

1 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS-NLMP-Diff]:

NT LAN Manager (NTLM) Authentication Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.

7/20/2007 2.0 Major Updated and revised the technical content.

8/10/2007 3.0 Major Updated and revised the technical content.

9/28/2007 4.0 Major Updated and revised the technical content.

10/23/2007 5.0 Major Updated and revised the technical content.

11/30/2007 6.0 Major Updated and revised the technical content.

1/25/2008 6.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 6.0.2 Editorial Changed language and formatting in the technical content.

5/16/2008 6.0.3 Editorial Changed language and formatting in the technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 8.0 Major Updated and revised the technical content.

8/29/2008 9.0 Major Updated and revised the technical content.

10/24/2008 9.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 10.0 Major Updated and revised the technical content.

1/16/2009 11.0 Major Updated and revised the technical content.

2/27/2009 12.0 Major Updated and revised the technical content.

4/10/2009 12.1 Minor Clarified the meaning of the technical content.

5/22/2009 13.0 Major Updated and revised the technical content.

7/2/2009 13.1 Minor Clarified the meaning of the technical content.

8/14/2009 13.2 Minor Clarified the meaning of the technical content.

9/25/2009 14.0 Major Updated and revised the technical content.

11/6/2009 15.0 Major Updated and revised the technical content.

12/18/2009 15.1 Minor Clarified the meaning of the technical content.

1/29/2010 15.2 Minor Clarified the meaning of the technical content.

3/12/2010 16.0 Major Updated and revised the technical content.

4/23/2010 16.1 Minor Clarified the meaning of the technical content.

6/4/2010 16.2 Minor Clarified the meaning of the technical content.

7/16/2010 16.2 None No changes to the meaning, language, or formatting of the

3 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

technical content.

8/27/2010 16.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 16.2 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 17.0 Major Updated and revised the technical content.

1/7/2011 17.1 Minor Clarified the meaning of the technical content.

2/11/2011 17.2 Minor Clarified the meaning of the technical content.

3/25/2011 17.3 Minor Clarified the meaning of the technical content.

5/6/2011 17.3 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 17.4 Minor Clarified the meaning of the technical content.

9/23/2011 18.0 Major Updated and revised the technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 20.0 Major Updated and revised the technical content.

7/12/2012 21.0 Major Updated and revised the technical content.

10/25/2012 22.0 Major Updated and revised the technical content.

1/31/2013 23.0 Major Updated and revised the technical content.

8/8/2013 24.0 Major Updated and revised the technical content.

11/14/2013 25.0 Major Updated and revised the technical content.

2/13/2014 26.0 Major Updated and revised the technical content.

5/15/2014 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 27.0 Major Significantly changed the technical content.

10/16/2015 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 28.0 Major Significantly changed the technical content.

6/1/2017 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 29.0 Major Significantly changed the technical content.

12/1/2017 29.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 30.0 Major Significantly changed the technical content.

4 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 (Updated Section) Introduction... 7
1.1 (Updated Section) Glossary ... 7
1.2 References .. 10

1.2.1 (Updated Section) Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.3.1 NTLM Authentication Call Flow .. 12

1.3.1.1 NTLM Connection-Oriented Call Flow ... 13
1.3.1.2 NTLM Connectionless (Datagram-Oriented) Call Flow 14

1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 15

2 Messages ... 16
2.1 Transport .. 16
2.2 Message Syntax ... 16

2.2.1 NTLM Messages .. 17
2.2.1.1 NEGOTIATE_MESSAGE .. 17
2.2.1.2 CHALLENGE_MESSAGE .. 20
2.2.1.3 AUTHENTICATE_MESSAGE ... 23

2.2.2 NTLM Structures ... 28
2.2.2.1 AV_PAIR .. 28
2.2.2.2 Single_Host_Data ... 30
2.2.2.3 LM_RESPONSE ... 30
2.2.2.4 LMv2_RESPONSE .. 31
2.2.2.5 NEGOTIATE .. 31
2.2.2.6 NTLM v1 Response: NTLM_RESPONSE ... 34
2.2.2.7 NTLM v2: NTLMv2_CLIENT_CHALLENGE .. 34
2.2.2.8 NTLM2 V2 Response: NTLMv2_RESPONSE .. 35
2.2.2.9 NTLMSSP_MESSAGE_SIGNATURE ... 36

2.2.2.9.1 NTLMSSP_MESSAGE_SIGNATURE .. 36
2.2.2.9.2 NTLMSSP_MESSAGE_SIGNATURE for Extended Session Security 36

2.2.2.10 VERSION ... 37

3 Protocol Details ... 38
3.1 Client Details ... 38

3.1.1 Abstract Data Model .. 38
3.1.1.1 (Updated Section) Variables Internal to the Protocol 38
3.1.1.2 Variables Exposed to the Application ... 39

3.1.2 Timers .. 40
3.1.3 Initialization ... 40
3.1.4 Higher-Layer Triggered Events ... 40
3.1.5 Message Processing Events and Sequencing Rules .. 41

3.1.5.1 Connection-Oriented ... 41
3.1.5.1.1 Client Initiates the NEGOTIATE_MESSAGE .. 41
3.1.5.1.2 Client Receives a CHALLENGE_MESSAGE from the Server..................... 42

3.1.5.2 Connectionless ... 44
3.1.5.2.1 Client Receives a CHALLENGE_MESSAGE .. 45

3.1.6 Timer Events .. 46
3.1.7 Other Local Events .. 46

3.2 Server Details .. 46
3.2.1 Abstract Data Model .. 46

5 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.1.1 Variables Internal to the Protocol .. 46
3.2.1.2 Variables Exposed to the Application ... 47

3.2.2 Timers .. 47
3.2.3 Initialization ... 47
3.2.4 Higher-Layer Triggered Events ... 47
3.2.5 Message Processing Events and Sequencing Rules .. 48

3.2.5.1 Connection-Oriented ... 48
3.2.5.1.1 Server Receives a NEGOTIATE_MESSAGE from the Client 48
3.2.5.1.2 Server Receives an AUTHENTICATE_MESSAGE from the Client 50

3.2.5.2 Connectionless NTLM ... 53
3.2.5.2.1 Server Sends the Client an Initial CHALLENGE_MESSAGE 53
3.2.5.2.2 Server Response Checking .. 53

3.2.6 Timer Events .. 54
3.2.7 Other Local Events .. 54

3.3 NTLM v1 and NTLM v2 Messages .. 54
3.3.1 NTLM v1 Authentication ... 54
3.3.2 NTLM v2 Authentication ... 56

3.4 Session Security Details .. 57
3.4.1 Abstract Data Model .. 58
3.4.2 Message Integrity ... 59
3.4.3 Message Confidentiality ... 59
3.4.4 Message Signature Functions ... 60

3.4.4.1 Without Extended Session Security ... 60
3.4.4.2 With Extended Session Security .. 61

3.4.5 KXKEY, SIGNKEY, and SEALKEY ... 62
3.4.5.1 KXKEY ... 62
3.4.5.2 SIGNKEY .. 63
3.4.5.3 SEALKEY .. 63

3.4.6 GSS_WrapEx() Call ... 64
3.4.6.1 Signature Creation for GSS_WrapEx() ... 65

3.4.7 GSS_UnwrapEx() Call .. 65
3.4.7.1 Signature Creation for GSS_UnwrapEx() .. 66

3.4.8 GSS_GetMICEx() Call .. 66
3.4.8.1 Signature Creation for GSS_GetMICEx() .. 66

3.4.9 GSS_VerifyMICEx() Call ... 66
3.4.9.1 Signature Creation for GSS_VerifyMICEx() ... 67

4 Protocol Examples ... 68
4.1 (Updated Section) NTLM Over Server Message Block (SMB) 68
4.2 Cryptographic Values for Validation .. 69

4.2.1 Common Values ... 69
4.2.2 NTLM v1 Authentication ... 70

4.2.2.1 Calculations .. 70
4.2.2.1.1 LMOWFv1() .. 70
4.2.2.1.2 NTOWFv1() .. 70
4.2.2.1.3 Session Base Key and Key Exchange Key ... 71

4.2.2.2 Results .. 71
4.2.2.2.1 NTLMv1 Response ... 71
4.2.2.2.2 LMv1 Response ... 71
4.2.2.2.3 Encrypted Session Key ... 71

4.2.2.3 Messages ... 72
4.2.2.4 GSS_WrapEx Examples.. 72

4.2.3 NTLM v1 with Client Challenge ... 73
4.2.3.1 Calculations .. 74

4.2.3.1.1 NTOWFv1() .. 74
4.2.3.1.2 Session Base Key .. 74
4.2.3.1.3 Key Exchange Key ... 74

4.2.3.2 Results .. 74

6 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.2.3.2.1 LMv1 Response ... 74
4.2.3.2.2 NTLMv1 Response ... 74

4.2.3.3 Messages ... 74
4.2.3.4 GSS_WrapEx Examples.. 75

4.2.4 NTLMv2 Authentication .. 76
4.2.4.1 Calculations .. 76

4.2.4.1.1 NTOWFv2() and LMOWFv2() ... 76
4.2.4.1.2 Session Base Key .. 77
4.2.4.1.3 temp .. 77

4.2.4.2 Results .. 77
4.2.4.2.1 LMv2 Response ... 77
4.2.4.2.2 NTLMv2 Response ... 77
4.2.4.2.3 Encrypted Session Key ... 77

4.2.4.3 Messages ... 77
4.2.4.4 GSS_WrapEx Examples.. 78

5 Security ... 80
5.1 (Updated Section) Security Considerations for Implementers 80
5.2 Index of Security Parameters .. 80

6 Appendix A: Cryptographic Operations Reference ... 81

7 (Updated Section) Appendix B: Product Behavior .. 84

8 Change Tracking .. 92

9 Index ... 93

7 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 (Updated Section) Introduction

The NT LAN Manager (NTLM) Authentication Protocol is used for authentication between clients and
servers.

Kerberos authentication [MS-KILE] replaces NTLM as the preferred authentication protocol.<1> These
extensions provide additional capability for authorization information including group memberships,
interactive logon information, and message integrity, as well as constrained delegation and encryption

supported by Kerberos principals.

Kerberos authentication [MS-KILE] replaces NTLM as the preferred authentication protocol.<1>
However, NTLM can be used when the Kerberos Protocol Extensions (KILE) do not work, such as in the
following scenarios.

▪ One of the machines is not Kerberos-capable.

▪ The server is not joined to a domain.

▪ The KILE configuration is not set up correctly.

▪ The implementation chooses to directly use NLMP.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

Active Directory: A The Windows implementation of a general-purpose network directory service.
Active Directory also refers to the Windows implementation of a directory service., which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network. User such as user accounts, computer accounts, groups, and all related

credential information used by the Windows implementation of Kerberos are stored in Active

Directory.[MS-KILE]. Active Directory is either deployed as Active Directory Domain Services
(AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both
forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS), which are both described in [MS-
ADOD]: Active Directory Protocols Overview.

AV pair: An attribute/value pair. The name of some attribute, along with its value. AV pairs in

NTLM have a structure specifying the encoding of the information stored in them.

challenge: A piece of data used to authenticate a user. Typically a challenge takes the form of a
nonce.

checksum: A value that is the summation of a byte stream. By comparing the checksums
computed from a data item at two different times, one can quickly assess whether the data
items are identical.

code page: An ordered set of characters of a specific script in which a numerical index (code-point

value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display and
keyboard can be configured to use a specific code page and to switch from one code page (such
as the United States) to another (such as Portugal) at the user's request.

connection oriented NTLM: A particular variant of NTLM designed to be used with connection
oriented remote procedure call (RPC).

8 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed
number of bits) against a block of data, such as a packet of network traffic or a block of a

computer file. The CRC is a broad class of functions used to detect errors after transmission or
storage. A CRC is designed to catch random errors, as opposed to intentional errors. If errors

might be introduced by a motivated and intelligent adversary, a cryptographic hash function
should be used instead.

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates

with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),

several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

domain name: A domain name or a NetBIOS name that identifies a domain.

forest: One or more domains that share a common schema and trust each other transitively. An

organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In contrast,
a domain establishes the administrative boundary for managing objects, such as users, groups,
and computers. In addition, each domain has individual security policies and trust relationships
with other domains.

fully qualified domain name (FQDN): In Active Directory, a fully qualified domain name (FQDN)

that identifies a domain.

identify level token: A security token resulting from authentication that represents the
authenticated user but does not allow the service holding the token to impersonate that user to
other resources.

Kerberos: An authentication system that enables two parties to exchange private information

across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For

more information, see [MS-KILE].

key: In cryptography, a generic term used to refer to cryptographic data that is used to initialize a
cryptographic algorithm. Keys are also sometimes referred to as keying material.

key exchange key: The key used to protect the session key that is generated by the client. The
key exchange key is derived from the response key during authentication.

9 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LMOWF: The result generated by the LMOWF function.

LMOWF(): A one-way function used to generate a key based on the user's password.

Message Authentication Code (MAC): A message authenticator computed through the use of a
symmetric key. A MAC algorithm accepts a secret key and a data buffer, and outputs a MAC.

The data and MAC can then be sent to another party, which can verify the integrity and
authenticity of the data by using the same secret key and the same MAC algorithm.

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

NTOWF: A general-purpose function used in the context of an NTLM authentication protocol, as
specified in [MS-NLMP], which computes a one-way function of the user's password. For more

information, see [MS-NLMP] section 6. The result generated by the NTOWF() function.

NTOWF(): A one-way function (similar to the LMOWF function) used to generate a key based on
the user's password.

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

original equipment manufacturer (OEM) character set: A character encoding used where the

mappings between characters is dependent upon the code page configured on the machine,
typically by the manufacturer.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

response key: A key generated by a one-way function from the name of the user, the name of
the user's domain, and the password. The function depends on which version of NTLM is being

used. The response key is used to derive the key exchange key.

Security Support Provider Interface (SSPI): A WindowsAn API that provides the means
forallows connected applications to call one of several security providers to establish
authenticated connections and to exchange data securely over those connections. It is
equivalent to Generic Security Services (GSS)-API, and the two APIs are on-the-wire

compatible.

sequence number: In the NTLM protocol, a sequence number can be explicitly provided by the
application protocol, or generated by NTLM. If generated by NTLM, the sequence number is the
count of each message sent, starting with 0.

service: A process or agent that is available on the network, offering resources or services for
clients. Examples of services include file servers, web servers, and so on.

session: In Kerberos, an active communication channel established through Kerberos that also has

an associated cryptographic key, message counters, and other state.

session key: A relatively short-lived symmetric key (a cryptographic key negotiated by the client
and the server based on a shared secret). A session key's lifespan is bounded by the session to
which it is associated. A session key has to be strong enough to withstand cryptanalysis for the
lifespan of the session.

session security: The provision of message integrity and/or confidentiality through use of a

session key.

10 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS46-2] FIPS PUBS, "Data Encryption Standard (DES)", FIPS PUB 46-2, December 1993,
http://www.itl.nist.gov/fipspubs/fip46-2my.fit.edu/~gmarin/CSE5636/FIPS46-2DES.htm

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

Extension".

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992,

http://www.ietf.org/rfc/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

[RFC2744] Wray, J., "Generic Security Service API Version 2 : C-bindings", RFC 2744, January 2000,
http://www.ietf.org/rfc/rfc2744.txt

[RFC4121] Zhu, L., Jaganathan, K., and Hartman, S., "The Kerberos Version 5 Generic Security
Service Application Program Interface (GSS-API) Mechanism: Version 2", RFC 4121, July 2005,
http://www.ietf.org/rfc/rfc4121.txt

11 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types Used
by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

1.2.2 Informative References

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

[MS-GPOL] Microsoft Corporation, "Group Policy: Core Protocol".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NTHT] Microsoft Corporation, "NTLM Over HTTP Protocol".

[MSDN-DecryptMsg] Microsoft Corporation, "DecryptMessage (General) function",
http://msdn.microsoft.com/en-us/library/aa375211.aspx

[MSDN-EncryptMsg] Microsoft Corporation, "EncryptMessage (General)",

http://msdn.microsoft.com/en-us/library/aa375378.aspx

1.3 Overview

NT LAN Manager (NTLM) is the name of a family of security protocols. NTLM is used by application

protocols to authenticate remote users and, optionally, to provide session security when requested by
the application.

NTLM is a challenge-response style authentication protocol. This means that to authenticate a user,
the server sends a challenge to the client. The client then sends back a response that is a function of
the challenge, the user's password, and possibly other information. Computing the correct response
requires knowledge of the user's password. The server (or another party trusted by the server) can
validate the response by consulting an account database to get the user's password and computing

the proper response for that challenge.

The NTLM protocols are embedded protocols. Unlike stand-alone application protocols such as [MS-

SMB] or HTTP, NTLM messages are embedded in the packets of an application protocol that requires
authentication of a user. The application protocol semantics determine how and when the NTLM
messages are encoded, framed, and transported from the client to the server and vice versa. See
section 4 for an example of how NTLM messages are embedded in the SMB Version 1.0 Protocol as
specified in [MS-SMB]. The NTLM implementation also differs from normal protocol implementations,

in that the best way to implement it is as a function library called by some other protocol
implementation (the application protocol), rather than as a layer in a network protocol stack. For more
information about GSS-API calls, see section 3.4.6. The NTLM function library receives parameters
from the application protocol caller and returns an authentication message that the caller places into
fields of its own messages as it chooses. Nevertheless, if one looks at just the NTLM messages apart
from the application protocol in which they are embedded, there is an NTLM protocol and that is what

is specified by this document.

There are two major variants of the NTLM authentication protocol: the connection-oriented variant and
the connectionless variant. In the connectionless (datagram) variant:

▪ NTLM does not use the internal sequence number maintained by the NTLM implementation.
Instead, it uses a sequence number passed in by the protocol implementation in which NTLM is
embedded.

▪ Keys for session security are established at client initialization time (while in connection-oriented

mode they are established only at the end of authentication exchange), and session security can
be used as soon as the session keys are established.

▪ It is not possible to send a NEGOTIATE message (see section 2.2.1.1).

12 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Each of these variants has three versions: LM, NTLMv1, and NTLMv2. The message flow for all three is
the same; the only differences are the function used to compute various response fields from the

challenge, and which response fields are set. <2>

In addition to authentication, the NTLM protocol optionally provides for session security—specifically

message integrity and confidentiality through signing and sealing functions in NTLM.

1.3.1 NTLM Authentication Call Flow

This section provides an overview of the end-to-end message flow when application protocols use

NTLM to authenticate a user to a server.

The following diagram shows a typical connection-oriented message flow when an application uses
NTLM. The message flow typically consists of a number of application messages, followed by NTLM
authentication messages (which are embedded in the application protocol and transported by the
application from the client to the server), and then additional application messages, as specified in the
application protocol.

Figure 1: Typical NTLM authentication message flow

Note In the preceding diagram, the embedding of NTLM messages in the application protocol is
shown by placing the NTLM messages within [] brackets. NTLM messages for both connection-
oriented and connectionless authentication are embedded in the application protocol as shown.

Variations between the connection-oriented and connectionless NTLM protocol sequence are
documented in sections 1.3.1.1 and 1.3.1.2.

After an authenticated NTLM session is established, the subsequent application messages can be
protected with NTLM session security. This is done by the application, which specifies what options
(such as message integrity or confidentiality, as specified in the Abstract Data Model) it requires,

before the NTLM authentication message sequence begins.<3>

Success and failure messages that are sent after the NTLM authentication message sequence are

specific to the application protocol invoking NTLM authentication and are not part of the NTLM
Authentication Protocol.

Note In subsequent message flows, only the NTLM message flows are shown because they are the
focus of this document. Keep in mind that the NTLM messages in this section are embedded in the
application protocol and transported by that protocol.

13 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

An overview of the connection-oriented and connectionless variants of NTLM is provided in the
following sections.

1.3.1.1 NTLM Connection-Oriented Call Flow

The following illustration shows a typical NTLM connection-oriented call flow when an application
protocol creates an authenticated session. For detailed message specifications, see section 2. The
messages are processed (section 3).

Figure 2: Connection-oriented NTLM message flow

1. Application-specific protocol messages are sent between client and server.

2. The NTLM protocol begins when the application requires an authenticated session. The client
sends an NTLM NEGOTIATE_MESSAGE message to the server. This message specifies the desired

security features of the session.

3. The server sends an NTLM CHALLENGE_MESSAGE message to the client. The message includes
agreed upon security features, and a nonce that the server generates.

4. The client sends an NTLM AUTHENTICATE_MESSAGE message to the server. The message
contains the name of a user and a response that proves that the client has the user's password.
The server validates the response sent by the client. If the user name is for a local account, it can
validate the response by using information in its local account database. If the user name is for a

domain account, it can validate the response by sending the user authentication information (the
user name, the challenge sent to the client, and the response received from the client) to a

domain controller (DC) that can validate the response. (Section 3.1 [MS-APDS]). The NTLM
protocol completes.

5. If the challenge and the response prove that the client has the user's password, the authentication
succeeds and the application protocol continues according to its specification. If the authentication
fails, the server might send the status in an application protocol–specified way, or it might simply

terminate the connection.

14 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.3.1.2 NTLM Connectionless (Datagram-Oriented) Call Flow

The following illustration shows a typical NTLM connectionless (datagram-oriented) call flow.

Figure 3: Connectionless NTLM message flow

Although it appears that the server is initiating the request, the client initiates the sequence by
sending a message specified by the application protocol in use.

1. Application-specific protocol messages are sent between client and server.

2. The NTLM protocol begins when the application requires an authenticated session. The server
sends the client an NTLM CHALLENGE_MESSAGE message. The message includes an indication of
the security features desired by the server, and a nonce that the server generates.

3. The client sends an NTLM AUTHENTICATE_MESSAGE message to the server. The message

contains the name of a user and a response that proves that the client has the user's password.
The server validates the response sent by the client. If the user name is for a local account, it can

validate the response by using information in its local account database. If the user name is for a
domain account, it validates the response by sending the user authentication information (the user
name, the challenge sent to the client, and the response received from the client) to a DC that can
validate the response. (see [MS-APDS] section 3.1). The NTLM protocol completes.

4. If the challenge and the response prove that the client has the user's password, the authentication
succeeds and the application protocol continues according to its specification. If the authentication
fails, the server might send the status in an application protocol–specified way, or it might simply

terminate the connection.

1.4 Relationship to Other Protocols

Because NTLM is embedded in the application protocol, it does not have transport dependencies of its

own.

NTLM is used for authentication by several application protocols, including server message block [MS-
SMB] (SMB), and [MS-NTHT] (HTTP). For an example of how NTLM is used in SMB, see section 4.

Other protocols invoke NTLM as a function library. The interface to that library is specified in GSS-API
[RFC2743]. The NTLM implementation of GSS-API calls is specified in section 3.4.6.<4>

15 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.5 Prerequisites/Preconditions

To use NTLM or to use the NTLM security support provider (SSP), a client is required to have a shared
secret with the server or domain controller (DC) when using a domain account.

1.6 Applicability Statement

An implementer can use the NTLM Authentication Protocol to provide for client authentication (where
the server verifies the client's identity) for applications. Because NTLM does not provide for server
authentication, applications that use NTLM are susceptible to attacks from spoofed servers.

Applications are therefore discouraged from using NTLM directly. If it is an option, authentication via
KILE is preferred.<5>

1.7 Versioning and Capability Negotiation

The NTLM authentication version is not negotiated by the protocol. It has to be configured on both the
client and the server prior to authentication. The version is selected by the client, and requested

during the protocol negotiation. If the server does not support the version selected by the client,
authentication fails.

NTLM implements capability negotiation by using the flags described in section 2.2.2.5. The protocol
messages used for negotiation depend on the mode of NTLM being used:

▪ In connection-oriented NTLM, negotiation starts with a NEGOTIATE_MESSAGE, carrying the client's

preferences, and the server replies with NegotiateFlags in the subsequent CHALLENGE_MESSAGE.

▪ In connectionless NTLM, the server starts the negotiation with the CHALLENGE_MESSAGE and the
client replies with NegotiateFlags in the subsequent AUTHENTICATE_MESSAGE.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

NTLM has been assigned the following object identifier (OID):

iso.org.dod.internet.private.enterprise.Microsoft.security.mechanisms.NTLM (1.3.6.1.4.1.311.2.2.10)

16 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

NTLM messages are passed between the client and server. The NTLM messages MUST be embedded

within the application protocol that is using NTLM authentication. NTLM itself does not establish any
transport connections.

2.2 Message Syntax

The NTLM Authentication Protocol consists of three message types used during authentication and one
message type used for message integrity after authentication has occurred.

The authentication messages:

▪ NEGOTIATE_MESSAGE (2.2.1.1)

▪ CHALLENGE_MESSAGE (2.2.1.2)

▪ AUTHENTICATE_MESSAGE (2.2.1.3)

are variable-length messages containing a fixed-length header and a variable-sized message payload.

The fixed-length header always starts as shown in the following table with a Signature and
MessageType field.

