
finitely generated as a Z/(p)-algebra. nce K is of

ule. ch
Use (7.9) 1o v

f}rﬂﬂr-]

¢ A[x] I8 Noetherian, is A necessarily Noetherian ?

l v

be a ring such that

each maximal ideal m of A, the local ring 4,
# 0 in A, the set of maximal ideals

Let A

(1) for '

(2) for each X
finite.

1S Nﬂﬂlhtrian;

of A which contain x s

A is Noetheran.

[Let & # D be #a foeal ' A Let my,...,m, be the maximal ideals which
Choose xo # 0 In a and let my,...,m,,, be the maximal idt;:l
which contain Xo. Since My 4y, ..., M, do not contain a there exist x, € q suc:;

ihal :l.';¢1“r+i_(1 <J < s).. Since each Am, (1 < i < r) s Noetherian, the ex.
iension of a in Aw, 18 finitely generated. Hence there exist : I

. . 9 x! in a

whose images in Am, generate Ama for i = 1,... r. Letq, = (xq %)
& . § & .y ‘ C

Show that ao and a have the same extension in Aw for every maximal idealm, and

deduce by (3.9) that ap = a.]

Let M be a Noetherian A-module. Show that M [x] (Chapter 2, Exercise 6) is a
Noetherian A[x]-module.

Let A be a ring such that each local ring Ay is Noetherian. Is 4 necessarily
Noetherian ?

Let A be a ring and B a faithfully flat A-algebra (Chapter 3, Exercise 16). If B
is Noetherian, show that A4 is Noetherian. [Use the ascending chain condition.]

Let f: A — B be a ring homomorphism of finite type and let f*: Spec (B) —
Spec (4) be the mapping associated with £, Show that the fibers of f* are
Noetherian subspaces of B.

Nullstellensatz, strong form

Let k be an algebraically closed field, let 4 denote the polynomial ring
k[, ..., t,) and let a be an ideal in 4. Let V¥ be the variety in k" defined by the
ideal q, so that ¥ is the set of all x = (xu, . . ., Xs) € k" such that f(x) = 0 for all
fea. Let I(V) be the ideal of V, i.e. the ideal of all polynomials g & A such that
8(x) = 0 for all xe V. Then I(V) = r(a). i

tis clear that r (@) < I(V). Conversely, let f ¢ r(a), then there is a prime ideal _p
containing a such that f¢ . Let / be the image of fin B = Alp, let C = By ;
Bl1/7}, and let m be a maximal ideal of C. Since Cis a finitely generated -

X [
algebra we have C/m =~ k, by (7.9). The images x; in C/m s gcnemls.otﬁhal’
of 4 thus define a point x = (x,,..., x,) € k", and the construction show

*€Vand f(x) # 0]
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15. Let A be a Noetherian local ring, m its maximal ideal and X its residue field, and
let M be a finitely generated A-module. Then the following are equivalent -

i) M is free;

ii) M is flat; . S

iii) the mapping ofm ® Minto A ® M is injective;

iv) Torf (k, M) = 0. _
[To show that iv) = i), let X1, .-, Xn be elements of M whose images in M/ p,

form a k-basis of this vector spacce. By (2.8), the x; generate M. Let F be a fre,
4-module with basis e, . . ., €n and define ¢: F— M bbf ¢le) = xi. Let E = Ke
(¢). Then the exact sequence 0 — E — F— M — 0 gives us an exact sequence

0—>k @ E— k @ F=% k®«M—0.

Since ¥ ® F and k& ® M arc veclor Spaces of the same dimension over k, j
follows that 1 ® ¢ is an isomorphism, hence k ® E = 0, hence E = 0 by
Nakayama’s Lemma (E'1s finitely generated because it is a submodule of F, and 4

is Noetherian).]

16. Let A be a Noetherian ring, M a finitely generated A-module. Then the following

are equivalent:
i) M is a flat A-module;
ii) My is a free Ay-module, for all prime ideals p;
iii) Mmn is a free Am-module, for all maximal ideals .
In other words, flat = locally free. [Use Exercise 15.]

17. Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs
of (7.11) and (7.12)) that every submodule N of M has a primary decomposition

(Chapter 4, Exercises 20-23).

18. Let A be a Noetherian ring, p a prime ideal of A4, and M a finitely generated
A-module. Show that the following are equivalent:
i) p belongs to 0 in M;
ii) there exists x € M such that Ann (x) = p;
iii) there exists a submodule of M isomorphic to A/p.
Deduce that there exists a chain of submodules

0=MQCM1C---V—'M,=M

such that each quotient M,/M,_, is of the form A/p,, where p, is a prime ideal
of A.

19. Let a be an ideal in a Noetherian ring 4. Let
a =iQ b, = :Q ¢

be two minimal decompositions of a as intersections of irreducible ideals. Prﬂvf’
that » = s and that (possible after re-indexing the c,) r(b) = r(c) for all 1.
[Show that for each i = 1, ..., r there exists j such that

a=bn.-Nnb_yNne;NnbyyN---NDH,.]
State and prove an analogous result for modules.

logical space and let F be the smallest ol

-ontains all open subsets of X and is closed with re
. » intersections and complements.

at a subset Eof X btlf:tngs to # if and only if E g
" the form U ) C, where U is open and C s closeg,

0 “se that X is irreducible and let Ee # Sh
i) Sl:EEl £ = X)if and only if £contains a non-emp
(i.6

a finite union of sets

OW that E ig dense ip X
Y open set in x
Noetherian topological space (Chapter 6, Exercise
e and only if, for each irreducible Closed set x, < X

0 € X, either

= Xo # Xo Of else £ " Xo contains a non-empty open subset of

g¢ F. Then the collection of closed sets X” = X such that £~
d therefore has a minimal element X,. Show that y 1S irreduci

h of the alternatives above leads to the cnnclusiur?that ; ucible and

ging to & are called the constructible subsets of y At

5) and let Ec x

XEI- [SUppugg
X' ¢ F is not

herian topological space and let E b
Let X be a Noct : : ¢ a subset of X, Sh
i open in X if and only if, for each irreducible closed subset X, inﬂ; t;?;:;

EnXo= @ Or else EN X, contains a non-empty open subset of Xo. [The

proof is similar to that of Exercise 21.]

Let A be a Noetherian ring, f: A — B-a ring homomorphism of finite type (so
that B 1S Noetherian). Let X = Spec (4), Y = Spec (B) and let f*: ¥ — X be
the mapping associated with f. Then the image under f/* of a constructible
subset E of Y is a constructible subset of X.

(By Exercise 20 it is enough to take £ = U N C where U is open and C is closed
in Y: then, replacing B by a homomorphic image, we reduce to the case where E
is open in Y. Since Y is Noetherian, E is quasi-compact and therefore a finite
union of open sets of the form Spec (B,;). Hence reduce to the case E = Y. To
show that f*(Y) is constructible, use the criterion of Exercise 21. Let X, be an
irreducible closed subset of X such that f*(Y) N Xj is dense in X,. We have
fH(Y)N Xo = f*(f*1(Xo)), and f*~*(X,) = Spec ((4/p) ®4 B), where X, =
Spec (A/p). Hence reduce to the case where A is an integral domain and fis injec-
tive. If Y3, ..., Y, are the irreducible components of Y, it is enough to show that
some f*(Y,) contains a non-empty open set in X. So finally we are brought down
to the situation in which A, B are integral domains and [ is injective (and still
of finite type); now use Chapter 5, Exercise 21 to complete the proof.]

M. With the notation and hypotheses of Exercise 23, f* is an open mapping <

25, .
Let 4 be Noetherian, f: A — B of finite type and flar (1

4+I-C.A.

/ l}as the going-down property (Chapter 5, Exercise 10). [Suppose f has “‘_“
Eﬂlng-.dnwn property. As in Exercise 23, reduce to proving that E = f*(¥) s
ﬂ?en In X. The going-down property asserts that if pe Eand ' S

V'€ E: in other words, that if X, is an irreducible closed subset of X *and Xo
Meets E, then £ N X, is dense in X,. By Exercises 20 and 22, Eisopenin X]

e., B is flat as an A-

i : : .o [Exercise 24 and
Cha ©)- Then S*: Spec (B) — Spec (A) 1s an open mapping. [

Pler 5, Exercise 11.]
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26. lLet Abea Noetherian ring a

27.

Grothendieck groups
nd let F(A) denote the set of all i.*-.:r::mmrphiu;nhph
‘ ESEE&]

_modules. Let C be the free abelian group generaqegy g
t sequence 0 — M’ — M — M" — 0 of by
generated A-modules we associate the element (M’) — (M) + ( M)
where (M) is the isomorphism class of A, etc. Let D be the subgroup of
generated by these elements, for all short exact :iuqucnccﬁ. The quotient gt.DLC
C/D is called the Grothendieck group of A, and 1S denoted by K(A). 1f pg i;ﬂn
finitely generated A-module, let (M), or va(M), denote the image of mﬂ' il;.
K(A). _ _
i) Show that K(A) has the following universal property: for cach addiyj,
function A on the class of finitely generated A-modules, with values i a,l:
abelian group G, there exists a unique homomorphism Aq: K(A4) — G such

that A(M) = Ao(y(M)) for all M.
ii) Show that K(A)is generated by the elements y(A/p), where p is a prime e

of A. [Use Exercise 18.]
iii) If A is a field, or more generally if A is a principal 1deal domain, thep

K(A) = Z.

iv) Let f: A— B be a finite ring homomorphism. Show that restriction of
scalars gives rise to a homomorphism f;: K(B) —» K(A) such that ﬁ(}us(N))
= y4(N) for a B-module N. If g: B— C is another finite ring homo-

morphism, show that (gof) = fi° &

Let A be a Noetherian ring and let F1(A) be the sct of all isomorphism classes of
finitely generated flat A-modules. Repeating the construction of Exercise 26 we
obtain a group K;(A4). Let y,(M) denote the image of (M) in K,(A).

i) Show that tensor product of modules over A induces a commutative ring
structure on Ki(A), such that y;(M)-yi(N) = vi(M © N). The identity
element of this ring is y1(A4).

ii) Show that tensor product induces a K,(A)-module structure on the group
K(A), such that y,(M)-y(N) = (M @ N). .

iii) If A is a (Noetherian) local ring, then K(A) = Z.

iv) Let f: A — B be a ring homomorphism, B being Noetherian. Show that l
extension of scalars gives rise to a ring homomorphism f*: K (A) — Ki(B)
such that f!(y:(M)) = y.(B @, M). [If M is flat and finitely generated

of finitely generated A
F(A). With each short exac i

of o

over A4, then B ®, M is flat and finitely generated over B.] Ifg: B— C1s
another ring homomorphism (with C Noetherian), then (fog) =f" o g,
v) If f: A — B is a finite ring homomorphism then

A(S1X)y) = x/i(y)

for x € K,(A4), y € K(B). In other words, regarding K(B) as a K, (A)-module
by restriction of scalars, the homomorphism f* is a K1(A)-module homo-
morphism.
Remark. Since F,(A) is a subset of F(A4) we have a group homomorphism
¢ Ky(A) —= K(A), given by (y,(M)) = y(M). If the ring A s ﬁnite-dimﬂnsiﬂﬂﬁl
and regular, i.c., if all its local rings Ay are regular (Chapter 11) it can b shown
that ¢ is an isomorphism., '

Artin Rings

in ring is One which satishes the d.c.c. (or cquivalently the minim 1
: a

) on ideals. | |

pparent symmetry w[th I‘.\iucl_h{:rum rings is however misleading, |
ract We will show that an Ar_tm ring Is nt:f:essarily Noetherian and of E;,-Vern
ngCi“l kind. Inasenscan Artin ring 1s the simplest kind of ring after a hield, anz

we study them not becausc of their generality but because of their simplicity

prﬂpgsirian 8.1. In an Artin ring A cvery prime ideal is maximal

proof, Let ¥ be a prime ideal of A. Then B = A/p is an Artinian integral
domain. let xe€ B, X # 0. By the d.c.c. we have (x") = (x*') for some n
hence X" = x"+1y for some y € B. Since B 1s an integral domain and x # 0, it

follows that we may cancel x™, hence xy = 1. Hence x has an inverse in B, and
therefore B is a field, so that p is a maximal ideal. m

Corollary 8.2. In an Artin ring the nilradical is equal to the Jacobson

f\n f“'
cﬂ!ldillﬂﬂ
The a

radical. ™
Proposition 8.3. An Artin ring has only a finite number of maximal ideals.

Proof. Consider the set of all finite intersections nt, N---N m,, where the m,
e maximal ideals. This set has a minimal element, say N---Nm,; hence
for any maximal ideal m we have muNmy; N---O My = m, N+ -0y, and
therefore m 2 my; N---N m,. By (1.11) m 2 wy for some i, hence m =

since 1, 1s maximal., m

Proposition 8.4. In an Artin ring the nilradical N is nilpotent.
Proof. By d.c.c. we have ¥ = N¥¥* =...= asay, for some k > 0. Suppose
0 # 0, and let £ denote the set of all ideals b such that ab 7 0. Then X is not
empty, since a € . Let ¢ be a minimal element of Z; then there exists x € ¢ such
that xa # 0; we have (%) ¢, hence (x) = ¢ by the minimality fﬁ:'f‘f- lBUt
(a)a = xa2 = xa 0, and xa < (x), hence xa = (x) (again by minimality).

