

1 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

[MS-GIPUSB]:

Gaming Input Protocol (GIP) Universal Serial Bus (USB)
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
▪ Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

Preliminary Documentation. This particular Open Specifications document provides documentation
for past and current releases and/or for the pre-release version of this technology. This document
provides final documentation for past and current releases and preliminary documentation, as
applicable and specifically noted in this document, for the pre-release version. Microsoft will release

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

final documentation in connection with the commercial release of the updated or new version of this

technology. Because this documentation might change between the pre-release version and the final
version of this technology, there are risks in relying on this preliminary documentation. To the extent
that you incur additional development obligations or any other costs as a result of relying on this

preliminary documentation, you do so at your own risk.

3 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Revision Summary

Date Revision History Revision Class Comments

No revisions have been made to this document.

4 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Table of Contents

Click here, then hit F9

5 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

1 Introduction

The Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension is a modified version of the
USB 2.0 interface that provides extended semantics for interaction between game controller devices
and a host. The high-level interface of the GIP specification includes enumeration of device
capabilities, determining of device type and subtype, transfer of gamepad and voice data, and support
for an expansion device on the controller.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

fragment: A sequential portion of a large payload wrapped by a header. A GIP message whose
total length exceeds the protocol medium's maximum transmission unit (MTU) is split into
multiple fragments, each of which is kept within the MTU size. On the receiving end of the
transmission the partial payloads are extracted from the fragments and assembled into the full
payload.

JavaScript Object Notation (JSON): A text-based, data interchange format that is used to

transmit structured data, typically in Asynchronous JavaScript + XML (AJAX) web applications,
as described in [RFC7159]. The JSON format is based on the structure of ECMAScript (Jscript,
JavaScript) objects.

message: Commands and responses of various types used by the host and device to execute
specific host functions that relate to the message type. Multiple small GIP messages can fit into
a single packet, or a message can be split across multiple packets.

packet: A bundle of data organized in a group for transmission.

reliable transmission: A method that utilizes host/device acknowledgements to send message
fragments with verified receipt for the first, last, and periodic fragments of the message.

transaction: A communication event between the GIP device and host.

transfer: One or more transactions to move information between the GIP device and host.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

https://go.microsoft.com/fwlink/?linkid=842522
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=90317

6 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

[USB-SPC2.0] USB Implementers Forum, Inc., "Document Library", USB 2.0 Specification, October

2021, https://www.usb.org/documents

Note Search for 2.0 and Technology USB 2.0

[USB-SPC] USB Consortium, "USB 3.0 Specification", April 2000,
http://www.usb.org/developers/docs/

1.2.2 Informative References

[JSON-Schema] Internet Engineering Task Force (IETF), "JSON Schema and Hyper-Schema",
http://json-schema.org/

[MSLEARN-USB-OS-Descriptors] Microsoft Corporation, "Microsoft OS descriptors for USB devices",
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-

descriptors

[MSLEARN-USBCERT] Microsoft Corporation, "USB-IF certification", https://learn.microsoft.com/en-
us/windows-hardware/drivers/usbcon/usb-if-certification-tests

[MSLEARN-XIGC-API] Microsoft Corporation, "XInput Game Controller APIs",
https://learn.microsoft.com/en-us/windows/win32/api/_xinput/

[USB-VID] USB Implementers Forum, Inc, "Getting a Vendor ID", https://www.usb.org/getting-

vendor-id

1.3 Overview

The Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension provides flexibility for various

transmission scenarios. A large GIP message can be split across multiple packets, which is necessary

for security data and usually for metadata. GIP supports optional guaranteed message delivery and
includes fields in the header to track sequence numbers and request ACK. Multiple small GIP
messages can also be coalesced into a single packet. GIP message headers have a variable length.
They are 4 bytes for messages which fit into a single packet and 6 bytes (or longer) to handle
segmentation of a large GIP message across multiple packets.

GIP also provides support for hot swappable secondary GIP devices that attach to the primary GIP
device (for example, a detachable chat pad that plugs into an expansion port on a gamepad). GIP

devices that aim to provide functionality beyond that which is offered by the standard device types
that are available from supported APIs can leverage extensibility options provided by those APIs. For a
GIP device state diagram, see section 3.1.1. For more information, see the documentation
downloadable from [MSLEARN-XIGC-API].

1.3.1 Startup Sequence

The following diagram shows the startup sequence of GIP devices for a device to host connection.

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=160819
https://go.microsoft.com/fwlink/?LinkId=392822
https://go.microsoft.com/fwlink/?linkid=2281180
https://go.microsoft.com/fwlink/?linkid=2281180
https://go.microsoft.com/fwlink/?linkid=2282326
https://go.microsoft.com/fwlink/?linkid=2282326
https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?linkid=2281523
https://go.microsoft.com/fwlink/?linkid=2281523
https://go.microsoft.com/fwlink/?linkid=2281343

7 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Figure 1: Device to host connect

Process notes follow:

1. Metadata handshake is not always required during startup sequence. See section 2.2.2.

2. Wireless enrollment is only present during startup when connected via USB.

3. Audio initialization sequence differs in that it starts with a set device state: Stop.

4. For other device types, the Gamepad Input Report MUST be replaced by an appropriate report.

5. Extended Command handshake only appears if Metadata indicates support.

6. Motor command is only applicable to Gamepad.

1.3.2 Hello Stage

All GIP devices advertise a Hello message at enumeration that contains essential information
necessary for identification. This includes information required to identify their unique instance from
others: a device ID akin to a serial number, the product vendor and model, and their firmware,
hardware, and protocol versions. See section 2.2.1 for vendor ID, product ID, device ID, and
secondary device ID.

1.3.3 Metadata Stage

See section 2.2.2 for more information.

8 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

1.3.4 Gamepad Input Report

The Gamepad Input Report that follows the Motor exchange in the previous figure (section 1.3.1) is
not strictly necessary. However, the first Gamepad Input Report after Set Device State: Start is

required and MUST reflect the current state of the device.

1.3.5 Audio

An audio streaming device is a special case. Audio data is not routed to or from the vendor’s library.
Instead, it is communicated directly to the host’s audio stack, and special handling is done to ensure

regular and continuous flow of data. See section 2.2.11 for more information.

1.4 Relationship to Other Protocols

The Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension uses the [USB-SPC2.0] or

[USB-SPC] specifications from the USB Implementors Forum.

1.5 Prerequisites/Preconditions

The requirements in this section apply to all accessories that utilize USB (this includes game
controllers).

▪ MUST be compliant with published USB 2.0 or 3.0 specifications from the USB Implementors
Forum. See [USB-SPC2.0] or [USB-SPC] specifications.

▪ SHOULD pass USB 2.0 or 3.0 compliance and certification testing requirements. Include the USB-
IF Test ID (TID) with the product submission if available. Submission to the USB-IF’s list of
certified devices on usb.org is optional. See [MSLEARN-USBCERT] for details. For example, USB
2.0 requirements specifically include:

▪ Inrush charge less than 50 µC

▪ Unconfigured current less than 100 mA

▪ Suspend current less than 2.5 mA

▪ Maximum configured current less than 500 mA

▪ SHOULD pass USB-IF’s USB Command Verifier test tools for USB 2.0 or 3.0. This is part of the
USB certification testing covered by the previous requirements.

▪ MUST use a valid USB Vendor ID (VID) registered to the device manufacturer. See [USB-VID] for

more information.

▪ SHOULD have a USB icon molded into the USB plug in conformance with USB 2.0 Connector
Mechanical Configuration and Material Requirements.

▪ MUST appear off when in USB suspend. LEDs MUST be off unless used to indicate battery charging
activity. All available analog sticks, analog triggers, and digital buttons MUST remain inactive

except for the button used to power on the accessory. All rumble and haptics features MUST
remain off. Any speaker output MUST remain inaudible except for accessories that use this to

communicate charging battery status.

▪ All partner accessories that seek to connect via wireless SHOULD leverage the USB path and
implement encryption on top of it to guarantee the privacy and security of the transport.

1.6 Applicability Statement

Applies to all accessories that utilize the Universal Serial Bus (USB).

1.7 Versioning and Capability Negotiation

None.

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=160819
https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=160819
https://go.microsoft.com/fwlink/?linkid=2282326
https://go.microsoft.com/fwlink/?linkid=2281523

9 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

1.8 Vendor-Extensible Fields

All GIP devices advertise a Hello message at enumeration that contains essential information
necessary for identification. This includes information required to identify their unique instance from

others: a device id akin to a serial number, the product vendor and model, and their firmware,
hardware, and protocol versions.

All accessories that utilize USB MUST use a valid USB Vendor ID (VID) registered to the device
manufacturer. See [USB-VID] for more information. See section 2.2.1 for vendor ID, product ID,
device ID, and secondary device ID.

1.9 Standards Assignments

None.

https://go.microsoft.com/fwlink/?linkid=2281523

10 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2 Messages

2.1 Transport

The Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension transports messages via the

Universal Serial Bus (USB) Core protocol as specified by [USB-SPC2.0] and [USB-SPC]. USB Core is an
external bus architecture that connects USB-capable peripheral devices to a host computer. Wired and
wireless USB adapters are supported.

2.2 Message Syntax

2.2.1 Device Hello Enumeration

All GIP devices advertise a Hello message at enumeration that contains essential information
necessary for identification. This includes information required to identify their unique instance from

others: a device id akin to a serial number, the product vendor and model, and their firmware,
hardware, and protocol versions. The following sections define Vendor ID, Product ID, Device ID, and
Secondary Device ID.

The device will continue to advertise a Hello message at an interval until the host replies with an
expected instruction. The host waits for a device’s Hello message before it responds with any further
instruction. Its function is comparable to a USB Device Descriptor.

While in the Arrival state, the device MUST send GIP Hello messages at 500 millisecond intervals until

a response is received from the host. No other messages SHOULD be sent to the host except for Hello
until a response is received from the host. For all GIP devices, this response message could be a
Metadata Request, a Set Device State: Off, or a Set Device State: Reset. Additionally, the response for
non-audio devices could be a Set Device State: Start, or for audio devices a Set Device State: Stop.

2.2.1.1 Vendor ID

The USB Vendor ID of a product identifies the partner company that produced the product. It is
assigned by the USB Implementer’s Forum (USB-IF). See [USB-VID] for more information. The VID
for all components that enumerate across the USB bus MUST match the VID registered with the USB-
IF for the submitting partner. If the Gaming Input Protocol (GIP) is used with a USB device, the
Vendor ID (VID) and Product ID (PID) specified in the USB Device Descriptor MUST match the VID and

PID specified in the primary GIP Hello message.

2.2.1.2 Product ID

The USB Product ID (PID) is allocated and assigned to a device by the vendor. This differs from the

USB Vendor ID (VID) which is assigned by the USB Implementer’s Forum (USB-IF). For purposes of
telemetry and differentiation, there are a few requirements that MUST be followed when a PID is
allocated to a product:

▪ MUST assign a unique USB Product ID (PID) to each primary accessory, colorway variant, and
secondary/sub-devices. There are approved exceptions where a secondary/sub-device PID can be
shared across different accessories from the same vendor product category. For example, an
embedded audio sub-device with similar functionality across all gamepads can share the same

PID. Note, however, that a sub-device PID MUST always be different than the primary accessory
PID. Finally, there MUST be a unique PID assigned to each GIP Mode the device supports. A GIP
Mode MAY be a device-type like Gamepad, Arcade Stick, Wheel, or Flight Stick. For example, an
Arcade Stick that supports operation as a Gamepad for compatibility reasons, would require
unique PID for each device-type. A GIP Mode MAY also be a supported protocol like GIP, HID, or
Bluetooth. For example, a GIP Wheel that also supports HID when connected to PC, would require

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=160819
https://go.microsoft.com/fwlink/?linkid=2281523

11 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

different PIDs for each protocol. Note, however, the PID SHOULD remain the same for a protocol

shared between communication interfaces.

▪ USB Product IDs MUST NOT be reused on future products even if the product is a re-launch of the
previous product. For example, Product A is assigned Primary PID 0x0123 and Secondary PID

0x0124. Product B MUST NOT use 0x0123 or 0x0124 as a primary PID. However, Product B MAY
use Secondary PID 0x0124 if the functionality of the sub-device is equivalent Product A’s
functionality.

2.2.1.3 Device ID

All GIP devices MUST have a unique 64-bit Primary Device ID of which the four most significant bytes
are 0x00, 0x00, 0xFF, 0xFB. The remaining bytes MUST be Random numbers, determined on bootup
of the GIP device. Note that if two devices have the same Device IDs, neither device will function
correctly. As a result, devices need to ensure reliable hardware-based random number generation.

Note: If Device ID generation fails, the device MUST retry or reset. A device MUST NOT continue
through the GIP connection process without a valid Device ID.

Figure 2: GIP device IDs example

2.2.1.4 Secondary Device ID

GIP supports enumeration of additional sub-devices after the primary device has completed the
Security Handshake successfully. These secondary sub-devices MUST also have their own unique

Device IDs. However, the Primary Device ID can be used to generate additional secondary sub-device
Device IDs.

The information in the following table is an example taken from a GIP controller. It shows the derived
IDs for both secondary devices (Audio and Other) through use of the GenerateSecondaryDeviceID
algorithm.

Note: Most GIP devices do not have other devices but do include audio. Unique device ID numbering

is noted by the bold digits in the following table.

12 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Device Sub-device VID PID DeviceID

0 0 (Primary) 0x045E 0x0B00 0000D60F4882ED7E

0 1 (3.5 mm Audio) 0x045E 0x0B01 0000D70F4882ED7E

0 2 (Other) 0x045E 0x0B02 0000D80F4882ED7E

Table 1: GIP controller example

Generating a Secondary Device ID is demonstrated in the following code snippet. The Secondary

Device ID is generated for a virtual sub-device from a Primary Device ID through addition of the
secondary device’s expansion index (see the Flags field in Message Header, section 2.2.10) to the
most significant non-zero byte of the Primary Device ID. If that addition wraps, it is carried backwards
to the previous byte for up to 4 bytes.

 #define DEVICE_ID_LEN (6)

 void GenerateSecondaryDeviceId(uint8_t* pDeviceId, uint8_t ExpansionIndex)
 {
 uint8_t j = 0;

 // Get Primary Device ID generated from Security Chip's PUID.
 GetPrimaryDeviceId(pDeviceId);

 // Generate a unique device ID for this virtual GIP sub-device by adding
 // the expansion index of the device to the most significant non-zero
 // byte of the Primary Device ID. If it wraps around, carry that
 // backward to previous byte for up to 4 bytes.
 for (uint8_t i = 1; i < 5 && j < ExpansionIndex; i++)
 {
 while (j < ExpansionIndex)
 {
 pDeviceId[DEVICE_ID_LEN - i]++;
 if (pDeviceId[DEVICE_ID_LEN - i] == 0)
 {
 break;
 }
 j++;
 }

 if (pDeviceId[DEVICE_ID_LEN - i] != 0)
 {
 break;
 }
 }
 }

2.2.2 GIP Metadata Exchange

All GIP devices provide details about supported system and vendor feature sets and their related
message properties through device-specific metadata. Metadata packets are requested by a host in
response to a GIP connection request or Hello message. Metadata contains immutable information
about the device. Its function is comparable to a Human Interface Device (HID) report descriptor.

The following figure demonstrates the exchange.

13 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Figure 3: GIP controller metadata exchange

The host will request metadata up to 4 times at 500ms intervals. After that period has expired, the
host will mark the device for removal. Devices SHOULD promptly reply with a Metadata response

(<500ms). If the device is in the process of responding to a Metadata request while it receives
another, the device SHOULD always ensure it replies at minimum to the most recent request. If the
device is unable to complete the metadata transfer and times out, the device MUST move back to the
Hello stage until it receives a new Metadata request, a GIP Set Device State: START (or STOP for
audio devices), or is commanded to turn off or reset via a GIP Set Device State: OFF/RESET

command.

Caching

The first time a device is plugged into the Host system it will be queried for the metadata. Subsequent
times might or might not query the device for the metadata as the system caches this information
when it can. If metadata for a GIP device has not been encountered before, the host will cache it for
quicker subsequent retrieval. The metadata cache can be cleared through a reboot (or power cycle) of
the host. A complete reboot of the system SHOULD remove the cache and cause a re-query of the
device’s metadata on re-enumeration.

Each standard GIP device type will have different metadata contents. A single device that allows the

user to switch between different GIP device types (such as between Arcade Stick and Gamepad)
SHOULD differentiate the fields used for metadata lookup in the Hello message so that they have

14 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

unique metadata cache entries. For example, if the host caches the metadata for the device in Arcade

Stick mode and the Hello message for Gamepad is not properly differentiated, the host will use the
cached Arcade Stick metadata for Gamepad mode and the device will not function properly. To assure
appropriate metadata association, a device can differentiate the Hello messages through use of either

a unique Product ID or unique Major or Minor Firmware Version fields for each mode. In general, using
a unique Product ID is preferred over differentiating by Firmware Version, but there might be
circumstances where Firmware Version is the best option.

Metadata lookup is performed by comparing the Hello message’s Vendor ID, Product ID, and Major
and Minor Firmware Version fields with any previously encountered entries. A single metadata blob for
a specific Vendor ID and Product ID combination can be shared across multiple firmware versions, so
long as the version advertised in the Hello message matches one listed within the metadata supported

firmware version list. At least one of the supported Major and Minor Firmware Version pairs listed in
metadata MUST match what is provided by the Hello message or the host will stop responding to the
GIP device after the conclusion of the metadata exchange.

At the conclusion of the metadata exchange, the host will inform the device that it can either start
normal activity or continue with any additional and necessary configuration.

GIP Gamepad metadata Example

The following is a typical GIP Gamepad metadata in JSON format. See section 4.1 for an example of
GIP Controller Metadata Exchange USB Trace.

 {
 "MetadataHeader" :
 {
 "MajorVersion" : 1,
 "MinorVersion" : 0
 },
 "DeviceMetadata" :
 {
 "SupportsDeviceFirmwareVersions" : [
 { "Major" : 1, "Minor" : 0 }
],
 "SupportedAudioFormats" : [],
 "SupportedInSystemCommands" : [1,2,3,4,6,7],
 "SupportedOutSystemCommands" : [1,4,5,6,10],
 "PreferredTypes" : [
 "Windows.Xbox.Input.Gamepad"
],
 "SupportedInterfaces" : [
 "9776FF56-9BFD-4581-AD45-B645BBA526D6",
 "082E402C-07DF-45E1-A5AB-A3127AF197B5",
 "B8F31FE7-7386-40E9-A9F8-2F21263ACFB7"
]
 },
 "Messages" : [
 {
 "MessageType" : 32,
 "MessageLength" : 14,
 "DataType" : "custom",
 "IsUpstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 9,
 "MessageLength" : 9,
 "DataType" : "custom",
 "IsDownstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 }
]

15 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

 }

Note the preferred type of Windows.Xbox.Input.Gamepad that specifies the DLL to load and the three
supported interfaces as follows:

▪ Windows.Xbox.Input.IController {9776FF56-9BFD-4581-AD45-B645BBA526D6}

▪ Windows.Xbox.Input.IGamepad {082E402C-07DF-45E1-A5AB-A3127AF197B5}

▪ Windows.Xbox.Input.INavigationController {B8F31FE7-7386-40E9-A9F8-2F21263ACFB7}

The preceding JSON is then transformed into a binary blob using the metadata compiler. See the
[MSLEARN-XIGC-API] gipdocs download for the source code.

