

1 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-SSTR]:
Smooth Streaming Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

06/04/2010 0.1 Major First Release.

07/16/2010 0.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 0.1 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 0.2 Minor Clarified the meaning of the technical content.

11/19/2010 0.2 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 0.2 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 0.2 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 0.2 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 0.2.1 Editorial Changed language and formatting in the technical

content.

06/17/2011 0.3 Minor Clarified the meaning of the technical content.

09/23/2011 0.3 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 1.0 Major Significantly changed the technical content.

03/30/2012 2.0 Major Significantly changed the technical content.

07/12/2012 2.1 Minor Clarified the meaning of the technical content.

10/25/2012 3.0 Major Significantly changed the technical content.

01/31/2013 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 4.0 Major Significantly changed the technical content.

11/14/2013 5.0 Major Significantly changed the technical content.

02/13/2014 6.0 Major Significantly changed the technical content.

05/15/2014 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments .. 11

2 Messages.. 12
2.1 Transport .. 12
2.2 Message Syntax .. 12

2.2.1 Manifest Request .. 15
2.2.2 Manifest Response .. 15

2.2.2.1 SmoothStreamingMedia .. 16
2.2.2.2 ProtectionElement .. 17
2.2.2.3 StreamElement .. 18
2.2.2.4 UrlPattern .. 20
2.2.2.5 TrackElement ... 21

2.2.2.5.1 CustomAttributesElement ... 24
2.2.2.6 StreamFragmentElement ... 24

2.2.2.6.1 TrackFragmentElement .. 26
2.2.3 Fragment Request .. 27
2.2.4 Fragment Response .. 28

2.2.4.1 MoofBox .. 28
2.2.4.2 MfhdBox .. 29
2.2.4.3 TrafBox ... 29
2.2.4.4 TfxdBox ... 30
2.2.4.5 TfrfBox .. 31
2.2.4.6 TfhdBox... 32
2.2.4.7 TrunBox .. 33
2.2.4.8 MdatBox .. 35
2.2.4.9 Fragment Response Common Fields .. 35

2.2.5 Sparse Stream Pointer .. 37
2.2.6 Fragment Not Yet Available ... 38
2.2.7 Live Ingest .. 38

2.2.7.1 FileType .. 38
2.2.7.2 StreamManifestBox ... 39

2.2.7.2.1 StreamSMIL ... 40
2.2.7.3 LiveServerManifestBox .. 40

2.2.7.3.1 LiveSMIL .. 41
2.2.7.4 MoovBox ... 43
2.2.7.5 Fragment ... 43

2.2.7.5.1 Track Fragment Extended Header.. 43
2.2.8 Server-to-Server Ingest .. 43

4 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details .. 45
3.1 Client Details ... 45

3.1.1 Abstract Data Model ... 45
3.1.1.1 Presentation Description .. 45

3.1.1.1.1 Protection System Metadata Description .. 46
3.1.1.1.2 Stream Description .. 46

3.1.1.1.2.1 Track Description... 47
3.1.1.1.2.1.1 Custom Attribute Description ... 47

3.1.1.1.3 Fragment Reference Description .. 48
3.1.1.1.3.1 Track-Specific Fragment Reference Description 48

3.1.1.2 Fragment Description .. 48
3.1.1.2.1 Sample Description ... 49

3.1.2 Timers .. 49
3.1.3 Initialization .. 49
3.1.4 Higher-Layer Triggered Events ... 49

3.1.4.1 Open Presentation .. 49
3.1.4.2 Get Fragment ... 50
3.1.4.3 Close Presentation .. 50

3.1.5 Processing Events and Sequencing Rules ... 51
3.1.5.1 Manifest Request and Manifest Response ... 51
3.1.5.2 Fragment Request and Fragment Response.. 53

3.1.6 Timer Events ... 55
3.1.7 Other Local Events ... 55

3.2 Server Details ... 55
3.2.1 Abstract Data Model ... 55
3.2.2 Timers .. 55
3.2.3 Initialization .. 55
3.2.4 Higher-Layer Triggered Events ... 55
3.2.5 Processing Events and Sequencing Rules ... 55
3.2.6 Timer Events ... 57
3.2.7 Other Local Events ... 57

3.3 Live Encoder Details ... 57
3.3.1 Abstract Data Model ... 57
3.3.2 Timers .. 57
3.3.3 Initialization .. 57
3.3.4 Higher-Layer Triggered Events ... 58

3.3.4.1 Start Stream .. 58
3.3.4.2 Stop Stream .. 58

3.3.5 Processing Events and Sequencing Rules ... 58
3.3.6 Timer Events ... 58
3.3.7 Other Local Events ... 58

4 Protocol Examples .. 59
4.1 Manifest Response ... 59
4.2 Fragment Request ... 60
4.3 Live Ingest Request ... 60
4.4 Stream Manifest .. 60
4.5 Live Server Manifest ... 60
4.6 Server Ingest Request .. 61

5 Security .. 62
5.1 Security Considerations for Implementers ... 62
5.2 Index of Security Parameters .. 62

5 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Product Behavior .. 63

7 Change Tracking... 64

8 Index ... 65

6 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1 Introduction

The Smooth Streaming Protocol describes the wire format used to deliver (via HTTP) live and on-
demand digital media, such as audio and video, in the following manners: from an encoder to a
web server, from a server to another server, and from a server to an HTTP client. The use of an
MPEG-4 ([MPEG4-RA])-based data structure delivery over HTTP allows seamless switching in near-
real-time between different quality levels of compressed media content. The result is a constant
playback experience for the HTTP client end user, even if network and video rendering conditions
change for the client computer or device.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

globally unique identifier (GUID)
universally unique identifier (UUID)

The following terms are specific to this document:

bit rate: A measure of the average bandwidth required to deliver a track, in bits per second
(bps).

composition time: The time a sample needs to be presented to the client, as defined in
[ISO/IEC-14496-12].

decode: To decompress video or audio samples for playback.

decode time: The time a sample is required to be decoded on the client, as defined in [ISO/IEC-
14496-12].

Digital Video Recorder (DVR) content: Live content not consumed at the live position.

DVR Window: The length of time that content is available as DVR Content.

encode: To compress raw video or audio into samples in a media format.

fresh: A response stored on an HTTP cache proxy that has not expired, as defined in [RFC2616].

fragment: An independently downloadable unit of media that comprises one or more samples.

live: A presentation that is used to deliver an ongoing live event.

live position: The latest content available for viewing in a live presentation.

HTTP cache proxy: A proxy that can deliver a stored copy of a response to clients.

manifest: Metadata about the presentation that allows a client to make requests for media.

media: Compressed audio, video, and text data used by the client to play a presentation.

media format: A well-defined format for representing audio or video as a compressed sample.

http://go.microsoft.com/fwlink/?LinkId=327787
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=90372

7 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

on-demand: A presentation that is available in its entirety when playback begins.

packet: A unit of audio media that defines natural boundaries for optimizing audio decoding.

parent track: A track with which one or more sparse tracks is associated, and which is used
to transmit timing information for the sparse track. Parent stream fragments always contain

the time stamp for the last sparse fragment.

presentation: The set of all streams and related metadata needed to play a single movie.

request: An HTTP message sent from the client to the server, as defined in [RFC2616].

response: An HTTP message sent from the server to the client, as defined in [RFC2616].

sample: The smallest fundamental unit (such as a frame) in which media is stored and
processed.

sparse stream: A stream that comprises one or more sparse tracks.

sparse track: A track characterized by fragments that occur at irregular time intervals. It can
be used to send metadata to clients to support scenarios such as ad-signaling. This contrasts
with non-sparse streams (for example, audio, video) in which fragments are sent at regular
time intervals. A sparse track is always associated with a non-sparse parent track that is
used to transmit timing information for the sparse track. Each sparse fragment includes a
reference to any sparse track fragments created immediately before it.

stream: A set of tracks interchangeable at the client when playing media.

track: A time-ordered collection of samples of a particular type (such as audio or video).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information.

[IETFDRAFT-HLS] Pantos, R., Ed., and May, W., "HTTP Live Streaming", draft-pantos-http-live-
streaming-06, March 2011, http://tools.ietf.org/html/draft-pantos-http-live-streaming-06

[ISO/IEC-14496-12] International Organization for Standardization, "Information technology --

Coding of audio-visual objects -- Part 12: ISO Base Media File Format", ISO/IEC 14496-12:2008,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51533

[ISO/IEC-14496-3] International Organization for Standardization, "Information technology --
Coding of audio-visual objects -- Part 3: Audio", ISO/IEC 14496-3:2009,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53943

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=386439
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183694

8 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MPEG4-RA] The MP4 Registration Authority, "MP4REG", http://www.mp4ra.org

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[RFC2396] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifiers (URI):
Generic Syntax", RFC 2396, August 1998, http://www.ietf.org/rfc/rfc2396.txt

[SMIL2.1] Bulterman, D., Grassel, G., Jansen, J., Koivisto, A., Layaida, N., et al., Eds.,
"Synchronized Multimedia Integration Language", W3C Recommendation, December, 2005,
http://www.w3.org/TR/SMIL2/

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C

Recommendation, August 2006, http://www.w3.org/TR/2006/REC-xml-20060816/

1.2.2 Informative References

[ISO/IEC-14496-15] International Organization for Standardization, "Information technology --
Coding of audio-visual objects -- Part 15: Advanced Video Coding (AVC) file format", ISO 14496-15,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38573

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDN-VIH] Microsoft Corporation, "VIDEOINFOHEADER structure", http://msdn.microsoft.com/en-
us/library/dd407325(VS.85).aspx

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC
2326, April 1998, http://www.ietf.org/rfc/rfc2326.txt

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July

2003, http://www.ietf.org/rfc/rfc3548.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

[VC-1] Society of Motion Picture and Television Engineers, "VC-1 Compressed Video Bitstream
Format and Decoding Process", SMPTE 421M-2006, April 2006,
http://standards.smpte.org/content/978-1-61482-555-5/st-421-
2006/SEC1.body.pdf+html?sid=dc1cd243-8c31-45a2-87c6-1695c5bc63e5

Note There is a charge to download the specification.

[WFEX] Microsoft Corporation, "Augmented Multiple Channel Audio Data and WAVE Files", March
2007, http://www.microsoft.com/whdc/device/audio/multichaud.mspx

1.3 Overview

The IIS Smooth Streaming Transport Protocol provides a means of delivering media from encoders

to servers (in the case of live streaming) and from servers to clients in a way that can be cached by
standard HTTP cache proxies in the communication chain. Allowing standard HTTP cache proxies
to respond to requests on behalf of the server increases the number of clients that can be served by
a single server.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=327787
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=325594
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=184538
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=184568
http://go.microsoft.com/fwlink/?LinkId=184568
http://go.microsoft.com/fwlink/?LinkId=90335
http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=184566
http://go.microsoft.com/fwlink/?LinkId=184566
http://go.microsoft.com/fwlink/?LinkId=184570

9 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The following figure depicts a typical communication pattern for the protocol:

Figure 1: Typical communication sequence for the IIS Smooth Streaming Transport
Protocol

The first message in the communication pattern is a Manifest Request, to which the server replies

with a Manifest Response. The client then makes one or more Fragment Requests, and the server
replies to each with a Fragment Response. Correlation between Requests and Responses is handled
by the underlying Hypertext Transport Protocol (HTTP) [RFC2616] layer.

The server role in the protocol is stateless, allowing each request from the client to be potentially
handled by a different instance of the server, or by one or more HTTP cache proxies. The following
figure depicts the communication pattern for requests for the same fragment, indicated as
"Fragment Request X", when an HTTP cache proxy is used:

http://go.microsoft.com/fwlink/?LinkId=90372

10 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Figure 2: Typical communication pattern of requests for the same fragment

1.4 Relationship to Other Protocols

The IIS Smooth Streaming Transport Protocol uses HTTP [RFC2616] as its underlying transport.

The IIS Smooth Streaming Transport Protocol fulfills a similar function to established stateful media
protocols, such as Real Time Streaming Protocol (RTSP) [RFC2326], with significantly greater

scalability in Internet scenarios due to effective use of HTTP cache proxies.

1.5 Prerequisites/Preconditions

This protocol assumes HTTP [RFC2616] connectivity from the client to the server.

It is also assumed that the client is integrated with a higher-layer implementation that supports any
media format(s) used and can otherwise play the media transmitted by the server.

1.6 Applicability Statement

This protocol is most appropriate for delivering media over the Internet or environments where
HTTP cache proxies can be used to maximize scalability. It can be used on any network where HTTP
[RFC2616] connectivity to the server is available.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90335
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

11 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Protocol Versions: The IIS Smooth Streaming Transport Protocol is explicitly versioned using

the MajorVersion and MinorVersion fields specified in section 2.2.2.1.

Security and Authentication Methods: Security and authentication for the IIS Smooth

Streaming Transport Protocol is performed at the underlying transport layer (HTTP) and does not
restrict which of the mechanisms supported by HTTP can be used.

1.8 Vendor-Extensible Fields

The following fields in this protocol can be extended by vendors:

Custom Attributes in the Manifest Response: This capability is provided by the

VendorExtensionAttributes field, as specified in section 2.2.2. Implementers can ensure that
extensions do not conflict by assigning extensions an XML Namespace unique to their

implementation.

Custom Data Elements in the Manifest Response: This capability is provided by the

VendorExtensionDataElement fields, as specified in section 2.2.2.6.1. Implementers can
ensure that extensions do not conflict by assigning extensions an XML Namespace unique to their
implementation.

Custom Boxes in the Fragment Response: This capability is provided by the

VendorExtensionUUID field, as specified in section 2.2.4.

Custom Media Formats for Audio: This capability is provided by the AudioTag and

CodecPrivateData fields, as specified in section 2.2.2.5. Implementers can ensure that
extensions do not conflict by assigning extensions a unique GUID (as specified in [MS-DTYP]
section 2.3.4.1) embedded in the CodecPrivateData field, as specified in [WFEX].

Custom Descriptive Codes for Media Formats: This capability is provided by the FourCC

field, as specified in section 2.2.2.5. Implementers can ensure that extensions do not conflict by

registering extension codes with the MPEG4-RA, as specified in [ISO/IEC-14496-12]

Custom HTTP Headers in the Manifest Response: This capability is provided by the

underlying transport layer (HTTP), as specified in [RFC2616] section 6.

Custom HTTP Headers in the Fragment Response: This capability is provided by the

underlying transport layer (HTTP), as specified in [RFC2616] section 6.

Custom HTTP Headers in the Fragment Request: This capability is provided by the

underlying transport layer (HTTP), as specified in [RFC2616] section 5.

Custom HTTP Headers in the Manifest Request: This capability is provided by the underlying

transport layer (HTTP), as specified in [RFC2616] section 5.

1.9 Standards Assignments

None.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=184570
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

12 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2 Messages

2.1 Transport

The Manifest Request and Fragment Request messages MUST be represented as HTTP Request
messages, as specified by the Request rule of [RFC2616], subject to the following constraints:

The Method MUST be "GET".

For the Manifest Request message, the RequestURI MUST adhere to the syntax of the

ManifestRequest field, specified in section 2.2.1.

For the Fragment Request message, the RequestURI MUST adhere to the syntax of the

FragmentRequest field, specified in section 2.2.3.

The HTTP-Version SHOULD be HTTP/1.1.

The Manifest Response and Fragment Response messages MUST be represented as HTTP Response
messages, as specified by the Response rule of [RFC2616], subject to the following constraints:

The Status-Code SHOULD be 200.

For the Manifest Response message, the message body MUST adhere to the syntax of the

ManifestResponse field, specified in section 2.2.2.

For the Fragment Response message, the message body MUST adhere to the syntax to the

FragmentResponse field, specified in section 2.2.4.

The HTTP-Version SHOULD be HTTP/1.1.

The Live Ingest Request MUST be represented as an HTTP Request message, as specified by the
Request rule of [RFC2616], subject to the following constraints:

The Method MUST be "POST".