Depending on the MessageType field, the message can have other message-dependent fixed-length
fields. The fixed-length fields are then followed by a variable-length message payload.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

...

MessageType

MessageDependentFields (variable)

...

payload (variable)

...

Signature (8 bytes): An 8-byte character array that MUST contain the ASCII string ('N', 'T', 'L', 'M',

'S', 'S', 'P', '\0').

MessageType (4 bytes): The MessageType field MUST take one of the values from the following
list:

Value Meaning

NtLmNegotiate The message is a NEGOTIATE_MESSAGE.

17 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

0x00000001

NtLmChallenge

0x00000002

The message is a CHALLENGE_MESSAGE.

NtLmAuthenticate

0x00000003

The message is an AUTHENTICATE_MESSAGE.

MessageDependentFields (variable): The NTLM message contents, as specified in section 2.2.1.

payload (variable): The payload data contains a message-dependent number of individual payload
messages. This payload data is referenced by byte offsets located in the
MessageDependentFields.

The message integrity message, NTLMSSP_MESSAGE_SIGNATURE (section 2.2.2.9) is fixed length
and is appended to the calling application's messages. This message type is used only when an

application has requested message integrity or confidentiality operations, based on the session key
negotiated during a successful authentication.

All multiple-byte values are encoded in little-endian byte order. Unless specified otherwise, 16-bit
value fields are of type unsigned short, while 32-bit value fields are of type unsigned long.

All character string fields in NEGOTIATE_MESSAGE contain characters in the OEM character set. As
specified in section 2.2.2.5, the client and server negotiate if they both support Unicode characters—in
which case, all character string fields in the CHALLENGE_MESSAGE and AUTHENTICATE_MESSAGE

contain UNICODE_STRING unless otherwise specified. Otherwise, the OEM character set is used.
Agreement between client and server on the choice of OEM character set is not covered by the
protocol and MUST occur out-of-band.

All Unicode strings are encoded with UTF-16 and the Byte Order Mark (BOM) is not sent over the wire.
NLMP uses little-endian order unless otherwise specified.

2.2.1 NTLM Messages

2.2.1.1 NEGOTIATE_MESSAGE

The NEGOTIATE_MESSAGE defines an NTLM Negotiate message that is sent from the client to the
server. This message allows the client to specify its supported NTLM options to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

...

MessageType

NegotiateFlags

DomainNameFields

...

18 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WorkstationFields

...

Version

...

Payload (variable)

...

Signature (8 bytes): An 8-byte character array that MUST contain the ASCII string ('N', 'T', 'L', 'M',
'S', 'S', 'P', '\0').

MessageType (4 bytes): A 32-bit unsigned integer that indicates the message type. This field MUST

be set to 0x00000001.

NegotiateFlags (4 bytes): A NEGOTIATE structure that contains a set of flags, as defined in section
2.2.2.5. The client sets flags to indicate options it supports.

DomainNameFields (8 bytes): A field containing DomainName information. The field diagram for
DomainNameFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DomainNameLen DomainNameMaxLen

DomainNameBufferOffset

If the NTLMSSP_NEGOTIATE_OEM_DOMAIN_SUPPLIED flag is set in NegotiateFlags, indicating
that a DomainName is supplied in Payload, the fields are set to the following values:

▪ DomainNameLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
DomainName in Payload.

▪ DomainNameMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value
of DomainNameLen, and MUST be ignored on receipt.

▪ DomainNameBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in

bytes, from the beginning of the NEGOTIATE_MESSAGE to DomainName in Payload.

Otherwise, if the NTLMSSP_NEGOTIATE_OEM_DOMAIN_SUPPLIED flag is not set in
NegotiateFlags, indicating that a DomainName is not supplied in Payload, the fields take the
following values, and MUST be ignored upon receipt.

▪ DomainNameLen and DomainNameMaxLen fields SHOULD be set to zero.

▪ DomainNameBufferOffset field SHOULD be set to the offset from the beginning of the
NEGOTIATE_MESSAGE to where the DomainName would be in Payload if it was present.

WorkstationFields (8 bytes): A field containing WorkstationName information. The field diagram
for WorkstationFields is as follows.

19 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WorkstationLen WorkstationMaxLen

WorkstationBufferOffset

If the NTLMSSP_NEGOTIATE_OEM_WORKSTATION_SUPPLIED flag is set in NegotiateFlags,
indicating that a WorkstationName is supplied in Payload, the fields are set to the following
values:

▪ WorkstationLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
WorkStationName in Payload.

▪ WorkstationMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value
of WorkstationLen and MUST be ignored on receipt.

▪ WorkstationBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in
bytes, from the beginning of the NEGOTIATE_MESSAGE to WorkstationName in Payload.

Otherwise, if the NTLMSSP_NEGOTIATE_OEM_WORKSTATION_SUPPLIED flag is not set in
NegotiateFlags, indicating that a WorkstationName is not supplied in Payload, the fields take
the following values, and MUST be ignored upon receipt.

▪ WorkstationLen and WorkstationMaxLen fields SHOULD be set to zero.

▪ WorkstationBufferOffset field SHOULD be set to the offset from the beginning of the
NEGOTIATE_MESSAGE to where the WorkstationName would be in Payload if it was
present.

Version (8 bytes): A VERSION structure (as defined in section 2.2.2.10) that is populated only when
the NTLMSSP_NEGOTIATE_VERSION flag is set in the NegotiateFlags field. This structure
SHOULD<6> be used for debugging purposes only. In normal (nondebugging) protocol messages,

it is ignored and does not affect the NTLM message processing.

Payload (variable): A byte-array that contains the data referred to by the
DomainNameBufferOffset and WorkstationBufferOffset message fields. Payload data can be
present in any order within the Payload field, with variable-length padding before or after the

data. The data that can be present in the Payload field of this message, in no particular order,
are:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DomainName (variable)

...

WorkstationName (variable)

...

DomainName (variable): If DomainNameLen does not equal 0x0000, DomainName MUST be
a byte-array that contains the name of the client authentication domain that MUST be encoded
using the OEM character set. Otherwise, this data is not present.<7>

20 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WorkstationName (variable): If WorkstationLen does not equal 0x0000, WorkstationName
MUST be a byte array that contains the name of the client machine that MUST be encoded

using the OEM character set. Otherwise, this data is not present.

2.2.1.2 CHALLENGE_MESSAGE

The CHALLENGE_MESSAGE defines an NTLM challenge message that is sent from the server to the
client. The CHALLENGE_MESSAGE is used by the server to challenge the client to prove its identity.
For connection-oriented requests, the CHALLENGE_MESSAGE generated by the server is in response

to the NEGOTIATE_MESSAGE (section 2.2.1.1) from the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

...

MessageType

TargetNameFields

...

NegotiateFlags

ServerChallenge

...

Reserved

...

TargetInfoFields

...

Version

...

Payload (variable)

...

Signature (8 bytes): An 8-byte character array that MUST contain the ASCII string ('N', 'T', 'L', 'M',
'S', 'S', 'P', '\0').

MessageType (4 bytes): A 32-bit unsigned integer that indicates the message type. This field MUST
be set to 0x00000002.

21 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TargetNameFields (8 bytes): A field containing TargetName information. The field diagram for
TargetNameFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetNameLen TargetNameMaxLen

TargetNameBufferOffset

If the NTLMSSP_REQUEST_TARGET flag is set in NegotiateFlags, indicating that a TargetName

is required, the fields are set to the following values:

▪ TargetNameLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
TargetName in Payload.

▪ TargetNameMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value

of TargetNameLen and MUST be ignored on receipt.

▪ TargetNameBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in

bytes, from the beginning of the CHALLENGE_MESSAGE to TargetName in Payload. If
TargetName is a Unicode string, the values of TargetNameBufferOffset and
TargetNameLen MUST be multiples of 2.

If the NTLMSSP_REQUEST_TARGET flag is not set in NegotiateFlags, indicating that a
TargetName is not required, the fields take the following values, and MUST be ignored upon
receipt.

▪ TargetNameLen and TargetNameMaxLen SHOULD be set to zero on transmission.

▪ TargetNameBufferOffset field SHOULD be set to the offset from the beginning of the
CHALLENGE_MESSAGE to where the TargetName would be in Payload if it were present.

NegotiateFlags (4 bytes): A NEGOTIATE structure that contains a set of flags, as defined by section
2.2.2.5. The server sets flags to indicate options it supports or, if there has been a
NEGOTIATE_MESSAGE (section 2.2.1.1), the choices it has made from the options offered by the
client.

ServerChallenge (8 bytes): A 64-bit value that contains the NTLM challenge. The challenge is a 64-

bit nonce. The processing of the ServerChallenge is specified in sections 3.1.5 and 3.2.5.

Reserved (8 bytes): An 8-byte array whose elements MUST be zero when sent and MUST be ignored
on receipt.

TargetInfoFields (8 bytes): A field containing TargetInfo information. The field diagram for
TargetInfoFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetInfoLen TargetInfoMaxLen

TargetInfoBufferOffset

If the NTLMSSP_NEGOTIATE_TARGET_INFO flag is not clear in NegotiateFlags, indicating that
TargetInfo is required, the fields SHOULD<8> be set to the following values:

22 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ TargetInfoLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
TargetInfo in Payload.

▪ TargetInfoMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value of
TargetInfoLen and MUST be ignored on receipt.

▪ TargetInfoBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in
bytes, from the beginning of the CHALLENGE_MESSAGE to TargetInfo in Payload.

If the NTLMSSP_NEGOTIATE_TARGET_INFO flag is clear in NegotiateFlags, indicating that
TargetInfo is not required, the fields take the following values, and MUST be ignored upon
receipt.

▪ TargetInfoLen and TargetInfoMaxLen SHOULD be set to zero on transmission.

▪ TargetInfoBufferOffset field SHOULD be set to the offset from the beginning of the

CHALLENGE_MESSAGE to where the TargetInfo would be in Payload if it were present.

Version (8 bytes): A VERSION structure (as defined in section 2.2.2.10) that SHOULD<9> be

populated only when the NTLMSSP_NEGOTIATE_VERSION flag is set in the NegotiateFlags field.
This structure is used for debugging purposes only. In normal (non-debugging) protocol
messages, it is ignored and does not affect the NTLM message processing.

Payload (variable): A byte array that contains the data referred to by the

TargetNameBufferOffset and TargetInfoBufferOffset message fields. Payload data can be
present in any order within the Payload field, with variable-length padding before or after the
data. The data that can be present in the Payload field of this message, in no particular order,
are:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetName (variable)

...

TargetInfo (variable)

...

TargetName (variable): If TargetNameLen does not equal 0x0000, TargetName MUST be a
byte array that contains the name of the server authentication realm, and MUST be expressed

in the negotiated character set. A server that is a member of a domain returns the domain of
which it is a member, and a server that is not a member of a domain returns the server name.

TargetInfo (variable): If TargetInfoLen does not equal 0x0000, TargetInfo MUST be a byte
array that contains a sequence of AV_PAIR structures. The AV_PAIR structure is defined in
section 2.2.2.1. The length of each AV_PAIR is determined by its AvLen field (plus 4 bytes).

Note An AV_PAIR structure can start on any byte alignment and the sequence of AV_PAIRs

has no padding between structures.

The sequence MUST be terminated by an AV_PAIR structure with an AvId field of MsvAvEOL.
The total length of the TargetInfo byte array is the sum of the lengths, in bytes, of the
AV_PAIR structures it contains.

Note If a TargetInfo AV_PAIR Value is textual, it MUST be encoded in Unicode irrespective
of what character set was negotiated (section 2.2.2.1).

23 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.3 AUTHENTICATE_MESSAGE

The AUTHENTICATE_MESSAGE defines an NTLM authenticate message that is sent from the client to
the server after the CHALLENGE_MESSAGE (section 2.2.1.2) is processed by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Signature

...

MessageType

LmChallengeResponseFields

...

NtChallengeResponseFields

...

DomainNameFields

...

UserNameFields

...

WorkstationFields

...

EncryptedRandomSessionKeyFields

...

NegotiateFlags

Version

...

MIC (16 bytes)

...

...

Payload (variable)

24 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

Signature (8 bytes): An 8-byte character array that MUST contain the ASCII string ('N', 'T', 'L', 'M',
'S', 'S', 'P', '\0').

MessageType (4 bytes): A 32-bit unsigned integer that indicates the message type. This field MUST

be set to 0x00000003.

LmChallengeResponseFields (8 bytes): A field containing LmChallengeResponse information.
The field diagram for LmChallengeResponseFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LmChallengeResponseLen LmChallengeResponseMaxLen

LmChallengeResponseBufferOffset

If the client chooses to send an LmChallengeResponse to the server, the fields are set to the
following values:

▪ LmChallengeResponseLen (2 bytes): A 16-bit unsigned integer that defines the size, in
bytes, of LmChallengeResponse in Payload.

▪ LmChallengeResponseMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to
the value of LmChallengeResponseLen and MUST be ignored on receipt.

▪ LmChallengeResponseBufferOffset (4 bytes): A 32-bit unsigned integer that defines the
offset, in bytes, from the beginning of the AUTHENTICATE_MESSAGE to LmChallengeResponse
in Payload.

Otherwise, if the client chooses not to send an LmChallengeResponse to the server, the fields

take the following values:

▪ LmChallengeResponseLen and LmChallengeResponseMaxLen MUST be set to zero on
transmission.

▪ LmChallengeResponseBufferOffset field SHOULD be set to the offset from the beginning of
the AUTHENTICATE_MESSAGE to where the LmChallengeResponse would be in Payload if
it was present.

NtChallengeResponseFields (8 bytes): A field containing NtChallengeResponse information. The
field diagram for NtChallengeResponseFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NtChallengeResponseLen NtChallengeResponseMaxLen

NtChallengeResponseBufferOffset

If the client chooses to send an NtChallengeResponse to the server, the fields are set to the
following values:

▪ NtChallengeResponseLen (2 bytes): A 16-bit unsigned integer that defines the size, in

bytes, of NtChallengeResponse in Payload.

25 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ NtChallengeResponseMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to
the value of NtChallengeResponseLen and MUST be ignored on receipt.

▪ NtChallengeResponseBufferOffset (4 bytes): A 32-bit unsigned integer that defines the
offset, in bytes, from the beginning of the AUTHENTICATE_MESSAGE to

NtChallengeResponse in Payload.<10>

Otherwise, if the client chooses not to send an NtChallengeResponse to the server, the fields
take the following values:

▪ NtChallengeResponseLen, and NtChallengeResponseMaxLen MUST be set to zero on
transmission.

▪ NtChallengeResponseBufferOffset field SHOULD be set to the offset from the beginning of
the AUTHENTICATE_MESSAGE to where the NtChallengeResponse would be in Payload if it

was present.

DomainNameFields (8 bytes): A field containing DomainName information. The field diagram for
DomainNameFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DomainNameLen DomainNameMaxLen

DomainNameBufferOffset

If the client chooses to send a DomainName to the server, the fields are set to the following
values:

▪ DomainNameLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
DomainName in Payload.

▪ DomainNameMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value
of DomainNameLen and MUST be ignored on receipt.

▪ DomainNameBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in
bytes, from the beginning of the AUTHENTICATE_MESSAGE to DomainName in Payload. If
DomainName is a Unicode string, the values of DomainNameBufferOffset and

DomainNameLen MUST be multiples of 2.

Otherwise, if the client chooses not to send a DomainName to the server, the fields take the
following values:

▪ DomainNameLen and DomainNameMaxLen MUST be set to zero on transmission.

▪ DomainNameBufferOffset field SHOULD be set to the offset from the beginning of the
AUTHENTICATE_MESSAGE to where the DomainName would be in Payload if it was present.

UserNameFields (8 bytes): A field containing UserName information. The field diagram for the

UserNameFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

UserNameLen UserNameMaxLen

UserNameBufferOffset

26 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the client chooses to send a UserName to the server, the fields are set to the following values:

▪ UserNameLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of

UserName in Payload, not including a NULL terminator.

▪ UserNameMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value of

UserNameLen and MUST be ignored on receipt.

▪ UserNameBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in
bytes, from the beginning of the AUTHENTICATE_MESSAGE to UserName in Payload. If the
UserName to be sent contains a Unicode string, the values of UserNameBufferOffset and
UserNameLen MUST be multiples of 2.

Otherwise, if the client chooses not to send a UserName to the server, the fields take the
following values:

▪ UserNameLen and UserNameMaxLen MUST be set to zero on transmission.

▪ UserNameBufferOffset field SHOULD be set to the offset from the beginning of the

AUTHENTICATE_MESSAGE to where the UserName would be in Payload if it were present.

WorkstationFields (8 bytes): A field containing Workstation information. The field diagram for the
WorkstationFields is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WorkstationLen WorkstationMaxLen

WorkstationBufferOffset

If the client chooses to send a Workstation to the server, the fields are set to the following
values:

▪ WorkstationLen (2 bytes): A 16-bit unsigned integer that defines the size, in bytes, of
Workstation in Payload.

▪ WorkstationMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD be set to the value
of WorkstationLen and MUST be ignored on receipt.

▪ WorkstationBufferOffset (4 bytes): A 32-bit unsigned integer that defines the offset, in

bytes, from the beginning of the AUTHENTICATE_MESSAGE to Workstation in Payload. If
Workstation contains a Unicode string, the values of WorkstationBufferOffset and
WorkstationLen MUST be multiples of 2.

Othewise, if the client chooses not to send a Workstation to the server, the fields take the
following values:

▪ WorkstationLen and WorkstationMaxLen MUST be set to zero on transmission.

▪ WorkstationBufferOffset field SHOULD be set to the offset from the beginning of the
AUTHENTICATE_MESSAGE to where the Workstation would be in Payload if it was present.

EncryptedRandomSessionKeyFields (8 bytes): A field containing EncryptedRandomSessionKey
information. The field diagram for EncryptedRandomSessionKeyFields is as follows.

27 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptedRandomSessionKeyLen EncryptedRandomSessionKeyMaxLen

EncryptedRandomSessionKeyBufferOffset

If the NTLMSSP_NEGOTIATE_KEY_EXCH flag is set in NegotiateFlags, indicating that an
EncryptedRandomSessionKey is supplied, the fields are set to the following values:

▪ EncryptedRandomSessionKeyLen (2 bytes): A 16-bit unsigned integer that defines the

size, in bytes, of EncryptedRandomSessionKey in Payload.

▪ EncryptedRandomSessionKeyMaxLen (2 bytes): A 16-bit unsigned integer that SHOULD
be set to the value of EncryptedRandomSessionKeyLen and MUST be ignored on receipt.

▪ EncryptedRandomSessionKeyBufferOffset (4 bytes): A 32-bit unsigned integer that

defines the offset, in bytes, from the beginning of the AUTHENTICATE_MESSAGE to
EncryptedRandomSessionKey in Payload.

Otherwise, if the NTLMSSP_NEGOTIATE_KEY_EXCH flag is not set in NegotiateFlags, indicating
that an EncryptedRandomSessionKey is not supplied, the fields take the following values, and
must be ignored upon receipt:

▪ EncryptedRandomSessionKeyLen and EncryptedRandomSessionKeyMaxLen SHOULD
be set to zero on transmission.

▪ EncryptedRandomSessionKeyBufferOffset field SHOULD be set to the offset from the
beginning of the AUTHENTICATE_MESSAGE to where the EncryptedRandomSessionKey

would be in Payload if it was present.

NegotiateFlags (4 bytes): In connectionless mode, a NEGOTIATE structure that contains a set of
flags (section 2.2.2.5) and represents the conclusion of negotiation—the choices the client has

made from the options the server offered in the CHALLENGE_MESSAGE. In connection-oriented
mode, a NEGOTIATE structure that contains the set of bit flags (section 2.2.2.5) negotiated in the
previous messages.

Version (8 bytes): A VERSION structure (section 2.2.2.10) that is populated only when the

NTLMSSP_NEGOTIATE_VERSION flag is set in the NegotiateFlags field. This structure is used for
debugging purposes only. In normal protocol messages, it is ignored and does not affect the NTLM
message processing.<11>

MIC (16 bytes): The message integrity for the NTLM NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE,
and AUTHENTICATE_MESSAGE.<12>

Payload (variable): A byte array that contains the data referred to by the

LmChallengeResponseBufferOffset, NtChallengeResponseBufferOffset,
DomainNameBufferOffset, UserNameBufferOffset, WorkstationBufferOffset, and
EncryptedRandomSessionKeyBufferOffset message fields. Payload data can be present in any

order within the Payload field, with variable-length padding before or after the data. The data
that can be present in the Payload field of this message, in no particular order, are:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LmChallengeResponse (variable)

28 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

NtChallengeResponse (variable)

...

DomainName (variable)

...

UserName (variable)

...

Workstation (variable)

...

EncryptedRandomSessionKey (variable)

...

LmChallengeResponse (variable): An LM_RESPONSE or LMv2_RESPONSE structure that
contains the computed LM response to the challenge. If NTLM v2 authentication is configured,
LmChallengeResponse MUST be an LMv2_RESPONSE structure (section 2.2.2.4). Otherwise,

it MUST be an LM_RESPONSE structure (section 2.2.2.3).

NtChallengeResponse (variable): An NTLM_RESPONSE or NTLMv2_RESPONSE structure that
contains the computed NT response to the challenge. If NTLM v2 authentication is configured,

NtChallengeResponse MUST be an NTLMv2_RESPONSE (section 2.2.2.8). Otherwise, it
MUST be an NTLM_RESPONSE structure (section 2.2.2.6).

DomainName (variable): The domain or computer name hosting the user account.

DomainName MUST be encoded in the negotiated character set.

UserName (variable): The name of the user to be authenticated. UserName MUST be encoded
in the negotiated character set.

Workstation (variable): The name of the computer to which the user is logged on.
Workstation MUST be encoded in the negotiated character set.

EncryptedRandomSessionKey (variable): The client's encrypted random session key.
EncryptedRandomSessionKey and its usage are defined in sections 3.1.5 and 3.2.5.

2.2.2 NTLM Structures

2.2.2.1 AV_PAIR

The AV_PAIR structure defines an attribute/value pair. Sequences of AV_PAIR structures are used in
the CHALLENGE_MESSAGE (section 2.2.1.2) directly. They are also in the
AUTHENTICATE_MESSAGE (section 2.2.1.3) via the NTLMv2_CLIENT_CHALLENGE (section 2.2.2.7)
structure.

29 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Although the following figure suggests that the most significant bit (MSB) of AvId is aligned with the
MSB of a 32-bit word, an AV_PAIR can be aligned on any byte boundary and can be 4+N bytes long

for arbitrary N (N = the contents of AvLen).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AvId AvLen

Value (variable)

...

AvId (2 bytes): A 16-bit unsigned integer that defines the information type in the Value field. The
contents of this field MUST be a value from the following table. The corresponding Value field in
this AV_PAIR MUST contain the information specified in the description of that AvId.

Value Meaning

MsvAvEOL

0x0000

Indicates that this is the last AV_PAIR in the list. AvLen MUST be 0. This type
of information MUST be present in the AV pair list.

MsvAvNbComputerName

0x0001

The server's NetBIOS computer name. The name MUST be in Unicode, and is
not null-terminated. This type of information MUST be present in the AV_pair
list.

MsvAvNbDomainName

0x0002

The server's NetBIOS domain name. The name MUST be in Unicode, and is not
null-terminated. This type of information MUST be present in the AV_pair list.

MsvAvDnsComputerName

0x0003

The fully qualified domain name (FQDN) of the computer. The name MUST be
in Unicode, and is not null-terminated.

MsvAvDnsDomainName

0x0004

The FQDN of the domain. The name MUST be in Unicode, and is not null-
terminated.

MsvAvDnsTreeName

0x0005

The FQDN of the forest. The name MUST be in Unicode, and is not null-
terminated.<13>

MsvAvFlags

0x0006

A 32-bit value indicating server or client configuration.

0x00000001: Indicates to the client that the account authentication is
constrained.

0x00000002: Indicates that the client is providing message integrity in the MIC
field (section 2.2.1.3) in the AUTHENTICATE_MESSAGE.<14>

0x00000004: Indicates that the client is providing a target SPN generated from
an untrusted source.<15>

MsvAvTimestamp

0x0007

A FILETIME structure ([MS-DTYP] section 2.3.3) in little-endian byte order
that contains the server local time. This structure is always sent in the
CHALLENGE_MESSAGE.<16>

MsvAvSingleHost

0x0008

A Single_Host_Data (section 2.2.2.2) structure. The Value field contains a
platform-specific blob, as well as a MachineID created at computer startup to
identify the calling machine.<17>

MsvAvTargetName

0x0009

The SPN of the target server. The name MUST be in Unicode and is not null-
terminated.<18>

MsvChannelBindings A channel bindings hash. The Value field contains an MD5 hash ([RFC4121]
section 4.1.1.2) of a gss_channel_bindings_struct ([RFC2744] section 3.11).

30 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

0x000A An all-zero value of the hash is used to indicate absence of channel
bindings.<19>

AvLen (2 bytes): A 16-bit unsigned integer that defines the length, in bytes, of the Value field.