The following shows a typical GIP Gamepad compiled metadata binary blob as source code.

 const unsigned char Metadata[182] =
 {
 0x10, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB6,
0x00, // 0x00

 0x77, 0x00, 0x16, 0x00, 0x1B, 0x00, 0x1C, 0x00, 0x23, 0x00, 0x29, 0x00, 0x46, 0x00, 0x00,
0x00, // 0x10

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x06, 0x01, 0x02,
0x03, // 0x20

 0x04, 0x06, 0x07, 0x05, 0x01, 0x04, 0x05, 0x06, 0x0A, 0x01, 0x1A, 0x00, 0x57, 0x69, 0x6E,
0x64, // 0x30

 0x6F, 0x77, 0x73, 0x2E, 0x58, 0x62, 0x6F, 0x78, 0x2E, 0x49, 0x6E, 0x70, 0x75, 0x74, 0x2E,
0x47, // 0x40

 0x61, 0x6D, 0x65, 0x70, 0x61, 0x64, 0x03, 0x56, 0xFF, 0x76, 0x97, 0xFD, 0x9B, 0x81, 0x45,
0xAD, // 0x50

 0x45, 0xB6, 0x45, 0xBB, 0xA5, 0x26, 0xD6, 0x2C, 0x40, 0x2E, 0x08, 0xDF, 0x07, 0xE1, 0x45,
0xA5, // 0x60

 0xAB, 0xA3, 0x12, 0x7A, 0xF1, 0x97, 0xB5, 0xE7, 0x1F, 0xF3, 0xB8, 0x86, 0x73, 0xE9, 0x40,
0xA9, // 0x70

 0xF8, 0x2F, 0x21, 0x26, 0x3A, 0xCF, 0xB7, 0x02, 0x17, 0x00, 0x20, 0x0E, 0x00, 0x01, 0x00,
0x10, // 0x80

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x17, // 0x90

 0x00, 0x09, 0x09, 0x00, 0x01, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, // 0xA0

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
// 0xB0

 };

2.2.2.1 GIP Metadata

GIP device manufacturers start with creation of the JavaScript Object Notation (JSON) metadata
descriptions for their device with the schema defined in the following GIP Metadata sections. They

then generate the metadata binary blobs from the JSON with the GIP metadata compiler. Partners

then need to embed these blobs into their device firmware. Generic JSON templates for the standard
device types are available as separate documentation for each device type.

Metadata provides the Host with information about:

▪ System message support

▪ Type-specific messages

▪ Supported types and interfaces

Metadata is described with JavaScript Object Notation (JSON), which is a human-readable

structured format. See [JSON-Schema].

Compiling the Metadata

https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?LinkId=392822

16 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

The JSON object is run through a compiler to produce a more compact binary blob. The compiler is

available as source code contained within a download available online. See [MSLEARN-XIGC-API].

Usage once the compiler source code is compiled:

MetadataCompiler inputfile [outputfile]

inputfile: The file that contains the JSON formatted metadata. This parameter is required.

outputfile: The resultant binary metadata blob. This parameter is optional. If not set the output will
be sent to inputfile.bin.

2.2.2.2 Metadata JSON Object

The complete metadata is a single top-level, unnamed JSON object that contains three name/value
pairs.

 {
 "MetadataHeader" : { … },
 "DeviceMetadata" : { … },
 "Messages" : […]
 }

2.2.2.3 Metadata Header Object

The MetdataHeader is an object that contains two name/value pairs.

 "MetadataHeader" : {
 "MajorVersion" : 1,
 "MinorVersion" : 0
 }

MajorVersion: An integer. It represents the major portion of the metadata specification this object

follows. Its value is 1.

MinorVersion: An integer. It represents the minor portion of the metadata specification this object
follows. Its value is 0.

2.2.2.4 Device Metadata Object

DeviceMetadata is of type object. It contains six name/value pairs.

 "DeviceMetadata" : {
 "SupportedInSystemCommands" : […]
 "SupportedOutSystemCommands" : […]
 "SupportedAudioFormats" : […]
 "SupportedDeviceFirmwareVersions" : […]
 "PreferredTypes" : […]
 "SupportedInterface" : […]
 }

The following sections define the DeviceMetadata fields.

2.2.2.4.1 SupportedInSystemCommands

https://go.microsoft.com/fwlink/?linkid=2281343

17 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

SupportedInSystemCommands is an array of integers. These values are the system commands

that the device can send to the console. The following table lists the commands. As noted in the table,
almost every device has this SupportedInSystemCommands name value pair.

 "SupportedInSystemCommand" : [1, 2, 3, 4, 6, 7]

Value Name Notes

1 Protocol Control Every device MUST support.

2 Hello Device Every device MUST support. Even though this is sent before the metadata
exchange, this MUST still be listed in the metadata

3 Status Device Every device MUST support.

4 Metadata Response Every device MUST support. Even though the device obviously supports the
metadata exchange (or the system would not look at this field), this MUST still
be listed in the metadata.

6 Security Exchange Every device MUST support.

7 Key Input Every device with an Xbox button MUST support this. This message is used for
indicated VKEY presses, and the Xbox button is in the form of a VKEY (0x5B or
VK_LWIN).

8 Audio Control Any device which supports audio, either input or output, MUST support this.

31 Debug Message Optional use for large packet debugging.

96 Audio Data Any device which provides audio MUST support, whether input or output.

Table 2: SupportedInSystemCommands name value pairs

2.2.2.4.2 SupportedOutSystemCommands

SupportedOutSystemCommands is an array of integers. These values are the system commands
that the device supports receiving. Almost all devices have the following array for out commands.

 "SupportedOutSystemCommands" : [1, 4, 5, 6, 10]

The following table lists the supported Out system commands.

Value Name Notes

1 Protocol Control Every device MUST support.

4 Metadata Request Every device MUST support. Even though the device obviously supports the
metadata exchange (or the system would not look at this field), this MUST still
be listed in the metadata.

5 Set Device State Every device MUST support.

6 Security Exchange Every device MUST support.

8 Audio Control Any device which supports audio, either input or output, MUST support this.

10 LED Commands Devices with a guide button MUST support this command.

31 Debug Message Optional, used for Large Packet Debugging.

96 Audio Data Any device which supports audio output MUST support this. Not required for
input-only (microphone) devices.

Table 3: SupportedOutSystemCommands name value pairs

18 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2.2.2.4.3 SupportedAudioFormats

SupportedAudioFormats is an array of unnamed audio format objects. The audio format objects can
contain one or two named objects to describe inbound and outbound audio format information.

 {
 "Inbound" : { ... },
 "Outbound" : { ... }
 }

If your device does not support audio, do not include this section.

If your device supports audio, it SHOULD specify the supported audio configuration here. The
configurations SHOULD be specified in order of preference, with the default mode listed first and
possible fallback modes second. Each section specifies inbound and outbound configurations. If a

device does not support both inbound (microphone) and outbound (speaker) audio, specify 0 for both
Channels and Rate on the nonexistent direction.

The purpose of a fallback mode is to enable a wireless audio product to function in a poor or noisy RF
environment. It only uses the best available audio quality.

Inbound and outbound are specified in pairs to prevent the device from attempting to configure an
inbound (capture)/outbound (render) combination of rates a given device might not support. For the
following example (example 1), the device will only request either a 24 KHz/48 KHz combination or a
12 KHz /24 KHz combination. It never requests 12 KHz /48 KHz because it is not listed in the
metadata.

Example 1: A stereo chat headset with microphone.

 "SupportedAudioFormats" :
[

 { "Inbound" : { "Channels" : 1, "Rate" : 24000 },
 "Outbound" : { "Channels" : 2, "Rate" : 48000 }

 },
 { "Inbound" : { "Channels" : 1, "Rate" : 12000 },

 "Outbound" : { "Channels" : 2, "Rate" : 24000 }

 }
]

Example 2: A microphone-only product.

 "SupportedAudioFormats" :
[

 { "Inbound" : { "Channels" : 1, "Rate" : 24000 },
 "Outbound" : { "Channels" : 0, "Rate" : 0 }

 }
]

2.2.2.4.3.1 Supported Frequencies

Any frequency can support one or two channels. All audio data formats are 16-bit, little endian. Multi-
channel audio devices MUST interleave the samples. The following lists supported frequencies:

▪ 0 (No data)

▪ 8000

▪ 12000

19 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

▪ 16000

▪ 20000

▪ 24000

▪ 32000

▪ 40000

▪ 48000

Note: Not all frequencies are appropriate for all functions, and the Host audio stack does not provide
resampling for all possible combinations of audio source and output frequency. For general purpose
audio the preferred frequencies are 24 kHz and 48 kHz. For custom devices where the only audio
provider will be a single title that understands the device, any frequency can be used on the
recommendation that the source frequency SHOULD match the output frequency. Audio resampling is

done in software, is computationally intensive and might result in poor quality.

2.2.2.4.4 SupportedDeviceFirmareVersions

SupportedDeviceFirmareVersions is an array of unnamed version objects. The version objects
contain two named number pairs.

 {
 "Major" : 1,
 "Minor" : 0
 }

Major and Minor in this object refer to the major and minor portion of the firmware version part of

the Hello message. The revision and build portion of the firmware are not used here.

This list of supported versions indicates what firmware this metadata describes. If the firmware

changes (new major or minor version), but the metadata information is unchanged (with the
exception of this array), both the new and the old versions SHOULD be included here. This allows the
system some efficiencies in lookup and storage of the metadata.

If the firmware major.minor that is reported in the Hello message is not present here, the device will

not work on the Host. If you change either, you MUST change this array. Changes to firmware revision
or build do not require a change to the metadata. It is recommended that the device SHOULD only
state the version here that matches the Hello message.

The following is an example that supports both 1.0 and 1.1 firmware revisions.

 "SupportedDeviceFirmareVersions" : [
 {
 "Major" : 1,
 "Minor" : 0
 },
 {
 "Major" : 1,
 "Minor" : 1
 }
]

2.2.2.4.5 PreferredTypes

PreferredTypes is an array of string values. The strings represent an ordered list of types supported
by the controller. Games (or the system) MUST provide a handler (usually a DLL) for the specified
type. If this does not exist, the next type is tried, until either a match is found, or the system is
unable to make a match. If no match is made, this device is not used.

20 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Published Types

▪ Windows.Xbox.Input.Gamepad

▪ Microsoft.Xbox.Input.ArcadeStick

▪ Windows.Xbox.Input.ArcadeStick

▪ Microsoft.Xbox.Input.Wheel

▪ Windows.Xbox.Input.Wheel

▪ Windows.Xbox.Input.NavigationController

Types that begin with Windows are built into the operating system. Types that begin with Microsoft
are not built into the operating system but are shipped as part of the title.

Custom Types

Hardware manufacturers can create their own types and provide a corresponding handler DLL so that

games will work with these custom types. These types SHOULD be named with the following format.

Company.Xbox.TypeLessSpecific.TypeMoreSpecific

For example, if fictional company Contoso were to create a gamepad that they market as the Shazam
Gamepad they would use Contoso.Xbox.Gamepad.Shazam. If they were creating a category of devices
for a high-end boat simulator, they could use type names such as the following:

▪ Contoso.Xbox.Boat.Sextant

▪ Contoso.Xbox.Boat.Rudder

▪ Contoso.Xbox.Boat.Anchor

It is NOT possible to extend an existing type. However, it is possible to be protocol compatible with an
existing type. To achieve this, device handlers are built to allow packets larger than those expected

and to expect and ignore packets with IDs that are unknown.

This allows devices to send messages that are extensions of existing messages. For example, if
Contoso wanted to have its Shazam gamepad include an extra slider (lightning-bolt shaped of course)

they could include this information at the end of the gamepad data packet. For a message with ID:
0x20, Flags: 0x00, and a payload of 14 bytes, they could change the payload size to 15 and append
the byte to the end.

Games that want to support the extra Shazam behavior would include
Contoso.Xbox.Gamepad.Shazam.dll. The hardware would enumerate the following preferred types.

 "PreferredTypes" : [
 "Contoso.Xbox.Gamepad.Shazam",
 "Windows.Xbox.Input.Gamepad",
 "Windows.Xbox.Input.NavigationController"
]

Games that include Contoso.Xbox.Gampead.Shamzam.dll would get the
Contoso.Xbox.Gamepad.Shazam type at runtime and be able to access the additional button state.
Games that did not include that DLL would fall back to the system supplied
Windows.Xbox.Input.Gamepad type and have access to standard Gamepad functionality, but not the

extra button state.

Audio devices which support chat or normal game audio are encouraged to specify
Windows.Xbox.Input.Headset as their typename. Custom audio devices which MAY provide title-
specific non-chat audio output SHOULD specify Windows.Xbox.Input.CustomAudio. Both types of
devices use the same message types and communication formats to stream audio data, specifically

21 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

system packet 96. Host does not support the vendor’s library directly handling of audio streaming, and

audio data is instead routed through the audio driver to ensure consistent quality.

Vendors are free to implement non-streaming scenarios such as the download of clips to the device for
later playback using non-system vendor commands. The GIP protocol MAY enforce a size limit on

vendor messages in either direction.

2.2.2.4.6 SupportedInterfaces

SupportedInterfaces is an array of string values. The strings represent interface GUIDs.

Published Types

▪ Microsoft.Xbox.Input.IGamepad {082E402C-07DF-45E1-A5AB-A3127AF197B5}

▪ Microsoft.Xbox.Input.IProgrammableGamepad {31C1034D-B5B7-4551-9813-8769D4A0E4F9}

▪ Microsoft.Xbox.Input.IArcadeStick {332054CC-A34B-41D5-A34A-A6A6711EC4B3}

▪ Microsoft.Xbox.Input.IWheel {646979CF-6B71-4E96-8DF9-59E398D7420C}

▪ Windows.Xbox.Input.INavigationController {B8F31FE7-7386-40E9-A9F8-2F21263ACFB7}

▪ Windows.Xbox.Input.IController {9776FF56-9BFD-4581-AD45-B645BBA526D6}

▪ Windows.Xbox.Input.IHeadset {BC25D1A3-C24E-4992-9DDA-EF4F123EF5DC}

▪ Windows.Xbox.Input.ICustomAudio {63FD9CC9-94EE-4B5D-9C4D-8B864C149CAC}

▪ Windows.Xbox.Input.IConsoleFunctionMap {ECDDD2FE-D387-4294-BD96-1A712E3DC77D}

A device SHOULD list supported interfaces in preferred order, from most specific to least specific.
Unlike the type, multiple interfaces MAY be used by the game for the same device.

Microsoft.Xbox.Input.IProgrammableGamepad is a flag for devices to opt-out of system remapping,
and instead apply vendor-specific internal remapping (to be defined and implemented by them).

All controller devices MUST list Microsoft.Xbox.Input.IController in SupportedInterfaces.

All audio devices which support game audio or headset/chat capabilities MUST list

Microsoft.Xbox.Input.IHeadset in SupportedInterfaces. Custom audio devices which play dedicated
sounds but do not support chat scenarios or full game audio SHOULD instead specify
Microsoft.Xbox.Input.ICustomAudio.

Custom Interfaces

Devices can also enumerate custom interfaces. The custom type handler DLL exposes these
interfaces. There is no requirement for the DLL to implement all interfaces exposed by the device. The
custom type handler does NOT directly implement Windows.Xbox.Input.IController as that

implementation is provided by a built-in system component.

Example for the Contoso Shazam Controller.

Contoso.Xbox.Gamepad.IShazam : {C91E76C0-1C6E-450B-8B33-5DB3947F6416}

 "SupportedInterfaces" : [
 "C91E76C0-1C6E-450B-8B33-5DB3947F6416",
 "082E402C-07DF-45E1-A5AB-A3127AF197B5",
 "B8F31FE7-7386-40E9-A9F8-2F21263ACFB7",
 "9776FF56-9BFD-4581-AD45-B645BBA526D6"
]

This translates in this order to the following.

 "SupportedInterfaces" : [

22 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

 "Contoso.Xbox.Gamepad.IShazam",
 "Microsoft.Xbox.Input.IGamepad",
 "Microsoft.Xbox.Input.INavigationController",
 "Microsoft.Xbox.Input.IController"
]

2.2.2.4.7 SupportedHidDescriptor

Some devices like a chatpad can tunnel human interface device (HID) input in GIP packets through
use of the GIP MessageType 0xB (System flag set). These devices SHOULD specify
Windows.Xbox.Input.Chatpad among the PreferredTypes and the SupportedHidDescriptor
SHOULD be the hex bytes of an appropriate HID descriptor as follows.

 "SupportedHidDescriptor" : "09 21 01 01 00 01 22 40 00 05 01 09 06 A1 01 05 07 19 E0 29 E7 15
00 25 01 75 01 95 08 81 02 95 01 75 08 81 01 95 05 75 01 05 08 19 01 29 05 91 02 95 01 75 03

91 01 95 06 75 08 15 00 26 FF 00 05 07 19 00 29 FF 81 00 C0"

"SupportedInterfaces" SHOULD include the GUID: "9776FF56-9BFD-4581-AD45-B645BBA526D6".

2.2.2.5 Messages Array

The Messages array is an array of unnamed Message objects. The messages in the array are the

non-system messages the device sends and receives. If a message is not listed here, the system will
not send the message to the device or pass the message up from the device. The Message objects
are collections of the following name/value pairs.

 {
 "MessageType" : number,
 "MessageLength" : number,
 "DataType" : string,
 "IsBigEndian" : boolean,
 "IsReliable" : boolean,
 "IsSequenced" : boolean,
 "IsDownstream" : boolean,
 "IsUpstream" : boolean,
 "Period" : number,
 "PersistanceTimeout" : number
 }

MessageType: A decimal number. This is the ID of the message.

MessageLength: A number that is the maximum length of the message. Smaller messages can be

sent/received. Messages larger than the set value will be ignored by the system.

DataType: A string that indicates the type of message. It MUST all be set to "custom".

IsBigEndian: A Boolean value (true or false) that indicates the endianness of the data in the
message. False indicates small-endian; true indicates big-endian.

IsReliable: A Boolean value. If true, indicates the packet SHOULD be ACK'd by the system (or if to
the device, the system will request an ACK. This SHOULD always be set to false. Not used by

third-party protocols.

IsSequenced: A Boolean that indicates if the messages are in sequence. All messages from the
console will have changing sequence ids. Devices SHOULD do the same. If this flag is set for
downstream, the console will ensure that the sequence IDs do not just change, but always change
by +1. Otherwise, this is not guaranteed (can change by 2 or can change by -1). This way the

23 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

receiver can know that it missed a particular message if it detects a gap. For USB devices this is

not a problem, and this SHOULD always be set to false.

IsDownstream: A Boolean value where true indicates this message is sent from the system to the
device. False indicates it is not sent from the system to the device.

IsUpstream: A Boolean value where true indicates this message is sent from the device to the
system. False indicates it is not.

Period: A number. This is not implemented by the console and SHOULD be set to 0.

PersistanceTimeout: A number. This is not implemented by the console and SHOULD be set to 0.

2.2.2.5.1 Message Example

The Gamepad supports two messages: one upstream only, one downstream only.

 "Messages" : [
 {
 "MessageType" : 32,
 "MessageLength" : 14,
 "DataType" : "Custom",
 "IsBigEndian" : false,
 "IsReliable" : false,
 "IsSequenced" : false,
 "IsDownstream" : false,
 "IsUpstream" : true,
 "Period" : 0,
 "PersistanceTimeout" : 0
 },
 {
 "MessageType" : 9,
 "MessageLength" : 60,
 "DataType" : "Custom",
 "IsBigEndian" : false,
 "IsReliable" : false,
 "IsSequenced" : false,
 "IsDownstream" : true,
 "IsUpstream" : false,
 "Period" : 0,
 "PersistanceTimeout" : 0
 }
]

2.2.3 USB Configuration

USB device Configuration consists of the following parts:

▪ USB device initialization

▪ USB remote wakeup

▪ USB control endpoints<1>

▪ Various Descriptors

2.2.3.1 USB Device Initialization

See [MSLEARN-XIGC-API] gipdocs download for a wire trace of GET/SET exchanges in figure 3-10.

https://go.microsoft.com/fwlink/?linkid=2281343

24 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2.2.3.2 USB Remote Wakeup

USB devices that support remote wakeup (indicated by the USB Configuration Descriptor’s
bmAttributes field) MUST have remote wakeup enabled (armed) by the host sending SET_FEATURE

DEVICE_REMOTE_WAKEUP before the host suspends the device for the device to be able to wake up
the host (USB 2.0 .1.7.7 Resume). If remote wakeup is not enabled, the USB device does not wake up
the host (USB 2.0 .1.1.6 Suspended).

