[MS-XUSBI]:

Xbox Universal Serial Bus Protocol (XUSB) Interface Extension

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation ("this documentation") for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
- **No Trade Secrets**. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting ipla@microsoft.com.
- **License Programs**. To see all of the protocols in scope under a specific license program and the associated patents, visit the <u>Patent Map</u>.
- **Trademarks**. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- **Fictitious Names**. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact <u>dochelp@microsoft.com</u>.

Preliminary Documentation. This particular Open Specifications document provides documentation for past and current releases and/or for the pre-release version of this technology. This document provides final documentation for past and current releases and preliminary documentation, as applicable and specifically noted in this document, for the pre-release version. Microsoft will release

final documentation in connection with the commercial release of the updated or new version of this technology. Because this documentation might change between the pre-release version and the final version of this technology, there are risks in relying on this preliminary documentation. To the extent that you incur additional development obligations or any other costs as a result of relying on this preliminary documentation, you do so at your own risk.

Revision Summary

	Date	Revision History	Revision Class	Comments
ſ	No revisions have been made to this document			

Table of Contents

1		oduction	
	1.1	Glossary	
	1.2	References	
	1.2.1		
	1.2.2		
	1.3	Overview	
	1.3.1		
	1.3.2	XUSB Adapter USB Interface General Specifications	0
	1.3.3		
	1.3.4	Polling Interval and Idle Rate 10	0
	1.4	Relationship to Other Protocols	
	1.5	Prerequisites/Preconditions	0
	1.6	Applicability Statement	
	1.7	Versioning and Capability Negotiation	
	1.8	Vendor-Extensible Fields	
	1.9	Standards Assignments	
_			
		sages12	2
	2.1	Transport	
	2.2	Message Syntax	
	2.2.1		2
	2.2.2		2
		2.2.1 Device Types and Subtypes	2
		.2.2.1.1 XUSB Device Subtypes Definitions	
		.2.2.1.2 Game Controller (0x01)	
		.2.2.1.3 Racing Wheel 14	
	2	.2.2.1.4 Arcade Stick/Pad 14	
	2	.2.2.1.5 Flight Stick	5
	2	.2.2.1.6 Dance Pad	
	2	.2.2.1.7 Guitar Standard/Alternate/Bass 10	
	2.2	.2.2 Device Enumeration	6
	2.2	.2.3 XUSB Device Interfaces and Endpoints	6
	2.2.3	XUSB Adapter USB High Level Interface 1	7
	2.2	.3.1 XUSB Adapter Interfaces and Endpoints	
	2.2.4	XUSB Descriptors	9
	2.2	.4.1 Standard Device Descriptor	
	2.2	.4.2 Standard Configuration Descriptor	
	2.2	.4.3 Standard Interface Descriptor	0
	2.2	.4.4 Standard Endpoint Report Descriptor	0
	2.2	.4.5 XUSB Interface Device Descriptor (Vendor Specific)	
	2.2	.4.6 Microsoft OS Descriptor	
	2.2.5		
	2.2.6		
	2.2.7		
	2.2	2.7.1 Standard Device Descriptor	
		7.2 Standard Configuration Descriptor	
		7.3 Standard Interface Descriptor24	
		7.4 Standard Endpoint Report Descriptor	
		7.5 XUSB Adapter Interface Descriptor (Vendor Specific)	
	2.2.8		
	_	1.8.1 XUSB Requests	
		28.2 Get_Report (Input)	
		1.8.3 Set_Report (Output)	
		1.8.4 Set_Control Request	
		1.8.5 Get_Device_ID (Input)	
	۷.۷	30.5 CCC_DCVICC_1D (111pac)	J

2.2.8.6 Set_Bind_Info (Output)	
2.2.8.7 GET_CAPABILITIES Request	
2.2.9.1 XUSB Adapter USB Requests	
2.2.9.2 Get_Report (Input)	
2.2.9.3 Set_Report (Output)	
2.2.9.4 Get_Device_ID (Input)	
2.2.9.5 Get_Bind_Info (Input)	. 35
3 Protocol Details	36
3.1 XUSB Interfaces Overview	
3.2 Game Controller Interface (Interface 0) Details	. 36
3.2.1 Abstract Data Model	. 36
3.2.1.1 Game Controller Interface Descriptors	. 38
3.2.1.1.1 Interface Descriptor	38
3.2.1.1.2 XUSB Interface Device Descriptor	
3.2.1.1.3 Endpoint Descriptor (IN 0x81)	. 39
3.2.1.1.4 Endpoint Descriptor (OUT 0x02)	
3.2.2 Timers	
3.2.3 Initialization	
3.2.4 Higher-Layer Triggered Events	40
3.2.5.1 Input Data Reports	40
3.2.5.1.1 Default Game Controller Input Report (Report ID 0x00)	
3.2.5.1.2 Device Status Input Reports	
3.2.5.1.3 LED State Report (Report ID 0x01)	42
3.2.5.1.4 Rumble Level Setting (Report ID 0x03)	
3.2.5.1.5 Battery Level & Type (Report ID 0x04)	43
3.2.5.1.6 Device Connection Report (Report ID 0x08)	
3.2.5.2 Output Data Reports	44
3.2.5.2.1 Game Pad Rumble Motor Control Report (Report ID 0x00)	
3.2.5.2.2 LED Control Request Report (Report ID 0x01)	
3.2.5.2.3 Master Rumble Level Control (Report ID 0x02)	
3.2.6 Timer Events	
3.3 Voice Communicator Interface (Interface 1) Details	
3.3.1 Abstract Data Model	
3.3.1.1 Voice Communicator Interface Descriptors	45
3.3.1.1.1 Interface Descriptor	
3.3.1.1.2 XUSB Interface Device Descriptor	
3.3.1.1.3 Endpoint Descriptor (IN 0x83)	
3.3.1.1.4 Endpoint Descriptor (IN 0x85)	
3.3.1.1.5 Endpoint Descriptor (OUT 0x04)	
3.3.1.1.6 Endpoint Descriptor (OUT 0x06)	
3.3.2 Timers	
3.3.3 Initialization	
3.3.4 Higher-Layer Triggered Events	40
3.3.5.1 Voice Interrupt IN Endpoint (0x83)	
3.3.5.2 Voice Interrupt IN Endpoint (0x05)	
3.3.5.2.1 Headset Status Report	
3.3.5.2.2 Microphone Status Report	
3.3.5.2.3 Playback Volume Setting Report	
3.3.5.2.4 Vox Setting Report	
3.3.5.2.5 AGC Status Report	
3.3.5.2.6 Voice Codec Report	
3.3.5.3 Voice Interrupt OUT Endpoint (0x04)	
3.3.5.4 Voice control Interrupt OUT Endpoint (0x06)	. 50

3.3.5.4.1 Voice Input Codec Selection	
3.3.5.4.2 Microphone Mute Control	
3.3.5.4.3 Playback Volume Setting Report	
3.3.5.4.4 Vox Control	
3.3.6 Timer Events	
3.3.7 Other Local Events	
3.4 Text Input Device Interface (Interface 2) Details	
3.4.1 Abstract Data Model	
3.4.1.1 Text Input Device Interface Descriptors	
3.4.1.1.1 TID Interface Descriptor	
3.4.1.1.2 XUSB Interface Device Descriptor	
3.4.1.1.3 Endpoint Descriptor (IN 0x87)	
3.4.2 Timers	. 54
3.4.3 Initialization	
3.4.4 Higher-Layer Triggered Events	. 54
3.4.5 Message Processing Events and Sequencing Rules	. 54
3.4.5.1 Default TID Input Report (Report ID 0x00)	. 54
3.4.5.1.1 TID Backlight Status Report (Report ID 0x01)	54
3.4.5.1.2 TID Control Request	. 55
3.4.6 Timer Events	
3.4.7 Other Local Events	
3.5 XUSB Adapter USB Interfaces Structure	55
3.5.1 Abstract Data Model	
3.5.1.1 XUSB Adapter Controller and Devices Control Interface	
3.5.1.1.1 Interface Descriptor	
3.5.1.1.2 XUSB Adapter Interface Device Descriptor	
3.5.1.1.4 Endpoint Descriptor (OUT 0x02)	
3.5.1.1.4 Endpoint Descriptor (OO1 0x02)	
3.5.3 Initialization	
3.5.4 Higher-Layer Triggered Events	
3.5.5 Message Processing Events and Sequencing Rules	59
3.5.5.1 Game Controller Input Data Transfer	
3.5.5.1.1 Wireless Controller Data/Device Status Input Report (Report ID 0x00)	
3.5.5.1.1.1 Header Only Report Type 0x00	
3.5.5.1.1.2 Header and Controller Data Type 0x01	60
3.5.5.1.1.3 Header, Controller, and Plug-in Module Data Type 0x03	
3.5.5.1.1.4 Link Control Packet Type 0x0F	
3.5.5.1.2 Same Slot Voice Device Reports (Report ID 0x01)	
3.5.5.1.2.1 Device ID and Link Control Type 0x00	
3.5.5.1.2.2 Device Transport Packet Type 0x01	
3.5.5.1.2.3 Voice Header Packet Type 0xFF	
3.5.5.1.3 Wireless Devices Connection Status Report (Report ID 0x08)	
3.5.5.2 Game Controller Output Requests	. 64
3.5.5.2.1 Wireless Controller Control Request (Request ID 0x00)	
3.5.5.2.1.1 Header Only Request Type 0x00	
3.5.5.2.1.2 Rumble/Force Feedback Data Request Type 0x01	
3.5.5.2.2 Voice Device Control Request (Request ID 0x01)	
3.5.5.2.2.2 Voice Header Only Packet Type 0x03	. 00
3.5.5.2.3 Wireless Devices Connection Request (Request ID 0x08)	
3.5.6 Timer Events	
3.5.7 Other Local Events	
3.6 XUSB Adapter Voice Communicator Interface	
3.6.1 Abstract Data Model	
3.6.1.1 XUSB Adapter Voice Communicator Descriptors	
3.6.1.1.1 Interface Descriptor	
·	

	3.6	1.1.1.2 XUSB Adapter Interface Device Descriptor	70
	3.6	1.1.1.3 Endpoint Descriptor (IN 0x84)	70
	3.6	5.1.1.4 Endpoint Descriptor (OUT 0x04)	70
	3.6.2	Timers	
	3.6.3	Initialization	71
	3.6.4	Higher-Layer Triggered Events	71
	3.6.5	Message Processing Events and Sequencing Rules	71
	3.6.5	7.1 Voice Communicator Data Transfer	71
	3.6	5.5.1.1 Upstream Voice Data	71
	3.6	.5.1.2 Downstream Voice Data	72
	3.6.6	Timer Events	72
	3.6.7	Other Local Events	72
4	Protoc	col Examples	73
_	Socuri	ty	7/
5	Securi	ty	74
5	5.1 S	Security Considerations for Implementers	74
	5.1 S 5.2 I	Security Considerations for Implementersndex of Security Parameters	74 74
	5.1 S 5.2 Ii	Security Considerations for Implementers	74 74 75
	5.1 S 5.2 II Appen 6.1 M	decurity Considerations for Implementers	74 74 75 75
	5.1 S 5.2 II Appen 6.1 M 6.2 M	dix A: Descriptor and Protocol Definitions Index of Security Parameters IS Interface Descriptor Type IS Special Interface Protocol definitions	74 74 75 75
	5.1 S 5.2 II Appen 6.1 M 6.2 M	decurity Considerations for Implementers	74 74 75 75
	5.1 S 5.2 II Appen 6.1 M 6.2 M 6.3 X	dix A: Descriptor and Protocol Definitions Security Security Parameters dix A: Descriptor and Protocol Definitions Solution Interface Descriptor Type Solution Special Interface Protocol definitions Suss Adapter Interface Descriptor (Vendor Specific) dix B: Product Behavior	74 75 75 75 75
6	5.1 S 5.2 II Appen 6.1 M 6.2 M 6.3 X	dix A: Descriptor and Protocol Definitions Is Interface Descriptor Type Is Special Interface Protocol definitions (USB Adapter Interface Descriptor (Vendor Specific)	74 75 75 75 75
6	5.1 S 5.2 In Appen 6.1 M 6.2 M 6.3 X Appen Change	dix A: Descriptor and Protocol Definitions Security Security Parameters dix A: Descriptor and Protocol Definitions Solution Interface Descriptor Type Solution Special Interface Protocol definitions Suss Adapter Interface Descriptor (Vendor Specific) dix B: Product Behavior	74 74 75 75 75 80 81

1 Introduction

The Xbox Universal Serial Bus Protocol (XUSB) Interface Extension is a modified version of the USB 2.0 interface that provides extended semantics for interaction between game controller devices and a host. The high level interface of the XUSB specification includes enumeration of device capabilities, determining of device type and subtype, transfer of gamepad and voice data, and support for an expansion device on the controller.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.

1.1 Glossary

This document uses the following terms:

- **frequency-hopping spread spectrum (FHSS) polynomial**: The frequency-hopping spread spectrum is a method of transmitting radio signals by rapidly switching a carrier among many frequency channels, using a pseudorandom sequence known to both transmitter and receiver. The construction of new FHSSs is based on the polynomial theory over the finite field.
- **INF file**: A file that provides setup information required to set up a device, such as a list of valid logical configurations for the device and the names of driver files associated with the device.
- **milliamperes**: A milliampere (also milliamp or mA) is 1/1000 of an ampere. An ampere is the basic unit for measuring electrical current showing the rate, or how fast, electrons flow through an electrical wire. One ampere is the current in which one coulomb of charge travels across a given point in 1 second.
- **USB wires**: USB requires a shielded cable containing 4 wires. Two of these, D+ and D-, form a twisted pair responsible for carrying a differential data signal, as well as some single-ended signal states. (For low speed the data lines may not be twisted.) The signals on these two wires are referenced to the (third) GND wire. The fourth wire is called VBUS, and carries a nominal 5V supply, which may be used by a device for power.
- **VBUS**: The VBUS supplies the input voltage to the system voltage regulator (SYSREG). VBUS voltage is supplied by an AC wall adapter or a USB port. Some Nano boards that operate on 3.3 V power have a pin called VUSB or VBUS, that will output power directly from the USB connector. The pin will not receive any power if no power is being supplied to the USB port.
- MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the <u>Errata</u>.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[USB-SPC2.0] USB Implementers Forum, Inc., "Document Library", USB 2.0 Specification, October 2021, https://www.usb.org/documents

Note Search for 2.0 and Technology USB 2.0

1.2.2 Informative References

[MSDN-INFS] Microsoft Corporation, "Overview of INF Files", https://learn.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files

[MSLEARN-XINPUT] Microsoft Corporation, "XInput Game Controller APIs", https://learn.microsoft.com/en-us/windows/win32/xinput/xinput-game-controller-apis-portal

1.3 Overview

The Xbox Universal Serial Bus Protocol (XUSB) Interface Extension (XUSBI) is a modified version of the Universal Serial Bus (USB) Core protocol, an external bus architecture for connecting USB-capable peripheral devices to a host computer. XUSBI is based on the revision 2.0 of the USB specification [USB-SPC2.0].

There are two parts to this specification: the XUSB device protocol specification and the XUSB adapter protocol specification for XUSB wireless adapter devices.

The XUSB device specification allows hardware manufacturers to produce standardized input devices to be picked up by the Windows Input APIs. Note that XUSB is now deprecated and no longer the recommended input mechanism. <1>

XUSB Adapter is a USB class device designed as a hub between the host and its wireless input peripheral devices. The USB interface for XUSB Wireless Adapter devices specification defines a simple bridge interface between the wireless input devices and host USB interface.

For more information, see [MSLEARN-XINPUT].

1.3.1 XUSB Device Interface General Specifications

The XUSB interface is a slightly modified version of the USB 2.0 interface. For the XUSB device side, it has the following general specifications:

- Supports both USB low speed and full speed, but only one mode at a time.
- All XUSB devices MUST support control and interrupt IN and OUT transfers.
- Supports suspend/resume and remote wakeup. The remote wakeup feature is by default enabled in all states (power/default/address/configured).
- The transceiver can drive up to 6-meter cable for both low and full speed operations. Device is electrically compatible with standard USB 2.0/2.0 host controller.

