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ABSTRACT

The Boltzmann equation is modified to examine the effects of a range of
scattering mechanisms on the DC conductivity of semiconductor material in the
form of thin sheets and fine wires.

This is solved exactly for elastic scattering mechanisms by introducing a set of
momentum relaxation times which are relevant to the occupied sub-bands. These
times are calculated for alloy scattering, surface roughness scattering and the
acoustic phonon mechanisms at high temperatures.

At low temperatures the inelasticity of the acoustic phonon mechanisms is taken
into account and a variational method is employed. At very low temperatures we
show that the acoustic deformation potential gives rise to a mobility which
varies at T-5.

We use an iterative method to examine the strongly inelastic polar optic phonon
scattering mechanism in a wire. Ridley has suggested that the momentum
relaxation time may be negative in this system. We introduce a time relevant to
transport measurements and this is found to be positive. It is shown that the
time derived by Ridley may be of relevance to time resolved transport
measurements.
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CHAPTER 1

INTRODUCTION

In bulk semiconductors, when the de Broglie wavelength Xg is much smaller
than the size of the sample, the electron is considered to behave as a
classical particle and the transport properties of the material are normally
calculated with the Boltzmann transport equation (Butcher (1973))*
Reasonable agreement is obtained with experiment (Rode (1975))- However,
classical arguments are not valid if the de Broglie wavelength is no longer
small when compared to some typical constraining dimension. For example,
when xB becomes large when compared to a cyclotron orbit in a material it is
necessary to modify the Boltzmann equation (Bridges (1980)) to explain

experimental data.

In this thesis we consider a similar problem although the dimensional
constraint does not arise from the application of a field but from the
structure of the material. Advanced fabrication techniques, eg
molecular beam epitaxy (MBE) and metal organic chemical vapor

deposition (MOCVD) can produce samples in which one or more dimensions are
comparable with the electron wavelength. The scale of these systems means
that the bandstructure is no longer just a function of the material but it
is also dependent on the device dimensions. This has given rise to a new
branch of technology termed "bandstructure engineering". Esaki and Chang
exploited this with their pioneering work on superlattices (197%). It was
found that these devices possessed some unusual properties by virtue of
their regularity and scale. Transport measurements perpendicular to the
layers which make up the superlattice are difficult. Attention has been
focussed on the motion of the electrons parallel to the interfaces in thin
films an(i also in fine semiconductor wires. Typical examples include the

MOSFET (see Figure 1.1a) and quantum well (see Figure (1.2). In both of



FIG 1.1(d)

these examples the electrons behave as if they are dynamically two-
dimensional. We concentrate on the parallel transport problem in this

thesis.

Historically, the MOSFET has an importance which ranks it alongside the
bipolar transistor, indeed Shockley and Pearson produced the first patents
(Ando (1982)) and this device can now possess extremely large electronic
mobilities (~1060m2/Vsec, Di Lorenzo (1982)). It also lends itself to
planar integration and research in this area has increased because of the
drive to large scale integration. Experimentally it is interesting because
the areal electron density can be varied at will by the application of a
gate voltage to the surface plane of the device, enabling a range of
experiments to" be carried out on one sample, removing uncertainties in
device reproducibility which arise when measurements are taken from a device

batch.

When a positive gate voltage is applied to a p-type MOSFET (see Figure 1.1),
electrons are drawn through the p-type semiconductor and are held at the
oxide/semiconductor interface, where they neutralise the holes, giving rise
to a depletion region. Eventually enough electrons reside near the surface
to neutralise the holes completely in a narrow region. The p-type
semiconductor then begins to behave as if it had an n-type surface and an
inversion layer is formed. Classically, we would expect the charge density
to decay exponentially as we move away from the semiconductor/insulator
surface. However the length scale of this decay is so 6hort that quantum
effects are important and a proper description of the problem involves a
self-consistent solution of the Shroedinger and Poisson equations

(Ando (1982)).



The quantum well indicating the conduc-
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system.

The applied gate voltage can also be considered to bend the bandstructure of
the semiconductor near the interface. In figure 1.1b we see the situation
when the gate voltage is zero. As it is increased the conduction band edge
can be considered to bend towards the Fermi-level which still lies in the
band-gap (Figure 1.1c). Eventually the band is bent to such an extent that
it dips below the Fermi level (Figure 1 Id) and electrons can travel freely
in a direction parallel to the surface, but motion away from the surface is

inhibited by the transverse potential well. This is the inverted state.

As well as producing a two-dimensional electron gas by applying an electric
field to a material it is also possible to produce a quantum well by
introducing an artificial conduction band edge discontinuity. The classic
example is the GaAs/AljjGa™s quantum well, see Figure 1.2. The similarity
in atomic size between Ga and Al makes it possible to fabricate high purity
quantum wells which are relatively free from surface strain fields (Adachi
(1985)). In this case the materials have different band gaps and it is now
well known that when the materials are in close electronic contact the
conduction band edges align in such a way that an electron residing in the
GaAs sees a potential barrier as it tunnels into the AlxGal_xAs and this is
typically equal to 831xmeV (Okumura (1985)). If the well is narrow enough
then electrons with energies lower than this will behave as a two-

dimensional electron gas (2-DEG).

Work 1is also being carried out on quantum well wires which can be produced
in free standing form (Kelly (198U)). In this case both of the wires
dimensions (they usually have rectangular cross-section) are small enough
for the electrons to behave as a one-dimensional electron gas (I-DEG). The
finite (but small) dimensions of both types of system (1-DEG and 2-DEG)
means that they are, 6trictly speaking, quasi-one-dimensional and quasi-two-

dimensional, it is often this feature which gives rise to the major effects



considered in this thesis.

In Chapter 2 we show that the energy eigenstates in these systems can be
described in terms of two-dimensional and one-dimensional bandstructures.
The dimensional constraints split the usual three-dimensional bands into
two-dimensional bands (Ridley (1982)) and one-dimensional bands which are
usually termed sub-bands, and this has severe consequences for the transport
coefficients. In the case of the 2-DEG we introduce a two-dimensional
Boltzmann equation for each sub-band (Chapter 3). These are subsequently
coupled together by inter-sub-band scattering off impurities and
imperfections. These ideas naturally extend to the one-dimensional systems.
In using the Boltzmann equation we neglect localisation effects which have
excited a great deal of interest in recent years (Lee and Ramakrishnan
(1985)). Nevertheless,theseeffects appear as small corrections to the
Boltzmann conductivity and it is therefore important to appreciate the
magnitude of the latter before any estimate of the localisation effects can

be obtained from the experimental data.

Similar problems have been considered by previous authors. The earliest
examples stem from conductivity measurements on thin films of Bismuth
(Ogrin (966)). Ogrin observed a non-monatonic resistivity variation with
film thickness and this was explained by Freeman et al (1977) in terms of
the quantum confinement of the electrons. As the films get thicker it is
possible for the electrons to occupy more than one sub-band and inter-sub-
band scattering also becomes possible. This drastically reduces the
mobility and this manifests itself in conductivity dips: the so called

quantum size effects.

It was only recently that MBE and MOCVD have made it possible to construct



semiconductor devices in which these effects are easily seen (Stormer
(1981)). This has led to a detailed theoretical investigation in two-
dimensions and one-dimension of the relative importance of the scattering
mechanisms which are known to be important in bulk semiconductors. Ridley
(1982, 1983, see also Fiddoch (1985)) has provided an insight into these
problems with the aid of his scattering rate formulae and he has considered
various mechanisms including the acoustic deformation potential,
piezoelectric and polar optic phonon scattering in both one and two-
dimensional systems. Johnson and Vassell (1984) have adopted a similar
approach in 1-DEG"s. Basu and Nag (1981) have looked at the extreme quantum
limit when only one sub-band is occupied and have considered a strictly two-

dimensional system.

Siggia and Kwok (1970) solved the Boltzmann equation exactly for elastic
scattering in two-dimensional systems using a relaxation time approach. The
solution was presented as a formal framework and the equations were not
applied to specific scattering mechanisms. We use the equations of Siggia
and Kwok to reconsider acoustic phonon scattering, alloy scattering and
surface roughness scattering in 2-DEG"s. The model for the rough interface was
suggested by Bruce Joyce (Philips, Redhill) and is considered in detail in
section 5.2.3. This is an improvement on previous attempts which used
simple Gaussian autocorrelation models for the interface (Ando (1982)). A
set of relaxation times similar to those of Siggia and Kwok are derived for
one-dimensional systems and these are applied to the acoustic phonon
mechanisms. The effects of inter-sub-band scattering are found to be

particularly important in one-dimension.



The Siggia and Kwok equations are only valid for elastic scattering
mechanisms. They fail for inelastic mechanisms but approximate solutions
may be found using a variational method (see Chapter 6). This is applied to
the acoustic phonon mechanism at low temperatures in both one and two-
dimensional systems. This method should be of general applicability to
inelastic mechanisms but it is not applied to the polar optic phonon
mechanism in two-dimensions as Vinter (198U) presents an exact solution
using an iterative approach (see Rode (1970)). The iterative approach is
extended to the 1-DEG and an effective relaxation time is derived for polar
optic phonon scattering. This is compared to the momentum relaxation rate
due to Ridley (1983), which was derived by weighting the scattering rate by
the fractional change in electron momentum. Ridley"s approach neglects the
electron statistics and predicts that in some circumstances the momentum
relaxation time may be negative. We find that our effective relaxation time

is positive.

In Chapter 2 we discuss the form of the wavefunctions in one and two-
dimensional electron gases, and the concept of a sub-band structure is
introduced. Chapter 3 is devoted to the transport equations describing the
dynamics of the electrons. The behaviour of the electrons under the
influence of elastic points scatterers is considered in Chapter 4. In
Chapter 5 we derive momentum relaxation times for extended defect
scatterers. In Chapter 6 we introduce a variational method to describe the
effects of inelasticity. The transformation between elastic scattering and
inelastic scattering is considered and the equations are applied to the
acoustic phonon mechanisms at low temperatures. An analytic form for the
low temperature phonon limited mobility is derived in both one and two-
dimensions. In Chapter 7 we use an exact method to look at momentum
relaxation iIn a 1-DEG when only one sub-band is occupied and the dominant

scattering mechanism is due to polar optic phonons. In Chapter 8 we



consider approximations involved in the Boltzmann equation and, in

particular, consider ways in which lifetime broadening and screening effects

may be included in the analysis. The structure of the potential responsible

for alloy scattering is also considered in some detail.



CHAPTER 2

SMALL SYSTEMS WITHOUT SCATTERING

2.1 Wavefunctions

In this chapter we consider the form of the wavefunctions in small scale
systems. We do not look at the details but use approximations which make
the calculations simpler whilst still embodying the physics. In solving
these problems it is usual to use the effective mass approximation (see

Ridley (1982), Okumura (1985), Warren (1S86) and Appendix 1). We consider
the simplest case where we have a thin sheet of semiconducting material
containing the electrons. We suppose that the electrons in the layer behave
as If they have a scalar effective mass m* which is taken to have the same
value as in bulk GaAs (0.066-Rode (1975)). The electrons are strongly
confined in the semiconductor layer and we approximate this potential by an
infinitely deep square potential well. The effective mass Schroedinger

equation can then be written as (Collins (1985))

cfi2 2-1 .V*n + v*, - «n*D
2 e (2.1)

where V is the square potential

v{,r) -0 0 < z<L
-» 1<0,z)L (2.2)

with r = (X,y) and L is the thickness of the sheet.

Hence we may write,
*B(k) - eb + *(Kk) (23)

where

and *(k) - tlekz
2m* (2.4)



Where is the energy marking the bottom of the n"th sub-band and e(k)
defines the two-dimensional sub-band parabolas. The sub-band wavefunctions

have the form

*B(k.X.Z) \Z/Il"sin n

irz
L .5)

where k is a two-dimensional wave-vector and V is the volume of the electron
cavity. Throughout we shall assume that periodic boundary conditions apply

in the plane of the layer, restricting the values of k in a square of

semiconductor of area to
k - 2nn ,2me
.B B. (2.6)

where n and m are integers. The energies in 2.3 can be plotted to give a
sub-band ladder (see Figure 2.1). We shall see later that the sub-band
structure has severe consequences for the transport properties of small

devices.

By analogy with the two-dimensional result the electrons confined in one-
dimensional wire with rectangular cross-section (width a, depth b) will have

eigenvalues given by
*<K) iz ks
@.7n

where n and m are sub-band labels and k is a one-dimensional wavenumber.

The sub-band wavefunctions being given by (Ridley (1983))

Na(kox.y.z) - 2 sin nwx sin nrv  «tk»
yk a b (2.8)



If we allow the wavefunctions to leak out of a two-dimensional well, then a
solution of the Schroedinger equation may still be effected using the
separation of variables method, but care must be taken in conserving the
quantum-mechanical current at the boundary and this results in matching m* — *
and ii  (Collins (1985)). In a one-dimensional system, however, this
requirement at the comers of any square-well model means that the
separation of variables method is no longer useful and the wavefunctions for
the system are complicated. Throughout we shall use sinusoidal
wavefunctions in order to discuss phonon scattering and the leaky
wavefunctions when we are considering surface roughness and alloy scattering
in two-dimensional systems. This choice reflects the symmetry of the
situation in a quantum well but may not accurately represent the
wavefunctions in a heterojunction or a MOSFET. Here the situation is
inherently asymmetric because of the presence of only one material
interface. The other potential barrier is due either to the application of
a gate voltage in the case of a MOSFET (Ando (1982)) or to the electrostatic
attraction of the carriers for the donors in the case of a heterojunction.
A full treatment of this problem involves the self-consistent solution of
the Schroedinger and the Poisson equation,(Ando (982), Vinter (1984) and
Bastard (1983)). The numerical methods which this necessitates tend to
obscure the physics of the problem. Fang and Howard (1966) appreciated this
point and proposed a form for the wavefunction in the lowest sub-band.
rX(*)_[*SEI z>0
0

z<0 (2,9)

where b is determined by a variational calculation. This functional form is
expected to represent the wavefunction in a MOSFET fairly accurately. It
vanishes at z=0 (the oxide/semiconductor interface) and tends to zero as z
tends to infinity. The form (2.9) is only useful when electrons are in the

lowest sub-band and is not useful for treating iInter-sub-band scattering,

10



which we discuss in Chapter 3. Most of the structure iIn the transport
coefficients involves inter-sub-band scattering and sinusoidal sub-band
wavefunctions provide a convenient first approach to calculating the sort
of structure that may be expected to arise.

2.2 Density of States in Reduced Dimensionality Systems

In three dimensions the density of states is defined a6 the number of 6tates
in k space per unit energy range per unit volume. In three dimensions this
vanishes for t <0 and is proportional to for e0. In two dimensions the

density of states per unit area for the lowest sub-band can be written as

D(«) - x  2irdls
@»r)2 d«

»(«-Ej)

(2.10)
where we have included 6pin degeneracy and the sub-band has been assumed to
be "circular and parabolic'”. When more than one 6ub-band is occupied the
density of states is

D(<) - z mE_  »(«-E,)
n *Ti2 @.11)

where 8 denotes the unit step function. The main difference between three-
dimensional and two-dimensional systems is seen in this functional form. In
three dimensions the density of states is a continuous function of energy.
In two dimensions it 16 constant over a range of energies but it possesses
abrupt step-like discontinuities (see Figure 2.1). The envelope of this
staircase increases as and this is an indication that these systems
behave with a three-dimensional character when a large number of sub-bands

are occupied.

Scattering can smooth out the discontinuities in the density of states (see

11



Cantrell and Butcher (@985) and Chapter 8). This Is a second order effect
due to the finite lifetime of the carriers which we neglect here. This
approach is the only one which is viable if realistic scattering mechanisms
are to be included. So far as we are aware smoothing has only been taken

into account for delta function scattering centres.

In one-dimensional systems the density of states has the form (see Figure

2.1)

(2.12)

and shows square-root singularities at the sub-band energies, consequently

inter-sub-band scattering is particularly important in this case (see

Chapter 1*).

12



CHAPTER 3

SYSTEMS WITH SCATTERING

3-1 Introduction

Throughout we shall work within the Boltzmann framework. We shall not be
concerned with the detailed behaviour of the individual electrons in the
system but with macroscopic averages over their phase space trajectories.
We shall be satisfied with determining the average density of electrons in
the phase space of each sub-band and to do this we modify the three-

dimensional Boltzmann equation to take account of the sub-band structure.

3-2 The Boltzmann Equation in Two-Dimensional Systems

We introduce a distribution function f(k,n,r,t) which is defined as the
probability of finding an electron in sub-band n with momentum k at time t
with spin up. This concept violates the uncertainty principle but if we
assume r is known to an accuracy Ar and the electron wavepacket has momentum
k with a spread Ak such that ArAk , then this specification is

correct within Ar and Ak and is sufficient for our needs (Butcher (1973)).

Since electrons are conserved we can equate the increase of f(k,n,r,t) to
the four-dimensional divergence plus a term which corresponds to the
rate of increase of f due to collisions (see Rode (1975) for three-

dimensional arguments).

£ (3.1)

where we have used the shorthand notation fn « f(k,n,r,t) and Ji’ is the
velocity of an electron in sub-band n with momentum k.