= xR ==X

H B 0 .
Bmc-‘-’ = xy for some y € a, and therefore x = X)' = ‘
Wyea = Nk o N, hence y is nilpotent and therefore X = A

contradi :
tradicts the choice of x, therefore a = 0. ®

: By a chain of prime ideals of a ring 4 we [means ﬁqite Strw- define the
dence p, < p, ... p,; the length of the chain is n. W€
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dimension of A to be the supremum mf_thc lengths of all chains of Prime jde.
in A:itis an integer >0, or 4+ oo (assuming 4 # 0). A field has dimensijop U,Ct‘lhlﬂ
» the

ring Z has dimension 1.

Theorem 8.5. A ring A is Artin <= A is Noetherian and dim 4 — 0.

Proof. =: By (8.1) we have dim 4 = 0. Let m (I < i < n) be the disti:
maximal ideals of 4 (8.3). Then [[f., mf < (M-; m)¥ = N* = ¢ Hisicn ;ﬁ;

(6.11) A is Noetherian. |
«: Since the zero ideal has a primary decomposition (7.13), A4 |, only
a

finite number of minimal prime ideals, and these are all maximal since djy, A=y
Hence % = (i-, m, say; we have R* = 0 by (7.15), hence []{., m*¥ = in ir;
the previous part of the proof. Hence by (6.11) 4 is an Artin ring, g

If A is an Artin local ring with maximal ideal m, then m is the only prime
ideal of 4 and therefore m is the nilradical of A. Hence every element of 4, IS
nilpotent, and m itself is nilpotent. Every element of A4 is either g unit or i
nilpotent. An example of such a ring is Z/(p"), where p is prime and 5 > 1

Proposition 8.6. Let A be a Noetherian local ring, m its maximal ideql Then
exactly one of the following two statements is true:

1) m* # m**? for all n;
i) m* = 0 for some n, in which case A is an Artin local ring.

Proof. Suppose m" = m"*! for some n. By Nakayama’s lemma (2.6) we haye
m" = 0. Let p be any prime ideal of A. Then m" < p, hence (taking radicals)
m = p. Hence m is the only prime ideal of A4 and therefore A4 is Artinian. m

Theorem 8.7. (structure theorem for Artin rings). An Artin ring A is
uniquely (up to isomorphism) a finite direct product of Artin local rings.

Proof. Let m; (1 < i < n) be the distinct maximal ideals of 4. From the proof
of (8.5) we have [r., m*¥ = 0 for some k > 0. By (1.16) the ideals mf arc
coprime in pairs, hence () m¥ = [T m¥ by (1.10). Consequently by (1.10) again
the natural mapping 4 — [ i, (4/m}) is an isomorphism. Each A/m¥ is an
Artin local ring, hence 4 is a direct product of Artin local rings.

Conversely, suppose A4 ~ [T, A;, where the A4, are Artin local rings.
Then for each i we have a natural surjective homomorphism (projection on the
ith factor) ¢;: A — A,. Leta, = Ker (¢/). By (1.10) the a, are pairwise coprime,
and () a; = 0. Let q, be the unique prime ideal of 4., and let p, be its contraction
¢ '(q;). The ideal p, is prime and therefore maximal by (8.1). Since q; IS nil-
potent it follows that a, is p-primary, and hence () a, = (0) is a primary de-
composition of the zero ideal in 4. Since the a, are pairwise coprime, SO arc the
P, and they are therefore isolated prime ideals of (0). Hence all the pr imary
components a, are isolated, and therefore uniquely determined by A, by the 2nd

tniiucncss theorem (4.11). Hence the rings A; >~ A/a, are uniquely determiné
YA, W

X1 A :
N oetheriam,

erd

.mod :
A;;g_ 1f m is finitely generated (e.g., if 4 is Noether;

q 5

dimg

..)), hence B is a local ring of dimensjon 0 ¢ image of

for it is not difficult to see that jts prime idea] ;

' ny *

ted.
[f Ais a local ring, W Its maximal ideal, k — v
yle m/m? is annihilated by m and therefore hag ¢

f m will span m/m?
(m/m?) is finite. (See (2.8).) g

Proposition 8.8. Let A be an Artin local ring.  Then the followin

equivalent. e
i) every ideal in A is principal;

ii) the maximal ideal W is principal;

iii) dim, (m/m?) < 1.

Proof. i) = 11) = i11) is clear.

jii) = 1): If dim (m/m?) = 0, then m = m2, hence m — 0 by Nakayama’s

lemma (2.6), and therefore A is a field and there is nothing to prove.,

If dim, (m/m?) = 1, then m is a principal ideal by (2.8) (take M = m

there), say m = (x). Let a be an ideal of 4, other than (0) or (1). We have
m = N, hence m is nilpotent by (8.4) and therefore there exists an Integer r
such that @ = m’, a & m"**; hence there exists yea such that y = ax',

)¢

m'

(x"**); consequently a ¢ (x) and a is a unit in 4. Hence x" € a, therefore
= (x") < aand hence a = m” = (x"). Hence a is principal. =

Exanllgle. The rings Z/(p™) (p prime), k[x]/(f*) (f irreducible) satisfy the
conditions of (8.7). On the other hand, the Artin local ring k[x?, x®]/(x*) does

not

: here m is generated by x? and x*® (mod x*), so that m* = 0 and

dim (m/m?) = 2.

1,

4#

Pet T10:+-Nq, = 0 be a minimal primary decomposition of the zero ideal

N @ Noetherian ring, and let q, be p-primary. Let p{” be the rth symbolic power

oL by (Chapter 4, Exercise 13). Show that for eachi = 1,.., 7 there exists an

1ntE3Br r: such that pir;] < q,.

ﬁngsgfpﬂs? i i% an 1solated primary campunint.

i fce if m, is its maximal ideal we have mj = 0
0 = p{" for all large r.

Then Ap, is an Artin local
for all sufficiently large 1,
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If q, is an embedded primary component, then Ay, is not Artin;
powers m; are all distinct, and so the p{” are all distinct. l—lunuiﬂfh hence the
primary decomposition we can replace g, by any of the infinite smL Ij““ the Biven
ideals p{” where r = r, and so there are infinitely many m;n-ﬁ Peprimary
decompositions of 0 which differ only in the p,-component. "l Primary

Let A be a Noetherian ring. Prove that the following are ¢quivalent:
i) A is Artinian; ‘
ii) Spec (A) is discrete and finite;

iii) Spec (A) is discrete.

statements:
i) fis finite;
ii) the fibres of f* are discrete subspaces of Spec (B);

iii) for each prime ideal  of A, the ring B @, k(p) is a finite k(b)-algebra

(k(p) is the residue field of Ay);

iv) the fibres of f* are finite.
Prove that i) = ii) <= 1ii) = iv). [Use Exercises 2 and 3.]

If fis integral and the fibres of f* are finite, is f necessarily finite?

5. In Chapter 5, Exercise 16, show that X is a finite covering of L (i.e., the number
of points of X lying over a given point of L is finite and bounded).

Discrete Valuation Rings ang
Dedekind Domains

3. Let k be a field and A a finitely generated A-algebra. Prove that the followin
equivalent: &R
i) A is Artinian; :
ii) A is a finite k-algebra. As W have indicatec} before, algcbral(.: number theory is one of the historical
[To prove that i) = ii), use (8.7) to reduce to the case where A is an Artin Jogg) SOUrces of commutative algebra. In this chapter we specialize down to the case
ring. By the Nullstellensatz, the residue field of A is a finite extension of £, N-:}:,- f interest in number theory, namely to Dedekind domains. We deduce th
use the fact that A is of finite length as an A-module. To prove ii) = i), obserye 0 ot (2 ctorization of ideals in Dedekind domains from the general prima e
that the ideals of A are k-vector subspaces and therefore satisfy d.c.c.] ssmmpgsitinn theorems. Although a direct approach is of course pusslijble (3.:11;;
4. Let f: A — B be a ring homomorphism of finite type. Consider the following obtains mMOIC insight our way 1nto the precise context of number theory in

ommutative algebra. Another important class of Dedekind domains occurs
in connection with non-singular algebraic curves. In fact the geometrical
picture of the Dedekind condition is: non-singular of dimension one.

The last chapter dealt with Noetherian rings of dimension 0. Here we start
by considering the next simplest case, namely Noetherian integral domains of
dimension one: i.e., Noetherian domains in which every non-zero prime ideal is
naximal. The first result is that in such a ring we have a unique factorization

theorem for ideals:

Proposition 9.1. Let A be a Noetherian domain of dimension 1. Then every
non-zero ideal a in A can be uniquely expressed as a product of primary ideals

whose radicals are all distinct.

| Proof. Since A is Noetherian, a has a minimal primary decomposition

8= (\{=y q; by (7.13), where each q, is say p-primary. Since dim 4 = 1 and A
| Isanintegral domain, each non-zero prime ideal of A is maximal, hence the ¥,
are distinct maximal ideals (since p; 2 q, 2 a # 0), and are therefore pairwise

coprime. Hence by (1.16) the g, are pairwise coprime and therefore by (1.10) we
have [Tq; = () q,. Hence a = [ q;

l . _C““"Er?ei}’, if a = ] q,, the same argument shows that a -
| 2::“131 primary decomposition of a, in which each q; 1s an 180
l Ponent, and is therefore unique by (4.11). ®

6. Let A be a Noetherian ring and q a p-primary ideal in A. Consider chains of
primary ideals from q to p. Show that all such chains are of finite bounded

length, and that all maximal chains have the same length.

M q;; thisis a
lated primary

ideall-_Ct 4 be a Noetherian domain of dimension one in which ﬁ\liﬂfit’ fir:]ﬂag

5 nﬂls a P”ﬂ:le power. By (9.1), in such a ring we shall have uﬂ_lque a‘?tﬁ o

] B-zero ideals into products of prime ideals. If we_localrze A wl o
N0n-zero prime ideal p we get a local ring Ay satistying the same €Of |

93




V

94 DISCRETE VALUATION RINGS AND DEDEKIND DOMAINS

as A, and therefore in Ay every non-zero ideal is a power of the max; |
L n']u

Such local rings can be characterized in other ways. ey

DISCRETE VALUATION RINGS

Let K be a field. A discrete valuation on Kis a mapping v of K* ontg 7,
K* = K — {0} is the multiplicative group of K) such that (Where

1) v(xy) = v(x) + o(y), i.e., v is a homomorphism;
2) o(x + y) = min ((x), 1(3))-
The set consisting of 0 and all x € K* such that v(x) > 0 is a ring, calleg "
C

valuation ring of v. It is a valuation ring of the field K. It is sometimes conyepje
to extend v to the whole of K by putting v(0) = +oo. nt

Examples. The two standard examples are:

1) K = Q. Takea fixed prime p, then any non zero x € Q can be writte,
uniquely in the form p®y, where a € Z and both numerator and denominator of ,

are prime to p. Define v,(x) to be a. The valuation ring of v, 1s the local rine
th}- L
2) K = k(x), where k is a field and x an indeterminate. Take a fixed

irreducible polynomial /'€ k[x] and define v, just as in 1). The valuation ring of
v, is then the local ring of k[x] with respect to the prime ideal (f).

An integral domain A is a discrete valuation ring if there is a discrete valua-
tion v of its field of fractions K such that A4 is the valuation ring of v. By (5.18),
A is a local ring, and its maximal ideal m is the set of all x € K'such that v(x) > 0.

If two elements x, y of A have the same value, that is if v(x) = v(y), then
p(xy~*) = 0 and therefore u = xy~1is a unitin 4. Hence (x) = (»).

If a # O is an ideal in A, there is a least integer k such that v(x) = k for
some x € a. It follows that a contains every y € A with v(y) = k, and therefore

the only ideals # 0 in A4 are the ideals m, = {ye d:v(y) 2 k}. These forma
single chain m = my; 2 Mg = - -, and therefore A is Noetherian.

Moreover, since v: K* —Z 1is surjective, there exists x €m such that
o(x) = 1, and then m = (x), and my = (x¥) (k > 1). Hence m is the only
non-zero prime ideal of 4, and A is thus a Noetherian local domain of dimension
one in which every non-zero ideal is a power of the maximal ideal. In fact many
of these properties are characteristic of discrete valuation rings.
of dimension one,
llowing are equiv

m s

Proposition 9.2. Let A bea Noetherian local domain dent:

maximal ideal, k = A|w its residue field. Then the fo
i) A is a discrete valuation ring;

ii) A is integrally closed;
iii) m is a principal ideal;

) dime (m/m?) = 1/
1 n-zero ideal is a power of m :

v) Fvery No
) There exists x€ A such that e
vl

k2 0 .
Before We start going the rounds, we make two remark
; : . drks:
[ aisan ideal # 0, (1), then a is Mm-primary and @ > n
= m

’ e (7.16).

Very non-zero jdeql i
IS of the for
m (x¥),

proo)-
(A)

or f(ﬂ) 3 l
F o 4 mn*? for all n 2 0. This follows from (8.6).