The following table shows the XUSB interface signaling. Note **USB wires** for definitions.

Signal	Description
1 - USBVcc	+5 V power
2 - D-	Data minus line
3 - D+	Data plus line
4 – GND	Ground

Table 1: XUSB signals

1.3.2 XUSB Adapter USB Interface General Specifications

The XUSB Adapter USB interface is a standard USB 2.0 interface. It has the following general specifications:

- Is integrated with USB 2.0 full speed transceivers.
- Supports both input and output reports.
- Does not support device suspend/remote wakeup.
- Device follows USB 2.0 protocol but not electrically compatible with standard USB 2.0 host controller.

The following table shows the XUSB Adapter interface signaling. The USB interface uses the pin 1 to 4. Note **USB wires** for definitions.

Signal	Description
1 - VCC	3.3v
2 - D-	Data minus line
3 - D+	Data plus line
4 - GND	GND

Table 2: XUSB Adapter Host Interface Signal

1.3.3 XUSB Transfers

XUSB Transfers

Only control and interrupt transfers are supported by XUSBI. To minimize the transfer overhead, XUSBI transfers have some specific requirements. The following apply to both low speed mode and full speed mode.

Control Transfer: The data payload for XUSB control transfer is 8 bytes minimum.

Interrupt Transfer: XUSB supports interrupt IN and interrupt OUT transfers. Interrupt IN and interrupt OUT transfers that support polling rate from 2 ms to 255 ms.

1.3.4 Polling Interval and Idle Rate

The host system follows the standard USB protocol and honors the bInterval in the device endpoint descriptors. XUSB device is prepared to respond to IN requests at fixed interval. For the input data report, it always responds with the latest unreported state. If the state changes multiple times between IN requests, only the last state SHOULD be reported. If the state does not change between IN requests, the device SHOULD negatively acknowledge (NAK) the IN request, regardless of the time since the previous acknowledge (ACK).

1.4 Relationship to Other Protocols

Xbox Universal Serial Bus Protocol Interface Extension (XUSBI) uses the Universal Serial Bus (USB) 2.0 Core protocol, an external bus architecture for connecting USB-capable peripheral devices to a host computer. The USB 2.0 Core is maintained by the USB Implementers Forum in its USB 2.0 base specification. For information on the USB 2.0 Core interface, see [USB-SPC2.0].

1.5 Prerequisites/Preconditions

A USB-enabled gaming device. The Xbox Universal Serial Bus Protocol Interface Extension (XUSBI) is based on USB 2.0 specification. For details on the USB 2.0 Core interface, see [USB-SPC2.0].

1.6 Applicability Statement

Applies to USB-enabled devices.

1.7 Versioning and Capability Negotiation

The Xbox Universal Serial Bus Protocol (XUSB) Interface Extension (XUSBI) is based on only version 2.0 of the USB Core protocol.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

2 Messages

2.1 Transport

The Xbox Universal Serial Bus Protocol (XUSB) Interface Extension (XUSBI) transports messages via the Universal Serial Bus (USB) Core protocol. USB Core is an external bus architecture for connecting USB-capable peripheral devices to a host computer. The USB Core is maintained by the USB Implementers Forum. XUSBI protocol is based on the Universal Serial Bus Revision 2.0 specification [USB-SPC2.0].

2.2 Message Syntax

2.2.1 USB Device Framework

An XUSB device MAY be divided into three layers:

- The top layer is the functionality provided by the serial bus device such as game pad or steering wheel.
- The middle layer handles the routing of data between the bus interface and various endpoints on the device.
- The bottom layer is a bus interface that transmits and receives packets.

XUSB middle layer

An endpoint is the ultimate consumer or provider of data. It MAY be thought of as a source or sink for data. For the middle layer, XUSB interface differs from USB 2.0. See section 3.2.1 for device states.

XUSB bottom layer

Low Speed Operation: The XUSB low speed bus interface follows the USB 2.0 low speed bus interface except it supports suspend/resume/remote wakeup in all states.

Full Speed Operation: The XUSB full speed operation follows the USB 2.0 full speed bottom layer specification except it supports suspend/resume/remote wakeup in all states.

2.2.2 XUSB High Level Interface

The following subsections define device types, subtypes, enumeration, interfaces, and endpoints.

2.2.2.1 Device Types and Subtypes

The device type defines the primary use of the device. If a device supports a device type, it supports all devices of that type. The number of reports, their direction (input or output), and their format (field offsets, sizes, default values, and ranges) are determined by the device type and version

The device subtype implies additional information about the device, such as form factor and specific mapping of controls to the report fields. For example, a wheel subtype of the game controller type indicates the position of the steering wheel in a field determined by the subtype. The published mappings are designed to ensure that games do not need to know about the subtype. The subtype is available to games mainly for fine-tuning game play or user interfaces. Only a minority of games take advantage of knowing the subtype.

2.2.2.1.1 XUSB Device Subtypes Definitions

The XUSB driver supports the definition of arbitrary device subtypes. A title can then use this subtype to filter for relevant input devices. These are exposed to HID-based APIs as a Gamepad with some limited exceptions. The following table describes the different strongly typed device subtypes and their corresponding subtype value (byte 4 of the XUSB Interface Device Descriptor). You can create one of these devices through the replacement of the gamepad subclass (0x01) in section 3.2.1.1.2 with any of the values in the following table.

Subtype Class	Description
0x01	Game Controller
0x02	Racing Wheel
0x03	Arcade Stick
0x04	Flight Stick
0x05	Dance Pad
0x06	Guitar Standard
0x07	Guitar Alternate
0x08	Drum Kit
0x0B	Guitar Bass
0x13	Arcade Pad

Table 3: XUSB device subtypes

The input report based on Wired Game Controller defined in Input Data Reports section $\underline{3.2.5.1.1}$ applies to all of these types and is re-interpreted by the title. When exposed in HID format, the mappings described in the next few sections apply. Other buttons are ignored.

2.2.2.1.2 Game Controller (0x01)

Game Controller XUSB to HID Report Mapping values are in the following table.

HID Usage	XUSB Button
X	Left Thumbstick X
Υ	Left Thumbstick Y
Rx	Right Thumbstick X
Ry	Right Thumbstick Y
Z	Left Trigger - Right Trigger
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button
Button 8	Start Button
Button 9	Left Thumbstick Button
Button 10	Right Thumbstick Button

HID Usage	XUSB Button
Hat Switch	D-Pad

Table 4: Game Controller XUSB to HID report mapping

The left trigger and right trigger are combined in opposite directions to form the Z-axis. The value is shifted by 8 bits to account for the Z value being a word. The X, Y, Rx, Ry, and Z usages are defined from 0x0000 to 0xFFFF. As such, the thumbstick values are recentered around 0x8000.

2.2.2.1.3 Racing Wheel

Racing Wheel XUSB to HID Report Mapping values are in the following table.

Note that the Z value calculation is inverted when compared to the standard gamepad usage.

HID Usage	XUSB Button
X	Left Thumbstick X
Υ	Left Thumbstick Y
Rx	Right Thumbstick X
Ry	Right Thumbstick Y
Z	Left Trigger - Right Trigger
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button
Button 8	Start Button
Button 9	Left Thumbstick Button
Button 10	Right Thumbstick Button
Hat Switch	D-Pad

Table 5: Racing Wheel XUSB to HID report mapping

2.2.2.1.4 Arcade Stick/Pad

Arcade Stick/Pad values are in the following table.

HID Usage	XUSB Button
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button
Button 8	Start Button

HID Usage	Jsage XUSB Button			
Button 9	Left Trigger (treated as button)			
Button 10	Right Trigger (treated as button)			
Hat Switch	D-Pad			

Table 6: Arcade Stick/Pad XUSB to HID report mapping

2.2.2.1.5 Flight Stick

Flight Stick values are in the following table.

HID Usage	XUSB Button
X (Flight Stick)	Left Thumbstick X
Y (Flight Stick)	Left Thumbstick Y
Rx (POV)	Right Thumbstick X
Ry (POV)	Right Thumbstick Y
Z (Throttle Lever)	Right Trigger
Rz (Twist/Rocker)	Left Trigger
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button
Button 8	Start Button
Button 9	Left Thumbstick Button
Button 10	Right Thumbstick Button
Hat Switch	D-Pad

Table 7: Flight Stick XUSB to HID report mapping

2.2.2.1.6 Dance Pad

Dance Pad values are in the following table.

HID Usage	XUSB Button
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button

HID Usage	XUSB Button
Button 8	Start Button
Button 9	Left Thumbstick Button
Button 10	Right Thumbstick Button
Hat Switch	D-Pad

Table 8: Dance Pad/Pad XUSB to HID report mapping

2.2.2.1.7 Guitar Standard/Alternate/Bass

Guitar Standard/Alternate/Bass XUSB to HID report mappings are in the following table.

HID Usage	XUSB Button
Rz (Orientation)	Right Thumbstick Y
Slider (Whammy)	Right Thumbstick X
Button 1	A Button
Button 2	B Button
Button 3	X Button
Button 4	Y Button
Button 5	LB Button
Button 6	RB Button
Button 7	Back Button
Button 8	Start Button
Button 9	Left Thumbstick Button
Button 10	Right Thumbstick Button
Hat Switch	D-Pad
Dial (Pickup Selector)	Left Trigger (excluded for Alternate)

Table 9: Guitar Standard/Alternate/Bass XUSB to HID report mapping

2.2.2.2 Device Enumeration

The device enumeration process follows the standard USB enumeration process with additional descriptors supported. After the device is enumerated, it supports operation mode switching. The following figure illustrates the enumeration process.

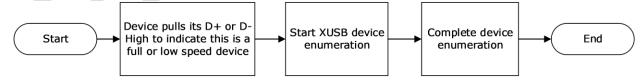


Figure 1: XUSB device enumeration process

2.2.2.3 XUSB Device Interfaces and Endpoints

XSUB devices support the following interfaces and endpoints:

Default control interface

- One control endpoint with 8-byte FIFO size
- Game Controller Interface
 - One interrupt IN endpoint
 - One interrupt OUT endpoint
- Voice Communicator Interface (optional)
 - Two interrupt IN endpoints with 32-byte FIFO for each
 - Two interrupt OUT endpoint with 32-byte FIFO
- Text Input Device Interface (optional)
 - One interrupt IN endpoint with 32-byte FIFO

The following table summarizes the specifications for the XUSB endpoints.

	Number of Endpoints	Data Payl	oad (byte)	Polling Rate (ms)		
		Min	Max	Min	Max	
Control Transfer	1	8				
Interrupt IN	4	8	64	2	255	
Interrupt OUT	3	8	64	4	255	

Table 10: XUSB Endpoints

2.2.3 XUSB Adapter USB High Level Interface

The following subsection defines the XUSB adapter interfaces and endpoints.

2.2.3.1 XUSB Adapter Interfaces and Endpoints

XUSB Adapter supports the following interfaces and endpoints:

- Default control interface
 - Support one control endpoint
- Downstream game controller 1 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream game controller 2 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream game controller 3 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream game controller 4 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream voice device 1 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream voice device 2 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO
- Downstream voice device 3 interface

- One interrupt IN endpoint with 32-byte FIFO
- One Interrupt OUT with 32-byte FIFO
- Downstream voice device 4 interface
 - One interrupt IN endpoint with 32-byte FIFO
 - One Interrupt OUT with 32-byte FIFO

The following table summarizes the specifications for the XUSB Adapter transfers.

	Number of Endpoint	Data Payl	oad (byte)	Polling Rate (ms)		
		Min	Max	Min	Max	
Control Transfer	1	8				
Interrupt IN	8		32	1	32	
Interrupt OUT	8		32	4	32	

Table 11: XUSB Adapter USB Transfer Specification

XUSB adapter devices SHOULD associate gamepad data and voice data for the different devices to endpoints. The following table defines the association. In this table, a lower number for priority means a higher priority.

Endpoint	Slot within RF Frame	Priority for Data Device	Priority for Voice Only Device
0x81 - data in	Gamepad 1 data, Slot 0	1	4
0x01 – data out	Gamepad 1 data, Slot 10	1	4
0x82 – voice in	Gamepad 1 voice, Slot 1	1	4
0x02 – voice out	Gamepad 1 voice, Slot 8	1	4
0x83 - data in	Gamepad 2 data, Slot 2	2	3
0x03 – data out	Gamepad 2 data, Slot 10	2	3
0x84 – voice in	Gamepad 2 voice, Slot 3	2	3
0x04 – voice out	Gamepad 2 voice, Slot 9	2	3
0x85 - data in	Gamepad 3 data, Slot 4	3	2
0x05 – data out	Gamepad 3 data, Slot 10	3	2
0x86 – voice in	Gamepad 3 voice, Slot 5	3	2
0x06 – voice out	Gamepad 3 voice, Slot 11	3	2
0x87 - data in	Gamepad 4 data, Slot 6	4	1
0x07 – data out	Gamepad 4 data, Slot 10	4	1
0x88 - voice in	Gamepad 4 voice, Slot 7	4	1
0x08 – voice out	Gamepad 4 voice, Slot 12	4	1

Table 12: Endpoint to RF slot assignment

For an attaching data device, it is assigned the endpoints with the highest priority from the ones available. For a voice only device, it is assigned the endpoints with the highest priority from the available ones. Note that the assigned endpoint is completely independent of VPort assignment.

The voice endpoints, even numbered endpoints, contain only voice data. A voice only device MAY use the data endpoints, odd numbered endpoints, to handle reports and requests. For more details, see Same Slot Voice Device Reports (Report ID 0x01) section 3.5.5.1.2.

2.2.4 XUSB Descriptors

All XUSB devices MUST support the following descriptors:

- Standard USB device descriptor
- Standard USB Configuration descriptor
- Standard USB Interface descriptor
- Standard USB Endpoint descriptor
- XUSB interface descriptor (vendor specific)
- Microsoft OS Descriptor

2.2.4.1 Standard Device Descriptor

This is the standard USB device descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of the descriptor
1	bDescriptorType	1	0x01	Device descriptor
2	bcdUSB	2	0x0200	USB spec 2.0
4	bDeviceClass	1	0xFF	Vendor Specific
5	bDeviceSubclass	1	0xFF	Vendor Specific
6	bDeviceProtocol	1	0xFF	Vendor Specific
7	bMaxPacketSize	1	0x08	varies
8	idVendor	2	0x045E	Microsoft
10	idProduct	2	ID	Product ID
12	bcdDevice	2	BCD	Device release version
14	iManufacturer	1	0x01	Support manufacturer string descriptor
15	iProduct	1	0x02	Support product string descriptor
16	iSerial	1	0x03	Support serial string descriptor
17	bNumConfigure	1	0x01	Number of configurations: 1

Table 13: USB device descriptor

The device type and subtype are defined in standard interface descriptor. XUSB device MUST support string descriptors.

2.2.4.2 Standard Configuration Descriptor

This is the standard Configuration descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes.
1	bDescriptorType	1	Constant	CONFIGURATION Descriptor Type.
2	wTotalLength	2	Number	Total length of data returned for this configuration. This includes this descriptor, all the interface descriptors, and their endpoint descriptors.
4	bNumInterfaces	1	Number	Number of interfaces associated with the configuration. The value is 4 for game pad with voice integrated.

Offset	Field	Size	Value	Description
5	bConfigurationValue	1	0x01	Value to use to set this configuration. This MUST be 1.
6	iConfiguration	1	0x00	No string descriptor for this configuration
7	bmAttributes	1	Bitmap	Configuration characteristics: D7: Reserved (set to one) D6: Self-powered D5: 1, always support remote wakeup D40: Reserved (reset to zero) D7: Reserved and MUST be set to one for historical reasons
8	MaxPower	1	Number	Total peak current consumption in mA (milliamperes). See section <u>2.2.7.2</u> and section <u>2.2.7.3</u> .