USB GIP devices SHOULD not wake the host upon simple connection to the USB port on the host. USB
GIP devices SHOULD only wake the host when the Guide Button on the device is pressed. In the
scenario where the device does not have a Guide Button, waking the host SHOULD be restricted to the
control that powers on the host.

Note: Support for disabling remote wakeup (host sends CLEAR_FEATURE DEVICE_REMOTE_WAKEUP)
MUST comply with USB 2.0 2.5.2 Remote Wakeup and pass USBCV’s Remote Wakeup Test – Disabled
test case.

See [MSLEARN-XIGC-API] gipdocs download for wire traces in figures 3-11 and 3-12.

2.2.3.3 USB Control Endpoints

The following table summarizes standard requests and specific extensions.

Request Name SETUP Packet USB State Comments

 bmRe
quest
Type

bRequ
est

wValue wInde
x

wLeng
th

Dat
a

Def Adr Cfg

Standard Requests

GET_STATUS
(Device)

0x80 0x00 0x0000 0x000
0

0x000
2

STA
TUS

S V V

GET_STATUS
(Interface)

0x81 0x00 0x0000 INTERF
ACE

0x000
2

STA
TUS

S S S NOT
SUPPORTED

GET_STATUS
(Endpoint)

0x82 0x00 0x0000 ENDPO
INT

0x000
2

STA
TUS

S V:
EP0

V

CLEAR_FEATUR
E (Device)

0x00 0x01 0x0001 0x000
0

0x000
0

NON
E

S V V CLEAR
DEVICE_REM
OTE_WAKEUP

CLEAR_FEATUR
E (Interface)

0x01 0x01 FEATURE INTERF
ACE

0x000
0

NON
E

S S S NOT
SUPPORTED

CLEAR_FEATUR
E (Endpoint)

0x02 0x01 0x0000 ENDPO
INT

0x000
0

NON
E

S V:
EP0

V CLEAR
ENDPOINT_H
ALT

SET_FEATURE
(Device)

0x00 0x03 0x0001 0x000
0

0x000
0

NON
E

S V V SET
DEVICE_REM
OTE_WAKEUP

SET_FEATURE
(Interface)

0x01 0x03 FEATURE INTERF
ACE

0x000
0

NON
E

S S S NOT
SUPPORTED

SET_FEATURE
(Endpoint)

0x02 0x03 0x0000 ENDPO
INT

0x000
0

NON
E

S V:
EP0

V SET
ENDPOINT_H
ALT

SET_ADDRESS 0x00 0x05 ADDRESS 0x000
0

0x000
0

NON
E

V V S

GET_DESCRIPT 0x80 0x06 0x0100 0x000 LENGT DES V V V Returns up to

https://go.microsoft.com/fwlink/?linkid=2281343

25 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Request Name SETUP Packet USB State Comments

OR (Device) 0 H CRIP
TOR

18 bytes.

GET_DESCRIPT
OR (Config)

0x80 0x06 0x0200 0x000
0

LENGT
H

DES
CRIP
TOR

V V V Returns
CONFIG and
INT/EP
descriptors.

GET_DESCRIPT
OR (LANGID)

0x80 0x06 0x0300 0x000
0

LENGT
H

DES
CRIP
TOR

V V V Return
LANGID from
STRING
INDEX ZERO.

GET_DESCRIPT
OR (String)

0x80 0x06 0x03xx LANGI
D

LENGT
H

DES
CRIP
TOR

V V V Return
STRING
descriptor at
INDEX xx.
See String
Descriptors
section 2.2.4.

GET_DESCRIPT
OR
(DEVICE_QUALI
FER)

0x80 0x06 0x06xx 0x000
0

LENGT
H

DES
CRIP
TOR

S S S See USB
Device
Qualifier
section 2.2.5.

SET_DESCRIPT
OR (Device)

0x00 0x07 0x0100 0x000
0

LENGT
H

DES
CRIP
TOR

S S S NOT
SUPPORED.

SET_DESCRIPT
OR (Config)

0x00 0x07 0x0200 0x000
0

LENGT
H

DES
CRIP
TOR

S S S NOT
SUPPORTED.

SET_DESCRIPT
OR (String)

0x00 0x07 0x03xx LANGI
D

LENGT
H

DES
CRIP
TOR

S S S NOT
SUPPORTED.

GET_CONFIGUR
ATION

0x80 0x08 0x0000 0x000
0

0x000
1

CON
FIG

S V V CONFIG:
0x00 (Not
Configured)
and 0x01
(GIP Config.)

SET_CONFIGUR
ATION

0x00 0x09 CONFIG 0x000
0

0x000
0

NON
E

S V V CONFIG:
0x00 (Not
Configured)
and 0x01
(GIP Config).

GET_INTERFAC
E

0x81 0x0A 0x0000 INTERF
ACE

0x000
1

ALT_
SETT
ING

S S V NOT
SUPPORTED
by game
controllers
without GIP
Audio
Interface.

SET_INTERFACE 0x01 0x0B ALT_SET
TING

INTERF
ACE

0x000
0

NON
E

S S V NOT
SUPPORTED
by game
controllers

without GIP
Audio
Interface.

26 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Request Name SETUP Packet USB State Comments

SYNC_FRAME 0x82 0x0C 0x0000 ENDPO
INT

0x000
2

FRA
ME_
NO

S S S NOT
SUPPORTED
by game
controllers
without GIP
Audio
Interface.

Microsoft Windows Specific Extensions

GET_MS_OS_
DESCRIPTOR

0x80 0x06 0x03EE 0x000
0

0x001
2

DES
CRIP
TOR

S V V See OS
Descriptor
section 2.2.6.

GET_EXTENDED
_
COMPATIBLE_I
D_
DESCRIPTOR

0xC0 bMS_
Vendor
_ Code

0x0000 0x000
4

0x002
8

DES
CRIP
TOR

S V V See OS
Descriptor.

GET_EXTENDED
_ PROPERTIES_
DESCRIPTOR

0xC1 bMS_
Vendor
_ Code

0x0000 0x000
5

0x00A
0

DES
CRIP
TOR

S S S See OS
Descriptor.

Table 4: Standard device request summary

For the preceding table, in the Def, Adr and Cfg columns, S means STALL, and V means Valid. The
device MUST STALL the requests that are not listed in this table.

2.2.4 USB String Descriptors

All USB strings use UTF-16LE encoding and GIP USB strings MUST use 0x0409 English (United States)

for the Language ID (LANGID). USB String Descriptors include the following:

▪ LANGID (Index0)

▪ Manufacturer String (Index 1)

▪ Product String (Index 2)

▪ Serial Number String (Index 3)

LANGID (Index 0)

The host requests the LANGID from String Index 0x0000 and the device MUST respond with a String
Descriptor that contains 0x0409. See [MSLEARN-XIGC-API] gipdocs download for wire trace figure 3-
13.

Manufacturer String (Index 1)

The host MAY request the Manufacturer String from Index 0x0001 with LANGID 0x0409 and the
device responds with the Manufacturer String Descriptor. See [MSLEARN-XIGC-API] gipdocs download
for wire trace figure 3-14.

Product String (Index 2)

The host requests the Product String from Index 0x0002 with LANGID 0x0409 and the device MUST
respond with the Product String Descriptor. See [MSLEARN-XIGC-API] gipdocs download for wire trace

figure 3-15.

Serial Number String (Index 3)

https://go.microsoft.com/fwlink/?linkid=2281343

27 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

The host requests the Serial Number String from Index 0x0003 with LANGID 0x0409 and the device

MUST respond with the unique Serial Number String Descriptor that contains the device ID. See
[MSLEARN-XIGC-API] gipdocs download for wire trace figure 3-16.

2.2.5 USB Device Qualifier Descriptor

USB GIP devices MUST respond to a request for the device_qualifier descriptor with a request error
(STALL) to indicate that this is a Full-Speed (12 Mbps) device and not a High-Speed (480 Mbps)
device as per USB 2.0 specification .6.1 Device. To ignore this request has side effects with the "This

device can perform faster" pop-up message. See [MSLEARN-XIGC-API] gipdocs download for wire
trace figure 3-18.

2.2.6 Microsoft OS and Extended Compatible ID Descriptors

The host will identify GIP USB devices that use the Microsoft OS Descriptor / Extended Compatible ID

Descriptor mechanism. See [MSLEARN-USB-OS-Descriptors] for an overview. See also [MSLEARN-
XIGC-API] gipdocs download for wire traces figures 3-19 to 3-22 and Testing section.

The following table shows the Microsoft OS string descriptor.

Field
Length
(bytes) Value Description

bLength 1 0x12 Descriptor length in bytes.

bDescriptorType 1 0x03 STRING Descriptor Type.

qwSignature 14 'MSFT100' Signature field, UTF-16LE string
(4D00530046005400310030003000)

bMS_VendorCode 1 0x90 Vendor specified code to fetch Microsoft OS Feature
Descriptors. Default is 0x90.

bPad 1 0x00 Pad field

Table 5: Microsoft OS string descriptor

The following table shows the extended compatible ID descriptor.

Offset Field
Size
(bytes) Value Description

0 dwLength 4 0x00000028 Descriptor length in bytes.

4 bcdVersion 2 0x0100 Version 1.0

6 wIndex 2 0x0004 Extended Configuration Descriptor

8 bCount 1 0x01 Total number of Function Sections
that follow the Header Section.

9 RESERVED 7 0x00000000000000 Reserved

16 bFirstInterfaceNumber 1 0x00 Starting Interface Number for this
function.

17 bNumInterfaces 1 NUMBER Number of interfaces:

0x01: GIP game controller
without audio

0x02: GIP game controller
with audio

18 compatibleID 8 0x58, 0x47, 0x49, 0x50,
0x31, 0x30, 0x00, 0x00

'XGIP10' designates GIP compatible
device. Pad to 8 bytes with 0x00.

https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?linkid=2281180
https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?linkid=2281343

28 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Field
Size
(bytes) Value Description

26 subCompatibleID 8 0x0000000000000000 Secondary compatible ID (none).

34 RESERVED 6 0x000000000000 Reserved

Table 6: Extended compatible ID descriptor

2.2.7 USB Device Descriptor

The following table shows the device descriptor.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x12 Descriptor length in bytes.

1 bDescriptorType 1 0x01 DEVICE Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bcdUSB 2 0x0200 USB Specification Release Number in Binary-Coded Decimal
(that is, 2.00 is 0x0200). This field identifies the release of
the USB Specification with which the device and its
descriptors are compliant. Little Endian.

4 bDeviceClass 1 0xFF Vendor specific device class type (Table 9-8).

5 bDeviceSubclass 1 0x47 Vendor specific device subclass (USB 2.0 Table 9-8).

6 bDeviceProtocol 1 0xD0 Vendor specific protocol type (USB 2.0 Table 9-8).

7 bMaxPacketSize0 1 0x40 64-byte maximum data payload size to/from Control
Endpoint.

8 idVendor 2 NUMBER 16-bit Little Endian Vendor ID (VID) assigned to Microsoft by
the USB-IF.

10 idProduct 2 NUMBER 16-bit Little Endian USB Product ID (PID) assigned by the
vendor.

12 bcdDevice 2 BCD 16-bit Little Endian Vendor specified device release version in
Binary Coded Decimal (BCD).

14 iManufacturer 1 0x01 Index of Manufacturer string. String is Unicode (UTF-16LE).

15 iProduct 1 0x02 Index of Product string. String is Unicode (UTF-16LE).

16 iSerialNumber 1 0x03 Index of Serial number string. String is 32 hexadecimal digits
and contains 64-bit Device ID in Unicode (UTF-16LE).

17 bNumConfigure 1 0x01 Number of configurations: 1

Table 7: Device descriptor

2.2.8 USB Configuration Descriptor

The following table shows the configuration descriptor.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x09 Descriptor length in bytes.

1 bDescriptorType 1 0x02 CONFIGURATION Descriptor Type ([USB-SPC2.0], Table
9-5).

2 wTotalLength 2 NUMBER Total length of data returned for this configuration. This
includes this descriptor, all the interface descriptors, and
their endpoint descriptors.

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=207891

29 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Field
Size
(bytes) Value Description

4 bNumInterfaces 1 NUMBER Number of interfaces associated with the configuration.
NUMBER is:

0x01: game controller without audio

0x02: game controller with audio

5 bConfigurationValue 1 0x01 Value to use to set this configuration. This MUST be 1.

6 iConfiguration 1 0x00 No Configuration String Descriptor.

7 bmAttributes 1 NUMBER Bitmap configuration characteristics 0xA0 for game
controllers (remote wakeup supported):

D7…1: Reserved (set to one for historical
reasons)

D6…0: Bus Powered

D5…1: Remote Wakeup supported

D4…0: Reserved (reset to zero)

MAY be 0x80 (remote wakeup not supported) for other
accessories.

8 bMaxPower 1 NUMBER Peak current consumption in 2 mA units. Must be non-
zero and less than or equal to 500 mA (0xFA).

Table 8: Configuration descriptor

2.2.9 USB Interface Descriptors

The following subsections define the GIP data interface

2.2.9.1 GIP Data Interface

All GIP USB devices require a Data Interface (USB Interface #0) with one 64-byte packet capable
interrupt IN endpoint and one 64-byte packet capable interrupt OUT endpoint. Polling interval / rate is
up to 4 ms / 250 Hz. The following table shows the GIP data interface descriptor.

Offset Field Size (bytes) Value Description

0 bLength 1 0x09 Descriptor length in bytes.

1 bDescriptorType 1 0x04 INTERFACE Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bInterfaceNumber 1 0x00 Interface number.

3 bAlternateSetting 1 0x00 Alternate settings are not supported.

4 bNumEndpoints 1 0x02 Total number of endpoints in this interface.

5 bInterfaceClass 1 0xFF Vendor specific class

6 bInterfaceSubClass 1 0x47 GIP Subclass

7 bInterfaceProtocol 1 0xD0 GIP Protocol

8 iInterface 1 0x00 No Interface String Descriptor.

Table 9: GIP data interface descriptor

2.2.9.1.1 GIP Data Interrupt OUT Endpoint Descriptor

The following table shows the GIP Data Interrupt OUT endpoint descriptor.

https://go.microsoft.com/fwlink/?LinkId=207891

30 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x07 Descriptor length in bytes.

1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bEndpointAddress 1 0x01 D7: Direction:

0: OUT

1: IN

D6…4: Reserved

000

D3…0: Endpoint Number

0x01

3 bmAttributes 1 0x03 Interrupt endpoint.

4 wMaxPacketSize 2 0x0040 It is not required for the packet size to accommodate the
largest report in a single packet. One report can be sent
with two packets if so defined in the identifier descriptor.

D15…13: Reserved, MUST be zero

000

D12…11: Reserved, MUST be zero for Full Speed devices:

00

D10…0: Maximum packet size in bytes.

6 bInterval 1 NUMBER Polling interval in milliseconds: MUST be ≥ 4.

Table 10: GIP Data Interrupt OUT endpoint descriptor

2.2.9.1.2 GIP Data Interrupt IN Endpoint Descriptor

The following table shows the GIP Data Interrupt IN endpoint descriptor.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x07 Descriptor length in bytes.

1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bEndpointAddress 1 0x81 D7: Direction:

0: OUT

1: IN

D6…4: Reserved

000

D3…0: Endpoint Number

0x01

3 bmAttributes 1 0x03 Interrupt endpoint.

4 wMaxPacketSize 2 0x0040 It is not required for the packet size to accommodate the
largest report in a single packet. One report can be sent
with two packets if so defined in the identifier descriptor.

D15…13: Reserved, MUST be zero

000

D12…11: Reserved, MUST be zero for Full Speed devices:

00

D10…0: Maximum packet size in bytes.

6 bInterval 1 NUMBER Polling interval in milliseconds: MUST be ≥ 4.

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=207891

31 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Table 11: GIP Data Interrupt IN endpoint descriptor

2.2.10 Message Header

All upstream and downstream packets are wrapped by a GIP header which contains information about
the size, type of the data, and transport information. The size of the GIP header can be extended to
accommodate large payload sizes and includes a mechanism for the split of large payloads into
multiple packets for reliable transmission. The payload size for a packet is limited by the maximum
transmission unit (MTU) specified for the data class the message contains. See section 2.2.10.4 for

MTU sizes specified for supported data classes.

The following table shows the GIP single packet message header format.

Offset
(bytes)

Length
(bytes) Name Description

0 1 GIP MessageType Defines the Data Class and Message Number. See section 2.2.10.1.

1 1 GIP Flags Defines the content of the packet. See section 2.2.10.2.

2 1 GIP Sequence ID Wrapping counter for MessageType. Also used as an identifier for
message fragments within the same sequence.

0x00 is reserved for both system and vendor messages.

3 1 GIP Payload Length [7] Extended: 1 = Extend the length field to include the next byte
offset. (Extended fields also have an extend bit for further
extension.)

[6:0] Length of the payload (not header) in bytes.

Maximum length is the MTU for the Data Class indicated by the
MessageType field minus the length of the header. See MTU sizes
in section 2.2.10.4.

If the payload length is greater than 127 or an extended header size
is needed, set bit 7.

Table 12: GIP message header: single packet message

2.2.10.1 Message Type

The MessageType field defines which data class the packet contains and the message number.

Bits Field Values (Binary)

7:5 Data Class 000 = Command

001 = Low Latency Data

010 = Standard Latency Data

011 = Audio Data

Other = Reserved

4:0 Message Number 00000 – 11111

Table 13: GIP message header: MessageType field

GIP supports the following data classes:

▪ Command: Used to send commands to the device or to the host. It is available to both
upstream and downstream. There are two types of messages that use the Command Data
Class: System and Non-System. The System bit in the Flags field of the GIP header indicates
whether the data is a System Command and is therefore exempt from definition in Metadata.

32 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

▪ System Commands are the same for all devices. Because they are the same for all devices,

it is not necessary to define these Commands in the Message array of the Metadata. However,
they still MUST be listed within either the SupportedInSystemCommands array or the
SupportedOutSystemCommands array or both arrays in the Metadata.

▪ Non-System Commands are messages specific to a device or subset of devices and
therefore MUST be defined within the Messages array in the Metadata.

Note: 0x1F (31) is reserved for both System and Non-System commands.

▪ Low Latency Data: Used to send device data to the host with a short latency. These
messages are defined in the Metadata (non-system). Although this data class is available to
downstream as well as upstream, its primary purpose is for upstream data. There are no
defined interfaces with downstream messages that use the Low Latency Data class.

Formerly known as Controller 1 Data.

▪ Standard Latency Data: Similar but longer than the Low Latency Data class. These
messages are defined in the Metadata (non-system). This data class is available to both

upstream and downstream. There are no defined interfaces with messages that use the
Standard Latency Data Class. Formerly known as Controller 2 Data.

▪ Audio Data: Used to send audio data between the device and host. It is available to both

upstream and downstream. These messages are not defined in the Metadata (system).

2.2.10.2 Flags

The Flags field values define the content of the message. They are used to indicate if the message is
fragmented, if it is the first fragment of a fragmented message, if it is a system defined message,

and if the message requires acknowledgement. The field also includes the expansion index to identify
the device the message is intended for or from where it is sent. The following table defines these
flags.

Bits Field Values

7 Fragment 0: This message is not fragmented. It is completely contained in the payload attached
to this header.

1: This message is fragmented. The payload attached to this header contains only a
fragment of the complete message.

See Reliable Large Message Transmission section 3.1.5.2.

6 InitFrag This bit is valid only when Fragment bit is set to 1.

0: This is not the first fragment of a fragmented message. The field immediately
following the Length field specifies the offset of this fragment within the full message.

1: This is the first fragment of a fragmented message. The total length of the
message is specified in the field immediately following the Length field.

See Reliable Large Message Transmission section 3.1.5.2.

5 System 0: Message is not a System Message. The message MUST be defined in the Metadata
under the Messages array.

1: Message is a System Message. This message is the same for all devices and thus
not required to be defined in the Metadata but is required to be listed under the
SupportedInSystemCommands and SupportedOutSystemCommands arrays.