) = i) by (5-18)-
<) = il = da#0. B
i) = jii). Let a € t:;l-an y remark (A) there ex |
cuch that < (@), m" "t § (@). Choose bem -1 apd b;(ljis ;:dlf;t:ggr n
J / CL X =

f fractions of 4. We have x-! -
pe K, the field O X1 ¢ A (since b ¢ ( -
f'!{ﬂ'[ integral over 4, and therefore by (5.1) we have x~'m ¢ 111¢(f(03)it" h:n ’ixcl 3

. < m,

m Wﬂu]d be a fﬂithflll A‘[x_l]-mﬂd‘ﬂﬁi ﬁﬂll{’:l}! gcnaratﬁd as an A-modul )
(~im € 4 by construction of x, hence x™"m = 4 and therefore m = A; ' ?“)‘
: = Ax = (x).

i) = iv). By (2.8) we have dim, (m/m?) < 1, and by remark (B) m/m? #

iv) = V) Let a be an ideal # (0), (1). By remark (A) we have a > m* f, .
ome n; from (8.8) (applied to A/m") it follows that a is a power of m. s

y) = vi). By remark (B), m # m?, hence there exists x e m, x ¢ m?, But
(x) = m" by hypothesis, hence r = 1, (x) = m, (x*) = m¥, '

vi) = i). Clearly (x) = m, hence (x*) # (x***) by remark (B). Hence if a
is any non-zero element of A, we have (a) = (x*) for exactly one value of k.
Define v(@) = k and extend v to K * by defining v(ab~*) = 1(a) — v(b). Check
that v is well-defined and is a discrete valuation, and that 4 is the valuation ring

ofv. M

5

DEDEKIND DOMAINS

Theorem 9.3. Let A be a Noetherian domain of dimension one. Then the

following are equivalent:
1) A is integrally closed;
i) Every primary ideal in A is a prime power,
iii) Every local ring Ay (p # 0) is a discrete valuation ring.
Prun:.f. 1) < iii) by (9.2) and (5.13).
i) < iii). Use (9.2) and the fact that primary
behave well under localization: (4.8), (3.11). =

A fing satisfying the conditions of (9.3) 1s called a Dedekind domain.
non-zero ideal has @ unique

ideals and powers of ideals

Cﬂfﬂ”flry 9.4. In a Dedekind domain every
Jactorization as a product of prime ideals.

Proof. (9.1) and (93). =
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Examplcs. I) Any principal ideal domain A. For A is Nocther:
ideal is finitely generated) and of dimension one (E\:umplc 3 1fL1'I;in (Since Cvery
every local ring Ay(» # 0) is a principal ideal (I{}I]I'qlriﬂ hunc: . 50 Al
g oM  SOmain, Hence’by (9.2) h
valuation ring; hence 4 is a Dedekind domain by (9.3).
2) Let K be an algebraic number field (a finite algebraic CXtEc!
Its ring of integers A 1s the integral closure of Z in K. (F:}r ::xunmlluu-};i?” ol Q)
then 4 = Z[i], the ring of Gaussian integers.) Then A is a I')uuui;'. ? = Q(i),
Theorem 9.5. The ring of integers i rebraic “~“ comain;
| g integers in an algebraic munbey field w
Dedekind domain. -
Proof. K is a separable extension of Q (because the characteristie
hence by (5.17) there is a basis vy, .
Hence A is finitely generated as a Z-module and therefore Noctherian Als
is integrally closed by (5.5). To complete the proof we must show that c;*c:-:,r ?.n} :
zero prime ideal p of 4 is maximal, and this follows from (5.8) and {52)“?
(5.9) shows that p N Z # 0, hence p N Z 1s a maximal ideal of Z and 1hr:rn:|".mi;;

p is maximal in 4 by (5.8). =

Remark. The unique factorization theorem (9.4) was originally proved fo
rings of integers in algebraic number ficlds. The uniqueness theorems of Chapter
4 may be regarded as generalizations of this result: prime powers have to be
replaced by primary ideals, and products by intersections.

Is ¢

- lL’ i”L‘I‘U'
.+, Uy of K over Q such that Acvy )
= 2 ‘I.J"

g -

FRACTIONAL IDEALS
Let A be an integral domain, KX its field of fractions. An A-submodule M of K
is a fractional ideal of A if xM < A for some x # 01n A. In particular, the
“ordinary” ideals (now called integral ideals) are fractional ideals (take x = 1).
Any element u € K generates a fractional ideal, denoted by () or Au, and called
principal. If M is a fractional ideal, the set of all x € K such that x M < A s de-
noted by (A4: M).

Every finitely generated A-submodule M of K is a fractional ideal. Forif M
is generated by x,,..., X, € K, we can write x; = yz~t (1 €i<n \H'llf{m i
and z are in A, and then zM < A. Conversely,1f 4 is Noetherian, every [“ruutmnul
ideal is finitely generated, for it is of the form v~1a for some integral ideal o.

An A-submodule M of K is an invertible ideal if there exists a submodule
N of K such that MN = A. The module N is then unique and equal to (A:M),
for we have N < (4: M) = (A:M)MN < AN =-N. It follows that s'lj 1?
finitely generated, and therefore a fractional ideal: for since M-(A:f'l-!}h-:lé’ﬂ
there exist x,e M and y,e (A: M) (1 < i < n) such that 2, xi)i = L, ﬂ“dt rllby
for any x € M we have x = > (yx)x;: each yX € A, so that M is generd ¢
CREII

Clearly every non !
being (u~*). The invertible ideals form a group with 1

whose identity element is 4 = (1)

e, its inverse

o oo : i 'ﬁvcrlibl |
-zero principal fractional ideal (1) 18 1 iplication

espect to mu

Pruf»'bf- :
J” 18 ﬁﬂl[ﬂ

ided ) ;
M 18 vertible.  Hence a ¢ m. Consequently a = 4 and therefore M is

vertible.  ®
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]wcrlib“ity is a local property:
I

p rﬂpﬂsﬁinn 9.6. For a fractional ideal M, the followin

) M is invertible;
i M is finitely generated and, for each prime ideal p, M,
i) M is finitely generated and, for eqch maximal |
vertible.

N i) Ap = (MA(AM))y = My-(4p: My) by 311 -
; ly generated, because invertible) ») by (3.11) and (3.15) (for

8 are equj taleng -

IS invertible:

deal wm, M, i

i) = iii) as usual.
il = 0): o9 = M -(A: M), which is an integral ideal, For ¢ach maxima]
| m W€ have Qm = My -(Aw: My) (bff (3.11) and (3.15)) = A, btl:ﬁﬂuzt‘:

Proposition 9.7. Let A be a local domain. Then A is a discrete valuation

ring < every non-zero fractional ideal of A is invertible.

Proof. =. Let X be a generator of the maximal ideal m of 4, and let M + 0
be a fractional ideal. Then there exists y € A such that yM < A: thus yM is an
integral ideal, say (x"), and therefore M = (x"7*) where s = 1(y).

~: Every non-zero integral ideal 1s invertible and therefore finitely gen-

erated, so that A4 1S Noetherian. It is therefore enough to prove that every non-

sero integral ideal is a power of m. Suppose this is false; let £ be the set of non-
sero ideals which are not powers of m, and let a be a maximal element of .
Then a # m, hence a < m; hence m~*a © m~'m = A is a proper (integral)
ideal, and m~*a 2 a. If m~'a = q, then a = ma and therefore a = 0 by
Nakayama’s lemma (2.6); hence m~'a = a and hence m~*a is a power of m
(by the maximality of a). Hence a is a power of m: contradiction. =

The “global” counterpart of (9.7) is

Theorem 9.8. Let A be an integral domain. Then A is a Dedekind domain <

every non-zero fractional ideal of A 1s invertible. | |
Proof. =: Let M # O be a fractional ideal. Sincui,f{ B N»::.:,ethf':n'ant IM 13
finitely generated. For each prime ideal p # 0, Myisa fractional idea 5 :
of the discrete valuation ring Ay, hence is - vertible by (9.7). Hence !

invertible, by (9.6).

< Every non-zero integral ideal is invertl :
h.E“CE A is Noetherian. We shall show that each Ay (-p ; )l
tion ring. For this it is enough to show that each ntegra

nvertible, and then use (9.7). Letb # 0 bean (i“tﬂg_ml.) lg:tﬂi::)le
"= 0" = 5N A Then a is invertible, hence b = @ 5 inY

ble, hence finitely generated,
is a discrete valua-
ideal # 0 in Ap 1S
in Ay, and let

by 0.7 ®
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Corollary 9.9. If A is a Dedekind domain, the non-

: zero fractio .
form a group with respect to multiplication. w nal ideqjy of 4

This group is called the group of ideals of A; we denote it 1,
terminology (9.4) says that /is a free (abelian) group, generated b Y £ In this
prime ideals of A. Y the Non-2er,

Let K* denote the multiplicative group of the field of fract; -
Each u € K* defines a fractional ideal (#), and the mapping u (:;IES *h of 4.
morphism ¢: K* — I. The image P of ¢ is the group of Frfnc':'pu[mrtf h*:_lmn_
ideals: the quotient group H = I/P is called the ideal class group Grmmm”“]

kernel U of ¢ is the set of all v € K* such that («) = (1), so that it is the :‘ The
'rﬂup Uf

units of A. We have an exact sequence
l>U—>K*—>I1—-> H-—>1,

Remark. For the Dedekind domains that arise in number theory, there .

classical theorems relating to the groups /f and U. Let K be an ﬂlgebr;lic num;m

field and let A be its ring of integers, which 1s a Dedekind domain by (9 5) ]Lr
). In

this case:
1) His a finite group. Its order h is the class number of the field K. The fo).

lowing are equivalent: (i) # = 1; (i) / = P; (111) A is a principal ideal domain:
(iv) A is a unique factorization domain. ’

2) U is a finitely-generated abelian group. More precisely, we can specify
the number of generators of U. First, the elements of finite order in U are just
the roots of unity which lie in K, and they form a finite cyclic group W; U/W is
torsion-free. The number of generators of U/W is given as follows: if (K:Q) = n
there are n distinct embeddings K — C (the field of complex numbers). Of
these, say r, map K into R, and the rest pair off (if « is one, then w o « is another,
where w is the automorphism of C defined by w(z) = Z) into say rs pairs: thus
r, + 2r, = n. The number of generators of U/Wis thenr, + r, — L.

The proofs of these results belong to algebraic number theory and not to
commutative algebra: they require techniques of a different nature from those

used in this book.

Exmllplﬁ. 1)K= Q(V _1), n = 2’ ry = 0, ro = 1, r + ro — ] = 0. The

only units in Z[i] = A are the four roots of unity +1, 1.

N = O(VIin=2,1r=2,r3=0r+rn—-1=1 4
and U/W is infinite cyclic. In fact the units in 4 = Z[V2] are £(I
where n is any rational integer.

+ V2),

EXERCIsgg 99

ES

be a Dedekind do : iplicatively clo
1. Lﬂ.l:j is either a Dedekind domain or the field of fraiefj Subset o
S Suppﬂﬁc thﬂt S # A s {D}, ﬂnd lﬂt .Hr’ ,H”
¢ A respectively. Show that extension of i
“orphism H o

( A bea Dedekind domain. If f = a5 + 4,x +..

[ A, Show th i

e ¥ * . z 0 + Ilnxﬂ. : .

. l,,;ith coefficients 1n A, the content of fis the ideal ¢(f) = (als a pulyngmm
DrOVe Gauss's lemma that c¢(f2) = c(f)c(g). wriss Y e A
(Localize at each maximal ideal.]

A valuation ring (other than a field) is Noetherian if and only if it is a discret
- e o Al re
valuation 1ing. ?

be a local domain which is not a field and in which the maximal ideal m is
|

4 Let 4 » -
land Nn=1 M" = 0. Prove that 4 is a discrete valuation ring

principa
5, Let Mbea finitely-generated module over a Dedekind domain. Prove that Mis

flat <> M 1s torsion-free.
(Use Chapter 3, Exercise 13 and Chapter 7, Exercise 16.]

Let M be a finitely-generated torsion module (T(M) = M) over a Dedekind
domain A. Prove that M is uniquely representable as a finite direct sum of mod-
ules A/pl, where P aré non-zero prime ideals of A. [For eachp # 0, Mpisa

torsion Ap-module; use the structure theorem for modules over a principal ideal

domain.]
7 Let A be a Dedekind domain and a # 0 an ideal in A. Show that every ideal in

Ala is principal.
Deduce that every ideal in A can be generated by at most 2 elements.

8. Let a, b, ¢ be three ideals in a Dedekind domain. Prove that

an® + ¢ =(anb) + (@nc)
a + (bﬁc)=(u+b)ﬁ(n+f).

[Localize. ]

9. (Chinese Remainder Theorem). Let @y, ..., (s be ideals and let Xy, ... Xn be
elements in a Dedekind domain 4. Then the system of congruences X =
x (mod a)) (1 < i < n) has a solution x in A = X1 = x; (mod a, + a;) when-
eYeri # J.

[This is equivalent to saying that the sequence of A-modules

A5 @) Ala > @ Al + )
{mi l<)t
is exact, where ¢ and ¢ are defined as follows: 0
$(X) = (x + ay,..., x + G); P(x1 + Gay.cor®n i un*)' nuué
¥ = X; + a; + a;. To show that this sequence 1S e Ea assu
It is exact when localized at any p # 0: in other wordu e e

a discrete valuation ring, and then it is easy.]
S+1.C.A,

j)-component
h to show that
me that 4 18




10

Completions

In classical algebraic geometry (i.e. over the field of complex numbers) y,
use transcendental methods. This means that we regard a rationa] fu”mm: tan
analytic function (of one or more complex variables) and consider ; "5
series expansion about a point. In abstract algebraic geometry the ey W
do is to consider the corresponding formal power series. This is not sg POWerfy
as in the holomorphic case but it can be a very useful tool. The process :jf
replacing polynomials by formal power series is an exa mple of a generg] device
known as completion. Another 1rnpm:tunt instance of completion occurs iy
number theory in the formation of p-adic numbers. If pisa prime number i, 7
we can work in the various quotient rings Z/p"Z: in other words, we can try
and solve congruences modulo p" for higher and higher values of n. Thjs s
analogous to the successive approximations given by the terms of a Taylor
expansion and, just as it is convenient to introduce formal power series, so it i
convenient to introduce the p-adic numbers, these being the limit in a certain
sense of Z/p"Z as n — c0. In one respect, however, the p-adic numbers are more
complicated than formal power series (in, say, one variable x). Whereas the
polynomials of degree n are naturally embedded in the power series, the group
Z/p"Z cannot be embedded 1n Z. Although a p-adic integer can be thought
of as a power series > a,p" (0 < a, < p) this representation does not behave
well under the ring operations.