Table 14: Standard Configuration descriptor

2.2.4.3 Standard Interface Descriptor

This is the standard Interface descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes
1	bDescriptorType	1	Constant	INTERFACE descriptor type
2	bInterfaceNumber	1	Number	Number of interface
3	bAlternateSetting	1	0x00	XUSB device does not support alternate setting
4	bNumEndpoints	1	Number	Total endpoint number for this interface
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	MS USB devices
7	bInterfaceProtocol	1	Number	Protocol code, such as, XUSB game pad, TID, voice communicator
8	iInterface	1	Number	String descriptor for interface (optional)

Table 15: Interface descriptor

2.2.4.4 Standard Endpoint Report Descriptor

This is the standard Endpoint Report descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes.
1	bDescriptorType	1	Constant	ENDPOINT Descriptor Type.
2	bEndpointAddress	1	Number	Bit 30 Endpoint Number Bit 64 Reserved MUST be 0 Bit 7 Direction: 1 = IN, 0=OUT
3	bmAttributes	1	Bitmap	3 = interrupt endpoint. XUSB has only interrupt endpoints aside from the default endpoint, which does not have a descriptor.
4	wMaxPacketSize	2	Number	It is not necessary for the packet size to accommodate the largest report in a single packet. One report can be sent with two packets if it is defined that way in the identifier descriptor

Offset	Field	Size	Value	Description	
				Bit 10 to 0 specifies the maximum packet size.	
6	bInterval	1	Number	Polling interval in milliseconds.	

Table 16: Endpoint Report descriptor

2.2.4.5 XUSB Interface Device Descriptor (Vendor Specific)

This vendor specific descriptor is to provide host additional information about the XUSB device itself. This is an interface level descriptor for each interface. It also contains the number of reports supported for each endpoint in this interface, as well as the size for each report.

This descriptor is returned to host as part of the configuration descriptor. It follows the interface descriptor and before the endpoint descriptor. This descriptor cannot be retrieved separately. The following table has device descriptors.

Offset	Field	Size	Value	Description	
0	bLength	1	Number	Size of the descriptor	
1	bDescriptorType	1	0x21	XUSB interface descriptor	
2	bcdXUSB	2	BCD	XUSB protocol version	
4	bDeviceSubtype	1	Number	Subtype of the device, used together with the bInterfaceprotocol field in the interface descriptor	
5	wReports	2	Number	High byte: endpoint address Low byte: D7D4: Endpoint type 0000: Data only endpoint 0001: Control/status only endpoint 0010: Data-control/status mix endpoint Rest: Reserved D3D0: Number of report supported in this endpoint	
7	breportsize	1	Number	Report size for the first report ID 0x00	
8	breportsize	1	Number	Report size for additional reports, follow the sequential order of the ID	
	wReport	2	Number	Last endpoint address and number of report	
	bReportSize	1	Number	Report size for the last endpoint	

Table 17: XUSB Device descriptor

2.2.4.6 Microsoft OS Descriptor

When an operating system that supports the MS OS Descriptor identifies a XUSB device, it queries the device to check for the presence of a Microsoft OS String Descriptor – via a GET_DESCRIPTOR request to find out if it supports one or more of the MS OS Feature Descriptors. If the device supports the Extended Compatible ID Descriptor, Windows generates additional compatible IDs that can be matched on via an **INF file**. See [MSDN-INFS] for more information about INF files.

The MS OS String Descriptor is always stored at index 0xEE. Version 1.00 is always 18 bytes. It is retrieved with a standard GET_DESCRIPTOR request. The descriptor format is shown in the following table.

Field	Length (Bytes)	Value	Description
bLength	1	0x12	Length of the descriptor
bDescriptorType	1	0x03	String Descriptor
qwSignature	14	'MSFT100'	Signature field (4D00530046005400310030003000)
bMS_VendorCode	1	Custom	Vendor code to fetch OS Feature Descriptors
bPad	1	0x00	Pad field

Table 18: OS Descriptor format

The only non-fixed part of the request is bMS_VendorCode. This is the special request code that **Windows** retrieves from the MS OS String Descriptor and uses to retrieve the MS OS Feature Descriptors.

After retrieving the MS OS String Descriptor, **Windows** uses the bMS_VendorCode stored in the MS OS String Descriptor to send a second request. It MAY query for different types of MS OS Feature Descriptors. The wIndex field indicates the type requested.

All XUSB devices SHOULD support the Extended Compatible ID Descriptor (wIndex of 0x0004). Any other MS OS Feature Descriptor request can be failed (STALL). Extended Compatible ID Descriptor is shown in the following table.

Offset	Field	Size	Value	Description
0	dwLength	4	0x0028	Length of this descriptor, in bytes
4	bcdVersion	2	0x0100	Version 1.0
6	wIndex	2	0x0004	Extended Configuration Descriptor
8	bCount	1	0x01	Total number of Function Sections that follow the Header Section.
9	RESERVED	7	0x0000000000000	Reserved
16	bFirstInterfaceNumber	1	0x00	Starting Interface Number for this function.
17	bNumInterfaces	1	Number	This SHOULD be the same value returned as part of the configuration descriptor.
18	compatibleID	8	0x58, 0x55, 0x53, 0x42, 0x31, 0x30, 0x00, 0x00	'XUSB10'. Designates XBOX 1.0 (XUSB 1.0) Compatible device.
26	subCompatibleID	8	0x000000000000000	Secondary compatible id (none).
34	RESERVED	6	0x00000000000	Reserved

Table 19: Compatible ID descriptor

2.2.5 XUSB Wireless Device Descriptors

For wireless devices, the XUSB driver looks for a different bus type in the XUSB Interface Device Descriptor offset 1 section <u>2.2.4.5</u>. The standard value of 0x21 defines USB devices. 0x22 serves to identify an XUSB adapter. The following table shows the descriptors.

Descriptor ID	Description
0x21	XUSB Device Descriptor
0x22	XUSB Adapter Descriptor

Table 20: XUSB Interface descriptor type

2.2.6 Charge and Play Device Descriptors

Note: This path is not recommended and is only relevant for devices that cannot communicate to the host directly over USB.

Some devices cannot communicate directly to the host via USB. The driver can automatically pair these devices to a wireless adapter when connected to the host via the use of special cable devices. To enumerate this, you SHOULD present an interface descriptor with value 0xFF. The following table shows the values.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type
2	bInterfaceNumber	1	0x01	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x01	Total endpoint number for this interfaces
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	XUSB device.
7	bInterfaceProtocol	1	0xFF	0xFF for Charge and Play protocol
8	bInterfaceString	1	0x00	No string descriptor

Table 21: Charge and Play descriptors

The charge and play device then needs to implement the Get_Device_ID and Set_Bind_Info control requests, which the host uses to set the bind information it obtained from a separate wireless adapter. The Device ID for the Charge and Play device SHOULD be reported to be the same as the connecting device.

2.2.7 XUSB Adapter USB Descriptors

All XUSB Adapter USB devices MUST support the following descriptors:

- Standard USB device descriptor
- Standard USB configure descriptor
- Standard USB interface descriptor
- Standard USB endpoint descriptor
- XUSB Adapter Interface descriptor (vendor specific)

All XUSB Adapter USB Descriptors with this implementation are listed in section 6.

2.2.7.1 Standard Device Descriptor

This is the standard USB device descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of the descriptor
1	bDescriptorType	1	0x01	Device descriptor
2	bcdUSB	2	0x0200	USB spec 2.0
4	bDeviceClass	1	0xFF	Vendor Specific
5	bDeviceSubclass	1	0xFF	Vendor Specific

Offset	Field	Size	Value	Description
6	bDeviceProtocol	1	0xFF	Vendor Specific
7	bMaxPacketSize	1	0x08	8-byte data payload size
8	idVendor	2	0x045E	Microsoft
10	idProduct	2	0x0291	MS Product ID
12	bcdDevice	2	BCD	Device release version
14	iManufacturer	1	0x00	Manufacturer string descriptor
15	iProduct	1	0x00	Product string descriptor
16	iSerial	1	0x00	Serial string descriptor
17	bNumConfigure	1	0x01	Number of configurations: 1

Table 22: XUSB standard device descriptor

2.2.7.2 Standard Configuration Descriptor

This is the standard Configuration descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes.
1	bDescriptorType	1	Constant	CONFIGURATION Descriptor Type.
2	wTotalLength	2	Number	Total length of data returned for this configuration. This includes this descriptor, all the interface descriptors, and their endpoint descriptors.
4	bNumInterfaces	1	0x08	Number of interfaces associated with the configuration.
5	bConfigurationValue	1	0x01	Value to use to set this configuration. This MUST be 1.
6	iConfiguration	1	0x00	Index of string descriptor describing this configuration.
7	bmAttributes	1	Bitmap	Ignored.
8	MaxPower	1	0x82	Total peak current consumption 260 mA (milliamperes).

Table 23: Standard Configuration descriptor

2.2.7.3 Standard Interface Descriptor

This is the standard Interface descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes.
1	bDescriptorType	1	Constant	CONFIGURATION Descriptor Type.
2	wTotalLength	2	Number	Total length of data returned for this configuration. This includes this descriptor, all the interface descriptors, and their endpoint descriptors.
4	bNumInterfaces	1	0x08	Number of interfaces associated with the configuration.
5	bConfigurationValue	1	0x01	Value to use to set this configuration. This MUST be 1.
6	iConfiguration	1	0x00	Index of string descriptor that describes this configuration.

Offset	Field	Size	Value Description	
7	bmAttributes	1	Bitmap	Ignored.
8	MaxPower	1	0x82	Total peak current consumption 260 mA (milliamperes).

Table 24: Standard Interface descriptor

2.2.7.4 Standard Endpoint Report Descriptor

This is the standard Endpoint Report descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of this descriptor in bytes.
1	bDescriptorType	1	Constant	ENDPOINT Descriptor Type.
2	bEndpointAddress	1	Number	Bit 30: Endpoint Number Bit 64: Reserved MUST Be 0 Bit 7 Direction: 1 = IN, 0=OUT
3	bmAttributes	1	Bitmap	3 = interrupt endpoint. XUSB Adapter has only interrupt endpoints aside from the default endpoint, which does not have a descriptor.
4	wMaxPacketSize	2	Number	It is not necessary for the packet size to accommodate the largest report in a single packet. One report can be sent with two packets if it is defined that way in the identifier descriptor. Bit 10 to 0 specifies the maximum packet size.
6	bInterval	1	Number	Polling interval in milliseconds.

Table 25: Standard Endpoint Report descriptor

2.2.7.5 XUSB Adapter Interface Descriptor (Vendor Specific)

This is the XUSB Adapter Interface descriptor, and the format is shown in the following table.

Offset	Field	Size	Value	Description	
0	bLength	1	Number	Size of the descriptor	
1	bDescriptorType	1	0x22	XUSB Adapter interface descriptor	
2	bcdXUSB Adapter	2	0x0100	XUSB Adapter protocol version 1.00	
4	wReports	2	Number	High byte: endpoint address	
				Low byte:	
				D7D4: Endpoint type	
				0000: Data only endpoint	
· ·				0001: Control data-control/status mix endpoint	
				Rest: Reserved	
				D3D0: Number of report supported in this endpoint	
6	wReportsize	2	Number	Report size for report ID	
				High byte: Report ID	
				Low byte: Report size	
8	wReportsize	2	Number	Report size for report ID	
				High byte: Report ID	
				Low byte: Report size	

Offset	Field	Size	Value	Description
	wReport	2	Number	Last endpoint address and number of report
	wReportsize	2	Number	Report size for report ID High byte: Report ID Low byte: Report size

Table 26: XUSB Adapter Interface Device Descriptor

2.2.8 XUSB Reports

For XUSB status reports, the device MUST report all pending status reports to the host based on the sequence in which the status reports are generated.

XUSB device uses USB interrupt transfers for its data reports. The following table summarizes the report types and the associated endpoints. This table assumes the device is a full speed device and supports all the optional transfers.

Transfer Types	Report	Report size (bytes)	Polling Rate (ms)
Control Transfer (EP0)	XUSB descriptors device control	Varies	
Interrupt IN (EP1)	Game pad input data & reports	32	4
Interrupt IN (EP2)	Voice input data	32	2
Interrupt IN (EP3)	Voice communicator status	5	255
Interrupt IN (EP4)	TID input data	7	16
Interrupt OUT (EP1)	Game pad control data	8	8
Interrupt OUT (EP2)	Voice playback data	32	4
Interrupt OUT (EP3)	Voice control data	32	16

Table 27: USB reports and associated endpoints

2.2.8.1 XUSB Requests

The XUSB request format follows the same format as USB 2.0 standard requests. The following table shows the request data format.

Offset	Field	Size	Value	Description			
0	bmRequestType	1	Bitmap	Characteristics of request:			
				D7: Data transfer direction			
				0 = Host-to-device			
				1 = Device-to-host			
				D65: Type			
				0 = Standard			
				1 = Class			
				2 = Vendor			
				3 = Reserved			
				D40: Recipient			
				0 = Device			
				1 = Interface			
				2 = Endpoint			
				3 = Other			

Offset	Field	Size	Value	Description			
				431 = Reserved			
1	bRequest	1	Value	Specific to the request			
2	wValue	2	Value	Word-sized field that varies according to request			
4	wIndex	2	Index or offset	Word-sized field that varies according to request; typically used to pass an index or offset			
6	wLength	2	Count	Number of bytes to transfer if there is a Data stage			

Table 28: XUSB request format

The following table summarizes the requests that are supported by XUSB device. In the following table, the USB States column headers are defined as Def means Default, Adr means Address, and Cfg means Configured. In the Def, Adr and Cfg columns, S means STALL, and V means Valid. The device MUST STALL the requests that are not listed in this table.

	SETUP	Packet				USB	State			
Request Name	bType	bReq	wVal	wInd	wLen	Def	Adr	Cfg	Comments	
Standard Requests										
GET_STATUS (Device)	0x80	0x00	0x0000	0x0000	0x0002	S	V	V	Remote wakeup status does not indicate true status. Remote wakeup is always enabled, but bogus status is given to satisfy PCs	
GET_STATUS (Interface)	0x81	0x00	0×0000	0x0000	0x0002	S	S	S	Do not support	
GET_STATUS (Endpoint)	0x82	0x00	0x0000	bEndpoint Address	0x0002	S	V/S	V	Gets halt status. Valid for only endpoint 0 in addressed state	
CLEAR_FEATURE (Device)	0x00	0x01	0x0001	0x0000	0x0000	S	V	V	Remote wakeup really cannot be cleared but acts as though it can	
CLEAR_FEATURE (Interface)	0x01	0x01	0x0001	0x0000	0x0000	S	S	S		
CLEAR_FEATURE (Endpoint)	0x02	0x01	0x0001	0x0000	0x0000	S	V/S	V	Valid for only endpoint 0 in addressed state	
SET_FEATURE (Device)	0x00	0x03	0x0001	0x0000	0x0000	S	V	V	Remote wakeup cannot be set but acts as though it can. Remote wakeup is always ON. Note that this is initiated even if the device is in the POWERED state	

	SETUP	Packet				USB	State		
Request Name	bType	bReq	wVal	wInd	wLen	Def	Adr	Cfg	Comments
SET_FEATURE (Interface)	0x01	0x03	0×0001	0x0000	0x0000	S	S	S	
SET_FEATURE (Endpoint)	0x02	0x03	0x0001	0x0000	0x0000	S	V/S	V	Valid for only endpoint 0 in addressed state
SET_ADDRESS	0x00	0x05	Addr	0x0000	0x0000	V	٧	S	_
GET_DESCRIPTOR (Device)	0x80	0x06	0x0100	0x0000	Length	V	V	V	Returns up to 18 bytes
GET_DESCRIPTOR (Config)	0x80	0x06	0x0200	0x0000	Length	V	V	V	Return Configure descriptor
GET_CONFIGURAT ION	0x80	0x08	0x0000	0x0000	0x0001	S	V	٧	Returns configuration value
SET_CONFIGURAT ION	0x00	0x09	Configur e	0x0000	0×0000	S	V	V	Valid for configure 0x00 and 0x01
SET_DESCRIPTOR (All)	0x00 0x01 0x02	0x07	0x0100	0x0000	Length	S	S	S	Not supported
GET_INTERFACE	0x81	0x0A	0x0000	0x0000	0x0001	S	S	S	Do not support alternate interfaces
SET_INTERFACE	0x01	0x0B	0x0000	0x0000	0x0000	S	s	s	Do not support alternate interfaces
Vendor Specific Re	equests								
SET_CONTROL	0x41	0x00	Control	bInterface #	0x0000	S	s	s	Set the vendor specific control
GET_DEVICE_ID	0xC0	0x01	0x0000	0x0000	0x0004	S	S	V	Get the Device serial number, up to 32 bits
SET_BIND_INFO	0x40	0x01	0x0001	0x0000	0x0007	S	S	V	Set the binding information to the device (wireless device only)
HID Requests									
GET_REPORT (input)	0xA1	0x01	0x01xx	bInterface #	wLength	s	s	V	wLength bytes of input report.
SET_REPORT (Output)	0x21	0x09	0x0200	bInterface #	wLength	S	S	V	Set wLength bytes of device output control data
GET_CAPABILITIE S	0x??	0x??	0x01xx	bInterface #	wLength	S	S	S	
OS Descriptor Rec	luest								
Get_MS_OS_Desc	0x80	0x06	0x03EE	0x0000	0x0012	s	V	V	Get the 18-byte

	SETUP I	Packet			USB State				
Request Name	bType	bReq	wVal	wInd	wLen	Def	Adr	Cfg	Comments
riptor									Microsoft OS descriptor
Get_Extended_Co nfiguration_Descri ptor	0xC0	bVC	0x0000	0x0004	0x0028	S	V	V	Get the extended configuration descriptor
									bVC is the MS vendor code

Table 29: XUSB Request summary

2.2.8.2 Get_Report (Input)

The Get_Report requests the device to send host the most recent input data packet. Depending on the report ID specified in the **wValueL** field, the input data can be game pad/TID data or other input data reports that are reported in the endpoint report descriptor.