Value (variable): A variable-length byte-array that contains the value defined for this AV pair entry.
The contents of this field depend on the type expressed in the AvId field. The available types and
resulting format and contents of this field are specified in the table within the AvId field
description in this topic.

When AV pairs are specified, MsvAvEOL MUST be the last item specified. All other AV pairs, if present,
can be specified in any order.

2.2.2.2 Single_Host_Data

The Single_Host_Data structure allows a client to send machine-specific information within an

authentication exchange to services on the same machine. The client can produce additional
information to be processed in an implementation-specific way when the client and server are on the
same host. If the server and client platforms are different or if they are on different hosts, then the
information MUST be ignored. Any fields after the MachineID field MUST be ignored on receipt.<20>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Z4

CustomData

...

MachineID (32 bytes)

...

...

Size (4 bytes): A 32-bit unsigned integer that defines the length, in bytes, of the Value field in the

AV_PAIR (section 2.2.2.1) structure.

Z4 (4 bytes): A 32-bit integer value containing 0x00000000.

CustomData (8 bytes): An 8-byte platform-specific blob containing info only relevant when the

client and the server are on the same host.<21>

MachineID (32 bytes): A 256-bit random number created at computer startup to identify the calling
machine.<22>

2.2.2.3 LM_RESPONSE

The LM_RESPONSE structure defines the NTLM v1 authentication LmChallengeResponse in the
AUTHENTICATE_MESSAGE. This response is used only when NTLM v1 authentication is configured.

31 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Response (24 bytes)

...

...

Response (24 bytes): A 24-byte array of unsigned char that contains the client's
LmChallengeResponse as defined in section 3.3.1.

2.2.2.4 LMv2_RESPONSE

The LMv2_RESPONSE structure defines the NTLM v2 authentication LmChallengeResponse in the
AUTHENTICATE_MESSAGE. This response is used only when NTLM v2 authentication is configured.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Response (16 bytes)

...

...

ChallengeFromClient

...

Response (16 bytes): A 16-byte array of unsigned char that contains the client's LM challenge-
response. This is the portion of the LmChallengeResponse field to which the HMAC_MD5
algorithm has been applied, as defined in section 3.3.2. Specifically, Response corresponds to the
result of applying the HMAC_MD5 algorithm, using the key ResponseKeyLM, to a message
consisting of the concatenation of the ResponseKeyLM, ServerChallenge and ClientChallenge.

ChallengeFromClient (8 bytes): An 8-byte array of unsigned char that contains the client's
ClientChallenge (as defined in section 3.3.2). See section 3.1.5.1.2 for details.

2.2.2.5 NEGOTIATE

During NTLM authentication, each of the following flags is a possible value of the NegotiateFlags field
of the NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE, and AUTHENTICATE_MESSAGE, unless

otherwise noted. These flags define client or server NTLM capabilities supported by the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

W V U r

1

r

2

r

3

T r

4

S R r

5

Q P r

6

O N M r

7

L K J r

8

H r

9

G F E D r

1
0

C B A

32 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

W (1 bit): If set, requests 56-bit encryption. If the client sends NTLMSSP_NEGOTIATE_SEAL or
NTLMSSP_NEGOTIATE_SIGN with NTLMSSP_NEGOTIATE_56 to the server in the

NEGOTIATE_MESSAGE, the server MUST return NTLMSSP_NEGOTIATE_56 to the client in the
CHALLENGE_MESSAGE. Otherwise it is ignored. If both NTLMSSP_NEGOTIATE_56 and

NTLMSSP_NEGOTIATE_128 are requested and supported by the client and server,
NTLMSSP_NEGOTIATE_56 and NTLMSSP_NEGOTIATE_128 will both be returned to the client.
Clients and servers that set NTLMSSP_NEGOTIATE_SEAL SHOULD set NTLMSSP_NEGOTIATE_56 if
it is supported. An alternate name for this field is NTLMSSP_NEGOTIATE_56.

V (1 bit): If set, requests an explicit key exchange. This capability SHOULD be used because it
improves security for message integrity or confidentiality. See sections 3.2.5.1.2, 3.2.5.2.1, and
3.2.5.2.2 for details. An alternate name for this field is NTLMSSP_NEGOTIATE_KEY_EXCH.

U (1 bit): If set, requests 128-bit session key negotiation. An alternate name for this field is
NTLMSSP_NEGOTIATE_128. If the client sends NTLMSSP_NEGOTIATE_128 to the server in the
NEGOTIATE_MESSAGE, the server MUST return NTLMSSP_NEGOTIATE_128 to the client in the
CHALLENGE_MESSAGE only if the client sets NTLMSSP_NEGOTIATE_SEAL or
NTLMSSP_NEGOTIATE_SIGN. Otherwise it is ignored. If both NTLMSSP_NEGOTIATE_56 and

NTLMSSP_NEGOTIATE_128 are requested and supported by the client and server,

NTLMSSP_NEGOTIATE_56 and NTLMSSP_NEGOTIATE_128 will both be returned to the client.
Clients and servers that set NTLMSSP_NEGOTIATE_SEAL SHOULD set NTLMSSP_NEGOTIATE_128
if it is supported. An alternate name for this field is NTLMSSP_NEGOTIATE_128.<23>

r1 (1 bit): This bit is unused and MUST be zero.

r2 (1 bit): This bit is unused and MUST be zero.

r3 (1 bit): This bit is unused and MUST be zero.

T (1 bit): If set, requests the protocol version number. The data corresponding to this flag is provided

in the Version field of the NEGOTIATE_MESSAGE, the CHALLENGE_MESSAGE, and the
AUTHENTICATE_MESSAGE.<24> An alternate name for this field is
NTLMSSP_NEGOTIATE_VERSION.

r4 (1 bit): This bit is unused and MUST be zero.

S (1 bit): If set, indicates that the TargetInfo fields in the CHALLENGE_MESSAGE (section 2.2.1.2)
are populated. An alternate name for this field is NTLMSSP_NEGOTIATE_TARGET_INFO.

R (1 bit): If set, requests the usage of the LMOWF. An alternate name for this field is

NTLMSSP_REQUEST_NON_NT_SESSION_KEY.

r5 (1 bit): This bit is unused and MUST be zero.

Q (1 bit): If set, requests an identify level token. An alternate name for this field is
NTLMSSP_NEGOTIATE_IDENTIFY.

P (1 bit): If set, requests usage of the NTLM v2 session security. NTLM v2 session security is a
misnomer because it is not NTLM v2. It is NTLM v1 using the extended session security that is also

in NTLM v2. NTLMSSP_NEGOTIATE_LM_KEY and

NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY are mutually exclusive. If both
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY and NTLMSSP_NEGOTIATE_LM_KEY are
requested, NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY alone MUST be returned to the
client. NTLM v2 authentication session key generation MUST be supported by both the client and
the DC in order to be used, and extended session security signing and sealing requires support
from the client and the server in order to be used.<25> An alternate name for this field is

NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY.

r6 (1 bit): This bit is unused and MUST be zero.

33 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

O (1 bit): If set, TargetName MUST be a server name. The data corresponding to this flag is
provided by the server in the TargetName field of the CHALLENGE_MESSAGE. If this bit is set,

then NTLMSSP_TARGET_TYPE_DOMAIN MUST NOT be set. This flag MUST be ignored in the
NEGOTIATE_MESSAGE and the AUTHENTICATE_MESSAGE. An alternate name for this field is

NTLMSSP_TARGET_TYPE_SERVER.

N (1 bit): If set, TargetName MUST be a domain name. The data corresponding to this flag is
provided by the server in the TargetName field of the CHALLENGE_MESSAGE. If set, then
NTLMSSP_TARGET_TYPE_SERVER MUST NOT be set. This flag MUST be ignored in the
NEGOTIATE_MESSAGE and the AUTHENTICATE_MESSAGE. An alternate name for this field is
NTLMSSP_TARGET_TYPE_DOMAIN.

M (1 bit): If set, requests the presence of a signature block on all messages.

NTLMSSP_NEGOTIATE_ALWAYS_SIGN MUST be set in the NEGOTIATE_MESSAGE to the server
and the CHALLENGE_MESSAGE to the client. NTLMSSP_NEGOTIATE_ALWAYS_SIGN is overridden
by NTLMSSP_NEGOTIATE_SIGN and NTLMSSP_NEGOTIATE_SEAL, if they are supported. An
alternate name for this field is NTLMSSP_NEGOTIATE_ALWAYS_SIGN.

r7 (1 bit): This bit is unused and MUST be zero.

L (1 bit): This flag indicates whether the Workstation field is present. If this flag is not set, the

Workstation field MUST be ignored. If this flag is set, the length of the Workstation field
specifies whether the workstation name is nonempty or not.<26> An alternate name for this field
is NTLMSSP_NEGOTIATE_OEM_WORKSTATION_SUPPLIED.

K (1 bit): If set, the domain name is provided (section 2.2.1.1).<27> An alternate name for this field
is NTLMSSP_NEGOTIATE_OEM_DOMAIN_SUPPLIED.

J (1 bit): If set, the connection SHOULD be anonymous.<28>

r8 (1 bit): This bit is unused and SHOULD be zero.<29>

H (1 bit): If set, requests usage of the NTLM v1 session security protocol.
NTLMSSP_NEGOTIATE_NTLM MUST be set in the NEGOTIATE_MESSAGE to the server and the

CHALLENGE_MESSAGE to the client. An alternate name for this field is
NTLMSSP_NEGOTIATE_NTLM.

r9 (1 bit): This bit is unused and MUST be zero.

G (1 bit): If set, requests LAN Manager (LM) session key computation.
NTLMSSP_NEGOTIATE_LM_KEY and NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY are

mutually exclusive. If both NTLMSSP_NEGOTIATE_LM_KEY and
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY are requested,
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY alone MUST be returned to the client.
NTLM v2 authentication session key generation MUST be supported by both the client and the DC
in order to be used, and extended session security signing and sealing requires support from the
client and the server to be used. An alternate name for this field is

NTLMSSP_NEGOTIATE_LM_KEY.

F (1 bit): If set, requests connectionless authentication. If NTLMSSP_NEGOTIATE_DATAGRAM is set,

then NTLMSSP_NEGOTIATE_KEY_EXCH MUST always be set in the AUTHENTICATE_MESSAGE to
the server and the CHALLENGE_MESSAGE to the client. An alternate name for this field is
NTLMSSP_NEGOTIATE_DATAGRAM.

E (1 bit): If set, requests session key negotiation for message confidentiality. If the client sends
NTLMSSP_NEGOTIATE_SEAL to the server in the NEGOTIATE_MESSAGE, the server MUST return

NTLMSSP_NEGOTIATE_SEAL to the client in the CHALLENGE_MESSAGE. Clients and servers that
set NTLMSSP_NEGOTIATE_SEAL SHOULD always set NTLMSSP_NEGOTIATE_56 and
NTLMSSP_NEGOTIATE_128, if they are supported. An alternate name for this field is
NTLMSSP_NEGOTIATE_SEAL.

34 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

D (1 bit): If set, requests session key negotiation for message signatures. If the client sends
NTLMSSP_NEGOTIATE_SIGN to the server in the NEGOTIATE_MESSAGE, the server MUST return

NTLMSSP_NEGOTIATE_SIGN to the client in the CHALLENGE_MESSAGE. An alternate name for
this field is NTLMSSP_NEGOTIATE_SIGN.

r10 (1 bit): This bit is unused and MUST be zero.

C (1 bit): If set, a TargetName field of the CHALLENGE_MESSAGE (section 2.2.1.2) MUST be
supplied. An alternate name for this field is NTLMSSP_REQUEST_TARGET.

B (1 bit): If set, requests OEM character set encoding. An alternate name for this field is
NTLM_NEGOTIATE_OEM. See bit A for details.

A (1 bit): If set, requests Unicode character set encoding. An alternate name for this field is
NTLMSSP_NEGOTIATE_UNICODE.

The A and B bits are evaluated together as follows:

▪ A==1: The choice of character set encoding MUST be Unicode.

▪ A==0 and B==1: The choice of character set encoding MUST be OEM.

▪ A==0 and B==0: The protocol MUST return SEC_E_INVALID_TOKEN.

2.2.2.6 NTLM v1 Response: NTLM_RESPONSE

The NTLM_RESPONSE structure defines the NTLM v1 authentication NtChallengeResponse in the
AUTHENTICATE_MESSAGE. This response is only used when NTLM v1 authentication is configured.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Response (24 bytes)

...

...

Response (24 bytes): A 24-byte array of unsigned char that contains the client's
NtChallengeResponse (section 3.3.1).

2.2.2.7 NTLM v2: NTLMv2_CLIENT_CHALLENGE

The NTLMv2_CLIENT_CHALLENGE structure defines the client challenge in the
AUTHENTICATE_MESSAGE. This structure is used only when NTLM v2 authentication is configured and

is transported in the NTLMv2_RESPONSE (section 2.2.2.8) structure.<30>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RespType HiRespType Reserved1

Reserved2

TimeStamp

35 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

...

ChallengeFromClient

...

Reserved3

AvPairs (variable)

...

RespType (1 byte): An 8-bit unsigned char that contains the current version of the challenge
response type. This field MUST be 0x01.

HiRespType (1 byte): An 8-bit unsigned char that contains the maximum supported version of the

challenge response type. This field MUST be 0x01.

Reserved1 (2 bytes): A 16-bit unsigned integer that SHOULD be 0x0000 and MUST be ignored on
receipt.

Reserved2 (4 bytes): A 32-bit unsigned integer that SHOULD be 0x00000000 and MUST be ignored
on receipt.

TimeStamp (8 bytes): A 64-bit unsigned integer that contains the current system time, represented

as the number of 100 nanosecond ticks elapsed since midnight of January 1, 1601 (UTC).

ChallengeFromClient (8 bytes): An 8-byte array of unsigned char that contains the client's
ClientChallenge (as defined in section 3.3.2). See section 3.1.5.1.2 for details.

Reserved3 (4 bytes): A 32-bit unsigned integer that SHOULD be 0x00000000 and MUST be ignored

on receipt.

AvPairs (variable): A byte array that contains a sequence of AV_PAIR structures (section 2.2.2.1).
The sequence contains the server-naming context and is terminated by an AV_PAIR structure with

an AvId field of MsvAvEOL.

2.2.2.8 NTLM2 V2 Response: NTLMv2_RESPONSE

The NTLMv2_RESPONSE structure defines the NTLMv2 authentication NtChallengeResponse in the
AUTHENTICATE_MESSAGE. This response is used only when NTLMv2 authentication is configured.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Response (16 bytes)

...

...

NTLMv2_CLIENT_CHALLENGE (variable)

...

36 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Response (16 bytes): A 16-byte array of unsigned char that contains the client's
NTChallengeResponse as defined in section 3.3.2. Response corresponds to the NTProofStr

variable from section 3.3.2.

NTLMv2_CLIENT_CHALLENGE (variable): A variable-length byte array, defined in section 2.2.2.7,

that contains the ClientChallenge as defined in section 3.3.2. ChallengeFromClient corresponds
to the temp variable from section 3.3.2.

2.2.2.9 NTLMSSP_MESSAGE_SIGNATURE

The NTLMSSP_MESSAGE_SIGNATURE structure (section 3.4.4), specifies the signature block used for
application message integrity and confidentiality. This structure is then passed back to the application,
which embeds it within the application protocol messages, along with the NTLM-encrypted or integrity-
protected application message data.

This structure MUST take one of the two following forms, depending on whether the
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is negotiated:

▪ NTLMSSP_MESSAGE_SIGNATURE

▪ NTLMSSP_MESSAGE_SIGNATURE for Extended Session Security

2.2.2.9.1 NTLMSSP_MESSAGE_SIGNATURE

This version of the NTLMSSP_MESSAGE_SIGNATURE structure MUST be used when the
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is not negotiated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

RandomPad

Checksum

SeqNum

Version (4 bytes): A 32-bit unsigned integer that contains the signature version. This field MUST be

0x00000001.

RandomPad (4 bytes): A 4-byte array that contains the random pad for the message.

Checksum (4 bytes): A 4-byte array that contains the checksum for the message.

SeqNum (4 bytes): A 32-bit unsigned integer that contains the NTLM sequence number for this
application message.

2.2.2.9.2 NTLMSSP_MESSAGE_SIGNATURE for Extended Session Security

This version of the NTLMSSP_MESSAGE_SIGNATURE structure MUST be used when the
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is negotiated.

37 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Checksum

...

SeqNum

Version (4 bytes): A 32-bit unsigned integer that contains the signature version. This field MUST be
0x00000001.

Checksum (8 bytes): An 8-byte array that contains the checksum for the message.

SeqNum (4 bytes): A 32-bit unsigned integer that contains the NTLM sequence number for this
application message.

2.2.2.10 VERSION

The VERSION structure contains operating system version information that SHOULD<31> be ignored.
This structure is used for debugging purposes only and its value does not affect NTLM message
processing. It is populated in the NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE, and
AUTHENTICATE_MESSAGE messages only if NTLMSSP_NEGOTIATE_VERSION is negotiated.<32>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProductMajorVersion ProductMinorVersion ProductBuild

Reserved NTLMRevisionCurrent

ProductMajorVersion (1 byte): An 8-bit unsigned integer that SHOULD<33> contain the major
version number of the operating system in use.

ProductMinorVersion (1 byte): An 8-bit unsigned integer that SHOULD<34> contain the minor
version number of the operating system in use.

ProductBuild (2 bytes): A 16-bit unsigned integer that contains the build number of the operating
system in use. This field SHOULD be set to a 16-bit quantity that identifies the operating system
build number.

Reserved (3 bytes): A 24-bit data area that SHOULD be set to zero and MUST be ignored by the
recipient.

NTLMRevisionCurrent (1 byte): An 8-bit unsigned integer that contains a value indicating the
current revision of the NTLMSSP in use. This field SHOULD contain the following value:

Value Meaning

NTLMSSP_REVISION_W2K3

0x0F

Version 15 of the NTLMSSP is in use.

38 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

The following sections offer a detailed specification of the NTLM message computation:

▪ Sections 3.1.5 and 3.2.5 specify how the client and server compute messages and respond to
messages.

▪ Section 3.3 specifies how the response computation is calculated, depending on whether NTLM v1
or NTLM v2 is used. This includes the ComputeResponse function, as well as the NTOWF and

LMOWF functions, which are used by the ComputeResponse function.

▪ Section 3.4 specifies how message integrity and message confidentiality are provided, including a
detailed specification of the algorithms used to calculate the signing and sealing keys.

The Cryptographic Operations Reference in section 6 defines the cryptographic primitives used in this
section.

3.1 Client Details

3.1.1 Abstract Data Model

The following sections specify variables that are internal to the client and are maintained across the
NTLM authentication sequence.

3.1.1.1 (Updated Section) Variables Internal to the Protocol

ClientConfigFlags: The set of client configuration flags (section 2.2.2.5) that specify the full set of

capabilities of the client.

ExportedSessionKey: A 128-bit (16-byte) session key used to derive ClientSigningKey,
ClientSealingKey, ServerSealingKey, and ServerSigningKey.

NegFlg: The set of configuration flags (section 2.2.2.5) that specifies the negotiated capabilities of
the client and server for the current NTLM session.

User: A string that indicates the name of the user.

UserDom: A string that indicates the name of the user's domain.

The following NTLM configuration variables are internal to the client and impact all authenticated
sessions:

NoLMResponseNTLMv1: A Boolean setting that controlsSHOULD<35> control using the NTLM
response for the LM response to the server challenge when NTLMv1 authentication is used.<35>. The
default value of this state variable is TRUE.

ClientBlocked: A Boolean setting that disablesSHOULD<36> disable the client from sending NTLM

authenticate messages, as defined in section 2.2.1.3.<36>. The default value of this state variable is

FALSE.

ClientBlockExceptions: A list of server names that canSHOULD<37> use NTLM
authentication.<37>. The default value of this state variable is NULL.

ClientRequire128bitEncryption: A Boolean setting that requires the client to use 128-bit
encryption.<38>

The following variables are internal to the client and are maintained for the entire length of the

authenticated session:

39 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MaxLifetime: An integer that indicates the maximum lifetime for challenge/response pairs.<39>

ClientSigningKey: The signing key used by the client to sign messages and used by the server to

verify signed client messages. It is generated after the client is authenticated by the server and is not
passed over the wire.

ClientSealingKey: The sealing key used by the client to seal messages and used by the server to
unseal client messages. It is generated after the client is authenticated by the server and is not
passed over the wire.

SeqNum: A 4-byte sequence number (section 3.4.4).

ServerSealingKey: The sealing key used by the server to seal messages and used by the client to
unseal server messages. It is generated after the client is authenticated by the server and is not
passed over the wire.

ServerSigningKey: The signing key used by the server to sign messages and used by the client to
verify signed server messages. It is generated after the client is authenticated by the server and is not
passed over the wire.

3.1.1.2 Variables Exposed to the Application

The following parameters are provided by the application to the NTLM client. These logical parameters
can influence various protocol-defined flags.<40>

Note The following variables are logical, abstract parameters that an implementation MUST maintain
and expose to provide the proper level of service. How these variables are maintained and exposed is
up to the implementation.

Integrity: A Boolean setting that indicates that the caller requests that messages be signed so that

they cannot be tampered with while in transit. Setting this flag results in the
NTLMSSP_NEGOTIATE_SIGN flag being set in the NegotiateFlags field of the NTLM
NEGOTIATE_MESSAGE.

Replay Detect: A Boolean setting that indicates that the caller requests that messages be signed so
that they cannot be replayed. Setting this flag results in the NTLMSSP_NEGOTIATE_SIGN flag being
set in the NegotiateFlags field of the NTLM NEGOTIATE_MESSAGE.

Sequence Detect: A Boolean setting that indicates that the caller requests that messages be signed
so that they cannot be sent out of order. Setting this flag results in the NTLMSSP_NEGOTIATE_SIGN
flag being set in the NegotiateFlags field of the NTLM NEGOTIATE_MESSAGE.

Confidentiality: A Boolean setting that indicates that the caller requests that messages be encrypted
so that they cannot be read while in transit. If the Confidentiality option is selected by the client, NTLM
performs a bitwise OR operation with the following NTLM Negotiate Flags into the ClientConfigFlags.
(The ClientConfigFlags indicate which features the client host supports.)

 NTLMSSP_NEGOTIATE_SEAL
 NTLMSSP_NEGOTIATE_KEY_EXCH
 NTLMSSP_NEGOTIATE_LM_KEY
 NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY

Datagram: A Boolean setting that indicates that the connectionless mode of NTLM is to be selected. If
the Datagram option is selected by the client, then connectionless mode is used and NTLM performs a
bitwise OR operation with the following NTLM Negotiate Flag into the ClientConfigFlags.

 NTLMSSP_NEGOTIATE_DATAGRAM

40 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Identify: A Boolean setting that indicates that the caller wants the server to know the identity of the
caller, but that the server not be allowed to impersonate the caller to resources on that system.

Setting this flag results in the NTLMSSP_NEGOTIATE_IDENTIFY flag being set. Indicates that the
GSS_C_IDENTIFY_FLAG flag was set in the GSS_Init_sec_context call, as discussed in [RFC4757]

section 7.1, and results in the GSS_C_IDENTIFY_FLAG flag set in the authenticator's checksum field
([RFC4757] section 7.1).

The following variables are used by applications for channel binding token support:

ClientSuppliedTargetName: Service principal name (SPN) of the service to which the client wishes
to authenticate. This value is optional.<41>

ClientChannelBindingsUnhashed: An octet string provided by the application used for channel
binding. This value is optional.<42>

UnverifiedTargetName: A Boolean setting that indicates that the caller generated the target's SPN
from an untrusted source. This value is optional.<43>

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

The application SHOULD<44> initiate NTLM authentication through the Security Support Provider
Interface (SSPI). NTLM does not support token framing as defined in [RFC2743] section 3.1.

▪ GSS_Init_sec_context

The client application calls GSS_Init_sec_context() to establish a security context with the
server application.

If the ClientBlocked == TRUE and targ_name ([RFC2743] section 2.2.1) does not equal any of
the ClientBlockExceptions server names, then the NTLM client MUST return
STATUS_NOT_SUPPORTED to the client application.<45>

NTLM has no requirements on which flags are used and will simply honor what was requested by
the application or protocol. For an example of such a protocol specification, see [MS-RPCE]

section 3.3.1.5.2.2. The application will send the NEGOTIATE_MESSAGE (section 2.2.1.1) to the
server application.

When the client application receives the CHALLENGE_MESSAGE (section 2.2.1.2) from the
server application, the client application will call GSS_Init_sec_context() with the
CHALLENGE_MESSAGE as input. The client application will send the AUTHENTICATE_MESSAGE
(section 2.2.1.3) to the server application.

▪ GSS_Wrap

Once the security context is established, the client application can call GSS_WrapEx() (section
3.4.6) to encrypt messages.

▪ GSS_Unwrap

Once the security context is established, the client application can call GSS_UnwrapEx() (section
3.4.7) to decrypt messages that were encrypted by GSS_WrapEx.