In this chapter we shall describe the general process of ““adic’” completion—
the prime p being replaced by a general ideal. It is most conveniently expressed
in topological terms but the reader should beware of using the topology of t_hc
real numbers as an intuitive guide. Instead he should think of the power series
topology in which a power series is ‘“small’” if it has only terms of ln_gh order.
Alternatively he can think of the p-adic topology on 7. in which an nteger i
“‘small” if it is divisible by a high power of p. _

Completion, like localization, is a method of simplifying thi -
centrating attention near a point (or prime). It is, however, 4 more dflﬂﬁt;
simplification than localization. For example, in algebraic geometry th‘; fciu
ring of a non-singular point on a variety of dimension 7 alx\fayg has-.{ilrbe
completion the ring of formal power series in n variables (this will cssanltlﬂ ;intﬁ
proved in Chapter 11). On the other hand the local rings of two Sl}cliﬁna""‘
cannot be isomorphic unless the varieties on which they lie are bira !
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s means that the fields of fractions of the two |
0 local rip
BS are

of the important properties of localization are that if
d the Noetherian property. The same i

55 & : i 5
Hfstricl to ﬁﬂllf—‘r]F'BL“”dlLd nmdlﬂta—.—but the proofs are muych hardermhcn o
::p nost of this chapter. Another important result is tpe theorem gdiéﬂke

rull

which dentifies the part of a ring which is “killed" by completion Rough]
: ghly

speaking, Krull's 2NEOLeM 18 thurﬂ_‘m“—fg“‘: of the fu'ct that an analytic function is
Jetermined DY the coeficients ﬂh' 1‘15 Taylor expansion. This analogy is clearest
ror a Noetherian 1()(?:111 ring in w ich case lh‘ﬂ theorem just asserts that A m* =
where mt is the maximal ideal. Both Krull's Theorem and the exactness of com.
letion are casy consequences of th‘r.: well-known “Artin-Rees Lemma”, and we
accord this lemma a central Qlace In our treatment.
" For the study of completions we 51115111 find it necessary to introduce graded
rings. The prototype of a graded ring is the ring of polynomials k[x,, .., x,),
the grading being the usua} one Gblaln?d by taking the degree of each variable
to be 1. Just as ungraded rings are t!1c iuuqdutﬂiun for affine algebraic geometry,
50 graded rings are the fﬂUIldHlIUfi iiur projective algebraic geometry. They are
therefore of considerable geometric importance. The important construction of
the associated graded ring Ga(4) of an ideal a of A, which we shall meet, has a
very definite geometrical II'ItEI'[JI'ElﬂtiGI'L For example, if A is the local ring of a
point P on a variety ¥ with a as maximal ideal, then Go(A) corresponds to the
projective tangent cone at P, 1.e. all the lines through P which are tangent to V
at P. This geometrical picture should help to explain the significance of Gq(A)
in connection with the properties of V' near P and in particular in connection

with the study of the completion A.

TOPOLOGIES AND COMPLETIONS

Let G be a topological abelian group (written additively), not necessarily
Hausdorff: thus G is both a topological space and an abelian group, and the two
structures on G are compatible in the sense that the mappings G x G — G and
G — G, defined by (x, y) > x + y and x> —X respectively, are continuous.
If {0} is closed in G, then the diagonal is closed in G X .G (being the inverse
image of {0} under the mapping (x, y)—> x—y) and so G 18 Hausd:.:-rﬂ'. If a 15.
a fixed element of G the translation 7, defined by Tﬂgx) - x + a is a i.mhm;cﬂe
morphism of G onto G (for T, is continuous, and its INVEEse is g"..?),G eand
if Uis any neighborhood of 0in G, then U + aisa neighborhood ol @1n %,

: . thi olo
conversely every neighborhood of a appears 1 this form. Thus the topoiog)y

of G is uniquely determined by the neighborhoods of 0 in G.

ection of all neighborhoods of 0in G. Then

Lemma 10.1. Let H be the inters
1) His a subgroup.
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ii) H is the closure of {0}.
111) G/H is Hausdorff.
iv) G is Hausdorff <= H = Q.

Proof. i) follows from the continuity of the group operations. Fo i)
' We hay
x€ H <= 0ex — U for all neighborhoods U of ( have.

< x € {0}.

ii) implies that the cosets of H are all closed; thus points are clogeq
and so G/H is Hausdorfl. Thus H# = 0 = G is HausdorfT,
is trivial. =

Assume for simplicity that 0 € G has a countable fundamenta] sys
neighborhoods. Then the completion G of G may be defined in the usual :;n .
means of Cauchy sequences. A Cauchy sequence in G is defined to be 3 chui by
(x,) of elements of G such that, for any neighborhood U of 0, there c\:istsnce
integer s(U) with the property that .

Xy — Xy E U for all u, v > s(U).

n Gy
and the Converse

Two Cauchy sequences are equivalent if x, — y, — 0 in G. The set of g
equivalence classes of Cauchy sequences is denoted by G. If (x,), (»,) are
Cauchy sequences, so is (x, + ¥,), and its class in G depends only on the classes
Ef (x,) and (»,). Hence we have an addition in G with respect to which G is an
abelian group. For each x € G the class of the constant sequence (x) is an
element ¢(x) of G, and ¢: G — G is a homomorphism of abelian groups. Note

that ¢ is not in general injective. In fact we have
Ker¢g = (U

where U runs through all neighborhoods of 0 in G, and so by (10.1) ¢ is injective
if and only if G is Hausdorff.

If H is another abelian topological group and f: G — H a continuous
homomorphism, then the image under f of a Cauchy sequence in G is a Cauchy
sequence in H, and therefore f induces a homomorphisin f: G — H, which is

continuous. If we have G &> H 2> K, then g/:} =gof.

So far we have been quite general and G could for instance have been the
additive group of rationals with the usual topology, so that G would be the r?al
numbers. Now, however, we restrict ourselves to the special kind of topologles
occurring in commutative algebra, namely we assume that 0 € G has a funda-
mental system of neighborhoods consisting of subgroups. Thus we have &
sequence of subgroups

G=G,2G, 2 20,2

s : ical
and U < G is a neighborhood of 0 if and only if it contains some G- ?'?E-l_fch
example is the p-adic topology on Z, in which G, = p"Z. Note thi. ; G,
topologies the subgroups G, of G are both open and closed. In factils

TOPO =S
LOGIES AND CUMPLETEGNH

+ Gy 18 @ neighborhood of g: since e Bl B
then g}—lcﬂ‘-"‘-’ for any h the coset h + G, is o .0 = Un this ghou G
ope °’ . ce this is the complement of G in G it follows
topologies gven by sequences of subgroups there Is an a| i
qic definition of the completion which is oftep Cﬂn‘-'{:ni-: ternatiye Purely
nt.

.- Cauchy sequence 11 G. Then theimage of x, in G/G, g yjgirc Sil e
~If we pass fromn + 1 tonit s clear that ¢ :‘tEEF Constant,
n+y) > % uﬂd&r ﬂ'lf:

that G_ ;

G/Gni1 =% GG,

Thus & C
that

auchy sequence (x,) in G defines a coherent sequence (£,) in th
n C sénse

ﬂn,,,.ltfn.,.l e fn fﬂl‘ ﬂ” H.

Moreover it 18 clear that equivalent Cauchy sequences define the sam
(én): Finally, given any cc::hcrent sequence (£,), we can construct
sequence (X») iVINg ISC to it by taking x, to be any element in the ¢

hat Xns1 — Xn € Gn). Thus G can equally well be defined as the set
sequences (¢,) with the obvious group structure.

We have now arrived at a special case of inverse limits. More generally
consider any sequence of groups {4,} and homomorphisms ;

Hn+l: An+1 — An-

€ sequence
a Cauchy

0sct gn (SD
of coherent

We call this an inverse system, and the group of all coherent sequences (a,)
(ie.; ay € Ap and O, 41d5+1 = @y) 1 called the inverse limit of the system. It is
usually written Ll_mﬂ A,, the homomorphisms 6, being understood. With this

notation we have
G = lim G/G,.

The inverse limit definition of G has many advantages. Its main drawback

. Is that it presupposes a fixed choice of the subgroups G,. Now we can have
| different sequences of G, defining the same topology and hence the same com-

pletion. Of course we could define notions of “equivalent” inverse systems but

the merit of the topological language is precisely that such notions are already
built into it,

The exactness properties of completions are best studied by inverse limits.

 First let us observe that the inverse system {G/G,} has the special property that

bu+1is always surjective. Any inverse system with this property We shall call a

| Surjective system, Suppose now that {4,}, {Bu}s {C,} are three Inverse systems
| and that we have commutative diagrams of exact sequences

O_'}' An+1 ey Bn+1 —r Cﬂ+1 '_}.0
| | !

Y

\ v
054 — B, " =G, — 0.
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We shall then say that we have an exact se

: : quence of inverge «
diagram certainly induces homomorphisms © Systems,

The

O%LiEAn_*E_EB"_}LLm_CH‘}O

but this sequence is not always exact. However, we have

Proposition 10.2. If 0 — {A,} — {B,} — {C,}

— 0 is an exqe
. xacit g
inverse systems then >equence of

0—li — i — i
_}..;i.nA" }EB" )—lﬂcn

is always exact. If, moreover, {A,} is a surjective system then

U lim An l" — 1
rE=g — 11m Bn > lim C,—0
!-S exac!i

Proof. Let A = []7., A, and define d*: 4 — A by d4(a,) = a, — @

Then Ker d4 = lﬂ'l_”l A,. Define B, C and d?, d° similarly. The exa Sl

Ct sequence
of inverse systems then defines a commutative diagram of exact sequences

O—>A—>B—->C—=0
“, ) e

0 >A—>B—->C—0
and hence by (2.10) an exact sequence
0 — Kerd4 — Ker d2 — Ker d° — Coker d4 — Coker d? — Coker d€ — 0
To complete the proof we have only to prove that
{A,} surjective = d4 surjective,

but this is clear because to show d4 surjective we have only to solve inductively
the equations

Xn — 8n+1(xn+1) = dy

for x, € 4,, givena,c A,. =

Remark. The group Coker d4 is usually denoted by lim* 4, sinceitisa derived
A €
functor in the sense of homological algebra.

Corollary 10.3. Let 0 — G — G2 G — 0 be an exact sequence o

groups. Let G have the topology defined by a sequence {G,} of subgroups, and

give G', G" the induced topologies, i.e. by the sequences {Gg N G (PGt
Then

0->G >G—->G"—>0
is exact,

=

f. ApplY (10.2) to the exact sequences
oJ ’
pro 0 —> G - E_ ‘ G"
G'NG, G, " pG.0 u
n pﬂf[icular we can ﬂpply (103) with G = Gna th(‘.‘l’l G

e topology SO that G" = G”. Hence we deduce = GIG, has the
vollary 10.4. G, is a subgroup of G and
G/Gn = G}Gn (&}

Taking inverse limits in (10.4) we deduce

discret

Co

Proposition 7105. G~ G. =

(f: G —> G is an isgmﬂrphislm we shall say
asserts that the completion of G is complete. N
olete includes Hausdorff (by (10.1)).

The most important ol examples of topological groups of the kind
we are considering are given by taking G = A, G, = o, where a is an ideal in 5
ring A. The topology so dﬂ'ﬁned on 'A 1S called the a-adic topology, or just the
a-topology. Since the u‘:“ are 1deals, 1F 1S not hm:d to check that with this topology
{is a topological ring, i.e. that the ring operations are continuous. By (10.1) the
topology 18 Hausdorft bt () a® S (0). Th‘e completion A of A is again a topo-
logical ring; ¢: A — A 1s a continuous ring homomorphism, whose kernel is

a”,
) Likewise for an A-module M: take G = M, G, = a"M. This defines the
a-topology on M, and the completion M of M is a topological A-module (i.e.
i x M — M is continuous). If f: M — N is any A-module homomorphism,
then f(a"M) = a"f(M) < a"N, and therefore f js cnnﬂtinuuus (with respect to
the a-topologies on M and N) and so defines /: M — N.

Examples. 1) 4 = k[x], where k is a field and x an indeterminate; a = (x).
Then A = k[[x]], the ring of formal power series.