The data packet may or may not have been sent to host already. The following table shows the request format.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0xA1	From device to host
1	bRequest	1	0x01	Get_Report
2	wValue	2	0x01xx	wValueL: Input report ID wValueH: 0x01 for input report
4	wIndex	2	value	Interface number
6	wLength	2	Count	Length of the report requested

Table 30: Get_Report request

2.2.8.3 Set_Report (Output)

The Set_Report (rumble) sends the rumble motor control data information to the device. The format is shown in the following table.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0x21	From host to device
1	bRequest	1	0x09	Set_Report
2	wValue	2	0x0200	0x0200 for output report
4	wIndex	2	Interface#	Interface#
6	wLength	2	Count	Length of the report requested

Table 31: XUSB_Set_Report (output) request

2.2.8.4 Set_Control Request

This request is to set the vendor specific request for a specific interface. The following table shows the request format.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0x41	From host to device, interface level
1	bRequest	1	0x00	Set_Control
2	wValue	2	wControl	The control value
4	wIndex	2	Interface#	The interface #
6	wLength	2	0x0000	No data stage

Table 32: SET_CONTROL request

2.2.8.5 Get_Device_ID (Input)

The Get_Device_ID requests XUSB device to send host back its unique serial ID. The following table shows the format. Each XUSB device MUST have a unique serial ID.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0xC0	From host to device, device level
1	bRequest	1	0x01	
2	wValue	2	0x0000	
4	wIndex	2	0x0000	
6	wLength	2	0x0004	32-bit device ID.
				The packet $0x01\ 0x23\ 0x45\ 0x67$ represents the device ID $0x01234567$.
				The high nibble of the LSB is reserved and set as 0.

Table 33: Get_Device_ID request

2.2.8.6 Set_Bind_Info (Output)

The Set_Bind_Info requests the USB device (unique serial ID and the **frequency-hopping spread spectrum (FHSS) polynomial**) from the host and to save the information into its electrically erasable programmable read-only memory (EEPROM). This request only applies to wireless devices that communicate with an XUSB adapter. The values are in the following table. See section <u>2.2.9.5</u>.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0x40	From host to device, device level
1	bRequest	1	0x01	
2	wValue	2	0x0000	
4	wIndex	2	0x0000	
6	wLength	2	0x0007	B0B3: 28-bit device ID
				The packet $0x12\ 0x34\ 0x56\ 0x70$ represents the device ID $0x1234567$.
	·			The high nibble of the LSB is reserved and set as 0.
				B4B6: FHSS polynomial
				20 bits polynomial for FHSS
				D23D20: Set as 0
				D19D0: Polynomial

Table 34: Set_Bind_Info request

2.2.8.7 GET_CAPABILITIES Request

XUSB v1.10 NOT USED. This command is unused, and the values returned are ignored by the system.

This request is for XUSB version 1.10 and is not supported by XUSB 1.00 devices. GET_CAPABILITIES returns the capabilities of the device with respect to a specific report. If the device does not support the specified Report Type and Report ID, it SHOULD STALL the request. This request is only defined for the Gamepad Default Input Report.

If the device supports one or more fields, it SHOULD return a packet of the same structure as the report with a bit set for every bit that is functional in the report. This does not include calculated bits. If a field is 8-bits wide and scaled from 0 to 255, but the device only has 6-bit resolution, the device SHOULD return 0xFC (1111 1100B) in that field.

A device need only return data up to the last bit that is to be set. In practice, USB requires whole bytes be returned. Fields after the last data returned are assumed to be unsupported. This is necessary to support future extensions of reports. Devices MUST support GET_CAPABILITIES for every report supported. The following table shows the report format.

Offset	Field	Size (bytes)	Value	Description
0	bmRequestType	1	0x??	
1	bRequest	1	0x??	GET_CAPABILITIES
2	wValue	2	0x01xx	D158: bReportType 0x01: Input Report D70: bReportID.
4	wIndex	2	0x0000	Game Controller Interface (Interface 0)
6	wLength	2	Count	Report length in bytes.

Table 35: GET CAPABILITIES request

2.2.9 XUSB Adapter Reports

For XUSB Adapter other data such as voice and control/status, devices MUST report all the data based on the timing sequence the reports are generated

XUSB Adapter uses USB interrupt transfers for its data reports. The following table summarizes the report types and the associated endpoints. Note that the endpoint number listed in the table is for reference only. The actual endpoint number each interface uses is defined in the endpoint descriptors for each interface.

Transfer Types	Report types	Report size (bytes)	Polling Rate (ms)
Control Transfer (EP0)	USB descriptors & device controls	Varies	
Interrupt IN (EP1)	Game pad 1 input data & reports		
Plug-in Module device 1 input report	Varies	1	
Interrupt IN (EP2)	Voice 1 input data	64	2
Interrupt OUT (EP1)	Game pad 1 control data & voice 1 control	12	8
Interrupt OUT (EP2)	Voice 1 playback data	32	4

Transfer Types	Report types	Report size (bytes)	Polling Rate (ms)
Interrupt IN (EP8)	Game pad 4 input data		
Plug-in Module device 4 input report	Varies	1	
Interrupt IN (EP8)	Voice 4 input data	64	2
Interrupt OUT (EP8)	Game pad 4 & voice 4 control data	12	8
Interrupt OUT (EP8)	Voice 4 playback data	32	4

Table 36: USB reports and associated endpoints

2.2.9.1 XUSB Adapter USB Requests

Because XUSB Adapter USB follows the standard USB specification. The request format follows the same format as USB 2.0 standard requests. The following table shows the request data format.

Offset	Field	Size	Value	Description
0	bmRequestType	1	Bitmap	Characteristics of request: D7: Data transfer direction 0 = Host-to-device 1 = Device-to-host D65: Type 0 = Standard 1 = Class 2 = Vendor 3 = Reserved D40: Recipient 0 = Device 1 = Interface 2 = Endpoint 3 = Other 431 = Reserved
1	bRequest	1	Value	Specific to the request
2	wValue	2	Value	Word-sized field that varies according to request
4	wIndex	2	Index or offset	Word-sized field that varies according to request; typically used to pass an index or offset
6	wLength	2	Count	Number of bytes to transfer if there is a Data stage

Table 37: XUSB request format

The following table summarizes the requests that are supported by XUSB Adapter USB devices. In the following table, the USB States column headers are defined as Def means Default, Adr means Address, and Cfg means Configured. In the Def, Adr, and Cfg columns, S means STALL, and V means Valid.

	SETUP	SETUP Packet						5	
Request Name	bType	bReq	wVal	wInd	wLen	Def	Adr	Cfg	Comments
Standard Requests									
GET_STATUS (ALL)	0x80 0x81	0x00	0x0000	0x0000	0x0002	S	S	S	Do not support

	SETUP	SETUP Packet						5	
Request Name	bType	bReq	wVal	wInd	wLen	Def	Adr	Cfg	Comments
	0x82								
CLEAR_FEATURE (ALL)	0x00 0x01 0x02	0x01	0x0001	0x0000	0x0000	S	S	S	Remote wakeup cannot be cleared
SET_FEATURE (ALL)	0x00 0x01 0x02	0x03	0x0001	0x0000	0x0000	S	S	S	Support remote wakeup, but it is always ON
SET_ADDRESS	0x00	0x05	Addr	0x0000	0x0000	V	V	S	
GET_DESCRIPTOR (Device)	0x80	0x06	0x0100	0x0000	Length	٧	V	V	Returns 18 bytes
GET_DESCRIPTOR (Config)	0x80	0x06	0x0200	0x0000	Length	V	V	>	
GET_DESCRIPTOR (String)	0x80	0x06	0x03xx	xxxx	Length	V	V	٧	Support multiple string descriptors
GET_CONFIGURATION	0x80	0x08	0x0000	0x0000	0x0001	S	V	V	Returns configuration value
SET_CONFIGURATION	0×00	0x09	Configure	0x0000	0x0000	s	V	V	Valid for configure 0x00 and 0x01
SET_DESCRIPTOR (All)	0x00 0x01 0x02	0x07	0x0100	0x0000	Length	S	S	S	Not supported
GET_INTERFACE	0x81	0x0A	0x0000	0x0000	0x0001	s	s	S	No alternate interfaces
SET_INTERFACE	0x01	0x0B	0x0000	0x0000	0x0000	s	s	S	No alternate interfaces
HID Request									
GET_REPORT (input)	0xA1	0x01	0x01xx	bInterface #	Length	S	S	S	Length depends on report requested.
SET_REPORT (Output)	0x21	0x09	0x0600	bInterface#	Length	S	S	S	Length depends on report requested.
GET_DEVICE_ID	0xC0	0x01	0x0000	0x0000	0x0004	S	S	V	4 bytes of XUSB Adapter host ID
GET_BIND_INFO	0xC0	0x01	0x0001	0x0000	0×0007	S	S	V	Gets XID and Hopping Polynomial.

Table 38: XUSB Adapter USB request summary

2.2.9.2 Get_Report (Input)

The Get_Report requests the device to send host the most recent input data packet. Depending on the report ID specified in the **wValueL** field, the input data can be game pad/TID data or other input data reports that are reported in the endpoint report descriptor.

The data packet might or might not have been sent to host already. The format is shown in the following table.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0xA1	From device to host
1	bRequest	1	0x01	Get_Report
2	wValue	2	0x01xx	wValueL: Low nibble: Input report ID High nibble: Report type wValueH: 0x01 for input report
4	wIndex	2	value	Interface number
6	wLength	2	Count	Length of the report requested

Table 39: Get_Report request

This request cannot be used for getting the voice packet data. See Get_Report and Set_Report for implementation issues.

2.2.9.3 Set_Report (Output)

The Set_Report (device) sends the control data packet to the device. The packet includes the LED controls, overall rumble level settings, and other device level settings. The following table shows the format.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0x21	From host to device
1	bRequest	1	0x09	Set_Report
2	wValue	2	0x02xx	wValueL: Low nibble: Input report ID High nibble: Report type wValueH: 0x02 for input report
4	wIndex	2	Interface#	Interface number
6	wLength	2	Count	Length of the report requested

Table 40: Set_Report (Output) request

This request can NOT be used for sending the voice data. See Get_Report and Set_Report for implementation issues.

2.2.9.4 Get_Device_ID (Input)

The Get_Device_ID requests XUSB Adapter to send host back its unique serial ID. The following table shows the format. Device ID in this case is the unique ID of the XUSB Adapter which is 28 bits, not the device ID of the gamepad or other wireless device that has a 32-bit ID.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0xC0	From host to device, device level
1	bRequest	1	0x01	
2	wValue	2	0x0000	
4	wIndex	2	0x0000	
6	wLength	2	0x0004	length of Host ID

Table 41: Get_Device_ID request

The following table shows the format of the device ID.

Offset	Size	Value	Description
0	4	device ID	28-bit device ID
			The packet 0x12 0x34 0x56 0x70 represents the device ID 0x1234567.
			The low nibble of the LSB is reserved and set as 0.

Table 42: Device_ID format

See Get_Device_ID section 2.2.8.5 for implementation notes.

2.2.9.5 Get_Bind_Info (Input)

The Get_Bind_Info requests XUSB Adapter to send host back its unique serial ID and the **FHSS polynomial**. The following table shows the format.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0xC0	From host to device, device level
1	bRequest	1	0x01	
2	wValue	2	0x0001	
4	wIndex	2	0x0000	
6	wLength	2	0x0007	Length of Bind Info

Table 43: Get_Bind_Info request

The following table shows the format of the Bind Info.

Offset	Size	Value	Description
0	4	Host ID	28-bit host ID The packet 0x12 0x34 0x56 0x70 represents the device ID 0x1234567. The low nibble of the LSB is reserved and set as 0.
4	3	FHSS polynomial	FHSS polynomial 20 bits polynomial for FHSS D23D20: Set as 0 D19D0: Polynomial

Table 44: Bind Info format

3 Protocol Details

3.1 XUSB Interfaces Overview

XUSB device is a composite device that can integrate functions of game controller, text input device, and voice communicator. Each function is represented by a dedicated USB interface. Each interface has one or more endpoints associated with it. The following table lists the different interfaces and the endpoints associated with them.

Interface	Function	Endpoints	Alternative interface
0	Game controller	1 interrupt IN 1 interrupt OUT	No
1	Voice communicator	2 interrupt IN 2 interrupt OUT	No
2	Text input device	1 Interrupt IN	No

Table 45: XUSB Interface/endpoints allocation

As shown in the previous table, each interface has a XUSB Interface Device Descriptor to provide additional information about the interface. One piece of important information in this descriptor is the maximum report size. The interface is allowed to have reports that are bigger than the maximum endpoint packet size.

For voice data transfer, its polling rate is set in such a way that one re-transmission is allowed for each voice data packet transfer in the event of bus error. For example, to support 64 Kbps voice upstream, device needs to send 32 bytes in every 4 ms. The polling rate is set as 2 ms. Device NAKs the second interrupt poll request if the first data transfer is successful.

No alternate interface is supported.

3.2 Game Controller Interface (Interface 0) Details

One interrupt IN and one interrupt OUT endpoints are associated with the game controller interface.

The interrupt IN endpoint is for game pad to send back its game controller data as well as the device status information.

The interrupt OUT endpoint is for host to send the motor control data to game pad and other settings such as LED control and so on.

Descriptors are specified in section 3.2.1.1.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation can maintain to participate in this protocol. The organization is provided to help explain how the protocol works. This document does not require that implementations adhere to this model, provided their external behavior is consistent with that specified in this document.

The following elements are described by this protocol.

XUSB devices MUST support the following states:

- Powered
- Default
- Addressed

- Configured
- Suspend

XUSB Adapter does not support USB suspend.

The XUSB state flow diagram is shown in the following Figure.

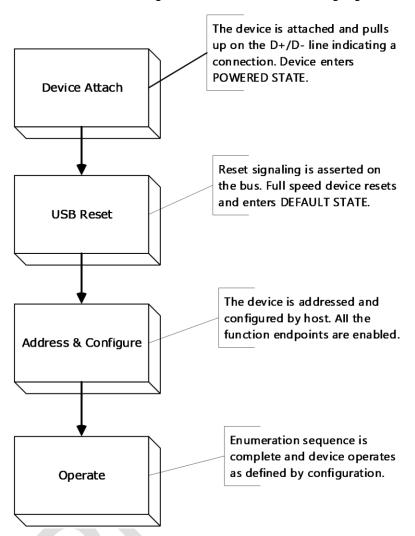


Figure 2: XUSB State Diagram

Powered State

XUSB devices may obtain power from an external source (self-powered) or from the XUSB host controller (bus-powered). Self-powered devices may already be powered before they are attached to the USB, but they are not considered to be in the powered state until they are attached to the XUSB host and **VBUS** is applied to the device. See also **USB wires**.