41 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ GSS_GetMIC

Once the security context is established, the client application can call GSS_GetMICEx() (section

3.4.8) to sign messages, producing an NTLMSSP_MESSAGE_SIGNATURE structure (section
2.2.2.9).

▪ GSS_VerifyMIC

Once the security context is established, the client application can call GSS_VerifyMICEx()
(section 3.4.9) to verify a signature produced by GSS_GetMICEx().

3.1.5 Message Processing Events and Sequencing Rules

This section specifies how the client processes and returns messages. As discussed earlier, the
message transport is provided by the application that is using NTLM.

3.1.5.1 Connection-Oriented

Message processing on the client takes place in the following two cases:

▪ When the application initiates authentication and the client then sends a NEGOTIATE_MESSAGE.

▪ When the client receives a CHALLENGE_MESSAGE from the server and then sends back an
AUTHENTICATE_MESSAGE.

These two cases are described in the following sections.

When encryption is desired, the stream cipher RC4 is used. The key for RC4 is established at the start
of the session for an instance of RC4 dedicated to that session. RC4 then continues to generate key

stream in order over all messages of the session, without rekeying.

The pseudocode RC4(handle, message) is defined as the bytes of the message XORed with bytes of
the RC4 key stream, using the current state of the session's RC4 internal key state. When the session
is torn down, the key structure is destroyed.

The pseudocode RC4K(key,message) is defined as a one-time instance of RC4 whose key is initialized
to key, after which RC4 is applied to the message. On completion of this operation, the internal key

state is destroyed.

3.1.5.1.1 Client Initiates the NEGOTIATE_MESSAGE

When the client application initiates the exchange through SSPI, the NTLM client sends the
NEGOTIATE_MESSAGE to the server, which is embedded in an application protocol message, and
encoded according to that application protocol.

If ClientBlocked == TRUE and targ_name ([RFC2743] section 2.2.1) does not equal any of the

ClientBlockExceptions server names, then the NTLM client MUST return STATUS_NOT_SUPPORTED
to the client application.<46>

The client prepares a NEGOTIATE_MESSAGE and sets the following fields:

▪ The Signature field is set to the string, "NTLMSSP".

▪ The MessageType field is set to NtLmNegotiate.

The client sets the following configuration flags in the NegotiateFlags field of the
NEGOTIATE_MESSAGE:

▪ NTLMSSP_REQUEST_TARGET

42 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ NTLMSSP_NEGOTIATE_NTLM

▪ NTLMSSP_NEGOTIATE_ALWAYS_SIGN

▪ NTLMSSP_NEGOTIATE_UNICODE

If LM authentication is not being used, then the client sets the following configuration flag in the

NegotiateFlags field of the NEGOTIATE_MESSAGE:

▪ NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY

In addition, the client sets the flags specified by the application in the NegotiateFlags field in
addition to the initialized flags.

If the NTLMSSP_NEGOTIATE_VERSION flag is set by the client application, the Version field MUST be
set to the current version (section 2.2.2.10), the DomainName field MUST be set to a zero-length
string, and the Workstation field MUST be set to a zero-length string.

3.1.5.1.2 Client Receives a CHALLENGE_MESSAGE from the Server

When the client receives a CHALLENGE_MESSAGE from the server, it MUST determine if the features
selected by the server are strong enough for the client authentication policy. If not, the client MUST
return an error to the calling application. Otherwise, the client responds with an
AUTHENTICATE_MESSAGE message.

If ClientRequire128bitEncryption == TRUE, then if 128-bit encryption is not negotiated, then the client
MUST return SEC_E_UNSUPPORTED_FUNCTION to the application.

The client processes the CHALLENGE_MESSAGE and constructs an AUTHENTICATE_MESSAGE per the
following pseudo code where all strings are encoded as RPC_UNICODE_STRING ([MS-DTYP] section
2.3.10):

 -- Input:
 -- ClientConfigFlags, User, and UserDom - Defined in section 3.1.1.
 -- NbMachineName - The NETBIOS machine name of the server.
 -- An NTLM NEGOTIATE_MESSAGE whose fields are defined in
 section 2.2.1.1.
 -- An NTLM CHALLENGE_MESSAGE whose message fields are defined in
 section 2.2.1.2.
 -- An NTLM AUTHENTICATE_MESSAGE whose message fields are
 defined in section 2.2.1.3 with MIC field set to 0.
 -- OPTIONAL ClientSuppliedTargetName - Defined in section 3.1.1.2
 -- OPTIONAL ClientChannelBindingUnhashed - Defined in section 3.1.1.2
 --
 -- Output:
 -- ClientHandle - The handle to a key state structure corresponding
 -- to the current state of the ClientSealingKey
 -- ServerHandle - The handle to a key state structure corresponding
 -- to the current state of the ServerSealingKey
 -- An NTLM AUTHENTICATE_MESSAGE whose message fields are defined in
 section 2.2.1.3.
 --
 -- The following NTLM keys generated by the client are defined in
 section 3.1.1:
 -- ExportedSessionKey, ClientSigningKey, ClientSealingKey,
 ServerSigningKey, and ServerSealingKey.

 -- Temporary variables that do not pass over the wire are defined
 below:
 -- KeyExchangeKey, ResponseKeyNT, ResponseKeyLM, SessionBaseKey -
 Temporary variables used to store 128-bit keys.
 -- Time - Temporary variable used to hold the 64-bit time.
 -- MIC - message integrity for the NTLM NEGOTIATE_MESSAGE,
 CHALLENGE_MESSAGE and AUTHENTICATE_MESSAGE

43 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 --
 -- Functions used:
 -- NTOWFv1, LMOWFv1, NTOWFv2, LMOWFv2, ComputeResponse - Defined in
 section 3.3
 -- KXKEY, SIGNKEY, SEALKEY - Defined in sections 3.4.5, 3.4.6,
 and 3.4.7
 -- Currenttime, NIL, NONCE - Defined in section 6.

Fields MUST be set as follows:

▪ ChallengeFromClient to an 8-byte nonce.

▪ UserName to User.

▪ DomainName to UserDom.

▪ Signature to the string "NTLMSSP".

▪ MessageType to NtLmAuthenticate.

If the NTLMSSP_NEGOTIATE_VERSION flag is set by the client application, the Version field MUST be
set to the current version (section 2.2.2.10), and the Workstation field MUST be set to

NbMachineName.

If NTLM v2 authentication is used, the client SHOULD send the timestamp in the
CHALLENGE_MESSAGE.<47>

 If there exists a CHALLENGE_MESSAGE.TargetInfo.AvId ==
 MsvAvTimestamp
 Set Time to CHALLENGE_MESSAGE.TargetInfo.Value of that AVPair
 Else
 Set Time to Currenttime
 Endif

If NTLM v2 authentication is used and the CHALLENGE_MESSAGE does not contain both
MsvAvNbComputerName and MsvAvNbDomainName AVPairs and either Integrity is TRUE or
Confidentiality is TRUE, then return STATUS_LOGON_FAILURE.

If NTLM v2 authentication is used and the CHALLENGE_MESSAGE TargetInfo field (section 2.2.1.2)
has an MsvAvTimestamp present, the client SHOULD NOT send the LmChallengeResponse and
SHOULD send Z(24) instead.<48>

Response keys are computed using the ComputeResponse() function, as specified in section 3.3.

 Set AUTHENTICATE_MESSAGE.NtChallengeResponse,
 AUTHENTICATE_MESSAGE.LmChallengeResponse, SessionBaseKey to
 ComputeResponse(CHALLENGE_MESSAGE.NegotiateFlags, ResponseKeyNT,
 ResponseKeyLM, CHALLENGE_MESSAGE.ServerChallenge,
 ChallengeFromClient, Time,
 CHALLENGE_MESSAGE.TargetInfo)

 Set KeyExchangeKey to KXKEY(SessionBaseKey, LmChallengeResponse,
 CHALLENGE_MESSAGE.ServerChallenge)
 If (NTLMSSP_NEGOTIATE_KEY_EXCH bit is set in
 CHALLENGE_MESSAGE.NegotiateFlags)
 Set ExportedSessionKey to NONCE(16)
 Set AUTHENTICATE_MESSAGE.EncryptedRandomSessionKey to
 RC4K(KeyExchangeKey, ExportedSessionKey)
 Else
 Set ExportedSessionKey to KeyExchangeKey
 Set AUTHENTICATE_MESSAGE.EncryptedRandomSessionKey to NIL

44 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Endif

 Set ClientSigningKey to SIGNKEY(NegFlg, ExportedSessionKey, "Client")
 Set ServerSigningKey to SIGNKEY(NegFlg, ExportedSessionKey, "Server")
 Set ClientSealingKey to SEALKEY(NegFlg, ExportedSessionKey, "Client")
 Set ServerSealingKey to SEALKEY(NegFlg, ExportedSessionKey, "Server")

 RC4Init(ClientHandle, ClientSealingKey)
 RC4Init(ServerHandle, ServerSealingKey)

 Set MIC to HMAC_MD5(ExportedSessionKey, ConcatenationOf(
 NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE, AUTHENTICATE_MESSAGE))
 Set AUTHENTICATE_MESSAGE.MIC to MIC

If the CHALLENGE_MESSAGE TargetInfo field (section 2.2.1.2) has an MsvAvTimestamp present, the

client SHOULD provide a MIC:<49>

▪ If there is an AV_PAIR structure (section 2.2.2.1) with the AvId field set to MsvAvFlags,

▪ then in the Value field, set bit 0x2 to 1.

▪ else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to MsvAvFlags and the
Value field bit 0x2 to 1.

▪ Populate the MIC field with the MIC.

The client SHOULD send the channel binding AV_PAIR <50>:

▪ If the CHALLENGE_MESSAGE contains a TargetInfo field (section 2.2.1.2)

▪ If the ClientChannelBindingsUnhashed (section 3.1.1.2) is not NULL

▪ Add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to
MsvAvChannelBindings and the Value field to

MD5_HASH(ClientChannelBindingsUnhashed).

▪ Else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to

MsvAvChannelBindings and the Value field to Z(16).

▪ If ClientSuppliedTargetName (section 3.1.1.2) is not NULL

▪ Add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to MsvAvTargetName
and the Value field to ClientSuppliedTargetName without terminating NULL. If
UnverifiedTargetName (section 3.1.1.2) is TRUE, then in AvId field = MsvAvFlags set
0x00000004 bit.<51>

▪ Else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to

MsvAvTargetName and the Value field to an empty string without terminating NULL.

When this process is complete, the client MUST send the AUTHENTICATE_MESSAGE to the server,

embedded in an application protocol message, and encoded as specified by that application protocol.

3.1.5.2 Connectionless

The client action for connectionless NTLM authentication is similar to that of connection-oriented
authentication (section 3.1.5.1). However, the first message sent in connectionless authentication is
the CHALLENGE_MESSAGE from the server to the client; there is no client-initiated
NEGOTIATE_MESSAGE as in the connection-oriented authentication.

45 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The message processing for connectionless NTLM authentication<52> is as specified in the following
sections.

3.1.5.2.1 Client Receives a CHALLENGE_MESSAGE

When the client receives a CHALLENGE_MESSAGE, it MUST produce a challenge response and an
encrypted session key. The client MUST send the negotiated features (flags), the user name, the
user's domain, the client part of the challenge, the challenge response, and the encrypted session key
to the server. This message is sent to the server as an AUTHENTICATE_MESSAGE.

If the ClientBlocked == TRUE and targ_name ([RFC2743] section 2.2.1) does not equal any of the
ClientBlockExceptions server names, then the NTLM client MUST return STATUS_NOT_SUPPORTED
to the client application.<53>

If NTLM v2 authentication is used and the CHALLENGE_MESSAGE contains a TargetInfo field, the
client SHOULD NOT send the LmChallengeResponse field and SHOULD set the
LmChallengeResponseLen and LmChallenResponseMaxLen fields in the
AUTHENTICATE_MESSAGE to zero.<54>

If NTLM v2 authentication is used, the client SHOULD send the timestamp in the
AUTHENTICATE_MESSAGE.<55>

 If there exists a CHALLENGE_MESSAGE.TargetInfo.AvId ==
 MsvAvTimestamp
 Set Time to CHALLENGE_MESSAGE.TargetInfo.Value of the AVPair
 ELSE
 Set Time to Currenttime
 Endif

If the CHALLENGE_MESSAGE TargetInfo field (section 2.2.1.2) has an MsvAvTimestamp present, the
client SHOULD provide a MIC<56>:

▪ If there is an AV_PAIR structure (section 2.2.2.1) with the AvId field set to MsvAvFlags,

▪ then in the Value field, set bit 0x2 to 1.

▪ else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to MsvAvFlags and the
Value field bit 0x2 to 1.

▪ Populate the MIC field with the MIC, where

 Set MIC to HMAC_MD5(ExportedSessionKey, ConcatenationOf(
 CHALLENGE_MESSAGE, AUTHENTICATE_MESSAGE))

The client SHOULD send the channel binding AV_PAIR <57>:

▪ If the CHALLENGE_MESSAGE contains a TargetInfo field (section 2.2.1.2)

▪ If the ClientChannelBindingsUnhashed (section 3.1.1.2) is not NULL

▪ Add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to
MsvAvChannelBindings and the Value field to
MD5_HASH(ClientChannelBindingsUnhashed).

▪ Else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to
MsvAvChannelBindings and the Value field to Z(16).

▪ If ClientSuppliedTargetName (section 3.1.1.2) is not NULL

46 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ Add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to MsvAvTargetName
and the Value field to ClientSuppliedTargetName without terminating NULL. If

UnverifiedTargetName (section 3.1.1.2) is TRUE, then in AvId field = MsvAvFlags set
0x00000004 bit.<58>

▪ Else add an AV_PAIR structure (section 2.2.2.1) and set the AvId field to
MsvAvTargetName and the Value field to an empty string without terminating NULL.

When this process is complete, the client MUST send the AUTHENTICATE_MESSAGE to the server,
embedded in an application protocol message, and encoded as specified by that application protocol.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

The following sections specify variables that are internal to the server and are maintained across the
NTLM authentication sequence.

3.2.1.1 Variables Internal to the Protocol

The server maintains all of the variables that the client does (section 3.1.1.1) except the
ClientConfigFlags.

Additionally, the server maintains the following:

CfgFlg: The set of server configuration flags (section 2.2.2.5) that specify the full set of capabilities of
the server.

DnsDomainName: A string that indicates the fully qualified domain name (FQDN) of the server's
domain.

DnsForestName: A string that indicates the FQDN of the server's forest. The DnsForestName is NULL
on machines that are not domain joined.

DnsMachineName: A string that indicates the FQDN of the server.

NbDomainName: A string that indicates the NetBIOS name of the server's domain.

NbMachineName: A string that indicates the NetBIOS machine name of the server.

The following NTLM server configuration variables are internal to the client and impact all
authenticated sessions:

ServerBlock: A Boolean setting that disables the server from generating challenges and responding
to NTLM_NEGOTIATE messages.<59>

ServerRequire128bitEncryption: A Boolean setting that requires the server to use 128-bit
encryption.<60>

47 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.1.2 Variables Exposed to the Application

The server also maintains the ClientSuppliedTargetName variable (section 3.1.1.2).

The following parameters are provided by the application to the NTLM server:

Datagram: A Boolean setting which indicates that the connectionless mode of NTLM is to be used. If
the Datagram option is selected by the server, connectionless mode is used, and NTLM performs a
bitwise OR operation with the following NTLM Negotiate bit flags into the CfgFlg internal variable:

▪ NTLMSSP_NEGOTIATE_DATAGRAM.

ServerChannelBindingsUnhashed: An octet string provided by the application used for channel
binding. This value is optional. <61>

ApplicationRequiresCBT: A Boolean setting which indicates the application requires channel binding.

<62>

3.2.2 Timers

None.

3.2.3 Initialization

The sequence number is set to zero.

3.2.4 Higher-Layer Triggered Events

The application server initiates NTLM authentication through the SSPI.

▪ GSS_Accept_sec_context

The server application calls GSS_Accept_sec_context() to establish a security context with the

client. NTLM has no requirements on which flags are used and will simply honor what was

requested by the application or protocol. For an example of such a protocol specification, see
[MS-RPCE] section 3.3.1.5.2.2. The server application will send the CHALLENGE_MESSAGE
(section 2.2.1.2) to the client application.

▪ GSS_Wrap

After the security context is established, the server application can call GSS_WrapEx() (section
3.4.6) to encrypt messages.

▪ GSS_Unwrap

Once the security context is established, the server application can call GSS_UnwrapEx()
(section 3.4.7) to decrypt messages that were encrypted by GSS_WrapEx.

▪ GSS_GetMIC

Once the security context is established, the server application can call GSS_GetMICEx()
(section 3.4.8) to sign messages, producing an NTLMSSP_MESSAGE_SIGNATURE structure
whose fields are defined in section 2.2.2.9.

▪ GSS_VerifyMIC

Once the security context is established, the server application can call GSS_VerifyMICEx()
(section 3.4.9) to verify a signature produced by GSS_GetMICEx().

48 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.5 Message Processing Events and Sequencing Rules

The server-side processing of messages can happen in response to two different messages from the
client:

▪ The server receives a NEGOTIATE_MESSAGE from the client (the server responds with a
CHALLENGE_MESSAGE).

▪ The server receives an AUTHENTICATE_MESSAGE from the client (the server verifies the client's
authentication information that is embedded in the message).

3.2.5.1 Connection-Oriented

Message processing on the server takes place in the following two cases:

▪ Upon receipt of the embedded NEGOTIATE_MESSAGE, the server extracts and decodes the
NEGOTIATE_MESSAGE.

▪ Upon receipt of the embedded AUTHENTICATE_MESSAGE, the server extracts and decodes the
AUTHENTICATE_MESSAGE.

These two cases are described in the following sections.

3.2.5.1.1 Server Receives a NEGOTIATE_MESSAGE from the Client

Upon receipt of the embedded NEGOTIATE_MESSAGE, the server MUST extract and decode the
NEGOTIATE_MESSAGE.

If ServerBlock == TRUE, then the server MUST return STATUS_NOT_SUPPORTED.<63>

If the security features selected by the client are not strong enough for the server security policy, the

server MUST return an error to the calling application. Otherwise, the server MUST respond with a
CHALLENGE_MESSAGE message. This includes the negotiated features and a 64-bit (8-byte) nonce
value for the ServerChallenge value. The nonce is a pseudo-random number generated by the server

and intended for one-time use. The flags returned as part of the CHALLENGE_MESSAGE in this step
indicate which variant the server wants to use and whether the server's domain name or machine
name are present in the TargetName field.

If ServerRequire128bitEncryption == TRUE, then if 128-bit encryption is not negotiated then the

server MUST return SEC_E_UNSUPPORTED_FUNCTION to the application.

The server processes the NEGOTIATE_MESSAGE and constructs a CHALLENGE_MESSAGE per the
following pseudocode where all strings are encoded as RPC_UNICODE_STRING ([MS-DTYP] section
2.3.10).

 -- Input:
 -- CfgFlg - Defined in section 3.2.1.
 -- An NTLM NEGOTIATE_MESSAGE whose message fields are defined in
 section 2.2.1.1.
 --
 -- Output:
 -- An NTLM CHALLENGE_MESSAGE whose message fields are defined in
 section 2.2.1.2.
 --
 -- Functions used:
 -- AddAVPair(), NIL, NONCE - Defined in section 6.

The server SHOULD return only the capabilities it supports. For example, if a newer client requests
capability X and the server only supports capabilities A-U, inclusive, then the server does not return
capability X. The CHALLENGE_MESSAGE NegotiateFlags field SHOULD<64> be set to the following:

49 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ All the flags set in CfgFlg (section 3.2.1.1)

▪ The supported flags requested in the NEGOTIATE_MESSAGE.NegotiateFlags field

▪ NTLMSSP_REQUEST_TARGET

▪ NTLMSSP_NEGOTIATE_NTLM

▪ NTLMSSP_NEGOTIATE_ALWAYS_SIGN

The Signature field MUST be set to the string, "NTLMSSP". The MessageType field MUST be set to
0x00000002, indicating a message type of NtLmChallenge. The ServerChallenge field MUST be set
to an 8-byte nonce.

If the NTLMSSP_NEGOTIATE_VERSION flag is set, the Version field MUST be set to the current
version (section 2.2.2.10).

 If (NTLMSSP_NEGOTIATE_UNICODE is set in NEGOTIATE.NegotiateFlags)
 Set the NTLMSSP_NEGOTIATE_UNICODE flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 ElseIf (NTLMSSP_NEGOTIATE_OEM flag is set in NEGOTIATE.NegotiateFlag)
 Set the NTLMSSP_NEGOTIATE_OEM flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 EndIf
 If (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag
 is set in NEGOTIATE.NegotiateFlags)
 Set the NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 ElseIf (NTLMSSP_NEGOTIATE_LM_KEY flag is set in NEGOTIATE.NegotiateFlag)
 Set the NTLMSSP_NEGOTIATE_LM_KEY flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 EndIf
 If (Server is domain joined)
 Set CHALLENGE_MESSAGE.TargetName to NbDomainName
 Set the NTLMSSP_TARGET_TYPE_DOMAIN flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 Else
 Set CHALLENGE_MESSAGE.TargetName to NbMachineName
 Set the NTLMSSP_TARGET_TYPE_SERVER flag in
 CHALLENGE_MESSAGE.NegotiateFlags
 EndIf

 Set the NTLMSSP_NEGOTIATE_TARGET_INFO and NTLMSSP_REQUEST_TARGET flags in
 CHALLENGE_MESSAGE.NegotiateFlags

 If (NbMachineName is not NIL)
 AddAvPair(TargetInfo, MsvAvNbComputerName, NbMachineName)
 EndIf
 If (NbDomainName is not NIL)
 AddAvPair(TargetInfo, MsvAvNbDomainName, NbDomainName)
 EndIf
 If (DnsMachineName is not NIL)
 AddAvPair(TargetInfo, MsvAvDnsComputerName, DnsMachineName)
 EndIf
 If (DnsDomainName is not NIL)
 AddAvPair(TargetInfo, MsvAvDnsDomainName, DnsDomainName)
 EndIf
 If (DnsForestName is not NIL)
 AddAvPair(TargetInfo, MsvAvDnsTreeName, DnsForestName)
 EndIf
 AddAvPair(TargetInfo, MsvAvEOL, NIL)

When this process is complete, the server MUST send the CHALLENGE_MESSAGE to the client,

embedded in an application protocol message, and encoded according to that application protocol.

50 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.5.1.2 Server Receives an AUTHENTICATE_MESSAGE from the Client

Upon receipt of the embedded AUTHENTICATE_MESSAGE, the server MUST extract and decode the
AUTHENTICATE_MESSAGE.

If ServerBlock is set to TRUE then the server MUST return STATUS_NOT_SUPPORTED.<65>

If the user name and response are empty, the server authenticates the client as the ANONYMOUS user
(see [MS-DTYP] section 2.4.2.4). Regardless of whether or not the client is an ANONYMOUS user, if
the security features selected by the client are not strong enough for the server security policy, the
server MUST return an error to the calling application. Otherwise, the server obtains the response key
by looking up the user name in a database. With the NT and LM responses keys and the client
challenge, the server computes the expected response. If the expected response matches the actual

response, then the server MUST generate session, signing, and sealing keys; otherwise, it MUST deny
the client access.

NTLM servers SHOULD support NTLM clients which incorrectly use NIL for the UserDom for calculating
ResponseKeyNT and ResponseKeyLM.

The keys MUST be computed with the following algorithm where all strings are encoded as
RPC_UNICODE_STRING ([MS-DTYP] section 2.3.10).