4 ACME 0: This complete message or fragment requires no acknowledgement.

1: This complete message or fragment requires acknowledgement.

See Reliable Message Acknowledgement section 3.1.5.2.

3 Reserved 0: Always zero

2:0 Expansion Index 000…111: Index of device or module attached to the device. The primary device itself
is always 000.

Table 14: GIP message header: Flags field

33 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2.2.10.3 Sequence ID

The GIP Sequence ID is a rolling counter that tracks the number of similar messages sent and allows
for potential identification of missing messages/packets via skips in the sequence. GIP Messages share

a global Sequence ID pool that SHOULD be incremented any time a message in the global pool is sent.
Some GIP Messages require a unique Sequence ID pool. Unique pools are specific to the message type
and SHOULD be maintained separately from the global pool and other unique pools. In general,
System messages that are not Audio, Security, or Extended Command messages will use the Global
pool. Everything else will use a unique pool based on the message type. The following table shows the
messages, types, class, system, and pool type.

Message Type Class System Message Pool

Protocol Control 0x01 (1) Command Yes Global

Hello Device 0x02 (2) Command Yes Global

Status Device 0x03 (3) Command Yes Global

Metadata Response 0x04 (4) Command Yes Global

Set Device State 0x05 (5) Command Yes Global

Security Control / Data 0x06 (6) Command Yes Unique

Guide Button Status 0x07 (7) Command Yes Global

Audio Control 0x08 (8) Command Yes Global

LED Guide Button 0x0A (10) Command Yes Global

Extended Commands 0x1E (30) Command Yes Unique

Large Message Request / Debug 0x1F (31) Command Yes Global

Audio Render / Capture 0x60 (96) Audio Yes Unique

Vendor Messages

 Gamepad Vibration Report

 Gamepad Input Report

 Gamepad Overflow Input Report

Varied

0x09 (9)

0x20 (32)

0x26 (38)

Varied

Command

Low Latency

Low Latency

No

 -

 -

 -

Unique

 -

 -

 -

Table 15: GIP Message header: Sequence ID pools

2.2.10.4 GIP Payload Length MTUs

The GIP Payload Length field defines the length of the message payload in bytes. The length does
not include the header length. The maximum number of bytes allowed depends on the data class and
is defined in the following table.

Data Class MTU (bytes)

Command 64

Low Latency 64

Standard Latency 64

Audio (USB) 2048

Table 16: GIP message header: maximum transmission units (MTUs)

Payload Length can become a multiple byte field by setting bit 7, which indicates the next byte
represents the next higher order 7 bits of the composite number. Extension bytes can be further
extended (to a maximum of 4 bytes) by setting bit 7 of the extension byte.

Anytime the payload exceeds 127 bytes, or an extended header size is needed, bit 7 SHOULD be set.

34 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2.2.11 Audio Initialization

An audio streaming device is a special case. Audio data is not routed to or from the vendor’s library.
Instead, it is communicated directly to the host’s audio stack. Special handling is done to ensure

regular and continuous flow of data.

Initialization of an audio device has a few extra steps relative to a gamepad or other controller. The
audio frequency for a device MUST be configured before the device can be started and audio flow
begins. Audio initialization for secondary audio devices SHOULD delay 500 ms to 1000 ms after the
primary device initializes prior to transmission of the Audio Device Hello message.

If the host stalls after metadata, audio devices SHOULD not resend hello. Instead, the device SHOULD
wait for the host to take the next action, whether it be Audio Configuration or STOP. The initialization

sequence of an audio device is as follows.

Figure 4: Audio device initialization sequence

The first steps of Hello and Metadata exchange (if required) are the same as with any other device.
After this point the host will send a Set Device State: STOP, followed by an audio control message to

specify the audio configuration the device is to use. This differs from non-audio devices that receive a
Set Device State: START, after Hello or the Metadata exchange.

The host always picks the first configuration listed in the SupportedAudioFormats section of the
device’s metadata. See section 2.2.2 for GIP metadata. The device will respond to the request with
the format configuration it is using. Additional format negotiations will not be issued by the host

35 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

unless the device responds with a mismatched format configuration, or the host fails to receive a

response from the device within one second. The response will be the same as the format request,
apart from the sequence ID. However, in the case the host receives a mismatched audio configuration,
it will try up to four times to negotiate a matching configuration with the device. The device SHOULD

not send the audio format response until it has properly configured its audio hardware and is prepared
to send or receive audio data.

If the device’s hardware configuration does not support the requested audio format, the device
SHOULD reply with a format it can support from the list of audio configurations in the
SupportedAudioFormats section of the metadata. The host will then retry negotiation of the audio
configuration first by transmission of Set Device State: STOP, then another Audio Control:
Configuration message that uses the format indicated by the device.

As previously noted, the host will make up to four attempts to set the configuration and will wait up to
one second each attempt for a matching response. If the device has not replied with a matching
format after four attempts, the host marks the device for removal.

If at any point the device responds with a format that is not in its SupportedAudioFormats list in
metadata, the host ignores it. The host will time out after 1000 ms and continue to renegotiate the
initial request until the maximum number of attempts is exceeded. The host assumes that it supports

all formats listed in the SupportedAudioFormats list in the metadata. Upon receipt of a matching
audio control format response from the device, the host sends a Set Device State: START message.

After receipt of the Device State: START message, the audio device SHOULD, as soon as is practical,
send an Audio Control: Volume or Audio Control: Volume Extended message to the host as the host
might not start to play audio data until a volume indication is received. The host sends Set Device
State: START at 500 ms intervals until receipt of the volume message, or until it times out after 3
seconds. If no volume message is received from the device, the host fails the device unless it receives

an audio capture message. The device SHOULD attempt to send the volume indication before any
captured audio is sent. Otherwise, the host assumes a default volume configuration. The device

SHOULD also not wait for security to complete before the volume indication and captured audio are
sent. Note that any volume changes made to the device or audio sent to the host during the security
handshake are processed in parallel.

Once started, audio data flows continually even if the data represents only silence, until the device is
powered off, disconnected, or until the host requests a new audio configuration first through

transmission of a Set Device State: STOP.

2.2.11.1 Starting Audio Capture

If audio capture is supported, the device SHOULD begin transmission as soon as is practical after

receipt of the Device State: START message and after the volume indication is sent. The device
SHOULD not wait until after the security handshake, as that can result in excessive delays if there are
security retries. The host waits up to 3 seconds for an audio volume or volume extended message

from the host after the initial GIP Set Device State: START. During the wait for a volume message, the
host continues to send GIP Set Device State: START messages at a 500 ms interval until either the 3
second timeout expires or an audio volume or capture message is received.

▪ If no volume message is received, but an audio capture packet is, the host assumes the volume

packet was lost and uses a default of speaker volume: 50%, game/chat balance: 50%, and
microphone volume: 100%. The host also assumes the volume settings are read-only. A unique
diagnostic message is logged.

▪ If neither a volume message nor an audio capture packet is received, the host assumes that audio
initialization failed, and the device is marked for removal. A unique diagnostic message is logged.

▪ If a volume message is received, but no audio capture packets have been received for 10 seconds,

the host assumes the device's microphone has stalled. A universal telemetry error is reported. The
device remains connected.

36 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

2.2.11.2 Lost Initialization Packets

In some circumstances, the initialization process can be salvaged when certain packets are lost.

▪ For audio devices, while in the Idle state after transmission of metadata, if an initial Audio Control:

Configuration message is received, it can be assumed the expected Set Device State: STOP
message was lost and that the device can go ahead and proceed with the next step of Audio
Initialization through reply to the Audio Control: Configuration message.

▪ For audio devices, while in the Arrival state, if a GIP Audio Control: Configuration message is
received, it can be assumed the GIP Set Device State: STOP message was lost and that the device
can go ahead and proceed with the next step of Audio Initialization through reply to the Audio
Control: Configuration message.

2.2.11.3 Audio Reconfiguration

If GIP needs to reconfigure the audio stream, the behavior is the same as the initialization sequence
and begins with the Set Device State: STOP message. The following figure shows the audio device

reconfiguration sequence.

Figure 5: Audio device reconfiguration sequence

2.2.12 GIP Audio Interface Descriptors

If the Configuration Descriptor indicates more than one Interface Descriptor (GIP devices require at
minimum the GIP Data Interface) an Audio Interface and Alternate MUST be defined (USB Interface
#1). Most GIP controllers define the Alternate to have one 64-byte packet capable isochronous IN
endpoint and one 228-byte packet capable isochronous OUT endpoint. Polling interval / rate is up to 1
mS / 250 Hz. The following table shows the GIP Audio Interface descriptor.

37 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x09 Descriptor length in bytes.

1 bDescriptorType 1 0x04 INTERFACE Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bInterfaceNumber 1 0x01 Interface number.

3 bAlternateSetting 1 0x00 Alternate settings are not supported.

4 bNumEndpoints 1 0x00 Total number of endpoints in this interface.

5 bInterfaceClass 1 0xFF Vendor specific class.

6 bInterfaceSubClass 1 0x47 GIP Subclass.

7 bInterfaceProtocol 1 0xD0 GIP Protocol.

8 iInterface 1 0x00 No Interface String Descriptor.

Table 17: GIP Audio Interface descriptor

2.2.12.1 GIP Audio Interface Descriptor Alternate

The following table shows the GIP Audio Interface descriptor alternate.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x09 Descriptor length in bytes.

1 bDescriptorType 1 0x04 INTERFACE Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bInterfaceNumber 1 0x01 Interface number.

3 bAlternateSetting 1 0x01 Alternate settings are not supported.

4 bNumEndpoints 1 0x02 Total number of endpoints in this interface.

5 bInterfaceClass 1 0xFF Vendor specific class.

6 bInterfaceSubClass 1 0x47 GIP Subclass.

7 bInterfaceProtocol 1 0xD0 GIP Protocol.

8 iInterface 1 0x00 No Interface String Descriptor.

Table 18: GIP Audio Interface descriptor alternate

2.2.12.2 GIP Audio Isochronous OUT Endpoint Descriptor

The following table shows the GIP Audio Isochronous OUT endpoint descriptor.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x07 Descriptor length in bytes.

1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bEndpointAddress 1 0x02 D7: Direction:

0: OUT

1: IN

D6…4: Reserved

000

D3…0: Endpoint Number

0x02

https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=207891
https://go.microsoft.com/fwlink/?LinkId=207891

38 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Field
Size
(bytes) Value Description

3 bmAttributes 1 0x01 Isochronous, no synchronization, data endpoint.

4 wMaxPacketSize 2 0x00E4 It is not required for the packet size to accommodate the
largest report in a single packet. One report can be sent with
two packets if so defined in the identifier descriptor.

D15…13: Reserved, MUST be zero:

000

D12…11: Reserved, MUST be zero for Full Speed devices:

00

D10…0: Maximum packet size in bytes.

6 bInterval 1 1 For full-speed isochronous endpoints, the bInterval value is
used as an exponent for a 2(bInterval-1) value. A bInterval value
of 1 indicates a polling interval of 1 ms. This MUST be 1.

Table 19: GIP Audio Isochronous OUT endpoint descriptor

2.2.12.3 GIP Audio Isochronous IN Endpoint Descriptor

The following table shows the GIP Audio Isochronous IN endpoint descriptor.

Offset Field
Size
(bytes) Value Description

0 bLength 1 0x07 Descriptor length in bytes.

1 bDescriptorType 1 0x05 ENDPOINT Descriptor Type ([USB-SPC2.0], Table 9-5).

2 bEndpointAddress 1 0x82 D7: Direction:

0: OUT

1: IN

D6…4: Reserved

000

D3…0: Endpoint Number

0x02

3 bmAttributes 1 0x01 Isochronous, no synchronization, data endpoint.

4 wMaxPacketSize 2 0x0040 It is not required for the packet size to accommodate the
largest report in a single packet. One report can be sent
with two packets if so defined in the identifier descriptor.

D15…13: Reserved, MUST be zero:

000

D12…11: Reserved, MUST be zero for Full Speed devices:

00

D10…0: Maximum packet size in bytes.

6 bInterval 1 1 For full-speed isochronous endpoints, the bInterval value is
used as an exponent for a 2(bInterval-1) value. A bInterval value
of 1 indicates a polling interval of 1 ms. This MUST be 1.

Table 20: GIP Audio Isochronous IN endpoint descriptor

https://go.microsoft.com/fwlink/?LinkId=207891

39 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3 Protocol Details

3.1 GIP Accessory Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation can
maintain to participate in this protocol. The organization is provided to help explain how the protocol
works. This document does not require that implementations adhere to this model, provided their
external behavior is consistent with that specified in this document.

The following figure shows the four major GIP Device States plus generic USB Suspended and Device

Reset states. In implementation the Idle state would have multiple internal states to handle
transmission of the GIP Metadata Response message and the Active state would have multiple

internal states to send and receive GIP messages, handle security, and so on. These have been
omitted for clarity along with standard USB device states. USB Reset and USB Suspend MUST be
handled by all the GIP states. Signals in CAPITALS are implemented through the GIP messages Set
Device State or Metadata Request. Note that the host can repeat the Metadata Request in the Idle
state.

40 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Figure 6: GIP device state diagram

Anytime a GIP device is in the Arrival state it SHOULD only send GIP Hellos at 500 ms intervals until

the host responds. See Notes on the Hello stage for details.

▪ In the Off state a GIP device SHOULD appear powered off: motors off, LEDs off, and so on. USB

devices SHOULD wait for the host to signal USB Suspend before suspending.

▪ While in the Idle state after transmission of metadata, if an initial GIP Set Device State message
of STOP (only audio devices) or START (only non-audio devices) is not received within 500 ms, the
device can assume the message was lost and transition to the next state or operation. This

SHOULD NOT happen for any transitions into the Idle state from the Active state.

▪ During the transition to the Idle state from the Arrival state via a GIP Metadata Request, if
reliable transmission of metadata times out, that is if a GIP Protocol Control ACK is not received
from the host within 1 second of a requested ACK, the device MUST transition back to the Arrival
state and begin to resend GIP Hello messages.

▪ Vendor messages MUST NOT be sent before receipt of GIP Set Device State START from the host
unless START can be safely assumed as noted previously.

▪ Upon receipt of GIP Set Device State RESET or GIP Set Device State OFF a device MUST
immediately reply with a GIP Status that indicates powering off. The other fields of this status

41 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

message SHOULD indicate the current status. The device SHOULD then wait 500 ms before a

power off or reset to ensure the message gets sent to the host and processed. No other traffic
SHOULD be transmitted from the device except this status message. During this wait the device
can save parameters in persistent storage, do other cleanup and anything else needed before a

power off or reset. If the device receives a GIP Set Device State OFF, GIP Set Device State STOP,
or GIP Set Device State RESET before the 500 ms timer expires, the device can immediately tear
down all sub-devices and then power off or reset from that point. However, no state change other
than the initial OFF or RESET is allowed. For example, if receipt of an OFF is followed by a RESET,
the device SHOULD continue to power off rather than reset. Disassociation prior to the host receipt
and processing of a powering off message from the device will be perceived as an unexpected
disconnect by the host.

▪ Upon reconnection after a GIP Set Device State RESET, the device SHOULD send GIP Hello's at
500 ms intervals until the host responds, as it does if it were to connect for the first time.

▪ When there is an attempt to power off a device, after GIP Set Device State OFF is sent to the
primary device, the GIP host follows up with a GIP Set Device State STOP command to the

primary device and any secondary or sub-devices that are attached. A status response from the
secondary device is not expected if OFF was sent to the primary device.

▪ Audio devices in the Audio Control Format Handshaking phase are marked for removal if they do
not respond to the host with a valid audio control format after four attempts.

▪ USB Reset and USB Suspend MUST be handled by all GIP states.

3.1.2 Timers

The host requests metadata up to four times at 500 ms intervals.

3.1.3 Initialization

For USB Device initialization see section 2.2.3.1.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

The following subsections define GIP processing messages, commands, and events.

3.1.5.1 Reliable Message Acknowledgement

The sender can request that the receiver acknowledge a GIP message (or more commonly a message
fragment) by setting the ACME (ACknowledge ME) bit in the Flags field of the GIP header. The

receiver replies with a Protocol Control message (See Protocol Control section) with the ControlCode
field set to ACK. This is used for large GIP messages such as metadata and security. To increase
protocol efficiency, the host and device do not request that all GIP message fragments in a long
sequence be acknowledged. In large transmissions and to avoid redundant sends, the device MUST

request ACME before the ACK timeout of 100 ms triggers on the host. For large transmissions, devices
MUST set the ACME flag of the GIP header:

▪ When it is the first packet in the transmission.

▪ When it is the last packet in the transmission.

▪ Before 100 ms has elapsed since the last received protocol control ACK in the transmission.

As of GIP library version 3.2, the device requests ACME every 60 ms from the start of the transmission
and from the last received protocol control ACK.

42 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

There are occasions where the host sends an ACK even if not requested. The ACKs in these instances

help communicate possible transmission or buffer issues. The host abides by the following rules for
transmission of ACK:

▪ If the message type is defined as a reliable message, the host always ACKs the initial fragment.

▪ If a fragment has the ACME flag set, the host always ACKs it.

▪ If the message type is defined as a reliable message, and the host has received all the data, the
host ACKs the final fragment.

▪ If the host receives a fragment with an initial offset that does not directly follow the ending offset
of the last received fragment (likely due to a missed packet), and the host has not sent any other
ACKs for this transfer within 100 ms, the host sends an ACK that indicates the total amount of
sequential contiguous data received. Note that the host discards fragments beyond the offset it is

expecting, and they MUST be resent in sequential order.

▪ If the host expects another fragment, has not exceeded 8 ACKs without a response, has not sent
any other ACKs for this transfer within 100 ms, and the duration since last receipt of data has not

exceeded the defined reliable message timeout (1,000 ms), the host sends an ACK that indicates
the total amount of sequential contiguous data received at the processing interval of 8 ms.

The following diagram shows the message fragment processing flow.

43 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Figure 7: Reliable message ACK process flow

3.1.5.2 Reliable Large Message Transmission

GIP messages which are larger than the MTU for the data class contained are fragmented across
multiple packets and require additional handling. See MTU sizes section 2.2.10.4. Some system
commands that require the use of message fragmentation include Metadata, Security, and Extended
Commands. Large GIP messages require the GIP’s Protocol Control features (section 3.1.5.1) and
TCP-like triple handshakes. All fragments of a fragmented message use the same number in the
Sequence ID field of the GIP header. The ACME bit of the GIP header’s Flag field is set in the first and

44 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

last fragment to request acknowledgment. To increase protocol efficiency the host and device do not

request that all other middle fragments be acknowledged, usually just every fourth or fifth packet.

To handle message fragmentation, the header includes an extra field to indicate either the total
message length (in the case of the first fragment) or the fragment offset (in subsequent fragments).

For all fragments, the Fragment bit of the GIP header’s Flag field is set, that indicates that there is
an additional field after the Payload Length field. For the first fragment, the InitFrag bit of the GIP
header’s Flag field is set to one to indicate that the additional field represents Total Length of the
complete message. For subsequent fragments, the InitFrag bit is set to zero to indicate the additional
field represents Offset of the fragment within the complete message. The extra field is often referred
to as the TLO field (Total Length or Offset).

The GIP fields used for Payload Length, Total Length, and Offset can all become multiple byte

fields by setting bit 7, which indicates the next byte represents the next higher order 7 bits of the
composite number. Extension bytes can be further extended (with a maximum of 4 bytes) by setting
bit 7. This practice is often used for large Audio messages. For fragmented messages, one of these

length fields in a packet’s GIP header becomes a two-byte field to bring the GIP header size to an
even 6 bytes. Downstream GIP headers are required to have an even number of bytes due to specific
device constraints. Upstream messages can have an odd sized GIP header; however, we recommend

that accessories keep all GIP headers at an even number of bytes through use of the length extension
method even if the length field sizes can be expressed in an odd number of bytes. The examples in
this document use even sized GIP headers.