2) A=1Z, a = (p), pprime. Then A is the ring of p-adic integers. s

i : : n as
elements are infinite series D o= d,p", 0 € @, S P — 1. We have p* =0
n— 00,

that G is complete. Thus (10.5)
ote that our definition of com-

FILTRATIONS

The a-topology of an A-module M was defined by taking the subfngdgicsszr:;
as basic neighborhoods of 0, but there are other ways of dﬂﬁnm}ir:thc %
‘opology. ‘An (infinite) chain M = Mo 2 My 22 Ma 201 N Fy Aoy
U submodules of M, is called a filtration of M, and dc“mefi by ( M. for
“filtration if q M, < M, ., for all n, and a stable a-filtration it aM, = Mn+l

all Sufficiently large n. Thus (a®M) is a stable a-filtration.
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Lemma 10.6. If (M,), (My) are stable a-filtrations of M, (e
bounded difference: that s, there exists an integer ngy such t :"mr "’1*}‘ they haye

’ i
and M., , ., S M, foralln > 0. Hence all stable a-filtrations deyer. s M,
same topology on M, namely the a-topology. clermine 4,

Proof. Enough to take M. = a®M. Since aM, © M., for all
a*M < M,; also aM, = M,,, for all n > n, say, hence M N, We haye
Rtng = ﬂni”ﬂ

c a"M. =

GRADED RINGS AND MODULES

A graded ring 1s a ring A together with a family (A,)n»0 Of subgrou
additive group of 4, such that 4 = © A,and ApA, < A, ., forall E: Of the
Thus A, is a subring of 4, and each A, is an Ay,-module. 120,

oy Xr)y An

e
—

Example. A4 = k[xy, .. set of all homogeneous polynomials of

degree n.

a graded A-module is an A-module A together with a
Msuchthat M = @reo Myand A, M, = M

ne=0
» m+n
is an A,-module. An element x of M is hono-

geneous if x € M, for some 7 (n = degree of x). Any element y € M can be
written uniquely as a finite sum S . ¥., Where y, € M, for alln > 0, and all buta
finite number of the y, are 0. The non-zero components y, arc called the

homogeneous components of y.
If M, N are graded A-modules, a homomorphism of graded A-modules 1s an

4-module homomorphism f: M — N such that f(M,) < N, foralln > 0.
If A is a graded ring, let 4, @n»o An- A+ 1520 ideal of A.

If A is a graded ring,

family (M) » o Of subgroups of
for all m, n > 0. Thus each M,

—_
Je—

E——
———

Proposition 10.7. The following are equivalent, for a graded ring A:

1) Aisa Noetherian ring;

is finitely generated as an Aq-algebra.

A, 1san ideal in A, hence 1S
take to be homogeneouw
the subring of A
4" for alln 20,

0 and let Y€ Ap:
Sy @iXp where

ii) Ao is Noetherian and A
Proof. 1) = ii). Aq A[A ., hence 1s Noetherian.

finitely generated, say by Xj, ..., Xs Which we may
elements of A, of degrees Ky, . . -, k, say (all > 0). Let A' be
generated by Xy, ..., Xs OVeT Ao,. We shall show that A, S

by induction on 2. This is certainly true for n = 0. Letn &
Since y € A, y is a linear combination of the X, say V = W i
a, € A, -y, (conventionally A = 0if m < 0). Since each k; > 0, the induct

hypothesis shows that each a; 1s a polynomial in the x’s with cne’fﬁcientls mf‘j;
Hence the same is true of y, and therefore y € A’. Hence An S A’ and there

A=A
ii) = i): by Hilbert’s basis theorem (7.6).

(e

|

[
M, thet
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a ring (not graded), a an ideal of 4. Tt
e i Sln:ulﬂrly, if M is an A-module arﬁ:i M._

* = Dn Mn 18 gru@ed A*-module, since ampf. > an a-filtration of

Noetherian, @ 18 finitely generated, say b n S M

s Noetherian by (7.6). y X,

et A DC

——
et

W can form a grageq

o

if A 18 i

. 1 ey A
s then 4* =

0.8. Lel A be a Noetherian ring, M a finit
: ’ ely-
filtration of M. Then the following are Equi;,:}ggi:fmmd A

/ y-genera!ed A*-module:

-module.

—
—

ch M, is finitely generated, hence so is each Q (_Bn M.: this
" r=q M, NS 1S 4

proof. E8CH M : *
¢ M* but not (in general) an A*-submodule. However, it generat
) ales

subgroup ©
one, namely

M* = Mo @ @ My @M, © M, ® @ M, @ - -

tely gcncrated as an A-module, MJ¥ is finitely generated as an
e M* form an ascending chain, whose union is M*. Since A* is
is finitely generated as an A*-module < the chain stops, 1.
o My, 4y = @My, for all r > 0 < the filtration i;

since QOn 18 fin!
A#_m{jdl.llf:. T]'.'l

Noetherian, M*
M* = MY for some T

stable. ®

Proposition 10.9. (Artin-Rees lemma). Let A be a Noetherian ring, a
an ideal in A, M a finitely-generated A-module, (M,) a stable a-filtration

of M. If M" is a submodule of M, then (M' 0\ My) is a stable a-filtration

of M'.
Proof. We have a(M 'NM,) S
s an a-filtration. Hence it defines a graded A*
M* and therefore finitely generated (since A* is Noe

aM' N aM, € M' 0 Mgy, hence (M' N M,)
-module which is a submodule of
therian). Now use (108). =

Taking M, = a"M we obtain what is usually known as the Artin-Rees

lemma:

Corollary 10.10. There exists an integer K such that

(ﬂnﬁ,—!) N J-"y[' — ﬂn_k((ﬂkﬂ"f)ﬁ M’)

foralln > k. =

On the other hand, combining (1Y
we obtain the really significant version:

a an ideal,

Then the filtrations @
» the a-topology of M

of M. i

Theorem 10.11. Let A be a Noetherian ring,
A-module and M' a submodule of M _
(@*M) N M’ have bounded difference. In particula

the a-topology

6 coincides with the topology induced by
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[

Remark. In. this chapter We shall apply the last part of (10.11) conger
topologies. However, in the next chapter the stronger result about boy,

differences will be needed.

As a first application of (10.11) we combine it with (10.3) to get the ”
portant exactness property of completion: .

nmg
]dcd

Proposition 10.12. Let
00— ﬁ“f’—':" M — ﬂef"_:..o

be an exact sequence of finitely-generated modules over a Noetherian ring 4
Let a be an ideal of A, then the sequence of a-adic completions -

0>M - M— M" —0

is exact. W

Since we have a natural homomorphism A4 — A we can regard 4 as ap
A-algebra and so for any 4-module M we can form an A-module AQ®, M 1t
is natural to ask how this compares with the A-module M. Now the A-module

homomorphism M — M defines an A-module homomorphism
A:Gltﬂf-ﬁ~ﬂrﬁl453—%-ﬂT@Qqﬁ& = M.

In general, for arbitrary A and M, this is neither injective nor surjective, but we
do have:

' Proposition 10.13. For any ring A, if M is finitely-generated, AR, MM
is surjective. If, moreover, A is Noetherian then A @, M — M is an iso-

morphism.

Proof. Using (10.3) or otherwise it is clear that a-adic completion commutes

with finite direct sums. Hence if F =~ A™ we have A®,Fz F. Now assume M
is finitely generated so that we have an exact sequence

0O>N—>F—->M-—=0.

This gives rise to the commutative diagram

j@AN_}j®AF—}‘E®AM—?'O
i* $ﬂ La
e P, M0

in which the top line is exact (by (2.18)). By (10.3) d1s surjective. Since B s an
isomorphism this implies that « is surjective, proving the first part of the pro-
position. Assume now that 4 is Noetherian, then N is also finitely gﬁ“f’mtﬂd
50 ﬂ'fﬂt y is surjective and, by (10.12), the bottom line is exact. A little diagram
chasing now proves that « is injective and so an isomorphism. ®

ositions (10.12) and (10.13) together assert t

: . hat
is exact on the category of finitely-generateq A-mgldeulmnftm =
€S (When 4
S

/I R4 J"'rfiﬂln)‘ AS shown n Chﬂptﬂ[’ 2 this proves:

Noethe 14. If A is a Noetl
Ei 14. IS a INoetherian ring ; A
psition 10.14. 1) < ing, a an id
P;ﬂm of A, then A'1S a flat A-algebra. w eal, 4 the a-adic o,
P ¥

mark For 1 on-finitely-generated modules the functor A 1y M is
L » s . » . B, r n "
Re »d functor, which isexact, 1S M > 4 ®, M and the two f ot exact:

0 inci

i f%nitﬂl)’*gencratcd modules. unctors coincide

on - -,

we proceed now to study the ring 4 in more detail. First some elem
tnlary

propositions:
Prgpmiﬁﬂn 1 0.1:5'. If A is Noetherian, A its a-adic completion, then
i)ﬁ::.&ﬂiz A X, Q;
i) (@) = (@";
i) arfantt = &6
iy) @ is contained in the Jacobson radical of A.
Proof. Since A is Noetherian, a is finitely-generated. (10.13) implies that the

map »
A ®ﬂ L —> ﬁ,

whose image 18 Aa, is an isomorphism. This proves 1). Now apply i) to a* and
we deduce that

(a")" = Ada" = (do)" by (1.18)
= (a)" by i).
Applying (10.4) we now deduce
Aja® ~ A"

from which iii) follows by taking quotients. By 1i) and (10.5) we see that A
is complete for its d-topology. Hence for any X €

1-xt=1 3 X 4 X o

converges in A, so that 1 — x is a unit. By (1.9) this implies that & is contained

in the Jacobson radical of A. =
Proposition 10.16. Let A be a Noetherian local ring, its maximal ideal

Then the m-adic completion A of A is a local ring with maximal ideal W.

Pr”“_f: By (10.15) iii) we have 4/t = A/m, hence A is a field a‘ndls;f}jl :511 3
maximal ideal. By (10.15) iv) it follows that 1t is the Jacobson radica

%015 the unique maximal ideal. Thus A is a local ring.

completion 18 answered bY

K The important question of how much we lose on
rull’'s Theorem:
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Theorem 10.17. Let A beaNﬂf?fherfan ring, a an ideal, M a finis. Fip every element of 1 + ais a unit : 111
A-module and M the a-completion of M. Then the kernel F — maenemfﬂ_ d Prﬂﬂﬂ :

M — M consists of those x € M annihilated by some elemen; of In - .:. ar )y p L partic ul
a,

By (1.9)
arly important special case of (1 19) we h
i ave;

Proof. Since E is the intersection of all neighborhoods of 0 e ps the t Corollary 10.20. Let A be a Noetherian Jocq) . medie |
induced on it is trivial, i.e., £1s tht;.‘: DI.ﬂ}’ neighborhood of 0 e £ By (mﬂnningy ﬁm'refy'gﬁ”wmgd A-module. Then the m'fﬂ.ﬂﬂfﬂéy of h}”ﬂfxrmuf ideal, M ,
induced topology on E coincides with its a-topology. Since aF s g ”Eighbg 1}3 the pﬂrﬁﬂ'“mr the m-topology of A is Hausdorff, g 'S Hausdorfy, |,
oog . :
state (10.20) shightly differently if we recall

in the a-topology it follows that a£' = E. Since M is finitely-generate a

nd 4 i We can I¢€ i as e

Noetherian, E is also finitely-generated and so we can apply (2.5 o : - :
from akE = Ethat (1 — «)E =0 for some « € a. The Cﬂnjer('scsijﬂ ﬂ;}ii‘i‘f‘{ﬁ ideal ;nflf).f J;‘ituznglédgg)l T;I;:?;: iﬁa}i{t::ﬁ:t:;;ﬁ:; m;‘: i “.1“ (E;Tj%
(1 — a)x = 0, then if anfi[(is’zcm_ If now A is any Noetherian ring, p 4 Primg?d::]l M-primary ideals
X m= X m X = E ﬁ "M = E. = - i{rsinn of (10.20) to the local ring Ap. Lifﬁing back to 4 and usji:getiagn;zﬂy e

| 5 crespondence (4.8) between p-primary ideals of 4 and m-primary idealsﬂr;f

Remarks. 1) If S is the multiplicatively closed set 1 + a, then (10.17) Bssrs, | (where M = pAy) we deduce: .

that i 10.21. LetA be a Noetherian rin ime i
Ao dand A5 G O ey Moty v e of 4. T e

have the same kernel. Moreover for any « € a

(1 e ,3;)‘1 s 1 ko de g o e THE ASSOCIATED GRADED RING

converges in A, so that every element of S becomes a unit in A. By the universy] Let A be a ring and a an ideal of 4. Define

property of S~*A this means that there is a natural homomorphism §-14 -, 4 @
and (10.17) implies that this is injective. Thus S™'4 can be identified with g G (A) (= Go(A4)) = Ir1@:}ﬂ“/ﬂ'“’l (0 = A).
subring of A. | . | L
2) Krull’s Theorem (10.17) may be false if A 1s not Noetherian. Let A be the shg gr:aded : s ‘zh“:’h th‘? m}lltlpllﬂﬂtlﬂn 1S de:"ingias fullows: g
ring of all C* functions on the real line, and let a be the ideal of all f which van- For eaeh. %, E,ﬂ 4L B enc!te e Image f X 1n w8 . ;_dEﬁ“E Xas 10 be
Y.X,, i.c., the image of x,x, in a™*"/a™*"*%; check that X,X, does not depend

ish at the origin (a is maximal since A/a =~ R). In fact a i1s generated by the
identity function x, and ()=, a" 1s the set of all f€ A, all of whose derivatives
vanish at the origin. On the other hand fis annihilated by some element 1 + «

on the particular representatives chosen.
Similarly, if M is an A-module and (M,) is an a-filtration of M, define

(« € a) if and only if f vanishes identically in some neighborhood of 0. The well- e o i
known function e~**, which is not identically zero near 0, but has vanishing G(M) = @n o[ Mp 1
derivatives at 0, then shows that the kernels of W e o ot b x atural o St 0N deciobe Malia

(S =1 +1)

. X e ,
A—>Adand 4 — 574 Proposition 10.22. Let A be a Noetherian ring, a an ideal of A. Then

do not coincide. Thus A is not Noetherian. 1) Go(4) is Noetherian,
1) Go(A4) and Gi(A) are isomorphic as graded rings;

Krull’s Theorem has many corollaries:
' iii) if M is a finitely-generated A-module and (M .) is a stable a

filtration of M,

Corollary 10.18. Let A be a Noetherian domain, a # (1) an ideal of A. l
Then () a® = 0. then G(M) is a finitely-generated graded Ga(A)-module. TR
Proof. 1 + a contains no zero-divisors. ™ | froof. i) Since 4 is Noetherian,  is finitely generated, s3) s x1§_- e Ala is
2o - medinthe TS be the image of x, in a/a?, then G(4) = (4/0)% - -, Kol
fﬂﬂ;llary 10.19. Let A be a Noerhermf: ring, a an rdja; U{H ﬁdj;z: Then the Nﬁctherian, G(A) is Noetherian by the Hilbert basis theorem.
acobson radical and let M be a finitely-generated A- - i) %1 ~ &%/an+1 by (10.15) iii).

a-topology of M is Hausdorff, i.e. (" a"M = 0.
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iii) There exists 7o Such that Muo+¢ = 0"My, for all r > 0, hence G(ar) s
generated by @ncno Gn(M)- Each Gu(M) = Mu/Muy 15 Noctherian ﬂm‘]
- nihilated by a, hence is a finitely-generated A/a-module, hence ), &y Gn(rlf)
is generated by 2 finite number of elements (as an A/a-module), hence G(M) s

finitely generated as 2 G(A)-module. =

The last main result of this chapter is that the a-adic completion of .
Noetherian ring 1§ Noetherian. Before we can proceed to the proof we neeqg .
simple lemma connecting the completion of any filtered group and the a8S0¢j-

ated graded group.