 -- Input:
 -- CHALLENGE_MESSAGE.ServerChallenge - The ServerChallenge field
 from the server CHALLENGE_MESSAGE in section 3.2.5.1.1
 -- NegFlg - Defined in section 3.1.1.
 -- ServerName - The NETBIOS or the DNS name of the server.
 -- An NTLM NEGOTIATE_MESSAGE whose message fields are defined
 in section 2.2.1.1.
 -- An NTLM AUTHENTICATE_MESSAGE whose message fields are defined
 in section 2.2.1.3.
 --- An NTLM AUTHENTICATE_MESSAGE whose message fields are
 defined in section 2.2.1.3 with the MIC field set to 0.
 -- OPTIONAL ServerChannelBindingsUnhashed - Defined in
 section 3.2.1.2
 ---- Output: Result of authentication
 -- ClientHandle - The handle to a key state structure corresponding
 -- to the current state of the ClientSealingKey
 -- ServerHandle - The handle to a key state structure corresponding
 -- to the current state of the ServerSealingKey
 -- The following NTLM keys generated by the server are defined in
 section 3.1.1:
 -- ExportedSessionKey, ClientSigningKey, ClientSealingKey,
 ServerSigningKey, and ServerSealingKey.
 ---- Temporary variables that do not pass over the wire are defined
 below:
 -- KeyExchangeKey, ResponseKeyNT, ResponseKeyLM, SessionBaseKey
 - Temporary variables used to store 128-bit keys.
 -- MIC - message integrity for the NTLM NEGOTIATE_MESSAGE,
 CHALLENGE_MESSAGE and AUTHENTICATE_MESSAGE
 -- MessageMIC - Temporary variable used to hold the original value of
 the MIC field to compare the computed value.
 -- Time - Temporary variable used to hold the 64-bit current time from the
 NTLMv2_CLIENT_CHALLENGE.Timestamp, in the format of a
 FILETIME as defined in [MS-DTYP] section 2.3.1.
 -- ChallengeFromClient – Temporary variable to hold the client's 8-byte
 challenge, if used.
 -- ExpectedNtChallengeResponse
 - Temporary variable to hold results
 returned from ComputeResponse.
 -- ExpectedLmChallengeResponse
 - Temporary variable to hold results
 returned from ComputeResponse.
 -- NullSession – Temporary variable to denote whether client has
 explicitly requested to be anonymously authenticated.
 ---- Functions used:

51 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 -- ComputeResponse
 - Defined in section 3.3
 -- KXKEY, SIGNKEY, SEALKEY
 - Defined in sections 3.4.5, 3.4.6, and 3.4.7
 -- GetVersion(), NIL - Defined in section 6
 Set NullSession to FALSE
 If (AUTHENTICATE_MESSAGE.UserNameLen == 0 AND
 AUTHENTICATE_MESSAGE.NtChallengeResponse.Length == 0 AND
 (AUTHENTICATE_MESSAGE.LmChallengeResponse == Z(1)
 OR
 AUTHENTICATE_MESSAGE.LmChallengeResponse.Length == 0))
 -- Special case: client requested anonymous authentication
 Set NullSession to TRUE
 Else
 Retrieve the ResponseKeyNT and ResponseKeyLM from the local user
 account database using the UserName and DomainName specified in the
 AUTHENTICATE_MESSAGE.
 If AUTHENTICATE_MESSAGE.NtChallengeResponseFields.NtChallengeResponseLen > 0x0018
 Set ChallengeFromClient to NTLMv2_RESPONSE.NTLMv2_CLIENT_CHALLENGE.ChallengeFromClient
 ElseIf NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY is set in NegFlg
 Set ChallengeFromClient to LM_RESPONSE.Response[0..7]
 Else
 Set ChallengeFromClient to NIL
 EndIf
 Set ExpectedNtChallengeResponse, ExpectedLmChallengeResponse,
 SessionBaseKey to ComputeResponse(NegFlg, ResponseKeyNT,
 ResponseKeyLM, CHALLENGE_MESSAGE.ServerChallenge,
 ChallengeFromClient, Time, ServerName)
 Set KeyExchangeKey to KXKEY(SessionBaseKey,
 AUTHENTICATE_MESSAGE.LmChallengeResponse, CHALLENGE_MESSAGE.ServerChallenge)
 If (AUTHENTICATE_MESSAGE.NtChallengeResponse !=
 ExpectedNtChallengeResponse)
 If (AUTHENTICATE_MESSAGE.LmChallengeResponse !=
 ExpectedLmChallengeResponse)
 Retry using NIL for the domain name: Retrieve the ResponseKeyNT
 and ResponseKeyLM from the local user account database using
 the UserName specified in the AUTHENTICATE_MESSAGE and
 NIL for the DomainName.
 Set ExpectedNtChallengeResponse, ExpectedLmChallengeResponse,
 SessionBaseKey to ComputeResponse(NegFlg, ResponseKeyNT,
 ResponseKeyLM, CHALLENGE_MESSAGE.ServerChallenge,
 ChallengeFromClient, Time, ServerName)
 Set KeyExchangeKey to KXKEY(SessionBaseKey,
 AUTHENTICATE_MESSAGE.LmChallengeResponse,
 CHALLENGE_MESSAGE.ServerChallenge)
 If (AUTHENTICATE_MESSAGE.NtChallengeResponse !=
 ExpectedNtChallengeResponse)
 If (AUTHENTICATE_MESSAGE.LmChallengeResponse !=
 ExpectedLmChallengeResponse)
 Return INVALID message error
 EndIf
 EndIf
 EndIf
 EndIf
 EndIf
 Set MessageMIC to AUTHENTICATE_MESSAGE.MIC
 Set AUTHENTICATE_MESSAGE.MIC to Z(16)
 If (NTLMSSP_NEGOTIATE_KEY_EXCH flag is set in NegFlg
 AND (NTLMSSP_NEGOTIATE_SIGN OR NTLMSSP_NEGOTIATE_SEAL are set in NegFlg))
 Set ExportedSessionKey to RC4K(KeyExchangeKey,
 AUTHENTICATE_MESSAGE.EncryptedRandomSessionKey)
 Else
 Set ExportedSessionKey to KeyExchangeKey
 EndIf
 Set MIC to HMAC_MD5(ExportedSessionKey, ConcatenationOf(
 NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE,
 AUTHENTICATE_MESSAGE))

 Set ClientSigningKey to SIGNKEY(NegFlg, ExportedSessionKey , "Client")
 Set ServerSigningKey to SIGNKEY(NegFlg, ExportedSessionKey , "Server")

52 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Set ClientSealingKey to SEALKEY(NegFlg, ExportedSessionKey , "Client")
 Set ServerSealingKey to SEALKEY(NegFlg, ExportedSessionKey , "Server")
 RC4Init(ClientHandle, ClientSealingKey)
 RC4Init(ServerHandle, ServerSealingKey)

If NullSession is TRUE, the server authenticates the client as the ANONYMOUS user account (see [MS-
DTYP] section 2.4.2.4).

If NullSession is TRUE, a SessionBaseKey with all-zeroes, Z(16), is used.

If NTLM v2 authentication is used and channel binding is provided by the application, then the server
MUST verify the channel binding:<66>

▪ If ServerChannelBindingsUnhashed (section 3.2.1.2) is not NULL

▪ If the AUTHENTICATE_MESSAGE contains a nonzero MsvAvChannelBindings AV_PAIR

▪ If MD5_HASH(ServerChannelBindingsUnhashed) != MsvAvChannelBindings.AvPair.Value)

▪ The server MUST return GSS_S_BAD_BINDINGS

▪ Else the server MUST return GSS_S_BAD_BINDINGS

▪ Else If ApplicationRequiresCBT (section 3.2.1.2) == TRUE

▪ If the AUTHENTICATE_MESSAGE does not contain a nonzero MsvAvChannelBindings

AV_PAIR

▪ The server MUST return GSS_S_BAD_BINDINGS

▪ If the AUTHENTICATE_MESSAGE contains an MsvAvTargetName

▪ If MsvAvFlags bit 0x00000004 is set, the server MUST set ClientSuppliedTargetName (section
3.1.1.2) to NULL.<67>

▪ AvID == MsvAvTargetName

▪ Value == ClientSuppliedTargetName

If the AUTHENTICATE_MESSAGE indicates the presence of a MIC field,<68> then the MIC value
computed earlier MUST be compared to MessageMIC, and if the two MIC values are not equal, then an
authentication failure MUST be returned. An AUTHENTICATE_MESSAGE indicates the presence of a
MIC field if the TargetInfo field has an AV_PAIR structure whose two fields:

▪ AvId == MsvAvFlags

▪ Value bit 0x2 == 1

If NTLM v2 authentication is used and the

AUTHENTICATE_MESSAGE.NtChallengeResponse.TimeStamp (section 2.2.2.7) is more than
MaxLifetime (section 3.1.1.1) difference from the server time, then the server SHOULD return a

failure.<69>

Both the client and the server now have the session, signing, and sealing keys. When the client runs
an integrity check on the next message from the server, it detects that the server has determined
(either directly or indirectly) the user password.

Note User names MUST be case-insensitive. For additional information about the case sensitivity of
user names, see [MS-AUTHSOD] section 1.1.1.2.

53 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.2.5.2 Connectionless NTLM

The server action for connectionless NTLM authentication is similar to that of connection-oriented
authentication (section 3.1.5.1). However, the first message sent in connectionless authentication is

the CHALLENGE_MESSAGE from the server to the client; there is no client-initiated
NEGOTIATE_MESSAGE as in the connection-oriented authentication.

The message processing for connectionless NTLM authentication<70> is as specified in the following
sections.

3.2.5.2.1 Server Sends the Client an Initial CHALLENGE_MESSAGE

The server MUST send a set of supported features and a random key to use as part of the challenge.

This key is in the form of a 64-bit (8-byte) nonce value for the ServerChallenge value. The nonce is a
pseudo-random number generated by the server and intended for one-time use. The connectionless
variant always uses key exchange, so the NTLMSSP_NEGOTIATE_KEY_EXCH flag MUST be set in the
required flags mask. The client SHOULD determine the set of supported features and whether those
meet minimum security requirements. This message is sent to the client as a CHALLENGE_MESSAGE.

3.2.5.2.2 Server Response Checking

If ServerBlock == TRUE, then the server MUST return STATUS_NOT_SUPPORTED. <71>

If ServerRequire128bitEncryption == TRUE, then if 128-bit encryption is not negotiated then the
server MUST return SEC_E_UNSUPPORTED_FUNCTION to the application. <72>

The client MUST compute the expected session key for signing and encryption, which it sends to the
server in the AUTHENTICATE_MESSAGE (section 3.1.5.2.1). Using this key from the
AUTHENTICATE_MESSAGE, the server MUST check the signature and/or decrypt the protocol

response, and compute a response. The response MUST be signed and/or encrypted and sent to the
client.

 Set MIC to HMAC_MD5(ResponseKeyNT, ConcatenationOf(
 CHALLENGE_MESSAGE, AUTHENTICATE_MESSAGE))

If the AUTHENTICATE_MESSAGE indicates the presence of a MIC field,<73> then the MIC value
computed earlier MUST be compared to the MIC field in the message, and if the two MIC values are
not equal, then an authentication failure MUST be returned. An AUTHENTICATE_MESSAGE indicates
the presence of a MIC field if the TargetInfo field has an AV_PAIR structure whose two fields:

▪ AvId == MsvAvFlags

▪ Value bit 0x2 == 1

 If (NTLMSSP_NEGOTIATE_KEY_EXCH flag is set in NegFlg
 AND (NTLMSSP_NEGOTIATE_SIGN OR NTLMSSP_NEGOTIATE_SEAL are set in NegFlg))
 Set ExportedSessionKey to RC4K(KeyExchangeKey,
 AUTHENTICATE_MESSAGE.EncryptedRandomSessionKey)
 Set MIC to HMAC_MD5(ExportedSessionKey, ConcatenationOf(
 NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE,
 AUTHENTICATE_MESSAGE))
 Else
 Set MIC to HMAC_MD5(KeyExchangeKey, ConcatenationOf(
 NEGOTIATE_MESSAGE, CHALLENGE_MESSAGE,
 AUTHENTICATE_MESSAGE))
 Endif

54 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If NTLM v2 authentication is used and the
AUTHENTICATE_MESSAGE.NtChallengeResponse.TimeStamp (section 2.2.2.7) is more than

MaxLifetime (section 3.1.1.1) difference from the server time, then the server SHOULD return a
failure.<74>

If NTLM v2 authentication is used and channel binding is provided by the application, then the server
MUST verify the channel binding<75>:

▪ If ServerChannelBindingsUnhashed (section 3.2.1.2) is not NULL

▪ If the AUTHENTICATE_MESSAGE contains a nonzero MsvAvChannelBindings AV_PAIR

▪ If MD5_HASH(ServerChannelBindingsUnhashed) != MsvAvChannelBindings.AvPair.Value)

▪ The server MUST return GSS_S_BAD_BINDINGS

▪ Else the server MUST return GSS_S_BAD_BINDINGS

▪ Else If ApplicationRequiresCBT (section 3.2.1.2) == TRUE

▪ If the AUTHENTICATE_MESSAGE does not contain a nonzero MsvAvChannelBindings
AV_PAIR

▪ The server MUST return GSS_S_BAD_BINDINGS

▪ If the AUTHENTICATE_MESSAGE contains a MsvAvTargetName

▪ If MsvAvFlags bit 0x00000004 is set, the server MUST set ClientSuppliedTargetName (section

3.1.1.2) to NULL.<76>

▪ AvID == MsvAvTargetName

▪ Value == ClientSuppliedTargetName

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 NTLM v1 and NTLM v2 Messages

This section provides further details about how the client and server compute the responses depending
on whether NTLM v1 or NTLM v2 is used. It also includes details about the NTOWF and LMOWF
functions whose output is subsequently used to compute the response.

3.3.1 NTLM v1 Authentication

The following pseudocode defines the details of the algorithms used to calculate the keys used in
NTLM v1 authentication.

Note The LM and NTLM authentication versions are not negotiated by the protocol. It MUST be

configured on both the client and the server prior to authentication. The NTOWF v1 function defined in
this section is NTLM version-dependent and is used only by NTLM v1. The LMOWF v1 function defined
in this section is also version-dependent and is used only by LM and NTLM v1.

55 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The NT and LM response keys MUST be encoded using the following specific one-way functions where
all strings are encoded as RPC_UNICODE_STRING ([MS-DTYP] section 2.3.10).

Explanation of message fields and variables:

ClientChallenge: The 8-byte challenge message generated by the client.

LmChallengeResponse: The LM response to the server challenge. This field is computed by the
client.

NegFlg, User, UserDom: Defined in section 3.3.1.

NTChallengeResponse: The NT response to the server challenge. This field is computed by the
client.

Passwd: Password of the user. If the password is longer than 14 characters, the LMOWF v1 cannot be
computed. For LMOWF v1, if the password is shorter than 14 characters, it is padded by

appending zeroes.

ResponseKeyNT: Temporary variable to hold the results of calling NTOWF().

ResponseKeyLM: Temporary variable to hold the results of calling LMGETKEY.

CHALLENGE_MESSAGE.ServerChallenge: The 8-byte challenge message generated by the server.

 --
 -- Functions Used:
 -- Z(M)- Defined in section 6.

 Define NTOWFv1(Passwd, User, UserDom) as MD4(UNICODE(Passwd))
 EndDefine

 Define LMOWFv1(Passwd, User, UserDom) as
 ConcatenationOf(DES(UpperCase(Passwd)[0..6],"KGS!@#$%"),
 DES(UpperCase(Passwd)[7..13],"KGS!@#$%"))
 EndDefine

 Set ResponseKeyNT to NTOWFv1(Passwd, User, UserDom)
 Set ResponseKeyLM to LMOWFv1(Passwd, User, UserDom)

 Define ComputeResponse(NegFlg, ResponseKeyNT, ResponseKeyLM,
 CHALLENGE_MESSAGE.ServerChallenge, ClientChallenge, Time, ServerName)
 As
 If (User is set to "" AND Passwd is set to "")
 -- Special case for anonymous authentication
 Set NtChallengeResponseLen to 0
 Set NtChallengeResponseMaxLen to 0
 Set NtChallengeResponseBufferOffset to 0
 Set LmChallengeResponse to Z(1)
 ElseIf
 If (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is set in NegFlg)
 Set NtChallengeResponse to DESL(ResponseKeyNT,
 MD5(ConcatenationOf(CHALLENGE_MESSAGE.ServerChallenge,
 ClientChallenge))[0..7])
 Set LmChallengeResponse to ConcatenationOf{ClientChallenge,
 Z(16)}
 Else
 Set NtChallengeResponse to DESL(ResponseKeyNT,
 CHALLENGE_MESSAGE.ServerChallenge)
 If (NoLMResponseNTLMv1 is TRUE)
 Set LmChallengeResponse to NtChallengeResponse
 Else
 Set LmChallengeResponse to DESL(ResponseKeyLM,
 CHALLENGE_MESSAGE.ServerChallenge)
 EndIf
 EndIf

56 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 EndIf

 Set SessionBaseKey to MD4(NTOWF)

On the server, if the user account to be authenticated is hosted in Active Directory, the challenge-
response pair MUST be sent to the DC to verify ([MS-APDS] section 3.1.5).

The DC calculates the expected value of the response using the NTOWF v1 and/or LMOWF v1, and
matches it against the response provided. If the response values match, it MUST send back the
SessionBaseKey; otherwise, it MUST return an error to the calling application. The server MUST return
an error to the calling application if the DC returns an error. If the DC returns

STATUS_NTLM_BLOCKED, then the server MUST return STATUS_NOT_SUPPORTED.

If the user account to be authenticated is hosted locally on the server, the server calculates the
expected value of the response using the NTOWF v1 and/or LMOWF v1 stored locally, and matches it
against the response provided. If the response values match, it MUST calculate KeyExchangeKey;
otherwise, it MUST return an error to the calling application.<77>

3.3.2 NTLM v2 Authentication

The following pseudocode defines the details of the algorithms used to calculate the keys used in
NTLM v2 authentication.

Note The NTLM authentication version is not negotiated by the protocol. It MUST be configured on
both the client and the server prior to authentication. The NTOWF v2 and LMOWF v2 functions defined

in this section are NTLM version-dependent and are used only by NTLM v2.

NTLM clients SHOULD use UserDom for calculating ResponseKeyNT and ResponseKeyLM.

The NT and LM response keys MUST be encoded using the following specific one-way functions where
all strings are encoded as RPC_UNICODE_STRING ([MS-DTYP] section 2.3.10).

Explanation of message fields and variables:

NegFlg, User, UserDom: Defined in section 3.1.1.

Passwd: Password of the user.

LmChallengeResponse: The LM response to the server challenge. Computed by the client.

NTChallengeResponse: The NT response to the server challenge. Computed by the client.

ClientChallenge: The 8-byte challenge message generated by the client.

CHALLENGE_MESSAGE.ServerChallenge: The 8-byte challenge message generated by the server.

ResponseKeyNT: Temporary variable to hold the results of calling NTOWF().

ResponseKeyLM: Temporary variable to hold the results of calling LMGETKEY.

ServerName: The
NtChallengeResponseFields.NTLMv2_RESPONSE.NTLMv2_CLIENT_CHALLENGE.AvPairs field
structure of the AUTHENTICATE_MESSAGE payload.

KeyExchangeKey: Temporary variable to hold the results of calling KXKEY.

HiResponserversion: The 1-byte highest response version understood by the client. Currently set to
1.

57 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Responserversion: The 1-byte response version. Currently set to 1.

Time: The 8-byte little-endian time in GMT.

Functions Used:

Z(M): Defined in section 6.

 Define NTOWFv2(Passwd, User, UserDom) as HMAC_MD5(
 MD4(UNICODE(Passwd)), UNICODE(ConcatenationOf(Uppercase(User),
 UserDom)))
 EndDefine

 Define LMOWFv2(Passwd, User, UserDom) as NTOWFv2(Passwd, User,
 UserDom)
 EndDefine

 Set ResponseKeyNT to NTOWFv2(Passwd, User, UserDom)
 Set ResponseKeyLM to LMOWFv2(Passwd, User, UserDom)

 Define ComputeResponse(NegFlg, ResponseKeyNT, ResponseKeyLM,
 CHALLENGE_MESSAGE.ServerChallenge, ClientChallenge, Time, ServerName)
 As
 If (User is set to "" && Passwd is set to "")
 -- Special case for anonymous authentication
 Set NtChallengeResponseLen to 0
 Set NtChallengeResponseMaxLen to 0
 Set NtChallengeResponseBufferOffset to 0
 Set LmChallengeResponse to Z(1)
 Else
 Set temp to ConcatenationOf(Responserversion, HiResponserversion,
 Z(6), Time, ClientChallenge, Z(4), ServerName, Z(4))
 Set NTProofStr to HMAC_MD5(ResponseKeyNT,
 ConcatenationOf(CHALLENGE_MESSAGE.ServerChallenge,temp))
 Set NtChallengeResponse to ConcatenationOf(NTProofStr, temp)
 Set LmChallengeResponse to ConcatenationOf(HMAC_MD5(ResponseKeyLM,
 ConcatenationOf(CHALLENGE_MESSAGE.ServerChallenge, ClientChallenge)),
 ClientChallenge)
 EndIf

 Set SessionBaseKey to HMAC_MD5(ResponseKeyNT, NTProofStr)
 EndDefine

On the server, if the user account to be authenticated is hosted in Active Directory, the challenge-
response pair SHOULD be sent to the DC to verify ([MS-APDS]).

The DC calculates the expected value of the response using the NTOWF v2 and/or LMOWF v2, and
matches it against the response provided. If the response values match, it MUST send back the
SessionBaseKey; otherwise, it MUST return an error to the calling application. The server MUST return

an error to the calling application if the DC returns an error. If the DC returns
STATUS_NTLM_BLOCKED then the server MUST return STATUS_NOT_SUPPORTED.

If the user account to be authenticated is hosted locally on the server, the server calculates the

expected NTOWF v2 and/or LMOWF v2 value of the response using the NTOWF and/or LMOWF stored
locally, and matches it against the response provided. If the response values match, it MUST calculate
KeyExchangeKey; otherwise, it MUST return an error to the calling application.<78>

3.4 Session Security Details

If it is negotiated, session security provides message integrity (signing) and message confidentiality
(sealing). When NTLM v2 authentication is not negotiated, only one key is used for sealing. As a
result, operations are performed in a half-duplex mode: the client sends a message and then waits for

58 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

a server response. For information on how key exchange, signing, and sealing keys are generated, see
KXKEY, SIGNKEY, and SEALKEY.

In connection-oriented mode, messages are assumed to be received in the order sent. The application
or communications protocol is expected to guarantee this property. As a result, the client and server

sealing keys are computed only once per session.

Note In connectionless mode, messages can arrive out of order. Because of this, the sealing key
MUST be reset for every message. Rekeying with the same sealing key for multiple messages would
not maintain message security. Therefore, a per-message sealing key, SealingKey', is computed as
the MD5 hash of the original sealing key and the message sequence number. The resulting
SealingKey' value is used to reinitialize the key state structure prior to invoking the following SIGN,
SEAL, and MAC algorithms. To compute the SealingKey' and initialize the key state structure identified

by the Handle parameter, use the following:

 SealingKey' = MD5(ConcatenationOf(SealingKey, SequenceNumber))
 RC4Init(Handle, SealingKey')

3.4.1 Abstract Data Model

NTLM session security is provided through the SSPI. Variables are maintained per security context.

The following variables are maintained across the NTLM authentication sequence:

▪ ClientHandle (Public): The handle to a key state structure corresponding to the current state of
the ClientSealingKey.

▪ ServerHandle (Public): The handle to a key state structure corresponding to the current state of
the ServerSealingKey.

The following define the services provided by the NTLM SSP.

Note The following variables are logical, abstract parameters that an implementation has to maintain
and expose to provide the proper level of service. How these variables are maintained and exposed is
up to the implementation.

▪ Integrity: Indicates that the caller wishes to construct signed messages so that they cannot be

tampered with while in transit. If the client requests integrity, then the server MUST respond with
integrity if supported or MUST NOT respond with integrity if not supported.

▪ Sequence Detect: Indicates that the caller wishes to construct signed messages such that out-of-
order sequences can be detected. For more details, see section 3.4.2.

▪ Confidentiality: Indicates that the caller wishes to encrypt messages such that they cannot be
read while in transit. If the client requests confidentiality, then the server MUST respond with

confidentiality if supported or MUST NOT respond with confidentiality if not supported.

▪ MessageBlockSize: An integer that indicates the minimum size of the input_message for

GSS_WrapEx (section 3.4.6). The size of the input_message MUST be a multiple of this value. This
value MUST be 1.

 Usage of integrity and confidentiality is the responsibility of the application:

▪ If confidentiality is established, then the application MUST call GSS_Wrap() to invoke
confidentiality with the NTLM SSP. For more details, see section 3.4.3, Message Confidentiality.

▪ If integrity is established, then the application MUST call GSS_GetMIC() to invoke integrity with
the NTLM SSP. For more details, see section 3.4.2.

59 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.4.2 Message Integrity

The function to sign a message MUST be calculated as follows:

 -- Input:
 -- SigningKey - The key used to sign the message.
 -- Message - The message being sent between the client and server.
 -- SeqNum - Defined in section 3.1.1.
 -- Handle - The handle to a key state structure corresponding to
 -- the current state of the SealingKey
 --
 -- Output: Signed message
 -- Functions used:
 -- ConcatenationOf() - Defined in Section 6.
 -- MAC() - Defined in sections 3.4.4.1 and 3.4.4.2.

 Define SIGN(Handle, SigningKey, SeqNum, Message) as
 ConcatenationOf(Message, MAC(Handle, SigningKey, SeqNum, Message))
 EndDefine

The format of the message integrity data that is appended to each message for signing and sealing
purposes is defined by the NTLMSSP_MESSAGE_SIGNATURE structure (section 2.2.2.9).

Note If the client is sending the message, the signing key is the one that the client calculated. If the
server is sending the message, the signing key is the one that the server calculated. The same is true
for the sealing key. The sequence number can be explicitly provided by the application protocol or by
the NTLM security service provider. If the latter is chosen, the sequence number is initialized to zero
and then incremented by one for each message sent.