Fj is defined as

(3.2)

13



Equation (3.1) is very similar to the usual three-dimensional Boltzmann
equation except that this takes scattering between bands into account.
Inter-band scattering is usually neglected in elementary treatments of
electron transport in three-dimensions. It is important in the conduction
bands of Silicon and Germanium which have several equivalent minima (Ando
(1982)), and it is important in GaAs at fields which are high enough for the
electrons to transfer to satellite valleys (Rldlty <Waticta* (1961)). In. our two-
dimensional problem we shall see that the scattering of electrons between
sub-bands 1is very important. Transport in each sub-band is described by a
separate Boltzmann equation (3-1) and these are coupled together by inter-

sub-band scattering terms in st Let us look at the form of 3f

it .3t .
in detail.

We consider our two-dimensional semiconducting layer to have a surface area
A.  The number of electrons which may be scattered per unit time from dk

around k in sub-band n to dk® around kj_ in sub-band m is given by

2 f(k.n,£, ©) [1-st' .m-X.t) JPOs.n.k>nOdkdk"
G-3)

where we are assuming that the spin of the electrons remains unchanged in
the collision process and P(k,n;kJ_,m) is the transition rate. The reverse

process is also possible so the rate of increase of the number of electrons

in dk, around k per unit area of sub-band n is
N feen, £ O)[1-FQj " Im, i 1ID]Ps,n,]s"1m)

2w2 4w2

* £(k* .m.X.©) [L-Fk.n,£,0IPAI" ,m,Is,n) Jdkdk" G .4)

14



All transitions are assumed to take place instantaneously and as we are not
applying a magnetic field the distribution function is independent of

electron spin. The scattering rate 1is given by

jknxtf - w K(knr.t) [I-f(k*.mx.t) P(knils m
| lj (K .nirO[-(Is,n,je.H)IP(Is;mcis ) Lk

The Boltzmann equations for the sub-bands form a set of coupled integro-
differential equations which can only be solved approximately. IT we assume
the scattering rates P(k,n;k”,m) and P(k™,m;k,n) correspond to the energies %100

and c”~k') then detailed balance implies that (Butcher (1973))

PGs.n".k>,m)exp -E,(A¢) - P(k"nr.k,n)exp - &)
KbT (3.6)
where Kg is Boltzmann®"s constant and T is the temperature. In the absence

of applied fields in equilibrium the integrand in (3.5) must be zero. Hence

1-f K,.T G.7)

Both sides of (3*7) must equal a constant which gives

f f = I S
B gt + 1 (3-8)

The Fermi-Dirac function is the zeroth order solution to the Boltzmann
equation. This solution is only the solution if there exists some inelastic
mechanism for which E”~«" . We assume the Fermi-Dirac distribution function

has been established and we look at small deviations away from this due to

15



the application of an electric field to an homogeneous system. We consider
the electric field to be small so that the new distribution function is only

slightly different from O . We write

fF(K) - FOG-(K)) + £1(K) (3.9)
where f.""1 is of First order in smallness. If we substitute (3-9) into (3-5)
we Find that to first order the collision term may be written in the

linearised form

J[I-foU n () )] Pk
3

A dx-*
4ir2
(3-10)
After some manipulation we find that, in the absence of magnetic fields, the

linearised steady state Boltzmann equation reads

(3.11)

The value of f determined from (3.11) can be used to determine the low
field transport coefficients relevant to two-dimensional systems. We define
a current flux per unit length ~ which describes the flow of electrons

in the channel. This current is carried by the electrons in the different

sub-bands, to obtain the value of we must sum over all these contribution

16



so that, taking spin degeneracy into account,
f" (k)vp Qc)d2k

n (3.12)

where is the velocity of an electron in the n”th sub-band with wave-
vector k. Now, f~ is of even parity in k and _Vn(k) is odd, so to first

order

f1n(k)vn(]c)d2k

. (3.13)

Now that we have laid the framework we have to consider how specific
mechanisms influence the value of+, to limit the conductivity of the 2-DEG.
We could solve equations (3-10) and (3.1) exactly with an iterative method
(Rode (1975), Fletcher and Butcher (1972)) for all mechanisms, but it
transpires that these equations can be solved exactly for elastic mechanisms
(Siggia and Kwok (1970)) and approximate solutions may be found for quasi-

elastic ones (Milsom and Butcher (1986)).

3.2.1 Isotropic Elastic Scattering

We have considered our sub-bands to be 'circular and parabolic", if there
exists some elastic scattering mechanism, then we may define a relaxation
time for each sub-band (Siggia and Kwok (1970)). These relaxation times can
be shown to be a function of energy and sub-band number alone. As we can

only scatter to states with the same energy we see from (3.6) that

p(ls' . m-Js.n) - P(k,n;k'.0) (3 14)
(3*10) then reduces to
[f1"(k')-fin(k)]P(k,n:is'.m) _A_ d2k'
4*2
(3.15)

17



The perturbed part of the distribution function, f n decays away in each
sub-band when the electric field is turned off and this process will have

some characteristic time-r~e). We model this process by writing

- - f~Ckl

‘ "5 (c0(k)) (3.16)

which implies from (GB-l)

(3.17)

we assume that this is true when the electric field is present and we find

from (3-11) that

fin(k) - £ E*2kFO(*n (]c))Tn

e£-Vn(k)3£0 Th (3.18)

If we substitute (3.ie) into (3-15) divide through by ~" (k) and substitute

the expression for f n, we find that

£.V'T "mek.n)-P(k' .mi *
BT P(k',m;k.n)-P(k" .mils.n) A d2k

ur2

(3.19)

In the case of circular band the quotient in0.19)may be reduced to cose

where © is the angle between k/_and k. Hence multiplying 0.19)through by>fn

18



we find that

P(k™.m;Jc,n)_A_ d2k™- 1 cosgP(k",m:;k.n d2k"
1" o g

(3.20)

These are the equations first derived by Siggia and Kwok (1970). Their
solution exactly satisfies the linearised Boltzmann equation for elastic
scattering mechanisms. We see that the guess for the form of the relaxation
(3-16) 1is exact as the relaxation times derived from (3.20) are dependent
on the sub-band number and electronic energy alone. The coupled equations
(3-20) are independent of the distribution function fé: this is a
peculiarity of elastic scattering, however the statistics do come into the

expression for the conductivity. In the extreme quantum limit when only one

sub-band is occupied it is only necessary to calculate one relaxation time

"T1. This is given by

1 - (1-costf) P (k'.mlk.n) _A_ dak'
w2

T3 ) (3.21)

which is the two-dimensional analogue of the usual three-dimensional result.

To evaluate the electrical conductivity o we substitute (3.18) into (3.13)

to obtain

(3.22)
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where

0j] —e? dE. tb(c) v/d~k

n

BN (3.23)

The cylindrical symmetry of the system under consideration implies that

c =0 and o = a Hence
XX o

n (3.24)

at low temperatures this reduces to

n (3.25)
where Nn is the areal electron density in sub-band n. At finite
temperatures the conductivity is equal to the expression for the low
temperature conductivity multiplied by dfc/di and integrated over energy,

1e

(3.26)

Together equations (3-26) and (3.20) give the low field Boltzmann
conductivity in a 2-DEG when the dominant scattering mechanism is elastic.

We can derive similar equations for a 1-DEG.

3«3 One-Dimensional Systems (isotropic elastic scattering)

Johnson and Vassell (1984) and Ridley (1983) have considered conduction in
one-dimensional wires, both used a relaxation time which was sub-band number
independent. We have seen that this is insufficient in two dimensions and

the same is true in one-dimensional systems. In one dimension we can write
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the linearised steady 6tate Boltzmann equation as

mif E dfo - [af,n"00 1
« Tk W —

c (3.27)
where E is the electric field directed along the wire which defines the z-

axis, K is the wavenumber describing the free electron motion along the

length of the wire and

(kH)M[1-fo(emol(k))IP(kIn.m;k" ,n" ,m")

c +fo(<n,,(K))P(V,n-,m";k,n,m)l

~FI»*<k) ~[1-f0(tB B ,(c")5iPK ™ ,n"m" ;k,n,m)

+ k™))PK.n.m-.k" ,m* .m" )”x L dk’
2
" (3.28)

where L is the length of the wire and the P(k,n,m;k",ne,ml) give the
transition probabilities. The equivalent to a current flux per unit area in
three dimensions auid a current flux per unit length in two dimensions is

simply a current in one dimension. Here

3 F1°" (K)Vn“ (K)dk

nm (3.29)

In the elastic scattering approximation we can define a relaxation time by

“ 0
(3.30)
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The Boltzmann equation in one dimension can be solved exactly with the
techniques used above for two dimensions and we find that the relaxation
times are given by a set of coupled algebraic equations similar to those of

Siggia and Kwok, ie

P(k® ,n"m";k,n,m.) Ldk*
2*

(3.31)
and at low temperatures the conductivity of this system is given by the

expected form

nm (3-32)

and at finite temperatures

<7(T) go (Odf, de
de (3.33)

3. 4 Changes in Dimensionality

Now that we have looked at the conductivity in 1-DEG"s and 2-DEG"s (in the
elastic scattering approximation) it is natural to ask how the various
relaxation time formulae transform into one another as the constraining

dimensions are increased iIn size.

The one-dimensional conductivity must transform into the two-dimensional
form in the limit of large width. This two-dimensional result must reduce
to the three-dimensional form in the limit of large channel depth. Each
transition to higher dimensionality results in the bunching of the sub-bands
until in the three-dimensional limit they are all quasi-continuous. Thi6
degeneracy in sub-band structure makes the *Tn m or the ~Tn independent of

one of their subscripts. We look at a one to two-dimensional transition due
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to the conducting wire becoming wide in the y direction, ky then becomes a
good quantum number and we can convert the 6um over m to an integral over
ky. If we convert to cylindrical polars we can transform equation (3.31) to
the Siggia and Kwok two-dimensional result.

Tn Pk.nils™ m) A d2k* - rr cosiPQs.nils” ,m) A d2k” - 1
4x2 m 2

(3.3%)
When we expand our conducting channel in the x-direction and perform a

similar co-ordinate transformation we obtain the three-dimensional result.

(3.35)

Which is the result for a single three-dimensional band (Mott (1936)). Here O
is the angle between the wavevectors in question. Thus the relaxation times
carry smoothly over into one another. The expressions for the conductivity

change in a similar way. In two dimensions we had

m (3.36)

In our case the "Tin"s are equal and we may take them outside the summation

to obtain

(3.37)
In the two-dimensional formalism 3 was introduced as a current flux per
unit length, to obtain the three-dimensional current flux per unit area we
divide by the well width to obtain

D - ntil
m*
(3.38)

where n is the number of electrons per unit volume.
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CHAPTER 4

ELASTIC SCATTERING BY POINT DEFECTS

We turn now to a discussion of the transition rates P(k,n;k,m). These are

usually evaluated in a Golden Rule Calculation (Butcher (1973)» Nag (1972))

PIk.n:k*.m)- 2a |<n,k|Vp [1c".m»|2i (cillial-*liiltlil) “.1)

where Vp is the perturbing potential, due to deviations away from the
perfect periodic system, and initial and cfinal are the initial and final
electron state energies. In three dimensions the evaluation of expression
(4.1) yields the Fourier transform of the scattering potential. In one and
two dimensions however this is modified because of the standing wave
components of the wavefunction. Whereas crystal momentum conservation is a
good concept in three-dimensional systems, it is no longer good to think in
these terms for reduced dimensionality systems and "'momentum' conservation
is fuzzy iIn the constrained dimensions (Ridley (1982)). The simplest
scattering potential that we can substitute into (4.1) to reveal the
properties of the relaxation time formulae is the delta function. This

makes the integrals particularly easy to perform.

4.1 Delta function scattering in two-dimensional systems

We can represent a sharply confined potential, or potential spike by a delta
function and obtain reasonable results out of the Siggia and Kwok equations
(3*20) if the range of the potential is small compared to the reciprocal of the
Fermi momentum, ie, If the wavefunctions (2.5) change little over the total
extent of the scattering potential Vp (Rode and Fedders (1983))* If these

delta scatterers are arranged at random and their density is sufficiently

low, then we may express the scattering effect of the ensemble as the sum of

the scattering from all the individuals (Kearney (1986)).
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We consider one &-scatterer of strength V0) at position (r0,z0), ie

Vp " VOi(z-zo)i(i-10) “4.2)

where 6 is the Dirac delta function. The probability per unit time that an
electron will scatter from a state |k,n™ to a state |k ~,m" is obtained by

substituting (U.2) into (U.I) giving

PQ.n;k>) -211V, 12<(“n (1£)-“D (IS")) 4.3)

Where the 3n(*0 are the localised wavefunctions in the quantum well.

The total transition rate PxoT(k>n jk*m) tie due to a sum over all
scatterers. If we define a density of scatterers p which is taken to be

independent of r and z then we find
PFOT m) 1in (Zo)Cm(20) | 2* (ik(K)-«1Qc™))
(4.4)
now if we take 91(20) from equation (2.5) we have
PIOIQE.n;k>) - 2m V,,2p 4 sin2 nmz,, sin2 mmz i(t_(k-f (k7)) dz
ft

A

2m Vjfi @Fi, )i(<BK)-<_(k™))
™ A 2L (4.5)
(see Arora and Awad (1981))

where 4nim is the Kronecker delta, so the inter-sub-band scattering rate is
of the intra-sub-band rate. It is also worth noting that both intra and

the inter-sub-band scattering rates are independent of the sub-band indices.
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g in the infinite

The momentum relaxation rate staircase

for delta function scatterin

square well limit,

As the density of states is flat the Siggia and Kwok momentum relaxation
time equations now take a particularly simple form. The second integral in

(3.20) is zero and we obtain

m 4.6)
The Siggia and Kwok equations decouple and we are left with a momentum

relaxation time which is identical to the scattering rate. Inserting (@*.5)

into (U.6) we find, finally

[2+i, Itfit-E.)
m A.7D

The Vn take the staircase form shown in Figure U.l. The are also
independent of n, but they possess step-like discontinuités due to the
staircase nature of the density of states. The n independence is an
artifact of the sinusoidal wavefunctions in general the"f can be n
dependent for «function scatterers. The discontinuities in the'Tn produce

sudden drops in 6 (see equation (3.25)).

u.2 Delta function scatterers (one-dimensional systems)
In a one-dimensional wire we can carry out the same procedure as that in U.l
and we find

PIOI (k,n.m;k',n",m’) - 2S [2+5. ,.][2+in rfl«(«,<k>-c ./k"'))
h 4AL (A.8a)

when n”=n and m"=m the product of the square brackets is 9. Relaxing one of
these conditions gives 6 and relaxing both gives U. The distinction between

the inter and intra-sub-band scattering rates is not as clear as it is in

two dimensions as three numbers are needed to define the problem. If (U.8a)
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is substituted into (3-31) we find that the relaxation times are different
for different sub-bands because the density of states in one-dimensional
systems is not constant. A set of curves representative of delta function
scattering in one-dimensional wires are shown in Figure 5-5- Again we see
from the scattering rate formula (U.8) that the transition rate and hence
the mobility can be engineered by changing the characteristic dimensions of
these low dimensionality systems. The singularity in the density of states
also results in singular scattering rates and infinite momentum relaxation
rates, consequently the conductivity will drop to zero for all well

dimensions when the Fermi energy corresponds to a sub-band energy

Scattering by ionised impurities (two-dimensional systems)
In an extrinsic bulk semiconductor the dopants increase the conductivity by
supplying carriers but reduce the mobility by acting as scattering centres.
In the bulk the two effects are inseparable, and the carriers are always
influenced by this scattering mechanism. In a two-dimensional system where
the electrons are confined to a thin conducting channel it is always
possible to introduce carriers from remote dopants, by doping the material
surrounding the quantum well (Stormer (1979))- It is energetically
favourable for electrons to fall into the well where they are held in the
quantum levels described in Chapter 2, very little charge extends beyond the
walls of the channel and so the scattering is drastically reduced. With
this "modulation doping" technique (Dohler (1983)) it is also possible to
introduce a large number of carriers to the system so that many of the
states in the sub-bands are filled, the system can then behave as a
degenerate electron gas. This is better able to screen the impurities that
may be lying in the channel. The scattering efficiency of the ionised
impurities i6 also dependent on the speed of the impacting carriers and this
leads to an additional reduction in the scattering because the only

important velocity in the system is the Fermi velocity which can be
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FIG 4.2

Momentum relaxation times for ionised
impurity scattering as a function of the
well width (after Sernelius(1985)).

controlled and made to be large (N Apsley (1986)).

The mobility in modulation doped systems can increase in consequence of all
these factors. Sernelius, Bergrenn and Tomak (1985) have looked at ionised
impurity scattering in some depth, but instead of looking at modulation
doped structures they considered scattering off ionised impurities in the
well. The impurities were distributed at random across the well and
correlation effects were ignored. Their treatment includes the effects of
screening and inter-sub-band scattering using the Siggia and Kwok equations.
This approach is correct within the Boltzmann framework. The results are
shown in Figure k.2. The matrix element for scattering off unscreened
ionised impurities has a 1/Q dependence, where Q is the change in
electronic momentum. When the energy being considered lies at the bottom of
the sub-band only small values of q are needed to scatter the electron right
around the sub-band and consequently the momentum relaxation rate is large,

(and may be singular when c=en).