The following tables show two possible GIP header formats for the first fragment of a fragmented
message. The format 1 allots 2 bytes for GIP Payload Length and 1 byte for Total Message Length.
The reverse is true for format 2.

Packets with 6-byte GIP headers that transport data classes with MTUs less than 134 bytes can always

use the format 1: set the Total Message Length’s High Byte to zero when the Total Message Length is
less than 128 bytes. However, accessories will need to support both formats downstream since the

host MAY use either.

The following table gives format 1 for the header message's first fragment where the total message
length is less than 128 bytes.

Offset
(bytes) Value Name Description

0 000X_XXXX GIP MessageType [7:5] Data Class: 000 (Command)

[4:0] Message Number: 0…31

1 11X1_0XXX GIP Flags [7] Fragment: 1

[6] InitFrag: 1

[5] System: X

[4] ACME: 1

[3] Reserved: 0

[2:0] Expansion Index XXX

2 Variable GIP Sequence ID Fixed value for all message fragments in same multiple
packet message sequence.

3 1XXX_XXXX GIP Payload Length
(Low Byte)

Length of payload data in bytes, that is, length of this
fragment. Expanded to two bytes to pad header to an even
number of bytes: (High byte * 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

4 0XXX_XXXX GIP Payload Length
(High Byte)

45 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Total Message Length Length of full GIP message in bytes.

[7] Extended: 0 (not extended)

[6:0] 7 bits of length: 0 to 127 bytes

Table 21: GIP Message Header: First Fragment of Fragmented Message Format 1

The following table gives format 2 for the header message's first fragment where the total message
length is greater than 128 bytes.

Offset
(bytes) Value Name Description

0 000X_XXXX GIP MessageType [7:5] Data Class: 000 (Command)

[4:0] Message Number: 0…31

1 11X1_0XXX GIP Flags [7] Fragment: 1

[6] InitFrag: 1

[5] System: X

[4] ACME: 1

[3] Reserved: 0

[2:0] Expansion Index XXX

2 Variable GIP Sequence ID Fixed value for all message fragments in same multiple

packet message sequence

3 0XXX_XXXX GIP Payload Length Length of payload data in bytes, that is, length of this
fragment.

[7] Extension: 0 (not extended)

[6:0] 7 bits of length: 0 to 127 bytes

4 1XXX_XXXX Total Message Length
(Low Byte)

Length of full GIP message in bytes. Expanded to two
bytes to pad header to an even number of bytes: (High
byte * 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Total Message Length
(High Byte)

Table 22: GIP Message Header: First Fragment of Fragmented Message Format 2

For the second fragment, shorter GIP messages that need only two fragments skip directly to the Final
fragment format shown in final fragment table. Longer messages need fragments that intervene, and
these use the format from either middle fragment tables. Packets with 6-byte GIP headers that
transport data classes with MTUs less than 134 bytes can always be represented with only 7 bits. If
the offset is less than 16,384, the offset can always be represented with 2 bytes (set offset’s high byte

to zero when the offset is less than 128 bytes). Therefore, 6-byte GIP headers with MTUs less than
123 bytes can always follow the format in the middle table format 2. However, accessories need to
support both formats downstream because the host uses both.

The following table gives format 1 for the header message's middle fragment where the offset is less
than 128 bytes.

46 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

0 000X_XXXX GIP MessageType [7:5] Data Class: 000 (Command)

[4:0] Message Number: 0…31

1 10XX_0XXX GIP Flags [7] Fragment: 1

[6] InitFrag: 0

[5] System: X

[4] ACME: X

[3] Reserved: 0

[2:0] Expansion Index XXX

2 Variable GIP Sequence ID Fixed value for all message fragments in same multiple
packet message sequence

3 1XXX_XXXX GIP Payload Length
(Low Byte)

Length of payload data in bytes, that is, length of this
fragment. Expanded to two bytes to pad header to an even
number of bytes: (High byte * 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

4 0XXX_XXXX GIP Payload Length
(High Byte)

5 0XXX_XXXX Fragment Offset Offset in bytes of fragment within full GIP message.

[7] Extended: 0

[6:0] 7 bits of length: 0 to 127 bytes

Table 23: GIP Message Header: Middle Fragment of Fragmented Message Format 1

The following table shows format 2 for the header message's middle fragment where the offset could
be greater than 127 bytes.

Offset
(bytes) Value Name Description

0 000X_XXXX GIP MessageType [7:5] Data Class: 000 (Command)

[4:0] Message Number: 0…31

1 10XX_0XXX GIP Flags [7] Fragment: 1

[6] InitFrag: 0

[5] System: X

[4] ACME: X

[3] Reserved: 0

[2:0] Expansion Index XXX

2 Variable GIP Sequence ID Fixed value for all message fragments in same multiple
packet message sequence.

3 0XXX_XXXX GIP Payload Length Length of payload data in bytes, that is , length of this
fragment.

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: 0 to 127 bytes

4 1XXX_XXXX Fragment Offset
(Low Byte)

Offset in bytes of fragment within full GIP message.
Expanded to two bytes to pad header to an even number of
bytes: (High byte * 128) + (Low byte & 0x7F).

5 0XXX_XXXX Fragment Offset

47 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

(High Byte) Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

Table 24: GIP Message Header: Middle Fragment of Fragmented Message Format 2

The following table shows the final fragment of the fragmented GIP header message.

Offset

(bytes) Value Name Description

0 000X_XXXX GIP MessageType [7:5] Data Class: 000 (Command)

[4:0] Message Number: 0…31

1 10X1_0XXX GIP Flags [7] Fragment: 1

[6] InitFrag: 0

[5] System: X

[4] ACME: 1

[3] Reserved: 0

[2:0] Expansion Index XXXX

2 Variable GIP Sequence ID Fixed value for all message fragments in same multiple
packet message sequence.

3 0XXX_XXXX GIP Payload Length Length of payload data in bytes, that is, length of this
fragment.

[7] Extended: 0 (not extended)

[6:0] 7 bits of length: 0 to 127 bytes

4 1XXX_XXXX Fragment Offset
(Low Byte)

Offset in bytes of fragment within full GIP message.
Expanded to two bytes to pad header to an even number of
bytes: (High byte * 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Fragment Offset
(High Byte)

Table 25: GIP Message Header: Final Fragment of Fragmented Message

3.1.5.3 Coalescing Messages

Multiple small GIP messages can be packed into a single packet. Wheel and arcade stick libraries do
not use this feature for downstream packets.

3.1.5.4 Message Summary

The following table summarizes GIP messages for a quick reference.<2>

48 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Type Flags Sequence
Payload
Length

First
Payload
Byte

Header
Size Message

Direct
ion

Data
Class Description

0x01 0x20 Variable 0x09 Control
Code

4 Protocol
Control

Bidirec
tional

Com
mand

ACKs transfers
and indicates
receive buffer
status.

0x02 0x20 Incrementi
ng

0x1C Data 4 Hello
Device

Upstre
am

Com
mand

Device sends to
Host when
communication
is established
every 500 ms
until Host
responds.

0x03 0x20 Incrementi
ng

(0x01 is
deprecat
ed),
0x04, or
0x23-
0x37

Status 4 Status
Device

Upstre
am

Com
mand

Device state
report: battery
level, battery
type, and so on.
Presence of
Extended Status
fields indicated
in second
payload byte.

0x04 0x20 Incrementi
ng

0x00 N/A 4 Metadata
Request

Downs
tream

Com
mand

Request for
primary device’s
metadata.

0x04 Varia
ble

Incrementi
ng

Variable Data 4 or 6 Metadata
Response

Upstre
am

Com
mand

Single or
multipacket
response that
contains primary
device’s
metadata.

0x04 0xA0 Incrementi
ng

0x00 N/A 4 Metadata
Complete

Upstre
am

Com
mand

Completes TCP-
like triple
handshake at
end of each
multipacket
metadata
transfer. Not
applicable to
single packet
responses.

0x05 0x20 Incrementi
ng

0x01 State 4 Set
Device
State

Downs
tream

Com
mand

Set device state.

0x05 0x20 Incrementi

ng

0x0F State 4 Set

Device
State

Downs

tream

Com

mand

Set device state.

0x06 Varia
ble

Incrementi
ng

Variable Type 4 or 6 Security
Data

Bidirec
tional

Com
mand

Security
Command that
contains security
data or PUID.

0x06 0xA0 Incrementi
ng

0x00 N/A 4 Security
Data
Complete

Bidirec
tional

Com
mand

Completes TCP-
like triple
handshake at
end of each
multipacket
security transfer.

49 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Type Flags Sequence
Payload
Length

First
Payload
Byte

Header
Size Message

Direct
ion

Data
Class Description

Not applicable to
single packet
responses.

0x06 0x20 Incrementi
ng

0x02 Type 4 Security
Control

Downs
tream

Com
mand

Indicates
security state.

0x07 0x20 Incrementi
ng

0x02 Data 4 Guide
Button
Status

Upstre
am

Com
mand

Guide button
status on the
device.

0x08 0x20 Incrementi
ng

Variable Type 4 Audio
Control

Bidirec
tional

Com
mand

Audio format
configuration
and volume
settings.

0x09 0x00 Incrementi
ng

0x09 Type 4 Direct
Motor
Comman
d

Downs
tream

Com
mand

Directly controls
vibration and
impulse motors.

0x0A 0x20 Incrementi
ng

0x03 Type 4 Guide
Button
LED

Downs
tream

Com
mand

Control Guide
button LED
intensity.

0x0A 0x20 Incrementi
ng

0x06 Type 4 IR LED Downs
tream

Com
mand

Set IR LED
pattern for
Controller
Pairing.

0x1E 0x20 Incrementi
ng

Variable Type 4 or 6 Extended
Comman
d

Bidirec
tional

Com
mand

Host requests for
device
telemetry, serial
number, and
trace logging.

0x1F 0x20 Incrementi
ng

Variable Type 4 or 6 Debug
Comman
d

Bidirec
tional

Com
mand

Large Message
testing, Test
Commands.
Dev-kit only.
Optional.

0x20 0x00 Incrementi
ng

0x0E Data 4 Gamepad
Input
Report

Upstre
am

Low
Laten
cy

Buttons,
Triggers,
Thumbstick, and
so on data.

0x20 0x00 Incrementi
ng

0x20 Data 4 Gamepad
Input
Report
w/ Share
Button

Upstre
am

Low
Laten
cy

Buttons,
Triggers,
Thumbstick, and
so on data.

0x26 0x00 Incrementi
ng

0x12 Data 4 Overflow
Input
Report
w/ Share
Button

Upstre
am

Low
Laten
cy

Host Function
Map Extension.

0x60 0x20 Incrementi
ng

Variable Data 4 or 6 Audio
Render

Downs
tream

Audio Speaker audio
data.

0x60 0x20 Incrementi
ng

Variable Flow Rate 4 or 6 Audio
Capture

Upstre
am

Audio Flow rate and
microphone
data.

50 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Table 26: GIP Message Quick Reference

3.1.5.5 Core System Messages

3.1.5.5.1 Hello Device Command

A device to host message contains information about the device that connects to a host. The device
SHOULD continue to send this message every 500 ms until the host responds either with Metadata
Request or Set Device State Start. The host does not respond to a Hello message if the Device ID
field is not per the format in the following table.

Hardware Version MAY be conditionally used, with approval, to identify unique non-gamepad device
configurations or for cosmetic variations of any device. Unique Hardware Version values help identify
variations of devices in device health analytics. Utilization of unique Hardware Version values for
device differentiation is defined in the requirements or specification documentation specific to the

device category: Flight, Headset, Gamepad, Wheel, and so on. See [MSLEARN-XIGC-API] gipdocs
download.

The following table describes the Hello device message structure.

Offset
(bytes) Value Name Description

0 0x02 GIP MessageType Command Data Class, Command 2.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data class that is
incremented each time Command packet is sent. 0x00 is

reserved.

3 0x1C GIP Payload Length Length of payload data: 28 bytes.

4 0xZZ DeviceID DeviceID. 8 bytes, little endian,
0x00:00:UU:VV:WW:XX:YY:ZZ.

See Device ID section 2.2.1.3.
5 0xYY

6 0xXX

7 0xWW

8 0xVV

9 0xUU

10 0x00

11 0x00

12 0xRR Vendor ID Vendor ID. 2 bytes, little endian. 0xQQRR. Same as USB
Vendor ID.

13 0xQQ

14 0xPP Product ID Product ID. 2 bytes, little endian. 0xOOPP. Same as USB
Product ID.

15 0xOO

16 0xNN Firmware Version
Major<3>

Firmware Version Major. 2 bytes, little endian. 0xMMNN.
Vendor defined but MUST match Major field in metadata’s
SupportsDeviceFirmwareVersions. 17 0xMM

18 0xLL Firmware Version
Minor

Firmware Version Minor. 2 bytes, little endian. 0xKKLL.
Vendor defined but MUST match Minor field in metadata’s
SupportsDeviceFirmwareVersions. 19 0xKK

20 0xJJ Firmware Version Firmware Version Build. 2 bytes, little endian. 0xIIJJ. Vendor

https://go.microsoft.com/fwlink/?linkid=2281343

51 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

21 0xII Build<4> defined. This field is not compared against metadata.

22 0xHH Firmware Revision FW Revision. 2 bytes, little endian. 0xGGHH. Vendor
defined. This field is not compared against metadata.

23 0xGG

24 Number Major Version Hardware Version. Vendor defined. This field is not
compared against metadata.

25 Number Minor Version<5>

26 0x01 Major Version RF Protocol Version. Major Version MUST be 0x01 and Minor
Version MUST be 0x00 (including for wired devices).

27 0x00 Minor Version

28 0x01 Major Version Security Protocol Version. Major Version MUST be 0x01 and
Minor Version MUST be 0x00.

29 0x00 Minor Version

30 0x01 Major Version GIP Version. Major Version MUST be 0x01 and Minor Version
MUST be 0x00.

31 0x00 Minor Version

Table 27: Upstream GIP Message: Hello Device

3.1.5.5.2 Status Device Command

Device to host message provides the current status of the device. There are eight events on which a
device MUST send status:

▪ Connection (as soon as possible after receipt of Set Device State: START from host).

▪ Reconnection after disconnect (as soon as possible after receipt of Set Device State: START from
host).

▪ Power off (before device powers off for both host initiated and device-initiated events).

▪ Reset (before device resets for both host initiated and device-initiated events).

▪ Charging state changes (after value change).

▪ Battery type changes (after value change).

▪ Periodically every second for the first 10 seconds.

▪ Periodically every 20 seconds after the first 10 seconds.

▪ The timer for the periodic status SHOULD be reset anytime a Status Device message is sent.

▪ Battery level changes between periodic status messages SHOULD be rolled into the next periodic
message. This is to prevent a device with an oscillating battery from transmission of excessive
messages to the host.

Other than for power off or reset state changes, status SHOULD NOT be sent before receipt of Set
Device State: START from the host.

The status field of a Status Device Message sent during Power Off or Reset MUST reflect the actual

state of the device at the time of the power off or reset process.

3.1.5.5.2.1 Legacy Status Device Message

DEPRECATED. The original version of the Status Device Message was replaced with an expanded
version (see section 3.1.5.5.2.2). All new GIP devices MUST use the expanded version. The host’s GIP
driver<6> identifies truncated messages and adds in the missing fields.

The following table describes the upstream GIP Legacy Status Device message format.

52 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

0 0x03 GIP MessageType Command Data Class, Command 3.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgment required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 Variable Status See Status Field and table section 3.1.5.5.2.2.1.

Table 28: Upstream GIP Message: Legacy Status Device Message

3.1.5.5.2.2 Extended Status Device Message

This format MUST be used for all new GIP devices.

The following table shows the upstream GIP Extended Status Device message structure.

Offset
(bytes) Value Name Description

0 0x03 GIP MessageType Command Data Class, Command 3.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 Variable GIP Payload Length If the Events Present bit of Extended Status field is 0, the
length of the payload data is 4 bytes.

If Events Present bit of Extended Status field is 1, the length
of the payload data is a minimum of 35 bytes and a
maximum of 55 bytes.

4 Variable Status See section 3.1.5.5.2.2.1 Status Field table.

5 Variable Extended Status See section 3.1.5.5.2.2.2 Extended Status Field table.

6 0x00 Reserved For future use.

7 0x00 Reserved For future use.

8 Variable Event Count Optional. Offsets 8 and up are only included if the Events
Present bit is set in the Extended Status field. At minimum,
the host expects three events. If the Event Count is less than
three, the bytes that remain SHOULD be zeroed. If the Event
Count is greater than three, the trailing events MAY be
discarded by the host. Events SHOULD appear from oldest to
latest order (FIFO). To avoid message fragmentation, only a
maximum of five events can be specified per status message.
Because status messages are expected to be sent frequently,
a device can choose to buffer a maximum of five events and
discard any further until the event buffer is cleared via the
next transmission. See Extended Status Events section
3.1.5.5.2.3 for the definition of specific Event types. Events
SHOULD NOT be sent outside of the expected status
scenarios. They are rolled into the next periodic status report,
or the first status report sent by the device after a power

cycle or reset, whichever comes first.

9…18 Variable Event 1

19…28 Variable Event 2

29…38 Variable Event 3

39…48 Variable Event 4

49…58 Variable Event 5

Table 29: Upstream GIP Message: Extended Status Device Message

53 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3.1.5.5.2.2.1 Status Field

The status field of the Legacy Status Device and Extended Status Device Message relays the current
power state information of the device. This information is used to trigger UI updates on host and to

inform the system when the device is powering off. The status field MUST always reflect the actual
state of the device at the time the status is sent. A status of zero is not valid except for a USB-only
device without batteries that is powering off. All other devices are expected to always have non-zero
status messages.

The following table lists the available status messages.

Bit Field Values Description

7:6 Power level 00: Device powering off/resetting.

01: Not used, formerly Standby

10: Full Power

11: Reserved

Current power status/state of the
device.

5:4 Charge 00: Not charging

01: Charging

10: Charge error

11: Reserved

Charging state of the batteries in the
device.

3:2 Battery Type 00: Battery Absent

No battery present/USB BUS powered.

01: Battery Standard

Alkaline Battery/Not Rechargeable.

10: Rechargeable Battery

Rechargeable battery detected.

11: Reserved

The presence or type of battery in the
device. USB-only devices MUST show
00.

1:0 Battery Level 00: Critically Low

Less than 2 hours of charge remaining.

01: Low

Approximately 25% charge remaining.

10: Medium

Halfway through 50% depletion
estimate.

11: Full

Close to full charge/fully charged.

Current charge level of the battery.
USB-only devices MUST show 00.

Table 30: Status Device Message: Status Field

The Critically Low Battery Level state has special significance as the host depends on receipt of two

consecutive status reports that indicate Critically Low to provide an on-screen pop-up warning to users
on console. Powering off due to low battery without triggering the toast MAY give the user the
impression that the device shut down unexpectedly. Battery level notifications provided by the device
do not supplant the requirement for correct battery level reporting. Additionally, USB bus powered
only devices SHOULD always report Critically Low.

Devices with rumble/haptics MAY disable them when the battery enters the Critically Low state to
conserve power. This does not apply to devices that MUST report Critically Low based on the device

connection and battery type. A wired device with no battery MUST report Critically Low (see the
following table); however, it is not allowed to disable the rumble/haptic motors because that is
specifically reserved for devices with batteries to conserve power.

The following table defines the values expected in the periodic Device Status Message Status Field
based on data connection type and battery composition. Wired or Wireless in the table refers to

54 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

whether the USB device is a wired controller or a USB adapter connected to a wireless device.

Batteries are not differentiated by specific battery chemistry but rather by the ability to be recharged
by the GIP device that contains them.

Rechargeable represents:

▪ The presence of a battery that can be charged directly by the GIP device that contains it, which
does not require removal of the battery prior to recharging.

▪ Any device that has built in, non-removable, rechargeable batteries.

Standard represents:

▪ Batteries that cannot be recharged.

▪ Rechargeable batteries that MUST be removed prior to charging.

▪ Rechargeable batteries that can be charged during use but are charged by an external source

other than the GIP device that contains the battery.