Devices report their power source capability through the XUSB device descriptor. The current power source is reported as part of a device's status. XUSB devices MUST NOT change their power source at any time, for example, from self to bus-powered. If device does change the power source, device loses its configuration, detaches from the XUSB bus, and re-attaches to the bus. The host re-enumerates the device and the device modifies its XUSB device descriptor and reports the new power state change to the host. Suspend/resume/remote wake up is also enabled in this state.

Default State

After the device has been powered, it MUST NOT respond to any bus transactions until it has received a reset from the bus. After the device has received a reset, the device then accepts USB requests with default address 0.

Address State

All XUSB devices use the default address 0 when initially powered or after the device has been reset. Each XUSB device is assigned a unique address by the host. A XUSB device maintains its assigned address while suspended.

Configured State

Before a XUSB device's function can be used, the device MUST be configured. From the device's perspective, configuration involves the writing of a non-zero value to the device configuration register. XUSB device does not support multiple configurations.

Device functions are enabled after device is configured. Device can be de-configured by being assigned a 0 configuration value. De-configure the device causes all the status and configuration values associated with endpoints in the affected interfaces to be set to their default values. This includes setting the data toggle of any endpoint using data toggles to the value DATAO. De-configure also disables the device functions.

Suspended State

To conserve power, XUSB devices automatically enter the Suspended state with one of the following two conditions:

- Device has not received USB Reset signal 250 ms after it pulls its D-/D+ high in powered state
- Device has observed no bus traffic for a 3ms period after a USB reset.

When suspended, the USB device maintains any internal status, including its address and configuration. All devices MUST suspend if one of the previous two conditions is met.

A XUSB device exits suspend mode when there is bus activity. XUSB device MUST also support the remote wakeup capability and signal host to exit suspend mode through the use of electrical signaling to indicate remote wakeup. The remote wakeup function is enabled in all states, and the device MUST drive the upstream resume signal for 15 ms. The device does not support the ability of the host to enable and disable the remote wakeup capability.

3.2.1.1 Game Controller Interface Descriptors

The following subsections define the Game Controller descriptors for interfaces and endpoints.

3.2.1.1.1 Interface Descriptor

The interface descriptors for the game controller are listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type
2	bInterfaceNumber	1	0x00	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x02	Total endpoint number for this interface
5	bInterfaceClass	1	0xFF	Vendor specific class

Offset	Field	Size	Value	Description
6	bInterfaceSubClass	1	0x5D	XUSB device 0x5D
7	bInterfaceProtocol	1	0x01	0x01 for game controller protocol
8	bInterfaceString	1	0x01	String descriptor index

Table 46: Interface descriptors for game controller interface

3.2.1.1.2 XUSB Interface Device Descriptor

The XUSB interface device descriptor for game control interface is listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x11	Size of the descriptor
1	bDescriptorType	1	0x21	XUSB interface descriptor
2	bcdXUSB	2	0x0100	XUSB protocol version 1.00
4	bDeviceSubtype	1	0x01	Wired game controller
5	wReports	2	0x8125	Endpoint address 0x81 Data/status mix endpoint and support 5 reports
7	breportsize	1	0x14	20 bytes for report 0x00
8	breportsize	1	0x00	Report size is variable but smaller than max packet size for report $0x01$
9	breportsize	1	0x00	Report size is variable but smaller than max packet size for report $0x02$
10	breportsize	1	0x00	Report size is variable but smaller than max packet size for report $0x03$
11	breportsize	1	0x00	Report size is variable but smaller than max packet size for report $0x04$
12	wReports	2	0x0213	Endpoint address 0x02 Device control endpoint and support 3 reports
14	breportsize	1	0x08	8 bytes for report 0x00
15	breportsize	1	0×00	Report size is variable but smaller than max packet size for report $0x01$
16	breportsize	1	0×00	Report size is variable but smaller than max packet size for report 0x02

Table 47: XUSB Interface device descriptor for game control interface

3.2.1.1.3 Endpoint Descriptor (IN 0x81)

The endpoint descriptor (IN 0x81) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description	
blength	0x07	Length of this endpoint descriptor	
bDescriptorType	0x05	Endpoint descriptor type	
bEndpointAddress	0x81	IN endpoint address 1	
bmAttributes	0x03	Interrupt endpoint type	
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)	

Field	Value	Description
bInterval	0x04	Polling interval for this endpoint in milliseconds

Table 48: Endpoint IN descriptor for game controller interface

3.2.1.1.4 Endpoint Descriptor (OUT 0x02)

The endpoint descriptor (OUT 0x02) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x02	OUT endpoint address 2
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	80x0	Polling interval for this endpoint in milliseconds

Table 49: Endpoint OUT descriptor for game controller interface

3.2.2 Timers

XUSB device event timing follows standard USB device event timing specification except for those listed in the following table. For details, refer to [USB-SPC2.0] USB 2.0 Specification for the rest of the timing specification.

Parameter	Symbol	Min	Max	Units
In powered state, device wait for host USB RESET before goes into suspend	T _{STSUS}		1000	ms

Table 50: Device wait for host USB RESET

XUSB Adapter follows the standard USB 2.0 event timing except for the device suspend. It does not support USB suspend.

3.2.3 Initialization

All XUSB devices use the default address 0 when initially powered or after the device has been reset.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Input Data Reports

The following table shows the structure of the interrupt IN transfer for game controller. All reports can be accessed by Get_Report request.

Offset	Field	Size	Description
0	Report ID	1	Report ID indicates the type of the report
131	Report body	31	Up to 31-byte report data

Table 51: Game Controller Interrupt IN structure

Five reports are supported. Report ID indicates what type of report is in the packet. The default data input report has report ID 0x00. The following table shows the report ID definitions.

Report ID	Description
0x00	Default game pad data input report
0x01	LED state report
0x02	Motor operation mode report
0x03	Current rumble level settings report
0x04	Battery charge state report
0x08	Device connection report

Table 52: Game Controller Interrupt IN Transfer Report ID Definition

3.2.5.1.1 Default Game Controller Input Report (Report ID 0x00)

The default report is the game controller input data and status report. The format is shown in the following table. This report can be accessed by host via Get Report.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x00			Report ID for the default controller input report
1	bSize	1	0x14			Size of this report 20 bytes
2	bmButtons	2	0			Bit array for digital buttons & ABXY
4	bLeftTrigger	1	0	0	255	Left trigger
5	bRightTrigger	1	0	0	255	Right trigger
6	wThumbLeftX	2	0	-32768	32767	X position of left thumb stick
8	wThumbLeftY	2	0	-32768	32767	Y position of left thumb stick
10	wThumbRightX	2	0	-32768	32767	X position of right thumb stick
12	wThumbRightY	2	0	-32768	32767	Y position of right thumb stick
14	Reserved	6	0	0	0	Reserved and set as 0

Table 53: Game pad default input report

The **bmButtons** field is shown in the following table.

Bit	Field	Description
0	Dpad Up	Dpad Up switch
1	Dpad Down	Dpad Down switch
2	Dpad Left	Dpad Left switch
3	Dpad Right	Dpad Right switch
4	Start	Start button
5	Back	Back button
6	Left Thumbswitch	Left Joystick switch
7	Right Thumbswitch	Right Joystick switch
8	LeftShoulder	Left Shoulder switch

Bit	Field	Description
9	RightShoulder	Right Shoulder switch
10	Xe	Xe Switch
11	Binding	Binding Switch
12	А	A button
13	В	B button
14	X	X button
15	Υ	Y button

Table 54: bmButtons field definition

3.2.5.1.2 Device Status Input Reports

The device status input reports contains the current device status, such as LED state, rumble level and so on. Some reports are optional depending on the feature set the device supports. For example, a game pad that does not have any LED on it does not support the report to indicate its LED pattern state. The device status reports can be accessed by host via Get_Report request. The format of the device status report is shown in the following table.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1				Report ID
1	bSize	1	3			Size of this report
2	Status	1				Status report message

Table 55: Device status report

The report ID is the flags indicating host what type of status report this message contains. The following table shows the status ID definitions.

Report ID	Description			
0x01	LED state			
0x02	reserved			
0x03	Current rumble level settings			
0x04	Battery charge state			

Table 56: Device status ID definition

3.2.5.1.3 LED State Report (Report ID 0x01)

The LED state is value that represents the current operation model for the LEDs. The following table shows the LED pattern definitions. Device sends back this report whenever the LED pattern changes.

LED Patterns	Definition
0x00	Led Pattern #0
0x01	LED pattern #1
0x02	LED pattern #2
0x03	LED pattern #3
0x0F	LED pattern #15

LED Patterns	Definition
0x100xFF	Reserved

Table 57: LED pattern definitions

3.2.5.1.4 Rumble Level Setting (Report ID 0x03)

The rumble setting field indicates the current rumble setting for the game pad rumble motors. Device sends back this report whenever the rumble level changes. The field is specified in the following table.

Status Report	Description
0x00	Rumble is OFF
0x03	Full rumble setting

Table 58: Rumble level field

3.2.5.1.5 Battery Level & Type (Report ID 0x04)

The battery level & type report is for wireless devices only. This field contains the current status of the battery capacity, and reports host the type of the battery installed in the device. The level field can be used for battery level indicator and charging indicator. This report only applies to the wireless game pad that supports cable charging. The report in the following table contains 2 bytes in the status section.

Offset	Field	Size	Default	Description
0	bReport ID	1	0x04	Report ID 0x04
1	bSize	1	4	Size of this report
2	Status	2		High byte – battery type 0x00: MS battery pack 0x01: Alkaline battery 0x02: Reserved 0x03: Unrecognizable battery pack 0x0f: Bad battery pack Low byte – battery level 0x00: Battery empty (30 min left) 0x01: Battery low (2 hours left) 0x02: Battery level is medium 0x03: Battery level is full

Table 59: Battery level field

3.2.5.1.6 Device Connection Report (Report ID 0x08)

This report sends the update on the current plug-in device and voice connection status. The report is sent to host whenever a device is attached or detached from the wireless network.

The format of the report is shown in the following table.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x08	Report ID 0x08
1	bmConnection	1		Connection status bitmap D0: TID is attached D1: Voice device is attached

Offset	Field	Size (bytes)	Default	Description
				D2D7: Reserved, set as 0

Table 60: Wireless device connection status

3.2.5.2 Output Data Reports

3.2.5.2.1 Game Pad Rumble Motor Control Report (Report ID 0x00)

This report is used for host to send the game pad rumble motor data. The following table shows the format for the motor operation.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x00			Report ID
1	bSize	1	0x08			Size of this report
2	bType	1	0x00			MUST be 00
3	Mcontrol-1	1	0	0	255	Big motor rumble magnitude
4	Mcontrol-2	1	0	0	255	Small motor rumble magnitude
57	Reserved	3	0	0	0	

Table 61: Game pad rumble motor control report

3.2.5.2.2 LED Control Request Report (Report ID 0x01)

The LED state setting is a value that instructs the device to set its LEDs to a predefined pattern. This report is optional. The format of this device request report is shown in the following table.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x01			Report ID
1	bSize	1	0x03			Size of this report = 3
2	Request	1				LED control report message

Table 62: LED control report

3.2.5.2.3 Master Rumble Level Control (Report ID 0x02)

The master rumble level setting field sets the master volume for the current rumble level. This report is optional. The format of this device request report is shown in the following table.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x02			Report ID
1	bSize	1	0x03			Size of this report = 3
2	Request	1				Master rumble level setting report message

Table 63: Rumble level control report

The **Request** field values are specified in the following table.

Request Report	Description
0x00	Turn off rumble
0x03	Set to full rumble force

Table 64: Rumble level field

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Voice Communicator Interface (Interface 1) Details

The voice communicator interface supports two interrupt IN endpoints and two interrupt OUT endpoints. The following table summarizes the report type and size.

Endpoint	Max packet size	Report size	Description
IN 1	32	64	Voice upstream data from device to host
IN 2	32	Variable	Voice device status report
OUT 1	32	32	Voice downstream from host to device
OUT 2	32	Variable	Voice device control request

Table 65: Voice data type and report size

See section 3.3.1.1 for Voice Communicator Interface descriptors and endpoints.

3.3.1 Abstract Data Model

See section 3.2.1 for device state.

3.3.1.1 Voice Communicator Interface Descriptors

3.3.1.1.1 Interface Descriptor

The descriptors for the voice communicator interface appear in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type
2	bInterfaceNumber	1	0x01	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x04	Total endpoint number for this interfaces
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	XUSB device
7	bInterfaceProtocol	1	0x03	0x03 for voice protocol
8	bInterfaceString	1	0x00	No string descriptor

Table 66: Interface descriptor for voice communicator interface

3.3.1.1.2 XUSB Interface Device Descriptor

The XUSB interface device descriptor for the voice communicator interface appears in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x1B	Size of the descriptor
1	bDescriptorType	1	0x21	XUSB interface descriptor
2	bcdXUSB	2	0x0100	XUSB protocol version 1.00
4	bDeviceSubtype	1	0x01	Integrated voice device
5	wReports	2	0x8301	Endpoint address 0x83
				Data only endpoint and support for 1 report (01)
7	breportsize	1	0x40	64 bytes for report 0x00
8	wReports	2	0x0401	Endpoint address 0x04
				Data only endpoint and support for 1 report (01)
10	breportsize	1	0x20	32 bytes for report 0x00
11	wReports	2	0x8516	Endpoint address 0x85
				Status only endpoint and support for 6 reports (16)
13	bReportSize	1	0x00	Variable size but smaller than max packet size
14	bReportSize	1	0x00	Variable size but smaller than max packet size
15	bReportSize	1	0x00	Variable size but smaller than max packet size
16	bReportSize	1	0x00	Variable size but smaller than max packet size
17	bReportSize	1	0x00	Variable size but smaller than max packet size
18	bReportSize	1	0x00	Variable size but smaller than max packet size
19	wReports	2	0x0616	Endpoint address 0x06
				Device control only endpoint and support for 6 reports (16)
21	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 0
22	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 1
23	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 2
24	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 3
25	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 4
26	bReportSize	1	0x00	Variable size but smaller than max packet size for report ID 5

Table 67: XUSB interface device descriptor for voice interface

3.3.1.1.3 Endpoint Descriptor (IN 0x83)

The endpoint descriptor (IN 0x83) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x83	IN endpoint address 0x83
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	0x02	Polling interval for this endpoint in milliseconds

Table 68: Voice IN endpoint descriptor for voice interface

3.3.1.1.4 Endpoint Descriptor (IN 0x85)

The endpoint descriptor (IN 0x85) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x85	IN endpoint address 0x85
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	0x40	Polling interval for this endpoint in milliseconds

Table 69: Voice status endpoint IN descriptor for voice interface

3.3.1.1.5 Endpoint Descriptor (OUT 0x04)

The endpoint descriptor (OUT 0x04) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x04	OUT endpoint address 0x04
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	0x04	Polling interval for this endpoint in milliseconds

Table 70: Voice OUT endpoint OUT descriptor for voice interface

3.3.1.1.6 Endpoint Descriptor (OUT 0x06)

The endpoint descriptor (OUT 0x06) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x06	OUT endpoint address 0x06
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	0x10	Polling interval for this endpoint in milliseconds

Table 71: Voice control endpoint OUT descriptor for voice interface

3.3.2 Timers

See section 3.2.2 for XUSB timers.

3.3.3 Initialization

All XUSB devices use the default address 0 when initially powered or after the device has been reset.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Voice Interrupt IN Endpoint (0x83)

The Voice Interrupt IN endpoint (0x83) is for the device to transfer the voice upstream data (microphone input) to the host. The upstream voice data field contains 64 or 128 voice samples depending on the voice codec used.