The "Transfer-Encoding: Chunked" header SHOULD replace the "Content-Length" header.

The RequestURI MUST adhere to the syntax of the LiveIngestRequest field, specified in section

2.2.7.

The HTTP-Version SHOULD be HTTP/1.1.

2.2 Message Syntax

The IIS Smooth Streaming Transport Protocol defines five types of messages:

Manifest Request (section 2.2.1)

Manifest Response (section 2.2.2)

Fragment Request (section 2.2.3)

Fragment Response (section 2.2.4)

Live Ingest Request (section 2.2.7)

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

13 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The following fields are commonly used across the message set. The syntax of each field is specified
in ABNF [RFC5234].

TRUE: A case-insensitive string value for true, for use in XML attributes.

TRUE = "true"

FALSE: A case-insensitive string value for false, for use in XML attributes.

FALSE = "false"

STRING_UINT64: An unsigned decimal integer less than 2^64, written as a string.

STRING_UINT64 = 1*DIGIT

STRING_UINT32: An unsigned decimal integer less than 2^32, written as a string.

STRING_UINT32 = 1*DIGIT

STRING_UINT16: An unsigned decimal integer less than 2^16, written as a string.

STRING_UINT16 = 1*DIGIT

STRING_UINT8: An unsigned decimal integer less than 2^8, written as a string.

STRING_UINT8 = 1*DIGIT

S: Whitespace legal inside an XML Document, as defined in [XML].

S = 1* (%x20 / %x09 / %x0D / %x0A)

Eq: An equality expression used for Attributes, as defined in [XML].

Eq = S "=" S

SQ: A single-quote character that contains Attributes, as defined in [XML].

SQ = %x27

DQ: A double-quote character that contains Attributes, as defined in [XML].

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598

14 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

DQ = %x22

URL_SAFE_CHAR: A character that can safely appear in a URI, as specified in [RFC2396].

URL_SAFE_CHAR = <URL-safe character as defined in [RFC2616]>

URL_ENCODED_CHAR: A character encoded to safely appear in a URI, as specified in [RFC2396].

URL_ENCODED_CHAR = "%" HEXDIG HEXDIG

HEXCODED_BYTE: A hexadecimal coding of a byte, with the first character for the four high bits

and the second character for the four low bits.

HEXCODED_BYTE = HEXDIG HEXDIG

XML_CHARDATA: XML data without Elements, as specified by the "CharData" field in [XML].

XML_CHARDATA = <XML character data as defined by CharData in [XML]>

IDENTIFIER: An identifier safe for use in data fields.

IDENTIFIER = *URL_SAFE_CHAR

IDENTIFIER_NONNUMERIC: A non-numeric identifier safe for use in data fields.

IDENTIFIER = ALPHA / UNDERSCORE *URL_SAFE_CHAR

UNDERSCORE = "_"

URISAFE_IDENTIFIER: An identifier safe for use in data fields part of a URI [RFC2396].

IDENTIFIER = *(URL_SAFE_CHAR / URL_ENCODED_CHAR)

URISAFE_IDENTIFIER_NONNUMERIC: A non-numeric identifier safe for use in data fields part of

a URI [RFC2396].

IDENTIFIER = ALPHA / UNDERSCORE *(URL_SAFE_CHAR / URL_ENCODED_CHAR)

UNDERSCORE = "_"

http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90339

15 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.1 Manifest Request

ManifestRequest and related fields contain data required to request a manifest from the server.

ManifestRequest (variable): The URI [RFC2396] of the Manifest resource.

FileExtension (variable): The extension of the manifest file. It MUST be set to "isml" for live
streaming.

HLSExtension (variable): An optional field to specify HTTP Live Streaming (HLS) ([IETFDRAFT-
HLS] section 6.2.2), it MUST be used for playback on iOS devices.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

ManifestRequest = PresentationURI "/" "Manifest"

PresentationURI = ["/" VirtualPath] "/" PublishingPointName "." FileExtension

VirtualPath = URISAFE_IDENTIFIER

PublishingPointName = URISAFE_IDENTIFIER

FileExtension = "ism" / "isml" [HLSExtension / VendorExtensionFileExtension]

HLSExtension = "(format=m3u8-aapl)"

VendorExtensionFileExtension = ALPHA *(ALPHA / DIGIT)

2.2.2 Manifest Response

ManifestResponse and related fields contain metadata required by the client to construct
subsequent FragmentRequest messages and play back the data received.

ManifestResponse (variable): Metadata required by the client to play back the presentation.

This field MUST be a Well-Formed XML Document [XML] subject to the following constraints:

The Document's root Element is a SmoothStreamingMedia field.

The Document's XML Declaration's major version is 1.

The Document's XML Declaration's minor version is 0.

The Document does not use a Document Type Definition (DTD).

The Document uses an encoding that is supported by the client implementation.

The XML Elements specified in this document do not use XML Namespaces.

Prolog (variable): The Prolog field, as specified in [XML].

Misc (variable): The Misc field, as specified in [XML].

SmoothStreamingMedia (variable): The SmoothStreamingMedia field, as specified in section
2.2.2.1.

HTTPLiveStreamingMedia (variable): The HTTPLiveStreamingMedia field, as specified in
[IETFDRAFT-HLS] section 6.2.2.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

ManifestResponse = prolog [SmoothStreamingMedia / HTTPLiveStreamingMedia] Misc

http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=386439
http://go.microsoft.com/fwlink/?LinkId=386439
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=386439
http://go.microsoft.com/fwlink/?LinkId=123096

16 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.2.1 SmoothStreamingMedia

SmoothStreamingMedia and related fields encapsulate metadata required to play the
presentation.

SmoothStreamingMedia (variable): An XML Element that encapsulates all metadata required by
the client to play back the presentation.

SmoothStreamingMediaAttributes (variable): The collection of XML attributes for the

SmoothStreamingMedia Element. Attributes can appear in any order. However, the following
fields are required and MUST be present in SmoothStreamingMediaAttributes:
MajorVersionAttribute, MinorVersionAttribute, DurationAttribute.

MajorVersion (variable): The major version of the Manifest Response message. MUST be set to 2.

MinorVersion (variable): The minor version of the Manifest Response message. MUST be set to 0
or 2.

TimeScale (variable): The time scale of the Duration attribute, specified as the number of

increments in one second. The default value is 10000000.

Duration (variable): The duration of the presentation, specified as the number of time increments
indicated by the value of the TimeScale field.

IsLive (variable): Specifies the presentation type. If this field contains a TRUE value, it specifies
that the presentation is a live presentation. Otherwise, the presentation is an on-demand
presentation.

LookaheadCount (variable): Specifies the size of the server buffer, as an integer number of

fragments. This field MUST be omitted for on-demand presentations.

DVRWindowLength (variable): The length of the DVR window, specified as the number of time
increments indicated by the value of the TimeScale field. If this field is omitted for a live
presentation or set to 0, the DVR window is effectively infinite. This field MUST be omitted for on-
demand presentations.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

SmoothStreamingMedia = "<" SmoothStreamingMediaElementName S

 SmoothStreamingMediaAttributes S ">"

 S SmoothStreamingMediaContent S?

 "</" SmoothStreamingMediaElementName ">"

SmoothStreamingMediaElementName = "SmoothStreamingMedia"

SmoothStreamingMediaAttributes = *(

 MajorVersionAttribute

 / MinorVersionAttribute

 / TimeScaleAttribute

 / DurationAttribute

 / IsLiveAttribute

 / LookaheadCountAttribute

 / DVRWindowLengthAttribute

 / VendorExtensionAttribute

)

http://go.microsoft.com/fwlink/?LinkId=123096

17 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MajorVersionAttribute = S MajorVersionAttributeName S Eq S

 (DQ MajorVersion DQ) / (SQ MajorVersion SQ) S?

MajorVersionAttributeName = "MajorVersion"

MajorVersion = "2"

MinorVersionAttribute = S MinorVersionAttributeName S Eq S

 (DQ MinorVersion DQ) / (SQ MinorVersion SQ) S?

MinorVersionAttributeName = "MinorVersion"

MinorVersion = "0" / "2"

TimeScaleAttribute = S TimeScaleAttributeName S Eq S

 (DQ TimeScale DQ) / (SQ TimeScale SQ) S?

TimeScaleAttributeName = "TimeScale"

TimeScale = STRING_UINT64

DurationAttribute = S DurationAttributeName S Eq S

 (DQ Duration DQ) / (SQ Duration SQ) S?

DurationAttributeName = "Duration"

Duration = STRING_UINT64

IsLiveAttribute = S IsLiveAttributeName S Eq S

 (DQ IsLive DQ) / (SQ IsLive SQ) S?

IsLiveAttributeName = "IsLive"

IsLive = TRUE / FALSE

LookaheadCountAttribute = S LookaheadCountAttributeName S Eq S

 (DQ LookaheadCount DQ) / (SQ LookaheadCount SQ) S?

LookaheadCountAttributeName = "LookaheadCount"

LookaheadCount = STRING_UINT32

DVRWindowLengthAttribute = S DVRWindowLengthAttributeName S Eq S

 (DQ DVRWindowLength DQ) / (SQ DVRWindowLength SQ) S?

DVRWindowLengthAttributeName = "DVRWindowLength"

DVRWindowLength= STRING_UINT64

SmoothStreamingMediaContent = [ProtectionElement S?] 1* StreamElement

2.2.2.2 ProtectionElement

The ProtectionElement and related fields encapsulate metadata required to play back Protected
Content.

ProtectionElement (variable): An XML Element that encapsulates metadata required by the client
to play back protected content.

ProtectionHeaderElement (variable): An XML Element that encapsulates content protection
metadata for a specific content protection system.

SystemID (variable): A UUID that uniquely identifies the Content Protection System to which this
ProtectionElement pertains.

ProtectionHeaderContent (variable): Opaque data that the Content Protection System identified
in the SystemID field can use to enable playback for authorized users, encoded using Base-64
Encoding [RFC3548].

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

ProtectionElement = "<" ProtectionElementName S ">"

 S 1*(ProtectionHeaderElement S?)

 "</" ProtectionElementName ">"

ProtectionElementName = "Protection"

ProtectionHeaderElement = "<" ProtectionHeaderElementName S

 ProtectionHeaderAttributes S ">"

http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=123096

18 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 S ProtectionHeaderContent S?

 "</" ProtectionHeaderElementName ">"

ProtectionHeaderAttributes = SystemIDAttribute

SystemIDAttribute = S SystemIDAttributeName S Eq S

 (DQ SystemID DQ) / (SQ SystemID SQ) S?

SystemIDAttributeName = "SystemID"

SystemID = "{"

 4*4 HEXCODED_BYTE "-"

 2*2 HEXCODED_BYTE "-"

 2*2 HEXCODED_BYTE "-"

 2*2 HEXCODED_BYTE "-"

 6*6 HEXCODED_BYTE "-"

 "}"

ProtectionHeaderContent = STRING_BASE64

2.2.2.3 StreamElement

The StreamElement and related fields encapsulate metadata required to play a specific stream in
the presentation.

StreamElement (variable): An XML Element that encapsulates all metadata required by the client
to play back a stream.

StreamAttributes (variable): The collection of XML Attributes for the SmoothStreamingMedia
Element. Attributes can appear in any order. However, the following field is required and MUST be
present in StreamAttributes: TypeAttribute. The following additional fields are required and
MUST be present in StreamAttributes unless an Embedded Track is used in the StreamContent
field: NumberOfFragmentsAttribute, NumberOfTracksAttribute, and UrlAttribute.

StreamContent (variable): Metadata describing available tracks and fragments.

Type (variable): The type of the stream: video, audio, or text. If the type specified is text, the

following field is required and MUST appear in StreamAttributes: SubtypeAttribute. Unless the

type specified is video, the following fields MUST NOT appear in StreamAttributes:
StreamMaxWidthAttribute, StreamMaxHeightAttribute, DisplayWidthAttribute, and
DisplayHeightAttribute.

StreamTimeScale (variable): The time scale for duration and time values in this stream, specified
as the number of increments in one second.

Name (variable): The name of the stream.

NumberOfFragments (variable): The number of fragments available for this stream.

NumberOfTracks (variable): The number of tracks available for this stream.

Subtype (variable): A four-character code that identifies the intended use category for each
sample in a text track. However, the FourCC field, specified in section 2.2.2.5, is used to identify
the media format for each sample. The following range of values is reserved, with the following

semantic meanings:

"SCMD": Triggers for actions by the higher-layer implementation on the client

"CHAP": Chapter markers

"SUBT": Subtitles used for foreign-language audio

19 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

"CAPT": Closed captions for people who are deaf

"DESC": Media descriptions for people who are deaf

"CTRL": Events the control the application business logic

"DATA": Application data that does not fall into any of the above categories

Url (variable): A pattern used by the client to generate Fragment Request messages.

SubtypeControlEvents (variable): Control events for applications on the client.

StreamMaxWidth (variable): The maximum width of a video sample, in pixels.

StreamMaxHeight (variable): The maximum height of a video sample, in pixels.

DisplayWidth (variable): The suggested display width of a video sample, in pixels.

DisplayHeight (variable): The suggested display height of a video sample, in pixels.

ParentStream (variable): Specifies the non-sparse stream that is used to transmit timing
information for this stream. If the ParentStream field is present, it indicates that the stream
described by the containing StreamElement field is a sparse stream. If present, the value of this
field MUST match the value of the Name field for a non-sparse stream in the presentation.

ManifestOutput (variable): Specifies whether sample data for this stream appears directly in the

manifest as part of the ManifestOutputSample field, specified in section 2.2.2.6.1, if this field
contains a TRUE value. Otherwise, the ManifestOutputSample field for fragments that are part of
this stream MUST be omitted.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

StreamElement = "<" StreamElementName S

 StreamAttributes S ">"

 S StreamContent S?

 "</" StreamElementName ">"

Name = "StreamIndex"

StreamAttributes = *(

 TypeAttribute

 / SubtypeAttribute

 / StreamTimeScaleAttribute

 / NameAttribute

 / NumberOfFragmentsAttribute

 / NumberOfTracksAttribute

 / UrlAttribute

 / StreamMaxWidthAttribute

 / StreamMaxHeightAttribute

 / DisplayWidthAttribute

 / DisplayHeightAttribute

 / ParentStreamAttribute

 / ManifestOutputAttribute

 / VendorExtensionAttribute

)

TypeAttribute = S TypeAttributeName S Eq S

 (DQ Type DQ) / (SQ Type SQ) S?

TypeAttributeName = "Type"

Type = "video" / "audio" / "text"

SubtypeAttribute = S SubtypeAttributeName S Eq S

http://go.microsoft.com/fwlink/?LinkId=123096

20 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 (DQ Subtype DQ) / (SQ Subtype SQ) S?

SubtypeAttributeName = "Subtype"

Subtype = 4*4 ALPHA

StreamTimeScaleAttribute = S StreamTimeScaleAttributeName S Eq S

 (DQ StreamTimeScale DQ) / (SQ StreamTimeScale SQ) S?

StreamTimeScaleAttributeName = "TimeScale"

StreamTimeScale = STRING_UINT64

NameAttribute = S NameAttributeName S Eq S

 (DQ Name DQ) / (SQ Name SQ) S?

NameAttributeName = "Name"

Name = ALPHA *(ALPHA / DIGIT / UNDERSCORE / DASH)

NumberOfFragmentsAttribute = S NumberOfFragmentsAttributeName S Eq S

 (DQ NumberOfFragments DQ) / (SQ NumberOfFragments SQ)

 S?

NumberOfFragmentsAttributeName = "Chunks"

NumberOfFragments = STRING_UINT32

NumberOfTracksAttribute = S NumberOfTracksAttributeName S Eq S

 (DQ NumberOfTracks DQ) / (SQ NumberOfTracks SQ) S?

NumberOfTracksAttributeName = "QualityLevels"

NumberOfTracks = STRING_UINT32

UrlAttribute = S UrlAttributeName S Eq S

 (DQ Url DQ) / (SQ Url SQ) S?