▪ A GIP device that lacks the ability to charge batteries contained within.

Full Power is always expected when the device is not powering off for a known reason or resetting. If
the device is powering off or resetting, the power level MUST indicate Powering Off.

When powering off, all other fields are expected to reflect the current status of the device. It is not
acceptable to send a powering off status of zero with the exception of a wired device without

batteries.

If the device contains a rechargeable battery and it has not had a chance to measure the battery level
prior to transmission of an Extended Status Device Message, the device SHOULD report a Battery
Level of Full until it can gather an accurate measurement of the actual battery level. The accurate
battery level measurement SHOULD be included in the next periodic or required status message,
whichever occurs first. The following table shows device messages for connection type and charging

capabilities.

Scenarios Status Device Message: Status Field: Expected Values

Connection Battery
Detected

Power
Level

Charge Battery Type Battery Level

Wired No Batteries Full Power Not Charging Battery Absent Critically Low

Wired Standard Full Power Not Charging Battery Absent Critically Low

Wired Rechargeable Full Power Actual Charging
Status

Rechargeable
Battery

Actual Battery Level

Wireless Standard Full Power Not Charging Battery Standard Actual Battery Level

Wireless Rechargeable Full Power Not Charging Rechargeable
Battery

Actual Battery Level

Table 31: Expected Status Device Messages for Connection Type and Charging Capability

The table reads from left to right. A wired device with no batteries, when not powering off, SHOULD
send "Full Power, Not Charging, Battery Absent, Critically Low" in all status reports. When powering
off, the "Power Level" SHOULD report "Device is powering off".

3.1.5.5.2.2.2 Extended Status Field

The Extended Status field of the Extended Status Device Message is used to notify the system that

there are additional status events in the payload and indicate activity on the device.

The following table shows the Extended Status field of a device message.

55 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Bit Field Values

7:2 Reserved Must be zero

1 Events Present 0: No Data

1: Data

0 Device Active 0: Device Inactive

1: Device Active

Table 32: Extended Status Device Message: Extended Status Field

The device MUST send status in the scenarios defined in Status Device Command section 3.1.5.5.2.

On connection/reconnection, status SHOULD be sent after receipt of Set Device State: START. Other
than for power off or reset state changes, status SHOULD NOT be sent before getting Set Device
State: START.

During transmission of status, if the input data has changed in the last 20 seconds, the Device Active
bit is set. Otherwise, the Device Active bit is cleared. GIP devices that lack IR LEDs SHOULD always
clear the Device Active bit.

The Events Present bit is used to indicate that an Extended Status Event is included in the payload.

The presence of an extended status event indicates that there is some form of unexpected disconnect
or fault detected. The event data can be used to better define the reason for the last unexpected
disconnect.

3.1.5.5.2.3 Extended Status Events

The Extended Status Device Message (section 3.1.5.5.2.2) provides for five events. There are four

types of Extended Status Events that can be attached to a GIP Extended Status message. These are
Disconnect, Fault, Performance, and Power State events. None of the Extended Status Events are
expected to persist a power off. However, the data for a Fault Event is expected to persist a reset so

that it can be transmitted with the first GIP Extended Status from the device following a successful
GIP connection. Similarly, the data for a Disconnect Event is not transmitted until the first GIP
Extended Status following a successful GIP reconnection. For devices that can switch between
exclusive Bluetooth and GIP connections, the device MUST hold onto the event until it can be logged

via the next successful GIP connection, unless, as previously noted, there is a loss of power. The
device MUST retain at minimum the last three events; however, with the addition of Performance
Events, five is preferred.

3.1.5.5.2.3.1 Fault Event

Fault Events log occurrences of failed assertions in code, watchdog timeouts, hard faults, or entry into
other exception handlers such as non-maskable interrupt (NMI), supervisor call (SVC), or PendSV.

These events are tagged when the fault occurs and logged when the device subsequently restarts and
reaches the Start state. The fault address SHOULD be set to the program counter (PC) whenever

possible. The fault tags themselves are implementation-specific; however, the following table does
provide examples. Some possible ways to retain the tag and address information for the next
application startup are to either store the values in non-volatile memory, or to store them in non-
initialized volatile memory and determine their validity via a startup cause likely obtained from

hardware registers (such as a watchdog timeout).

The following table describes possible fault event messages.

Offset (bytes) Value Name Description

0…1 0x0002 Event Type Fault Event

2…5 Variable Fault Tag Recommended Tags (if applicable):

0: Unknown Fault

56 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset (bytes) Value Name Description

1: Hard Fault

2: NMI Exception

3: SVC Exception

4: PendSV Exception

5: SmartPtr_Tag

6: MemManage Exception/MCU Assertion Failure

7: Bus Fault

8: Usage Fault

9: Radio Hang

10: Watch Dog Warning

11: Link Stall

12: Subsystem Assertion Failure

6…9 Variable Fault Address Address at which fault occurred, or zero if not known

Table 33: Fault Event

3.1.5.5.3 Metadata Request Command

Host to device request for metadata. The host resends this request to the device at 500 ms intervals if

it does not receive a complete response within that timeframe.

The following table describes the downstream GIP Metadata Request Command message format.

Offset Value Name Description

0 0x04 GIP MessageType Command Data Class, Command 4.

1 0x20 GIP Flags Single packet system message to primary device. No
acknowledgement required.

2 Variable GIP Sequence ID ID is 1 for primary devices.

3 0x00 GIP Payload Length Length of payload data: zero bytes.

Table 34: Downstream GIP Message: Metadata Request Command

3.1.5.5.4 Metadata Response Command

3.1.5.5.4.1 Initial Metadata Response Command

First fragment of fragmented device to host metadata message.

The following table shows the upstream GIP Initial Metadata Response Command message format.

Offset
(bytes) Value Name Description

0 0x04 GIP MessageType Command Data Class, Command 4.

1 0xF0 GIP Flags First Fragment: fragment, initial fragment, system message
from primary device, acknowledgement required.

2 Variable GIP Sequence ID Fixed value for all message fragments.

3 0XXX_XXXX GIP Payload Length Length of payload data in bytes, that is, length of this
fragment.

 [7] Extended: 0 (not extended)

 [6:0] 7 bits of length: 0 to 127 bytes

4 1XXX_XXXX Total Message Length Length of full GIP message in bytes. Expanded to two bytes

57 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

(Low byte) to pad header to an even number of bytes: (High byte * 128)
+ (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Total Message Length
(High byte)

6…63 … Data 58 bytes of data.

Table 35: Upstream GIP Message: Initial Metadata Response Command

3.1.5.5.4.2 Middle Metadata Response Command

Fragments between initial fragment and final fragment of fragmented device to host metadata
message. The following table shows the upstream GIP Middle Metadata Response Command message

format.

Offset Value Name Description

0 0x04 GIP MessageType Command Data Class, Command 4.

1 0xA0 GIP Flags Middle Fragment: Fragment, not initial fragment, system
message from primary device, no acknowledgement required.

2 Variable GIP Sequence ID Fixed value for all message fragments.

3 1XXX_XXXX GIP Payload Length
(Low byte)

Length of payload data in bytes, that is, length of this fragment.
Expanded to two bytes to pad header to an even number of
bytes: (High byte * 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: 0 to 127 bytes

4 0XXX_XXXX GIP Payload Length
(High byte)

5 Variable Fragment Offset Offset in bytes of fragment within full GIP message.

6…63 … Data 58 bytes of data.

Table 36: Upstream GIP Message: Middle Metadata Response Command

3.1.5.5.4.3 Final Metadata Response Command

Last fragment of fragmented device to host metadata message.

The following table shows the upstream GIP Final Metadata Response Command message format.

Offset Value Name Description

0 0x04 GIP MessageType Command Data Class, Command 4

1 0xB0 GIP Flags Last fragment: Fragment, not initial fragment, system message
from primary device, acknowledgement required.

2 Variable GIP Sequence ID Fixed value for all message fragments.

3 Variable GIP Payload Length Length of payload data in bytes, that is, length of this fragment.

58 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

4 1XXX_XXXX Fragment Offset
(Low byte)

Offset in bytes of fragment within full GIP message. Expanded to
two bytes to pad header to an even number of bytes: (High byte
* 128) + (Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0-127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Fragment Offset
(High byte)

… … Data

Table 37: Upstream GIP Message: Final Metadata Response Command

3.1.5.5.4.4 Metadata Complete Command

The device to host message indicates that metadata transfer is complete. It completes triple
handshake similar to TCP.

The following table shows the upstream GIP Metadata Complete Command message format.

Offset Value Name Description

0 0x04 GIP MessageType Command Data Class, Command 4

1 0xA0 GIP Flags Completion: Fragment bit set since part of the fragmented
message transfer, not initial fragment, system message from
primary device, no acknowledgement required.

2 Variable GIP Sequence ID Since part of the fragmented message transfer, MUST be the
same sequence ID as all fragments for the message.

3 0x00 GIP Payload Length Length of payload data: zero bytes. This allows receiver to
distinguish this from a data-bearing Metadata Response message.

4 1XXX_XXXX Message Length
(Low Byte)

Length of full GIP message in bytes. Expanded to two bytes to
pad header to an even number of bytes: (High byte * 128) +
(Low byte & 0x7F).

Low byte:

[7] Extended: 1

[6:0] 7 bits of length: 0 to 127 bytes

High byte:

[7] Further Extension: 0 (not extended)

[6:0] 7 bits of length: (0 to 127) * 128 bytes

5 0XXX_XXXX Message Length
(High Byte)

Table 38: Upstream GIP Message: Metadata Complete Command

3.1.5.5.5 Set Device State Command

Host to device message used to set the state of the device.

The following table shows the downstream GIP Set Device State Command message format.

Offset Value Name Description

0 0x05 GIP MessageType Command Data Class, Command 5.

1 0x20 GIP Flags Single packet system message to primary device. No

59 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is incremented
each time Command packet is sent. 0x00 is reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 Variable State New device state. See Device States table for details.

Table 39: Downstream GIP Message: Set Device State Command

The following table describes the GIP device states.

State Name Description

0x00 Start GIP device SHOULD transition to the GIP Active State. See State Machine for details on
device behavior section 3.1.1.

0x01 Stop GIP device SHOULD transition to the GIP Idle State. See State Machine for details on
device behavior.

0x02 Not used. Formerly Standby.

0x03 Full power Resets idle user timer to prevent wireless devices from turning off. Not relevant to USB
wired-only devices which SHOULD ignore this.

0x04 Off GIP device SHOULD transition to the GIP Off State. See State Machine for details on
device behavior.

0x05 Quiesce This is used by the host to signal to a device when the focus changes from one app to
another or from an app to the dashboard. This is triggered when the Guide button on the
device is pressed to open the guide. The device SHOULD clear all motor states, FFB
equations and memory, and so on. The app, with the help of the appropriate device
library, is expected to restore any required motor state, FFB state, and so on, to the
device when the app resumes.

0x06 Reserved Reserved.

0x07 Reset Full device reset. The device SHOULD cleanly tear down the GIP stack as if it were
shutting down. The device SHOULD then reinitialize everything as it does on power up.
Before resetting, the device MUST send a status message that indicates the Device is
Powering Off.

Others Reserved Reserved.

Table 40: Device States

3.1.5.5.6 Guide Button Status

Device to host message sent to communicate Guide button status changes on the device.

When a device is off, the Guide button SHOULD wake the device when pressed. If the Guide button
remains held while the device powers on, the device MUST never send a button pressed event to the
host until after the first release. The device can choose not to send any button pressed or released
events on initial use, or it can choose to send ONLY the button released event. After that, it MUST
send both a button pressed event and a button released event.

3.1.5.5.7 LED eButton Command

Host to device message used to set the device’s Guide button LED intensity to match the Guide button
intensity on the Guide host.

The host always sends the LED Guide Button Command after START even if the LED Guide Button
message type is not specifically declared in the device’s metadata.

The following table shows the downstream GIP LED Guide Button Command message format.

60 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

0 0x0A GIP MessageType Command Data Class, Command 10.

1 0x20 GIP Flags Single packet system message to primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x03 GIP Payload Length Length of payload data: 3 bytes.

4 0x00 Command Guide Button LED command.

5 Variable Guide Button LED Pattern Guide button LED Pattern to display. See Guide Button
LED Patterns table.

6 Variable Intensity Intensity of LED, 0 – 47%. Used on all of the preceding.

Table 41: Downstream GIP Message: LED Guide Button Command

The following table describes the Guide Button LED patterns.

Pattern Name On (mS) Cycle (mS) Description

0x00 Off - ∞ Not implemented by host.

0x01 On ∞ ∞ Connected to host via USB.

0x02 Fast Blink 200 400 Not implemented by host.

0x03 Slow Blink 600 1,200 Not implemented by host.

0x04 Charging Blink 3,000 6,000 Not implemented by host.

0x0D Ramp to Level

Others Reserved - - -

Table 42: Guide Button LED Patterns

3.1.5.5.8 LED IR Command

DEPRECATED. Host to device message used to control the device’s IR LEDs. The device has one or two
IR LEDs which are used for Controller Pairing<7>.

The following table shows the downstream GIP LED IR Command message format.

Offset Value Name Description

0 0x0A GIP MessageType Command Data Class, Command 10.

1 0x20 GIP Flags Single packet system message to primary device. No

acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is incremented
each time Command packet is sent. 0x00 is reserved.

3 0x06 GIP Payload Length Length of payload data: 6 bytes.

4 0x01 Command LED IR command.

5 Variable IRledState 0x00: Turn off IR LEDs.

0x01: Turn on IR LEDs for 100 ms.

0x04: Blink IR LEDs in specified pattern.

6..9 Variable LEDpattern 32-bit left to right pattern specifies on (bit set) or off (bit clear)
for 8 ms per bit. IR LEDs turn off at end of pattern.

Table 43: Downstream GIP Message: LED IR Command

61 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3.1.5.5.9 Debug Commands

OPTIONAL. All Debug Commands are encapsulated within GIP message type 0x1F (Command Data
Class).

To enable support for Debug Commands, the GIP Metadata JSON for the device MUST list system
command 0x1F (31) in the SupportedInSystemCommands and SupportedOutSystemCommands
arrays within the DeviceMetadata object. See Metadata Exchange section 2.2.2 and [MSLEARN-
XIGC-API] gipdocs download for more information on metadata requirements.

3.1.5.5.9.1 Debug Large Message Request

A Debug Large Message Request is a device to host message used to test a device’s large GIP

message handling. The host responds with a 2 KB message that contains a repeating 0x00—0xFF
count pattern split across multiple 64-byte GIP Debug Command packets. Third-party accessories are
not required to support this command but MAY find it useful for debugging.

The following table shows the format of the upstream GIP Debug Command Large Message request
message.

Offset Value Name Description

0 0x1F GIP MessageType Command Data Class, Command 31.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is incremented
each time Command message is sent. 0x00 is reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 0x01 Debug Command Request large message.

Table 44: Upstream GIP Message: Debug Command: Large Message Request

The following table shows the format of the downstream GIP Debug Command First Packet of Large
Message response message.

Offset
(bytes) Value Name Description

0 0x1F GIP MessageType Command Data Class, Command 0x1E.

1 0xF0 GIP Flags Bit 7 = 1 = Fragment

Bit 6 = 1 = Initial fragment

Bit 5 = 1 = System packet

Bit 4 = 1 = ACK requested

Bits 3-0 = Device index (0=controller/base device)

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 Variable GIP Payload Length Length of payload data. First packet indicates 58 bytes.

4..5 Variable Total Length Initial fragment indicates total length. Proceeding packets
indicate the current offset within total data.

6..63 0x00…0xFF Data Pattern Repeating 0x00…0xFF counting pattern. First packet contains
the first 58 bytes of the 2048-byte pattern. Byte offset 6 is
the first byte of the pattern and contains the initial value of
0x00.

Table 45: Downstream GIP Message: Debug Command: First Packet of Large Message

Response

https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?linkid=2281343

62 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

The remaining data is sent over subsequent packets after the header definition and flow as specified in

Reliable Large Message Transmission section 3.1.5.2.

3.1.5.5.9.2 Debug Test Command

A Debug Test Command is a host to device message for sending test commands to a device and
utilizes a request and response transaction flow. The device responds with at minimum a 10-byte
message that contains the result of the command. The device MUST respond within five seconds to
prevent the command from timing out on the host. This is only supported by dev-kit hosts and is not
supported by retail consoles. Third-party accessories are not required to support this command but
MAY find it useful for debugging.

The following table shows the format of the downstream GIP Debug Command Test Command request

message.

Offset Value Name Description

0 0x1F GIP MessageType Command Data Class, Command 31.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command message is sent. 0x00 is
reserved.

3 Varies GIP Payload Length Length of payload data: 1 byte.

4 0x02 Debug Command Test command.

5 Variable Test Command Flags 0x02: Asynchronous Response

0x04: Response Required

0x08: Test Override

These flags are not mutually exclusive.

Test Override (0x08) is a way to control the behavior of the
device while it is tested. With this bit, it is possible to have a
specified subsystem ignore all commands except from a Test
Command.

6 Variable Subsystem ID Specific subsystem IDs described in supplementary
documentation.

7 Variable Test Command ID Specific test command IDs described in supplementary
documentation.

8 Variable Subsystem ID Specific subsystem IDs described in supplementary
documentation. Must match ID specified at byte 6.

9…10 Variable Request Payload Length 2 bytes, little endian.

11+ Variable Request Payload Zero to 53 bytes of data, which depends on the Test
Command ID. Test command requests MUST not be
fragmented.

Table 46: Downstream GIP Message: Debug Command: Test Command Request

The following table shows the format of the upstream GIP Debug Command Test Command response
message.

Offset Value Name Description

0 0x1F GIP MessageType Command Data Class, Command 31.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

63 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command message is sent. 0x00 is
reserved.

3 Varies GIP Payload Length Length of payload data: 1 byte.

4 0x02 Debug Command Test command.

5 Varies Result 0 = SUCCESS

1 = UNKNOWN

2 = FAILED

3 = BUSY

6 Variable Test Command ID The test command ID from the request to which this is the
response.

7 Variable Subsystem ID The subsystem ID from the request to which this is the
response.

8 Variable Response Payload Length The length of the attached response payload.

9+ Variable Response Payload Zero to 54 bytes of data, which depends on the Test
Command ID. Test command responses MUST not be
fragmented.

Table 47: Upstream GIP Message: Debug Command: Test Command Response

3.1.5.5.10 Extended Commands

OPTIONAL. All Extended Commands are encapsulated within GIP message type 0x1E (Command Data

Class) and utilize a request and response transaction flow. Only GIP hosts issue requests to devices
that indicate support for Extended Commands, and these devices are expected to respond.

To enable support for Extended Commands, the GIP Metadata JSON for the device MUST list system
command 0x1E (30) in the SupportedInSystemCommands and
SupportedOutSystemCommands arrays within the DeviceMetadata object. See Metadata
Exchange section 2.2.2 for more information on metadata and where to find its requirements

[MSLEARN-XIGC-API] gipdocs download.

Any device that supports message type 0x1E (Extended Command) MUST support at minimum the
Get Capabilities sub-command. If a device receives an Extended Command sub-command that it does
not support, it MUST respond with status 1 (NOT_SUPPORTED).

All request payloads include at minimum a 1-byte sub-command field as shown in the command
definitions and require a response within 300 ms.

All response payloads include a 1-byte sub-command/response field and a 1-byte status field.

Additional fields are included only with a status of 0 (OK). The valid status codes are as follows.

 enum
 {
 EXT_CMD_STATUS_OK = 0,
 EXT_CMD_NOT_SUPPORTED = 1,
 EXT_CMD_NOT_READY = 2,
 EXT_CMD_ACCESS_DENIED = 3,
 EXT_CMD_COMMAND_FAILED = 4
 };

Partial payloads MAY be returned on error. Specific details are noted in each command’s response
packet specification that follows.

https://go.microsoft.com/fwlink/?linkid=2281343

64 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3.1.5.5.10.1 Get Capabilities Command

This command requests a list of the Extended Commands supported by the device.