Sernelius et al report experiments on a GaAs FET in which these predicted
effects did not appear. As we discuss in the final chapter this is due to

level broadening by the large density of scatterers present.

Alloy Scattering (two-dimensional systems)
Non-lattice matched quantum well systems are prone to dislocations which
appear to relieve the strain. They act as scattering centres. A simple way
to avoid them is to match the lattice spacing of the two materials in the
structure. The similarity in size between Ga and Al atoms permits such a
match between Gallium Arsenide (GaAs) and the AlJ,Gal_xAs ternary alloy
(Adachi (1986)). Ue consider the scattering process due to the
disordered nature of the alloy in a Quantum well. The other mechanisms

responsible for limiting the conductivity in these systems are due either to
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phonons or surface roughness and impurity scattering all of which can be
controlled. Alloy scattering is intrinsic to the materials used. The study
of this mechanism is therefore particularly important as it limits the

mobility (Ten in an ideal system.

Alloy scattering has been well researched in the bulk (Basu et al (1986),
Rode and Fedders (1983), Harrison and Hauser (1975), Hall (1959)), but has
not received enough attention in the quantum well. Two formulae have
recently been proposed (Basu and Nag (1983), G Bastard (1983)). Both of
these formulae were relevant to the extreme quantum limit. The formula due
to Basu deals with a potential resembling a pill-box whereas the formula due
to Bastard was relevant to a more realistic confined spherical potential.

In our treatment we adopt the second approach and consider the effect of
inter-sub-band scattering due to alloy disorder when more than one sub-band
is occupied. Throughout we consider the potential difference between a
Gallium atom and an -Aluminium atom to be confined to the unit cell, and we
suppose that the effective mass envelope function is slowly varying on this

length scale.

The first step in the calculation involves determining the wavefunctions for
the quantum well, this has been done in the effective mass approximation
(see appendix 1) taking into account the varying effective mass in the two
materials but not the differing Bloch states at the bottom of each r valley.
The r valley and the L valley of AlxGa”™ xAs cross when x-"0.U so that only
the r valley needs to be taken into account when x=0.3. Bulk Al Gax As
has a conduction band minimum above that of GaAs. We treat this conduction
band offset energy as the potential which confines the 2-DEG in the quantum
well. The band structures are taken to align as shown in Figure 1.2.
Okumura (985) suggested that the conduction band offset, aEc, is equal to

0.62 of the difference in band gap energies of the GaAs and the Al™a™ "MAs
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and this figure is taken to be independent of the alloy composition.

We work in the virtual crystal approximation (Nordheim (1931), Hall (1959))
and imagine that there is some average potential IAv (B) and the true
potential. U(R) is to be treated as a perturbation about this. We write the

true potential U(R) as

U(E) "H LGa(E_/\a) _|_1_ W (B-Ta.)

Ga atoms Al atoms As atoms (A.8b)

where, it will be remembered that, R=(r,z) is the three-dimensional position
vector of an electron, with r=(x,y) denoting the projection of R onto the
plane of the quantum well, Tea anddenote position vectors of Ga and Al
atoms and U|(B‘Y£? is the potential due to atom i at Iocationfjl. The
average potential is given by

cationic

UAv <B> [(i-X)UG(E-ji) + xUAi (£-?)]

anionic

where the summations are over cationic and anionic sites respectively. The
average potential determines the alloy bandstructure. The irregular
deviation from (R) will result in scattering and is given by the
difference between formulae (U.8) and (U.9). Within the well, the average
potential is the true potential and consequently this contributes nothing to
the scattering. We also consider the two confining half-space scattering
potentials to be uncorrelated. The total alloy scattering in this symmetric
well is then equal to twice the scattering due to one half-space. We can
rewrite the potential in one of the alloy half-spaces as (neglecting the

anionic sites)



UGE) -2Q, Ug.(R-Y) + (1-CM)Uai (R-V)

T.<o (4.10)

where Cx = 1 if a Ga atom is at
=0 if an Al atom is at T

The scattering potential is therefore

AU(B) - X (OF-x)UG,(B-"P + (x-CT)UAL(E-"t)

(4.11)
where T is the z component of and is negative in the alloy.
Hence
AU(E) - SC~N. UdIFFE-"T)
"T.cO (4.12)
where
Ct -V x and E Ug.-is-"1J-Uai CB-"T)
We can now construct the matrix element M of AU. We have
me <NMEZ]E QI Udicf<ft-*>1“_k >
f,<0
2 CVUdAITFE-"TD51(z)C(z)el<t-IL">*idzd2r
T .
"T.<0 (4.13)

Let R = r+zk and *'CO0 *f'z  where 2 lies in the (X,y) plane and we perform

the co-ordinate transformation z’=z-"Tz and r ’=r-T?- Then M reduces to

M™ * _En uditfuU".*) BC"+r.)e.(z"+YE)e <k k } <€ +- 2}
> - A~ dzd2r-

<0 4.14)
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i(k-kK")hT, ((

with the assumption that UNIFF i
Cn (@ is slowly varying,

evaluating them at<1"z, to obtain

then we may remove

i(k-K')*£"

dz'd2r’

(4.15)

s sharply confined to the unit cell whereas

i and

-k")-T . i(k-k")-£"
ME CV A ¢ " )C(T.) (WUdIfi(E.z") » ¢
dz'd2r’
T <0 (4.16)
which we rewrite as
VvV~ ¢ ifl . T
M e " Jinn,)CBCr,)S(a)
"1
r.<o (4.17)
where
g - kk' and S(a) - ~ Udtff(£' ,z"el*-«'"dzd2r’ (4.18)
We are concerned with |[MI2: we see that
- 1 by % 1 H A - .
mi2=Z CV Tz eid“* In(lz)i, Mi)l CY [/lz e*X CnftQC mCTZ)SZ(q)
'fZ<0 T, ;<0
4.19)
-s 2 BCT,HUCr)cBCT, *Khtt,")2:Z C*T1+T.C ti-ga+Tri "ala.”"J
*T.<0 T °<0 s2(a)
(4.20)
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Now if the system is uniformly random (see Hall (1959))

0 when N.rt or ** "*T

2 Ccv. 2+T,, CiT 2—N*-+Il’
r, (A-21)
The system is thus self averaging. When N =0 and *T < *f we find
-2 -z -z
2 ICY +T.]2 - Nx(I-x)
T A (A.22)
Thus,

where N iIs the number of cation sites per unit area in any one layer.

finally, we have

m - X renCt,)t.ery2 b x(i-x)s2(a)

A
T t<0 (A.23)

and the scattering rate is

POc.n;*» -22 M 2j(en@-en(c™))
(A.24)
To convert the summation in (A.23) to an integral we write aZ for the

lattice constant in z direction so that (4.2U) becomes

o

P()S.n;le;m) - 22 (
\°© 3 (A.25)

ds [C,(2)c.(z) [2s2(a)17x<l-x)* (*n(fc)-, (Is))

n=N/az is the density of cationic sites per unit volume. Since the



scattering potential is sharp on the atomic scale, S (a) is independent of q
for the values of £ with which we are concerned. If we insert (U.25) into
the Siggia and Kwok equations (3-20) the cos © integral is zero because of
the delta function like 3 independence of the scattering potential. The

tail of the wavefunction in the alloy possesses the form

(A.26)

where the values of *n and An are given in Figure A.3. The relaxation time

equations again decouple and we find that

m* nx(l-x) [AnAs]2
m (A.27)

In this result we have introduced an additional factor of 2 to account for
the alloy scattering from both sides of the quantum well. This expression
is similar to that of Bastard®"s except that expression (i*.2T) can be used
when more than one sub-band is occupied. The derivation here may be useful
in the situation where the alloy is not uniformly random and it could be
applied in the treatment of alloy clustering, see equation (A.20). It only
remains for us to determine the nature of the scattering potential Udiff
The expression S(0) arising in equation (A.27) is simply the volume integral

of Udiff(1>-

A_A.l The scattering potential

Several authors have considered the nature of the scattering potential in
alloy systems. Mott (1936) suggested that the potential in a metal alloy
should be treated as uniform and extending over the cell of the scatterer.
More recently authors have been interested in alloy scattering in
semiconductor systems (Harrison and Hauser (1975), Rode and Fedders(1983),

Fedders and Myles (1983)) and there is some disagreement over the magnitude
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of the potential that should be employed. Many authors (Littlejohn (1978),
Saxena (1985)) have considered the scattering potential to be strongly
related to atomic properties of the elements involved, rather than a
function of the material in which the element resides. It has been
suggested that U,jiff ehould be equal to the difference in (i) band-gaps
(Glicksmann (1974)), and (ii) electron affinities (Harrison (1975)), (iii)
electronegativities (see Littlejohn (1978)), with no clear agreement as to
which should be used. Experiments have been carried out to try to determine
Udiff by examininé alloy samples with varying compositions (Basu (1986),
Saxena (1984)). Although the different suggestions are not self-consistent
they usually roughly correspond to the values of calculated from
experimental data, however they can vary over orders of magnitude (see
Littlejohn (1978)). Stringfellow (1979) suggested that the alloy scattering
potential should be treated as the energy separation between the direct
energy conduction band edges of the unalloyed components. This suggestion

is the closest to the truth and we present a justification for this below.

IT we consider a superlattice structure (eg Gs"(s/AlJ.Gal_xAs) it is usual
when calculating a miniband structure to model the potential seen by the
conduction band electrons with a regular set of Kronig-Penney type barriers.
The height of these barriers is taken to be equal to the conduction band
offset (Warren (1986)) which can be measured by capacitance-voltage
profiling (Okumura (1985)). In the absence of band-bending due to charged
impurities or carriers this is an accurate model for even small well widths.
We can use this information to treat the randomised alloy system. In this
model we consider the conduction band electrons to see the conduction band
offset potential as they traverse the unit cell of a scatterer. To approach
this problem we consider the form of the matrix element for alloy scattering

in the bulk.
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We suppose that the perturbation from the periodic virtual crystal

approximation to the alloy is small. We write

VO. - U(B)-ivG.
VA1L - U(E)+iVAI (4.28)
where Q;R) is the average potential given by equation (4.9). Now let us

consider the conduction band offset in these two cases.

(4.29)
where n is the total volume of the bulk crystal and is the Bloch function
at the bottom of the conduction band. The difference is

(4.30)
where N = is the number of unit cells, n. is the unit cell volume, and

Udiff(R)is difference of atomic potentials introduced in equation (4.12)
withT=0. Since (R) 1is, by hypothesis, confined within the unit cell
we may replace nc by fl in (4.30). Solving for the matrix element which

arises in bulk alloy scattering, we find

M *\  |*J UdiFF(E)IR - AErg“/AL  AEcb»/alOc
a T (4.31)

This is the result for one scattering centre. If we consider an ensemble of

scatterers then the total matrix element squared is

(4.32)
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§ where Ns is the number of cationic sites per unit volume. With this method
S

we can identify S(0) in equation (4.17) with IAEc°a/A1El j

2> We present values of the alloy scattering momentum relaxation rates in
?'@ E Figure it3.
(65}
o
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CHAPTER 5

SCATTERING FROM EXTENDED DEFECTS

In this chapter we continue to work in the elastic scattering regime using
the equations of Siggia and Kwok and we look at the effect of extended
defects on the momentum relaxation rates of Quasi-One and Quasi-Two
dimensional systems. Throughout we consider the quantum well to be buried
in a material which possesses similar acoustic properties, but different
electronic properties so that the electrons are confined to the well, whilst

the phonons can be considered as three-dimensional.

Extended defects can be due to phonons? they can also arise if the confining
material/channel 1is rough. In 5*1 we consider the electron/acoustic phonon
interaction mediated by the deformation potential, iIn 5.2 we consider the
piezoelectric interaction and in 5»2.3 we consider the effect of a rough

material interface on a two-dimensional electron gas.

5.1 The Elastic Scattering Approximation for Acoustic Phonons

The linearised scattering rate equation (3.10) may be rewritten as

r

wv(k,nzk®,m) [Fr¢k.n) Fj@ee,m1 A dvV
I-f,,(k.n) air

6.1

where we have used the detailed balance relationship and V(k,n" k",m) is the

equilibrium transition rate, given by

VCk.njk™m) - F,(k,n) [1-fFo@*im)1p@j>n.ij*iB) G 2
Consider the large square brackets in 5.1. When the mechanism is perfectly
elastic 0 (k”,m)=FQ(k,n) the momentum relaxation times which can be

defined are independent of the distribution function fQ(k,n) and the

brackets equal 1.
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If however the mechanism is quasi-elastic we cam still define a set of
momentum relaxation times if fc(k",m) and fO(k,n) are both much less than 1
or if this is not the case they must be approximately equal to one another,
hence

| *(k-n)-«(Qc\i») |«kIT (5.3)

ie if

atlhw,,<<kBT

We assume that this holds. This not only allows us to use the relaxation
time formulae but it also permits us to simplify the scattering rate
obtained by using the equipartition limit of the Bose-Einstein distribution,
which is the case considered by Ridley (1982.). The effect of inelastic

scattering will be considered in detail in Chapter 6.

5.2 Two-Dimensional Systems

5.2.1 Deformation Potential Scattering (Acoustic Phonons)

The deformation potential was first considered by Bardeen and Shockley
(1951). They noted that the band-gap of a material is related to the
separation of its constituent atoms and because a phonon is a lattice
distortion this will be responsible for a local change in band-gac. They
showed that this effect was proportional to the dilation and in cubic
Gallium Arsenide the coefficient of proportionality is a scalar called the
deformation potential E™.. The additional term on the electronic

Hamiltonian is given by

Hep - Ed.F 2-U G-~

Where _U is the acoustic phonon displacement. U can be expressed in second

quantised form (Butcher (1973)) as

(‘fel*k'*
« \Y%
-/ 2*“nPV - (55)



where the phonon has a wavevector Q and a frequency u, c Is the density of
the medium, V is the total volume of the bulk crystal in which the channel
is embedded andis the polarisation vector. If we substitute (56-5) into
G-**) and approximate by assuming that perfectly longitudinal and transverse
waves exist in the bulk cube we find that

H 0 (aenr"i-a

ep _ 4 9

I 2 (5.6)

We now calculate the matrix element between an electronic state k in sub-
band n with phonon configuration s and a state with momentum k" in sub-band
m with phonon configuration s". We look at the contribution from the

annihilation operation first, we define

H*Bn _  *d.f / & C-g *ieia*J
p -~ d 2pul\ - * G.7)

and

ann . ,
H>*  <s:k,n[H Imk" s>

” Ed.fi2 /O O H (sin roz sin nirz Sig*Z dz
\ j2p UV - )e L L
ed >ef . eig.r d2r
G-®)
where N is the equilibrium Bose occupation factor
0
N
Q ePosk T -1 -9

3 is the component or Q in the (X,y) plane and gz is the projection of Q on
the z-axis. The integral over r results in a two-dimensional momentum
conserving Kronecker delta because of the periodic boundary conditions that
have been assumed to hold in the plane. The z integral gives rise to the

Gnir,(qz> function used by Ridley (1982) (see appendix 2).
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Defining

fi_  r-Q (a*ie‘af.
-E"'yzp"lov —r (% reeE)

(5.10)
we Ffind
Mcl1l* m <S;k.n|H.p >
- - Ed.fi Vv 1 /| * C»Q G* (q.) «k-k'+g
.7 2p«QV ran (5.11)

The transition rate can then be expressed as

pe.nK'm) - 125 [IM"E[2F (%, (K) - (fc') -fiuQ+ [MFn| s (<, (K) <. (K" Joa 3,) 1
0 *r G. 12

We see immediately that only longitudinal phonons contribute to the

scattering as _£.Q is zero for transverse phonons. We split the summation over

0 into a summation over A and a summation over 3 The Kronecker deltas

in |[Mcre |2 and JMann|2 then pick out the terms for which =% *-k_and
=k-W respectively. We convert the summation over q to an integral and

introduce a one-dimensional density of states D/2*-, where D is length of the

edge of the phonon cube. Hence

P(k.n;k\"0 - 1 dg,D [ [H*

e ]2i (cB(k)-*.(k")*<ex<) + |JH*" |2S(«, (k) -
1 fi

(k' >+fi«0)]
(5-13)

where HCre and Hann are equal to MCre and M8'0 with the Kronecker delta

removed. When these are squared and substituted into (5.13)only |£] is
inportant and it is understood that |q | =]lk-k,”]- if we apply the

equipartition inequality (6*3) and if the phonon energy is much less than the
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typical electron energy then we can write

P(k.n;k**) ~ dg.xD x |Htotl i(«n(k)-“Bk")> (5.14)
where
KbTE~ANIQI2 G2 (gb)
IHiotI2 - Wz DV
P (5.15)

We are considering the scattering of electrons around a small fermi circle
which will necessarily involve small values of q . The function Gnﬁ(qz) is
also insignificant for large g8 . With these observations we may use a
linear dispersion relationship for the acoustic phonons with little error,
ie

“q 0 vilQJ (5.16)
where is the longitudinal velocity of sound. Hence we find that

2 (2

PAS.n;IE".m) - K, T  DEd>1]Gnm (g, )i (chQ)-:.({)) 2

#>wt2 G.11)

As the function Gnm(qgz) is sharply peaked we may also extend the range of
integration from the zone edge to infinity with little error. Following the

treatment of Arora and Awad (1981) 5.17 gives

K TE p
P(k-n;k*.m)——x w (2+«,, ,,)S(t,,(As)-tals"))
pWt2 L
(5-18)

This expression is independent of Q and consequently the Siggia and Kwok

equations again decouple and we are left with the simple result

1 [ Sd K»TE2d.f (¢
----- - 2 - *(€-<.))
T ,,(€> m Ti3 PVE* 2L

(5.19)
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The final formula (6*19) for "T %(e) shows a similar staircase structure to

the density of state (Ridley (1982)), see Figure 5.1.