On receipt, the message authentication code (MAC) value is computed and compared with the
received value. If they differ, the message MUST be discarded (section 3.4.4).

3.4.3 Message Confidentiality

Message confidentiality, if it is negotiated, also implies message integrity. If message confidentiality is
negotiated, a sealed (and implicitly signed) message is sent instead of a signed or unsigned message.

The function that seals a message using the signing key, sealing key, and message sequence number
is as follows.

 -- Input:
 -- SigningKey - The key used to sign the message.
 -- Message - The message to be sealed, as provided to the application.
 -- NegFlg, SeqNum - Defined in section 3.1.1.
 -- Handle - The handle to a key state structure corresponding to the
 -- current state of the SealingKey
 --
 -- Output:
 -- Sealed message – The encrypted message
 -- Signature – The checksum of the Sealed message
 --
 -- Functions used:

 -- RC4() - Defined in Section 6 and 3.1.
 -- MAC() - Defined in Section 3.4.4.1 and 3.4.4.2.

 Define SEAL(Handle, SigningKey, SeqNum, Message) as
 Set Sealed message to RC4(Handle, Message)
 Set Signature to MAC(Handle, SigningKey, SeqNum, Message)
 EndDefine

60 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Message confidentiality is available in connectionless mode only if the client configures extended
session security.

3.4.4 Message Signature Functions

In the case of connectionless NTLM authentication, the SeqNum parameter SHOULD be specified by
the application and the RC4 stream MUST be reinitialized before each message (see section 3.4).

In the case of connection-oriented authentication, the SeqNum parameter MUST start at 0 and is
incremented by one for each message sent. The receiver expects the first received message to have

SeqNum equal to 0, and to be one greater for each subsequent message received. If a received
message does not contain the expected SeqNum, an error MUST be returned to the receiving
application, and SeqNum is not incremented.

3.4.4.1 Without Extended Session Security

When Extended Session Security (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY) is not

negotiated and session security (NTLMSSP_NEGOTIATE_SIGN or NTLMSSP_NEGOTIATE_SEAL) is
negotiated, the message signature for NTLM without extended session security is a 16-byte value that
contains the following components, as described by the NTLMSSP_MESSAGE_SIGNATURE structure:

▪ A 4-byte version-number value that is set to 1.

▪ A 4-byte random pad.

▪ The 4-bytes of the message's CRC32.

▪ The 4-byte sequence number (SeqNum).

If message integrity is negotiated, the message signature is calculated as follows:

 -- Input:
 -- SigningKey - The key used to sign the message.
 -- SealingKey - The key used to seal the message or checksum.
 -- RandomPad - A random number provided by the client. Typically 0.
 -- Message - The message being sent between the client and server.
 -- SeqNum - Defined in section 3.1.1.
 -- Handle - The handle to a key state structure corresponding to the
 -- current state of the SealingKey
 --
 -- Output:
 -- An NTLMSSP_MESSAGE_SIGNATURE structure whose fields are defined
 in section 2.2.2.9.
 -- SeqNum - Defined in section 3.1.1.
 --
 -- Functions used:
 -- ConcatenationOf() - Defined in Section 6.
 -- RC4() - Defined in Section 6.
 -- CRC32() - Defined in Section 6.

 Define MAC(Handle, SigningKey, SeqNum, Message) as
 Set NTLMSSP_MESSAGE_SIGNATURE.Version to 0x00000001
 Set NTLMSSP_MESSAGE_SIGNATURE.Checksum to CRC32(Message)
 Set NTLMSSP_MESSAGE_SIGNATURE.RandomPad RC4(Handle, RandomPad)
 Set NTLMSSP_MESSAGE_SIGNATURE.Checksum to RC4(Handle,
 NTLMSSP_MESSAGE_SIGNATURE.Checksum)
 Set NTLMSSP_MESSAGE_SIGNATURE.SeqNum to RC4(Handle, 0x00000000)
 If (connection oriented)
 Set NTLMSSP_MESSAGE_SIGNATURE.SeqNum to
 NTLMSSP_MESSAGE_SIGNATURE.SeqNum XOR SeqNum
 Set SeqNum to SeqNum + 1
 Else
 Set NTLMSSP_MESSAGE_SIGNATURE.SeqNum to

61 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 NTLMSSP_MESSAGE_SIGNATURE.SeqNum XOR
 (application supplied SeqNum)
 Endif
 Set NTLMSSP_MESSAGE_SIGNATURE.RandomPad to 0

 EndDefine

3.4.4.2 With Extended Session Security

When Extended Session Security (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY) is

negotiated and session security (NTLMSSP_NEGOTIATE_SIGN or NTLMSSP_NEGOTIATE_SEAL) is
negotiated, the message signature for NTLM with extended session security is a 16-byte value that
contains the following components, as described by the NTLMSSP_MESSAGE_SIGNATURE structure:

▪ A 4-byte version-number value that is set to 1.

▪ The first eight bytes of the message's HMAC_MD5.

▪ The 4-byte sequence number (SeqNum).

If message integrity is negotiated, the message signature is calculated as follows:

 -- Input:
 -- SigningKey - The key used to sign the message.
 -- SealingKey - The key used to seal the message or checksum.
 -- Message - The message being sent between the client and server.
 -- SeqNum - Defined in section 3.1.1.
 -- Handle - The handle to a key state structure corresponding to the
 -- current state of the SealingKey
 --
 -- Output:
 -- An NTLMSSP_MESSAGE_SIGNATURE structure whose fields are defined
 in section 2.2.2.9.
 -- SeqNum - Defined in section 3.1.1.
 --
 -- Functions used:
 -- ConcatenationOf() - Defined in Section 6.
 -- RC4() - Defined in Section 6.
 -- HMAC_MD5() - Defined in Section 6.

 Define MAC(Handle, SigningKey, SeqNum, Message) as
 Set NTLMSSP_MESSAGE_SIGNATURE.Version to 0x00000001
 Set NTLMSSP_MESSAGE_SIGNATURE.Checksum to
 HMAC_MD5(SigningKey,
 ConcatenationOf(SeqNum, Message))[0..7]
 Set NTLMSSP_MESSAGE_SIGNATURE.SeqNum to SeqNum
 Set SeqNum to SeqNum + 1
 EndDefine

If a key exchange key is negotiated, the message signature for the NTLM security service provider is
the same as in the preceding description, except the 8 bytes of the HMAC_MD5 are encrypted with
RC4, as follows:

 Define MAC(Handle, SigningKey, SeqNum, Message) as
 Set NTLMSSP_MESSAGE_SIGNATURE.Version to 0x00000001
 Set NTLMSSP_MESSAGE_SIGNATURE.Checksum to RC4(Handle,
 HMAC_MD5(SigningKey, ConcatenationOf(SeqNum, Message))[0..7])
 Set NTLMSSP_MESSAGE_SIGNATURE.SeqNum to SeqNum
 Set SeqNum to SeqNum + 1
 EndDefine

62 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.4.5 KXKEY, SIGNKEY, and SEALKEY

This topic specifies how key exchange (KXKEY), signing (SIGNKEY), and sealing (SEALKEY) keys are
generated.

3.4.5.1 KXKEY

If NTLM v1 is used and extended session security is not negotiated, the 128-bit key exchange key
value is calculated as follows:

 -- Input:
 -- SessionBaseKey - A session key calculated from the user's
 password.
 -- LmChallengeResponse - The LM response to the server challenge.
 Computed by the client.
 -- NegFlg - Defined in section 3.1.1.
 --
 -- Output:
 -- KeyExchangeKey - The Key Exchange Key.
 --
 -- Functions used:
 -- ConcatenationOf() - Defined in Section 6.
 -- DES() - Defined in Section 6.

 Define KXKEY(SessionBaseKey, LmChallengeResponse, ServerChallenge) as
 If (NTLMSSP_NEGOTIATE_LMKEY flag is set in NegFlg)
 Set KeyExchangeKey to ConcatenationOf(DES(LMOWF[0..6],
 LmChallengeResponse[0..7]),
 DES(ConcatenationOf(LMOWF[7], 0xBDBDBDBDBDBD),
 LmChallengeResponse[0..7]))
 Else
 If (NTLMSSP_REQUEST_NON_NT_SESSION_KEY flag is set in NegFlg)
 Set KeyExchangeKey to ConcatenationOf(LMOWF[0..7], Z(8)),
 Else
 Set KeyExchangeKey to SessionBaseKey
 Endif
 Endif
 EndDefine

If NTLM v1 is used and extended session security is negotiated, the key exchange key value is
calculated as follows:

 -- Input:
 -- SessionBaseKey - A session key calculated from the user's
 password.
 -- ServerChallenge - The 8-byte challenge message
 generated by the server.
 -- LmChallengeResponse - The LM response to the server challenge.
 Computed by the client.
 --
 -- Output:
 -- KeyExchangeKey - The Key Exchange Key.
 --
 -- Functions used:
 -- ConcatenationOf() - Defined in Section 6.
 -- HMAC_MD5() - Defined in Section 6.

 Define KXKEY(SessionBaseKey, LmChallengeResponse, ServerChallenge) as
 Set KeyExchangeKey to HMAC_MD5(SessionBaseKey, ConcatenationOf(ServerChallenge,
LmChallengeResponse [0..7]))

 EndDefine

63 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If NTLM v2 is used, KeyExchangeKey MUST be set to the given 128-bit SessionBaseKey value.

3.4.5.2 SIGNKEY

If extended session security is not negotiated (section 2.2.2.5), then no signing keys are available and
message signing is not supported.

If extended session security is negotiated, the signing key is a 128-bit value that is calculated as
follows from the random session key and the null-terminated ASCII constants shown.

Input:

▪ ExportedSessionKey: A randomly generated session key.

▪ NegFlg: Defined in section 3.1.1.

▪ Mode: An enum that defines the local machine performing the computation. Mode always takes
the value "Client" or "Server".

Output:

▪ SignKey - The key used for signing messages.

Functions used:

▪ ConcatenationOf(), MD5(), NIL - Defined in section 6.

 Define SIGNKEY(NegFlg, ExportedSessionKey, Mode) as
 If (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is set in NegFlg)
 If (Mode equals "Client")
 Set SignKey to MD5(ConcatenationOf(ExportedSessionKey,
 "session key to client-to-server signing key magic
 constant"))
 Else
 Set SignKey to MD5(ConcatenationOf(ExportedSessionKey,
 "session key to server-to-client signing key magic
 constant"))
 Endif
 Else
 Set SignKey to NIL
 Endif
 EndDefine

3.4.5.3 SEALKEY

The sealing key function produces an encryption key from the random session key and the null-
terminated ASCII constants shown.

▪ If extended session security is negotiated, the sealing key has either 40, 56, or 128 bits of entropy
stored in a 128-bit value.

▪ If extended session security is not negotiated, the sealing key has either 40 or 56 bits of entropy
stored in a 64-bit value.

Note The MD5 hashes completely overwrite and fill the 64-bit or 128-bit value.

Input:

▪ ExportedSessionKey - A randomly generated session key.

64 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ NegFlg - Defined in section 3.1.1.

▪ Mode - An enum that defines the local machine performingthe computation.Mode always takes the

value "Client" or "Server".

Output:

▪ SealKey - The key used for sealing messages.

Functions used:

▪ ConcatenationOf(), MD5() - Defined in section 6.

 Define SEALKEY(NegFlg, ExportedSessionKey, Mode) as
 If (NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag is set in NegFlg)
 If (NTLMSSP_NEGOTIATE_128 is set in NegFlg)
 Set SealKey to ExportedSessionKey
 ElseIf (NTLMSSP_NEGOTIATE_56 flag is set in NegFlg)
 Set SealKey to ExportedSessionKey[0..6]
 Else
 Set SealKey to ExportedSessionKey[0..4]
 Endif

 If (Mode equals "Client")
 Set SealKey to MD5(ConcatenationOf(SealKey, "session key to
 client-to-server sealing key magic constant"))
 Else
 Set SealKey to MD5(ConcatenationOf(SealKey, "session key to
 server-to-client sealing key magic constant"))
 Endif
 ElseIf ((NTLMSSP_NEGOTIATE_LM_KEY is set in NegFlg) or
 ((NTLMSSP_NEGOTIATE_DATAGRAM is set in NegFlg)
 and (NTLMRevisionCurrent >= NTLMSSP_REVISION_W2K3)))

 If (NTLMSSP_NEGOTIATE_56 flag is set in NegFlg)
 Set SealKey to ConcatenationOf(ExportedSessionKey[0..6], 0xA0)
 Else
 Set SealKey to ConcatenationOf(ExportedSessionKey[0..4], 0xE5,
 0x38, 0xB0)
 EndIf
 Else
 Set SealKey to ExportedSessionKey
 Endif
 EndDefine

3.4.6 GSS_WrapEx() Call

This call is an extension to GSS_Wrap [RFC2743] that passes multiple buffers.<79>

Inputs:

▪ context_handle CONTEXT HANDLE

▪ qop_req INTEGER, -- 0 specifies default QOP

▪ input_message ORDERED LIST of:

▪ conf_req_flag BOOLEAN

▪ sign BOOLEAN

▪ data OCTET STRING

65 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Outputs:

▪ major_status INTEGER

▪ minor_status INTEGER

▪ output_message ORDERED LIST (in same order as input_message) of:

▪ conf_state BOOLEAN

▪ signed BOOLEAN

▪ data OCTET STRING

▪ signature OCTET STRING

This call is identical to GSS_Wrap, except that it supports multiple input buffers.

The input data can be a list of security buffers.

Input data buffers for which conf_req_flag==TRUE are encrypted (section 3.4.3, Message

Confidentiality) in output_message.

For NTLMv1, input data buffers for which sign==TRUE are included in the message signature. For
NTLMv2, all input data buffers are included in the message signature (section 3.4.6.1).

3.4.6.1 Signature Creation for GSS_WrapEx()

Section 3.4.2 describes the algorithm used by GSS_WrapEx() to create the signature. The signature
contains the NTLMSSP_MESSAGE_SIGNATURE structure (section 2.2.2.9).

The checksum is computed over the concatenated input buffers using only the input data buffers
where sign==TRUE for NTLMv1 and all of the input data buffers for NTLMv2, including the cleartext
data buffers.

3.4.7 GSS_UnwrapEx() Call

This call is an extension to GSS_Unwrap [RFC2743] that passes multiple buffers.<80>

Inputs:

▪ context_handle CONTEXT HANDLE

▪ input_message ORDERED LIST of:

▪ conf_state BOOLEAN

▪ signed BOOLEAN

▪ data OCTET STRING

▪ signature OCTET STRING

Outputs:

▪ qop_req INTEGER, -- 0 specifies default QOP

▪ major_status INTEGER

▪ minor_status INTEGER

66 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ output_message ORDERED LIST (in same order as input_message) of:

▪ conf_state BOOLEAN

▪ data OCTET STRING

This call is identical to GSS_Unwrap, except that it supports multiple input buffers. Input data buffers

having conf_state==TRUE are decrypted in the output_message.

3.4.7.1 Signature Creation for GSS_UnwrapEx()

For NTLMv1, all input data buffers where signed==TRUE are concatenated together and the signature

is verified against the resulting concatenated buffer. For NTLMv2, the signature is verified for all of the
input data buffers.

3.4.8 GSS_GetMICEx() Call

Inputs:

▪ context_handle CONTEXT HANDLE

▪ qop_req INTEGER, -- 0 specifies default QOP

▪ message ORDERED LIST of:

▪ sign BOOLEAN

▪ data OCTET STRING

Outputs:

▪ major_status INTEGER

▪ minor_status INTEGER

▪ message ORDERED LIST of:

▪ signed BOOLEAN

▪ data OCTET STRING

▪ per_msg_token OCTET STRING

This call is identical to GSS_GetMIC(), except that it supports multiple input buffers.

3.4.8.1 Signature Creation for GSS_GetMICEx()

Section 3.4.2 describes the algorithm used by GSS_GetMICEx() to create the signature. The
per_msg_token contains the NTLMSSP_MESSAGE_SIGNATURE structure (section 2.2.2.9).

The checksum is computed over the concatenated input buffers using only the input data buffers

where sign==TRUE for NTLMv1 and all of the input data buffers including the buffers where
sign==FALSE for NTLMv2.

3.4.9 GSS_VerifyMICEx() Call

Inputs:

▪ context_handle CONTEXT HANDLE

67 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

▪ message ORDERED LIST of:

▪ signed BOOLEAN

▪ data OCTET STRING

▪ per_msg_token OCTET STRING

Outputs:

▪ qop_state INTEGER

▪ major_status INTEGER

▪ minor_status INTEGER

This call is identical to GSS_VerifyMIC(), except that it supports multiple input buffers.

3.4.9.1 Signature Creation for GSS_VerifyMICEx()

For NTLMv1, all input data buffers where signed==TRUE are concatenated together and the signature
is verified against the resulting concatenated buffer. For NTLMv2, the signature is verified for all of the
input data buffers including the buffers where signed==FALSE.

Section 3.4.2 describes the algorithm used by GSS_VerifyMICEx() to create the signature to verify

against. The per_msg_token contains the NTLMSSP_MESSAGE_SIGNATURE structure (section
2.2.2.9).

68 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

4.1 (Updated Section) NTLM Over Server Message Block (SMB)

NTLM over a Server Message Block (SMB) transport is a common use of NTLM authentication and

encryption. Although KILE is the preferred authentication method of an SMB session,<81> as
described in section 1, when a client attempts to authenticate to an SMB server using the KILE
protocol and fails, it can attempt to authenticate with NTLM.

The following is an example protocol flow of NTLM and Simple and Protected Generic Security Service
Application Program Interface Negotiation Mechanism (SPNEGO) ([MS-SPNG]) authentication of an
SMB session.

Note The NTLM messages are embedded in the SMB messages. For details about how SMB embeds
NTLM messages, see [MS-SMB] section 4.1.

Figure 4: Message sequence to authenticate an SMB session

Steps 1 and 2: The SMB protocol negotiates protocol-specific options using the
SMB_COM_NEGOTIATE request and response messages.

Step 3: The client sends an SMB_COM_SESSION_SETUP_ANDX request message. Assuming that

NTLM authentication is negotiated, within this message an NTLM NEGOTIATE_MESSAGE is embedded.

Step 4: The server responds with an SMB_COM_SESSION_SETUP_ANDX response message within
which an NTLM CHALLENGE_MESSAGE is embedded. The message includes an 8-byte random
number, called a "challenge", that the server generates and sends in the ServerChallenge field of
the message.

Step 5: The client extracts the ServerChallenge field from the NTLM CHALLENGE_MESSAGE and
sends an NTLM AUTHENTICATE_MESSAGE to the server (embedded in an
SMB_COM_SESSION_SETUP_ANDX request message).

69 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the challenge and the response prove that the client knows the user's password, the authentication
succeeds and the client's security context is now established on the server.

Step 6: The server sends a success message embedded in an SMB_COM_SESSION_SETUP_ANDX
response message.

4.2 Cryptographic Values for Validation

The topics in this section contain Byte Array values which can be used when validating NTLM
cryptographic implementations.

4.2.1 Common Values

These values are used in multiple examples.

User:

 0000000: 55 00 73 00 65 00 72 00 U.s.e.r.
 0000000: 55 00 53 00 45 00 52 00 U.S.E.R.
 0000000: 55 73 65 72 User

UserDom:

 0000000: 44 00 6f 00 6d 00 61 00 69 00 6e 00 D.o.m.a.i.n.

Passwd:

 0000000: 50 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 P.a.s.s.w.o.r.d.
 0000000: 50 41 53 53 57 4f 52 44 00 00 00 00 00 00 PASSWORD......

Server Name:

 00000000: 53 00 65 00 72 00 76 00 65 00 72 00 S.e.r.v.e.r.

Workstation Name:

 0000000: 43 00 4f 00 4d 00 50 00 55 00 54 00 45 00 52 00 C.O.M.P.U.T.E.R.

RandomSessionKey:

 0000000: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

Time:

 0000000: 00 00 00 00 00 00 00 00

ClientChallenge:

70 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: aa aa aa aa aa aa aa aa

ServerChallenge:

 0000000: 01 23 45 67 89 ab cd ef .#Eg..═.

4.2.2 NTLM v1 Authentication

The following calculations are used in section 3.3.1.

The Challenge Flags used in the following NTLM v1 examples are:

▪ NTLMSSP_NEGOTIATE_KEY_EXCH

▪ NTLMSSP_NEGOTIATE_56

▪ NTLMSSP_NEGOTIATE_128

▪ NTLMSSP_NEGOTIATE_VERSION

▪ NTLMSSP_TARGET_TYPE_SERVER

▪ NTLMSSP_NEGOTIATE_ALWAYS_SIGN

▪ NTLM NTLMSSP_NEGOTIATE_NTLM

▪ NTLMSSP_NEGOTIATE_SEAL

▪ NTLMSSP_NEGOTIATE_SIGN

▪ NTLM_NEGOTIATE_OEM

▪ NTLMSSP_NEGOTIATE_UNICODE

 0000000: 33 82 02 e2 3...

4.2.2.1 Calculations

4.2.2.1.1 LMOWFv1()

The LMOWFv1() is defined in section 3.3.1.

 DES(UpperCase(Passwd)[0..6],"KGS!@#$%"):
 0000000: e5 2c ac 67 41 9a 9a 22 .,.gA.."
 DES(UpperCase(Passwd)[7..13],"KGS!@#$%"):
 0000000: 4a 3b 10 8f 3f a6 cb 6d J;..?..m

When calculating the LMOWFv1 using the values above, then LMOWFv1("Password", "User",
"Domain") is:

 0000000: e5 2c ac 67 41 9a 9a 22 4a 3b 10 8f 3f a6 cb 6d ...gA.."J;..?..m

4.2.2.1.2 NTOWFv1()

71 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The NTOWFv1() is defined in section 3.3.1. When calculating the NTOWFv1 using the values above,
then NTOWFv1("Password", "User", "Domain") is:

 0000000: a4 f4 9c 40 65 10 bd ca b6 82 4e e7 c3 0f d8 52 ...@e.....N....R

4.2.2.1.3 Session Base Key and Key Exchange Key

The SessionBaseKey is specified in section 3.3.1.

 0000000: d8 72 62 b0 cd e4 b1 cb 74 99 be cc cd f1 07 84 .rb.═...t...═...

4.2.2.2 Results

4.2.2.2.1 NTLMv1 Response

The NTChallengeResponse is specified in section 3.3.1. With
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY not set, using the values above, the result is:

 0000000: 67 c4 30 11 f3 02 98 a2 ad 35 ec e6 4f 16 33 1c g─0......5..O.3.
 0000010: 44 bd be d9 27 84 1f 94 D...'...

4.2.2.2.2 LMv1 Response

The LmChallengeResponse is specified in section 3.3.1. With the
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY flag not set and with the
NoLMResponseNTLMv1 flag not set, using the values above, the result is:

 0000000: 98 de f7 b8 7f 88 aa 5d af e2 df 77 96 88 a1 72 ].......r
 0000010: de f1 1c 7d 5c cd ef 13 ...}\═..

If the NTLMSSP_NEGOTIATE_LM_KEY flag is set then the KeyExchangeKey is:

 0000000: b0 9e 37 9f 7f be cb 1e af 0a fd cb 03 83 c8 a0 ..7.............

4.2.2.2.3 Encrypted Session Key

RC4 encryption of the RandomSessionKey with the KeyExchangeKey:

 0000000: 51 88 22 b1 b3 f3 50 c8 95 86 82 ec bb 3e 3c b7 Q."...P......><.

NTLMSSP_REQUEST_NON_NT_SESSION_KEY is set:

 0000000: 74 52 ca 55 c2 25 a1 ca 04 b4 8f ae 32 cf 56 fc tR.U........2.V.

NTLMSSP_NEGOTIATE_LM_KEY is set:

 0000000: 4c d7 bb 57 d6 97 ef 9b 54 9f 02 b8 f9 b3 78 64 L..W....T.....xd

72 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.2.2.3 Messages

The CHALLENGE_MESSAGE (section 2.2.1.2):

 0000000: 4e 54 4c 4d 53 53 50 00 02 00 00 00 0c 00 0c 00 NTLMSSP·········
 0000010: 38 00 00 00 33 82 02 e2 01 23 45 67 89 ab cd ef 8···3.·.·#Eg..═.
 0000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ················
 0000030: 06 00 70 17 00 00 00 0f 53 00 65 00 72 00 76 00 ··p·····S·e·r·v·
 0000040: 65 00 72 00 e·r·

The AUTHENTICATE_MESSAGE (section 2.2.1.3):

 0000000: 4e 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 00 NTLMSSP·········
 0000010: 6c 00 00 00 18 00 18 00 84 00 00 00 0c 00 0c 00 l·······.·······
 0000020: 48 00 00 00 08 00 08 00 54 00 00 00 10 00 10 00 H·······T·······
 0000030: 5c 00 00 00 10 00 10 00 9c 00 00 00 35 82 80 e2 \·······.···5...
 0000040: 05 01 28 0a 00 00 00 0f 44 00 6f 00 6d 00 61 00 ··(·····D·o·m·a·
 0000050: 69 00 6e 00 55 00 73 00 65 00 72 00 43 00 4f 00 i·n·U·s·e·r·C·O·
 0000060: 4d 00 50 00 55 00 54 00 45 00 52 00 98 de f7 b8 M·P·U·T·E·R·....
 0000070: 7f 88 aa 5d af e2 df 77 96 88 a1 72 de f1 1c 7d ...]...w...r..·}
 0000080: 5c cd ef 13 67 c4 30 11 f3 02 98 a2 ad 35 ec e6 \═.·g─0·.·...5..
 0000090: 4f 16 33 1c 44 bd be d9 27 84 1f 94 51 88 22 b1 O·3·D...'...Q.".
 00000A0: b3 f3 50 c8 95 86 82 ec bb 3e 3c b7 ..P......><.