UrlAttributeName = "Url"

Url = UrlPattern

StreamMaxWidthAttribute = S StreamMaxWidthAttributeName S Eq S

 (DQ StreamMaxWidth DQ) / (SQ StreamMaxWidth SQ) S?

StreamMaxWidthAttributeName = "MaxWidth"

StreamMaxWidth = STRING_UINT32

StreamMaxHeightAttribute = S StreamMaxHeightAttributeName S Eq S

 (DQ StreamMaxHeight DQ) / (SQ StreamMaxHeight SQ) S?

StreamMaxHeightAttributeName = "MaxHeight"

StreamMaxHeight = STRING_UINT32

DisplayWidthAttribute = S DisplayWidthAttributeName S Eq S

 (DQ DisplayWidth DQ) / (SQ DisplayWidth SQ) S?

DisplayWidthAttributeName = "DisplayWidth"

DisplayWidth = STRING_UINT32

DisplayHeightAttribute = S DisplayHeightAttributeName S Eq S

 (DQ DisplayHeight DQ) / (SQ DisplayHeight SQ) S?

DisplayHeightAttributeName = "DisplayHeight"

DisplayHeight = STRING_UINT32

ParentStreamAttribute = S ParentStreamAttributeName S Eq S

 (DQ ParentStream DQ) / (SQ ParentStream SQ) S?

ParentStreamAttributeName = "ParentStreamIndex"

ParentStream = ALPHA *(ALPHA / DIGIT / UNDERSCORE / DASH)

ManifestOutputAttribute = S ManifestOutputAttributeName S Eq S

 (DQ ManifestOutput DQ) / (SQ ManifestOutput SQ) S?

ManifestOutputAttributeName = "ManifestOutput"

ManifestOutput = TRUE / FALSE

StreamContent = 1*(TrackElement S?) *(StreamFragment S?)

2.2.2.4 UrlPattern

The UrlPattern and related fields define a pattern that can be used by the client to make
semantically valid Fragment Requests for the presentation.

UrlPattern (variable): Encapsulates a pattern for constructing Fragment Requests.

BitrateSubstitution (variable): A placeholder expression for the bit rate of a track.

21 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

CustomAttributesSubstitution (variable): A placeholder expression for the Attributes used to
disambiguate a track from other tracks in the stream.

TrackName (variable): A unique identifier that applies to all tracks in a stream.

StartTimeSubstitution (variable): A placeholder expression for the time of a fragment.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

UrlPattern = QualityLevelsPattern "/" FragmentsPattern

QualityLevelsPattern = QualityLevelsNoun "(" QualityLevelsPredicatePattern ")"

QualityLevelsNoun = "QualityLevels"

QualityLevelsPredicate = BitrateSubstitution ["," CustomAttributesSubstitution]

Bitrate = "{bitrate}" / "{Bitrate}"

CustomAttributesSubstitution = "{CustomAttributes}"

FragmentsPattern = FragmentsNoun "(" FragmentsPatternPredicate ")";

FragmentsNoun = "Fragments"

FragmentsPatternPredicate = TrackName "=" StartTimeSubstitution;

TrackName = URISAFE_IDENTIFIER_NONNUMERIC

StartTimeSubstitution = "{start time}" / "{start_time}"

2.2.2.5 TrackElement

The TrackElement and related fields encapsulate metadata required to play a specific track in the
stream.

TrackElement (variable): An XML Element that encapsulates all metadata required by the client to
play a track.

TrackAttributes (variable): The collection of XML Attributes for the TrackElement. Attributes can
appear in any order. However, the following fields are required and MUST be present in
TrackAttributes: IndexAttribute, BitrateAttribute. If the track is contained in a stream whose

Type is video, the following additional fields are also required and MUST be present in
TrackAttributes: MaxWidthAttribute, MaxHeightAttribute, and CodecPrivateDataAttribute.
If the track is contained in a stream whose Type is audio, the following additional fields are also
required and MUST be present in TrackAttributes: MaxWidthAttribute, MaxHeightAttribute,

CodecPrivateDataAttribute, SamplingRateAttribute, ChannelsAttribute,
BitsPerSampleAttribute, PacketSizeAttribute, AudioTagAttribute, and FourCCAttribute.

Index (variable): An ordinal that identifies the track and MUST be unique for each track in the
stream. The Index SHOULD start at 0 and increment by 1 for each subsequent track in the stream.

Bitrate (variable): The average bandwidth consumed by the track, in bits per second (bps). The
value 0 MAY be used for tracks whose bit rate is negligible relative to other tracks in the
presentation.

MaxWidth (variable): The maximum width of a video sample, in pixels.

MaxHeight (variable): The maximum height of a video sample, in pixels.

SamplingRate (variable): The Sampling Rate of an audio track, as defined in [ISO/IEC-14496-
12].

Channels (variable): The Channel Count of an audio track, as defined in [ISO/IEC-14496-12].

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695

22 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

AudioTag (variable): A numeric code that identifies which media format and variant of the media
format is used for each sample in an audio track. The following range of values is reserved with the

following semantic meanings:

"1": The sample media format is Linear 8 or 16-bit Pulse Code Modulation

"353": Microsoft Windows Media Audio v7, v8 and v9.x Standard (WMA Standard)

"353": Microsoft Windows Media Audio v9.x and v10 Professional (WMA Professional)

"85": ISO MPEG-1 Layer III (MP3)

"255": ISO Advanced Audio Coding (AAC)

"65534": Vendor-extensible format. If specified, the CodecPrivateData field SHOULD contain a

hex-encoded version of the WAVE_FORMAT_EXTENSIBLE structure [WFEX].

BitsPerSample (variable): The sample Size of an audio track, as defined in [ISO/IEC-14496-12].

PacketSize (variable): The size of each audio packet, in bytes.

FourCC (variable): A four-character code that identifies which media format is used for each
sample. The following range of values is reserved with the following semantic meanings:

"H264": Video samples for this track use Advanced Video Coding, as specified in [ISO/IEC-

14496-15]

"WVC1": Video samples for this track use VC-1, as specified in [VC-1].

"AACL": Audio samples for this track use AAC (Low Complexity), as specified in [ISO/IEC-14496-

3]

"WMAP": Audio samples for this track use WMA Professional

A vendor extension value containing a registered with MPEG4-RA, as specified in [ISO/IEC-

14496-12].

CodecPrivateData (variable): Data that specifies parameters specific to the media format and
common to all samples in the track, represented as a string of hex-coded bytes. The format and
semantic meaning of byte sequence varies with the value of the FourCC field as follows:

The FourCC field equals "H264": The CodecPrivateData field contains a hex-coded string

representation of the following byte sequence, specified in ABNF [RFC5234]:

%x00 %x00 %x00 %x01 SPSField %x00 %x00 %x00 %x01 SPSField

SPSField contains the Sequence Parameter Set (SPS).

PPSField contains the Slice Parameter Set (PPS).

The FourCC field equals "WVC1": The CodecPrivateData field contains a hex-coded string

representation of the VIDEOINFOHEADER structure, specified in [MSDN-VIH].

The FourCC field equals "AACL": The CodecPrivateData field SHOULD be empty.

The FourCC field equals "WMAP": The CodecPrivateData field contains the WAVEFORMATEX

structure, specified in [WFEX], if the AudioTag field equals "65534", and SHOULD be empty

otherwise.

http://go.microsoft.com/fwlink/?LinkId=184570
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=184538
http://go.microsoft.com/fwlink/?LinkId=184538
http://go.microsoft.com/fwlink/?LinkId=184566
http://go.microsoft.com/fwlink/?LinkId=183694
http://go.microsoft.com/fwlink/?LinkId=183694
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=184568
http://go.microsoft.com/fwlink/?LinkId=184570

23 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The FourCC is a vendor extension value: The format of the CodecPrivateData field is also

vendor-extensible. Registration of the FourCC field value with MPEG4-RA, as specified in

[ISO/IEC-14496-12], can be used to avoid collision between extensions.

NALUnitLengthField (variable): The number of bytes that specify the length of each Network
Abstraction Layer (NAL) unit. This field SHOULD be omitted unless the value of the FourCC field is
"H264". The default value is 4.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

Track = TrackWithoutContent / TrackWithContent

TrackWithoutContent = "<" TrackElementName S TrackAttributes S "/>"

TrackWithContent = "<" TrackElementName S TrackAttributes S ">"

 S TrackContent S "</" TrackElementName ">"

TrackElementName = "QualityLevel"

TrackAttributes = *(

 IndexAttribute

 / BitrateAttribute

 / CodecPrivateDataAttribute

 / MaxWidthAttribute

 / MaxHeightAttribute

 / SamplingRateAttribute

 / ChannelsAttribute

 / BitsPerSampleAttribute

 / PacketSizeAttribute

 / AudioTagAttribute

 / FourCCAttribute

 / NALUnitLengthFieldAttribute

 / VendorExtensionAttribute

)

IndexAttribute = S IndexAttributeName S Eq S

 (DQ Index DQ) / (SQ Index SQ) S

IndexAttributeName = "Index"

Index = STRING_UINT32

BitrateAttribute = S BitrateAttributeName S Eq S

 (DQ Bitrate DQ) / (SQ Bitrate SQ) S

BitrateAttributeName = "Bitrate"

Index = STRING_UINT32

MaxWidthAttribute = S MaxWidthAttributeName S Eq S

 (DQ MaxWidth DQ) / (SQ MaxWidth SQ) S

MaxWidthAttributeName = "MaxWidth"

MaxWidth = STRING_UINT32

MaxHeightAttribute = S MaxHeightAttributeName S Eq S

 (DQ MaxHeight DQ) / (SQ MaxHeight SQ) S

MaxHeightAttributeName = "MaxHeight"

MaxHeight = STRING_UINT32

CodecPrivateDataAttribute = S CodecPrivateDataAttributeName S Eq S

 (DQ CodecPrivateData DQ) / (SQ CodecPrivateData SQ) S

CodecPrivateDatatAttributeName = "CodecPrivateData"

CodecPrivateData = *HEXCODED_BYTE

SamplingRateAttribute = S SamplingRateAttributeName S Eq S

 (DQ SamplingRate DQ) / (SQ SamplingRate SQ) S

SamplingRateAttributeName = "SamplingRate"

SamplingRate = STRING_UINT32

ChannelsAttribute = S ChannelsAttributeName S Eq S

 (DQ Channels DQ) / (SQ Channels SQ) S

ChannelsAttributeName = "Channels"

Channels = STRING_UINT16

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

24 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

BitsPerSampleAttribute = S BitsPerSampleAttributeName S Eq S

 (DQ BitsPerSample DQ) / (SQ BitsPerSample SQ) S

BitsPerSampleAttributeName = "BitsPerSample"

BitsPerSample = STRING_UINT16

PacketSizeAttribute = S PacketSizeAttributeName S Eq S

 (DQ PacketSize DQ) / (SQ PacketSize SQ) S

PacketSizeAttributeName = "PacketSize"

PacketSize = STRING_UINT32

AudioTagAttribute = S AudioTagAttributeName S Eq S

 (DQ AudioTag DQ) / (SQ AudioTag SQ) S

PacketSizeAttributeName = "AudioTag"

AudioTag = STRING_UINT32

FourCCAttribute = S FourCCAttributeName S Eq S

 (DQ FourCC DQ) / (SQ FourCC SQ) S

FourCCAttributeName = "AudioTag"

FourCC = 4*4 ALPHA

NALUnitLengthFieldAttribute = S NALUnitLengthFieldAttributeName S Eq S

 (DQ NALUnitLengthField DQ)

 / (SQ NALUnitLengthField SQ) S

NALUnitLengthFieldAttributeName = "NALUnitLengthField"

NALUnitLengthField = STRING_UINT16

TrackContent = CustomAttributes?

2.2.2.5.1 CustomAttributesElement

The CustomAttributesElement and related fields are used to specify metadata that disambiguates
tracks in a stream.

CustomAttributes (variable): Metadata expressed as key/value pairs that disambiguate tracks.

CustomAttributeName (variable): The name of a custom Attribute for a track.

CustomAttributeValue (variable): The value of a custom Attribute for a track.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

CustomAttributesElement = S "<" CustomAttributesElementName S ">"

 S 1*(AttributeElement S?)

 "</" CustomAttributesElementName ">"

AttributeElement = "<" AttributeElementName S AttributeAttributes S "/>"

AttributeAttributes = (AttributeNameAttribute S AttributeValueAttribute)

 / (AttributeValueAttribute S AttributeNameAttribute)

AttributeNameAttribute = S AttributeNameAttributeName S Eq S

 (DQ CustomAttributeName DQ) / (SQ CustomAttributeName SQ) S?

AttributeNameAttributeName = "Name"

CustomAttributeName = IDENTIFIER

AttributeValueAttribute = S AttributeValueAttributeName S Eq S

 (DQ CustomAttributeValue DQ) / (SQ CustomAttributeValue SQ) S?

AttributeValueAttributeName = "Value"

CustomAttributeValue = IDENTIFIER

2.2.2.6 StreamFragmentElement

The StreamFragmentElement and related fields are used to specify metadata for one set of

related fragments in a stream. The order of repeated StreamFragmentElement fields in a

http://go.microsoft.com/fwlink/?LinkId=123096

25 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

containing StreamElement is significant for the correct function of the IIS Smooth Streaming
Transport Protocol. To this end, the following elements make use of the terms "preceding" and

"subsequent" StreamFragmentElement in reference to the order of these fields.

StreamFragmentElement (variable): An XML Element that encapsulates metadata for a set of

related fragments. Attributes can appear in any order. However, either one or both of the following
fields is required and MUST be present in StreamFragmentAttributes: FragmentDuration,
FragmentTime.

FragmentNumber (variable): The ordinal of the StreamFragmentElement in the stream. If
FragmentNumber is specified, its value MUST monotonically increase with the value of the
FragmentTime field.

FragmentDuration (variable): The duration of the fragment, specified as a number of increments

defined by the implicit or explicit value of the containing StreamElement's StreamTimeScale
field. If the FragmentDuration field is omitted, its implicit value MUST be computed by the client
by subtracting the value of the preceding StreamFragmentElement's FragmentTime field from
the value of this StreamFragmentElement's FragmentTime field. If no preceding

StreamFragmentElement exists, the implicit value of the FragmentDuration field MUST be
computed by the client by subtracting the value of this StreamFragmentElement FragmentTime

field from the subsequent StreamFragmentElement's FragmentTime field.

If no preceding or subsequent StreamFragmentElement field exists, the implicit value of the
FragmentDuration field is the value of the SmoothStreamingMedia’s Duration field.

FragmentTime (variable): The time of the fragment, specified as a number of increments defined
by the implicit or explicit value of the containing StreamElement's StreamTimeScale field. If the
FragmentTime field is omitted, its implicit value MUST be computed by the client by adding the
value of the preceding StreamFragmentElement's FragmentTime field to the value of the

preceding StreamFragmentElement's FragmentDuration field. If no preceding
StreamFragmentElement exists, the implicit value of the FragmentTime field is 0.

FragmentRepeat (variable): The repeat count of the fragment, specified as the number of
contiguous fragments with the same duration defined by the StreamFragmentElement's

FragmentTime field. This value is one-based (a value of two means two fragments in the
contiguous series). The SmoothStreamingMedia’s MajorVersion and MinorVersion fields MUST
both be set to 2.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

StreamFragmentElement = "<" StreamFragmentElementName S

 StreamFragmentAttributes S ">"

 S StreamFragmentContent S?

 "</" StreamFragmentElementName ">"

StreamFragmentElementname = "c"

StreamFragmentAttributes = *(

 FragmentNumberAttribute

 / FragmentDurationAttribute

 / FragmentTimeAttribute

)

FragmentNumberAttribute = S FragmentNumberAttributeName S Eq S

 (DQ FragmentNumber DQ) / (SQ FragmentNumber SQ) S?