5-2.1.1 The Conductivity
We saw that the finite temperature conductivity could be written as

(equation 3<33)

<7(T) f ao0<*> ‘(‘fta— df

where o_(£) 1is given by

m*
where Nm was the areal electron density due to sub-band m. The

discontinuity in the relaxation times in (6-19) is due to the onset of
inter-sub-band scattering giving rise to the sharp quantum size effects in
Figure 5.2 shows as a function of the total areal electron density

and the smooth curve in the same figure shows the effect of finite temperature
(200X), which results in the smoothing out of the quantum size effects

at the sub-band discontinuities. In between the two sub-band origins, the
true conductivity o(T) is matched by 00, because 00 changes linearly over an
energy range of kGT. Similar effects have been observed by Stormer (1981)
although he associates the smoothing of his quantum size effects with the

lifetime broadening of the sub-band energy states, see the final chapter.

5.2.2 Piezoelectric Scattering

The unit cell iIn GaAs does not possess a centre of symmetry and atoms are
partially ionised. When an acoustic phonon disturbs the atomic positions it
sets up a dipole moment which couples the phonons to the conduction

electrons. We may write the components of the displacement vector D. as
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Di - = *U J + = elkl®kl
J k,1

(5.20)

where and are components of the electric field and strain tensor

respectively, whilst® ~ and e”~” are the permittivity and piezoelectric
tensors. If we assume that the displacement of the electrons is small

compared to that of the ions we may put Dj=0 and hence we find that (Seeger

(1973), Zook (196U))

Aok ao eikISkl
J w.t (5.21)
where for cubic symmetry
Clg** Vv *'1 (5.22)

where 2 is the relative permittivity.

The strain tensor Skl may be expanded

in terms of the phonon displacement (Nye (967)).

oill
(5.23)

We notice that Skl is symmetric under the interchange of k and 1.

In second
quantised notation we write,
ul(2) -/ e (a mV'fi-H + ael*-*.
1%9 g (5.24)
where 1,2 and 3 label the the co-ordinate axes. Hence,
- a1 / UjQi + CiQzH-a ¢™fl-L + ael*«*]
a/ 2on,,V * 9
(5.25)

IT we consider a quantum well made of GaAs (which possesses the zinc blende

structure) then in reduced notation (Nye (1967))
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“ “

e l» *25 *38

(5.26)

Moreover, if O denotes the scalar potential we have

Hence from (5.27), (56.21), (5-22), (5.25) and (5.26) we find

1 *'** I
K> O szu p~ 1(C*Q’Q* + CTQ3Qi + 53QiQ2)(-aa*e-“AB. +
(5.28)

When we introduce direction cosines

we find from equation (5.28) that

Pt =1 Fixx % HITIRi+UFv+H-RB)  (-a-0e"fl.-~a0e‘a-£)
1“0 W 2p0pV A 2

(5.29)

for a longitudinal mode 6&"=*, t2=8. C.=Ts. Hence

H1I “—— ex*e / j »»M)
1« //2«0pV m S< (5.30)
and
Mj ® <s;n,]¢|H’ |k',ni;s> (531)

where it should be remembered that a and aﬁt+ are the phonon annhialation
Si

and creation operators for longitudinal acoustic modes. For transverse

modes we can think of (QX2el+B3Q1C2+ Q i n ecwati°n (5-28) as being the
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dot product of cwith a vector Q.Q”+Q.Q"+Q”~~t. The result (3-6<)2 in
equation (5-30) was obtained by aligning the polarisation with Q. The
contribution due to the transverse modes is found by taking the squared
length of the vector R-QMi+Q-QjJ+Q~gk and subtracting the result (3-B*)2.

/TDTF7 yg FPPWT FNrcpyfFyi Hence for transverse modes we have

M |2 - <azf)2to2 VYot tow2-<3=(fith)2)  |<s;n.l<;) rl;:--:]/ 2upV f&l*S tellA*?+a£teioi|D)'|k_m;s>| 2
(5.32)

These matrix elements were calculated with one propagation direction in

E"r mjss in electronic units= 0.66E-n
mind. If we average over all possible propagation directions we find (Ridley
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Momentum relaxation rates for piezoelec*
trie scattering. The material constants are whe re
taken from Zook(1964) and Rode(1975).
S m*-1s'+a

and A is the area of the device. By substituting this result into the

Siggia and Kwok equations (3.20) we may calculate the relaxation times
numerically. Results are given in Figure 5-3- Unlike the deformation
potential the piezoelectric relaxation times are different for each sub-band

at high temperatures. This is because of the Q dependence of the piezoelectric

mechanism, which is also responsible for the divergences at the sub-band minima.
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The relative importance of the two mechanisms is critically dependent on the
carrier density. When the Fermi energy lies at the bottom of a sub-band,
the divergence in the piezoelectric scattering momentum relaxation rate and
the constant nature of the deformation potential scattering rate implies
that the former dominates. However as the Fermi energy is increased the
importance of the mechanisms switches. We return to the importance of
screening in this problem in the final chapter. However, Figures 5-1 and
5-2 indicate that for realistic carrier densities even ignoring screening
the deformation potential will dominate over the piezoelectric scattering

mechanism.

5-2.3 Scattering by Monatomic Circular Islands

Joyce (1986) has suggested a model for the state of the GaAs/AIXGal_ As
interface in a quantum well, arising from the MBE preparation technique. In
his model, deduced from electron diffraction measurements, the interface is
not smooth but possesses an island structure. The characteristic size of
these circular islands depends on whether the GaAs is depositing on a
AlxGa™_"As layer or vice-versa. In the former case the radius of the islands is
of the order of 35A and in the latter 250A. With no additional information
available we suppose that these islands are uncorrelated in position. We
look at this problem in a formal way and neglect the atomic structure by
representing the islands as thin cylinders of known potential V , which will
be taken to be small. We assume that our wavefunction can leak out of the
well, and the confining potential is taken to be so small that it changes the
wavefunction only slightly allowing us to work in the effective mass
approximation. To be definite we consider the GaAs/AlxGal_xAs system and
treat the alloy potential in the virtual crystal approximation. Then the

scattering potential of each island takes the form
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V(r,z) = -h<z<0
f’
z710,1< =V
’ 5.35
[ILAfc ( )
where rQ is the radius and h is the height of the cylinder. The matrix

element responsible for the scattering is given by

Mr m <n_k]V(i-z)Ik”,m>
-h rro ~2n

dz \ fdr \ dtf cD(z) tB(z)e* It-F Ircose ™
(5-36)

where 8 is the angle between &< | and r. Since the ™n(z) are assumed to
be slowly varying over the range 0 to -h we can take them outside the

integral and evaluate them at 0. Then we have

,9rc
Mo " VE> ta(o)lL(%)* I W3 ()xdx
° (5.37)
where g= Kk " | and we have performed the © integration. It is a property

of Bessel functions that IAbramowitz and Stegun)

3,-1 ¢ - mn3. ) +3 7.0
X (5.38)
we can t6£ this property to integrate (5-37) to obtain

V_h2irr_
- t,(0)t.(0) S~qrd/q (5.39).

Equation (5-39) is the result for a single isolated island in a quantum well.
With more than one island present we have to carry out an appropriate
average. When many islands are present so that they fit together to form a
continuous layer the scattering rate reduces to zero. Consequently, the
averaging problem is then the same as that which arises in alloy scattering
where a virtual crystal approximation was also used, except that now we have
some short-range correlation. By defining an average potential for the

layer and assuming that all the islands are of the same radius, rQ, we
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obtain the following approximate expression

n2
Nfd-f) Invoh2 " ro1CI(0) c. (0)31(qr®

A L (5.40)

where N is the maximum possible number of scatterers per unit area and f is
the fraction of the surface covered by the cylinders. This scattering
mechanism is elastic and hence the transition rate,

P(k,n;k*,m) = — M J*ie (K-c (k)

r "o m “ (5.41)
may be inserted into (3.20) to give the momentum relaxation rates. The
magnitude of the relaxation times is principally determined by the value of
the N. In all cases we have taken the surface of the quantum well to be 50%
covered by the scatterers, the difference between the curves is then mainly
due to the size of the islands. The values of r were given by Joyce and
the value of h was taken as 3X which is approximately the thickness of one
atomic layer. We have plotted the relaxation times for both r = 250? and
r = 351 in Figure 5.L. For small dij - qrQ/2 and the scattering
mechanism is g independent. In this case the relaxation time curves have
the familiar staircase form, see Figure 5-"a. For larger islands see Figure

oscillates and this is reflected in the oscillatory nature of
the relaxation times. In reality we would expect there to be some spread in
the radius, shape and orientation of these islands and this would smear out
the oscillations. For larger islands inter-sub-band scattering is less
marked. This 1is easily explained, there is a minimum value of q,qun needed
for an inter-sub-band transition to take place. For larger islands where
ro*1/kF 1 (gro ~ q Tails off with g, hence when r~fcl/g™M inter-sub-band
transitions are less probable. The curves then decouple to a large extent.
The relaxation times are almost continuous functions of energy and the QSE

disappear.
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The origin of surface roughness scattering is the same as that of alloy
scattering and the two could be described together if the autocorrelation
function in equation (4.20) was known exactly. However with the
approximations made here we find on referring to Figures 4.3 and 5.4 that
the alloy scattering momentum relaxation rates are in general larger for
AlInNGa”™ Ms and this will dominate. It is also worth noting that as x is
increased the hidden composition dependence in the quantum-well wavefunction
results in smaller alloy scattering relaxation rates even before x=0.3 (see
Figure 4.3 for x=0.3). This is primarily due to rapid decay of the wave-

function in the alloy.

5.3 High Temperature Phonon Scattering in Quasi-One-Dimensional Wires

In this section we apply the set of coupled equations (3.31) derived in
Chapter 3 to a one-dimensional wire with a rectangular cross-section of
dimensions axb. We make the same assumptions as we did for the two-
dimensional channel and consider the wire to sit in a three-dimensional cube
of volume D1. We look at scattering due to the piezoelectric and

deformation potential mechanisms.

Johnson and Vassell (1984) have looked at this problem. However, they used
an expression for a single momentum relaxation rate which neglected the
coupling of the one-dimensional Boltzmann equations. Their expression was of

the form

I<n,, 1", k" |Va(x,y,z)|k,1,n>|2
k'.q

X (1-kVK)«(cnl<l,(k')-Cn<1(k)-4E9) (5.42)

We would expect this value of T to depend on the choice of n and 1 and we

would also expect it to change discontinuously as another sub-band becomes
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occupied, but this feature is absent from their graphs. 1In general a
solution of the linearised Boltzmann equation must be effected by using the
coupled relaxation time equations (3.31) which take full account of inter-

sub-band scattering. The coupled equations have the form

L
L
27 dk e mAMIM; dk* « 1
with the conductivity given by
ran m* G-44)

In one-dimension only a discrete set of k vectors are involved in the
scattering process and these are defined by the endpoints of the Fermi-lines
in each occupied sub-band. From now on we work with the notation that k=] k |
and we introduce the sign of the k"s explicitly. The delta-function in the
expression for P(k,n,m k",n",m") means that the integral over k" results in
two terms one for +k and one for -k. We split the summations up to bring
this out. Hence equation (5.1*3) gives

L L

P(k,n,m;k%nT) — dk* P (k .,n ,m;-k5n*m) dk *
2r 2it

k* >0 k "<0

(5.46)
where
P(k.n,m;K*_n",m") — 2« \l|<s",k”,n"In"|H |m,n, k;s>|]2 A dqg dq
* zz7 * y
6 <«n..(K)-€D...(k")) G.4D
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and AsD* the area of a side of the phonon block. Once again we expect the
elastic approximation to be useful at high temperatures when equipartition

is valid.

5-3-1 Deformation Potential Scattering
For deformation potential scattering and the infinite rectangular well
wavefunctions (2.5) we find

kBTE2d.r F(a)F(b)4(eBB(k)-tB,B>(k"))

P(k,nlIB;k~n",a")
~fis2pD2* (5.48)

where

dx a@x, s
(5.49)

where the integral over gx is taken to extend to ». The integrations can be

performed to give

k TE2 »2

P(k,n,m;k",n",m") l-"fiSZgD?X * ab_<2+4rmh)(2+s_o--) 4
(5.50)

which is similar to the result obtained for 6-function scatterers. The
coupled equations (G.*6) can be rewritten to separate intra from inter-sub-

band scattering, giving

P(k,n.m;k;n'ﬁir) E_dk' +Y, N IP(k,n,m;-k',n',m')E_dk'
k,X> 2» 2%
k'<o

2'Tn « ( k!P(ktn,m;k\n",m")Edk'+Z" ¥ B.B.fk" (P (k.n.m:-k".n"tm")D dk*
2m

I1>0 n

+ 20 ( P(k.n.m;-k*.n.m)l% dk* - 1
«

k'<o
(5.51)
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where

27 - 2041
ﬁ'?n)rf(n‘ m)
) ]
When we are considering the extreme quantum limit the summations are all

zero and we are left with a momentum relaxation rate which is equal to twice

the scattering rate.

———L- " 2 ( p<.i.1;-k\iii)D_dk-
J 2%

k <o

Hie factor of two arises because the change in momentum is equal to 2k when
an electron scatterers across the one-dimensional sub-band. We have solved
the algebraic equations (56-51) for the deformation potential and the results
are shown in Figure 5*5* The Tn mare all different at a particular energy
and their shape is dominated by the singular one-dimensional density of
states (c.f. the two-dimensional case). When « corresponds to a sub-band
energy both intra and inter-sub-band scattering rates are singular and all
the momentum relaxation times are zero. One-dimensional systems should

therefore exhibit extremely pronounced QSE.
5-3-2 Piezoelectric Scattering
Following the procedure given in section 5.2.2 for piezoelectric scattering

in two-dimensional systems we find that the same method gives rise to a

scattering rate

(5.52)
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2 2 2 2 2
where 0 «[k-k1] eg”~gq” and is the function given by Ridley (see
appendix 2). The relaxation time equations have been solved and the
results are shown in Figure 5.6. The curves are again singular at the

sub-band origins.

When the energy is well away from the sub-band bottom the momentum
relaxation rates are small because the value q needed to effect scattering
across a sub-band is large and this is prohibited by the 1/02 dependence of
the scattering rate. The deformation potential on the other hand was O
independent at high temperatures and consequently we would expect this to
be the dominant mechanism in one-dimensional systems at high temperatures

and large Fermi energies.
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CHAPTER 6

INELASTIC SCATTERING

6.1 Introduction

We mentioned in Chapter 5 that the elastic scattering approximation is only
valid for acoustic phonons when the characteristic energies involved in the
scattering are much less than the thermal excitation energies. Here we
consider what happens when this criterion is no longer valid and we develop

an approximate scheme for solving the problem. In 6.2 we consider the

effect of inelasticity on the momentum relaxation rates of two-dimensional
systems. In three-dimensional metallic systems these considerations lead to a
conductivity which varies as T_Sat very low temperatures (Butcher (1973)).

We investigate this Bloch-Gruneisen law in two-dimensional and one-

dimensional systems.

We start by reconsidering the phonon absorption and emission processes. We
imagine an electron to start at energy e and to finish at energy e+0(£)
sifter absorbing a phonon of energy 0 (Q). The scattering rate due to phonon

absorption is proportional to the Bose factor

1

No e6E£ <£>-1 6 1
(0. 1)

At low temperatures the probability of such a transition is small and
consequently the momentum relaxation rate due to this route is also low. On
the other hand, we may consider the phonon emission process which is
proportional to (Ng+1). At very low temperatures this factor is equal to 1.
IT we were to place our faith iIn the elastic scattering approximation and
the equations of Siggia and Kwok we might expect there to be a finite

contribution to the DC resistance of the 2-DEG due to acoustic phonon

emission even at absolute zero. This argument is clearly wrong, if we were
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to continuously emit phonons, would grow, the temperature would rise and

the steady-state would be destroyed.

The solution of this dilemma involves rejecting the elastic scattering
approximation. The equations of Siggia and Kwok (3-20) are independent of
the electronic statistics and this is what is causing the problem. In order
to proceeed we must First reject the relaxation time approximation which is
exact for elastic mechanisms and develop a variational principle for quasi-
two-dimensional systems. An effective relaxation time will be reintroduced

later in the application of the variational principle.

6.2 Inelastic Scattering in Two-Dimensional Systems

The variational form of the three-dimensional Boltzmann equation was first

introduced by Kohler and was used by Sondheimer and Howarth (1953) in

their treatment of polar optic phonon scattering in bulk semiconductors.