The following table shows the downstream GIP Get Capabilities message format.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 Variable GIP Flags Bit 7-6 = 0 = Single Packet

Bit 5 = 1 = System packet

Bit 4 = x = ACK requested (0=no, 1=yes)

Bits 3-0 = 0 = Primary Device

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 0x00 Command Get Capabilities.

Table 48: Downstream GIP Message: Get Capabilities

The following table shows the upstream GIP Get Capabilities response message format.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x22 GIP Payload Length Length of payload data. All Extended Command responses
with Status other than 0 (OK) will have only a payload
length of 2 bytes.

4 0x00 Command Get Capabilities.

5 Variable Status 0 = OK

1 = NOT SUPPORTED

2 = NOT READY

3 = ACCESS DENIED

4 = COMMAND FAILED

All fields that follow Status are included only when Status is
0 (OK).

6-37 Variable Supported commands 32-byte bitmask that identifies the commands supported.

The bit number corresponds to the command number with
bytes concatenated little endian. For example, command 0
corresponds to bit 0 of the first byte of this field (message

offset 6). Command 8 corresponds to bit 0 of the second
byte of this field (message offset 7).

0x001: Get Capabilities

0x002: Get Telemetry Data

0x010: Get Serial Number

65 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Table 49: Upstream GIP Message: Get Capabilities Response

3.1.5.5.10.2 Get Serial Number Command

This command requests the device’s serial number, which apps can query and use for telemetry

purposes.

The following table shows the downstream GIP Get Serial Number message format.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 Variable GIP Flags Bit 7-6 = 0 = Single Packet

Bit 5 = 1 = System packet

Bit 4 = x = ACK requested (0=no, 1=yes)

Bits 3-0 = 0 = Primary Device

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 0x04 Command Get Serial Number.

Table 50: Downstream GIP Message: Get Serial Number

The following table shows the upstream GIP Get Serial Number response message format.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 0x20 GIP Flags Single packet system message from primary device. No
acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x02 + N GIP Payload Length Length of payload data, where N is the length in bytes of
the serial number [12 <= N <= 32]. All Extended
Command responses with Status other than 0 (OK) have
only a payload length of 2 bytes.

4 0x04 Command Get Serial Number.

5 Variable Status 0 = OK

1 = NOT SUPPORTED

2 = NOT READY

3 = ACCESS DENIED

4 = COMMAND FAILED

All fields following Status are included only when Status is
0 (OK).

6..6 + N Variable Serial number Minimum of 12 bytes and up to 32 bytes, big endian.
Length indicated by GIP Payload Length – 2. No serial
number sent on error. See “H007624 Controller Product ID
Label Specification” for serial number specifications.

Table 51: Upstream GIP Message: Get Serial Number Response

66 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3.1.5.5.10.3 Telemetry Extended Commands

3.1.5.5.10.3.1 Get Telemetry Data Command

This command requests telemetry data.

The following table shows the downstream GIP Get Telemetry Data message format.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 Variable GIP Flags Bit 7-6 = 0 = Single Packet

Bit 5 = 1 = System packet

Bit 4 = x = ACK requested (0=no, 1=yes)

Bits 3-0 = 0 = Primary Device

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 0x01 GIP Payload Length Length of payload data: 1 byte.

4 0x01 Command Get Telemetry Data.

Table 52: Downstream GIP Message: Get Telemetry Data

The response message consists of either a single packet (small response table) or multiple packets
(large response table) and depends on the amount of data to be reported. For messages with multiple
packets, the device SHOULD request ACK to implement flow control of packet transmission and follow
the recommended guidelines mentioned in Reliable Message Acknowledgement section 3.1.5.1.

Note: If telemetry is disabled due to boot-up errors that read the data from non-volatile memory, 0

records SHOULD be returned.

The following table shows the upstream GIP Small Get Telemetry Data response message format with
less than 10 records.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 0x20 GIP Flags Bit 7-6 = 0 = Single Packet

Bit 5 = 1 = System packet

Bit 4 = x = ACK requested (0=no, 1=yes)

Bits 3-0 = Device index (0=controller/base device)

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00
is reserved.

3 0x02+(0x06*N) GIP Payload Length Length of payload data where N is the total number of
telemetry records (tag + value) [0 <= N <= 9]. All
Extended Command responses with Status other than
0 (OK) will have only a payload length of 2 bytes.

4 0x01 Command Get Telemetry Data.

5 Variable Status 0 = OK

1 = NOT SUPPORTED

2 = NOT READY

3 = ACCESS DENIED

67 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

4 = COMMAND FAILED

All fields following Status are included only when
Status is 0 (OK).

6..7 Variable Tag Parameter Tag number 1 (16 bits, little endian). See
Get Telemetry Data Response Message: Parameter Tag
Field table.

8..11 Variable Value Parameter Value number 1 (32 bits, little endian).

. . .

6+6*(N-1) Tag Parameter Tag N.

8+6*(N-1) Value Parameter Value N.

Table 53: Upstream GIP Message: Small Get Telemetry Data Response

The following table shows the upstream GIP First fragment of Large Get Telemetry Data response
message format with greater than 10 records.

Offset
(bytes) Value Name Description

0 0x1E GIP MessageType Command Data Class, Command 0x1E.

1 0xF0 GIP Flags Bit 7 = 1 = Fragment

Bit 6 = 1 = Initial fragment

Bit 5 = 1 = System packet

Bit 4 = 1 = ACK requested

Bits 3-0 = Device index (0=controller/base device)

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

3 Variable GIP Payload Length Length of payload data. Initial fragment indicates 58 bytes.
All Extended Command responses with Status other than 0

(OK) are single fragments with a payload length of 2 bytes.

4…5 Variable Total Length Initial fragment will indicate total length of payload data.
Proceeding packets indicate the current offset within total
data.

6 0x01 Command Get Telemetry Data.

7 Variable Status 0 = OK

1 = NOT SUPPORTED

2 = NOT READY

3 = ACCESS DENIED

4 = COMMAND FAILED

All fields following Status are included only when Status is
0 (OK).

8…9 Variable Tag Parameter Tag number 1 (16 bits, little endian). See Get
Telemetry Data Response Message: Parameter Tag Field
Table.

10…13 Variable Value Parameter Value number1 (32 bits, little endian).

… … … …

Table 54: Upstream GIP Message: First fragment of Large Get Telemetry Data Response

68 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

The remainder of the data is sent over subsequent packets following the header definition and flow

specified in Reliable Large Message Transmission section 3.1.5.2.

The following table shows the parameter tag field of the Get Telemetry Data response message.

Bit Field Values

15…14 Parameter Group 00 = Common parameter applicable to all devices.

01 = TBD parameter.

10 = Reserved

11 = Device specific parameter.

13…0 Parameter ID Specific Parameter IDs.

Table 55: Get Telemetry Data Response Message: Parameter Tag Field

3.1.5.6 Gamepad Vendor Messages

3.1.5.6.1 Direct Motor Command

Host to device message used to take direct control of the device’s vibration motors or impulse trigger
motors.

The following table shows the downstream GIP Direct Motor Command message format.

Offset Value Name Description

0 0x09 GIP MessageType Command Data Class, Command 9.

1 0x00 GIP Flags Not a fragment. Device, not expansion port.

2 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is

reserved.

3 0x09 GIP Payload Length Length of payload data: 9 bytes.

4 0x00 Command Direct Motor Command.

5 0x0X Motor Bitmap [7:4]: Reserved (MUST be zero)

[3]: Left Impulse Motor

[2]: Right Impulse Motor

[1]: Left Vibration Motor

[0]: Right Vibration Moto

6 Variable Left Impulse Level Percentage, 0 – 100% (0x00 to 0x64), of PWM for motor.

7 Variable Right Impulse Level Percentage, 0 – 100% (0x00 to 0x64), of PWM for motor.

8 Variable Left Vibration Level Percentage, 0 – 100% (0x00 to 0x64), of PWM for motor.

9 Variable Right Vibration Level Percentage, 0 – 100% (0x00 to 0x64), of PWM for motor.

10 Variable Duration 0 = all motors canceled; levels ignored.

1 to 255, 10 ms steps

11 Variable Delay 0 = No delay

1 to 255, 10 ms steps

12 Variable Repeat 0 = No repeat, play once

1 to 255 repeat counts

Table 56: Downstream GIP Message: Direct Motor Command

3.1.5.6.1.1 Gamepad Input Report

69 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

All Gamepad Input Report messages contain a standard gamepad input report payload that includes

status for the 16 digital buttons, two triggers, and two thumbsticks. This payload does not include the
status for the Guide or Share buttons. For information on handling the Guide button, see Guide Button
Status section 3.1.5.5.6. The Share button is handled via an input report extension, documented in

the following Extensions section 3.1.5.6.1.3.

The Gamepad Input Report message is only used by gamepads. Other types of game controllers use
type specific input report messages that utilize the same GIP Message Type 32 (0x20) and MUST
always include the Digital Buttons field to support standard menu navigation. However, these other
game controllers are not necessarily required to support all the buttons defined in the Digital Buttons
field.

The following table shows the format of a typical upstream GIP Gamepad Input Report message.

Offset
(bytes) Value Name Description

0 0x20 GIP Message Type Low Latency Data Class, Message 0.

1 0x00 GIP Flags Single packet non-system message from primary
device. No acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Low Latency Data Class that is
incremented each time Low Latency packet is sent.
0x00 is reserved.

3 0x0E GIP Payload Length Length of payload data: 14 bytes.

4 0xZZ Digital Buttons LSB 0x80: Y

0x40: X

0x20: B

0x10: A

0x08: View

0x04: Menu

0x02: Keep Alive

0x01: Reserved

5 0xYY Digital Buttons MSB 0x80: Thumbstick Right (RSB)

0x40: Thumbstick Left (LSB)

0x20: Bumper Right

0x10: Bumper Left

0x08: Dpad Right

0x04: Dpad Left

0x02: Dpad Down

0x01: Dpad Up

6 0xZZ Left Trigger LSB 0xYYZZ value of the left trigger, 0 – 1023. Little
endian.

7 0xYY Left Trigger MSB

8 0xXX Right Trigger LSB 0xWWXX value of the right trigger, 0 – 1023. Little
endian.

9 0xWW Right Trigger MSB

10 0xVV Left Thumbstick X LSB 0xUUVV value of the left thumbstick X direction, -
32,768 to +32767. Little endian.

11 0xUU Left Thumbstick X MSB

12 0xTT Left Thumbstick Y LSB 0xSSTT value of the left thumbstick Y direction, -
32,768 to +32767. Little endian.

70 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

13 0xSS Left Thumbstick Y MSB

14 0xRR Right Thumbstick X LSB 0xQQRR value of the right thumbstick X direction, -
32,768 to +32767. Little endian.

15 0xQQ Right Thumbstick X MSB

16 0xPP Right Thumbstick Y LSB 0xOOPP value of the right thumbstick Y direction, -
32,768 to +32767. Little endian.

17 0xOO Right Thumbstick Y MSB

Table 57: Upstream GIP Message: Typical Gamepad Input Report

The following Navigation Minimum Input Requirements table shows the minimum required navigation
buttons that are necessary for each category of device.

See [MSLEARN-XIGC-API] gipdocs download for the specific game controllers and details on the
features that are supported. The GIP Payload Length and the rest of the payload might be the same as
or different from those of the Gamepad Input Report.

Random noise on the thumbsticks SHOULD be suppressed when there is no user activity to avoid a
large amount of unnecessary Gamepad Input Report message traffic.

Input reports SHOULD only be sent when at least one field value has changed. Duplicate reports
create unnecessary traffic between the device and host. This rule applies for all input devices and is
not specific to gamepad.

The following table describes the minimum input requirements of GIP UI Navigation.

Navigation Command Gamepad Arcade Racing Flight

Up D-pad up Stick up D-pad up Hat/Joy up

Down D-pad down Stick down D-pad down Hat/Joy down

Left D-pad left Stick left D-pad left Hat/Joy left

Right D-pad right Stick right D-pad right Hat/Joy right

View View button View button View button View button

Menu Menu button Menu button Menu button Menu button

Accept A button Action 1 button A button A button

Cancel B button Action 2 button B button B button

Table 58: GIP UI Navigation Minimum Input Requirements

3.1.5.6.1.2 Custom Vendor Data

A device partner can send custom vendor data by appending it to an input report message. Only GIP
client applications that include GIP custom device libraries can interface with any additional fields
provided in this custom vendor data. This also requires extra effort on the part of the device maker to
develop, maintain, support, and distribute GIP client extensions to developers. Additional
documentation about GIP custom device libraries and GIP client application development can be

provided upon request.

Requirements for input report custom vendor data:

▪ The custom vendor data MUST appear directly after the standard input report payload (if not an
overflow message) and before any extension payload. For Overflow messages, see Overflow
Message section 3.1.5.6.1.4.

https://go.microsoft.com/fwlink/?linkid=2281343

71 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

▪ The GIP length in the GIP header of the input report message MUST include any additional length

for the custom vendor data.

▪ The message length advertised in the GIP metadata under the Messages array for the typical input
report message (type 0x20) or the overflow input report message (type 0x26) MUST include any

additional length for the custom vendor data. Otherwise, the message is filtered out.

▪ A Preferred Type and Supported Interface GUID needs to be added to the GIP metadata to identify
the custom interface. These are used by a GIP client application to determine the custom device
library that is to be loaded for a device.

▪ The maximum size of the message includes the GIP header, standard input report data (if not the
overflow message), custom vendor data, and system extensions, and MUST not exceed 64 bytes.
All input report messages MUST remain unfragmented. If more room is needed than the typical

input report message (type 0x20) provides, consider also the use of the overflow input report
message that is defined in section 3.1.5.6.1.4.

▪ Input report messages with custom vendor data MUST only be sent from a device when there are

differences in the payload from the previous payload or the host has specifically requested it.

Note: During runtime, the only size that can be dynamically adjusted is the custom vendor data
portion of a message.

3.1.5.6.1.3 Extensions

GIP also supports the ability to append special data to the end of an input report payload to exercise
additional system features. These extensions MUST appear after the standard input report payload
and any custom vendor payload if included. The offsets of the extension payloads are all relative to
the end of the input report payload and any custom vendor data. Additionally, a specific order is
required for each extension’s payload when multiple extensions are present. Any additional payload

length MUST be reported for the typical input report message (type 0x20) or the overflow input report
message (type 0x26) under the Messages array of the device’s GIP metadata. As with typical input
report messages with only standard input report payloads, input report messages with extension

payloads MUST only be sent from a device when there are differences in the payload from the
previous payload or the host has specifically requested it.

Requirements for input report extensions:

▪ The extension payloads MUST appear directly after the standard input report payload (if not an

overflow message) and any custom vendor payload.

▪ The GIP length in the GIP header of the input report message MUST include any additional length
for the extension payload.

▪ The message length advertised in the GIP metadata under the Messages array for the typical input
report message (type 0x20) or the overflow input report message (type 0x26) MUST include any
additional length for the extension payload. Otherwise, the message is filtered out.

▪ A Supported Interface GUID for the extension MUST be added to the GIP metadata to indicate

support for the extension payload.

▪ The maximum size of the message includes the GIP header, standard input report data (if not an
overflow message), custom vendor data, and system extensions, and MUST not exceed 64 bytes.
All input report messages MUST remain unfragmented. If more room is needed than the typical
input report message (type 0x20) provides, consider also the use of the overflow input report
message that is defined in the Overflow Message section 3.1.5.6.1.4.

▪ Input report messages with extensions MUST only be sent from a device when there are
differences in the payload from the previous payload or the host has specifically requested it.

Note: Standard input reports and extensions MUST always be sent and their size MUST remain
consistent. Metadata length for the message MUST indicate the message’s maximum possible size of
standard input payload, plus custom vendor data payload, plus extension payload.

72 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

The following table shows the payload for the upstream GIP input report layout with custom vendor

data and extensions.

GIP Header

Standard Input Report Payload

Custom Vendor Payload

Extension Payload

Table 59: Upstream GIP Message: Input Report Layout with Custom Vendor Data and
Extensions

The following table shows the metadata for supported interfaces of extension GUIDs.

Name GUID for Message Type 0x20 GUID for Message Type 0x26

IConsoleFunctionMap ECDDD2FE-D387-4294-BD96-
1A712E3DC77D

137D4BD0-9347-4472-AA26-
8C34A08FF9BD

Table 60: Metadata: Supported Interfaces: Extension GUIDs

3.1.5.6.1.3.1 Console Function Map

The Console Function Map extension allows devices to pass a request of up to 18 simultaneous console
functions IDs to the host that are translated to actions executed by the operating system. This
requires the inclusion of the Windows.Xbox.Input.IConsoleFunctionMap interface GUID {ECDDD2FE-
D387-4294-BD96-1A712E3DC77D} in the SupportedInterfaces section of the device’s GIP metadata or

{137D4BD0-9347-4472-AA26-8C34A08FF9BD} if the Overflow message is used. When this interface
is included, the input report message MUST always include the Console Function Map payload, even
when no actions are to be executed. Note that nothing needs to be added to the PreferredTypes
section of the metadata to implement Windows.Xbox.Input.IConsoleFunctionMap. See [MSLEARN-

XIGC-API] gipdocs download for more information about GIP metadata.

The following table describes the Console Function Map payload of the upstream GIP Input Report
message.

Offset
(bytes) Value Name Description

0 0xZZ Function 1 0x00 : No Action/Request Finished

0x01 : Share

Non-zero function IDs MUST always appear earlier in the payload. They
also MUST NOT be duplicated in the payload. There are no requirements
for the order of the non-zero function IDs relative to each other. An offset
with a value of zero indicates that no action is to be performed, or if a
function ID that was present in the previous input report is not present in
the current input report, that a request for an action has finished. There
MUST never be gaps (values of zero) between non-zero function IDs. This
is particularly important when a function ID earlier in the payload from a
previous input report is removed from the current input report, but
function IDs that followed remain. In that case, all the function IDs that
remain SHOULD be shifted down to an earlier offset and all gaps closed.
Any unused offsets MUST be set to zero.

Note that some console functions perform different actions due to the
length of time the function ID remains present.

1 0x00 Function 2

2 0x00 Function 3

3 0x00 Function 4

4 0x00 Function 5

5 0x00 Function 6

6 0x00 Function 7

7 0x00 Function 8

8 0x00 Function 9

9 0x00 Function 10

10 0x00 Function 11

11 0x00 Function 12

12 0x00 Function 13

13 0x00 Function 14

https://go.microsoft.com/fwlink/?linkid=2281343
https://go.microsoft.com/fwlink/?linkid=2281343

73 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset
(bytes) Value Name Description

14 0x00 Function 15

15 0x00 Function 16

16 0x00 Function 17

17 0x00 Function 18

Table 61: Upstream GIP Message: Input Report: Console Function Map Payload

3.1.5.6.1.3.2 Share button

The Share button was first introduced on GIP controllers in 2020. Like other buttons, it has physical
placement, size, and icon requirements that are not covered in this specification. In terms of
implementation, it utilizes the GIP input report message’s Console Function Map extension mentioned

previously.

The following is an example of a message layout for a Gamepad Input Report with Share button
support as well as an example of the changes in metadata required to support it.

The following table describes the format of the upstream GIP Gamepad Input Report with Share

button message.

Offset
(bytes) Value Name Description

0 0x20 GIP MessageType Low Latency Data Class, Message 0

1 0x00 GIP Flags Single packet non-system message from primary device.
No acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Low Latency Data Class that is
incremented each time Low Latency packet is sent. 0x00
is reserved.

3 0x20 GIP Payload Length Total Length of GIP Payload: 32 bytes.

4 Varies Standard

Gamepad Input Report
Payload

Length of Standard Gamepad Input Report: 14 bytes.

18 Varies

First byte:

0x00 or 0x01

Remaining
bytes: 0x00

Console Function Map

Payload

Length of Console Function Map.