FragmentNumberAttributeName = "n"

FragmentNumber = STRING_UINT32

FragmentDurationAttribute = S FragmentDurationAttributeName S Eq S

 (DQ FragmentDuration DQ) / (SQ FragmentDuration SQ) S?

http://go.microsoft.com/fwlink/?LinkId=123096

26 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

FragmentDurationAttributeName = "d"

FragmentDuration = STRING_UINT64

FragmentTimeAttribute = S FragmentTimeAttributeName S Eq S

 (DQ FragmentTime DQ) / (SQ FragmentTime SQ) S?

FragmentTimeAttributeName = "t"

FragmentTime = STRING_UINT64

FragmentRepeatAttribute = S FragmentRepeatAttributeName S Eq S?

 (DQ FragmentRepeat DQ) / (SQ FragmentRepeat SQ) S?

FragmentRepeatAttributeName = "r"

FragmentRepeat = STRING_UINT64

StreamFragmentContent = *(TrackFragment S)

TrackFragment = "<" TrackFragmentElementName S

 TrackFragmentAttributes S ">"

 S 1*(TrackFragmentContent S?)

 "</" TrackFragmentElementName ">"

TrackFragmentAttributes = *(

 TrackFragmentIndexAttribute

 / VendorExtensionAttribute

)

TrackFragmentIndexAttribute = S TrackFragmentIndexAttribute S Eq S

 (DQ TrackFragmentIndex DQ)

 / (SQ TrackFragmentIndex SQ) S?

TrackFragmentIndexAttribute = "i"

TrackFragmentIndex = STRING_UINT32

TrackFragmentContent = VendorExtensionTrackData

VendorExtensionTrackData = XML_CHARDATA

2.2.2.6.1 TrackFragmentElement

TrackFragmentElement and related fields are used to specify metadata pertaining to a fragment
for a specific track, rather than all versions of a fragment for a stream.

TrackFragmentElement (variable): An XML Element that encapsulates informative track-specific

metadata for a specific fragment. Attributes can appear in any order. However, the following field is
required and MUST be present in TrackFragmentAttributes: TrackFragmentIndexAttribute.

TrackFragmentIndex (variable): An ordinal that MUST match the value of the Index field for the
track to which this TrackFragment field pertains.

ManifestOutputSample (variable): A string that contains the Base64-encoded representation of
the raw bytes of the sample data for this fragment. This field MUST be omitted unless the

ManifestOutput field for the corresponding stream contains a TRUE value.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

TrackFragmentElement = "<" TrackFragmentElementName S

 TrackFragmentAttributes S ">"

 S TrackFragmentContent S

 "</" TrackFragmentElementName ">"

TrackFragmentElementName = "f"

TrackFragmentAttributes = *(

 TrackFragmentIndexAttribute

 / VendorExtensionAttribute

)

TrackFragmentIndexAttribute = S TrackFragmentIndexAttribute S Eq S

 (DQ TrackFragmentIndex DQ)

http://go.microsoft.com/fwlink/?LinkId=123096

27 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 / (SQ TrackFragmentIndex SQ) S?

TrackFragmentIndexAttribute = "i"

TrackFragmentIndex = STRING_UINT32

TrackFragmentContent = ManifestOutputSample

ManifestOutputSample = BASE64_STRING

2.2.3 Fragment Request

The FragmentRequest and related fields contain data required to request a fragment from the
server.

FragmentRequest (variable): The URI [RFC2616] of the fragment resource.

BitratePredicate (variable): The bit rate of the requested fragment.

CustomAttributesPredicate (variable): An Attribute of the requested fragment used to
disambiguate tracks.

CustomAttributesKey (variable): The name of the Attribute specified in the
CustomAttributesPredicate field.

CustomAttributesValue (variable): The value of the Attribute specified in the

CustomAttributesPredicate.

FragmentsNoun (variable): The type of response expected by the client.

StreamName (variable): The name of the stream that contains the requested fragment.

Time (variable): The time of the requested fragment.

HLSPredicate (variable): An optional variable to request a fragment delivered with the HTTP
Live Streaming protocol (HLS) as specified in [IETFDRAFT-HLS] section 6.2.2.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

FragmentRequest = PresentationURI "/" QualityLevelsSegment "/" FragmentsSegment

 ; PresentationURI is specified in section 2.2.1

QualityLevelsSegment = QualityLevelsNoun "(" QualityLevelsPredicate ")"

QualityLevelsNoun = "QualityLevels"

QualityLevelsPredicate = BitratePredicate *("," CustomAttributesPredicate)

BitratePredicate = STRING_UINT32

CustomAttributesPredicate = CustomAttributesKey "=" CustomAttributesValue

CustomAttributesKey = URISAFE_IDENTIFIER_NONNUMERIC

CustomAttributesValue = URISAFE_IDENTIFIER

FragmentsSegment = FragmentsNoun "(" FragmentsPredicate ")"

FragmentsNoun = FragmentsNounFullResponse

 / FragmentsNounMetadataOnly

 / FragmentsNounDataOnly

 / FragmentsNounIndependentOnly

FragmentsNounFullResponse = "Fragments"

FragmentsNounMetadataOnly = "FragmentInfo"

FragmentsNounDataOnly = "RawFragments"

FragmentsNounIndependentOnly = "KeyFrames"

FragmentsPredicate = StreamName "=" Time [HLSPredicate]

StreamName = URISAFE_IDENTIFIER_NONNUMERIC

Time = STRING_UINT64

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=386439
http://go.microsoft.com/fwlink/?LinkId=123096

28 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

HLSPredicate = ", " "format=m3u8-aapl"

2.2.4 Fragment Response

The FragmentResponse and/or related fields encapsulate media and metadata specific to the
requested fragment.

FragmentResponse (variable): The media and/or related metadata for a fragment.

FragmentFullResponse (variable): A Fragment Response that contains data and metadata.

FragmentMetadataResponse (variable): A Fragment Response that only contains metadata.

FragmentDataResponse (variable): A Fragment Response that contains only data.

FragmentMetadata (variable): Metadata for the fragment.

FragmentData (variable): Media data for the fragment.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

FragmentResponse = FragmentFullResponse

 / FragmentMetadataResponse

 / FragmentDataResponse

FragmentFullResponse = FragmentMetadata FragmentData

FragmentMetadataResponse = FragmentMetadata

FragmentDataResponse = SampleData

FragmentMetadata = MoofBox

FragmentData = MdatBox

SampleData, in the preceding ABNF syntax, is specified in section 2.2.4.8.

2.2.4.1 MoofBox

The MoofBox and related fields encapsulate metadata specific to the requested fragment. The
syntax of MoofBox is a strict subset of the syntax of the Movie Fragment Box specified in [ISO/IEC-
14496-12].

MoofBox (variable): Top-level metadata container for the requested fragment. The following fields
are required and MUST be present in MoofBoxChildren: MfhdBox, TrafBox.

MoofBoxLength (4 bytes): The length of the MoofBox field, in bytes, including the
MoofBoxLength field. If the value of the MoofBoxLength field is %00.00.00.01, the
MoofBoxLongLength field MUST be present.

MoofBoxLongLength (8 bytes): The length of the MoofBox field, in bytes, including the
MoofBoxLongLength field.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

MoofBox = MoofBoxLength MoofBoxType [MoofBoxLongLength]

 MoofBoxChildren

MoofBoxType = %d109 %d111 %d111 %d102

MoofBoxLength = BoxLength

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

29 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MoofBoxLongLength = BoxLongLength

MoofBoxChildren = 2 *(MfhdBox / TrafBox / VendorExtensionUUIDBox)

2.2.4.2 MfhdBox

The MfhdBox and related fields specify the fragment's position in the sequence for the track. The
syntax of the MfhdBox field is a strict subset of the syntax of the Movie Fragment Header Box
defined in [ISO/IEC-14496-12].

MfhdBox (variable): Metadata container for the sequence information for the track.

MfhdBoxLength (4 bytes): The length of the MfhdBox field, in bytes, including the
MfhdBoxLength field. If the value of the MfhdBoxLength field is %00.00.00.01, the

MfhdBoxLongLength field MUST be present.

MfhdBoxLongLength (8 bytes): The length of the MfhdBox field, in bytes, including the
MfhdBoxLongLength field.

SequenceNumber (4 bytes): An ordinal for the fragment in the track timeline. The
SequenceNumber value for a fragment later in the timeline MUST be greater than for a fragment
earlier in the timeline, but SequenceNumber values for consecutive Fragments are not required to
be consecutive.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

MfhdBox = MfhdBoxLength MfhdBoxType [MfhdBoxLongLength] MfhdBoxFields

 MfhdBoxChildren

MfhdBoxType = %d109 %d102 %d104 %d100

MfhdBoxLength = BoxLength

MfhdBoxLongLength = LongBoxLength

MfhdBoxFields = SequenceNumber

SequenceNumber = UNSIGNED_INT32

MfhdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.3 TrafBox

The TrafBox and related fields encapsulate metadata specific to the requested fragment and track.

The syntax of the TrafBox field is a strict subset of the syntax of the Track Fragment Box defined in
[ISO/IEC-14496-12].

TrafBox (variable): Top-level metadata container for track-specific metadata for the fragment.
The following fields are required and MUST be present in TrafBoxChildren: TfhdBox, TrunBox.

TrafBoxLength (4 bytes): The length of the TrafBox field, in bytes, including the TrafBoxLength
field. If the value of the TrafBoxLength field is %00.00.00.01, the TrafBoxLongLength field
MUST be present.

TrafBoxLongLength (8 bytes): The length of the TrafBox field, in bytes, including the
TrafBoxLongLength field.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

30 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

TrafBox = TrafBoxLength TrafBoxType [TrafBoxLongLength]

 TrafBoxChildren

TrafBoxType = %d116 %d114 %d97 %d102

TrafBoxLength = BoxLength

TrafBoxLongLength = LongBoxLength

TrafBoxChildren = 2 *(TfhdBox / TrunBox

 / VendorExtensionUUIDBox)

2.2.4.4 TfxdBox

The TfxdBox and related fields encapsulate the absolute timestamp and duration of a fragment in a
live presentation. This field SHOULD be ignored if it appears in an on-demand presentation.

TfxdBox (variable): Metadata container for per sample defaults.

TfxdBoxLength (4 bytes): The length of the TfxdBox field, in bytes, including the

TfxdBoxLength field. If the value of the TfxdBoxLength field is %00.00.00.01, the

TfxdBoxLongLength field MUST be present.

TfxdBoxLongLength (8 bytes): The length of the TfxdBox field, in bytes, including the
TfxdBoxLongLength field.

TfxdBoxVersion (1 byte): The box version. If this field contains the value %x01, the
TfxdBoxDataFields64 field MUST be present inside the TfxdBoxFields field. Otherwise, the
TfxdBoxDataFields32 field MUST be present inside the TfxdBoxFields field.

FragmentAbsoluteTime32 (4 bytes): The absolute timestamp of the first sample of the
fragment, in time scale increments for the track.

FragmentDuration32 (4 bytes): The total duration of all samples in the fragment, in time scale
increments for the track.

FragmentAbsoluteTime64 (8 bytes): The absolute timestamp of the first sample of the

fragment, in time scale increments for the track.

FragmentDuration64 (8 bytes): The total duration of all samples in the fragment, in time scale

increments for the track.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

TfxdBox = TfxdBoxLength TfxdBoxType [TfxdBoxLongLength] TfxdBoxUUID TfxdBoxFields

 TfxdBoxChildren

TfxdBoxType = %d117 %d117 %d105 %d100

TfxdBoxLength = BoxLength

TfxdBoxLongLength = LongBoxLength

TfxdBoxUUID = %x6D %x1D %x9B %x05 %x42 %xD5 %x44 %xE6

 %x80 %xE2 %x14 %x1D %xAF %xF7 %x57 %xB2

TfxdBoxFields = TfxdBoxVersion

 TfxdBoxFlags

 TfxdBoxDataFields32 / TfxdBoxDataFields64

TfxdBoxVersion = %x00 / %x01

TfxdBoxFlags = 24*24 RESERVED_BIT

TfxdBoxDataFields32 = FragmentAbsoluteTime32

 FragmentDuration32

TfxdBoxDataFields64 = FragmentAbsoluteTime64

http://go.microsoft.com/fwlink/?LinkId=123096

31 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 FragmentDuration64

FragmentAbsoluteTime64 = UNSIGNED_INT32

FragmentDuration64 = UNSIGNED_INT32

FragmentAbsoluteTime64 = UNSIGNED_INT64

FragmentDuration64 = UNSIGNED_INT64

TfxdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.5 TfrfBox

The TfrfBox and related fields encapsulate the absolute timestamp and duration for one or more
subsequent fragments of the same track in a live presentation. This field SHOULD be ignored if it
appears in an on-demand presentation. For a live presentation, this field MUST be present unless

one of the following conditions is true:

The containing track for this fragment is a sparse track.

The number of subsequent fragments in the track is less than the value of the LookaheadCount

field, specified in section 2.2.2.1, for the presentation.

The LookaheadCount field is set to 0.

TfrfBox (variable): Metadata container for per sample defaults.

TfrfBoxLength (4 bytes): The length of the TfrfBox field, in bytes, including the TfrfBoxLength
field. If the value of the TfrfBoxLength field is %x00.00.00.01, the TfrfBoxLongLength field
MUST be present.

TfrfBoxLongLength (8 bytes): The length of the TfrfBox field, in bytes, including the
TfrfBoxLongLength field.

TfrfBoxVersion (1 byte): The box version. If this field contains the value %x01, the

TfrfBoxDataFields64 field MUST be present inside the TfrfBoxFields field. Otherwise, the
TfrfBoxDataFields32 field MUST be present inside the TfrfBoxFields field.

FragmentCount (4 byte): The number of fragments for which the TfrfBox field contains
information.

TfrfBoxDataFields32 (variable): The absolute timestamps and durations for a set of subsequent
fragments, represented as 32-bit values. If the value of the TfrfBoxVersion field is %x00, there
MUST be exactly FragmentCount instances of this field.

TfrfBoxDataFields64 (variable): The absolute timestamps and durations for a set of subsequent
fragments, represented as 64-bit values. If the value of the TfrfBoxVersion field is %x00, there
MUST be exactly FragmentCount instances of this field.

FragmentAbsoluteTime32 (4 bytes): The absolute timestamp of the first sample of a subsequent
fragment, in time scale increments for the track.

FragmentDuration32 (4 bytes): The total duration of all samples in a subsequent fragment, in

time scale increments for the track.

FragmentAbsoluteTime64 (8 bytes): The absolute timestamp of the first sample of a subsequent
fragment, in time scale increments for the track.

FragmentDuration64 (8 bytes): The total duration of all samples in a subsequent fragment, in
time scale increments for the track.

32 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

TfrfBox = TfrfBoxLength TfrfBoxType [TfrfBoxLongLength] TfrfBoxUUID TfrfBoxFields

 TfrfBoxChildren

TfrfBoxType = %d117 %d117 %d105 %d100

TfrfBoxLength = BoxLength

TfrfBoxLongLength = LongBoxLength

TfrfBoxUUID = %xD4 %x80 %x7E %xF2 %xCA %x39 %x46 %x95

 %x8E %x54 %x26 %xCB %x9E %x46 %xA7 %x9F

TfrfBoxFields = TfrfBoxVersion

 TfrfBoxFlags

 FragmentCount

 (1* TfrfBoxDataFields32) / (1* TfrfBoxDataFields64)

TfrfBoxVersion = %x00 / %x01

TfrfBoxFlags = 24*24 RESERVED_BIT

FragmentCount = UINT8

TfrfBoxDataFields32 = FragmentAbsoluteTime32

 FragmentDuration32

TfrfBoxDataFields64 = FragmentAbsoluteTime64

 FragmentDuration64

FragmentAbsoluteTime64 = UNSIGNED_INT32

FragmentDuration64 = UNSIGNED_INT32

FragmentAbsoluteTime64 = UNSIGNED_INT64

FragmentDuration64 = UNSIGNED_INT64

TfrfBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.6 TfhdBox

The TfhdBox and related fields encapsulate defaults for per sample metadata in the fragment. The
syntax of the TfhdBox field is a strict subset of the syntax of the Track Fragment Header Box
defined in [ISO/IEC-14496-12].