For G.726 ADPCM encoded upstream voice, the report contains 64 samples, and each sample is 4 bit and is encoded by ITU G.726 ADPCM encoder at 16 KHz sampling rate. Two samples are packed in one byte and the byte ordering in the packet follows the time sequence. For example, the first byte represents the first two voice samples and is sent first.

In each byte, the low nibble of the voice data represents the first voice sample, and the high nibble represents the second sample. Since this is encoded at a 16 KHz sample rate, a new 32-byte report is available every 4 ms.

If u-law is used, the report contains 32 samples, and each byte represents a voice sample. Since this is encoded at an 8 KHz sample rate, a new 32-byte report is available every 4 ms.

There MUST be two interrupt IN transactions to complete one report for the upstream.

3.3.5.2 Voice Interrupt IN Endpoint 2 (0x85)

The Voice Interrupt IN endpoint (0x85) is for the device to transfer the voice upstream data (microphone input) to the host. The format of the report is shown in the following table. All the reports in this endpoint can be queried by host via Get_Report request.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x00			Report ID
1	bSize	1				Size of this report
2	Status	bSize-2				Status report message

Table 72: Voice Interrupt IN endpoint 2 report

The report ID defines the status report type that is sent back by the voice communicator. The definitions are shown in the following table.

Report ID	Description
0x00	Headset status report
0x01	Microphone status report
0x02	Playback volume setting report
0x03	Vox Status
0x04	Mic AGC On/Off Status
0x05	Voice codec type report

Table 73: Voice Communicator status ID definitions

3.3.5.2.1 Headset Status Report

The headset plugged in report reports if user has plugged in the headset, and if the headset is the headset or microphone. The following table shows the report.

Offset	Field	Default	Description
0	bReport ID	0x00	Report ID
1	bSize	0x04	Size of this report
2	Plug-in Status	0x00	0: Not plugged in 1: Voice device plugged in
3	bType	0x00/0x01	Headset is a microphone only or headset 0: Headset 1: Microphone only

Table 74: Headset Status Report

3.3.5.2.2 Microphone Status Report

The microphone status report reports the status of the microphone (muted or un-muted) and whether it supports muting. The report for the microphone status is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x01	Report ID
1	bSize	0x03	Size of this report
2	bStatus	0x00/0x01	Microphone mute state 0 – microphone is un-muted 1 – microphone is muted 0xFF – device does not support mute/un-mute microphone

Table 75: Microphone status report

3.3.5.2.3 Playback Volume Setting Report

The playback volume setting report reports the playback volume setting (muted, maximum volume, does not support volume setting). The playback volume setting report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x02	Report ID
1	bSize	0x03	Size of this report
2	Volume setting	0x00 to 0x0F	Playback volume setting 0x00: Playback is muted 0x0F: Max volume 0xFF: Device does not support playback volume setting control

Table 76: Playback Volume settings

3.3.5.2.4 Vox Setting Report

The Vox setting report returns the status of the Vox control. The status report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x03	Report ID
1	bSize	0x05	Size of this report
2	Vox On/Off	0x00	Vox on/off statusl 0: Vox is on 1: Vox is off 0xFF: Device does not support Vox
3	Vox Attack Time		Vox attack time in ms
4	Vox decay time		Vox decay time in ms

Table 77: Vox status

3.3.5.2.5 AGC Status Report

The automatic gain control (AGC) on/off status report returns the AGC status. The AGC status report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x04	Report ID
1	bSize	0x03	Size of this report
2	AGC On/Off	0x00 0x00: AGC is off	
			0x01: AGC is on
			0xFF: Device does not support AGC

Table 78: AGC On/Off control

3.3.5.2.6 Voice Codec Report

The voice codec type report indicates the codec type at which the voice device is set. This report is sent back to host whenever the host changes the codec type. The default codec type is G.726. Voice Codec Report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x05	Report ID
1	bSize	0x03	Size of this report
2	Codec type	0x00	0x00: G.726
			0x01: u-law

Table 79: Voice Codec report

3.3.5.3 Voice Interrupt OUT Endpoint (0x04)

The voice interrupt endpoint (OUT 0x04) is supported for the host to send voice data to the device. The downstream report contains 64 voice samples. Each sample is 4 bit and encoded by ITU G.726 at 8 KHz sampling rate. The downstream report can be fitted into one interrupt OUT report.

3.3.5.4 Voice control Interrupt OUT Endpoint (0x06)

The voice control interrupt endpoint (OUT 0x06) is used for the host to send voice device control requests. The format of the report is shown in the following table.

Offset	Field	Size	Description
0	bReport ID	1	Report ID
1	bSize	1	Size of this report
2	Request	bSize-2	Request report message

Table 80: Voice Interrupt OUT Endpoint 2 report

The report ID defines the request type the host sends to the voice communicator. The definitions are shown in the following table.

Report ID	Description
0x00	Voice Input Codec Selection
0x01	Microphone Mute On/Off
0x02	Playback Volume Setting
0x03	Vox Control
0x04	MIC AGC On/Off

Table 81: Voice Communicator request ID definitions

Whenever device receives a control packet from host, it sends back a status report that reflects the change after it accepts the control. The device will not send back any status report if the control is not recognized.

All the control reports can also be sent to device via Set_Report request.

3.3.5.4.1 Voice Input Codec Selection

The voice input codec selection request sets the code type for the voice input. The report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x00	Report ID
1	bSize	0x03	Size of this report
2	Codec type	0x00	0x00: G.726 at 16 KHz
			0x01: u-law at 64 Kbps

Table 82: Codec Selection request

3.3.5.4.2 Microphone Mute Control

The microphone mute control mutes or unmutes the the microphone. The microphone control request is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x01	Report ID
1	bSize	0x03	Size of this report
2		0x00	Microphone mute control
			0: un-mute microphone
			1: mute microphone

Table 83: Microphone Mute control

3.3.5.4.3 Playback Volume Setting Report

The playback volume setting report reports on the mute state and the playback volume. The playback volume setting report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x02	Report ID
1	bSize	0x03	Size of this report
2	Volume setting	0x0F	Playback volume setting
0x00 – mute playback			
0x0F – set to max volume			

Table 84: Playback Volume settings

3.3.5.4.4 Vox Control

The Vox control report turns Vox on or off, and set the attack and decay. The report for the Vox control is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x03	Report ID
1	bSize	0x05	Size of this report
2	Vox On/Off	0x00	Vox on/off control 0: Turn on Vox 1: Turn off Vox
3	Vox Attack Time		Vox attack time in ms
4	Vox decay time		Vox decay time in ms

Table 85: Vox Control

3.3.5.4.5 AGC Control

The AGC control report turns the AGC on or off. The AGC control report is shown in the following table.

Offset	Field	Default	Description
0	bReport ID	0x04	Report ID
1	bSize	0x03	Size of this report
2	AGC On/Off	0x00	0x00: Turn off AGC 0x01: Turn on AGC

Table 86: AGC On/Off control

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 Text Input Device Interface (Interface 2) Details

This interface is for text input device and has one interrupt IN endpoint associated with it.

Two reports are supported. Report ID indicates what type of report is in the packet. The default data input report has report ID 0x00. The following table shows the report ID definitions.

Report ID	Description
0x00	Default TID data input report
0x01	TID status report

Table 87: Game Controller Interrupt IN transfer report ID definition

3.4.1 Abstract Data Model

See section 3.2.1 for state.

3.4.1.1 Text Input Device Interface Descriptors

3.4.1.1.1 TID Interface Descriptor

The TID interface descriptor is listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type
2	bInterfaceNumber	1	0x02	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x01	Total endpoint number for this interface
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	XUSB device.
7	bInterfaceProtocol	1	0x02	0x02 for TID protocol
8	bInterfaceString	1	0x00	No string descriptor

Table 88: Interface descriptor for Voice Communicator Interface

3.4.1.1.2 XUSB Interface Device Descriptor

The XUSB interface device descriptor is listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of the descriptor
1	bDescriptorType	1	0x21	XUSB interface descriptor
2	bcdXUSB	2	0x0100	XUSB protocol version 1.00
4	bDeviceSubtype	1	0x01	Keypad type
5	wReports	2	0x8722	Endpoint address 0x87 Mix endpoint and support 2 reports
7	breportsize	1	0x07	07 bytes for report 0x00
8	breportsize	1	0x00	Variable size

Table 89: XUSB Interface Device descriptors for TID interface

3.4.1.1.3 Endpoint Descriptor (IN 0x87)

The endpoint descriptor (IN 0x87) is listed in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
blength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x87	IN endpoint address 0x87
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
bInterval	0x10	Polling interval for this endpoint in milliseconds

Table 90: Endpoint IN descriptor for TID interface

3.4.2 Timers

None.

3.4.3 Initialization

All XUSB devices use the default address 0 when initially powered or after the device has been reset.

3.4.4 Higher-Layer Triggered Events

None.

3.4.5 Message Processing Events and Sequencing Rules

3.4.5.1 Default TID Input Report (Report ID 0x00)

The TID input data report is the default report. The format is shown in the following table. This report can be accessed by the host via Get Report.

Offset	Field	Size	Default	Min	Max	Description
0	bReport ID	1	0x00			Report ID for the default controller input report
1	bSize	1	7			Size of this report
2	bmModifier	1	0			Bit map for the modifier keys
3	bKeycode 1	1	0	0	255	Key code 1
4	bKeycode 2	1	0	0	255	Key code 2
5	Reserved	2				Reserved

Table 91: Game Pad default input report

3.4.5.1.1 TID Backlight Status Report (Report ID 0x01)

The TID backlight status report contains the current TID backlight status. This report is optional. The format of the device status report is shown in the following table. This report can be accessed by the host via Get_Report.

Offset	Field	Size	Default	Description
0	bReport ID	1	0x01	Report ID for the default controller input report

Offset	Field	Size	Default	Description
1	bSize	1	0x03	Size of this report
2	Backlight Status	1		Status report message 0x00: Backlight is off 0x01: Backlight is on

Table 92: TID Backlight status report

3.4.5.1.2 TID Control Request

The TID control is done by the host sending the vendor specific Set_ Control request. The request format is shown in the following table.

Offset	Field	Size	Value	Description
0	bmRequestType	1	0x41	From host to device, interface level
1	bRequest	1	0x00	Set_Control
2	wValue	2	controls	Back Light on/off control 0x0000: Turn off the backlight 0x0001: Turn on the backlight
4	wIndex	2	0x0002	The TID interface
6	wLength	2	0x0000	No data stage

Table 93: SET_TID_BACKLIGHT request

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

3.5 XUSB Adapter USB Interfaces Structure

XUSB Adapter supports up to four wireless game controllers and four voice communicators. Total eight interrupt IN and eight interrupt OUT endpoints are implemented for data exchange between the host system and wireless devices.

Each function is represented by a dedicated USB interface. Each interface has two endpoints associated with it. The following table lists the different interfaces and the endpoints associated with them.

Interface	Function	Endpoints
0	Default Device Control interface	Control endpoint
1	Controller #1 and device control interface	1 interrupt IN 1 interrupt OUT
2	Voice device #1data interface	1 interrupt IN 1 interrupt OUT
7	Controller #4 and device control interface	1 interrupt IN 1 interrupt OUT

Interface	Function	Endpoints
8	Voice device #4 data interface	1 interrupt IN
		1 interrupt OUT

Table 94: XUSB Adapter Interface/endpoints allocation

Note that the interface number listed in the previous table is for reference only. The host SHOULD decode the interface descriptor and decide what interface maps to what function.

For voice data transfer, its polling rate is set in such a way that one re-transmission is allowed for each voice data packet transfer in the event of bus error. For example, to support 64 Kbps voice upstream, the device needs to send 64 bytes in every 8 ms. The polling rate is set as 2 ms. Device NAKs the second interrupt poll request if the first data transfer is successful.

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation can maintain to participate in this protocol. The organization is provided to help explain how the protocol works. This document does not require that implementations adhere to this model, provided their external behavior is consistent with that specified in this document.

The following elements are described by this protocol.

XUSB Adapter supports all USB states except the USB state suspend:

- Powered
- Default
- Addressed
- Configured

Powered State

XUSB Adapter is a bus powered USB device, and it is in the powered state once it draws power from the standby power supply.

Default State

After the device has been powered, it MUST NOT respond to any bus transactions until it has received a reset from the bus. After receiving a reset, the device then accepts USB requests with default address 0.

Address State

XUSB Adapter uses the default address 0 when initially powered or after the device has been reset. XUSB Adapter is assigned a unique address by the host. XUSB Adapter maintains its address as long as it is powered.

Configured State

Before XUSB Adapter's functions can be used, the device MUST be configured. From the device's perspective, configuration involves writing a non-zero value to the device configuration register. XUSB Adapter does not support multiple configurations.

The device can be de-configured by being assigned a 0 configuration value. De-configure the device causes all the status and configuration values associated with endpoints in the affected interfaces to be set to their default values. This includes setting the data toggle of any endpoint using data toggles to the value DATA0.

3.5.1.1 XUSB Adapter Controller and Devices Control Interface

This interface handles the data exchange between the host and one wireless controller, and the input data from a plug-in device such as TID. The interface also handles the control information and device state information for the game controller, plug-in device, and voice device associated with the game controller.

One interrupt IN and one interrupt OUT endpoints are associated with this interface. The IN endpoint is for game controller data input as well as the devices status reports, including the plug-in device and voice device. The OUT endpoint is designed for sending the motor control data and the control requests for all the devices.

3.5.1.1.1 Interface Descriptor

The Game Controller interface descriptor is listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type
2	bInterfaceNumber	1	number	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x02	Total endpoint number for this interface
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	XUSB device
7	bInterfaceProtocol	1	0x81	0x81 for XUSB Adapter game controller interface
8	bInterfaceString	1	0x00	No string descriptor

Table 95: Interface Descriptor for Game Controller Interface

3.5.1.1.2 XUSB Adapter Interface Device Descriptor

The XUSB interface device descriptor for Game Control interface is listed in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x14	Size of the descriptor
1	bDescriptorType	1	0x22	XUSB Adapter interface descriptor
2	bcdXUSB Adapter	2	0x0100	XUSB Adapter protocol version 1.00
4	wReports	2	0x8113	endpoint address 0x81
				Data/status mix endpoint and support 3 reports. There is also a descriptor with 0x83, 0x85 and 0x87 for the other endpoints.
6	wReportsize	2	0x001D	Report size is 29 bytes for report 0x00
8	wReportsize	2	0x011C	Report size is 28 bytes for report 0x01
10	wReportsize	2	0x0802	Report size is 2 bytes for report 0x08
12	wReports	2	0x0113	endpoint address 0x01 Data/status mix endpoint and support 3 reports. There is also a descriptor with 0x03, 0x05 and 0x07 for the other endpoints
14	wReportsize	2	0x000C	Report size is 12 bytes for report 0x00
16	wReportsize	2	0x010C	Report size is 12 bytes for report 0x01

Offset	Field	Size	Value	Description
18	wReportsize	2	0x0802	Report size is 2 bytes for report 0x08

Table 96: XUSB interface device descriptor for Game Control interface

3.5.1.1.3 Endpoint Descriptor (IN 0x81)

The endpoint descriptor (IN 0x81) is described in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description
bLength	0x07	Length of this endpoint descriptor
bDescriptorType	0x05	Endpoint descriptor type
bEndpointAddress	0x81	IN endpoint address 1
bmAttributes	0x03	Interrupt endpoint type
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)
intervals	0x01	Polling interval for this endpoint in milliseconds

Table 97: Endpoint IN Descriptor for Game Controller Interface

3.5.1.1.4 Endpoint Descriptor (OUT 0x02)

The endpoint descriptor (OUT 0x02) is described in the following table. The endpoint address is determined by the individual chip design.

Field	Value	Description		
bLength	0x07	Length of this endpoint descriptor		
bDescriptorType	0x05	Endpoint descriptor type		
bEndpointAddress	0x02	OUT endpoint address 2		
bmAttributes	0x03	Interrupt endpoint type		
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)		
bInterval	0x08	Polling interval for this endpoint in milliseconds		

Table 98: Endpoint OUT descriptor for Game Controller interface

3.5.2 Timers

XUSB Adapter follows the standard USB 2.0 event timing except for the device suspend. It does not support USB suspend.