This approach is particularly useful because the iterative approach(Rode
extensive use of a computer, whereas the amount of work

involved in a variational calculation is under the control of the user, “«faen

linearised the Boltzmann equation may be written in the form

zD - C*D(k
o 6.2
where
z" - E3F,,
-h “sir
6.3
Jit €3
and
af,”((s)
c*n<k)
at
coll
(6.4)
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we shall call C the collision operator. The Ilow-field conductivity of the

2-DEG 1is given by

----- rof ofU(k)v “(k)d2k
a (6.5)

where v (k) is the x component of the electron velocity in sub-band n and
the summation is over all sub-bands. In first order equation (6.5) reduces

to

a zV n(k)d2k
(6.6)

Alternatively, we can use the Boltzmann equation (6.2) and write

a  ————— £ *n(k)CtfD(It)d2K
2x2(E,)2 n 6.7)

To develop the variational method we first need to look at the symmetry

properties of the operator C.

6.2.1 Symmetry Properties of the Collision Operator

Using the equilibrium electron transfer rate (5.2), consider the expression

E £ gQc,n)Ch(k.n)d2k
n
dokf g(k,n)V(k,n;Js",m)[h(k',m)-h(ls.n)]_A_d2k'
a) 4ir2

Rz 1 d2kE \ gos*,myvek= ,a;k.n) [h(k,n)-hQs’ ,m)1 A d2k*
n J m) - un2

(6.8)
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In the second line we have used equation (6.U). In the third line we have

interchanged k and k" .

If we add the last two expressions and divide by two we find

e r (g(k.n)-g(k" ,m) IVQc" .o;k,n)[h(k.-n)-h(k" ] a d2k*
2n 4tr2

Hence C is symmetrical. Inserting equation (6.9) into (6.7) we find that

fo(e,.(K))[1-F<s (B (k*)))PIEIN K™ ,m)

X [*.(k?)-*n(k)]2x A d2k-
(6.10)

which, we note, is positive definite.

6.2.2 A Variational Principle
Using the result (6.9) and the expressions (6.6) and (6.7) we can write down
an expression for the conductivity which hasunextremum in space when the

Boltzmann equation is satisfied:

N |
(6.11)

To prove that (6.11) 16 stationary we consider a trial function On(k) which is
expressed as the true solution®™!™ (k) plus a small deviation & and we look

n n
at the first order deviation from the true conductivity d\ obtained from

1 (K. Hence
n

The interchange of gy and h leaves the equality intact
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2
6o+oz 2nn,, (k)d2k + r 12" 17 n(fc)d2k
*2(E,)2 n

- r["ji*D(k)Cv<O(k)d2k i =[Wn(k)Con(li)dlk
1

Hence

S0 ¢ ilin(k)[zn-COn]d2k - 0
*2(E,,2) N
(6.12)

when the Boltzmann equation is satisfied. We can use this variational
principle to obtain a best estimate of the conductivity for a given
functional formi>n (k). Sondheimer and Howarth (1953) expanded their single
band trial function in terms of a complete set of functions of energy. In
principle an exact value for the Boltzmann conductivity may be obtained hy
using this approach, however it is necessary to truncate the series
expansion at some point. We use the simplest expansion, a constant, which
may depend on Fermi level positioning but not on energy. The aim is to see
how the relaxation time expression which is exact for elastic scattering is
modified as the temperature is lowered. Thus we use the ansatz

en - w . (6.13)
whereis aconstant independent of energy for a given value of tp, the
Fermi Energy.

6.2.3 Deformation Potential Scattering at Low Temperatures

We consider the physical configuration discussed in Chapter 5, where we used
the elastic scattering approximation to obtain Ridley's scattering rate
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formula for deformation potential scattering. We noted that this approach
was valid if the typical values of phonon energy ¢(0) arising in the
integrals were much less than the thermal energy. The deformation mechanism
has no Q dependence and a typical value of Q may be taken as 2k~ . The
maximum value for k in a single sub-band in the square well approximation

i6 2»/L. The elastic scattering approximation will be valid if

TSVLXAmM « kgT
L

ie IfT» -f4*

where L is the width. For a hoR well the temperature must be greater than
about 100k, at temperatures lower them this the effects of inelasticity will

be important.

The transition probability due to the absorption of acoustic phonons through

the deformation potential is given by

p-b.S.NIE" ) - - N0G2n-(q,) 1Q1S(*n (-8 (i,)+A(Q))dgi

(6-14)
where A(Q) is the energy of a phonon with wavevector Q. Let e and 6~ denote
the angles between k and k* and the x-axis and replace En(Q0 by c and cn (k")

by ¢’ then equation (6.11) yields

(6.15)
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where Q«]g|] and Fabs (n,m ,q ,Q) is defined as

Fk(n.-;q,.Q)—IH 0"i,,)0
(6.16)
The only rabidly varying function of energy in (6.15) is then f0 (c'—6(0))(l—foﬁ/
which peaks at . We integrate this and treat the other functions as

constants, evaluating them at cp. Now

0(-MQ))(I-f0(0)de - P

| l-exp(-0A(Q)) (6.17)

o)
so that

2% 2n +0>

£*2 [ [ /v m* A
_______ 22 \df'\dM — d5.-r-—————————— F(n,m;qE,Q)

4w 2 run Sir3 S2 1l-exp (—OA(Q))

o Jo

X (eor''c°s# "Tw -kpBcosiYn)* (618)

where k is the Fermi radius in sub-band m.

The alternative expression for the conductivity (6.6) gives

Nb eV,,
a —_
n m*
(6.19)
construct the variational
to
/2n
Oom*
T T1A V. &31.G.b.<r .n;q.fl
2 *n " 6-b.<r.n:q.fh
Yo } 8"3
r2*
Om*
-2 e _ — H -
2 5 . dgMm cos=cG.bi(r.n;qE,Q)

(6.20)
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FIG 6.1 (a)

Momentum relaxation rates for deforma-
tion potential scattering at low tempera-
tures, revealing the effects of inelasticity.

where

A(Q)
G.b. n:qg,.Q2 ——m——————— .b.(r.nzq,-
SR iy F.b.(r.n:q,.Q)
(6.21)
ana we have usea the identity
F.b.(r.n;q,-Q) - F.b_Cn.r;qt,Q (6.22)

The inclusion of the emission process is straightforward because of detailed

balance which implies

£ *»<k>c.b.*n(k)d2k - £ ] *.<k>c..*ll<k>d*k

(6.23)

with Cabs and Cem denoting the collision operators involving absorption and

emission processes respectively. Hence we only need to double each of the

integrals in (6.20) to include both processes.

The coupled equations (6.20)

have been solved numerically for a range of temperatures (see Figures

6.1(a), (b) and (c). We note that even at WOX the inelasticity is evident

and at lower temperatures there are significant deviations away from Ridley"s

scattering rate result (see equation (5.1S5)).

In the high temperature

limit 6 tends to zero and the Siggia and Kwok equations (3.20) are recovered

from (6.20). In this regime the elastic scattering limit is a good

approximation, equipartition holds and F(n,r;q ,Q) is independent of Q. The

second integral in (6.21) is identically zero and Ridley"s scattering rate

formula 16 exact. As the temperature is lowered both the equipartition

limit and the elastic scattering approximation are invalid.

6.2.3.1 Discussion of the Deformation Potential Relaxation Time Curves

Figure 6.2 shows a transition between k and k*

in the lowest sub-band by the



emission of an acoustic phonon. The electron changes its momentum state and
at the same time loses energy to the phonon. At low temperatures the Fermi
sea will have a sharp boundary curve and consequently momentum changes which
involve the emission of a phonon with energy much greater than k T are
blocked by the Pauli principle. Hence only small angle scattering is
allowed at low temperatures. There is also a minimum phonon wavevector
required for an inter-sub-band transition and a corresponding minimum phonon
energy. So at very low temperatures, when the phonon occupancy is small,
inter-sub-band transitions due to phonon absorption are improbable and
transitions due to phonon emission are unlikely. This suggests an
approximate sub-band decoupling scheme at low temperatures with the momentum
relaxing by small angle intra-sub-band scattering. This effect is seen in
the relaxation time curves Figure 6.1. At high temperatures a large change
in the relaxation time occurs when another sub-band is becoming occupied.

At lower temperatures the electrons in one sub-band see less of the states
in the other sub-bands and the relaxation time discontinuities are less

marked. At very low temperatures the QSE are frozen out completely.

6.2.3.2 Limiting Temperature Dependence in 2-DEG"s due to Three-Dimensional
Phonons

Three-dimensional metallic systems have a phonon-scattering limited
resistivity which is proportional to T5 at low temperatures (see Ziman
(i960)). We may now consider the limiting temperature dependence in a 2-
DEG. At low temperatures we know that inter-sub-band transitions are not
permitted and only small angle intra-sub-band transitions are allowed.

Hence, from (6.20)

r2n , 10
1 fim*
) (1-cosoc)F(n,n;qt ,Q)dq
n U2 &1* 1-exp(0hVLQ)
(6.24)



where
Q - (4kr2sin2(t<x)+gl 2" (6.25)

We insert the full expression for F(n,n,qz,Q) equation (6.16) to obtain

2n
1 fim* dq, -MQ ~E2d.TQ 1
doc " (I-COSac) X ez G2(qi)
ew *2 8*3 l-exp(-0hV,Q) pvi  exp(ST>VLQ)-I
(6.26)
Now, for small angles, q:2kfsin0$«/~kr« and as d, is taken to be small we
know
Gno»=<t) " 1
) (6.27)
qz-*°

we change the"integral variable * to q so that (6.26) yields

™o1Q2 q2 XE2d.f
T "2 AnAl sinh2(bVLOM2) k2 o
(6.28)

Finally by introducing polar co-ordinates in the (q ,qz)plane, we Ffind that

the angular integration is elementary and yields

.6
1 pm* *
E2,,.f [ 1 [ .
L S " PRL 4sinh2(x)
1
(6.29)
where x=efiLQ/2 . We see by inspection that"T is proportional to T5.

Vinter (1986) has suggested that the electronic mobility should vary as T_1
at low temperatures. This is true at moderately low temperatures when
Ridley’s scattering-rate formula is approximately valid (Ridley (1982)) and
the Fermi surface is fairly sharp. It fails at very low temperatures and

the T-5 law holds.
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6.2.1* Piezoelectric Scattering at Low Temperatures
We can now examine low temperature piezoelectric scattering in 2-DEGs. The

full inelastic transition rate takes the form

2n ej*e |
P(k.n:k-..) N — «(..CKki-.lk-HM 0O ,),
Se
4 (Ng»+D
i («D (iS)-€B (k") -At(Qt))
3 »01
3 (NO1+D) 1
35 v,
G L
R __29@_(9_2) — qu

© 7 (6.30)

This can be included in the equations (6.20), again we find that the
absorption and emission processes contribute equally to the conductivity.
The equations now take a similar form to the ones for deformation potential

scattering, but now we replace

A (©)
L X F.b. (r.n;q ,Q
I~expCEA @ D r-na .0
1= terms, one for the longitudinal phonons and one for transverse phonons
At (Qt)
-— X F*_ ir.nra .0 — 4- - b ~
1-exp(-"AT(Qt>) 35  l-exp(-0Ax(Qx)y 225 ¢(rmTv o> s
where
t/i ror.l4.-| NgtA Gr,n«l.)
P [ke] \) 1QI (631)

t/1
t /1 -
where N, is the Bose factor, and Vt ~ the velocity of the

transverse/longitudinal modes. These equations have been used to calculate
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Momentum relaxation rates for piezoelec-
tric scattering at low temperatures in a
2-D.E.G. . The elastic approximation is
approximately valid here because of the Q
dépendance of the mechanism.

the results shown in Figure 6.3 which are for T-40, I0K.lhe qualitative behavior
is similar to that found in section 6.2.3 for deformation potential
scattering, but we see on referring to Figure 5.3 , for high

temperature piezoelectric scattering that a large amount of sub-band
decoupling is already present because of the 1/Q2 dependence of the

mechanism and the finite q necessary for the transition. We note that the
deformation potential dominates over the piezoelectric mechanism even at low

temperatures, even before screening is included.

6.2.5 Low Temperature Conduction in One-Dimensional Wires

We now address the inelasticity problem in one-dimensional systems. In the
elastic approximation electrons have to scatter across the sub-band to
relax momentum, this may involve acoustic phonons which have energies large
compared to kBT and consequently we can expect the effects of inelasticity
to be important. If this were the only way of relaxing momentum we would
expect the conductivity to increase rapidly when kBT<2hVLkF . To study this
problem we modify the approach of sections (6.2.1-6.2.4). Thus, we write

the linearised one-dimensional Boltzmann equations (3.-27) in the form

zn“ - c¢jynm ) 6 33)
where
at.
c/n" - : -
at LN i f.<n»o00> [ I-FO(«B.,.<k"))] P(k>n,n_;Ic\n\m")
x [E - "(le™> J JT dk*
(6.34)
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and

zZnm

dc (6.35)

The collision operator here again possesses the symmetry property

£ j h(k,n,ni)Cq(k,n,ni)dk - Fnigik.n.nOCMk.n.nOdk

(6.36)
and the one-dimensional conductivity takes the form
ao - -—-—— 2 I ~n>c™ndk
ire2 nm ]
(6-37)

which can be rewritten in the familiar form

Oe2 (f

Vo Fo(En(K))[1-FO(*n m (K))]P(k.n.ni:k'n'.itf)

2WwE2  HTRMH M1

x [On = =(k?)-0""*(k)]2 2* dk"dk

(6-38)
The expression
_2e2 n nn M
2 j »"Mdk t-— ZJ™ ¢ necantdk
wE2 ns
(6-39)

has a minimum in Onm space when the one-dimensional Boltzmann equation is

satisfied. We shall use this result to look at conduction at moderately low
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(kBT-2riVLkF) and very low temperatures (kBT«2hVLkF).

6.2,6 Transport in One-Dimension at Moderately Low Temperatures
Consider Figure 6.4, this shows the four classes of scattering process that
an electron can be involved in, in one-dimension . Two of these processes
change the electrons momentum by a large amount. The other two leave the
electron on the same side of the sub-band and hardly change its momentum at
all. In this section we consider the across sub-band transitions to be the
important ones. When kgTitEJivkj. these transitions will be prohibited and
the other two need to be considered in detail, this is done in section
6.2.7- We inspect the expression
K m2 ( ~nn>CNdk

nB ) (6.40)

and convert the integrals over k to integrals over energy. Thus, we have

from (6.38), (6.37) and .7)

s =
|
|
|

K - -ft/. 2a(e ,n,m) £ lafi®.n"._ml)
n

3
-
-

xV(*,n,m;€",n",m")[0O(<',n",m")-0(e ,n,m)

(6.41)

where

(6-42)
v(t,n,m’,c’,n’m) 1is the equilibrium transition rate with the energies

substituted for the k"s. We introduce the ansatz

AnS  _yns e
n vn“ E'Tn (6.43)
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Momentum relaxation rates for piezoelec-
tric scattering in a 1-D.E.G. at moder-
ately low temperatures. T=40K cross-
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Momentum relaxation rates for deforma-
tion potential scattering in a 1-D.E.G.
at moderately low temperatures. T=40K
cross-section= (10nm,12nm).

where again®"f,> is taken to be independent of the electron energy for a

particular value of the chemical potential, but dependent on the sub-band

number, we find that

- i - *.
Ko D2l @ Xenni)fO(0[1-fO(*-A(Q))]
L 1
X - — Da(«-A(Q) ,n,m)
2% ft

(6-44)

where W(k,k?,Q,n,m ",n" ,m") is the expression arising from a Fermi Gold Rule
calculation. The only rapidly varying function is fQ(c)[I1-fq(e-4(Q))] and
we treat the rest of the integrand as constants evaluated at the Fermi

level. For the intermediate temperature range we make the assumption that
Vnm(@ )- Vnm(CF-0 Q) )- With this assumption, the only contribution to Tt
from intra-sub-band scattering comes from the scattering of electrons across

a sub-band. The expression (6.37) for the conductivity is then given by

*
E2 (6.45)
The alternative expression
(nHZIllldk
m (6.46)
reduces to
vV,. X 2krn-
a, £ — e
woom* n (6.47)
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where k F is the length of the Fermi line iIn each occupied sub-band. We

now proceed as in section 6.2.2 constructing the variational form (6.39) and
3o

writing down the variation equation oTrp = 0 - After some manipulation we

find that the coupled equations take the expected form

0A nm rp
Trp R | W(kF,kp,Q,r,p;n',m') ----- - dqdq
n"m*l 1 1-e“64 y
T nu
. nm rp kr
E T e
«413)
7j AW(kf .kr .Q.r.p;n'.m') — ~dqgzdqy - 1

@

With the aid of these equations we have calculated the relaxation times T
nm

for both the deformation and piezoelectric mechanisms for a range of low

temperatures, see Figures 6.5 and 6.6, in which W is multiplied by two to

allow for phonon emission.