Lemma 10.23. Let $: A — B be a homomorphism of filtered groups, |,
$(A,) S Bs, and let G(¢): G(A) — G(B), ¢: A — B be the induced hmnu:
morphisms of the associated graded and completed groups. Then

1) G(¢) injective = <,-6 injective;
ii) G(¢) surjective =  surjective.
Proof. Consider the commutative diagram of exact sequences

0—> A fAps1 = AlApey = A[An — 0

| Gn(@) | @n+1 | &n
Y Y Y
0 e 2 B“/Bn.l_l —p B/Bﬂ+l —p B’Bn — O‘
This gives the exact sequence

0 — Ker G,(¢) — Ker «,,, — Ker «, — Coker G,(¢) — Coker «,, ,
— Coker «, — 0.

From this we see, by induction on n, that Ker «, = 0 (case i)) or Coker «, = 0
(case ii)). Moreover in case ii) we also have Ker «,,; — Ker «, surjective.

Taking the inverse limit of the homomorphisms «, and applying (10.2) the lemma
follows. m

_Wﬂ can now fqrm a result which is a partial converse of (10.22) iii) and is the
main step in showing that 4 is Noetherian.

Prafasi!tinn 10.24. Let A be a ring, a an ideal of A, M an A-module, (M) an
Eﬁ ”j“ﬂ” ‘ﬂf ‘M : Supgﬂse that A is complete in the a-topology and that M 1s
ausdorff in its filtration topology (i.e. that M. M, = 0). Suppose also that

G(M) is a finitely-
generated - . e i
A-module. G(A)-module. Then M is a finitely-generaté

i:}”;ﬁg:::;u:cgmte set of generators of G(M), and split them up into theit

therefore the im:]I pun; nts, say & (1 < i < v) where £, has degree say n(i), and 18

a-filtration give %: ; :an x;: € M,,. Let F' be the module A4 with the stable

ok noy Fp = q¥*+n® and put F = @;_1 F{  Then mapping the
or 1 of each F* to x, defines a homomorphism

$:F—> M

1

!

groups, and G($): G(F) — G(M) is ,

Jtered fan | et hom '

fgulcﬁ- By C{JI'ISLI:UCIIGH IL 1S surjective. Hence by (10 g?‘?fpl},"ﬁm of G(A)
mo sider noW the diagram S ¢ s Surjectiye,
Con F-SM

L7 4

F— M
cince F s free and A = 4 1L follows that « is an isomorphism,  Since )y
Hﬂusdﬂfﬁﬁ is injective. The surjectivity of ¢ thus implies the surjccti;i; ﬂ; ,l;

0

aid this means that xi, ..., X, generate M as an A-moduyle o
‘ L]

llary 10.25. With the hypotheses of (10.24). i :

g?:;-ma}c,fu!e, then M is a Noetherian A-f:r.:(}dm'e. ) GM) is @ Noetheria
proof. We have to 5}1‘3""’ that every submodule M” of M is finitely generated
(6.2). Let M, =M ) Mn_i then (M;) is an a-filtration of M’, andb the em-
bedding Mn — Mn BIVES TISC to an injective homomorphism M. /M’ .,
M./M,+1, hence to an embedding of G(M ') in G(M). Since G(M)is N;Jﬂiﬁf:rlian
G(M') 18 finitely generated by (6.2); also M’ is Hausdorff, since ﬂM;g,
NM, = 0: hence by (10.24) M’ is finitely generated. =

We can now deduce the result we are after:

Theorem 10.26. If A is a Noetherian ring, a an ideal of A, then the a-
completion A of A is Noetherian.

Proof. By (10.22) we know that

is Noetherian. Now apply (10.25) to the complete ring A, taking M = 4
(filtered by a", and so Hausdorff). =

Corollary 10.27. If A is a Noetherian ring, the power series ring B'=
Al[xy, ..., x,]] in n variables is Noetherian. In particular k[[x1, - - » Xall

(k a field) is Noetherian.

Proof. A[x,..., x,] is Noetherian by the Hilbert ba
completion for the (xy, ..., Xy)-adic topology. ®

sis theorem, and B 18 11§

*?

EXERCISES

. " (1) =p""
L. Let «,: Z/pZ — Z/p"Z be the injection of abelian groups giver by el

: direct
and let «: 4 — B be the direct sum of all the ¢ (where 4 15. 2:;1) m;;:::lfhat G
sum of copies of Z/pZ, and B is the direct sum of thf: Z/PrA .t'or e topology
p-adic completion of A is just A but that the completion © ¢ the Z/pZ. Deduce
induced from the p-adic topology on B is the direct prﬂdﬂﬂfli: atogart o 2l Z-
that p-adic completion is not a right-exact functor o TF
Modules.




{14  COMPLETIONS

«~}(p"B), and consider the exact sequence

2. In Exercise 1, let Ax =
0 — Ax — A— AlA, - 0.

R ; d compute lim* A,.
Show that lim 1S not right exact, an p
P E

ring, a an ideal and M a finitely-generated A-mody|,

therian
3. Let A be a Noe nd Exercise 14 of Chapter 3, prove that

Using Krull’s Theorem a
ﬁ a*M = (N Ker (M — M),

n=1 maa

where m runs over all maximal ideals containing a.

Deduce that

AT = 0 < Supp (M) N V(a) = & (in Spec (A)).

[The reader should think of M as the “‘Taylor expansion™ of M transversa] tq
the subscheme V(a): the above result then shows that M is determined in 4

neighborhood of V(a) by its Taylor expansion.]

4. Let A be a Noetherian ring, a an ideal in 4, and A the a-adic completion. For
any x € A, let £ be the image of x in A. Show that

v not a zero-divisor in A = £ not a zero-divisor in A.

Does this imply that

A is an integral domain = A is an integral domain?

[Apply the exactness of completion to the sequence 0 — A4 5 Al

5. Let A be a Noetherian ring and let a, b be ideals in 4. If M is any A-module, let
M?*, M® denote its a-adic and b-adic completions respectively. If M is finitely
generated, prove that (M%) ~ Ma+b,

[Take the a-adic completion of the exact sequence

0 —b"M — M/B™"M — 0
and apply (10.13). Then use the isomorphism

E.’E (Lt_x_n_ M/(@*M + b"M)) =~ L'T. M/(a"M + b"M)

m n .

and the inclusions (@ + 0)** < a" + b* < (a + b)".]

o it N?ethcria“ ring and a an ideal in 4. Prove that a is contained in the
if: bs;: Baadical of A if_ and only if every maximal ideal of A is closed for the
an ,;5’;;‘-’ o t(‘f‘ Noetherian topological ring in which the topology is defined by
g contained in the Ja:cubsun radical is called a Zariski ring. Examples arc

G And (by (10.15)(iv)) a-adic completions.)

7. bt ‘
Let A be a Noetherian ring, a an ideal of 4, and A the a-adic completion. Prove

that A is faithfull i
: y flat over 4 (Ch : : i < 7ariaki
ring (for the a-topology). " P'C" » Exercise 16) if and only if A is3

B

ioog A is Bt OVEL A, it is enough to show that
Sin

. A7 injective for all finite]

s M inj | Y generated M < A is Zarisk:
w use (10.19) and Exercise 6.]

no

[

i f the origin in C" (j .
be the local ring o g (i.e., the ring of :
EAC(:«’::, ., zn) with g(0) # 0), let B be the ring ng all rationa] functiong

; - POWer series ;
Which converge 1n SOM® neighborhood of the origin, ang Je Ch o
1] power series in Zi,..., Zu, o that 4 < B < ©

hat its completion for the maximal ideal topology is C ASB s a loca
B is Noetherian, prove that B is A-flat. [Use Chapter 3, léxer"
exercise 7 above.]

ing, m its maximal ideal. Ass - .

Let Abeca local riin%, l( )!E pr x]I - } cal. Assume that 4 1S m-adically complete,
For any polynomia £{x € Alx], le (-’C_) € (A/m)[x] denote its reduction mod m
prove Hensel's lemma: if f(x) is monic of degree n and if there exist congime

4 ials 2(x), h(x)e(A/m)x] of -
onic polynomials £(x), /1(x) € ( x] of degrees r,n - r with f(y) =
#(x)h(x), then we can lift g(x), h(x) back to monic polynomials g(x), h(x) € Ax]
such that f(x) e g(x)h(x).
[Assume inductively that we have constructed gi(x), h(x) € A[x] such that
g;,;(.?f)hk(x) — f(x)em*A[x]. Then use the fact that since #(x)and A(x) are
coprime we can find d,(x), b,(x), of degrees < n — r, r respectively, such that
x? = dp(xX)gk(x) + 5P(x)ﬂk(x), where p 1s any integer such that 1 < p < n.
Finally, use the completeness of A to show that the sequences gi(x), hu(x)

converge to the required g(x), A(x).]

10. i) With the notation of Exercise 9, deduce from Hensel's lemma that if f(x)
has a simple root « € A/m, then f(x) has a simple root a€ A such that
« = a modm.

ii) Show that 2 is a square in the ring of 7-adic integers.
iii) Let f(x, y) € k[x, y], where k is a field, and assume that f(0, y) has y = do

as a simple root. Prove that there exists a formal power Series y(x) =

Se_o a.x" such that f(x, y(x)) = 0.
(This gives the ‘“‘analytic branch” of the curve

11. Show that the converse of (10.26) is false, even
that A is a finitely-generated 4-module.
[Take A4 to be the ring of germs of C* funct
Theorem that every power series occurs as the Taylor expa

function.]

12. If A4 is Noetherian, then A[[xi, ..., Xa]]15 @ faithl'ul!}' ﬂﬂtaf:d o E
A— A[[x,, ..., x,]] as a composition of flat extensions,

of Chapter 1.]

f = 0 through the poiat (0, da).)

if we assume that A is local and

;|
ions of x at x = 0, and use Borel :
nsion of some C
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Dimension Theory

ns in algebraic geometry is that of the dimensjgp, of
ly a local notion, and, as we shall show in this clmp{;
there is a very satisfactory theory of dimCﬂSiDIl for gcnciru‘l Noetherian lumi
rings. The main theorem asscrt‘s_thc cquwalcm.:c of thrlcc different definition of
dimension. Two of thes¢ definitions have a fu:rly obvious geometrical contep;
but the third involving the Hilbert function 1s less conceptual. It has, hGWEV{:r:
many technical advantages and the whole theory becomes more streamlined jf
one brings it 1n at an early stage.

After dealing with dimension we give a brief account of regular local rings,
which correspond to the notion of non-singularity in algebraic gcometry, We
establish the equivalence of three definitions of regularity.

Finally we indicate how, in the case of algebraic varieties over a field, the

local dimensions we have defined coincide with the transcendence degree of the
function field.

One of the basic notio
variety. This IS essentia

HILBERT FUNCTIONS

Let A = D2, 4, be a Noetherian graded ring. By (10.7) 4, is a Noetherian
ring, and A is generated (as an Ay-algebra) by say x,, . . ., x,, which we may take
to be homogeneous, of degrees k,, .. ., k, (all > 0).