4.2.2.4 GSS_WrapEx Examples

The GSS_WrapEx() is specified in section 3.4.6. The following data is part of the security context state
for the NTLM Session.

SeqNum for the message:

 0000000: 00 00 00 00 ••••

RandomPad(4):

 0000000: 00 00 00 00 ••••

Plaintext data where conf_req_flag == TRUE and sign == TRUE:

 0000000: 50 00 6c 00 61 00 69 00 6e 00 74 00 65 00 78 00 P·l·a·i·n·t·e·x·
 0000010: 74 00 t·

The output message data and signature is created using SEAL() specified in section 3.4.3.

Output_message will contain conf_state == TRUE, signed == TRUE and data:

Data:

 0000000: 56 fe 04 d8 61 f9 31 9a f0 d7 23 8a 2e 3b 4d 45 V.•.a∙1...#è.;ME
 0000010: 7f b8 ⌂╕

Checksum: CRC32(Message):

73 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: 7d 84 aa 93 }...

RandomPad: RC4(Handle, RandomPad):

 0000000: 45 c8 44 e5 E.D.

Checksum: RC4(Handle, NTLMSSP_MESSAGE_SIGNATURE.Checksum):

 0000000: 09 dc d1 df ·...

SeqNum: RC4(Handle, 0x00000000):

 0000000: 2e 45 9d 36 .E.6

SeqNum: XOR:

 0000000: 2e 45 9d 36 .E.6

Assembled Signature:

 0000000: 01 00 00 00 45 c8 44 e5 09 dc d1 df 2e 45 9d 36 ····E╚Dσ·▄╤▀.E¥6

4.2.3 NTLM v1 with Client Challenge

The following calculations are used in section 3.3.1. This example uses weaker key strengths than

advised. Using stronger key strengths with NTLM v1 with client challenge results in the same

GSS_WrapEx outputs with NTLMv2.

The Challenge Flags used in the following NTLM v1 examples are:

▪ NTLMSSP_NEGOTIATE_56

▪ NTLMSSP_NEGOTIATE_VERSION

▪ NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY

▪ NTLMSSP_TARGET_TYPE_SERVER

▪ NTLMSSP_NEGOTIATE_ALWAYS_SIGN

▪ NTLM NTLMSSP_NEGOTIATE_NTLM

▪ NTLMSSP_NEGOTIATE_SEAL

▪ NTLMSSP_NEGOTIATE_SIGN

▪ NTLM_NEGOTIATE_OEM

▪ NTLMSSP_NEGOTIATE_UNICODE

 0000000: 33 82 0a 82 3...

74 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.2.3.1 Calculations

4.2.3.1.1 NTOWFv1()

The NTOWFv1() is defined in section 3.3.1. When calculating the NTOWFv1 using the values above,
then NTOWFv1("Password", "User", "Domain") is:

 0000000: a4 f4 9c 40 65 10 bd ca b6 82 4e e7 c3 0f d8 52 ...@e.....N....R

4.2.3.1.2 Session Base Key

The SessionBaseKey is specified in section 3.3.1:

 0000000: d8 72 62 b0 cd e4 b1 cb 74 99 be cc cd f1 07 84 .rb.═...t...═.•.

4.2.3.1.3 Key Exchange Key

The KeyExchangeKey is specified in section 3.4.5.1. Using the values above, the result is:

 0000000: eb 93 42 9a 8b d9 52 f8 b8 9c 55 b8 7f 47 5e dc ..B...R...U..G..

4.2.3.2 Results

4.2.3.2.1 LMv1 Response

The LmChallengeResponse is specified in section 3.3.1. Using the previous values, the result is:

 0000000: aa aa aa aa aa aa aa aa 00 00 00 00 00 00 00 00
 0000010: 00 00 00 00 00 00 00 00

4.2.3.2.2 NTLMv1 Response

The NTChallengeResponse is specified in section 3.3.1. Using the values above, the result is:

 0000000: 75 37 f8 03 ae 36 71 28 ca 45 82 04 bd e7 ca f8 u7...6q(.E......
 0000010: 1e 97 ed 26 83 26 72 32 r2

4.2.3.3 Messages

The CHALLENGE_MESSAGE (section 2.2.1.2):

 0000000: 4e 54 4c 4d 53 53 50 00 02 00 00 00 0c 00 0c 00 NTLMSSP·········
 0000010: 38 00 00 00 33 82 0a 82 01 23 45 67 89 ab cd ef 8···3.·.·#Eg..═.
 0000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ················
 0000030: 06 00 70 17 00 00 00 0f 53 00 65 00 72 00 76 00 ··p·····S·e·r·v·
 0000040: 65 00 72 00 e·r·

The AUTHENTICATE_MESSAGE (section 2.2.1.3):

75 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: 4e 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 00 NTLMSSP·········
 0000010: 6c 00 00 00 18 00 18 00 84 00 00 00 0c 00 0c 00 l·······.·······
 0000020: 48 00 00 00 08 00 08 00 54 00 00 00 10 00 10 00 H·······T·······
 0000030: 5c 00 00 00 00 00 00 00 9c 00 00 00 35 82 08 82 \·······.···5.·.
 0000040: 05 01 28 0a 00 00 00 0f 44 00 6f 00 6d 00 61 00 ··(·····D·o·m·a·
 0000050: 69 00 6e 00 55 00 73 00 65 00 72 00 43 00 4f 00 i·n·U·s·e·r·C·O·
 0000060: 4d 00 50 00 55 00 54 00 45 00 52 00 aa aa aa aa M·P·U·T·E·R·....
 0000070: aa aa aa aa 00 00 00 00 00 00 00 00 00 00 00 00 ············
 0000080: 00 00 00 00 75 37 f8 03 ae 36 71 28 ca 45 82 04 ····u7.·.6q(.E.·
 0000090: bd e7 ca f8 1e 97 ed 26 83 26 72 32 ·ù.&.&r2

4.2.3.4 GSS_WrapEx Examples

The GSS_WrapEx() is specified in section 3.4.6. The following data is part of the security context state
for the NTLM Session.

SeqNum for the message:

 0000000: 00 00 00 00 ••••

Plaintext data where conf_req_flag == TRUE and sign == TRUE:

 0000000: 50 00 6c 00 61 00 69 00 6e 00 74 00 65 00 78 00 P·l·a·i·n·t·e·x·
 0000010: 74 00 t·

The sealkey is created using SEALKEY() (section 3.4.5.3):

Cut key exchange key to 56 bits:

 0000000: eb 93 42 9a 8b d9 52 ..B...R

MD5(ConcatenationOf(SealKey, "session key to client-to-server sealing key magic constant")):

 0000000: 04 dd 7f 01 4d 85 04 d2 65 a2 5c c8 6a 3a 7c 06 •..•M.•.e.\.j:.•

The signkey is created using SIGNKEY() (section 3.4.5.2):

MD5(ConcatenationOf(RandomSessionKey, "session key to client-to-server signing key magic
constant")):

 0000000: 60 e7 99 be 5c 72 fc 92 92 2a e8 eb e9 61 fb 8d `...\r...*...a..

The output message data and signature is created using SEAL() specified in section 3.4.3.

Output_message will contain conf_state == TRUE, signed == TRUE and data:

Data:

 0000000: a0 23 72 f6 53 02 73 f3 aa 1e b9 01 90 ce 52 00 .#r.S•s..•.•..R•
 0000010: c9 9d ╔¥

Checksum: HMAC_MD5(SigningKey, ConcatenationOf(SeqNum, Message))[0..7]:

76 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: ff 2a eb 52 f6 81 79 3a *.R..y:•

Signature:

 0000000: 01 00 00 00 ff 2a eb 52 f6 81 79 3a 00 00 00 00 •••• *.R..y:••••

4.2.4 NTLMv2 Authentication

The following calculations are used in section 3.3.2.

The Challenge Flags used in the following NTLM v2 examples are:

▪ NTLMSSP_NEGOTIATE_KEY_EXCH

▪ NTLMSSP_NEGOTIATE_56

▪ NTLMSSP_NEGOTIATE_128

▪ NTLMSSP_NEGOTIATE_VERSION

▪ NTLMSSP_NEGOTIATE_TARGET_INFO

▪ NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY

▪ NTLMSSP_TARGET_TYPE_SERVER

▪ NTLMSSP_NEGOTIATE_ALWAYS_SIGN

▪ NTLM NTLMSSP_NEGOTIATE_NTLM

▪ NTLMSSP_NEGOTIATE_SEAL

▪ NTLMSSP_NEGOTIATE_SIGN

▪ NTLM_NEGOTIATE_OEM

▪ NTLMSSP_NEGOTIATE_UNICODE

 0000000: 33 82 8a e2 3...

AV Pair 1 - NetBIOS Server name:

 00000000: 53 00 65 00 72 00 76 00 65 00 72 00 S.e.r.v.e.r.

AV Pair 2 - NetBIOS Domain name:

 00000000: 44 00 6f 00 6d 00 61 00 69 00 6e 00 D.o.m.a.i.n.

4.2.4.1 Calculations

4.2.4.1.1 NTOWFv2() and LMOWFv2()

The LMOWFv2() and The NTOWFv2() are defined in section 3.3.2. When calculating the LMOWFv2 or
NTOWFv2, using the values above, then NTOWFv2("Password", "User", "Domain") is:

77 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: 0c 86 8a 40 3b fd 7a 93 a3 00 1e f2 2e f0 2e 3f ...@;..........?

4.2.4.1.2 Session Base Key

The SessionBaseKey is specified in section 3.3.2. Using the values above:

 0000000: 8d e4 0c ca db c1 4a 82 f1 5c b0 ad 0d e9 5c a3 J..\....\.

4.2.4.1.3 temp

temp is specified in section 3.3.2. Using the values above:

 01 01 00 00 00 00 00 00 00 00 00 00 δ∩j•••••••••••••
 00000A0: 00 00 00 00 aa aa aa aa aa aa aa aa 00 00 00 00 ••••¬¬¬¬¬¬¬¬••••
 00000B0: 02 00 0c 00 44 00 6f 00 6d 00 61 00 69 00 6e 00 ••••D•o•m•a•i•n•
 00000C0: 01 00 0c 00 53 00 65 00 72 00 76 00 65 00 72 00 ••••S•e•r•v•e•r•
 00000D0: 00 00 00 00 00 00 00 00

4.2.4.2 Results

4.2.4.2.1 LMv2 Response

The LmChallengeResponse is specified in section 3.3.2. Using the values above:

 0000000: 86 c3 50 97 ac 9c ec 10 25 54 76 4a 57 cc cc 19 ..P.....%TvJW...
 0000010: aa aa aa aa aa aa aa aa

4.2.4.2.2 NTLMv2 Response

The NTChallengeResponse is specified in section 3.3.2. Using the values above, the response (section

2.2.2.8) is:

 0000000: 68 cd 0a b8 51 e5 1c 96 aa bc 92 7b eb ef 6a 1c h═..Q......{..j.

4.2.4.2.3 Encrypted Session Key

RC4 encryption of the RandomSessionKey with the KeyExchangeKey:

 0000000: c5 da d2 54 4f c9 79 90 94 ce 1c e9 0b c9 d0 3e ...TO.y........>

4.2.4.3 Messages

The CHALLENGE_MESSAGE (section 2.2.1.2):

 0000000: 4e 54 4c 4d 53 53 50 00 02 00 00 00 0c 00 0c 00 NTLMSSP•••••••••
 0000010: 38 00 00 00 33 82 8a e2 01 23 45 67 89 ab cd ef 8•••3...•#Eg..═.
 0000020: 00 00 00 00 00 00 00 00 24 00 24 00 44 00 00 00 ••••••••$•$•D•••
 0000030: 06 00 70 17 00 00 00 0f 53 00 65 00 72 00 76 00 ••p•••••S•e•r•v•
 0000040: 65 00 72 00 02 00 0c 00 44 00 6f 00 6d 00 61 00 e•r•••••D•o•m•a•
 0000050: 69 00 6e 00 01 00 0c 00 53 00 65 00 72 00 76 00 i•n•••••S•e•r•v•

78 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000060: 65 00 72 00 00 00 00 00 e•r•••••

The AUTHENTICATE_MESSAGE (section 2.2.1.3):

 0000000: 4e 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 00 NTLMSSP·········
 0000010: 6c 00 00 00 54 00 54 00 84 00 00 00 0c 00 0c 00 l···T·T·ä·······
 0000020: 48 00 00 00 08 00 08 00 54 00 00 00 10 00 10 00 H·······T·······
 0000030: 5c 00 00 00 10 00 10 00 d8 00 00 00 35 82 88 e2 \·······.···5...
 0000040: 05 01 28 0a 00 00 00 0f 44 00 6f 00 6d 00 61 00 ··(·····D·o·m·a·
 0000050: 69 00 6e 00 55 00 73 00 65 00 72 00 43 00 4f 00 i·n·U·s·e·r·C·O·
 0000060: 4d 00 50 00 55 00 54 00 45 00 52 00 86 c3 50 97 M·P·U·T·E·R·..P.
 0000070: ac 9c ec 10 25 54 76 4a 57 cc cc 19 aa aa aa aa ...·%TvJW..·....
 0000080: aa aa aa aa 68 cd 0a b8 51 e5 1c 96 aa bc 92 7b h═·.Q.·....{
 0000090: eb ef 6a 1c 01 01 00 00 00 00 00 00 00 00 00 00 δ∩j·············
 00000A0: 00 00 00 00 aa aa aa aa aa aa aa aa 00 00 00 00 ····¬¬¬¬¬¬¬¬····
 00000B0: 02 00 0c 00 44 00 6f 00 6d 00 61 00 69 00 6e 00 ····D·o·m·a·i·n·
 00000C0: 01 00 0c 00 53 00 65 00 72 00 76 00 65 00 72 00 ····S·e·r·v·e·r·
 00000D0: 00 00 00 00 00 00 00 00 c5 da d2 54 4f c9 79 90 ········...TO.y.
 00000E0: 94 ce 1c e9 0b c9 d0 3e ..·..·..>

4.2.4.4 GSS_WrapEx Examples

The GSS_WrapEx() is specified in section 3.4.6. The following data is part of the security context state
for the NTLM Session.

SeqNum for the message:

 0000000: 00 00 00 00 ••••

Plaintext data where conf_req_flag == TRUE and sign == TRUE:

 0000000: 50 00 6c 00 61 00 69 00 6e 00 74 00 65 00 78 00 P•l•a•i•n•t•e•x•
 0000010: 74 00 t•

The sealkey is created using SEALKEY() (section 3.4.5.3):

MD5(ConcatenationOf(RandomSessionKey, "session key to client-to-server sealing key magic
constant")):

 0000000: 59 f6 00 97 3c c4 96 0a 25 48 0a 7c 19 6e 4c 58 Y.•.<─.•%H•.•nLX

The signkey is created using SIGNKEY() (section 3.4.5.2):

MD5(ConcatenationOf(RandomSessionKey, "session key to client-to-server signing key magic
constant")):

 0000000: 47 88 dc 86 1b 47 82 f3 5d 43 fd 98 fe 1a 2d 39 G...•G..]C...•-9

The output message data and signature is created using SEAL() specified in section 3.4.3.

Output_message will contain conf_state == TRUE, signed == TRUE and data:

Data:

79 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 0000000: 54 e5 01 65 bf 19 36 dc 99 60 20 c1 81 1b 0f 06 T.•e.•6..`...•••
 0000010: fb 5f √_

Checksum: HMAC_MD5(SigningKey, ConcatenationOf(SeqNum, Message))[0..7]:

 0000000: 70 35 28 51 f2 56 43 09 p5(Q.VC•

Checksum: RC4(Checksum above):

 0000000: 7f b3 8e c5 c5 5d 49 76 ]Iv

Signature:

 0000000: 01 00 00 00 7f b3 8e c5 c5 5d 49 76 00 00 00 00 ••••.....]Iv••••

80 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 (Updated Section) Security Considerations for Implementers

Implementers need to be aware that NTLM does not support any recent cryptographic methods, such

as AES or SHA-256. It uses cyclic redundancy check (CRC) or message digest algorithms ([RFC1321])
for integrity, and it uses RC4 for encryption. Deriving a key from a password is as specified in
[RFC1320] and [FIPS46-2]. Therefore, applications are generally advised not to use NTLM.<81>

The NTLM server does not require the NTLM client to send the MIC, but sending the MIC when the
timestamp is present greatly increases security. Although implementations of NLMP will work without
support for MIC, they will be vulnerable to message tampering.

The use of NullSession results in a SessionBaseKey with all zeroes, which does not provide security.
Therefore, applications are generally advised not to use NullSession.

5.2 Index of Security Parameters

Security parameter Section

MD4/MD5 usage in NTLM v1 3.3.1

MD4/MD5 usage in NTLM v2 3.3.2

MD5/RC4 usage during session security 3.4

81 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 Appendix A: Cryptographic Operations Reference

In the algorithms provided in this documentation, pseudocode is provided to illustrate the process
used to compute keys and perform other cryptographic operations prior to protocol exchange. The
following table defines the general purpose functions and operations used in this pseudocode.

 Functions Description Section

AddAVPair(T, Id, Value) An auxiliary function that is used to manage AV pairs in NTLM
messages. It is defined as follows.

 AddAvPair(T, Id, Value) {
 STRING T
 USHORT Id
 STRING Value
 T = ConcatenationOf(T, Id)
 T = ConcatenationOf(T, Length(Value))
 T = ConcatenationOf(T, Value)
 }

3.2.5.1.1

ComputeResponse(...) A function that computes the NT response, LM responses, and key
exchange key from the response keys and challenge.

3.1.5.1.2,
3.2.5.1.2,
3.3.1, 3.3.2

ConcatenationOf(string1,
string2, ... stringN)

Indicates the left-to-right concatenation of the string parameters,
from the first string to the Nnth. Any numbers are converted to
strings and all numeric conversions to strings retain all digits,
even nonsignificant ones. The result is a string. For example,
ConcatenationOf(0x00122, "XYZ", "Client") results in the string
"00122XYZClient."

3.3.1, 3.3.2,
3.4.2, 3.4.3,
3.4.4, 3.4.5.1,
3.4.5.2,
3.4.5.3

CRC32(M) Indicates a 32-bit CRC calculated over M. 3.4.3, 3.4.4

DES(K, D) Indicates the encryption of an 8-byte data item D with the 7-byte
key K using the Data Encryption Standard (DES) algorithm in
Electronic Codebook (ECB) mode. The result is 8 bytes in length
([FIPS46-2]).

3.3.1, 3.4.5.1

DESL(K, D) Indicates the encryption of an 8-byte data item D with the 16-
byte key K using the Data Encryption Standard Long (DESL)
algorithm. The result is 24 bytes in length. DESL(K, D) is
computed as follows.

 ConcatenationOf(DES(K[0..6], D), \
 DES(K[7..13], D), DES(\
 ConcatenationOf(K[14..15], Z(5)), D));

Note K[] implies a key represented as a character array.

3.3.1

GetVersion() An auxiliary function that returns an operating system version-
specific value (section 2.2.2.8).

3.1.5.1.1,
3.1.5.1.2,
3.2.5.1.1,
3.2.5.1.2

LMGETKEY(U, D) Retrieve the user's LM response key from the server database
(directory or local database).

3.2.5.1.2

NTGETKEY(U, D) Retrieve the user's NT response key from the server database. 3.2.5.1.2

HMAC(K, M) Indicates the encryption of data item M with the key K using the 3.3.2, 3.4.4

82 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Functions Description Section

HMAC algorithm ([RFC2104]).

HMAC_MD5(K, M) Indicates the computation of a 16-byte HMAC-keyed MD5
message digest of the byte string M using the key K.

3.3.2, 3.4.4

KXKEY(K, LM, SC) Produces a key exchange key from the session base key, LM
response and server challenge as defined in the sections KXKEY,
SIGNKEY, and SEALKEY.

3.1.5.1.2,
3.2.5.1.2,
3.4.5.1

LMOWF Computes a one-way function of the user's password to use as the
response key. NTLM v1 and NTLM v2 define separate LMOWF
functions in the NTLM v1 authentication and NTLM v2
authentication sections, respectively.

3.1.5.1.2,
3.3.1, 3.3.2

MD4(M) Indicates the computation of an MD4 message digest of the null-
terminated byte string M ([RFC1320]).

3.3.1, 3.3.2

MD5(M) Indicates the computation of an MD5 message digest of the null-
terminated byte string M ([RFC1321]).

3.3.1, 3.3.2,
3.4.4, 3.4.5.2,
3.4.5.3

MD5_HASH(M) Indicates the computation of an MD5 message digest of a binary
blob ([RFC4121] section 4.1.1.2).

NIL A zero-length string. 3.1.5.1.1,
3.1.5.1.2,
3.2.5.1.1,
3.2.5.2.2,
3.4.5.2

NONCE(N) Indicates the computation of an N-byte cryptographic-strength
random number.

Note The NTLM Authentication Protocol does not define the
statistical properties of the random number generator. It is left to
the discretion of the implementation to define the strength
requirements of the NONCE(N) operation.

3.1.5.1.2,
3.2.5.1.1,
3.4.3

NTOWF Computes a one-way function of the user's password to use as the
response key. NTLM v1 and NTLM v2 define separate NTOWF
functions in the NTLM v1 authentication and NTLM v2
authentication sections, respectively.

3.1.5.1.2,
3.3.1, 3.3.2

RC4(H, D) The RC4 Encryption Algorithm. To obtain this stream cipher that is
licensed by RSA Data Security, Inc., contact this company.

Indicates the encryption of data item D with the current session or
message key state, using the RC4 algorithm. H is the handle to a
key state structure initialized by RC4INIT.

3.4.3, 3.4.4

RC4K(K,D) Indicates the encryption of data item D with the key K using the
RC4 algorithm.

Note The key sizes for RC4 encryption in NTLM are defined in
sections KXKEY, SIGNKEY, and SEALKEY, where they are created.

3.1.5.1.2,
3.4.4

RC4Init(H, K) Initialization of the RC4 key and handle to a key state structure
for the session.

3.1.5.1.2,
3.2.5.1.2

SEALKEY(F, K, string1) Produces an encryption key from the session key as defined in
sections KXKEY, SIGNKEY, and SEALKEY.

3.1.5.1.2,
3.4.5.3

SIGNKEY(flag, K, string1) Produces a signing key from the session key as defined in sections
KXKEY, SIGNKEY, and SEALKEY.

3.1.5.1.2,
3.4.5.2

83 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Functions Description Section

Currenttime Indicates the retrieval of the current time as a 64-bit value,
represented as the number of 100-nanosecond ticks elapsed since
midnight of January 1st, 1601 (UTC).

3.1.5.1.2

UNICODE(string) Indicates the 2-byte little-endian byte order encoding of the
Unicode UTF-16 representation of string. The Byte Order Mark
(BOM) is not sent over the wire.

3.3.1, 3.3.2

UpperCase(string) Indicates the uppercase representation of string. 3.3.1, 3.3.2

Z(N) Indicates the creation of a byte array of length N. Each byte in the
array is initialized to the value zero.

3.3.1, 3.3.2

84 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows NT operating system

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1: Except in Windows NT.

<2> Section 1.3: Only Windows NT clients initiate requests for the LM version of the protocol. All
applicable Windows Server releases accept it if properly configured.

<3> Section 1.3.1: It is possible, with a Windows connectionless NTLM, for messages protected by
NTLM session security to precede the completion of the established NTLM session, but such message

orderings do not occur in practice.

<4> Section 1.4: When authenticating a domain account with NTLM, Windows uses Netlogon ([MS-
APDS]) to have the DC take the challenge and the client's response, and validate the user
authentication against the DC's user database.

85 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<5> Section 1.6: Windows applications that use Negotiate ([MS-SPNG]) can authenticate via NTLM if
Kerberos is not available. Authenticating via NTLM would occur if either the client or server are down-

level (running Windows NT 4.0 operating system or earlier) systems, if the server is not joined to a
domain, if the application is using a remote procedure call (RPC) interface that uses NTLM directly, or

if the administrator has not configured Kerberos properly. An implementer who wants to support these
scenarios in which Kerberos does not work would need to implement NTLM.