6.2.7 Phonon Scattering at Very Low Temperatures in 1-DEG’s

We now consider the situation where the temperature is very low and
kjET<<2hV/k'p. In this case only low momentum phonon modes are excited and
scattering across the one-dimensional sub-bands or between sub-bands is
highly improbable. The most probable transitions are between k states in
the same sub-band on the same side of the sub-band (see Figure 6.4). We
drop the assumption that V(tp)~ V(cf-A(Q)), and we look at expressions
(6.44) and (6.45) in the case where only one sub-band is occupied. In this

case
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2w 1-e-80 rr [-V(t-A(Q)+V(0JI*  Z.%
x W(kr ,kfjQ, 1,1 ;1. I)d<JEdqy (6.49)

To make progress with the evaluation of <Slwe consider the requirements of
energy and momentum conservation. For scattering from a state k to a state

k ” by phonon absorption, energy conservation gives

mh2k 2 k"2
==+ AQ - -
2m 2nT
Hence
-2
Q - A@Q - —  (ktk"Hk"-k ) - — (k+tk")q
2m* 2m*

(6.50)

where we have made use of momentum conservation along the length of the
wire. For a transition between k states on the same side of the sub-band

k~k " ~kF and hence we find that

V. Q
gqx - - = Qcos'f*
vr (6.51)
where is the fermi velocity and hence we conclude

cosifi ~ Vt/Vr
Only phonons propagating on or close to this angle can scatter electrons

in the wire. We can now rewrite the expression for the conductivity as

BN v wE2d.f ™ g
o \ dgq dqy ——— In(0.Q,VL)--—-——- Q - T 2
pvt Deg om*

1



where

BTVIQ

In (8-Q.V, )
> 7 [1-e-~sq [» V-]
(6.53)

and we have inserted the expression for w(kF>kF",Q) used the results that

-1 and ¢(Qj~hv™Q. We convert to circular polar co-ordinates

a,,~0
Yy
in y space and use result (6.51)
reg o2
QdQsin2 »E*d_f m*  cos2iif2
d&In(™,Q,vVt) —-—- Q2 — ===
2n 8jt3 pVL 2tT  @n*)2

(6.54)

Finally we make the substitution x=hVLQ and perform the 6 integral to obtain

* X2 lox b x2cos2rsin2e m*T2 <rB2,.; g
* X
2t ) (OfiL)5 4*2 [1-e"*] [e '” (2m™)2  2c, pvL
(6.55)

When the alternative expression for the conductivity (6.1*7) and (6.55) are
combined in the variational form (6.39) and operated on by 3/0° they give
an expression for T which varies as B5 and hence the resistivity again obeys
a Bloch-Gruneisen T5 law. The angle V may only be defined for reasonable
densities. At low densities the assumption that only the transitions on the
same side of the sub-band are important breaks down and a more elaborate

theory would be needed.

Conclusions

We have seen that the elastic approximation breaks down for acoustic phonon
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mechanisms at low temperatures in both two-dimensional and one-dimensional
systems. At very low temperatures we have a resistivity which obeys a
Bloch-Gruneisen type T5 law. Energy and momentum conservation along with
inelasticity considerations in one-dimension predict that at very low
temperatures only three-dimensional phonons propagating on or close to an
angle of cosl(VL/VF) to the axis of the wire may interact strongly with the
electrons. This analysis assumes that vavohich is unlikely to be violated
in most experimental situations. The inelasticity also has the effect of
decoupling the sub-bands in two-dimensions at low temperatures and freezing
out any Quantum Size Effects. In one—dimensional systems the singularity in
the density of states means that total decoupling of the Boltzmann equations
is not possible when the Fermi energy is aligned at a sub-band origin. At
any other position the decoupling concept is accurate provided a

sufficiently low temperature is chosen.
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CHAPTER T

POLAR OPTIC PHONON SCATTERING IN QUASI ONE-DIMENSIONAL WELLS

We saw in Chapter 3 that we were able to define a characteristic relaxation
time for both elastic and quasi-elastic mechanisms. In both cases this has
a simple interpretation as the time which enters into the conductivity
expression

Ne2T

°“U) = sub-bahds -~

In this section we look at a scattering mechanism which changes the electron
energy by a large amount when compared to a typical Fermi Energy: polar
optic phonon scattering. This scattering mechanism is strongly inelastic
and in GaAs, for example, an electron will change its energy state by 35meV
(Fletcher and Butcher (1972)). The Boltzmann equation has been used to
treat optical phonon scattering in bulk materials (Rode (1970), Fletcher and
Butcher (1972)) and in inversion layers (Vinter (198L)). All of these
authors use an iterative approach although Sondheimer and Howarth (1953)
have obtained approximate solutions in three-dimensions using a variational
approach. The aim of this chapter is to discover an effective relaxation
time for one-dimensional systems. We adopt the iterative approach, because
this generates the exact electron distribution function whereas the
variational method generates a good estimate for the Boltzmann conductivity
but not necessarily a good value for fx . It is only in the limit of low
temperatures (where the optical phonon scattering mechanism is unimportant)

that we expect the two approaches to give the same relaxation time.

Polar-optic phonon scattering has been considered in one-dimensior.al wires

using a relaxation time formalism (Ridley (1983)). This approach was
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expected to give a good First estimate of the importance of the mechanism.
However it suggested that for some well sizes and electron energies the
momentum relaxation time may be negative and as the conductivity is usually
related to this time we would expect the system to have some unusual
properties! We show that the effects of the electron statistics (ignored in
Ridley"s model) are important and we calculate an effective relaxation time
which is positive. In section 7*1 we present the arguments giving rise to
the negative relaxation time and introduce the effect of the electron
statistics in a simple way. In 7.2 we calculate the perturbed part of the
distribution function and derive an effective relaxation time relevant to

transport measurments.

71 Polar Optic Phonon Scattering and the Approach to Equilibrium

To explain the negative time we consider an electron lying low down in a
one-dimensional sub-band with an energy less than that of a polar optic
phonon, see Figure 7-1* Then a L.O. phonon cannot be emitted. A phonon
absorption process can take the electron to one of two positions iIn the sub-
band marked 1 and 2. Now the polar optic phonon transition rate

has a 1/Q dependence. Hence, scattering to position 1 is therefore more
probable than scattering to position 2, indicating that the electron
momentum will be increased on average so that the momentum relaxation time

is negative.

To consider this problem further, we use the Boltzmann equation and we look
at the behaviour of the electrons in a one-dimensional wire starting with a
particular momentum. Throughout we consider the phonons to be monoenergetic
with energy-ttuo and we consider the sub-bands to be separated by many
optical phonon energies. In this regime we may confine our attention to the

lowest sub-band permitting a simple discussion of Ridley"s result.
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Vhen the electron energy is greater than ttuo, the emission process is
allowed and there are another two states associated with this as shown

in Figure 7.1.

We consider a homogeneous system which is in thermodynamic equilibrium. The
occupation of the states is described by the Fermi-Dirac distribution

function

exp(0(c-y)) + 1
-1

where” ' is the chemical potential and e 1is the energy of the electron.

At time t=0 we inject a small packet of electrons with momentum k close to
kO. The system will eventually redistribute this additional momentum so
that thermal equilibrium is again reached with the new distribution

function,

exp(/s(i-*)) + I~fo'U)- Sep dT* 7.2)

w here+Sc™ is the new value of the chemical potential corresponding to

the new electron density

f (c)dk
-3
In the absence of applied fields
at k. at (k.v)
at at
coll (7.4
frk’.0) frk.t)

- \dk” V(k.-k?)

(7.5
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In this equation

V(k.k™) - fOCo[I-fO(e™)IP(k-k™) (7 6)
where P(k,k“) is the intra-band transition rate and V(k,k") 1is the
equilibrium transition rate (see Chapter 5).

The average momentum of the system is

_ \f(k,t)kdk

k() - l— -

1 fdk (7.7)
In the present case
df.iey.)

f(k,0) S(T —7-- + »riotick-k,,)

1 de (7.8)
where \ 1is the fractional change in electron density due to the injection

of the electrons.

even function of k. Hence

We substitute (7.8) into (7.7) and remember that fO is an

k - Ak
() (7.9)
Our main interest lies in the momentum relaxation rate at time t=0. Now
using (7.8), (7-7) and (7.5) we see that
dk(t) 1 (QURN p3fx k,0)
dt *"g J at
t-0 '
§ dk"V(k-k*)[B(k")-B(K)J (7.10)
where
S<, df (E")
Ai(k”-k0) + tt
B(k™)
(7.11)
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Hence

fdk(t)' ¢ dkV(k0.k) -k "
Ldt (0 l f,<«MI-f0(c)] v (7.12)

Since the terms involving SEp cancel out. Hence we may write

dk(@) , ,

dt 7 T TAS (7.13)

where

I-f,(tCk))  Fl-k 1
1A°n dkP(k k) | J
1-FO(* (k0)) kc (7.14)

This quantity may be negative.

For non-degenerate statistics fO« 1 and expression (7.1h) is identical to
the conventional formula for the momentum relaxation time (Ridley (1982)).
However the initial relaxation rate doee not determine the conductivity

of the system to VW“Ch we now turn attention.

7.2 Steady State Transport
In the absence of screening the polar optic phonon gives rise to a

potential given by (Butcher (1986))

nfe 1 1 * Y ~ *a _jO*
U@ - -i Y a*e -10*R
AL S Q0 0 q
(7.15)
Where «« and are the high and low frequency relative dielectric

constants, whilst a™ and a® are phonon creation and annhialation operators
respectively (as in Chapter 5). We work uith the hypothetical model in

which there is only one sub-band uhose wavefunction is given by
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~ L ~c){(y)eikz
(7.16)

where

(7.17)

We consider the matrix element (taking the annhialation operator first)

M.nn = < t(x)c(y)k"]-e U ,nn(R)|kc(y)C(x)>

Vo.
-t~ ri i
1e G(a.)G(a )
2Vce K- K
(7.18)
where
N -m
n“o/kBr_i and Q2 ~ ((k-k*) 2 + g~ + qjr2}
(7-1&)
Squaring and integrating over q and g we find
ez 11 62(@)62(ay) 1  darday
Tot 2to | *- KO . )lk-k'|2qi2+q 2 L 4w?2
(7.20)

The matrix element for the creation operator takes a similar form except
that N is replaced by N+l. The g” integration can be performed
analytically (see appendix 3) and hence the scattering probability, due to

absorption/emission is found to be
—+0»

abs em 2m(I-exp(-ba 2r
Pe,,(k.k") - F ¢ P(=b2)) G (g )dq
ijm
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FIG 7.2 (a)

The relaxation time approximation (smoother
curve) and the iterated effective momen-
tum relaxation time (saw tooth). Illus-
trating the negative nature of the former
at low electronic energies.

where

abs

era .

Fooo— me*<t>— fi .11 «(e@o-ek® )Tiv0)
1 X- K.J

a - A* .b ((k-k*)2 + gl A
abs

The expression for P was evaluated numerically and was substituted into

equation (T.1U) to give the relaxation time approximation (see Figure 7.2).

7.2.1 The Iterative Solution of the Steady State Boltzmann Equation

In the steady state, the linearised one-dimensional Boltzmann equation reads
-e g at

3k [ ata
coll (7.22)
and the right hand side is given by (7.5) and (7.6). These equations can be

rearranged to give
<«
z(k?,k) +if 3k
.. -
Y(k®.,K (7.23)

where

z(k7,K) = ALFL (K y[1-FO (k)P (K", k) +Fo (KO F, (kP (K, k*)] — dk*
2n

and

vk MO - A [U -fOok>]pk -k *)+FO(k")P(k\k)] - dk*
2n

(7.24)
where P(k,k?) is given by (7-21). Equation (7.23) can be iterated until

convergence to obtain an accurate value of f,(k). With this method the

electron statistics are treated exactly.

The terms Involving P(k”,K) describe the scattering of electrons into state
k whereas P(k,k") are the outscattering terms. To evaluate the integrals in
(7.2h) it is useful to keep this distinction in mind. For example, the first

term in Z(k”,k) is an inscattering process. We can go from klab to k by the
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emission of a polar optic phonon, hence

£ & (K)-F0(IP* (k' k) -M(«Tiu.0) Nm(K)
JzZFF

where
L1 / m*

M(*,15«0) - Ff. *«,, >[1-FO(€)]----=
¢ ) « = ©1 2ir "ﬁ W 2(«+|hj )
(7.25)

and

N*"(k) - W
lab 2ab

k oK

=)
lab

function removed and klab and k2ab are given by the two roots of
lizk*=2 ™2k2
—————— - tiw + --——-
2m* 2m* (7'26)

We can make a transition from klemto k by phonon absorption if e>ﬁwb

and we find

£, (KD[1-FO)IP*b (k™ .K) — dk* - M(i .=*<>) N,b(K) ©(i-Tiw,,)
2*

(7.27)

The other terms in (7-2U) can be treated in the same way. We find that most
of the terms on the right hand side of (7.2L) involve f, (etfilo) and
T, (E-41iu0) and we see that each part of the distribution function is coupled
to the next. Using numerically determined values for P(k*,k) we iterated
this equation to find f,(k). We found that convergence was usually reached
after about 10 iterations. To compare the results with those of the
previous section for the initial momentum relaxation time we follow Fletcher
and Butcher (1972) and introduce an effective relaxation time "'eff defined
by

*f, 00 -e af,,00

t . FFEW)) 8k (7.28)
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We have plotted”~eff as a function of energy for a range of chemical
potentials at room temperature (300k) (see Figure 7.2). The discontinuities
at integral numbers of fiu0 are well understood. The discontinuity at esIf‘o
is due to the onset of the emission process. The other discontinuities are
due to the coupling of the distribution function at c to the distribution
function at ettdic0, and £-fw0 by the inelasticity of the process.
Nevertheless, in the high temperature and large electronic energy regime the
iterative procedure duplicates the momentum relaxation time given in
equation (7.1k). It is interesting to note that the relaxation time
equation (7.1k) is non-zero as k-)0, even though we may expect an equal
amount of forward and backward scattering at this point (Ridley (1985)). On
evaluating the expression (7.lk) in the limit k-*O we find

(a-focek™)) m*

2W(k-»k (ib)

o (A-fo(t(ko)))  * omb (7.29)

which 1is positive and non-zero. So we expect the relaxation time (7.1k) to
be negative over some energy range but positive at the origin. The details
of the change from positive T to negative near the origin are not shown in
the Figures simply because of the large amount of computer time required.
The value of calculated from (7.29) will be small on the scale used in the

graphs and hence we find the curve approximately goes through the origin.

7-3 Discussion

In section 7-2 we gave an interpretation of the relaxation time formula for
one-dimensional systems in the presence of polar mode scattering. It is
strictly valid when the electrons obey Boltzmann statistics and it describes
the initial behaviour of the average wavenumber k(t) following the

injection of a small number of electrons with wavenumber kD. The negative
values which arise at low energies mean that initially k(t) increases above

kQ. Ultimately, however, k(t) must reach a peak and then decay to zero
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because the electrons eventually achieve a new equilibrium distribution
function with the chemical potential shifted to be consistent with the
number of electrons after injection. Both before injection and a long time
after injection the mean wavenumber vanishes because equilibrium
distribution functions depend only on the electron energy which iIs an even

function of k.

It would be possible to calculate k(t) by numerical solution of equation
(7-5) subject to the boundary condition (7.8). However, the general
features of the behaviour of k(t) are clear from the physical arguments
given here and detailed calculations are premature in the absence of time

resolved experimental data.
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CHAPTER 8

CONCLUSION AND DISCUSSION

Our aim in the work described in this thesis has been to study the effects
of a range of scattering mechanisms on the conductivity of two-dimensional
and one-dimensional electron gases in the Boltzmann regime. We have
extended earlier work in the field by emphasising the effects of inter-sub-
band coupling and electron statistics. In Chapter 3 we saw that it was
necessary to define a characteristic scattering time for each sub-band that
is occupied by electrons. Some authors have used only one relaxation time
(Johnson (198U), Ridley (1982)). However, we have seen (by using the
equations of Siggia and Kwok for two-dimensional systems and by developing
our own for one-dimension) that the single relaxation time approximation is
only correct in the extreme quantum limit when only one sub-band is
occupied. We have shown in Chapter 6 that the Siggia and Kwok equations
form a useful framework for quasi-elastic mechanisms at temperatures when
the thermal energy kBT is greater than the characteristic change in electron
energy. At lower temperatures (about 100 K for typical well dimensions) we
modified these equations to take account of the electron statistics because
some states are full and not all transitions are allowed. The relaxation
times derived in this way show why the quantum size effects predicted by
Siggia and Kwok are frozen out for inelastic scattering mechanisms at very
low temperatures. The sub-band decoupling effect associated with this is
particularly apparent in the deformation potential curves in two dimensions.
The relaxation times for piezoelectric scattering do not show any drastic
change in shape as the temperature is lowered because there is already some
decoupling due to the Q dependence of the scattering potential. It is also
Interesting to note that the singular one-dimensional density of states has
sn effect on the sub-band coupling even at very low temperatures. However,

we would expect thi6 to be removed by the lifetime broadening of the sub-
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band states, as we discuss in the next section.

The aim of this chapter is to discuss how the theory we have developed is
deficient and to suggest possible methods of improvement. In 8.1 we look at the
Boltzmann equation and consider the effect of the uncertainty principle on

the transport times. In 8.2 we consider how realistic potential wells may
affect the relaxation times which were derived from our simple sinusoidal
wavefunctions. In 8.3 we discuss the problem of screening the various
interactions with a dielectric function relevant to 2-DEG"s. In 8.U we
reconsider alloy scattering theory and look at a first principles

calculation for the scattering strength s(o0).