: Let M be a finitely-generated graded A-module. Then M is generated by a
finite number of homogeneous elements, say m, (1 < j < t); let r; = degm,
Every element of M,, the homogeneous component of M of degree n, is thus of
$‘ form 3, fi(x)m;, where f,(x) € A is homogeneous of degree n — r, (and
m::icilimnzenzzl ;rritﬂi: ). Itdfollnws that M, is finitely generated as an rt‘ihu'

) en ) 1S : t ¢
& iotsl desros » _Brj.cratc by all g,(x)m; where g,(x) is a monomial in
geml;’::cgzc_ﬁu‘:ld‘fm”f Junction (with values in Z) on the class of all finitely
i the sencr;ti f“ es -(Chapter 2). The Poincaré series of M (with respect t0 )
4§ tunction of A(M,), i.e., it is the power series

P(M, 1) =HZA(M,,)r“ e Z[[t]].
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m 11.1. (Hilbert, Serre). P(M, r)isuraf:‘nnmfunmﬂ” it
0 IhEIﬂrm

(=1 (- f“’), where f(r) € Z[z],
duction on s, the number of generators of A over 4

ns that A, = Oforalln > 0, 5o that 4 = 4
dule, hence M, = O for all large n. Thy D

Theore
fOIT)

By in
Qf
Pri é; this mea

—

5
cncrﬂtﬂd Ao MO

his casc:
Now Suppo
.« an A.mﬂdulﬂ

0 Stﬂ.rt W“h
. andﬁM 1S a finitely.
SP(M, t)isa Polynomia)

in t se s > 0 and the theorem true for 5 — |

homomorphism of M, into M M“h‘micﬂtiﬂﬂ by x,

n+ky NENCE it gives an exact

0-—}' Kn_'}" Mn_x':"? J‘.l'f"l’l»‘i'kl_;'“-‘['1"""’;':1 —F D (1)

K = @nKn L = DnLa; these are both finitely-generated A-modules
(because Kis a submodule and L a quotient module of M), and both are annj-

hilated by Xs hence they are Ag[x,, ..., x,_;]-modules. Applying A to (1) we
have, bY (2.1 1)

Let

/’L(Kn) - A(Mn) + ‘E‘(Mnﬂ-:.) - ‘\(Lnari:.) = 0;

multiplying by ¢n+ks and summing with respect to n we get

LL e fk')P(M, 1) = P(L: t) — fk'P(K, t) + g({) (2)
where g(7) 1s a polynomial. Applying the inductive hypothesis the result now

follows. W
The order of the pole of P(M, ) at t =1 we shall denote by d(M). It

provides a measure of the “size” of M (relative to A). In particular d(4) is
defined. The case when all k; = 1 i1s specially simple:
Corollary 11.2. If each k; = 1, then for all sufficiently large n, XM,) is a
polynomial in n (with rational coefficients) of degree* d — 1.

Proof. By (11.1) we have MM,) = coefficient of ¢* in f(t)-(1 — ¢)7*. Cancel-
ing powers of (1 — t) we may assume s = d and f(1) # 0. Suppose f(t) =

SN_oaxt®; since ,
w d+k—1\
(1-0"= d—1
k=0
we have
N
d+n—k—1 ln 2= N
A(Mn) = zﬂk ( " N | ) for a
=% n with leading term

and the sum on the right-hand side Is a polynomial 1n

d-1
(2 ﬂ.l:)n /(d = ]'.)' 7 0. = integer for all

Remarks. 1) For a polynomial f(x)
Integers n, it is not necessary for / to
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2) The pnlynumial in (11.2) is usually called the Hilbert function (or -

nomial) of M (with respect 10 A).

w to the sequence (1) let us replace x, by any clement x ¢ 4
k

o-divisor in M (i.e, xm = OwithmeM = m = 0). T
(2) shows that

d(L) = d(M) — 1.

Returning no
which is not a zc‘r
K = 0 and equation

cn

Thus we have proved

Proposition 11.3. If x€ Ay 1S not a zero-divisor in M then d(M/xM ¥

dM) — 1. ®

We shall use (11.1) in the
field) and A(M) is the length
(6.9) I(M) is additive.

Example. Let A = AcIxiyls
independent indeterminates.

case where Ao is an Artin ring (in particular, 4
I(M) of a finitely-generated Ag,-module M. lB},r

., X,], where Ap 1s an Artin ring and the x, are

Then A, is a free Ao-module generated by the

s+n—1
monomials x7- - - X5 where S m, = n; there are (

PA, ) =1 — D
We shall now consider the Hilbert functions obtained from a local ring by
passing to the associated graded rings as in Chapter 10.

5 ) of these, hence

Proposition 114. Let A be a Noetherian local ring, m its maximal ideal,
q an m-primary ideal, M a finitely-generated A-module, (M) a stable q-

filtration of M. Then
1) M/M, is of finite length, for each n 2 0;

-ii) for all sufficiently large n this length is a polynomial g(n) of degree < s
in n, where s is the least number of generators of q;

iii) the degree and leading coefficient of g(n) depend only on M and q, not on
the filtration chosen.

Proof. ) Let G() = @, a/a"", G(M) = Do Mo/ M. God) = Al i i1
in local ring, say by (8.5); G(A) is Noetherian, and G(M) is a finitely-
ilencratefl graded G(A)-module (10.22). Each G, (M) = M,/ Mu:y 15 8

oetherian A-module annihilated by q, hence a Noetherian A/q-module, and

® * ' _ _ _.
ane;efﬂrc of finite length (since A/q is Artin). Hence M/M, is of finite length,

[, = I(MIM,) = zﬂ: I(M,_,/M,). (1)

b rml
n) If .
e )A /q-axlhg;i:;l:l X, Eﬁ:neratf q, the images ¥, of the x, in q/q? generateé G(A)
107y gwh :, and ea:ch X, has degree 1. Hence by (11.2) we have /(M [My1)
) re f(n) is a polynomial in » of degree < s — 1 for all large 7

DIMENS
ION THEORY OF NOETHERIAN
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(1) we have lns1 — ln = f(n), it follows that I, is 4 pg
g(n)

¢ degree < s, for all large n.
0 ) Let (M,) be anf:lthcr stable g-filtration of A iy
0.6) the two filtrations have bounded difference ,i E“ tiit g(n) =
y be,, re EK]Sts an i'[]
ttgtr

10.
By h thﬂt A_:fn+nﬂ__.:-; Mﬂl Mn+nu - an for all n=q0: con

> &), g(n + no) 2 &(n).  Since g and é"‘am >equently we haye
we have llr,E'lﬂ_, » £m)/gn) = 1, and therefore o 3 hPﬂi}'ﬂﬂmials for all
ding coefficient.  ® 8 1ave the same degree

(M| 51,).

The polynomial g(n) corresponding to the filtration @M is q
= €noted hﬁ'

xa'(n) = [(M[a"M)

M= A, WO write xo{7) f{::‘r xa(n) and call it the characterisi
he m-primary ideal q. In this case (11.4) gives ic poly

(for all large ).

nomi
of t lal

Corollary 11.3- For all large n, the length 1(A[q") is a polynomial
of degree < S, where s is the least number of generators of q. w al xq(n)

The polynomials xq() for different choices of the m-primary ideal q all hav
the same degree, as the next proposition shows: ¢

Proposition 11.6. [f A, m, q are as above

deg xq(n) = deg xm(n).

Proof. We have m 2 q = m’ for some r by (7.16), hence m* 2 q* 2 m™ and

therefore
ym(1) < xa(n) < xm(rn) for all large n.

Now let n — o0, remembering that the x’s are polynomials inn. ®

The common degree of the xq(n) will be denoted by d(4): in view of (11.2)
this means we are putting d(4) = d(Gu(A)) where d (Gu(A)) is the integer
defined earlier as the pole at ¢ = 1 of the Hilbert function of Gu(A).

DIMENSION THEORY OF NOETHERIAN LOCAL RINGS

Let A be a Noetherian local ring, m its maximal ideal. |

Let 8(4) = least number of generators of an m-primary 1|Eieal u_f A.
Our ambition is to prove that 8(4) = d(A) = dim 4. We shall achieve Fglst?
proving 8(4) > d(4) > dim A > 3(A). (11.5) and (11.6) together provide the
first link in this chain:

Proposition 11.7. 8(A) > d(A4). ™

Next we shall prove the analogue for
ir"':_gf“'&ﬁs the strong version of the Artin-Rees lemma
a L1

3). Note that this

local rings of (11 gical

(not just the topolo




f
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before. Let M be a finitely-generateq

A, m, q be as
Mand M' = M/xM. Then

sero-divisor in
deg xa' < deg xa' — 1.

N~ M as A-modules, by virtue of the assumptigp
have exact sequences

* Let N = xM: then
i’;ﬂj Let N, = ND q"M. Then W€

0 > N/N, — Mla"M — M’[a"M" = 0.

N/N,), we have
g(n) — xa'(n) + M) =0

Now by Artin—-Rees (10.9), (N,) is a stable qg-filtration of ».
implies that g(n) and x2(n) have the same leading

Hence, if g(n) = (

for all large n.

Since N ~ M, (11.4) 11 then

term; hence the result. =
Corollary 11.9. If A isa Noetherian local ring,

d(A/(x)) < d(4) - L
Proof. Put M = A1n (11.8). =

x a non-zero-divisor in A, then

We can now prove the crucial result:

Proposition 11.10. d(A) 2 dim A.
Proof. By induction on d = d(4). If d = 0 then [(A/m") is constant for all
large n, hence m* = m"** for some 7, hence m® = 0 by Nakayama’s lemma

(2.6). Thus 4 is an Artin ring and dim 4 = 0.
Suppose d > Oand let po < P <= < ¥y be any chain of prime ideals in

A Let xepy, xépo: let A’ = A[po, and let x’ be the image of x in A". Then
x' # 0, and A’ is an integral domain, hence by (11.9) we have

d(4'/(x)) < d(4') - 1.

Also, if m' is the maximal ideal of A’, A’/m’" is a homomorphic image of A/m",
hence /(A/m™) > I(4’/m'™) and therefore d(4) > d(A4’). Consequently

d(A'[(x)) < dd) -1 =d - 1.

Hence, by the inductive hypothesis, the length of any chain of prime ideals in
A'/(x') is < d — 1. But the images of p,,..., p, in A’/(x’) form a chain of

length r — 1, hence r - 1 <d - .
dmA<d = ] and consequently r < d. Henc

Corollary 11.11, If A is a Noetherian local ring, dim A is finite. W

If A is any ring, p a prime ideal i
g, ! In A, then the height of p is defined to be the
;upr;lilum n_f chains of prime ideals p, < p, =...< p._ = p which end at ¥:
Y (3.13), height p = dim 4,. Hence, from (11.11):

ary 11.12. Ina Noetherian ring epey

Coroll o
herefore the set of prime ideals in a Noether:

chain condition. B

Likewise we may define the deprh of
P, b -
ideals which start at p: clearly depth p = dim A/imgzl

i therian ri ‘ . & s
Jeal, even in a Noe ring, may be infinite (yp
gee Exercise 4.

proposition 11.13. Let A be a Noetherian locq] ,
there exists an m-primary ideal in A generated
and therefore dim A = 6(A).

proof. Construct Xu, . - -, _rd'mductivcly In such a way that every rein. -
containing B ooy x,) has height > i foreachi Suppose i > Da;g prime ideal
:‘:1, "

Remark- . |
d Enng Chﬂlng

t the depth of
less the ring

ing of dimension d. Then

by d elemens ;
s B

constructed.  Let p;(1 </ < s) be the minimal prime i 1y ey Xyoy
Gl x,_;) which have height exactly i — 1. Sinci l,-mf ;dial; (if any) of
height m, WE have m # b, (1 <j < '5), hence m U1 p _b:mElAN:)

-1 ¥ 11,

Choose X; € 1M, :n_¢_U b, a'nd let q be any prime containing (x A |
contains SOme minimal prime ideal p of (x,..., x,_,). If ph;;;’ 'f:;;; 5 ht‘:nc‘;
we have X €q, X ¢_¥3, hence q = b and therefore height q > i if ;n: 2
(1 <j < ), then height p = 4, hence height q > i. Thus every ,prime id pi
containing (xy, . . ., X;) has height > 1. "

Consider then (xy, ..., X4). If p 1s a prime ideal of this ideal, p has height
>d hence p = m (for p < m = height p < height m = d). Hence the
ideal (xy, ..., Xg) 1S m-primary. =

Theorem 11.14. (Dimension theorem.) For any Noetherian local ring A the

following three integers are equal.:

i) the maximum length of chains of prime ideals in A;

ii) the degree of the characteristic polynomial xu(n) = 1(4/m");

iii) the least number of generators of an m-primary ideal of A.
Proof. (11.7), (11.10), (11.13). =

_Exam;;le, Let A be the polynomial ring k[xy, . . ., Xa] localized at the maf-iimal
deal m = (x,,..., x,). Then Gm(A4) is a polynomial ring in » indeterminates
and 5o its Poincaré series is (I — f)~". Hence, using the equivalence of (i) and

() in (11.14), we deduce that dim Aw = 7

Corollary 11.15. dim A < dim, (m/m?).
Pmaj.: If x,em (1 < i < s) are such that their Images in m/m
of thls vector space, then the X; genera[e m by (28), hence dimy (m/m

2 dim 4 by (11.13). =

C?r?aary 11.16. Let A be a Noetherian ring, Xi -
minimal ideal p belonging 10 (X1, . - -» Xr) has height S T

2 form a basis
2) =

x, € A. Then every
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. ition takes a simple form if
; €.nri , hence r > dj This propost . NIt Ac
el Ay the deal (xy, . - » %r) Decomes pe-primary, hence r > dim 4, - nrphi‘:ﬂ”y onto the residue field 4/m:
' : m
hﬂight p. 5] (H&UP{IJ#‘IJI“':) 1'21. J’ k < A is a : -
Sary 11.17, (KT all’s principal ideal theorem). Let A be a Noetheriq, Corollary i is d g,f-}:srem of pmﬁfid i Somorphically onto A
B lement of A which is neither a zero-divisor nor q ynj, T TR R eters, then x,, /m: and

independent over k.

Assumc f(-"-:}., Coy Xg) = 0 where f'is a polynomial i
0 we can write f = f; + higher terms, where f; is ho c

o and let x be an € -
.';'!:egn every minimal prime ideal v of (x) has height 1.

: < 1. If height p = 0, then b is a prime idegy proof.