<6> Section 2.2.1.1: The Version field is NOT sent or accessed by Windows NT or Windows 2000.
Windows NT and Windows 2000 assume that the Payload field started immediately after
WorkstationBufferOffset. Since all references into the Payload field are by offset from the start of
the message (not from the start of the Payload field), Windows NT and Windows 2000 can correctly
interpret messages with Version fields.

<7> Section 2.2.1.1: In Windows, the code page mapping the OEM character set to Unicode is
configurable via HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\Nls\Codepage\OEMCP,
which is a DWORD that contains the assigned number of the code page.

<8> Section 2.2.1.2: Except in Windows NT, Windows 2000, Windows XP, and Windows Server 2003,

the TargetInfo field is always sent.

<9> Section 2.2.1.2: The Version field is not sent or accessed by Windows NT or Windows 2000.

Windows NT and Windows 2000 assume that the Payload field started immediately after
TargetInfoBufferOffset. Since all references into the Payload field are by offset from the start of
the message (not from the start of the Payload field), Windows NT and Windows 2000 can correctly
interpret messages with Version fields.

<10> Section 2.2.1.3: Although the protocol allows authentication to succeed if the client provides
either LmChallengeResponse or NtChallengeResponse, Windows provides both.

<11> Section 2.2.1.3: The Version field is NOT sent or consumed by Windows NT or Windows 2000.

Windows NT and Windows 2000 assume that the Payload field started immediately after
NegotiateFlags. Since all references into the Payload field are by offset from the start of the
message (not from the start of the Payload field), Windows NT and Windows 2000 can correctly
interpret messages constructed with Version fields.

<12> Section 2.2.1.3: The MIC field is omitted in Windows NT, Windows 2000, Windows XP, and
Windows Server 2003.

<13> Section 2.2.2.1: MsvAvDnsTreeName AV_PAIR type is not supported in Windows NT and

Windows 2000.

<14> Section 2.2.2.1: MsvAvFlags AV_PAIR type is not supported in Windows NT and Windows
2000.

<15> Section 2.2.2.1: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

<16> Section 2.2.2.1: MsvAvTimestamp AV_PAIR type is not supported in Windows NT, Windows

2000, Windows XP, and Windows Server 2003.

<17> Section 2.2.2.1: MsvAvSingleHost AV_PAIR type is not supported in Windows NT, Windows
2000, Windows XP, and Windows Server 2003.

<18> Section 2.2.2.1: MsvAvTargetName AV_PAIR type is not supported in Windows NT, Windows
2000, Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<19> Section 2.2.2.1: MsvChannelBindings AV_PAIR type is not supported in Windows NT,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, or Windows Server 2008.

<20> Section 2.2.2.2: Windows does not process this field when sent on the wire.

86 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<21> Section 2.2.2.2: Windows NT, Windows 2000, Windows XP, Windows Server 2003, and Windows
Vista do not create or send the CustomData field. The CustomData field is not processed when sent

on the wire.

<22> Section 2.2.2.2: Windows NT, Windows 2000, Windows XP, Windows Server 2003, and Windows

Vista do not create or send the MachineID. The MachineID is not processed when sent on the wire.

<23> Section 2.2.2.5: Except in Windows NT, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, and Windows Server 2008, only 128-bit session key negotiation is supported by
default; therefore this bit is always set.

<24> Section 2.2.2.5: The NTLMSSP_NEGOTIATE_VERSION flag is not supported in Windows NT and
Windows 2000. This flag is used for debug purposes only.

<25> Section 2.2.2.5: The NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY is not set in

the NEGOTIATE_MESSAGE to the server and the CHALLENGE_MESSAGE to the client in Windows NT
Server 4.0 operating system Service Pack 3 (SP3).

<26> Section 2.2.2.5: The NTLMSSP_NEGOTIATE_OEM_WORKSTATION_SUPPLIED flag is not

supported in Windows NT and Windows 2000.

<27> Section 2.2.2.5: The NTLMSSP_NEGOTIATE_OEM_DOMAIN_SUPPLIED flag is not
supported in Windows NT and Windows 2000.

<28> Section 2.2.2.5: Windows sends this bit for anonymous connections, but a Windows-based
NTLM server does not use this bit when establishing the session.

<29> Section 2.2.2.5: Windows NTLM clients can set this bit. No applicable Windows Server releases
support it, so this bit is never used.

<30> Section 2.2.2.7: In some situations, Microsoft Windows adds bytes to the end of the variable-
length section. These bytes are considered to be part of the NTLMv2_CLIENT_CHALLENGE
structure, but have no defined contents.

<31> Section 2.2.2.10: NTLMSSP_NEGOTIATE_VERSION cannot be negotiated in Windows NT,

Windows 2000, and Windows XP operating system Service Pack 1 (SP1).

<32> Section 2.2.2.10: The following table shows the Windows values of the ProductMajorVersion
and ProductMinorVersion fields for each applicable product.

Product ProductMajorVersion ProductMinorVersion

Windows XP operating system
Service Pack 2 (SP2)

WINDOWS_MAJOR_VERSION_5 WINDOWS_MINOR_VERSION_1

Windows Server 2003 WINDOWS_MAJOR_VERSION_5 WINDOWS_MINOR_VERSION_2

Windows Vista WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_0

Windows Server 2008 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_0

Windows 7 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_1

Windows Server 2008 R2 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_1

Windows 8 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_2

Windows Server 2012
operating system

WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_2

Windows 8.1 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_3

87 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Product ProductMajorVersion ProductMinorVersion

Windows Server 2012 R2 WINDOWS_MAJOR_VERSION_6 WINDOWS_MINOR_VERSION_3

Windows 10 WINDOWS_MAJOR_VERSION_10 WINDOWS_MINOR_VERSION_0

Windows Server 2016 and
, Windows
Server operating system, and
Windows Server 2019

WINDOWS_MAJOR_VERSION_10 WINDOWS_MINOR_VERSION_0

<33> Section 2.2.2.10: In Windows, this field contains one of the following values:

Value Meaning

WINDOWS_MAJOR_VERSION_5

0x05

The major version of the Windows operating system is 0x05.

WINDOWS_MAJOR_VERSION_6

0x06

The major version of the Windows operating system is 0x06.

WINDOWS_MAJOR_VERSION_10

0x0A

The major version of the Windows operating system is 0x0A.

<34> Section 2.2.2.10: In Windows, this field contains one of the following values:

Value Meaning

WINDOWS_MINOR_VERSION_0

0x00

The minor version of the Windows operating system is 0x00.

WINDOWS_MINOR_VERSION_1

0x01

The minor version of the Windows operating system is 0x01.

WINDOWS_MINOR_VERSION_2

0x02

The minor version of the Windows operating system is 0x02.

WINDOWS_MINOR_VERSION_3

0x03

The minor version of the Windows operating system is 0x03.

<35> Section 3.1.1.1: The default value of this state variable is TRUE. Windows NT Server 4.0 SP3
does not support providing NTLM instead of LM responses.

<36> Section 3.1.1.1: The default value of this state variable is FALSE. ClientBlocked is not

supported in Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008.

<37> Section 3.1.1.1: The default value of this state variable is NULL. ClientBlockExceptions is not
supported in Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008.

88 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<38> Section 3.1.1.1: Except in Windows NT, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, and Windows Server 2008, which set this variable to FALSE, Windows sets this

variable to TRUE.

<39> Section 3.1.1.1: In Windows NT 4.0 and Windows 2000, the maximum lifetime for the challenge

is 30 minutes. In Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, and Windows Server 2008 R2, the maximum lifetime is 36 hours.

<40> Section 3.1.1.2: Windows exposes these logical parameters to applications through the SSPI
interface.

<41> Section 3.1.1.2: ClientSuppliedTargetName is not supported in Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<42> Section 3.1.1.2: ClientChannelBindingsUnhashed is not supported in Windows NT, Windows

2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<43> Section 3.1.1.2: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

<44> Section 3.1.4: Security Support Provider Interface (SSPI) is the Windows implementation of
GSS API [RFC2743].

<45> Section 3.1.4: This functionality is not supported in Windows NT, Windows 2000, Windows XP,

Windows Server 2003, Windows Vista, and Windows Server 2008.

<46> Section 3.1.5.1.1: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<47> Section 3.1.5.1.2: Not supported by Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<48> Section 3.1.5.1.2: This functionality is not supported in Windows NT and Windows 2000.

<49> Section 3.1.5.1.2: Not supported in Windows NT, Windows 2000, Windows XP, and Windows

Server 2003.

<50> Section 3.1.5.1.2: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<51> Section 3.1.5.1.2: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

<52> Section 3.1.5.2: Connectionless NTLM is supported only in Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<53> Section 3.1.5.2.1: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<54> Section 3.1.5.2.1: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<55> Section 3.1.5.2.1: Not supported by Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<56> Section 3.1.5.2.1: Not supported in Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<57> Section 3.1.5.2.1: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

89 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<58> Section 3.1.5.2.1: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

<59> Section 3.2.1.1: The default value of this state variable is FALSE. ServerBlock is not supported
in Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows Vista or Windows Server

2008.

<60> Section 3.2.1.1: Except in Windows NT, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, and Windows Server 2008, which set this variable to FALSE, Windows sets this value
to TRUE.

<61> Section 3.2.1.2: This functionality is not supported in Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, and Windows Server 2008.

<62> Section 3.2.1.2: This functionality is not supported in Windows NT, Windows 2000, Windows XP,

Windows Server 2003, Windows Vista, and Windows Server 2008.

<63> Section 3.2.5.1.1: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<64> Section 3.2.5.1.1: Windows NT will set NTLMSSP_NEGOTIATE_TARGET_INFO only if
NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY is set. Windows 2000, Windows XP, and
Windows Server 2003 will set NTLMSSP_NEGOTIATE_TARGET_INFO only if

NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY or NTLMSSP_REQUEST_TARGET is set.

<65> Section 3.2.5.1.2: ServerBlock is not supported in Windows NT, Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, and Windows Server 2008.

<66> Section 3.2.5.1.2: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<67> Section 3.2.5.1.2: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

<68> Section 3.2.5.1.2: MIC fields are not supported in Windows NT, Windows 2000, Windows XP,

and Windows Server 2003.

<69> Section 3.2.5.1.2: Supported by Windows NT 4.0, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<70> Section 3.2.5.2: Connectionless NTLM is supported only in Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<71> Section 3.2.5.2.2: This functionality is not supported in Windows NT, Windows 2000, Windows

XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<72> Section 3.2.5.2.2: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<73> Section 3.2.5.2.2: Not supported in Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<74> Section 3.2.5.2.2: Supported by Windows NT 4.0, Windows 2000, Windows XP, Windows Server

2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.

<75> Section 3.2.5.2.2: This functionality is not supported in Windows NT, Windows 2000, Windows
XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<76> Section 3.2.5.2.2: Not supported in Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7 or Windows Server 2008 R2.

90 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

<77> Section 3.3.1: If the client sends a domain that is unknown to the server, the server tries to
perform the authentication against the local database.

<78> Section 3.3.2: If the client sends a domain that is unknown to the server, the server tries to
perform the authentication against the local database.

<79> Section 3.4.6: The Windows implementation of GSS_WrapEx() is called EncryptMessage().
For more information, see [MSDN-EncryptMsg].

<80> Section 3.4.7: The Windows implementation of GSS_WrapEx() is called DecryptMessage().
For more information, see [MSDN-DecryptMsg].

<81> Section 4.1: Except in Windows NT.

<82<81> Section 5.1: NTLM domain considerations are as follows:

Microsoft DCs determine the minimum security requirements for NTLM authentication between a

Windows client and the local Windows domain. Based on the minimum security settings in place, the
DC can either allow or refuse the use of LM, NTLM, or NTLM v2 authentication, and servers can force

the use of extended session security on all messages between the client and server. In a Windows
domain, the DC controls domain level security settings through the use of Group Policy ([MS-GPOL]),
which replicates security policies to clients and servers throughout the local domain.

Domain-level security policies dictated by Group Policy have to be supported on the local system for

authentication to take place. During NTLM authentication, clients and servers exchange NTLM
capability flags that specify what levels of security they are able to support. If either the client or
server's level of security support is less than the security policies of the domain, the authentication
attempt is refused by the computer with the higher level of minimum security requirements. This is
important for interdomain authentication where differing security policies might be enforced on either
domain, and the client or server might not be able to support the security policies of the other's
domain.

NTLM security levels are as follows:

The security policies exchanged by the server and client can be set independently of the DC minimum

security requirements dictated by Group Policy. Higher local security policies can be exchanged by a
client and server in a domain with low minimum security requirements in connection-oriented
authentication during the capability flags exchange. However, during connectionless (datagram-
oriented) authentication, it is not possible to exchange higher local security policies because they are
strictly enforced by Group Policy. Local security policies that are set independently of the DC are

subordinate to domain-level security policies for clients authenticating to a server on the local domain;
therefore, it is not possible to use local-system policies that are less secure than domain-level policies.

Stand-alone servers that do not have a DC to authenticate clients set their own minimum security
requirements.

NTLM security levels determine the minimum security settings allowed on a client, server, or DC to
authenticate in an NTLM domain. The security levels cannot be modified in Windows NT 4.0 operating

system Service Pack 3 (SP3) by setting this registry key to one of the following security level values.

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\
 LMCompatibilityLevel

Security-level descriptions:

0: Server sends LM and NTLM response and never uses extended session security. Clients use LM and
NTLM authentication, and never use extended session security. DCs accept LM, NTLM, and NTLM v2
authentication.

91 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1: Servers use NTLM v2 session security if it is negotiated. Clients use LM and NTLM authentication
and use extended session security if the server supports it. DCs accept LM, NTLM, and NTLM v2

authentication.

2: Server sends NTLM response only. Clients use only NTLM authentication and use extended session

security if the server supports it. DCs accept LM, NTLM, and NTLM v2 authentication.

3: Server sends NTLM v2 response only. Clients use NTLM v2 authentication and use extended session
security if the server supports it. DCs accept LM, NTLM, and NTLM v2 authentication.

4: DCs refuse LM responses. Clients use NTLM authentication and use extended session security if the
server supports it. DCs refuse LM authentication but accept NTLM and NTLM v2 authentication.

5: DCs refuse LM and NTLM responses, and accept only NTLM v2. Clients use NTLM v2 authentication
and use extended session security if the server supports it. DCs refuse NTLM and LM authentication,

and accept only NTLM v2 authentication.

92 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

2.2.2.10 VERSION Added Windows Server 2019 to product behavior note. Major

7 Appendix B: Product Behavior Added Windows Server 2019 to applicability list. Major

93 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

9 Index
A

Abstract data model
 client 38
 overview 38
 variables
 exposed 39
 internal 38
 server 46
 overview 46
 variables
 exposed 47
 internal 46
 session security 58
Applicability 15
AUTHENTICATE_MESSAGE message 23
Authentication
 NTLMv1 54
 NTLMv2 56
AV_PAIR message 28

C

Call flow
 connectionless 14
 connection-oriented 13
 overview 12
Capability negotiation 15
CHALLENGE_MESSAGE message 20
Change tracking 92
Client
 abstract data model 38
 overview 38
 variables
 exposed 39
 internal 38
 higher-layer triggered events 40
 initialization 40
 local events 46
 message processing 41
 connectionless 44
 connection-oriented 41
 overview 41
 other local events 46
 sequencing rules 41
 connectionless 44
 connection-oriented 41
 overview 41
 timer events 46
 timers 40
Common values example 69
Confidentiality 59
Connectionless call flow 14
Connection-oriented call flow 13
Cryptographic
 operations reference 81
 values for validation example 69

D

Data model - abstract

94 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 client 38
 overview 38
 variables
 exposed 39
 internal 38
 server 46
 overview 46
 variables
 exposed 47
 internal 46
 session security 58

E

Examples
 common values 69
 cryptographic values for validation 69

 NTLM over Server Message Block (SMB) 68
 NTLMv1
 authentication
 GSS_WrapEx 72
 messages 72
 overview 70
 client challenge
 GSS_WrapEx 75
 messages 74
 overview 73
 NTLMv2
 authentication
 GSS_WrapEx 78
 messages 77
 overview 76

F

Fields - vendor-extensible 15

G

Glossary 7
GSS_GetMICEx()
 call 66
 signature creation 66
GSS_UnwrapEx()
 call 65
 signature creation 66
GSS_VerifyMICEx()
 call 66
 signature creation 67
GSS_WrapEx()
 call 64

 signature creation 65

H

Higher-layer triggered events
 client 40
 server 47

I

Implementer - security considerations 80
Index of security parameters 80
Informative references 11

95 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Initialization
 client 40
 server 47
Introduction 7

K

KXKEY (section 3.4.5 62, section 3.4.5.1 62)

L

LM_RESPONSE message 30

LMv2_RESPONSE message 31
Local events
 client 46
 server 54

M

Message processing
 client 41
 connectionless 44
 connection-oriented 41
 overview 41
 server 48
 connectionless 53
 connection-oriented 48
 overview 48
Messages
 syntax 16
 transport 16

N

NEGOTIATE message 31
NEGOTIATE_MESSAGE message 17
Normative references 10
NTLM
 authentication call flow 12
 connectionless call flow 14
 connection-oriented call flow 13
 over Server Message Block (SMB) example 68
NTLM_RESPONSE message 34
NTLMheader message 16
NTLMSSP_MESSAGE_SIGNATURE structure 36

NTLMSSP_MESSAGE_SIGNATURE_EXTENDED_SESSIONSECURITY message 36
NTLMSSP_MESSAGE_SIGNATURE_preNTLMv2 message 36
NTLMv1
 authentication 54
 example 70
 GSS_WrapEx example 72
 messages example 72
 client challenge
 example 73
 GSS_WrapEx example 75
 messages example 74
 overview 54
NTLMv2
 authentication 56
 example 76
 GSS_WrapEx example 78
 messages example 77
 overview 54
NTLMv2_CLIENT_CHALLENGE message 34
NTLMv2_RESPONSE message 35

96 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

O

Other local events
 client 46
 server 54
Overview (synopsis) 11

P

Parameters - security index 80
Preconditions 15

Prerequisites 15
Product behavior 84
Protocol Details
 overview 38

R

References 10
 informative 11
 normative 10
Relationship to other protocols 14
Restriction_Encoding message 30

S

SEALKEY (section 3.4.5 62, section 3.4.5.3 63)
Security
 implementer considerations 80
 parameter index 80
 session 57
Sequencing rules
 client 41
 connectionless 44
 connection-oriented 41
 overview 41
 server 48
 connectionless 53
 connection-oriented 48
 overview 48
Server
 abstract data model 46
 overview 46
 variables

 exposed 47
 internal 46
 higher-layer triggered events 47
 initialization 47
 local events 54
 message processing 48
 connectionless 53
 connection-oriented 48
 overview 48
 other local events 54
 sequencing rules 48
 connectionless 53
 connection-oriented 48
 overview 48
 timer events 54
 timers 47
Session security
 abstract data model 58
 confidentiality 59
 GSS_GetMICEx()

97 / 97

[MS-NLMP-Diff] - v20180912
NT LAN Manager (NTLM) Authentication Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 call 66
 signature creation 66
 GSS_UnwrapEx()
 call 65
 signature creation 66
 GSS_VerifyMICEx()
 call 66
 signature creation 67
 GSS_WrapEx()
 call 64
 signature creation 65
 integrity 59
 KXKEY (section 3.4.5 62, section 3.4.5.1 62)
 overview 57
 SEALKEY (section 3.4.5 62, section 3.4.5.3 63)
 signature functions
 overview 60
 with extended 61
 without extended 60
 SIGNKEY (section 3.4.5 62, section 3.4.5.2 63)
Signature functions
 overview 60
 with extended 61

 without extended 60
SIGNKEY (section 3.4.5 62, section 3.4.5.2 63)
Standards assignments 15
Structures - NTLMSSP_MESSAGE_SIGNATURE 36
Syntax 16

T

Timer events
 client 46
 server 54
Timers
 client 40
 server 47
Tracking changes 92
Transport 16
Triggered events - higher-layer
 client 40
 server 47

V

Vendor-extensible fields 15
VERSION message 37
Versioning 15

	1 (Updated Section) Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 NTLM Authentication Call Flow
	1.3.1.1 NTLM Connection-Oriented Call Flow
	1.3.1.2 NTLM Connectionless (Datagram-Oriented) Call Flow

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 NTLM Messages
	2.2.1.1 NEGOTIATE_MESSAGE
	2.2.1.2 CHALLENGE_MESSAGE
	2.2.1.3 AUTHENTICATE_MESSAGE

	2.2.2 NTLM Structures
	2.2.2.1 AV_PAIR
	2.2.2.2 Single_Host_Data
	2.2.2.3 LM_RESPONSE
	2.2.2.4 LMv2_RESPONSE
	2.2.2.5 NEGOTIATE
	2.2.2.6 NTLM v1 Response: NTLM_RESPONSE
	2.2.2.7 NTLM v2: NTLMv2_CLIENT_CHALLENGE
	2.2.2.8 NTLM2 V2 Response: NTLMv2_RESPONSE
	2.2.2.9 NTLMSSP_MESSAGE_SIGNATURE
	2.2.2.9.1 NTLMSSP_MESSAGE_SIGNATURE
	2.2.2.9.2 NTLMSSP_MESSAGE_SIGNATURE for Extended Session Security

	2.2.2.10 VERSION

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.1.1 (Updated Section) Variables Internal to the Protocol
	3.1.1.2 Variables Exposed to the Application

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Connection-Oriented
	3.1.5.1.1 Client Initiates the NEGOTIATE_MESSAGE
	3.1.5.1.2 Client Receives a CHALLENGE_MESSAGE from the Server

	3.1.5.2 Connectionless
	3.1.5.2.1 Client Receives a CHALLENGE_MESSAGE

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.1.1 Variables Internal to the Protocol
	3.2.1.2 Variables Exposed to the Application

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Connection-Oriented
	3.2.5.1.1 Server Receives a NEGOTIATE_MESSAGE from the Client
	3.2.5.1.2 Server Receives an AUTHENTICATE_MESSAGE from the Client

	3.2.5.2 Connectionless NTLM
	3.2.5.2.1 Server Sends the Client an Initial CHALLENGE_MESSAGE
	3.2.5.2.2 Server Response Checking

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 NTLM v1 and NTLM v2 Messages
	3.3.1 NTLM v1 Authentication
	3.3.2 NTLM v2 Authentication

	3.4 Session Security Details
	3.4.1 Abstract Data Model
	3.4.2 Message Integrity
	3.4.3 Message Confidentiality
	3.4.4 Message Signature Functions
	3.4.4.1 Without Extended Session Security
	3.4.4.2 With Extended Session Security

	3.4.5 KXKEY, SIGNKEY, and SEALKEY
	3.4.5.1 KXKEY
	3.4.5.2 SIGNKEY
	3.4.5.3 SEALKEY

	3.4.6 GSS_WrapEx() Call
	3.4.6.1 Signature Creation for GSS_WrapEx()

	3.4.7 GSS_UnwrapEx() Call
	3.4.7.1 Signature Creation for GSS_UnwrapEx()

	3.4.8 GSS_GetMICEx() Call
	3.4.8.1 Signature Creation for GSS_GetMICEx()

	3.4.9 GSS_VerifyMICEx() Call
	3.4.9.1 Signature Creation for GSS_VerifyMICEx()

	4 Protocol Examples
	4.1 (Updated Section) NTLM Over Server Message Block (SMB)
	4.2 Cryptographic Values for Validation
	4.2.1 Common Values
	4.2.2 NTLM v1 Authentication
	4.2.2.1 Calculations
	4.2.2.1.1 LMOWFv1()
	4.2.2.1.2 NTOWFv1()
	4.2.2.1.3 Session Base Key and Key Exchange Key

	4.2.2.2 Results
	4.2.2.2.1 NTLMv1 Response
	4.2.2.2.2 LMv1 Response
	4.2.2.2.3 Encrypted Session Key

	4.2.2.3 Messages
	4.2.2.4 GSS_WrapEx Examples

	4.2.3 NTLM v1 with Client Challenge
	4.2.3.1 Calculations
	4.2.3.1.1 NTOWFv1()
	4.2.3.1.2 Session Base Key
	4.2.3.1.3 Key Exchange Key

	4.2.3.2 Results
	4.2.3.2.1 LMv1 Response
	4.2.3.2.2 NTLMv1 Response

	4.2.3.3 Messages
	4.2.3.4 GSS_WrapEx Examples

	4.2.4 NTLMv2 Authentication
	4.2.4.1 Calculations
	4.2.4.1.1 NTOWFv2() and LMOWFv2()
	4.2.4.1.2 Session Base Key
	4.2.4.1.3 temp

	4.2.4.2 Results
	4.2.4.2.1 LMv2 Response
	4.2.4.2.2 NTLMv2 Response
	4.2.4.2.3 Encrypted Session Key

	4.2.4.3 Messages
	4.2.4.4 GSS_WrapEx Examples

	5 Security
	5.1 (Updated Section) Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Cryptographic Operations Reference
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