8.1 Lifetime Broadening

FIG 8.1

The"ideal"and lifetime broadened density
of states. to the true conductivity. Sernelius and Bergrenn (1985) suggest that the

In this section we ask how accurately does the Boltzmann conductivity relate

Boltzmann equation is inadequate in that it fails to duplicate experimental
results. Cantrell and Butcher (985) explain this in terms of the finite
lifetime of the electron states. We give a simple explanation of their
argument in terms of the Boltzmann equation and the Heisenberg uncertainty

principle. To be definite we concentrate on the two-dimensional case.

The Boltzmann equation treats the time evolution of the distribution
function f(k,n,r* t) for a set of extended states. The density of states
calculated from these is step-like and gives rise to the quantum size
effects. These effects have been observed by some authors, Stormer et al
(1982), and not by others Bergrenn et al (1985). This is because the
finite scattering limited lifetime of the electron smooths out the sharp
staircase density of states by introducing an uncertainty in the electron
energy, the form of this is shown schematically in Figure 8.1. Inter-sub-

band scattering will now be switched on more slowly when the electron energy
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is raised and the abrupt quantum size effects will be smoothed out to some
extent. Stormer (1982) observed this smoothing and he was able to attribute
it to an energy uncertainty of <fi/T where T was a characteristic lifetime of
the carriers. To explain this with the Boltzmann equation we make the
assumption that it is only the modification to the density of states which

is important and scattering probabilities can still be evaluated accurately

with unperturbed plane waves.

In the absence of scattering we can write the density of states in two-

dimensions as
m*

D2D(0 -7 - »(«-«.)

(8.1)

(8.2)
In the presence of scatterers the i functions are broadened out to produce
an area preserving line shape which is usually approximated by a Lorentzian,

so that the new density of states is given by

6.3
where is related through the uncertainty principle to an energy or order

scattering rate for sub-band n. The integral in (8.3) can be performed

to give
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For low values of rn when t-e >>r the expression reduces to the
expression given by (8.2). We now modify the Siggia and Kwok equations by
replacing the density of states term which arises in the summations over k
states by the new hroadened density of states. With this method we can
allow the steps to switch on more slowly altering the relaxation times,
hence the Siggia and Kwok equations become

m
P(k,n;k",m)D (Qd<d6
scat ITT

m
— ¢0s0 P(k,n;k'm) p (i)dtde
k scat »
(8.5)
For delta function scatterers the second integral reduces to zero and tne

relaxation times decouple to leave

(8.6)
For delta function scatterers P(k,n -k' ,m) is k independent and we have
written this as P(n,m). In this case the momentum relaxation rate is
identically equal to 2 rm/fi and hence we have

(8.7)
which may be solved iteratively.

The argument presented here is simple, Cantrell and Butcher (1985) show in
rigorous approach that for delta function scatterersT n=*fi2m.
Unfortunately their method is unable to treat realistic scattering
mechanisms. The correspondence between ¢s8.7) and their equations indicates



that equation (8.5) may be d best first guess for a solution to the

transport problem with level broadening for realistic mechanisms.

The density of the scatterers reduces as the temperature is lowered and so
will the level broadening. So, at very low temperatures in pure systems the
QSE should be observable and due to static impurity scattering (see Stormer
et al (1982)). Sernelius failed to see these features because their sub-
band energies were very close together, due to their large well width.

Their systems were severely disordered with the reciprocal of its mean free
path (ie the uncertainty in k)~£ﬁ Consequently both level broadening and

thermal smoothing could be held responsible for removing the quantum size

effects here.

At present an exact solution for the transport problem including lifetime
broadening and realistic scattering mechanisms is intractable and the
Boltzmann approach adopted here should serve as a useful tool in relatively
pure systems. However, even these results are in need of some modification

because they will be screened by the electrons in the 2-DEG.

8.2 Screening in 2-DEG-s
The lack of three-dimensional translational invariance, and the resulting
sub-band structure, complicate the screening of impurities in 2-DEG"s and
1-DEG"s. We have omitted this screening effect from our calculations.
Screening in 2-DEG’s is considered by Ando et al (1982) who examined a
strictly two-dimensional system in the Thomas-Fermi approximation. They
treat the charge 6heet as having infinitesmal thickness and write the
induced charge in the form

P () - -e[N.(")-NT(O)IT(2)

Ind (8.8)
Here: Ns(CU) is the areal electron density due to the application of a

potential 0=0(r,0) the value of the electrostatic potential at the 2-DEG

88



layer. The screened potential O must satisfy Poisson®s equation

-p
7.(k2™)
wherep- Pex€+P1nd , With Pex{ denoting the external charge due to the
impurities. In the Thomas-Fermi approximation we consider the potential ¢ to

change the energy levels in the quantum well by an amount -e0O and the
separation of the Fermi energy Ep from the bottom of the conduction band by
eF . The potential is assumed to be weak and we linearise the expression

for Pin(g to give

_ dNs
AindCr) - -e0(r) — - 1(2)
dp
_ dN,
- -e2jin — S @
dtF
- . - (8.10)
Poisson®s equation then becomes (Ando (1982))
v-Gs) - 2kg,?2(r)5(z) - -ptA, (8.11)
where
K- K.c + kin.
with
-e2 dN.
d. =m (8.12)
d“F

To solve (8.10) Ando used a Bessel function expansion for the potential

0(£.Z) -\ dAg(z)10(q
(8.13)

The value of the coefficient Aq(0) is given by

ze eq’

Aa (0) - -—
. (8.14)
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For large r the average potential falls off as r3
ze(l+q.zo)
-~
k g,2r3 (8.15)

which is not so strongly screened as the Yukawa potential found for screened

impurities in three-dimensional systems.

Unfortunately, this approach is only useful for treating the single sub-band
case. The most interesting features which arise in quantum well transport
are due to the switching on of new states when a new sub-band becomes
occupied (Ogrin et al (1966)). Sernelius et al (1985) address this problem
using perturbation theory. They consider a GaAs FET and equate the induced
charge with an expression derived from first order perturbation theory to
obtain

2y fo Jj-n) [1-Fjk= ,m]

<ind > «
’k’ £nUs)-Vkl) njvVik ,m>Tn.kYm,k’€ ) + c—<<

n
m,
(8.16)
where W is the impurity potential and c.c. stands for the complex conjugate.

ITf we Fourier expand the induced charge density and the perturbing potential

V., we find that

ind<R> “ V*IAMA>Ind(E,qjexp(iqtz+ig.r)

asg» (8.17)
PIBA(Q> ™ n,(n,n>;jj)<n|exp(iqtz) |m>
nm
X <m]exp(ipdz) IrVjrip, ,qQ)
P, (8.18)

where L2 is the macroscopic width of the system in the z-direction. The
quantity <n]exp(ipzz)) |m> is the equivalent to Ridley"s (1982) Gnm(pz) for

an arbitrary confining potential and
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n (n.m.q) __21 0 sn>-Fo (Jt+q.m)
— A k ‘a. (Ne«»(k+q) (.19

Poisson®s equation again relates the induced potential to the induced

charge, hence

v “iani
Ki . (8.20)
giving
mQ2MindQ) - ——e——\//~no(n,m;q)<n|exp(—iqtz) Jm>
kt >

X/_E“/ <mlexp(iplz) n>Vi(p Q)

" P, (8.21)
for the Fourier transform of Q™n(G(5”- To make our argument self-consistent

we must include this induced potential as part of the perturbation. Hence

following Sernelius, we have

Vi(QQ = VO@Q ¢ v(ONJlo(.ir.;g)<n]exp(-iqzz)|m>

mlexp( ipzz) |n> Vi(p2 Q)

(8.22)

The true impurity potential is made up of the potential from the bare

impurity plus a contribution to the potential from the screening electrons

which move iIn response to the screened impurity potential. In equation
(8.22)
.2
VO -
kt0Q 2 (8.23)

The inversion of the three-dimensional equivalent of (8.22) results in the

Lindhard dielectric function. The inversion of (8.22) however results in a
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matrix equation

Vq%(q )- 1_1@ Vo @@

where
i v«
«m'q.'P.. " sqz,pz V(D) N I{— n (n,m;a)
x <nlexp(-qzz))mxmlexp(iplz) |n> (8.24)

In principle we could have included the screening in our calculations but
the computational effort involved is excessive, Sernelius includes the
influence of the five lowest sub-bands to calculate the screening of the
impurity potential before calculating the conductivity of the lowest sub-
band. In the absence of refined experimental data, these considerations
appear to be premature. The extension of Sernelius’ screening theory to
one-dimensional systems is straightforward although we consider the

implementation to involve substantial computational effort. We find that
Aind/AX My »g*) “ ey no(n.n® .m.in* ;qt)<n |exp( -igxx) )n*>

n.n*
m.m*

X <mlexp(-igyy)[m ">

<m- [exp(iPix) [mxn- [exp(ipyy) [n> Vi(px,py,Pi)

i E
Pz>pP>
leading to
1 y . ,

“(q.) 9z -Px ;qy -Py *'<Q_)A— I no(n,n m,m ,q1)
n'n'
m,m*

X <n|exp(-igxx) [n'Xm|exp(-iqyy) m’>

X <n’lexp(ipxx) [nxm'|exp(ipyy) |m> (8.25)
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We shall return to the screening problem in our discusssion of alloy

scattering, section 8.U.

8.3 Realistic Potential Wells

The sinusoidal wavefunctions used throughout our calculations are extremely
useful in simplifying quantum well calculations, this is why we use them.
Of course, in doing so we ignore complicated many body effects (Ando
(1982)). The quantum well is usually embedded in a material with a
different dielectric constant and we really should include the coulomb
interaction with iImage charges. |If we consider the presence of only one
material interface and two electrons we obtain an expression for the
electrostatic potential given by the standard result (Jackson (1962)).

e2 v
V(r-r*;z,z") - —— [(r-r/ 2 + (z-27)2] ™

(8.26)
[(r-r')2 + (z*z")2)

Withkfﬁgkéﬁ;h;nfgzg}faces arranged parallel to one another the problem
becomes more complicated with multiple image charges and the evaluation of
some kind of Madelung sum is necessary before the potential is obtained.

The potential in the well must also be solved for self-consistently, taking
full account of the quantum nature of the well and the Poisson equation. In
performing these calculations it is usual to work in the Hartree
approximation and to use the one electron Schroedinger equation and a self-
consistent potential, which is usually expressed as the sum of the potential
due to electrons, the donors and the image potentials. Self-consistent
solutions have been attempted, Vinter (19827 Stern (1972). These results
compare well with Ando (1982) and with the results of variational
calculations (Fang and Howard (1966)), indicating that the use of elementary

wavefunctions may be Justified.
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Here we have adopted the philosophy that, while the effects predicted from
our over-simplified wavefunctions will not be correct in detail, they serve
as a useful basis for preliminary calculations and give a good indication of
what can be expected in realisable experimental situations. The precise
details of the wavefunctions will change the magnitudes of the relaxation
times and quantum size effects but we expect the shape of the curves to

remain substantially unchanged.

8.4 Alloy Scattering

In 4.4 we considered alloy scattering in GaAs/AIXGa XAs quantum wells and

1
we noted that there was still controversy in the literature over the nature
of the scattering potential. We suggested that the conduction band offset
was responsible for the scattering (fortunately this is known for

GaAs/AlxGal_xAs) and we went on to show that this should be expressible in

terms of suitably screened atomic pseudopotentials, in this section we probe

this statement further.

The basic theory of pseudopotentials is presented in appendix 4, and model
potentials are plotted in Figures 8.2(a),(b) and (c). In transport theory
we usually treat the electron wavefunctions as being plane waves and
consequently when we are looking at the scattering of electrons by lattice
imperfections it is natural to think of the pseudopotential as the element
responsible for the scattering (Harrison (1965)). As pseudopotentials are
available for all the elements (Heine and Abarenkov (1964), Bachelot, Hamann
and Schluter (1982)), whilst data for the conduction band offsets are
available only in special cases, it is natural to attempt a pseudopotential
approach. This would allow us to evaluate the barrier heights for a large
range of quantum wells and it would allow us to calculate the alloy

scattering in each case. In this section we outline an attempt to do this.
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Alloy scattering has been examined in metals with the pseudopotential method
(Harrison (1965)). He obtained a relaxation time suitable for a three-

dimensional system given by

1 VKrm*
[<k+Q|W]k>]2(I-cos0)sinede

2wWTi3

(8.27)

where W is the difference between the pseudopotentials of the individual
atoms involved. He treated a range of binary alloys, but the agreement of
experiment was not very good, the experimental resistivity sometimes
differing by as much as five times from the theoretical values. We should
note at this point that no data was presented for the Gallium/Aluminium

alloy.

In Harrison"s case he treats impurities which are not always isoelectronic
(for example Zn/Al) and the pseudopotential difference contains a large
coulombic tail which was screened with the Lindhard metallic dielectric
function. In our case the impurities are isoelectronic, consequently any
pseudopotential difference is due to the difference between the small scale
atomic cores. The other major difference is in the size of the Fermi
wavevectors. In Harrison"s case these are large and the Fourier transform
which arises i1n (8.27) cannot be approximated to a potential strength. The
essence of our calculation is simple: we are concerned with the scattering
strength s(o) (see chapter k). Hence we only have to take the
pseudopotential differences, integrate them over space and divide them by
g=0 component of a suitable dielectric screening function. This has been

done for Ga/Al. For the Animalu-Heine (1965) pseudopotentials we find that

5(0) Imd*R 1.41%10"286Vin3 (8.28)
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and for the Hamann pseudopotentials we find that

s(0) - 2.78x1072%Vm3 (8.29)

When screened s(0) should be comparable with conduction band offset if the
theory is correct. If we take Okumura®s (1985) model and assume linear

interpolation we find

AEC(GaAs/AlAs) - 831meV (8.30)

The volume of the scattering potential must be taken as the size of the
elemental GaAs unit, which is
Vc - 4.52x10"2Bm3

Hence the scattering strength in this model is

s(o) - AEcvc - 3.75x10*29eVm3

which lies above the values of s(0) calculated from the unscreened
pseudopotential approach. Fedders (198U) has carried out an independent
tight-binding calculation for the effect of the alloy scattering potential.
By correlating his result with our approach we find that the potential

strength used in his calculation is
s(0) - 1.62x10"2®@eVmi

However, the tight-binding method is an involved calculation while the
conduction band offset method only relies on experimental C-V profiling.
The pseudopotential approach has none of these drawbacks, but to assess its

usefulness we must consider the screening problem.

It seems that without screening we are close to an acceptable answer,
(recent experimental work by Saxena (1985) has suggested a value of

-29 - -
3-52x10 eVm for the scattering strength). However, the screening of the

pseudopotential is non-trivial. The first step is to associate the
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screening in the pseudopotential model with the screening encountered in the
true semiconductor. The next step is to consider the scale of the
scattering pseudopotential. This is plotted in Figure 8.2(c) and is sharply
confined to the unit cell and this will be screened by the valence band
electrons which must be considered to be distributed inhomogeneously on this
length scale. The real problem is then to evaluate the screened potential
and to consider how the conduction electrons are scattered off this.
Baldereschi and Hopfield (1970) encountered a similar problem when they
considered the binding of electrons to isoelectronic impurities, producing
shallow states within the band-gap. Experimental data suggests that an
electron can be bound to such an impurity only if its electronegativity is
larger than that of the host atom which it replaces. They consider the
unscreened binding potential to be due to the difference of the
pseudopotential and they screen this with a dielectric function which was
adapted from Penn®s (962) empirical ideas. Penn"s static dielectric
function is of the form

«(0)
(8.31)

where up is the plasma frequency due to a uniform electron gas with a
density given by the average valence electron density. Eg was fitted by
setting (o) equal to its observed value. Penn"s full expression then gave
the Q dependence of e(Q). Baldereschi (1972) proposed a model for the
sharp impurity potential. The average electron density in (8.31) has very
little meaning on the scale of the pseudopotential differences under
consideration here. Baldereschi suggests that it is more reasonable to work
in terms of a local average electron density, whilst still retaining the
value of Eg he modified up. With this adjustment he was able to predict

with some degree of accuracy whether the impurity would bind an electron.



Our problem is similar, the matrix element arising in our scattering rates
is the Q=0 component of the 1=0 pseudopotential. Whereas the full screened
potential in the inhomogeneous medium involves the use of a dielectric
matrix Baldereschi (1979, 1978), Adler (1962) in which all Q components must
be taken into account. In three-dimensions the screened potential i1(Q+G) is
related to the unscreened potential 0o (Q+G) by the dielectric matrix,

through the relation

G" (8.32)

where Q is inside the Brillouin zone and G and G” are reciprocal lattice
vectors. Before we proceed we consider the meaning of e-1 and examine some

of its properties.

If we let f(R-H" ,R") denote the screened potential at R produced by a delta-
function bare potential at RI. Then with R-RJ_ fixed, F(R-R",R") is periodic

in R]. Hence we may write

G" (8.33)

and F¢, (R-R1) may be Fourier expanded to give

(8-38)

we substitute (8.3H) into (8.33) to obtain

we consider the screened potential produced by a plane-wave of the form

eiggo=).j dR* i (R-R7)e1<32." ="
(8.36)
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Now F(R-R",R™) describes the response due to a delta-function, 55 the system

is linear we find.