Proof. By (11.16), beigh® ¥ = s a zero-divisor by (4.7): contrs #
i 0, hence every element of p 1s a zero-divl y (4.7): contra- Iff 1.20) t
:;::Eﬁlnsgini s cand f; # 0. Apply (11.20) to f; and we deduce that £, has all s coefficients

. i has coeflicients in k this impl; _

. . o m. Since Ji icien plies f, = 0, a contradics
Corollary 11.18. Le!;hbe z_N"j’;EE;’”” ';‘;;:;’”gr *lx an element of m whic, I ' x, are algebraically independent over k. w radiction. Hence
ic not a zero-divisor. Then dim A/(X) = - 1.

Proof. Let d = dim A/(x). By (11.9) and (11.14) we have d.g dim-A =

On the other hand, let x; (1 € 7 < d) be clemt.:*nts of m whose images in A/(x)

i m/(ff)'PTH;ﬂ?I;djﬂl- .Thc“ SRR Wi w0 8 8 non-singular points (sec lExcrcigc 1). The local rings of non-singular points

primary, hence d+ 12 dmaA. have as their generalization (to the non-geometric case) what are called rE ul
Corollary 11.19. Let A be the m-adic completion of A. Then dim A = local rings: these are rings satisfying any of the (equivalent) conditions ig)-i?i;
dim 4. of the next theorem.

Proof. Ajm* =~ A/" from (10.15), hence ym(n) = xa(n). = .

oefficients ip j
mogeneous of dﬁgrtt

.1'1: :

s e —

REGULAR LOCAL RINGS

[n algebraic geometry there is an important distinction between singular and

Theorem 11.22. Let A be a Noetherian local ring of dimension d, m its

If x,, ..., Xg generate an m-primary ideal, and d = dim A4, wecall x,, ..., x, maximal ideal, k = A/m. Then the following are equivalent:

a system a[ parameters. They have a certain independence property described in | ) Gu(A) = Klty, . . ., ta) where the t, are independent indeterminates;

the following proposition. | i) dim, (m/m?) = d;
Proposition 11.20. Let xy, ..., X, be a system of parameters for A and let | iii) m can be generated by d elements.
q = (xy,..., Xs) be the m-primary ideal generated by them. Let f(15, .. ., t4) . Proof. i) = ii) is clear. 1) = iii) by (2.8): see the proof of (11.15). iii) = 1):
be a homogeneous polynomial of degree s with coefficients in A, and assume let m = (Xy,..., Xq), then by (1 1.20) the map «: k[xy, ..., Xs] = Gu(A) 15 an
that | isomorphism of graded rings. =

S,y Xg) €07 | A regular local ring is necessarily an integral domain: this is a consequence of

Then all the coefficients of f lie in m. - the following more general result.

Proof. Consider the epimorphism of graded rings | Lemma 11.23. Let A be a ring, a an ideal of A such that (s ﬂ_“ = U,

a: (4]Q)[ty, .. ., t]] = Gy(A) i Suppose that Go(A) is an integral domain. Then A is an integral domain.

: ¥ : N st
given by #, — X, where #, are indeterminates and ¥, is x, mod q. The hypothesis i Proof. Let x, y be non-zero elements of A. Then Smffln e qg;?;: Thc
o/ npiice that S(ts, . .., 1) (the reduction of fmod q) is in the kernel of «. Integers r, s > 0 such that xea’, X ¢ a'tl, yea,y f S _Lct E’ thwnce iy =
Assume if possible that some coefficient of fis a unit, then fis not a zero-divisor images of x, y in G,(4), G,(4) respectively. Then ¥ # 0,7 # 5
(cf. Chapter 1, Exercise 3). Then we have . XV #0,hencexy # 0. = "

| _ A isely the dis-
d(Gy(4)) < d((4)9)[ts, . . .. ta]/(f)) because fe Ker («) Hence by (9.2) the regular local rings of dimension 1 are precisety
= d((A/q)[rl,_ ot ei= 1 b (11.3) ! Crete valuation rings. St ly closed
= d — 1 by the example f. 1? ' It can also be sh hat if A is a local ring and Gu(4) 1530 integh 5H:l In
ple following (11.3). | e shown that1 T follows that 2 regular local Tin8

s of dimension

B == . inte : olt s : -
- But d(Gy(4)) = d by the main theorem (11.14). This gives the required con- 1 gral domain, then A is integrally closed " local domain

tradiction. . Isintegrally closed; but there are integrally close
> 1 which are not regular.
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P iom 11.24. Let A be a Noetherian local ring. Then A is regular if gng
roposition 11.2%.

. 1 is regular. " |

P ;n%%f;i;)g(m 26) and (11.19) we know that A is a Noctherian local ring
roof. 10), UM

: : 4 and with m as maximal ideal. Now use (10.22)
the same dimension as
:iif-‘fh asserts that Gm(4) = Giu(A) and the result follows. =

It follows from what we¢ have said above that A is also an integrg]

Remarks. 1) lly speaking this means that (locally)

domain. Geometrica

non-singularity = analytic irreducibility

. o

Lemma 11.26. Let B < Abeintegrql domains iy}, Bi
integral over B. Let m be a maximgq] ideal

is maximal and dim Ay = dim B, =mng p
80 o8 ) €hn
This 18 4n ¢asy consequence of

Prodl. | oy (5.8). Next if

maxima

>
m D930

i a strict chain of primes in A, its intersection with Bis by (5.9)
primes A

(1)

n = pl = pﬂ:)*":’pd

: : .« only one analytic ‘“branch”. | : : . 2
or that, at a non-singular point, thjere .15 only . y p 1 | - This proves c%lm By 2 d{lm Amp. CDHVCI:SEly given the strict chaip (2) w (2)
2) If A contains a field £k mapping isomorphically onto A/m (the geometric - (5.16), lift this to a chain (1) (necessarily strict): thus dim An > dir:ﬁﬁcan, by

= n. W

case) then (11.22) implies that A is a formal power series riqg over k in d in-
determinates. Thus the completions of local rings of non-singular points on

d-dimensional varieties over k are all isomorphic.

We can now proceed to:

Fvaf ot (11.25)- By £a8 Normalization. Lemma (Chapter 5, Exercise 16

find a polynomial ring B = kfx,, ..., x,] contained in ;i(V) such t)ﬁWE e
. dim Vand A(V) is integral over B. Since B is integrally closed Cristackch ﬁt d'=
(5.12)) we can apply (11.26) and this reduces our task to proving (l?zt:;;v}z%

the ring B, i.e. for 'afﬁne space. But any point of affine space can be taken as
the origin of coordinates and, as we have already seen, k[x,

at the maximal ideal (x,, . .

ExamPle.' Let A = k[xy, ..., Xs) (k any field, x; independent indeterminates);
let m = (X1, ..+, X)- Then Am (the local ring of affine space k™ at the origin)

is a regular local ring: for Gum(A) is a polynomial ring in n variables.

..y X4] localized

TRANSCENDENTAL DIMENSION ., Xg) 1s a local ring of dimension d. =

We shall conclude this brief treatment of dimension theory by showing how the
dimension of local rings connects up with the dimension of varieties defined
classically in terms of the function field.

Assume for simplicity that k is an algebraically closed field and let ¥ be an
irreducible affine variety over k. Thus the coordinate ring A(V') is of the form

o Xa)/P

where p is a prime ideal. The field of fractions of the integral domain A(V) is
called the field of rational functions on ¥ and is denoted by k(). Itisa finitely-
gcne.rated extension of k and so has a finite transcendence degree over k—the
maximum number of algebraically independent elements. This number 1s
def_ined to be the dimension of V. Now recall that, by the Nullstellensatz, the
points of ¥ correspond bijectively with the maximal ideals of AWV). If Pisa

point with maximal ideal m we shall call dim A(V)wm the local dimension of V
at P. We propose to prove

Corollary 11.27. For every maximal ideal m of A(V) we have

Proof. By definition we have dim A(V) = supw dim A(V)n. But by (11.2.‘;)
all A(V)m have the same dimension. =

= SRS E—————— T R R S S

A(V) = klx;, ..
EXERCISES

I Let fek[x,, ..., x,] be an irreducible polynomial over an algebraically closed
field k. A point P on the variety f(x) = 0 is non-singular < not all the partial
derivatives of/ox, vanish at P. Let A = k[x,..., x:J/(f), and let m be the
maximal ideal of A corresponding to the point P. Prove that P is non-singular

= Aw is a regular local ring.
[By (11-18) we have dim Am = n — 1. Now

o Xt ZAlEE (/)

o XR)]

mMimra Xy a0

and has dimension n — 1 if and only if f¢ (X1, - -

Theorem I 1 .?5. For any irreducible variet y V over k the local dimension of V
at any point is equal to dim V.

e e g L ar—— w | S e

Remark, alrea | .
problem i:v:o 7 dnow by §11.21) that dim V' > dim A4y for all m. The | % (11.21) assume that A4 is complete. Prove that _the llﬂmi?tmj]}?n;
lemma is:  C'c the opposite inequality, and for this purpose the mair B 1) 4 given by 1+ x (1 < 1< d) in injective 806

9 ﬁn‘tcl.‘r’-gﬂnerated module over k[[t1, . . - tall: [Use (10.24).]




126  DIMENSION THEORY

3, Extend (11.25) to non-alge

B 1k 11 xs] s intogral over KL%, - *nl-]
of k, el

4. An example
field and let
infinite set O
positive integers U
(x-,+1r- . '*x"l*l) E, ;

Each p, is a pnme 1
The ring 5~
equal to Mi+1 — wh

f indeterminates. Let my, ma, . ..

hence dim § !4 = @©.

braically-closed fields. [If £ is the algebrajc

of a Noetherian domain of infinite dimf:nsifjn (Nﬂgmf‘)_ L&
A = kX1, Xay o 02 X - .] be a polynomial ring cwgr‘k in a coung
be an increasing
ch that ms1 — Mg > Mg — M-y for all i > |,
nd let S be the complement in A of the union of the ideals b
deal and therefore the set S is multiplicatively ‘-’l‘lusﬂd'

1 4 is Noetherian by Chapter 7, Exercise 9. Each § b, has hejgy,

be 4
ably
chuﬂ‘ﬂcc of
Let b, =

5, Reformulate (11.1) in terms of the Grothendieck group K(Ao) (Chapter 7

Exercise 25).
6. Let A be a ring (not necessarily Noetherian). Prove that

| + dimA < dimA[x] < | + 2 dim A.

[Let f: A — A[x] be the embedding and consider the fiber of f*:

Spec (A[x]) —

Spec (A) over a prime ideal p of 4. This fiber can be identified with the spectrum
of k®A[x] = k[x], where k is the residue field at p (Chapter 3, Exercise 21),

and dim k[x] = 1. Now us¢ Exercise 7(ii) of Chapter 4.]

7. Let A be a Noetherian ring. Then
dim A[x] = 1| + dim A,

and hence, by induction on n,
dim A[x,, ..

[Let p be a prime ideal of height m in 4. Then there exist a;, . .
p is a minimal prime ideal belonging to the ideal a = (ay, .

s Xn] = n + dim A,

., (m € P such that
.., am). By Exercise 7

of Chapter 4, p[x] is a minimal prime ideal of a[x] and therefore height px]<m

On the other hand, a chain of prime ideals o € P; <+ < Pn
to a chain polx] .- < p.[x] = p[x], hence height p[x] = m.
plx] = height p. Now use the argument of Exercise 6.]

= P gives ris¢
Hence height

s e i . ———————— e R
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Additive function, 23
Adic topology, 105

Algebra, 30
homomorphism, 30

Annihilator ideal, 8, 19
Artinian, module, 74

ring, 76
Artin-Rees lemma, 107

Boolean ring, 11

Chain conditions, 74

Chain of submodules, 76
Cokernel, 19

Complete, 105

Completion, 102
Composition series, 76
Constructible topology, 48
Contraction, 9

Dedekind domain, 95

Dimension, 90

Discrete valuation ring, 94

Domain, integral, 2
principal ideal, 5

Exact sequence, 22
Extension of an ideal, 9

Field, 3
residue, 4, 43
Filtration, 105
Finite, A-algebra, 30
type, 30

Finitely-generated, 30
Flat, 29

faithfully, 29
Fractions, ring of, 36

Generators of a module, 20
Grothendieck group, 88

Height, 120

Hensel's lemma, 115
Hilbert basis theorem, 81
Hilbert function, 118

H

[deal(s), 2
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coprime, 7
decomposable, 52

direct product of, 7
fractional, 96

generated by, 5
intersection of, 6
invertible, 96
maximal, 3
primary, 50
prime, 3
principal, 11
product of, 6
quotient, 8
sum of, 6

Image, 2

Integral, A-algebra, 60
closure, 60

element, 59 |
Integrally closed domain, 60

Kernel, 2, 18

Length, 76
Limit, direct, 32
inverse, 103

Local ring, 4
Localization, 38

ilbert Nullstellensatz, 67, 69, 82, 85




Ring, |
absolutely flat, 35
Boolean, 11
discrete valuation, 94
graded, 106
homomorphism, 2
local, 4
of fractions, 36
quotient, 2
semi-local, 4
sub, 2
valuation, 65

Saturated, 44

Scalars, extension of, 27
restriction of, 27

Spectrum, maximal, [4
prime, 12

Support, 46

Symbolic power, 56

Tensor product, of algebras, 30
of modules, 24

Torsion, element, 45
submodule, 45

Unit, 2

Valuation ring, 65
Varieties, affine algebraic, I3

Zariski, ring, 114
topology, 12

Zero-divisor, 2

Zorn's lemma, 3