TfhdBox (variable): Metadata container for per sample defaults.

TfhdBoxLength (4 bytes): The length of the TfhdBox field, in bytes, including the
TfhdBoxLength field. If the value of the TfhdBoxLength field is %00.00.00.01, the
TfhdBoxLongLength field MUST be present.

TfhdBoxLongLength (8 bytes): The length of the TfhdBox field, in bytes, including the
TfhdBoxLongLength field.

BaseDataOffset (8 bytes): The offset, in bytes, from the beginning of the MdatBox field to the
sample field in the MdatBox field.

SampleDescriptionIndex (4 bytes): The ordinal of the sample description for the track that is
applicable to this fragment. This field SHOULD be omitted.

DefaultSampleDuration (4 bytes): The default duration of each sample, in increments defined by
the TimeScale for the track.

DefaultSampleSize (4 bytes): The default size of each sample, in bytes.

DefaultSampleFlags (4 bytes): The default value of the SampleFlags field for each sample.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

33 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

TfhdBox = TfhdBoxLength TfhdBoxType [TfhdBoxLongLength] TfhdBoxFields

 TfhdBoxChildren

TfhdBoxType = %d116 %d102 %d104 %d100

TfhdBoxLength = BoxLength

TfhdBoxLongLength = LongBoxLength

TfhdBoxFields = TfhdBoxVersion

 TfhdBoxFlags

 [BaseDataOffset]

 [SampleDescriptionIndex]

 [DefaultSampleDuration]

 [DefaultSampleSize]

 [DefaultSampleFlags]

TfhdBoxVersion = %x00

TfhdBoxFlags = 18*18 RESERVED_BIT

 DefaultSampleFlagsPresent

 DefaultSampleSizePresent

 DefaultSampleDurationPresent

 RESERVED_BIT

 SampleDescriptionIndexPresent

 BaseDataOffsetPresent

BaseDataOffset = UNSIGNED_INT64

SampleDescriptionIndex = UNSIGNED_INT32

DefaultSampleDuration = UNSIGNED_INT32

DefaultSampleSize = UNSIGNED_INT32

DefaultSampleFlags = SampleFlags

TfhdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.7 TrunBox

The TrunBox and related fields encapsulate per sample metadata for the requested fragment. The
syntax of TrunBox is a strict subset of the syntax of the Track Fragment Run Box defined in
[ISO/IEC-14496-12].

TrunBox (variable): Container for per sample metadata.

TrunBoxLength (4 bytes): The length of the TrunBox field, in bytes, including TrunBoxLength
field. If the value of the TrunBoxLength field is %00.00.00.01, the TrunBoxLongLength field
MUST be present.

TrunBoxLongLength (8 bytes): The length of the TrunBox field, in bytes, including the
TrunBoxLongLength field.

SampleCount (4 bytes): The number of samples in the fragment.

FirstSampleFlagsPresent (1 bit): Indicates that the default flags for the first sample are replaced
if this field takes the value %b1.

SampleSizePresent (1 bit): Indicates that each sample has its own size if this field takes the
value %b1. If this field is not present, then the default value specified by the DefaultSampleSize

field is used.

SampleDurationPresent (1 bit): Indicates that each sample has its own duration if this field takes
the value %b1. If this field is not present, then the default value specified by the

DefaultSampleDuration field is used.

http://go.microsoft.com/fwlink/?LinkId=183695

34 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SampleFlagsPresent (1 bit): Indicates that each sample has its own flags if this field takes the
value %b1. If this field is not present, then the default value specified by the DefaultSampleFlags

field is used.

SampleCompositionTimeOffsetPresent (1 bit): Indicates that each sample has a composition

time offset if this field takes the value %b1.

FirstSampleFlags (4 bytes): The value of the SampleFlags field for the first sample. This field
MUST be present if and only if the FirstSampleFlagsPresent takes the value %b1.

SampleSize (4 bytes): The size of each sample, in bytes. This field MUST be present if and only if
the SampleSizePresent field takes the value %b1. If this field is not present, its implicit value is
the value of the DefaultSampleSize field.

SampleDuration (4 bytes): The duration of each sample, in increments defined by the TimeScale

for the track. This field MUST be present if and only if SampleDurationPresent takes the value %b1.
If this field is not present, its implicit value is the value of the DefaultSampleDuration field.

TrunBoxSampleFlags (4 bytes): The Sample flags of each sample. This field MUST be present if
and only if the SampleFlagsPresent field takes the value %b1. If this field is not present, its
implicit value is the value of the DefaultSampleFlags field. If the FirstSampleFlags field is
present and this field is omitted, this field's implicit value for the first sample in the fragment MUST

be the value of the FirstSampleFlags field.

SampleCompositionTimeOffset (4 bytes): The Sample Composition Time offset of each sample,
as defined in [ISO/IEC-14496-12]. This field MUST be present if and only if the
SampleCompositionTimeOffsetPresent field takes the value %b1.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

TrunBox = TrunBoxLength TrunBoxType [TrunBoxLongLength] TrunBoxFields

 TrunBoxChildren

TrunBoxType = %d116 %d114 %d117 %d110

TrunBoxLength = BoxLength

TrunBoxLongLength = LongBoxLength

TrunBoxFields = TrunBoxVersion

 TrunBoxFlags

 SampleCount

 [FirstSampleFlags]

 *(TrunBoxPerSampleFields)

 ; TrunBoxPerSampleFields MUST be repeated exactly SampleCount times

TrunBoxFlags = 12*12 RESERVED_BIT

 SampleCompositionTimeOffsetPresent

 SampleFlagsPresent

 SampleSizePresent

 SampleDurationPresent

 RESERVED_BIT

 RESERVED_BIT

 RESERVED_BIT

 RESERVED_BIT

 RESERVED_BIT

 FirstSampleFlagsPresent

 RESERVED_BIT

 RESERVED_BIT

SampleCompositionTimeOffsetPresent = BIT

SampleFlagsPresent = BIT

SampleSizePresent = BIT

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

35 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SampleDurationPresent = BIT

FirstSampleFlagsPresent = BIT

FirstSampleFlags = SampleFlags

TrunBoxPerSampleFields = [SampleDuration]

 [SampleSize]

 [TrunBoxSampleFlags]

 [SampleCompositionTimeOffset]

SampleDuration = UNSIGNED_INT32

SampleSize = UNSIGNED_INT32

TrunBoxSampleFlags = SampleFlags

SampleCompositionTimeOffset = UNSIGNED_INT32

TrunBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.8 MdatBox

The MdatBox and related fields encapsulate media data for the requested fragment. The syntax of
the MdatBox field is a strict subset of the syntax of the Media Data Container Box defined in

[ISO/IEC-14496-12].

MdatBox (variable): Media data container.

MdatBoxLength (4 bytes): The length of the MdatBox field, in bytes, including the
MdatBoxLength field. If the value of the MdatBoxLength field is %00.00.00.01, the
MdatBoxLongLength field MUST be present.

MdatBoxLongLength (8 bytes): The length of the MdatBox field, in bytes, including the
MdatBoxLongLength field.

SampleData (variable): A single sample of media. Sample boundaries in the MdatBox field are
defined by the values of the DefaultSampleSize and SampleSize fields in the TrunBox field.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

MdatBox = MdatBoxLength MdatBoxType [MdatBoxLongLength]

 MdatBoxFields

MoofBoxType = %d109 %d100 %d97 %d116

MoofBoxLength = BoxLength

MoofBoxLongLength = LongBoxLength

MdatBoxFields = *(SampleData)

SampleData = *BYTE

2.2.4.9 Fragment Response Common Fields

This section defines the common fields used in the Fragment Response message for the following
fields: MoofBox, MfhdBox, TrafBox, TfxdBox, TfxfBox, TfhdBox, and TrunBox.

SampleFlags (4 bytes): A comprehensive Sample flags field.

SampleDependsOn (2 bits): Specifies whether this sample depends on another sample.

SampleDependsOnUnknown (2 bits): Unknown whether this sample depends on other samples.

SampleDependsOnOthers (2 bits): This sample depends on other samples.

SampleDoesNotDependOnOthers (2 bits): This sample does not depend on other samples.

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

36 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SampleIsDependedOn (2 bits): Specifies whether other samples depend on this sample.

SampleIsDependedOnUnknown (2 bits): Unknown whether other samples depend on this
sample.

SampleIsNotDisposable (2 bits): Other samples depend on this sample.

SampleIsDisposable (2 bits): No other samples depend on this sample.

SampleHasRedundancy (2 bits): Specifies whether this sample uses redundant coding.

RedundantCodingUnknown (2 bits): Unknown whether this sample uses redundant coding.

RedundantCoding (2 bits): This sample uses redundant coding.

NoRedundantCoding (2 bits): This sample does not use redundant coding.

SampleIsDifferenceValue (1 bit): A value of %b1 specifies that the sample is not a random
access point in the stream.

SamplePaddingValue (3 bits): The sample padding value, as specified in [ISO/IEC-14496-12].

SampleDegradationPriority (2 bytes): The sample degradation priority, as specified in [ISO/IEC-
14496-12].

VendorExtensionUUIDBox (Variable): A user extension box, as specified in [ISO/IEC-14496-
12].

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

SampleFlags = 6*6 RESERVED_BIT

 SampleDependsOn

 SampleIsDependedOn

 SampleHasRedundancy

 SamplePaddingValue

 SampleIsDifferenceValue

 SampleDegradationPriority

SampleDependsOn = SampleDependsOnUnknown

 / SampleDependsOnOthers

 / SampleDoesNotDependsOnOthers

SampleDependsOnUnknown = %b0 %b0

SampleDependsOnOthers = %b0 %b1

SampleDoesNotDependOnOthers = %b1 %b0

SampleIsDependedOn = SampleIsDependedOnUnknown

 / SampleIsNotDisposable

 / SampleIsDisposable

SampleIsDependedOnUnknown = %b0 %b0

SampleIsNotDisposable = %b0 %b1

SampleIsDisposable = %b1 %b0

SampleHasRedundancy = RedundantCodingUnknown

 / RedundantCoding

 / NoRedundantCoding

RedundantCodingUnknown = %b0 %b0

RedundantCoding = %b0 %b1

NoRedundantCoding = %b1 %b0

SamplePaddingValue = 3*3 BIT

SampleIsDifferenceValue = BIT

SampleDegradationPriority = UNSIGNED_INT16

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096

37 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

VendorExtensionUUIDBox = UUIDBoxLength UUIDBoxType [UUIDBoxLongLength] UUIDBoxUUID

 UUIDBoxData

UUIDBoxType = %d117 %d117 %d105 %d100

UUIDBoxLength = BoxLength

UUIDBoxLongLength = LongBoxLength

UUIDBoxUUID = UUID

UUIDBoxData = *BYTE

BoxLength = UNSIGNED_INT32

LongBoxLength = UNSIGNED_INT64

RESERVED_UNSIGNED_INT64 = %x00 %x00 %x00 %x00 %x00 %x00 %x00 %x00

UNSIGNED_INT64 = 8*8 BYTE

RESERVED_UNSIGNED_INT32 = %x00 %x00 %x00 %x00

UNSIGNED_INT32 = 4*4 BYTE

RESERVED_UNSIGNED_INT16 = %x00 %x00

UNSIGNED_INT16 = 2*2 BYTE

RESERVED_BYTE = %x00

BYTE = 8*8 BIT

RESERVED_BIT = %b0

BIT = %b0 / %b1

2.2.5 Sparse Stream Pointer

The SparseStreamPointer and related fields contain data required to locate the latest fragment of
a sparse stream. This message is used in conjunction with a Fragment Response message.

SparseStreamPointer (variable): A set of data that indicates the latest fragment for all related

sparse streams.

SparseStreamSet (variable): The set of latest fragment pointer for all sparse streams related to a
single requested fragment.

SparseStreamFragment (variable): The latest fragment pointer for a single related sparse
stream.

SparseStreamName (variable): The stream Name of the related Sparse Name. The value of this

field MUST match the Name field of the StreamElement field that describes the stream, specified
in section 2.2.2.3, in the Manifest Response.

SparseStreamTimeStamp (variable): The timestamp of the latest timestamp for a fragment for
the SparseStream that occurs at the same point in time or earlier than the presentation than the
requested fragment.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

SparseStreamPointer = (HeaderData DELIMETER)? "ChildTrack" "="

 DQ SparseStreamSet *(DELIMETER SparseStreamSet) DQ

HeaderData = 1*CHAR

DELIMETER = ";"

SparseStreamSet = SparseStreamFragment *("," SparseStreamFragment)

SparseStreamFragment = SparseStreamName "=" SparseStreamTimeStamp

SparseStreamTimeStamp = STRING_UINT64

http://go.microsoft.com/fwlink/?LinkId=123096

38 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

2.2.6 Fragment Not Yet Available

The Fragment Not Yet Available message is an HTTP Response with an empty message body field
and the HTTP Status Code 412 Precondition Failed, as specified in [RFC2616].

2.2.7 Live Ingest

The LiveIngest and related fields contain data required to request the start of a live broadcast.

LiveIngestRequest (variable): The URI [RFC2396] to which the LiveIngestRequest is sent.

Identifier (variable): A unique URISAFE_IDENTIFIER that enables the server to differentiate
between different streams. Each identifier can have at most one active connection.

EventID (variable): An optional identifier that enables the reuse of URLs without collision due to

downstream cache pollution. Publishing streams with different event names to the same publish URL
simultaneously is an error. All encoders MUST use the same EventID identifier, either blank or a
string. The default value is the empty string.

StreamID (variable): A unique identifier used to collate fragments in the case of encoder failover.
Allows separate encoder nodes to POST to separate URLs, but multiple active connection URLs with
the same StreamID identifier can be used for redundancy, in which case the server will filter out

duplicated or out-of-order fragments. Commonly used to distinguish between video quality (for
example "Streams(1080p)", "Streams(720p)", "Streams(480p)").

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

LiveIngestRequest = Protocol "://" BroadcastURL Identifier

Protocol = "http" / "https"

BroadcastURL = ServerAddress "/" PresentationPath

ServerAddress = URISAFE_IDENTIFIER

PresentationPath = URISAFE_IDENTIFIER ".isml"

Identifier = [EventID]StreamID

EventID = "/Events(" URISAFE_IDENTIFIER ")"

StreamID = "/Streams(" URISAFE_IDENTIFIER ")"

LiveIngestMessage (variable): The structure of the long-running POST operation requests sent

from the encoder to the LiveIngestRequest.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

LiveIngestMessage = FileType [StreamManifest] LiveServerManifest MoovBox *1Fragment

2.2.7.1 FileType

FileType (variable): specifies the sub-type and intended use of the MPEG-4 ([MPEG4-RA]) file,
and high-level attributes.

MajorBrand (variable): The major brand of the media file. MUST be set to "isml".

MinorVersion (variable): The minor version of the media file. MUST be set to 1.

CompatibleBrands (variable): Specifies the supported brands of MPEG-4. MUST include "piff" and
"iso2".

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=327787

39 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

FileType = MajorBrand MinorVersion CompatibleBrands

MajorBrand = STRING_UINT32

MinorVersion = STRING_UINT32

CompatibleBrands = "piff" "iso2" 0*(STRING_UINT32)

2.2.7.2 StreamManifestBox

The StreamManifestBox and related fields contain metadata required to inform the client of all

comprising streams in a broadcast. If the StreamManifestBox is present in a POST request, the
server sends a response, but does not initialize the broadcast until all of the streams enumerated in
the StreamManifest have sent an initial POST request. If the desired functionality is for the server
broadcast to begin as soon as the first encoder connects, the StreamManifestBox MUST be
omitted.