3.5.3 Initialization

All XUSB devices use the default address 0 when initially powered or after the device has been reset.

3.5.4 Higher-Layer Triggered Events

3.5.5 Message Processing Events and Sequencing Rules

3.5.5.1 Game Controller Input Data Transfer

The structure of the interrupt IN transfer for the game controller is shown in the following table.

Offset	Field	Size Description	
0	Report ID	1	Report ID indicates the type of the report
131	Report body	131	Up to 31 byte report data

Table 99: Game Controller Interrupt IN structure

Multiple reports are supported by the device. Report ID indicates what type of report is in the transfer. The following table shows the report ID definition.

Report ID	Description
0x00	Wireless controller data/device status reports
0x01	Same slot voice device reports
0x08	Device connection status report

Table 100: Game Controller Interrupt IN transfer report ID definition

3.5.5.1.1 Wireless Controller Data/Device Status Input Report (Report ID 0x00)

The wireless controller data/device status input report is the default input report. This report is fixed length report and contains 29 bytes. The report contains the header information about the wireless controller and the data report. The format of the report is shown in the following table.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x00	Report ID 0x00 for the controller inputs
1	bType	1		Report type
2	Report	27		Controller report, fixed 27 bytes

Table 101: Wireless Controller header input report

The **bType** field specifies which kind of data is contained in this report. The following table shows what reports are supported.

bType	Description	Receiver Operation
0x00	Game pad header packet, data field is invalid	Only decodes the header field, discard data field
0x01	Controller data & header packet type	Packet contains only the controller data packet and header
0x02	Plug-in module data & header	Packet only contains plug-in module data and header
0x03	Controller, plug-in module data, and header	Packet contains both controller and plug-in module data and header
0x04	Data transport packet for security chip	Security transport packet
0x05	Data transport packet for UART port or generic use	Transport packet for UART port or generic use
0x09	Battery PID Packet	Packet for battery PID
0x0A	Battery Copyright String Packet	Packet for battery copyright string
0x0F	Link control ACK packet	Packet contains the link control information & device 28 bit

bType	Description Receiver Operation	
		ID and device reports
0xF8	Data Link RSSI Report	States RSSI strength of connected data link of a data device
0xF9	Voice Link RSSI Report	States RSSI strength of connected voice link

Table 102: Wireless Report type definition

3.5.5.1.1.1 Header Only Report Type 0x00

The header only report format is shown in the following table. It contains 17 bits of header information.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x00	Report ID 0x00 for the controller inputs
1	Туре	1	0x00	Controller data and header
2	Reserved	1		Set as 0
3	Header MSB	1		Header MSB B7B4: Report ID B3B0: 4 MSb of the report
4	Header LSB	1		Header LSB B7B0: 8 LSb of the report
5	Reserved	24		Reserved

Table 103: Type 0x01 report format

3.5.5.1.1.2 Header and Controller Data Type 0x01

The controller data report is a 19-byte field received by the XUSB adapter which forwards it to the host. The XUSB adapter does not perform packet parsing or decoding. The following table shows the report format.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x00	Report ID 0x00 for the controller inputs
1	Туре	1	0x01	Controller data and header
2	Reserved	1		Set as 0
3	Header MSB	1		Header MSB B7B4: Report ID B3B0: 4 MSb of the report
4	Header LSB	1		Header LSB B7B0: 8 LSb of the report
5	Controller	19		Controller data
24	Reserved	5		Reserved

Table 104: Type 0x01 Report Format

The first byte of the 19 bytes of the **Controller** field data determine what type of data is in the 19 bytes. The following table shows the **bReportTypes**.

bReportType	Description	
0x000x01	Reserved	

bReportType	Description		
0x02	FFB Controller Data Report		
0x030x12	Reserved		
0x13	Game Controller Input Data Report		
0x140xFF	Reserved		

Table 105: Controller Data 0x01 bReportTypes

The controller data format for device type 0, gamepad, is shown in the following table. Different device types MAY have a different format. See the specification related to the device in which you are interested.

Offset	Field	Size	Default	Min	Max	Description
0	bSize	1	0x13			Size of this report 19 bytes
1	bmButtons	2	0	0	1	Bit array for digital buttons & ABXY
3	bLeftTrigger	1	0	0	255	Left trigger
4	bRightTrigger	1	0	0	255	Right trigger
5	wThumbLX	2	0	-32768	32767	X position of left thumb stick
7	wThumbLY	2	0	-32768	32767	Y position of left thumb stick
9	wThumbRX	2	0	-32768	32767	X position of right thumb stick
11	wThumbRY	2	0	-32768	32767	Y position of right thumb stick
13	Reserved	6	0	0	0	Reserved

Table 106: Controller Data Format

The **bmButtons** field is shown in the following table.

Bit	Field	Description
0	Dpad Up	Dpad Up switch
1	Dpad Down	Dpad Down switch
2	Dpad Left	Dpad Left switch
3	Dpad Right	Dpad Right switch
4	Start	Start button
5	Back	Back button
6	Left Thumbswitch	Left Joystick switch
7	Right Thumbswitch	Right Joystick switch
8	LeftShoulder	Left Shoulder switch
9	RightShoulder	Right Shoulder switch
10	Xe	Xe Switch
11	Binding	Binding Switch
12	A	A button
13	В	B button
14	X	X button
15	Υ	Y button

Table 107: bmButtons field definitions

3.5.5.1.1.3 Header, Controller, and Plug-in Module Data Type 0x03

The header, controller, and plug-in module data (type 0x03) contains the header, and both the controller data report as well as the plug-in module data report. The Plug-In data is ignored by the host. The format is shown in the following table.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x00	Report ID 0x00 for the controller inputs
1	Туре	1	0x03	Controller data and header
2	Reserved	1		Set to 0
3	Header	2		Header
5	Controller	19		Controller data
24	Plug-in	5		Plug-in data (Ignored)

Table 108: Type 0x03 report format

3.5.5.1.1.4 Link Control Packet Type 0x0F

The link control packet (type 0x0F) contains the necessary wireless link information for the discovery process. The XUSB Adapter decodes this packet and makes proper adjustment to its downstream packet structure. This packet is also forwarded to the host by the XUSB Adapter. The following table shows the type 0x0F report format.

Offset	Field	Size (bytes)	Default	Description
0	bReport ID	1	0x00	Report ID 0x00 for the controller inputs
1	bType	1	0x0F	Controller data and header
2	Reserved	1		Set to 0
3	Header	2		Header
5	bLinkID	1	0xCC	Link ACK packet ID
6	Host ID	4		28-bit host ID D0D3: Reserved, set to 0 D4D31: Host ID
10	Device ID	4		32-bit device ID
14	wReport	2	/	Controller Device Type and version
16	wReport	2		Controller Device State
18	wReport	2		Controller Protocol Version
20	wReport	2		Controller Supported Security Level
22	wReport	2		Controller Vendor ID
24	wReport	2		Controller Sub Type
26	Reserved	3	0xFFFFFF	Reserved

Table 109: Type 0x0F Report Format

3.5.5.1.2 Same Slot Voice Device Reports (Report ID 0x01)

There are multiple reports supported by the report ID 0x01. The reports are the status/binding/transport reports from the same slot voice device. The report format is shown in the following table.

Offset	Field	Size	Default	Description
0	bReport ID	1	0x01	Report ID
1	bType	1		Report Type
2	Header MSB	1		Voice device header message MSB
3	Header LSB	1		Voice device header message LSB
4	Report	24		Report field

Table 110: Wireless Controller Host Control request

The **Header** field contains the voice device header information. This is a 16-bit field and contains the information such as QoS, device request, and so on.

The **bType** field identifies what type of data packet the report contains. Each type of message has its own unique data structure. The report type definitions are shown in the following table.

bType Description			
0x00	Device ID and Link Control		
0x01	Transport Packet		
0x020xFF	Reserved		

Table 111: Message ID definitions

These reports are sent to the host via the even number data endpoints.

3.5.5.1.2.1 Device ID and Link Control Type 0x00

The device ID and link control report (type 0x00) sends the host the device 32-bit serial ID and reports back the 28-bit host ID for the host to verify by matching. The format is shown in the following table.

Offset	Field	Size	Default	Description	
0	bReport ID	1	0x01	Report ID	
1	bType	1	0x00	Report Type 0x00	
2	Header	2		Voice device header	
4	LinkID	1	0x0C	Link ACK ID	
5	Host ID	4		28-bit host ID The packet 0x12 0x34 0x56 0x70 represents the host ID 0x1234567. The low nibble of the LSB is reserved and set as 0.	
9	Device ID	4		32-bit device ID.	
12	Report	4		Vendor ID and device reports B31B20: 12-bit vendor ID B19B11: 9-bit device type report B10B2: 9-bit playback volume report B0B1: 0	
16	Reserved	11	0x00	Reserved, set as 0	

Table 112: Voice report type 0x00 report format

3.5.5.1.2.2 Device Transport Packet Type 0x01

The Voice report (type 0x01) format is shown in the following table. The XUSB Adapter does not decode this packet and forward it to host once it receives this packet.

Offset	Field	Size	Default	Description
0	bReport ID	1	0x01	Report ID
1	bType	1	0x01	Report Type 0x01
2	Header	2		Voice device header
4	рТуре	1		Device Dependent
5	Data	23		Transport data. pType Dependent

Table 113: Voice report type 0x01 report format

3.5.5.1.2.3 Voice Header Packet Type 0xFF

The voice header packet (type 0xFF) report contains the 16-bit header info for the voice device. It has the following format.

Offset	Field	Size	Default	Description
0	bReport ID	1	0x01	Report ID
1	bType	1	0xFF	Report Type 0xFF
2	Header	2		Voice device header
4	Reserved	24	0	Set as 0

Table 114: Voice report Type 0x02 report format

3.5.5.1.3 Wireless Devices Connection Status Report (Report ID 0x08)

The wireless devices connection status report (ID 0x08) sends the update on the current wireless device connection status. The report is sent to the host whenever a device is attached or detached from the wireless network.

This message is sent upstream for two reasons: in response to a Wireless Device Connection request or whenever there is a change in the connection status. This report is automatically sent to the host when a new data or voice connection is established or lost. The format of the report is shown in the following table.

Offset	Field	Size (bytes)	Default	Description
0	Report ID	1	0x08	Report ID 0x08
1	bmConnection	1		B7: Data device connection 0: Detached 1: Attached B6: Voice device connection 0: Detached 1: Attached B5B0: Reserved

Table 115: Wireless Device connection status

3.5.5.2 Game Controller Output Requests

The structure of the interrupt OUT transfer for the game controller is shown in the following table.

Offset	Field Size		Description
0	Request ID	1	Request ID indicates the type of the request
131	Request body	31	Up to 31-byte request data

Table 116: Game Controller interrupt OUT structure

Three output requests are supported by the device. Request ID indicates what type of request is in the transfer. The following table shows the request ID definition.

Request ID Description			
0x00	Wireless controller control request		
0x01	Same slot voice device control request		
0x08	Device connection request		

Table 117: Game Controller Output transfer request ID definition

For the control Interrupt OUT requests, XUSB Adapter sends NAK to the host Interrupt OUT request if the previous received Interrupt OUT request is still pending for being sent to the downstream wireless devices (wireless controller, voice device, and so on). In other words, XUSB Adapter does not accept any new control Interrupt OUT requests from host unless it has processed the currently received one.

This will ensure the sequence of the host requests intact. The first control OUT request from host is sent to the downstream device first, and so on.

3.5.5.2.1 Wireless Controller Control Request (Request ID 0x00)

The wireless controller control request is used by the host to send the game pad control data. The format of the request is shown in the following table.

Offset	Field	Size	Default	Description	
0	bRequest ID	1	0x00	Request ID	
1	bType	1		Request Type	
2	Header MSB	1		Controller header message MSB B7B4: Reserved, set as 0 B3B0: 4 most significant bits for Request ID B5B0: Request Field	
3	Header LSB	1		Controller header message LSB B7B6: 2 least significant bits for Request ID B5B0: Request Field	
4	Control	8		Control Field	

Table 118: Controller Output request format

The **bType** field specifies the request types supported. Reserved **bType** are not sent over the air to devices. They are discarded by the XUSB Adapter. If it is necessary to create a new **bType**, they are not sent out via the air. The following table lists the **bType** field definitions.

bType	Description
0x00	No data, header field only
0x01	Rumble data
0x020x0F	Reserved

Table 119: Controller Output request bType field definitions

3.5.5.2.1.1 Header Only Request Type 0x00

The header only request (type 0x00) contains only the header information that the host sends to the controller and its plug-in device. The request format is shown in the following table.

Offset	Field	Size	Default	Description
0	bRequestID	1	0x00	Request ID
1	bType	1	0x00	Header only
2	Header	2		Controller header message B15B12: Reserved B11B6: Request ID B5B0: Request Field
4	Request	8		No request, set as 0

Table 120: Header Only request format

3.5.5.2.1.2 Rumble/Force Feedback Data Request Type 0x01

The rumble/force feedback data request contains the control data for the rumble motors. The following table shows the request structure.

Offset	Field	Size	Default	Description
0	bRequest ID	1	0x00	Request ID
1	bType	1	0x01	Rumble motor/FFB request
2	Header	2		Controller header message B15B12: Reserved B11B6: Request ID B5B0: Request Field
4	bRequestType	1		Single motor = 0x01
5	Data	7		Specific to bRequestType

Table 121: Rumble/FFB data request

This downstream request is used for rumble data and force feedback. The field **bRequestType**, offset 4, determines the type of request as shown in the following table.

bRequestType	Description
0x00	Dual Motor Vibration Command
0x01	Single Motor Vibration Command

Table 122: bRequestType for Rumber/FFB

The following table shows the format for the dual motor operation request for a device type 0, gamepad.

Offset	Field	Size	Default	Description
0	bRequest ID	1	0x00	Request ID
1	bType	1	0x01	Rumble motor request
2	Header	2		Controller header message
				B15B12: Reserved
				B11B6: Request ID

Offset	Field	Size	Default	Description
				B5B0: Request Field
4	bMotorType	1	0x00	Dual motor = 0x00
5	Mcontrol-1	1	0	Big motor rumble magnitude
6	Mcontrol-2	1	0	Small motor rumble magnitude
7	Reserved	5	0	

Table 123: Game Pad Rumble Motor Control request for Dual Motor operation

The following table shows the format for the single motor operation request for a device type 0, gamepad.

Offset	Field	Size	Default	Description
0	bRequest ID	1	0x00	Request ID
1	bType	1	0x01	Rumble motor request
2	Header	2		Controller header message B15B12: Reserved B11B6: Request ID B5B0: Request Field
4	bMotorType	1	0x01	Single motor = 0x01
5	bFrequency	1	0x00	BYTE Value. 0 – 0xFFfor motor speed
6	bAmplitude	1	0x00	BYTE Value. 0 – 0xFF for motor speed
7	bOffset	1	0x00	Byte Value. 0x80 - 0x7F for offset.
8	Reserved	4	0x00	Set as 0

Table 124: Game Pad Rumble Motor Control request for Single Motor operation

3.5.5.2.2 Voice Device Control Request (Request ID 0x01)

The voice device control request contains the control information that the host sends to the voice device. The XUSB Adapter does not parse this request and forwards the request to the voice device after it removes the request ID, adds some bits in the header field for its link control, and re-packages the data.

The format of the request is shown in the following table.

Offset	Field	Size	Default	Description
0	bRequest ID	1	0x01	Request ID
1	bType	1		Request Type
2	Header MSB	1		Voice device header message MSB B7B6: Reserved, set as 0 B5B4: Voice format B3B0: Request ID
3	Header LSB	1		Voice device header message LSB B7: Reserved, set as 0 B6B0: Voice request field
4	Request	8		Request field

Table 125: Wireless Controller Host Control request

The **Header** field contains the voice device header information. This is a 16-bit field and contains the request ID and the actual request that host sends to the voice device.