/(R) -~ I dR’FR-R*,R >)e1tQ»S. )R =

which from (8.34) gives 8.37)

oR) - JdR'F(R-R' R )el2*®. » R'

- N

d
° .(Q))e*2=£  dR"ei(G"-a"+Q*G).R"

- A FdQ" FG-(0)els."-s. 8(Q" -Q-G-G™)

G" )
- ‘ V((J+G+G"\e1 <0+g+G”> r

- t11(Q+G,Q+G")el R

where we have made the identification
(8.38)

«?1(Q+G,Q+G™) - FAL_fi(2+G™) (8.39)

We are concerned with the volume integral of the potential which ¢4 5 first

approximation we say is a delta function situated at the Gallium site,

ie
dRF(R-R{R "> dQ* 5- (Q.)el(G>-2- R. ~ (Q)
. (8.40)
nn
where we have used (8.35). Hence
md3RF(R-R",R") -~ “fg .(0)e“E™- £7
I g
(8.41)
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From (8.39) with G"-G=G"
dRF(R-R*,R”) fG.(0)elg™ R’

(8.42)

where we have taken the Q-»0 limit.

Baldereschi (1979) presents values for |Q+G|c-1(Q+G,Q)/|Q]for

Q—»0. The G=0 element is the reciprocal of the macroscopic dielectric
constant and all the other elements are finite for G™O hence

c v U(Q+G.Q) is equal to the inverse macroscopic dielectric constant when
G=0 and zero for C/tO. The summation in (8.U2) is then equal to e0-1 and the
Q=0 component of the delta function potential is to be screened with the
large scale macroscopic dielectric constant even though the potential is such

a microscopic scattering centre. This result is contrary to that obtained

by Baldereschi using the local Penn method and has been confirmed by Tosatti
(198b) leaving us with a dilemma. if ue are to screen the scattering

strength obtained we will decrease its value by a factor of about 13 (12*91
is the dielectric constant relevant to GaAs (Rode (1975)). Such a reduction
will give resistivities in GaAs/Al™Ga”"As quantum wells which are about two
orders of magnitude down on experimentally determined resistivities and band
offsets. Clearly there is a problem with this approach, and we must re-

examine the steps that have been taken.

The pseudopotential method has been used by Walter and Cohen (1971) to
determine the band structure in GaAs. The basic method involves inputting
the atomic positions and pseudopotentials. The charge density,
wavefunctions and eigenvalues in the system are then determined self-
consistently. We could envisage doing this for the AlXGald(As system in the
virtual crystal approximation (see Andreoni and Car (1980)). The difference

in pseudopotentials must then be responsible for the scattering.
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We must now ask whether it is viable to change our pseudopotential
difference by a factor of 10 and still have a sensible form for the
pseudopotentials of both of our elements. To examine this question we look
at the Animalu-Heine pseudopotentials. IT we were to change the value of A
for the two elements so that the resistivity matched experimental data we
would have to alter them so much that they would break out of the periodic
trend which is evident in these tables and this is clearly unsatisfactory.
At least for the Animalu potentials the values of A (see appendix 4 ) were
calculated at the Fermi energies of the elements and consequently it may be
inappropriate to apply them here. The Bachelot pseudopotentials however
were devised for maximum transferability and the authors claim that they can
be used to "accurately reproduce the results of all electron calculations
for the self-consistent electronic structure of atoms, molecules and
solids”. The accuracy of these calculations is impressive for some atoms,
for instance they reproduce the band energies of silicon with errors in the
range of 0.05eV (Bachelot et al). For the more exotic elements (for example
Nb and CsAu) the errors are in the range of 0.1-0.2eV (Bachelot et al)
although it is not clear in which part of the tandstructure. IT the GaAs
and AlAs band-structures both had an accuracy on the limit of this range
then a 0.4eV shift in the band-gap would still be half the amount necessary

to give the correct magnitude for the resistivity.

Our conclusion is that the attractiveness of atomic pseudopotentials for
alloy scattering calculations is illusory. It appears that they are not
known with sufficient accuracy in the core region (see also Andreoni and Car
(1980)) and the theory of inhomogeneous screening of tightly confined
potentials is not sufficiently well developed to yield reliable results for
a property as sensitive as 6(0). It is preferable to proceed semi-
empirically by using measured band offsets as has been done in Chapter 4

where the results are closer to what one would expect from resistivity
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measurements. Andreoni and Car (1980) also noticed a problem with the
screened Ga/Al pseudopotential difference. They note that the results of

several authors range over at least one order of magnitude; confirming

our beliefs.
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APPENDIX 1

EFFECTIVE MASS THEORY

The potential in a bulk semiconductor is strongly dependent on position but
is periodic. The wavefunctions satisfy the time-independent Schroedinger
equation and Bloch®"s Theorem is valid. The eigenvalues are a function of a
continuous variable k and a band index n. Once the bandstructure has been
calculated for a given material it is natural to ask how the system behaves
when impurities are present or when an external field is applied. Luttinger
and Kohn (1955) considered this problem in a rigorous fashion and put
effective mass theory which had been used for many years (Frohlich (1937))
on a firm footing. They proved that once the bandstructure of a pure
crystal was known it is a simple matter to calculate the response of the
electrons in the crystal to slowly varying potentials without referring to
the details of the unperturbed wavefunctions. We give an account of the
theory in simplified and less rigorous terms. Following the approach of
Smith et al (1967). In the absence of impurities or external potentials we

may write the eigenvalues for a periodic three-dimensional system as

ik.R
**n,k un, kG>*

where n is a band-index and k is a wavevector. The q1'<§8) are determined

from the Schroedinger equation.

1 ,k £n(@@n,& 2

where Hq is the unperturbed Hamiltonian for the semiconductor and c¢n(k) are
the energy eigenvalues giving the bandstructure. If the perturbation
applied to the crystal is small so that transitions between bands can be
neglected, then the motion of an electron in a band can be described in

terms of a wavepacket constructed from the basis states in that band. Hence
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rapid oscillations in R space. The usual effective mass equation describes
the envelope behaviour of the wavefunction. To develop this we suppose that
the coefficient a(k,t) is large only for k near k0, the wavevector marking
the bottom of the band. The periodic part of the Bloch function is usually

a relatively weak function of k. If k is near 50 then

n K(ﬂ) exp(ik—B)Uﬁ_k(R) - exp(ik*R)Un kO(R)

exp [i(k-k0)R] *, oo ®)

we can re-express the wavefunction as

V= FR.OV . ®
where

Fr.) =" a(k.t)exp [I(k-k0)-R]
It can be shown that

cn(—iE)* = *n,quB)Cn(Ko_iy)F(B't)

which allows us to rewrite the effective mass equation (6) in the form

le io-i2) * VR)] FQR,1t) m ﬁ
where F(R,t) is the envelope function. If we apply (9) to an arbitrary

potential and find that F(Rst)does not vary appreciably with distance then
we can take it that\?F is a small quantity and the assumption that a(k,t) is
large only near k 1is a valid one. The wavefunction for the system is then
described accurately by expression (8). So long as the function F(R,t) is a
slowly varying function of R the potential can vary rapidly and the

effective mass representation is still valid.

The effective mass equation allows us to leave out the details of the atomic
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potential and model the motion of an electron by a free particle of mass m*.
This quantity may vary with the direction of motion and in general an
effective mass tensor is needed, but in GaAs where the conduction band
minimum is spherical and parabolic only a scalar is needed, as is assumed

in this thesis.

Wavefunctions in a Quantum Well
Suppose that V(R) in equation (9) is a function of z only, taking the form
of a square well with V=0 inside and V=AEC outside. Then the effective

mass equation (9) has steady state solutions of the type

F(R.T) e—lEt/We iJs.£ cC@

where c(z) and the relation between E and k remains to be determined. The
equations for c(z) can be written immediately both inside and outside the
well. There are sinusoidal solutions inside which must be properly matched
to damped solutions outside the well. The quantitites which must be matched
up at the edges of the well are 9@ and (m*)-1 ~ Collins (1985)) and
this has been neglected by some authors, Marsh (198U). In the case of
interest to us m* changes from 0.067m inside to 0.075m outside the well.
This small change complicates the solution of the eigenvalue problem. We
have taken it into account in our calculations of the sub-band energies and
wavefunctions when k=0 (see Figure 4.3). When kjiO we have simplified the
problem by assuming that m* has the value m* appropriate to AlxGax XxAs
everywhere (Palmer (1982)). We write 31(z)f0r the wavefunction in sub-band
n and en for its minimum energy. With this approximation the energy in sub-

band n is
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APPENDIX 2

(.

I

let KE - ns, k * -
L
- (KE'-kI)]L/2

tq*" (k, *kE)]L/2

sin[qE-(kE"+kE)]L/2

[q1 -(KE "+kE)]L/2
sin[qE-(KE "-KE)]L/2

[QE - (KE "-KE)]L/2

sin[qE-(KE"-kE)JL/2

[q.-(KE"-KE) JV2

sIn[qE-(k, "*kE)]L/2

[q.-(KE"-KE)]L/2

sin[qE+(KE"-kt)]L/2

[q.,+OcE "-KE)]L/2

sin[qE+(k, "-kE)]L/2

[q,+<V-KE)J/2

mnz

sin —-—— dz 12

sin[qE+(KE"-KE)]L/2

[q1+(k, "-KE)]L/2

sin[gE+(KE +KE)]L/2"

[ql+(KE"+kE)]L/2

sin [qE+(KE "-kE)]L/2

[a,

2cos[(KE "-kE)L]

+(KE " -KE)]L/2

sin[qE-(kE "+kE)]L/2

[qt- (KE "+k,)]L/2

sin [qE+ (kE "+kE)]L/2

[al+ (k1 "+kE )] L/2

sin[ql-(KE"+kE)]L/2

[GE- (Kt "+KE)]L/2

sin[q,+(KE +k,)]L/2

[q.+(KE "+kE)]L/2
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APPENDIX 3

EVALUATION OF TOE TRANSITION RATE FOR POLAR OPTIC PHONON SCATTERING

In this appendix we evaluate the gx integral in equation (7.20). It is

easily shown that

g2(@x) =— sin e "AYX ax

(7.20) then takes the form

Ne* = I 1 T4 4 kK

—_- X
Lan™ 2e0 k. kQ I\a/l. \J

is given by

sin2(gxas2) G2(qy)

ax2fgx2- M) 2 %.2 +2]

b = I1k-k'l12 +qg 2
y
We can perform the gx integration

(eit,a-1) (e-iqa-1) dq

FAl

(1-e-iqga)dg

«Y - p]ZZM I’P-HTP*:I.
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By changing the variable of integration from g to -q° in the second
integration we see that both integrals are the same. We look at the second
integral in the upper half complex plane. The integrand has poles at g=0,
q= and g= zib. We complete the contour in the upper half complex plane
as eiQL- >0 as g-»i«w , satisfying Jordan’s Lemma. This contour A, takes

the form

The integral around the contour A

(l-eiga)
= 2ui Res

(H T J g=ib

_[:l'_—e_baill

4bJjP\m 2]2

We split the contour up into it"s constituent elements. Schematically



we look at the contribution from the poles at g=0,

The residue at the zero pole is

4b

* 2%
and the residue at g= é%—is equal to the residue at g= aEL_

16

Hence we find that the g integration remaining in (3) reduces to
1

—nkl—e'b3' in f?nj

2b3(b2+ p12)2 2b

-, 1%

sl
. [gij* v

G <9y >dtly

This integral has been evaluated numerically. The results have been checked

against an analytic time for large k-k* and found to be accurate.



APPENDIX U

THEORY OF PSEUDOPOTENTIALS

Introduction

Pseudopotentials were originally developed because experimental evidence
indicated that conduction band electrons in some metals only interacted
weakly with the ion cores. It was usually argued that the low resistivity
of metals was due to the periodic nature of the lattice, which allowed Bloch
6tates to exist. In some liquid metals however the resistivity is only
increased by 20-30% from the value in its crystalline counterpart (Harrison

(1965)) indicating a weak electron ion scattering coefficient.

With this knowledge it is natural to attempt a solution of the Schroedinger
equation in terms of a simple set of free electron eigenstates. Herring
(1958) gave an explanation of this based on orthogonalised plane waves. If

V (R) is the total self-consistent field seen by each electron then

HO, - (T+V(R))Oi - 1

where T is the Kkinetic energy, -n2k2/2m and EA is the total energy of the
i’th state. Now the core states which we label with « satisfy the same

equation

(T+V(R))O0.= e, O« 2

The conduction band states need to have a plane wave type character away
from the core and they must be orthogonal to the core states. Herring
expands the conduction band wavefunction in terms of a set of orthogonalised
plane waves. These are simply plane waves which have been made orthogonal

to all the core states, |«:
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where P is the projection operator

@
Expanding the conduction-band eigenstates in terms of a general linear

combination of OPWs

5

when this is substituted into the Schroedinger equation (1) we obtain

q q 6

If we take the terms involving P to the left hand side we have

+ W>k - Ek‘k

7

where W is the pseudopotential defined by

W

8

and is the pseudowavefunction

q 9
The true wavefunction is related to the pseudowavefunction by
- a-rxX 10

Equation (7) is an effective Shroedinger equation which has the same

eigenvalues as the true equation.

Atomic Pseudopotentials
It is usual torepresent W by a sum of pseudopotentials associated with the
ions in the solid. Animalu and Heine (@965) give a simple model potential

for an ion which is fitted to spectroscopic data. It has the expected
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coulombic tail at large distances and inside some critical radius Fc , the
potential was taken to be constant, removing the coulombic singularity of
the true ionic potential. The depth of the well inside the radius Rc was
dependent on the angular momentum quantum number , and it was also taken to

have an energy dependence. The potential takes the form,

V(R) - .MA Pw |, R<Re

. R>R, 11
4»€0R

where PL is the projection operator of the 1"th angular momentum component.

The radial Schroedinger equation takes the form

® r 2an 1
-2E x R) - O
drR2 R2M 2z/4%fc, R
12

The At were adjusted to fit known specroscopic values. More recently
Bachelot, Hamann and Schluter have derived a set of pseudopotentials which
are transferable between systems (Si molecules, Northrup E., Ihm J. and
Cohen M. L. (1981) and phonon frequencies in Ge, Yin M. T. and Cohen M. L.
(1980)). The Bachelot, Hamann and Schluter pseudopotentials have several
advantages over the Animalu potentials. They generate the true valence
wavefunction beyond some core radius and secondly inside some core radius
they duplicate the scattering property of the true potential. As we are

discussing electron scattering this is Just what is needed.

Scattering from an Impurity Atom

The time independent pseudo-Schroedinger equation may be written as

<T+V(R))* k ———————
" at 13
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IT V(R) is periodic then the eigenstates will be Bloch functions, but
because V(R) is weak these will approximate to plane waves to first order.

These must have eigenvalues given by

where m* is the effective mass of the electrons. We consider the scattering
by a single impurity atom, which changes the pseudopotential by 4V(R). To
look at the scattering probability between eigenstate 1jS™> 3L(1 we
use the time-dependent perturbation theory result.

2x

P(K,k+q) - - |<K|AV(R)[k+q>|26(«(k)-«(k+q))
ft
15

We are particularly interested in the scattering of electrons off
isoelectronic substitutional impurities in particular aluminium in the GaAs

crystal. To evaluate (15) with 1 dependent pseudopotentials we expand the

plane-wavefunctions in terms of spherical harmonics (Harrison (1965)),

e4f £ CI+Di""Jt (kR)PJcos0l)
1-0 16
where *1 is the angle between k and R. The matrix element for the Animalu-

Heine pseudopotentials is given by

4ir
<k+QIV _ I y  @GUDAP. (cosd) 32 k+q RN K]R)R20R
4» 2e2cosgRn
\ 4>rt g2 17
where 0 is now the angle between k and ki<j . The matrix element due to

the substitution of an aluminium ion onto a Gallium 6ite is given by
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Al Ca
m <kicllVAH * VAH \*>

Al
*Rm

Al'l
- —) (2U1)PV (cos&) J (1k+q]R)jIK|R)R2 JR

Ca

Ga
-A ~ N\ JJIlk+gR)JIIKk]IR)R2dR

Ga Al Ga Al
g(Rm +Rm ) qRa -R. )
sin

Vc g2

18

IT the arguments of the Eessel functions are small then as

@+ 1
p-»0

we find that only the 1=0 component contributes to the summation (18). This

type of sharply confined potential is sometimes termed an s-wave scatterer

(Sernelius et al (1985)). We find

Al Ga
R=
AIr Al Ga
«AH - R2dR - A, R2dR
\Y
Al 2 Ga 2
R_ - R
VC.

116



The value of MAH is Just equal to the volume integral of the difference
between the two 1=0 pseudopotentials. The values of AQ were taken from

Harrison"s book (Harrison (1965)).

The pseudopotentials due to Bachelot et al are expected to give better
results. The 1=0 pseudopotential components for Gallium and Aluminium are
plotted in Figure 8.2 with the difference shown in Figure 8.2c. These
graphs were obtained from a slightly modified version of a program supplied
by Dr B Holland and data from Bachelot"s paper. The results of the program
were checked against Bachelot®"s silicon data. The volume integral under the

difference curve was obtained numerically.
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