StreamManifestBox (variable): Contains the StreamManifest and associated metadata.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

StreamManifestBox = SMBoxType SMBoxLength SMBoxUUID SMVersion SMFlagsStreamManifest

SMBoxType = %d117 %d117 %d105 %d100

SMBoxLength = BoxLength

SMBoxUUID = %x3C %x2F %xE5 %x1B %xEF %xEE %x40 %xA3

 %xAE %x81 %x53 %x00 %x19 %x9D %xC3 %x48

SMVersion = STRING_UINT8

SMFlags = 24*24 RESERVED_BIT

StreamManifest (variable): A SMIL 2.0-compliant document [SMIL2.1] that informs the server of
all streams to allow broadcast delay until all are acquired. This field MUST be a Well-Formed XML

Document [XML] subject to the following constraints:

The Document's root Element is a SMIL element.

The Document's XML Declaration's major version is 1.

The Document's XML Declaration's minor version is 0.

The Document does not use a Document Type Definition (DTD).

The Document uses an encoding that is supported by the client implementation.

The XML Elements specified in this document MUST use

"http://www.w3.org/2001/SMIL20/Language" for a namespace. Instead of the default
namespace, a named namespace MAY be used, in which case all the tags described below MUST
have the namespace prefix that maps to this XML namespace.

Prolog (variable): The Prolog field, as specified in [XML].

StreamSMIL (variable): The body of the document field, as specified in 2.2.7.2.1.

Misc (variable): The Misc field, as specified in [XML].

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkID=325594
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=123096

40 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

StreamManifest = prolog StreamSMIL Misc

2.2.7.2.1 StreamSMIL

The StreamSMIL and related fields encapsulate the data that is required for the client to identify all
the streams in a presentation.

SMIL (variable): an XML element that encapsulates all the metadata required for the client to
identify all the streams in a presentation.

SMILReference (variable): Specifies a single stream. The server MUST wait for this stream before

starting the broadcast. The src attribute is required and specifies the stream’s relative URL.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

SMIL = "<" SMILMediaElementName SMILMediaNamespace ">" S?

 SMILStreamBody S?

 "</" SMILMediaElementName ">"

SMILMediaElementName = "smil"

SMILMediaNamespace = "xmlns" Eq DQ "http://www.w3.org/2001/SMIL20/Language" DQ

SMILStreamBody = "<body>" S "<par>" S *1(SMILReference) S "</par"> S "</body>"

SMILReference = "<ref" S "src" Eq DQ "Streams(" IDENTIFIER ")" DQ S "/>"

2.2.7.3 LiveServerManifestBox

The LiveServerManifestBox and related fields comprise the data provided to the server by the
encoder. The data enables the server to interpret the incoming live stream and assign semantic
meaning to the stream’s tracks.

LiveServerManifestBox (variable): Contains the LiveServerManifestBox and associated
metadata.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

LiveServerManifestBox = LSBoxType LSBoxLength LSBoxUUID LSVersion LSFlags LSManifest

LSBoxType = %d117 %d117 %d105 %d100

LSBoxLength = BoxLength

LSUUID = %xA5 %xD4 %x0B %x30 %xE8 %x14 %x11 %xDD

 %xBA %x2F %x08 %x00 %x20 %x0C %x9A %x66

LSVersion= IDENTIFIER

LSFlags= 24*24 RESERVED_BIT

LiveServerManifest (variable): SMIL 2.0-compliant document [SMIL2.1] that specifies the
metadata for all the tracks that appear in a live presentation. This field MUST be a Well-Formed XML

Document [XML] subject to the following constraints:

The Document's root Element is a SMIL field.

The Document's XML Declaration's major version is 1.

The Document's XML Declaration's minor version is 0.

The Document does not use a Document Type Definition (DTD).

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkID=325594
http://go.microsoft.com/fwlink/?LinkId=90598

41 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Document uses an encoding that is supported by the client implementation.

The XML Elements specified in this document MUST use

"http://www.w3.org/2001/SMIL20/Language" for a namespace. Instead of the default

namespace, a named namespace MAY be used, in which case all the tags described below MUST
have the namespace prefix that maps to this XML namespace.

The XML Elements specified in this document do not use XML Namespaces.

Prolog (variable): The Prolog field, as specified in [XML].

LiveSMIL (variable): The body of the document field, as specified in section 2.2.7.3.1.

Misc (variable): The Misc field, as specified in [XML].

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

LiveServerManifest = prolog LiveSMIL Misc

2.2.7.3.1 LiveSMIL

The LiveSMIL and related fields comprise the data required for the client to identify all the streams
in a presentation.

SMIL (variable): The root container used by SMIL 2.0 [SMIL2.1]. The xmlns field MUST be set to
http://www.w3.org/2001/SMIL20/Language.

SMILLiveHead (variable): The head element that contains the presentation-level metadata.

SMILLiveMeta (variable): The metadata of the presentation. The following attributes are
supported:

name: Specifies the semantic meaning of metadata; this attribute MUST be present.

content: Specifies the value of metadata; this attribute MUST be present.

SMILLiveBody (variable): The body element contains track information and references to other
media.

SMILTrack (variable): One of the comprising tracks in the presentation. Can be video, audio, or
text. The following attributes are supported:

src: Specifies the file in which the track resides. This attribute is optional. For all Live Smooth

Streaming manifests, the src attribute SHOULD be set to "Streams".

systemBitrate: Specifies the bit rate of the track; this attribute MUST be present.

SMILParam (variable): Specifies a single parameter for a given SMILTrack. The following
attributes are supported:

name: Specifies the name of the parameter; this attribute MUST be present.

value: Specifies the parameter’s value; this attribute MUST be present.

valuetype: Specifies "type" of value attribute; this attribute MUST be present. The valuetype

attribute MUST be set to "data".

http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkID=325594

42 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The valid range and semantic meaning of the name and value attributes varies as described below,
depending on the value of the name attribute:

name value

trackID (required) A required attribute that MUST be present. It specifies the ID of the track

containing the video, audio, or textstream element described. This value

correlates to the track_ID field in the tfhd and trak boxes for the track.

trackName An optional parameter that specifies the client-facing name of the track, and

appears in the Fragments() noun as part of the URL. All the tracks that have

the same value for systemBitrate and attributes MUST have distinct track

names. If this parameter is omitted, the following default track names are

assigned by IIS:

video tracks: value="video"

audio tracks: value="audio"

textstream tracks: value="textstream"

manifestOutput An optional parameter that specifies whether or not sample data for the given

track is accumulated into the manifest, and therefore made immediately

available to the client. Valid values for this parameter are TRUE or FALSE. If

omitted, the default value is FALSE and sample data is not accumulated in the

manifest.

parentTrackName An optional parameter that identifies the track as being a sparse track and also

specifies the name of its parent track. If this track is a control track, its data

is downloaded transparently with the data from the parent track. Valid values

for this parameter are trackName parameters for other tracks in the

presentation. The tracks referenced by parentTrackName MUST NOT be control

tracks, and MUST NOT be sparse tracks.

{namepace}_{custom

attribute}

An optional parameter allowing the definition of additional extended attributes

for a track. The namespace and custom_attribute are defined on a per-use

basis with the brackets omitted. This parameter can be used to discriminate

between tracks having the same track name and bit rate.

timescale An optional parameter that specifies the timescale for this track, as the number

of units that pass in one second. If this parameter is not present, the default

value used is 10,000,000, which maps to increments of 100ns.

Subtype An optional parameter that specifies information that can be used by the client

to identify characteristics of the track.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

SMIL = "<" SMILMediaElementName SMILMediaNamespace ">" S?

 SMILLiveHead S SMILLiveBody S?

 "</" SMILMediaElementName ">"

SMILMediaElementName = "smil"

SMILMediaNamespace = "xmlns" Eq DQ "http://www.w3.org/2001/SMIL20/Language" DQ

SMILLiveHead = "<head"> S SMILLiveMeta S "</head>"

SMILLiveMeta = "<meta " S "name" Eq DQ IDENTIFIER DQ S "content" Eq DQ IDENTIFIER DQ S?

 "/>"

SMILLiveBody = "<body>" S "<switch>" S SMILTracks S "</switch"> S "</body>"

SMILTracks = 1*(SMILVideoTrack / SMILAudioTrack / SMILTexttrack)

http://go.microsoft.com/fwlink/?LinkId=123096

43 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

SMILVideoTrack = ="<video S SMILTrackAttributes S ">" S 1*SMILParam S "</video>"

SMILAudioTrack ="<audio S SMILTrackAttributes S ">" S 1*SMILParam S "</audio>"

SMILTextTrack = ="<textstream S SMILTrackAttributes S ">" S 1*SMILParam S "</textstream>"

SMILTrackAttributes = "src" S Eq S DQ "Streams" DQ S "systemBitrate" S Eq S DQ

 1*DIGIT DQ S ">"

SMILParam = "<param" S "name" Eq DQ IDENTIFIER DQ S "value" Eq DQ IDENTIFIER DQ S?

 "valuetype" Eq DQ "data" DQ S "/>"

2.2.7.4 MoovBox

The MoovBox field is as described in [ISO/IEC-14496-12].

2.2.7.5 Fragment

The fragment is comprised of the MoofBox (section 2.2.4.1) and the MdatBox (section 2.2.4.8).

In order to handle live streams, the server requires a TrackFragmentExtendedHeader field inside

the TrafBox (section 2.2.4.3).

2.2.7.5.1 Track Fragment Extended Header

The TrackFragmentExtendedHeader field and related fields specify the fragment’s duration and
absolute starting offset in timescale increments for the track. These fields MUST be present for
every fragment in a live stream originating from an encoder and SHOULD be omitted otherwise.

Version (variable): Limited to 1 or 0 signifying 64-bit or 32-bit times respectively.

FragTime (variable): Specifies the absolute time of the fragment’s first sample in timescale
increments. Must be a 32-bit integer if Version = 0 and a 64-bit integer otherwise.

FragDuration (variable): Specifies the duration of the entire fragment in timescale increments.
Must be a 32-bit integer if Version = 0 and a 64-bit integer otherwise.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

TrackFragmentExtendedHeader = Version FragTime FragDuration TFEHFlags

Version = STRING_UINT8

FragTime = STRING_UINT32 / STRING_UINT64

FragDuration = STRING_UINT32 / STRING_UINT64

TFEHFlags = 24*24 RESERVED_BIT

2.2.8 Server-to-Server Ingest

The ServerIngest and related fields contain data required for a server when requesting a broadcast
and its related streams from another server.

ServerIngestRequest (variable): The URI [RFC2396] to which the ServerIngest request is sent.

EventID (variable): An optional identifier that enables the reuse of URLs, as specified in section
2.2.7.

The syntax of the fields defined in this section, specified in ABNF [RFC5234], is as follows:

ServerToServerRequest= Protocol "://" BroadcastURL Identifier

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=123096

44 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Protocol = "http" / "https"

BroadcastURL = ServerAddress "/" PresentationPath "/streammanifest"

ServerAddress = URISAFE_IDENTIFIER

PresentationPath = URISAFE_IDENTIFIER ".isml"

The response sent by a server receiving a ServerIngestRequest resembles a

LiveIngestMessage, as specified in sections 2.2.7.1 through 2.2.7.5.

45 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The client acts in accordance with the following model:

Figure 3: Client state machine diagram

The main data elements that are required by any implementation are:

Presentation Description: A hierarchical data element that encapsulates metadata from the

presentation, as specified in section 3.1.1.1.

Fragment Description: Metadata and samples for a single fragment, as specified in section

3.1.1.2.

Active Presentation: An instance of the presentation Description data element. This data element

is maintained as state by the client.

Presentation Available: A flag that indicates whether the Active Presentation has been

successfully initialized. This data element is maintained as state by the client.

Sparse Stream Pointer Header: A string that contains the name of the HTTP header used to carry

the sparse stream Pointer message, specified in section 2.2.5.

3.1.1.1 Presentation Description

The Presentation Description data element encapsulates all metadata for the presentation.

Presentation Metadata: A set of metadata that is common to all streams in the presentation.
Presentation Metadata comprises the following fields, specified in section 2.2.2.1:

MajorVersion

MinorVersion

46 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

TimeScale

Duration

IsLive

LookaheadCount

DVRWindowLength

Stream Collection: A collection of Stream Description data elements, as specified in section
3.1.1.1.2.

Protection Description: A collection of Protection System Metadata Description data elements, as

specified in section 3.1.1.1.1.

3.1.1.1.1 Protection System Metadata Description

The Protection System Metadata Description data element encapsulates metadata specific to a single
Content Protection System.

Protection Header Description: Content protection metadata that pertains to a single Content
Protection System. Protection Header Description comprises the following fields, specified in section

2.2.2.2:

SystemID

ProtectionHeaderContent

3.1.1.1.2 Stream Description

The Stream Description data element encapsulates all metadata specific to a single stream.

Stream Metadata: A set of metadata that is common to all tracks for the stream. Stream Metadata

comprises the following fields, specified in section 2.2.2.3:

StreamTimeScale

Type

Name

NumberOfFragments

NumberOfTracks

Subtype

Url

StreamMaxWidth

StreamMaxHeight

DisplayWidth

DisplayHeight

47 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Track Collection: A collection of Track Description data elements, as specified in section 3.1.1.1.2.1.

Fragment Reference Collection: An ordered collection of Fragment Reference Description data
elements, as specified in section 3.1.1.1.3.

Sparse Stream Flag: A Boolean flag that specifies the stream is a sparse stream.

Parent Stream: A reference to the Stream Description data element for this stream's Parent Stream.
This data element SHOULD NOT be set unless the stream is a sparse stream.

Last Downloaded Fragment: A 64-bit unsigned integer that holds a reference to the Last Known
Fragment for a sparse stream. This data element SHOULD NOT be set unless the stream is a sparse
stream.

3.1.1.1.2.1 Track Description

The Track Description data element encapsulates all metadata specific to a single track.

Track Metadata: A set of metadata that is common to all fragments for the track. Track Metadata
comprises the following fields, specified in section 2.2.2.5:

Index

Bitrate

MaxWidth

MaxHeight

SamplingRate

AudioTag

BitsPerSample

PacketSize

CodecPrivateData

NALUnitLengthField

Custom Attributes Collection: A collection of Custom Attribute Description data elements, as
specified in section 3.1.1.1.2.1.1.

3.1.1.1.2.1.1 Custom Attribute Description

The Custom Attribute Description data element encapsulates a key/value pair that disambiguates
tracks.

Key Value Pair: A single key/value pair. Key Value Pair comprises the following fields, specified in
section 2.2.2.5.1:

CustomAttributeName

CustomAttributeValue

48 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.1.1.3 Fragment Reference Description

The Fragment Reference Description data element encapsulates metadata needed to identify a
fragment in the stream, and create a corresponding Fragment Request message.

Fragment Reference Metadata: A set of metadata that describes a set of related fragments in all
tracks for the stream. Fragment Reference Metadata comprises a collection of Track-Specific
Fragment Reference Description data elements, specified in section 3.1.1.1.3.1, and the following
fields, specified in section 2.2.2.6:

FragmentNumber

FragmentDuration

FragmentTime

Track-Specific Fragment Reference Collection: A collection of Track-Specific Fragment Reference
Description data elements, as specified in section 3.1.1.1.3.1.

3.1.1.1.3.1 Track-Specific Fragment Reference Description

The Fragment Reference Description data element encapsulates metadata needed to identify a

fragment in the stream, and create a corresponding Fragment Request message.

Track-Specific Fragment Reference Metadata: A set of metadata that describes a set of related
fragments in all tracks for the stream. Fragment Reference Metadata comprises the following fields,
specified in section 2.2.2.6:

TrackFragmentIndexAttribute

ManifestOutputSample

3.1.1.2 Fragment Description

The Fragment Description data element encapsulates metadata and sample data for a single
fragment.