The **bType** field identifies what type of data packet the request contains. Each type of messages has its own unique data structure. The request type definitions are shown in the following table.

bType	Description
0x00	Reserved
0x01	Transport packet
0x03	Header only
0x040xFF	reserved

Table 126: bType definitions

3.5.5.2.2.1 Transport Packet Type 0x01

The transport packet (type 0x01) request contains the first 64 bits of the challenge code. The following table shows the request format.

Offset	Field	Size	Default	Description
0	bRequest ID	1	0x01	Request ID
1	bТуре	1	0x01	Request Type 0x01
2	Header	2		Voice header message D0D7: Voice request D8D11: Voice request ID D12D15: Reserved for XUSB Adapter use, host sets them as 00
4	рТуре	1		Device dependent
5	Data	7		Data to transport. pType dependent

Table 127: Voice request Type 0x01 Request Format

3.5.5.2.2.2 Voice Header Only Packet Type 0x03

The voice header only packet (type 0x03) request contains the 16 bit voice header information only. The following table contains the request format.

Offset	Field	Size	Default	Description	
0	bRequest ID	1	0x01	Request ID	
1	bType	1	0x03	Request Type 0x03	
2	Header	2		Voice header message D0D7: Voice request D8D11: Voice request ID D12D15: Reserved for XUSB Adapter use, host sets them as 00	
4	Reserved	0		Set as 0	

Table 128: Voice request Type 0x03 request format

3.5.5.2.3 Wireless Devices Connection Request (Request ID 0x08)

The wireless devices connection request (Report ID 0x08) asks the XUSB Adapter to send back the current device connection status. Upon receiving this request, the XUSB Adapter sends the host back the device connection report and the link control report. For the upstream response, see Wireless

Devices Connection Status Report (Report ID 0x08). The format of the request is shown in the following table.

Offset	Field	Size (bytes)	Default	Description
0	bReqeust ID	1	0x08	Request ID 0x08
1	bmConnection	1	0x00	0x00: Requesting connection status and Link Control Packet for data link 0x01: Requesting connection status and Link Control Packet for voice link 0x020xFF: Reserved
3	Reserved	10		Reserved, set to 0x00

Table 129: Wireless Device connection request

3.5.6 Timer Events

None.

3.5.7 Other Local Events

None.

3.6 XUSB Adapter Voice Communicator Interface

The XUSB adapter voice communicator interface handles the voice data exchange between the host and one voice device. One interrupt IN and one interrupt OUT endpoints are dedicated for each voice device data. The interrupt IN transfer is for voice data input. The interrupt OUT transfer is for voice output data.

The following table summarizes the report type and size.

Endpoint	Max packet size	Report size	Description
IN	32	64	Voice upstream data from device to host
OUT	32	32	Voice downstream from host to device

Table 130: Voice Data Type and report size

3.6.1 Abstract Data Model

See section 3.5.1 for adapter state.

3.6.1.1 XUSB Adapter Voice Communicator Descriptors

The following subsections define XUSB adapter interfaces and endpoints.

3.6.1.1.1 Interface Descriptor

The interface descriptor for Game Controller interface is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	INTERFACE descriptor type

Offset	Field	Size	Value	Description
2	bInterfaceNumber	1	number	Number of interface
3	bAlternateSetting	1	0x00	No alternate setting
4	bNumEndpoints	1	0x02	Total endpoint number for this interface
5	bInterfaceClass	1	0xFF	Vendor specific class
6	bInterfaceSubClass	1	0x5D	Microsoft special class device 0x5D.
7	bInterfaceProtocol	1	0x82	0x82 for XUSB Adapter voice interface
8	bInterfaceString	1	0x00	No string descriptor

Table 131: Interface Descriptor for Game Controller Interface

3.6.1.1.2 XUSB Adapter Interface Device Descriptor

The XUSB Adapter Interface Descriptor for Voice Interface is shown in the following table.

Offset	Field	Size	Value	Description
0	bLength	1	0x0C	Size of the descriptor
1	bDescriptorType	1	0x22	XUSB Adapter interface descriptor
2	bcdXUSB Adapter	2	0x0100	XUSB Adapter protocol version 1.00
4	wReports	2	0x8301	endpoint address 0x83 Data only endpoint and support 1 report
6	wReportsize	2	0x0040	64 bytes for report 0x00
8	wReports	2	0x0401	endpoint address 0x04 Data only endpoint and support 1 report
10	wReportsize	2	0x0020	32 bytes for report 0x00

Table 132: XUSB Adapter Interface Descriptor for Voice Interface

3.6.1.1.3 Endpoint Descriptor (IN 0x84)

The Endpoint OUT Descriptor for Voice Interface is shown in the following table. The endpoint address is determined by the individual chip design.

Field Value		Description	
bLength	0x07	Length of this endpoint descriptor	
bDescriptorType	0x05	Endpoint descriptor type	
bEndpointAddress 0x04		OUT endpoint address 2	
bmAttributes	0x03	Interrupt endpoint type	
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)	
bInterval 0x04		Polling interval for this endpoint in milliseconds	

Table 133: Endpoint OUT descriptor for Voice interface

3.6.1.1.4 Endpoint Descriptor (OUT 0x04)

The Endpoint OUT descriptor for Voice Interface is in the following table. The endpoint address is determined by the individual chip design.

Field Value		Description	
bLength	0x07	Length of this endpoint descriptor	
bDescriptorType	0x05	Endpoint descriptor type	
bEndpointAddress	0x04	OUT endpoint address 2	
bmAttributes	0x03	Interrupt endpoint type	
wMaxPacketSize	0x0020	Endpoint FIFO size (32 bytes)	
bInterval	0x04	Polling interval for this endpoint in milliseconds	

Table 134: Endpoint OUT descriptor for Voice interface

3.6.2 Timers

None.

3.6.3 Initialization

All XUSB devices use the default address 0 when initially powered or after the device has been reset.

3.6.4 Higher-Layer Triggered Events

None.

3.6.5 Message Processing Events and Sequencing Rules

3.6.5.1 Voice Communicator Data Transfer

Each voice communicator has one dedicated interrupt IN endpoint and one dedicated interrupt OUT endpoint for its voice upstream and downstream data transfer. No report ID is used. The following table summarizes the report type and size.

Endpoint	Max packet size	Report size	Description
IN	32	64	Voice upstream data from device to host
OUT	32	32	Voice downstream from host to device

Table 135: Voice Data Type and Report Size

3.6.5.1.1 Upstream Voice Data

The upstream voice data endpoint is for the device to transfer the voice upstream data (microphone input) to the host. The upstream voice data field contains 64 or 128 voice samples depending on the voice codec used.

For G.726 ADPCM encoded upstream voice, the report contains 128 samples, and each sample is 4 bits and is encoded by ITU G.726 ADPCM encoder at 16 KHz sampling rate. Two samples are packed in one byte and the byte ordering in the packet follows the time sequence. For example, the first byte represents the first two voice samples and is sent first.

In each byte, the low nibble of the voice data represents the first voice sample, and the high nibble represents the second sample.

If u-law is used, the report contains 64 samples, and each byte represents a voice sample.

There MUST be two interrupt IN transactions to complete one report for the upstream.

3.6.5.1.2 Downstream Voice Data

The downstream voice data OUT endpoint is supported for the host to send the voice data to the device. The downstream report contains 64 voice samples. Each sample is 4 bit and encoded by ITU G.726 at 8 KHz sampling rate.

The downstream report can be fit into one interrupt OUT report.

3.6.6 Timer Events

None.

3.6.7 Other Local Events

4 Protocol Examples

5 Security

5.1 Security Considerations for Implementers

See section 3.5.5.1.1 for Data transport packet for security chip and section 3.5.5.1.1.4 for Controller Supported Security Level.

5.2 Index of Security Parameters

6 Appendix A: Descriptor and Protocol Definitions

6.1 MS Interface Descriptor Type

The standard value of 0x21 defines USB devices. 0x22 serves to identify an XUSB adapter. The following table shows the descriptors.

Descriptor ID	Description
0x21	XUSB Interface Descriptor
0x22	XUSB Adapter Interface Descriptor

Table A: Microsoft interface descriptor types

6.2 MS Special Interface Protocol definitions

The following table lists Microsoft special interface protocol definitions.

Protocol ID	Description
0x01	Wired Game Controller Protocol
0x02	Text Input Device protocol
0x03	Wired Voice Communicator Protocol
0x81	XUSB Adapter Game Controller Protocol
0x82	XUSB Adapter Voice Communicator Protocol

Table B: Microsoft special interface protocol definitions

6.3 XUSB Adapter Interface Descriptor (Vendor Specific)

The following tables list the endpoints and descriptors for data and voice 1 through 4.

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x14	0x14	Descriptor size is 20 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8113	0x8113	Endpoint address 0x81 (Data 1 In). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x001D	0x001D	Report size is 29 bytes for report ID 0x00, Wireless controller data/device status reports
wReportSize	16	0x011C	0x011C	Report size is 28 bytes for report ID 0x01, Same slot voice device reports
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection status report
wReportSize	16	0x0113	0x0113	Endpoint address 0x01 (Data 1 Out). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x000C	0x000C	Report size is 12 bytes for report ID 0x00, Wireless controller control request

Field	Length (bits)	Decoded	Hex Value	Description
wReportSize	16	0x010C	0x010C	Report size is 12 bytes for report ID 0x01, Voice Device Control request
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection request report

Table C: Endpoints 0x81 and 0x01 Descriptor - Data 1 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x0C	0x0C	Descriptor size is 12 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8201	0x8201	Endpoint address 0x82 (Voice 1 In). Voice data only endpoint and supports 1 report type
wReportSize	16	0x0040	0x0040	Report size is 64 bytes for report ID 0x00, voice data.
wReportSize	16	0x0201	0x0201	Endpoint address 0x02 (Voice 1 Out). Voice data only endpoint and supports 1 report type
wReportSize	16	0x0020	0x0020	Report size is 32 bytes for report ID 0x00, voice data

Table D: Endpoints 0x82 and 0x02 Descriptor - Voice 1 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x14	0x14	Descriptor size is 20 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8313	0x8313	Endpoint address 0x83 (Data 3 In). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x001D	0x001D	Report size is 29 bytes for report ID 0x00, Wireless controller data/device status reports
wReportSize	16	0x011C	0x011C	Report size is 28 bytes for report ID 0x01, Same slot voice device reports.
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection status report
wReportSize	16	0x0313	0x0313	Endpoint address 0x03 (Data 3 Out). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x000C	0x000C	Report size is 12 bytes for report ID 0x00, Wireless controller control request
wReportSize	16	0x010C	0x010C	Report size is 12 bytes for report ID 0x01, Voice Device Control request
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection request report

Table E: Endpoints 0x83 and 0x03 Descriptor - Data 2 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x0C	0x0C	Descriptor size is 12 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8401	0x8401	Endpoint address 0x84 (Voice 2 In). Voice data in endpoint and supports 1 report type
wReportSize	16	0x0040	0x0040	Report size is 64 bytes for report ID 0x00, voice data.
wReportSize	16	0x0401	0x0401	Endpoint address 0x04 (Voice 2 Out). Voice data only endpoint and supports 1 report type
wReportSize	16	0x0020	0x0020	Report size is 32 bytes for report ID 0x00, voice data

Table F: Endpoints 0x84 and 0x04 Descriptor - Voice 2 In and Out

	Length		Hex	
Field	(bits)	Decoded	Value	Description
bLength	8	0x14	0x14	Descriptor size is 20 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8513	0x8513	Endpoint address 0x85 (Data 3 In). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x001D	0x001D	Report size is 29 bytes for report ID 0x00, Wireless controller data/device status reports
wReportSize	16	0x011C	0x011C	Report size is 28 bytes for report ID 0x01, Same slot voice device reports.
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection status report
wReportSize	16	0x0513	0x0513	Endpoint address 0x05 (Data 3 Out). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x000C	0x000C	Report size is 12 bytes for report ID 0x00, Wireless controller control request
wReportSize	16	0x010C	0x010C	Report size is 12 bytes for report ID 0x01, Voice Device Control request
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection request report

Table G: Endpoints 0x85 and 0x05 Descriptor - Data 3 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x0C	0x0C	Descriptor size is 12 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8601	0x8601	Endpoint address 0x86 (Voice 3 In). Voice data in

Field	Length (bits)	Decoded	Hex Value	Description
				endpoint and supports 1 report type
wReportSize	16	0x0040	0x0040	Report size is 64 bytes for report ID 0x00, voice data.
wReportSize	16	0x0601	0x0601	Endpoint address 0x06 (Voice 3 Out). Voice data only endpoint and supports 1 report type
wReportSize	16	0x0020	0x0020	Report size is 32 bytes for report ID 0x00, voice data

Table H: Endpoints 0x86 and 0x06 Descriptor - Voice 3 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x14	0x14	Descriptor size is 20 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8713	0x8713	Endpoint address 0x87 (Data 4 In). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x001D	0x001D	Report size is 29 bytes for report ID 0x00, Wireless controller data/device status reports
wReportSize	16	0x011C	0x011C	Report size is 28 bytes for report ID 0x01, Same slot voice device reports.
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection status report
wReportSize	16	0x0713	0x0713	Endpoint address 0x07 (Data 4 Out). Data/status mix endpoint and supports 3 report types
wReportSize	16	0x000C	0x000C	Report size is 12 bytes for report ID 0x00, Wireless controller control request
wReportSize	16	0x010C	0x010C	Report size is 12 bytes for report ID 0x01, Voice Device Control request
wReportSize	16	0x0802	0x0802	Report size is 2 bytes for report ID 0x08, Device connection request report

Table I: Endpoints 0x87 and 0x07 Descriptor - Data 4 In and Out

Field	Length (bits)	Decoded	Hex Value	Description
bLength	8	0x0C	0x0C	Descriptor size is 12 bytes
bDescriptorType	8	0x22	0x22	XUSB Adapter interface descriptor
bcdXUSB Adapter	16	0x0100	0x0100	XUSB Adapter protocol version 1.0
wReports	16	0x8801	0x8801	Endpoint address 0x88 (Voice 4 In). Voice data in endpoint and supports 1 report type
wReportSize	16	0x0040	0x0040	Report size is 64 bytes for report ID 0x00, voice data.
wReportSize	16	0x0801	0x0801	Endpoint address 0x08 (Voice 5 Out). Voice data only endpoint and supports 1 report type
wReportSize	16	0x0020	0x0020	Report size is 32 bytes for report ID 0x00, voice data

Table J: Endpoints 0x88 and 0x08 Descriptor - Voice 4 In and Out

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.

- Windows XP operating system
- Windows Vista operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.

<1> Section 1.3: Xbox USB Protocol Interface Extension was added to Windows XP, unchanged in Windows Vista and removed in Windows 7 operating system.

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.

9 Index S **Applicability 11** Security implementer considerations 74 parameter index 74 Standards assignments 11 Capability negotiation 11 Change tracking 81 Т Charge and Play Device Descriptors message 23 Tracking changes 81 Transport 12 Fields - vendor-extensible 11 G **USB Device Framework message 12 Glossary** 8 Vendor-extensible fields 11 Ι Versioning 11 Implementer - security considerations 74 **Index of security parameters 74** Informative references 9 **Introduction** 8 XUSB Adapter Reports message 31 XUSB Adapter USB Descriptors message 23 М XUSB Adapter USB High Level Interface message 17 XUSB Descriptors message 19 XUSB High Level Interface message 12 Messages XUSB Reports message 26 Charge and Play Device Descriptors 23 XUSB Wireless Device Descriptors message 22 transport 12 **USB Device Framework 12** XUSB Adapter Reports 31 XUSB Adapter USB Descriptors 23 XUSB Adapter USB High Level Interface 17 XUSB Descriptors 19 XUSB High Level Interface 12 XUSB Reports 26 XUSB Wireless Device Descriptors 22 Ν Normative references 8 0 Overview (synopsis) 9 Parameters - security index 74 Preconditions 10 Prerequisites 10 Product behavior 80 R References 8 informative 9 normative 8 Relationship to other protocols 10