Fragment Metadata: A set of metadata that is common to all samples in the fragment. Fragment
Metadata comprises the following fields:

SequenceNumber, specified in section 2.2.4.2

DefaultSampleDuration, specified in section 2.2.4.4

DefaultSampleSize, specified in section 2.2.4.4

DefaultSampleFlags, specified in section 2.2.4.4

FirstSampleFlags, specified in section 2.2.4.5

VendorExtensionUUIDBox, specified in section 2.2.4.9

Sample Collection: A collection of Sample Description data elements, as specified in section
3.1.1.2.1.

49 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.1.1.2.1 Sample Description

The Sample Description data element encapsulates the metadata and data for a single sample.

Sample Metadata: A set of Attributes that pertain to the Sample. Sample Metadata comprises the

following fields:

SampleDuration, specified in section 2.2.4.5

TrunBoxSampleFlags, specified in section 2.2.4.5

SampleSize, specified in section 2.2.4.5

SampleCompositionTimeOffset, specified in section 2.2.4.5

SampleData, specified in section 2.2.4.6

3.1.2 Timers

None.

3.1.3 Initialization

Initialization of the client is triggered by Open Presentation event, specified in section 3.1.4.1. At
Initialization, the Presentation Available flag is set to false.

The Sparse Stream Pointer Header is initialized from configuration above the IIS Smooth Streaming
Transport Protocol layer. The configured value on the client MUST match the configured value on the
server for interoperability. <1>

3.1.4 Higher-Layer Triggered Events

The client is driven by a higher-layer implementation that decodes samples for playback to the end
user and uses the state of playback and end user interaction to drive Fragment Requests by the

client. The following events trigger specific behavior on the client.

Open Presentation, specified in section 3.1.4.1

Get Fragment, specified in section 3.1.4.2

Close Presentation, specified in section 3.1.4.3

3.1.4.1 Open Presentation

The Open Presentation event is used at the start of a viewing session. This event has no effect if the
value of the Presentation Available flag is true.

The higher-layer implementation provides the following data element:

Presentation URI: A string whose syntax matches the syntax of the PresentationURI field,

specified in section 2.2.1.

When the Open Presentation event is triggered, the client sends a Manifest Request message to the
server. Creation of the Manifest Request message is subject to the following rules:

The value of the PresentationURI field in the Fragment Request is set to the value of the

presentation URI data element.

50 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the processing of the Manifest Request, as specified in section 3.1.5.1, yields a presentation
Description data element, the client MUST perform the following operations:

Set the Presentation Available flag to true.

Return the Presentation Description data element to the higher-layer implementation.

3.1.4.2 Get Fragment

The Get Fragment event is used during the course of the viewing session. This event has no effect
when the value of the Presentation Available flag is false.

The higher-layer implementation provides the following data elements:

Presentation URI: A string whose syntax matches the syntax of the PresentationURI field,

specified in section 2.2.1.

Request Stream: A Stream Description data element for the fragment to Request.

Request Track: A Track Description data element for the fragment to Request.

Request Fragment: A Fragment Reference Description data element for the fragment to Request.

When the Get Fragment event is triggered, the client sends a Fragment Request message to the
server. Creation of the Fragment Request message is subject to the following rules:

The value of the PresentationURI field in the Fragment Request is set to the value of the

Presentation URI data element.

The value of the BitratePredicate field in the Fragment Request is set to the value of the Bitrate

field in the Request Track data element.

One instance of the CustomAttributesPredicate field is created per instance of the Custom

Attribute Description data element in the Request Track data element.

The value of the CustomAttributeKey field of each CustomAttributesPredicate field is set to

the value of the CustomAttributeName field in the corresponding CustomAttributesElement.

The value of the CustomAttributeValue field of each CustomAttributesPredicate field is set

to the value of the CustomAttributeValue field in the corresponding CustomAttributesElement.

The value of the StreamName field in the Fragment Request is set to the value of the Name

field in the Stream Description data element.

The value of the Time field in the Fragment Request is set to the value of the FragmentTime

field in the Request Fragment data element.

If the processing of the Fragment Response, as specified in section 3.1.5.2, yields a Fragment

Description data element, the client MUST return the data element to the higher-layer
implementation.

No state change is effected when the Get Fragment event is triggered.

3.1.4.3 Close Presentation

The Close Presentation event is used at the end of a viewing session. This event has no effect if the
value of the Presentation Available flag is false.

51 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

When the Close Presentation event is triggered, the client sets the Presentation Available flag to
false and enters the Final state.

3.1.5 Processing Events and Sequencing Rules

The following event processing and sequencing rules apply:

Manifest Request and Manifest Response, as specified in section 3.1.5.1

Fragment Request and Fragment Response, as specified in section 3.1.5.2

The expected Response from the server to a Fragment Request message is a Fragment Response

message. If the Response received to a Fragment Request message contains a message-body

[RFC2616] but is not a valid Fragment Response, the client SHOULD return the error to the
higher layer.

The expected Response from the server to a Manifest Request Message is a Manifest Response

message. If the Response received is not a valid Manifest Response message, the client MUST

enter the Final state.

3.1.5.1 Manifest Request and Manifest Response

When a Manifest Request is sent to the server, the client MUST wait for a Manifest Response
message to arrive. If the underlying transport returns an error, the client MUST enter the Final
state.

If the underlying transport returns a Response that adheres to the syntax of the Fragment Response
message, the message is processed to yield a Presentation Description, subject to the following
processing rules:

The Presentation Metadata data element is populated using data in the

SmoothStreamingMedia field, as specified in section 2.2.2.1, subject to the field mapping rules
specified in section 3.1.1.1.

The Protection Description data element is populated using data in the ProtectionElement field,

as specified in section 2.2.2.2, subject to the field mapping rules specified in section 3.1.1.1.1.

The Stream Collection data element is populated by creating one Stream Description data

element per instance of the StreamElement field, specified in section 2.2.2.3.

Each Stream Description data element is populated using data in the corresponding

StreamElement field, subject to the field mapping rules specified in section 3.1.1.1.2.

If the Stream Description data element's Parent Track field is set, its Sparse Stream Flag is set to

true. Otherwise the Sparse Stream Flag is set to false.

The Track Collection data element of each Stream Description data element is populated by

creating one Track Description data element per instance of the TrackElement field, specified in
section 2.2.2.5, in the corresponding StreamElement field.

Each Track Description data element is populated using data in the corresponding TrackElement

field, subject to the field mapping rules specified in section 3.1.1.1.2.1.

The Custom Attributes Collection data element of each Track Description data element is

populated by creating one Custom Attribute Description data element per instance of the
CustomAttributesElement field, specified in section 2.2.2.5.1, in the corresponding
TrackElement field.

http://go.microsoft.com/fwlink/?LinkId=90372

52 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

Each Custom Attribute Description data element is populated using data in the corresponding

CustomAttributesElement field, subject to the field mapping rules specified in section

2.2.2.5.1.

The Fragment Reference Collection data element of each Stream Description data element is

populated by creating one Fragment Reference Description data element per instance of the
StreamFragmentElement field, specified in section 2.2.2.6, in the corresponding
StreamElement field.

Each Fragment Reference Description data element is populated using data in the corresponding

StreamFragmentElement field, subject to the field mapping rules specified in section 3.1.1.1.3.

The Fragment Reference Collection data element of each Stream Description data element is

populated by creating one Fragment Reference Description data element per instance of the
StreamFragmentElement field, specified in section 2.2.2.6, in the corresponding
StreamElement field.

Each Fragment Reference Description data element is populated using data in the corresponding

StreamFragmentElement field, subject to the field mapping rules specified in section 3.1.1.1.3.

The Track-Specific Fragment Reference Collection data element of each Fragment Reference

Description data element is populated by creating one Track-Specific Fragment Reference
Description data element per instance of the TrackFragmentElement field, specified in section
2.2.2.6.1, in the corresponding StreamFragmentElement field.

Each Track-Specific Fragment Reference Description data element is populated using data in the

corresponding StreamFragmentElement field, subject to the field mapping rules specified in
section 3.1.1.1.3.

After the population of the Presentation Description, the following rules MUST be applied:

If the StreamTimeScale field for any given Stream Description data element is not set, the

StreamTimeScale field for that Stream Description data element is set to the value of the
Duration field of the Presentation Description data element.

If the Duration field of the Presentation Metadata data element is equal to 0, the Duration field is

set to the result of the following computation:

For each Stream Description data element, compute a Stream Duration value by summing the

Fragment Duration fields of each Fragment Reference Description data element, and dividing
by the value of the StreamTimeScale field for that Stream Description data element

Set the Duration field by multiplying the maximum of the set of computed Stream Duration

values by the value of the TimeScale field in the Presentation Metadata data element

If the Name field of the Stream Description data element is not set, the Name element is set to

the value of the Type field. If, after this operation, the Name fields of all Stream Description data
elements are not unique with respect to each other, the data is considered invalid, and the client
SHOULD enter the Final state without yielding a Presentation Description data element.

If, for any given Stream Description data element, the StreamMaxWidth field is not set, and

the Type field is "video", the StreamMaxWidth field is set to the maximum of all MaxWidth
fields in all Track Description data elements contained in the Stream Description data element.

If, for any given Stream Description data element, the StreamMaxHight field is not set, and the

Type field is "video", the StreamMaxHeight field is set to the maximum of all MaxHeight fields
in all Track Description data elements contained in the Stream Description data element.

53 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

In each Stream Description data element, the client MUST iterate through the Fragment

Reference Collection in order and apply the following rules for each Fragment Reference

Description data element:

If the current Fragment Reference Description data element is the last in the collection and

the value of the FragmentDuration field is not set, the data is considered invalid, and the
client MUST enter the Final state without yielding a Presentation Description data element.

If neither of the values of the FragmentTime and FragmentDuration fields for a single

Fragment Reference Description is set, the data is considered invalid, and the client MUST
enter the Final state without yielding a Presentation Description data element.

If the current Fragment Reference Description data element is the first in the collection and

the value of the FragmentTime field in the collection is not set, the value of the
FragmentTime field is set to 0.

If the value of the FragmentTime field in the current Fragment Reference Description data

element is not set, the value of the FragmentTime field is set to the sum of the values of the

FragmentTime and FragmentDuration fields of the preceding Fragment Reference

Description data element.

If the value of the FragmentDuration field in the current Fragment Reference Description

data element is not set, the value of the FragmentDuration field is set to the value obtained
by subtracting the value of the FragmentTime field from the value of the FragmentTime
field in the following Fragment Reference Description data element in the collection.

If the value of the FragmentTime field is greater than the value of the FragmentTime field

in the following Fragment Reference Description data element in the collection, and the client
MUST enter the Final state without yielding a Presentation Description data element.

If the underlying transport returns a Response that does not adhere to the syntax of the Manifest
Response message, the client MUST enter the Final state without yielding a Presentation Description
data element.

3.1.5.2 Fragment Request and Fragment Response

When a Fragment Request is sent to the server, the client MUST wait for a Fragment Response
message to arrive. If the underlying transport returns an error, the client MUST enter the Final
state. Processing makes use of the following variable:

Current Sample Start: The offset of the beginning of the current sample, in bytes. This value of
Current Sample Start is initialized to 0.

Sparse Stream Notifications: A collection in which each entry contains two data points:

Stream Description Reference: A reference to the Stream Description data element for which a

new fragment is available.

Timestamp: A 64-bit unsigned integer that represents the timestamp of the new fragment.

If the underlying transport returns a Response that adheres to the syntax of the fragment Response
message, the message is processed to yield a Presentation Description, subject to the following
processing rules:

The Fragment Description data element using data in the FragmentMetadata field, as specified

in section 2.2.4, subject to the field mapping rules specified in section 3.1.1.2.

54 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

The Sample Collection data element is populated by creating Sample Description data element

per instance of the TrunBoxPerSampleFields field, specified in section 2.2.4.5.

Each Sample Description data element is populated using data in the FragmentMetadata field,

as specified in section 2.2.4.5, subject to the field mapping rules specified in section 3.1.1.1.2.

After the population of the Fragment Description, the following rules MUST be applied:

If the FirstSampleFlags field of the Fragment Description is not set, the value of this field is set

to the value of the DefaultSampleFlags field.

In each Fragment Description data element, the client MUST iterate through the Fragment

Collection in order and apply the following rules for each Fragment Description data element:

If the current Sample Description data element is the first in the collection and the value of

the SampleFlags field is not set, the value of the SampleFlags is set to the value of the
FirstSampleFlags field in the Fragment Description data element.

If the value of the SampleDuration field of the current Sample Description data element is

not set, the value is set to the value of the DefaultSampleDuration field in the Fragment

Description data element.

If the value of the SampleSize field of the current Sample Description data element is not

set, the value is set to the value of the DefaultSampleSize field in the Fragment Description
data element.

If the underlying transport returns a Response that does not adhere to the syntax of the Fragment
Response message, the client MUST enter the Final state without yielding a Fragment Description

data element and stop further processing of these rules.

If the Sparse Track Flag in the Stream Description data element used to generate the Fragment
Request is true, client MUST update the Last Downloaded Fragment field of the Stream Description
by setting the Last Downloaded Timestamp value to match the Timestamp of the Fragment Request.

The client MUST attempt to match the HTTP Header [RFC2616] whose name matches the value of
the Sparse Stream Pointer Header field, specified in section 3.1.1, to the syntax of the Sparse
Stream Pointer message, specified in section 2.2.5. If a match is found, the following additional

processing is performed:

For each SparseStreamFragment field in the Sparse Stream Pointer message, the client MUST

perform the following operations:

Search the Stream Collection data element in the Active Presentation data element to locate

the Stream Description whose Name field matches the SparseStreamName field.

If no match can be found or if the Sparse Stream Flag of the matching Stream Description

data element is false, the client MUST enter the Final state without yielding a Fragment
Description data element.

Compare the value of the SparseStreamTimeStamp field to the Last Downloaded

Timestamp field of the Stream Description data element.

If the Last Downloaded Timestamp field is not set, or if the value of the

SparseStreamTimeStamp is greater than the Last Downloaded Timestamp field, add an
entry to the Sparse Stream Notifications collection for which the Stream Description Reference
field is set to the matching Stream Description, and the Timestamp field is set to the value of
the SparseStreamTimeStamp field.

http://go.microsoft.com/fwlink/?LinkId=90372

55 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the Sparse Stream Notifications collection is not empty, the client yields this collection to the
higher-layer in addition to the Fragment Description.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

The server does not maintain state and treats all arriving messages independently.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The server uses the same conceptual model as the client, specified in section 3.1.1.

3.2.2 Timers

None.

3.2.3 Initialization

There is no initialization required for the IIS Smooth Streaming Transport Protocol layer. Successful

initialization of the underlying transport (HTTP) is a prerequisite for successful operation of the
server.

The Sparse Stream Pointer Header is initialized from configuration above the IIS Smooth Streaming
Transport Protocol layer. The configured value on the client MUST match configured value on the
server for interoperability. <2>

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

The following event processing and sequencing rules apply:

When a valid Manifest Request message arrives, the server MUST respond with a Manifest

Response message.

When a valid Fragment Request message arrives, the server MUST respond with a Fragment

Response message. Depending on the value of the FragmentsNoun field in the Fragment
Request (see section 2.2.3), the form of the FragmentResponse field, specified in section
2.2.4, varies according to the following rules:

56 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

If the FragmentsNoun field is a FragmentsNounFullResponse, the FragmentResponse field

MUST be a FragmentFullResponse.

If the FragmentsNoun field is a FragmentsNounMetadataOnly, the FragmentResponse field

MUST be a FragmentMetadataResponse.

If the FragmentsNoun field is a FragmentsNounDataOnly, the FragmentResponse field

MUST be a FragmentDataResponse.

If the FragmentsNoun field is a FragmentsNounIndependentOnly, the FragmentResponse

field MUST be a FragmentFullResponse, and all Samples in the FragmentResponse MUST be
independently decodable, as defined in [ISO/IEC-14496-12].

The following special processing rules apply when generating a Fragment Response in a live
presentation:

Requested Streams Collection: The server computes the set of all Stream Descriptions which

pertain to the fragments referenced in the incoming Fragment Request message.

For each entry in the Requested Streams Collection, perform the following processing:

If the selected item is not a child stream of another stream, do the following:

Child Streams Collection: The server computes the set of all Stream Descriptions for which

the Parent Streams field references the selected item in the Requested Streams Collection.

From each item in the Child Streams Collection, generate a SparseStreamFragment field,

specified in section 2.2.5 by setting the SparseStreamName field to the Name field of the

Stream Description data element, and setting the SparseStreamTimestamp field to the
greatest timestamp of any fragment for the corresponding stream that is available from the
server, but that is not later than the timestamp of the corresponding requested fragment.

Generate a SparseStreamSet field from the SparseStreamFragment fields generated in

the previous step.

If the selected item is a child stream of another stream, and the requested fragment is not the

first fragment in the track, do the following:

Generate a SparseStreamFragment field, specified in section 2.2.5, by setting

SparseStreamName field to the Name field of the selected item. Set the
SparseStreamTimestamp field to the timestamp of the preceding fragment in the track.

Generate a SparseStreamSet field containing a single SparseStreamFragment field, as

specified in the preceding step.

If any SparseStreamSet fields are generated as a result of the preceding steps, generate a

SparseStreamPointer field according to the following rules:

If the processing rules specified by HTTP [RFC2616] result in an HTTP Header whose name

matches the value of the Sparse Stream Pointer Header field, the data becomes the

HeaderData field. Otherwise, the HeaderData and DELIMITER fields are omitted.

The remainder of the SparseStreamPointer field is generate from the SparseStreamSet

fields.

http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=90372

57 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Live Encoder Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that a live encoding

implementation maintains in order to participate in this protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not mandate
that implementations adhere to this model as long as their external behavior is consistent with that
described in this document.

The live encoder acts in accordance with the following model.

Figure 4: Live Encoder state machine diagram

The main data elements that are required by any implementation are:

Live Server Manifest Box: Includes a live server manifest that describes tracks and metadata

in an MPEG-4 ([MPEG4-RA]) container, as specified in [ISO/IEC-14496-12].

Stream Manifest Box (optional): Responsible for enumerating all streams, ensuring that
clients wait for all the streams before beginning a broadcast, as specified in section 2.2.7.2.

File Type Box: Specifies the sub-type and intended use of the MPEG-4 file, along with high-level
attributes as specified in section 2.2.7.1.

Movie: This is the media file in fragmented-MPEG-4 format, as specified in [ISO/IEC-14496-12].

Fragment: This is the media fragment, as specified in section 2.2.7.5.

3.3.2 Timers

None.

3.3.3 Initialization

An HTTP POST request from an encoder with an empty body (zero content length) using the URL as
specified in the LiveIngestRequest field (2.2.7).

The server does not send back a response until the entire POST is received. This allows for error
detection before all the data is ready, which is necessary in long live streams.

http://go.microsoft.com/fwlink/?LinkId=327787
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695

58 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

3.3.4 Higher-Layer Triggered Events

The LiveIngest point (section 2.2.7) is driven by a higher-layer implementation that ingests
streams for broadcast to the end user. The following events trigger specific behavior on the

LiveIngest point:

Open Presentation, specified by section 3.3.4.1.

End Ingest, specified by section 3.3.4.2.

3.3.4.1 Start Stream

After a 200 HTTP response is received from the server following initialization, the encoder SHOULD

initiate a new, long-running HTTP POST request. The payload of the request MUST be the fragment
MPEG-4 ([MPEG4-RA]) stream, starting from the header boxes and followed by the fragments. The
request MUST follow the specifications in Transport (section 2.1).

If a StreamManifest (section 2.2.7.2) is provided by the encoder, the server waits until all the

enumerated streams are received before starting the broadcast. If all the streams are not received
within the defined duration time, some of the earlier streams’ data MAY be discarded and lost before

initialization.

3.3.4.2 Stop Stream

A started stream can only be stopped by an End-Of-Stream (EOS) signal from the encoder, a
manual shutdown command, or an internal error. To properly signify the end of a live broadcast, the
encoder SHOULD send an empty MfraBox as specified by [ISO/IEC-14496-12] with no embedded
sample entries in the Tfra box and no MfroBox following, as specified by [ISO/IEC-14496-12].

Lastly, the long-running POST request SHOULD be properly terminated by closing the HTTP
connection as specified in the HTTP protocol [RFC2616].

3.3.5 Processing Events and Sequencing Rules

None.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=327787
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=183695
http://go.microsoft.com/fwlink/?LinkId=90372

59 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4 Protocol Examples

4.1 Manifest Response

The following is an example of a Manifest Response (section 2.2.2) message:

<?xml version="1.0" encoding="UTF-8"?>

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0"

 Duration="2300000000" TimeScale="10000000">

 <Protection>

 <ProtectionHeader SystemID="{9A04F079-9840-4286-AB92E65BE0885F95}">

 <!-- Base 64-Encoded data omitted for clarity -->

 </ProtectionHeader>

 </Protection>

 <StreamIndex

 Type = "video"

 Chunks = "115"

 QualityLevels = "2"

 MaxWidth = "720"

 MaxHeight = "480"

 TimeScale="10000000"

 Url =

 "QualityLevels({bitrate},{CustomAttributes})/Fragments(video={start_time})"

 Name = "video"

 >

 <QualityLevel Index="0" Bitrate="1536000" FourCC="WVC1"

 MaxWidth="720" MaxHeight="480"

 CodecPrivateData = "270000010FCBEE1670EF8A16783BF180C9089CC4AFA11C0000010E1207F840"

 >

 <CustomAttributes>

 <Attribute Name = "Compatibility" Value = "Desktop" />

 </CustomAttributes>

 </QualityLevel>

 <QualityLevel Index="5" Bitrate="307200" FourCC="WVC1"

 MaxWidth="720" MaxHeight="480"

 CodecPrivateData = "270000010FCBEE1670EF8A16783BF180C9089CC4AFA11C0000010E1207F840">

 <CustomAttributes>

 <Attribute Name = "Compatibility" Value = "Handheld" />

 </CustomAttributes>

 </QualityLevel>

 <c t = "0" d = "19680000" />

 <c n = "1" t = "19680000" d="8980000" />

 </StreamIndex>

</SmoothStreamingMedia>

60 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

4.2 Fragment Request

The following is an example of a Fragment Request (section 2.2.3) message. It follows the Manifest
Response (section 4.1) message example, in compliance with the sequencing rules specified in

section 3.1.5:

/PubPoint.ism/QualityLevels(307200,Compatibility=Handheld)/Fragments(video=1968000)

4.3 Live Ingest Request

The following is an example of a LiveIngestRequest as specified in section 2.2.7.

http://Server/mybroadcast.isml/streams(720p)

4.4 Stream Manifest

The following is an example of a StreamManifest as specified in section 2.2.7.2.1.

<?xml version="1.0" encoding="utf-16"?>

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

 <body>

 <par>

 <ref src = "Events(exampleEvent)/Streams(1080p)" />

 <ref src = "Events(exampleEvent)/Streams(720p)" />

 <ref src = "Events(exampleEvent)/Streams(480p)" />

 </par>

 </body>

</smil>

4.5 Live Server Manifest

The following is an example of a LiveServerManifest as specified in section 2.2.7.3.

<?xml version="1.0" encoding="utf-16"?>

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

 <head>

 <meta name="Meta Data" content="Common meta data" />

 </head>

 <body>

 <switch>

 <video src = "Stream" systemBitrate="1450000">

 <param name="trackID" value="2" valuetype="data" />

 <param name="FourCC" value="WVC1" valuetype="data" />

 <param name="MaxWidth" value="640" valuetype="data" />

 <param name="MaxHeight" value="480" valuetype="data" />

 <param name="CodecPrivateData"

 value="250000010FD37E27F1678A27F (no line break here)

 859E80490824C4ADF5DC00000010E5A67F840"

 valuetype="data" />

 </video>

 <video src = "Stream" systemBitrate="1050000">

 <param name="FourCC" value="WVC1" valuetype="data" />

 <param name="trackID" value="2" valuetype="data" />

 <param name="MaxWidth" value="640" valuetype="data" />

61 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

 <param name="MaxHeight" value="480" valuetype="data" />

 <param name="CodecPrivateData"

 value="250000010FD37E27F1678A27F (no line break here)

 859E80490824C4ADF5DC00000010E5A67F840"

 valuetype="data" />

 </video>

 <audio src = "Stream" systemBitrate="94208">

 <param name="trackID" value="1" valuetype="data" />

 <param name="Subtype" value="WMAPRO" valuetype="data" />

 <param name="CodecPrivateData"

 value="6101020044AC0000853E00009 (no line break here)

 D0B10000A00008800000F0000000000"

 valuetype="data" />

 <param name="SamplingRate" value = "48000" valuetype="data" />

 <param name="BitsPerSample" value = "16" valuetype="data" />

 <param name="PacketSize" value = "1115" valuetype="data" />

 </audio>

 </switch>

 </body>

</smil>

4.6 Server Ingest Request

The following is an example of a ServerIngestRequest as specified in section 2.2.8.

Note In this case it is assumed that the original broadcast included the EventID param.

http://Server/mybroadcast.isml/Events(myEvent)/streams(720p)

62 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

5 Security

5.1 Security Considerations for Implementers

If the content transported using this protocol has high commercial value, a Content Protection

System should be used to prevent unauthorized use of the content. The ProtectionElement can be
used to carry metadata related to the use of a Content Protection System.

5.2 Index of Security Parameters

Security parameter Section

ProtectionElement 2.2.2.2

63 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Server 2008 operating system

Windows Server 2008 R2 operating system

Windows Server 2012 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.3: The Windows implementation, "IIS Media Services 3.0", uses "Content-Type" as
the default value of this field to maximize compatibility with existing web browser-based HTTP APIs.

<2> Section 3.2.3: The Windows implementation, "IIS Media Services 3.0", uses "Content-Type" as
the default value of this field to maximize compatibility with existing web browser-based HTTP APIs.

64 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

65 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

8 Index

A

Abstract data model 57
client 45
server 55

Applicability 10

C

Capability negotiation 11
Change tracking 64
Client

abstract data model 45
event processing

Fragment Request 53
Fragment Response 53
Manifest Request 51
Manifest Response 51
overview 51

Fragment Description data element 48
higher-layer triggered events

Close Presentation event 50
Get Fragment event 50
Open Presentation event 49
overview 49

initialization 49
local events 55
overview 45
Presentation Description data element 45
sequencing rules

Fragment Request 53
Fragment Response 53
Manifest Request 51
Manifest Response 51
overview 51

timer events 55

timers 49

D

Data model - abstract
client 45
server 55

E

Event processing
client

Fragment Request 53
Fragment Response 53
Manifest Request 51
Manifest Response 51
overview 51

server 55
Examples

Fragment Request 60
Live Ingest Request 60
Live Server Manifest 60
Manifest Response 59

overview 59
Server Ingest Request 61
Stream Manifest 60

F

Fields - vendor-extensible 11
Fragment Description data element 48
Fragment Not Yet Available message 38
Fragment Response common fields 35
FragmentRequest message 27
FragmentResponse message 28

G

Glossary 6

H

Higher-layer triggered events
client

Close Presentation event 50
Get Fragment event 50
Open Presentation event 49
overview 49

server 55
start stream 58
stop stream 58

I

Implementer - security considerations 62
Index of security parameters 62
Informative references 8
Initialization 57

client 49
server 55

Introduction 6

L

LiveIngest 38
Local events

client 55
server 57

M

ManifestRequest message 15
ManifestResponse message 15
MdatBox 35
Messages

Fragment Not Yet Available 38
Fragment Response common fields 35
FragmentRequest 27
FragmentResponse 28
LiveIngest 38
ManifestRequest 15
ManifestResponse 15

66 / 66

[MS-SSTR] — v20140502
 Smooth Streaming Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, May 15, 2014

MdatBox 35
MfhdBox 29
MoofBox 28
ProtectionElement 17
ServerIngest 43
SmoothStreamingMedia 16
SparseStreamPointer 37
StreamElement 18
StreamFragmentElement 24
syntax 12
TfhdBox 32
TfrfBox 31
TfxdBox 30
TrackElement 21
TrafBox 29
transport 12
TrunBox 33
UrlPattern 20

MfhdBox 29
MoofBox 28

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security index 62
Preconditions 10
Prerequisites 10
Presentation Description data element 45
Processing events and sequencing rules 58
Product behavior 63
ProtectionElement 17

R

References
informative 8
normative 7

Relationship to other protocols 10

S

Security

implementer considerations 62
parameter index 62

Sequencing rules
client

Fragment Request 53
Fragment Response 53
Manifest Request 51
Manifest Response 51
overview 51

server 55
Server

abstract data model 55
event processing 55

higher-layer triggered events 55
initialization 55
local events 57
overview 55
sequencing rules 55
timer events 57
timers 55

ServerIngest 43
SmoothStreamingMedia 16
SparseStreamPointer message 37
Standards assignments 11
StreamElement 18
StreamFragmentElement 24
StreamManifestBox 39
Syntax 12

T

TfhdBox 32

TfrfBox 31
TfxdBox 30
Timer events

client 55
server 57

Timers
client 49
server 55

TrackElement 21
Tracking changes 64
TrafBox 29
Transport 12
Triggered events

client
Close Presentation event 50
Get Fragment event 50
Open Presentation event 49
overview 49

server 55
TrunBox 33

U

UrlPattern 20

V

Vendor-extensible fields 11
Versioning 11

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Manifest Request
	2.2.2 Manifest Response
	2.2.2.1 SmoothStreamingMedia
	2.2.2.2 ProtectionElement
	2.2.2.3 StreamElement
	2.2.2.4 UrlPattern
	2.2.2.5 TrackElement
	2.2.2.5.1 CustomAttributesElement

	2.2.2.6 StreamFragmentElement
	2.2.2.6.1 TrackFragmentElement

	2.2.3 Fragment Request
	2.2.4 Fragment Response
	2.2.4.1 MoofBox
	2.2.4.2 MfhdBox
	2.2.4.3 TrafBox
	2.2.4.4 TfxdBox
	2.2.4.5 TfrfBox
	2.2.4.6 TfhdBox
	2.2.4.7 TrunBox
	2.2.4.8 MdatBox
	2.2.4.9 Fragment Response Common Fields

	2.2.5 Sparse Stream Pointer
	2.2.6 Fragment Not Yet Available
	2.2.7 Live Ingest
	2.2.7.1 FileType
	2.2.7.2 StreamManifestBox
	2.2.7.2.1 StreamSMIL

	2.2.7.3 LiveServerManifestBox
	2.2.7.3.1 LiveSMIL

	2.2.7.4 MoovBox
	2.2.7.5 Fragment
	2.2.7.5.1 Track Fragment Extended Header

	2.2.8 Server-to-Server Ingest

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.1.1 Presentation Description
	3.1.1.1.1 Protection System Metadata Description
	3.1.1.1.2 Stream Description
	3.1.1.1.2.1 Track Description
	3.1.1.1.2.1.1 Custom Attribute Description

	3.1.1.1.3 Fragment Reference Description
	3.1.1.1.3.1 Track-Specific Fragment Reference Description

	3.1.1.2 Fragment Description
	3.1.1.2.1 Sample Description

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Open Presentation
	3.1.4.2 Get Fragment
	3.1.4.3 Close Presentation

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Manifest Request and Manifest Response
	3.1.5.2 Fragment Request and Fragment Response

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Live Encoder Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Start Stream
	3.3.4.2 Stop Stream

	3.3.5 Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Manifest Response
	4.2 Fragment Request
	4.3 Live Ingest Request
	4.4 Stream Manifest
	4.5 Live Server Manifest
	4.6 Server Ingest Request

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