Assuming no other function IDs are used by the device,
the first byte of the console function map is always either
a 0x00 for no action or a 0x01 for the share function ID.
When the physical button is not pressed, the first byte
MUST remain a 0x00 for no action. Once the physical
button is pressed, it MUST change from 0x00 to 0x01 for
the share function ID. While the physical button is held,
the share function ID MUST remain in the console function
map. Once the physical button is released, the first byte
MUST return to 0x00 for no action. All bytes in the console
function map other than that first byte remain 0x00 for no
action.

Table 62: Upstream GIP Message: Gamepad Input Report with Share Button

Metadata: Messages Array: Gamepad Input Report with Share Button

The following code shows an example of the metadata implementation of a typical Gamepad Input
Report message with additional support interface GUIDs, and Vendor message required to implement

the standard message (type 0x20 (32)).

74 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

 ...
 "SupportedInterfaces" : [
 "9776FF56-9BFD-4581-AD45-B645BBA526D6",
 "082E402C-07DF-45E1-A5AB-A3127AF197B5",
 "B8F31FE7-7386-40E9-A9F8-2F21263ACFB7",
 "ECDDD2FE-D387-4294-BD96-1A712E3DC77D"
]

 ...

 "Messages" : [
 {
 "MessageType" : 32,
 "MessageLength" : 32,
 "DataType" : "custom",
 "IsUpstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 9,
 "MessageLength" : 9,
 "DataType" : "custom",
 "IsDownstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 }
]

3.1.5.6.1.4 Overflow Message

There are scenarios where 60 bytes of payload for an input report is not enough space to include all
the data necessary for the standard input report data, custom vendor data, and any extensions. For

example, a flight stick needs 43 bytes for its standard input report payload. It only has 17 bytes that
remain for any custom vendor data or extensions. The inclusion of the Console Function Map
extension to implement the Share button requires 18 additional bytes. If the Console Function Map is

included in this scenario, the input report message is sent fragmented, which adds input latency. (The
queue gets backed up for consecutive input reports and the second fragment is always one input
report behind). To work around this limitation, the ability to use an additional message to report
custom vendor data and extensions has been added.

An upstream vendor message that uses GIP message type 38 (0x26) MUST be defined and used when
at least one of the overflow interface GUIDs is listed in the SupportedInterfaces section of the device’s

metadata. The extension data that is included in GIP message type 32 (0x20) after the standard input
report, MUST instead be sent in the new overflow message with any desired custom vendor data. No
standard input report data SHOULD be included in the overflow message.

The overflow message MUST only be sent:

▪ On initialization along with the typical input report message.

▪ Anytime there are changes in any included custom vendor or extension data.

As with the typical input report message, extensions MUST appear after any custom vendor payload if

included. The offsets of the extension payloads are all relative to the end of the overflow input report
payload and any custom vendor data. Additionally, a specific order is required for each extension’s
payload when multiple extensions are present. The correct payload length MUST be reported for the
overflow input report message type 38 (0x26) under the Messages array of the device’s GIP
metadata.

The following table shows the payload for the Overflow Input Report layout with custom vendor data
and extensions.

75 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

GIP Header

Custom Vendor Payload

Extension Payload

Table 63: Overflow Input Report Layout with Custom Vendor Data and Extensions

The extension interface GUIDs defined for use with the overflow messages are different than those
that are used with the typical input report message. Although the host can handle the same

extensions in both messages at the same time, it is not recommended. See Metadata: Supported
Interfaces: Extension GUIDs table for a list of supported GUIDs in section 3.1.5.6.1.3.

The following tables show example layouts of a typical and overflow input report messages for a flight
stick with Share button support and the differences in metadata required to support it. The first table
shows a standard Flight Stick Input Report followed by the Overflow Report in the second table
required to support the implementation of the Share button on the device. Since the Share button

report and the standard input report exceed 64 bytes if combined, and input messages cannot be

fragmented, they are sent in separate messages.

Offset
(bytes) Value Name Description

0 0x20 GIP MessageType Low Latency Data Class, Message 0.

1 0x00 GIP Flags Single packet non-system message from primary device.
No acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Low Latency Data Class that is

incremented each time Low Latency packet is sent. 0x00 is
reserved.

3 0x2B GIP Payload Length Total Length of GIP Payload: 43 bytes.

4 Varies Standard

Flight Stick Input
Report Payload

Length of Standard Flight Stick Input Report: 43 bytes.

See the GIP USB Flight Stick Specification for more detail.

Table 64: Upstream GIP Message: Flight Stick Input Report with Share Button – Message
1:2

Offset
(bytes) Value Name Description

0 0x26 GIP MessageType Low Latency Data Class, Message 6.

1 0x00 GIP Flags Single packet non-system message from primary device.
No acknowledgement required.

2 Incrementing GIP Sequence ID Wrapping counter for Low Latency Data Class that is
incremented each time Low Latency packet is sent. 0x00
is reserved.

3 0x12 GIP Payload Length Total Length of GIP Payload: 18 bytes.

4 Varies

First byte:

0x00 or 0x01

Remaining
Bytes: 0x00

Console Function
Map Payload

Length of Console Function Map: 18 bytes.

Follows the same set of guidelines defined in the Console
Function Map, section 3.1.5.6.1.3.1.

Table 65: Upstream GIP Message: Flight Stick Overflow Input Report with Share Button –
Message 2:2

76 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Metadata: Flight Stick Typical and Overflow Input Report with Share Button

The following code shows an example of the metadata implementation of a typical Flight Stick
Overflow Input Report message with the additional support interface GUIDs, and Vendor message
required to implement the overflow message (type 0x26 (38)).

 ...

 "SupportedInterfaces" : [
 "03F1A011-EFE9-4CC1-969C-38DC55F404D0",
 "B8F31FE7-7386-40E9-A9F8-2F21263ACFB7",
 "9776FF56-9BFD-4581-AD45-B645BBA526D6",
 "137D4BD0-9347-4472-AA26-8C34A08FF9BD"
]

 ...

 "Messages" : [
 {
 "MessageType" : 0,
 "MessageLength" : 4,
 "DataType" : "custom",
 "IsDownstreamRequestResponse" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 1,
 "MessageLength" : 6,
 "DataType" : "custom",
 "IsDownstreamRequestResponse" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 2,
 "MessageLength" : 34,
 "DataType" : "custom",
 "IsDownstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 32,
 "MessageLength" : 43,
 "DataType" : "custom",
 "IsUpstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 },
 {
 "MessageType" : 38,
 "MessageLength" : 18,
 "DataType" : "custom",
 "IsUpstream" : true,
 "Period" : 0,
 "PersistenceTimeout" : 0
 }
]

3.1.5.6.1.5 Preventing Host from Entering Power Save Mode

3.1.6 Timer Events

None.

77 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

3.1.7 Other Local Events

None.

3.2 Audio Details

Audio Control messages are GIP system messages of the Command data class and are also
predefined. These are used to negotiate audio formats and control volume levels. Other than at
startup or in response to a volume request from the host, Audio Control Volume and Audio Control
Volume Extended messages MUST only be sent if at least one field has changed. Duplicate Audio

Control messages create unnecessary traffic between the host and device.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation can

maintain to participate in this protocol. The organization is provided to help explain how the protocol
works. This document does not require that implementations adhere to this model, provided their
external behavior is consistent with that specified in this document.

See section 3.1.1 for the GIP Device State Diagram that includes audio devices.

3.2.2 Timers

The host requests metadata up to four times at 500 ms intervals.

3.2.3 Initialization

For audio initialization, see section 2.2.11.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

The following subsections define audio processing messages, commands, and events.

3.2.5.1 Audio System Messages

Audio data packets are GIP system packets of the Audio data class. Audio data is in a predefined
format. See Audio Control Configuration section 3.2.5.1.2 for available formats. All audio data is in

pulse-code modulation (PCM) 16-bit little-endian. If the audio format supports multiple streams, the
samples are interleaved.

▪ For stereo formats, the data is interleaved left then right.

▪ For 5.1 formats, the data is interleaved front left, front right, front center, low frequency, side left,
side right.

▪ For 7.1 formats, the data is interleaved front left, front right, front center, low frequency, back
left, back right, side left, and side right.

3.2.5.1.1 Audio Control Volume Extended

The volume control message has microphone monitoring/sidetone volume and provides a bit in each

volume field to indicate whether the field is writeable by the host. Audio devices which implement
volume related controls with hard limits MUST mark the limited volume parameter as read-only in

78 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

extended volume control messages to the host to avoid the host user interface getting out of sync

with the device’s setting.

Figure 8: Audio Control: Volume Extended Message: Volume Exchange

If a device advertises at least one writeable volume field in its initial volume indicator, a device
SHOULD reply with the actual volume after processing a volume request sent from the host. The host
SHOULD never issue a volume request unless the device flags at least one volume field as writeable.
However, if it does, and the device is unable to satisfy the host volume request for any reason, it is
acceptable for the device to respond to the host with a message that matches the requested values,
without an adjustment to the settings on the device, and then immediately send another message that
indicates the actual values on the device. This stops the host from repeatedly sending erroneous audio

control volume requests to the device and ensures the host and device stay in sync.

Note: The Volume Flags field provides bits for muting upstream (capture) or downstream (render)
audio. If muting is implemented, use these bits for muting rather than changing the volume level.

The following table shows the bidirectional GIP Audio Control Volume Extended Message format.

Offset Value Name Description

0x00 0x08 GIP MessageType Command Data Class, Command 8.

0x01 0x2X GIP Flags System Packet.

0x02 Incrementing GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Command packet is sent. 0x00 is
reserved.

0x03 0x08 GIP Payload Length Length of payload.

0x04 0x03 Control Type Audio Control Volume Extended message.

0x05 0xYY

Volume Flags Bit 7 (MSB):

1: This field is writable by host

0: This field is read-only for host

Bits 6-0:

0x01: Upstream is muted (Default is muted)

0x02: Downstream is muted (Default is unmuted)

0x04: Headset detected

0x06 0xWW Speaker Volume Bit 7 (MSB):

1: This field is writable by host

0: This field is read-only for host

79 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

Bits 6-0:

Volume level, 0 – 100%

Default is set to 50 (if applicable).

0x07 0xVV Game to Chat
Balance

Bit 7 (MSB):

1: This field is writable by host

0: This field is read-only for host

Bits 6-0:

0-100% where:

0 = Full game audio, no chat.

100 = Full chat audio, no game.

Default is set to 50 for stereo and 100 for mono (if
applicable).

This field MUST be marked read-only for a mono headset.

0x08 0xUU Microphone
Volume<8>

Bit 7 (MSB):

1: This field is writable by host

0: This field is read-only for host

Bit 6-0:

Volume level, 0 – 100%

Default is set to 100 (if applicable).

0x09 0xSS Sidetone Volume Bit 7 (MSB):

1: This field is writable by host

0: This field is read-only for host

Bit 6-0:

Volume level, 0 – 100%

Default is set to 0 (if applicable).

0x0A 0x00 Reserved1

0x0B 0x00 Reserved2

Table 66: Bidirectional GIP Message: Audio Control Volume Extended

3.2.5.1.2 Audio Control Configuration

The following table describes the format of the bidirectional GIP Audio Control configuration.

Offset Value Name Description

0x00 0x08 GIP MessageType Command Data Class, Command 8.

0x01 0x2X GIP Flags System Packet.

0x02 0xZZ GIP Sequence ID Wrapping counter for Command Data Class that is
incremented each time Audio packet is sent. 0x00 is
reserved.

0x03 0x03 GIP Payload Length Length of Payload.

0x04 0x02 Control Type Audio Control Format message.

0x05 0xUU Upstream Format (Capture) Format of microphone data stream.
0x00: None

0x01: 8 KHz 1 Channel

0x02: 8 KHz 2 Channels

0x03: 12 KHz 1 Channel

0x04: 12 KHz 2 Channels

80 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

0x05: 16 KHz 1 Channel

0x06: 16 KHz 2 Channels

0x07: 20 KHz 1 Channel

0x08: 20 KHz 2 Channels

0x09: 24 KHz 1 Channel

0x0A: 24 KHz 2 Channels

0x0B: 32 KHz 1 Channel

0x0C: 32 KHz 2 Channels

0x0D: 40 KHz 1 Channel

0x0E: 40 KHz 2 Channels

0x0F: 48 KHz 1 Channel

0x10: 48 KHz 2 Channels

0x06 0xVV Downstream Format (Render) Format of speaker data stream. Values are the same as for
upstream format.

Table 67: Bidirectional GIP Message: Audio Control Configuration

3.2.5.1.3 Audio Render Data Message

The following table shows the downstream GIP Audio Render Data message format.

Offset Value Name Description

0x00 0x60 GIP MessageType Audio Data Class, Command 0.

0x01 0x2X GIP Flags System Packet.

0x02 0xZZ GIP Sequence ID Wrapping counter for Audio Data S that is incremented each time Audio
packet is sent. 0x00 is reserved.

0x03 0xYY GIP Payload Length Length of Payload. (1-4 bytes. See Reliable Large Message
Transmission section 3.1.5.2 for length extension methods).

Varies Data Audio stream data (guaranteed to begin on even-byte boundary).

Table 68: Downstream GIP Message: Audio Render Data

The audio data is guaranteed to begin on an even byte boundary by zero-extension of the length field,

if necessary. For example, an audio data message that contains 384 bytes of audio data. With the
format of the variable-sized GIP Payload Length field, 384 bytes is naturally encoded as 2 bytes:
0x80, 0x03. However, this creates a 5-byte GIP header, and the data begins on an odd byte
boundary. To correct this, the GIP Payload Length field is encoded as three bytes: 0x80, 0x83, 0x00.
See section 3.1.5.2 for more information about GIP Header size management.

3.2.5.1.4 Audio Capture Data Message

The following table shows the upstream GIP Audio Capture Data message format.

Offset Value Name Description

0x00 0x60 GIP MessageType Audio Data Class, Command 0.

0x01 0x2X GIP Flags System Packet.

0x02 0xZZ GIP Sequence ID Wrapping counter for Audio Data Class that is incremented each time
Audio packet is sent. 0x00 is reserved.

0x03 0xYY GIP Payload Length Length of Payload. (1-4 bytes. See Reliable Large Message
Transmission section 3.1.5.2 for length extension methods.)

Varies 0xXXXX Flow Rate Little endian value to indicate the number of bytes of render data the

81 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

Offset Value Name Description

host SHOULD send in each message. (2 bytes).

Varies Data Audio stream data (not required to begin on even-byte boundary).

Table 69: Upstream GIP Message: Audio Capture Data

3.2.5.1.5 Audio Data Message Size and Flow Control

USB sends one message each millisecond, or eight messages in each 8 ms isochronous (ISOCH)
window. For flow control purposes, the size of the Audio Render message is modulated by the flow
field in the Audio Capture message. This is the mechanism GIP devices use to eliminate pops and

clicks in audio.

The size of the audio capture message SHOULD never vary. The host compensates for
overflow/underflow conditions in the capture stream.

Example 1: A controller with 48 kHz render / 24 kHz capture stereo headset attaches via USB. Initial
flow rates are as follows:

▪ 192 bytes/packet downstream (render)

= 48 samples/ms (kHz) * 16 bits/sample * 1 byte/8 bits * 2 channels * 1 ms/packet

▪ 48 bytes/packet upstream (capture)
= 24 samples/ms (kHz) * 16 bits/sample * 1 byte/8 bits * 1 channel * 1 ms/packet

The flow rate field of capture messages SHOULD initially contain the value 192. This field modulates
by +/- one sample per channel per 1 ms, depending on audio buffering conditions in the device, so
over time this value can fluctuate between 188, 192, or 196.

Example 2: A controller with 24 kHz render / 24 kHz capture mono headset attaches via USB. Initial

flow rates are as follows:

▪ 48 bytes/packet upstream and downstream
= 24 samples/ms (kHz) * 16 bits/sample * 1 byte/8 bits * 1 channel * 1 ms/packet

The flow rate field of capture messages SHOULD initially contain the value 48. This field modulates by
+/- one sample per channel per 1 ms, depending on audio buffering conditions in the device. So over
time this value SHOULD be 46, 48, or 50.

If a device supports only render, it can still send Audio Capture messages with no payload other than

the flow rate to implement rate adaptation.

If a device allows for rerouting captured audio elsewhere (that is, paired Bluetooth host), the device
MUST still transmit Audio Capture messages to the GIP host but instead with silence (zeroes).

Note: Communication between primary and secondary devices is not defined by this specification. The

primary device might buffer on behalf of the secondary and therefore it is unlikely that messages from
the secondary could be simply implemented as pass-through from the secondary.

If you require assistance with this documentation, contact gip@microsoft.com.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

82 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

4 Protocol Examples

None.

83 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

5 Security

5.1 Security Considerations for Implementers

All partner accessories that seek to connect via wireless SHOULD leverage the USB path and

implement encryption on top of it to guarantee the privacy and security of the transport.

Controllers that talk to a Windows PC SHOULD use the following GUID to opt-out of the security
exchange over USB. You SHOULD add it to the SupportedInterfaces section of the metadata. See
[MSLEARN-XIGC-API] gipdocs download to read the GIP metadata spec for more information.

Opt-out GUID: 7a34ce77-7de2-45c6-8ca4-0042c08bd94a

The host succeeds the security exchange by default.

5.2 Index of Security Parameters

None.

https://go.microsoft.com/fwlink/?linkid=2281343

84 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

6 Appendix A: Software Development Kits

GIP accessories have specific design requirements for use with Windows 10 operating system and
later editions. GIP is not limited to gamepads. The Game Development and Windows Software
Development Kit (SDK) additionally support standardized implementations of a navigation controller,
headset, arcade stick, flight stick, and racing wheel.

The Windows Software Development Kit (SDK) for Universal Windows Platform development targeting

Windows 10 and later editions, and its accompanying documentation are available on the Windows
Development Center website:

▪ Windows SDK

▪ What’s a Universal Windows Platform (UWP) app?

▪ UWP on Xbox One

https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://learn.microsoft.com/en-us/windows/uwp/xbox-apps/

85 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

▪ Windows 7 operating system

▪ Windows 8 operating system

▪ Windows 8.1 operating system

▪ Windows 10 operating system

▪ Windows 11 operating system

Windows Server

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2012 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.2.3: Removed device authentication requirement for USB endpoints in Windows 10
v21H2 operating system,

Windows 11, and later.

<2> Section 3.1.5.4: Kinect Compatibility: IR LED controller pairing is no longer supported.

<3> Section 3.1.5.5.1: The Hello message MAJOR.MINOR.BUILD.REVISION firmware fields MUST

contain at least one non-zero value. Specifically, 0.0.0.0 is invalid.

<4> Section 3.1.5.5.1: The Hello message MAJOR.MINOR.BUILD.REVISION firmware fields MUST
contain at least one non-zero value. Specifically, 0.0.0.0 is invalid.

<5> Section 3.1.5.5.1: The Hello message MAJOR.MINOR.BUILD.REVISION firmware fields MUST
contain at least one non-zero value. Specifically, 0.0.0.0 is invalid.

<6> Section 3.1.5.5.2.1: The driver has been removed from Windows Server v1809 operating
system, Windows Server 2019, and later.

<7> Section 3.1.5.5.8: Kinect Compatibility: IR LED controller pairing is no longer supported.

86 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

<8> Section 3.2.5.1.1: Windows 10 and Windows 11 hosts allow users to adjust this field via the

legacy control panel.

87 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

88 / 88

[MS-GIPUSB] - v20240826
Gaming Input Protocol (GIP) Universal Serial Bus (USB) Extension
Copyright © 2024 Microsoft Corporation
Release: August 26, 2024

9 Index
A

Applicability 8
Audio Initialization message 34

C

Capability negotiation 8
Change tracking 87

D

Device Hello Enumeration message 10

F

Fields - vendor-extensible 9

G

GIP Audio Interface Descriptors message 36
GIP Metadata Exchange message 12
Glossary 5

I

Implementer - security considerations 83
Index of security parameters 83
Informative references 6
Introduction 5

M

Message Header message 31

Messages
 Audio Initialization 34
 Device Hello Enumeration 10
 GIP Audio Interface Descriptors 36
 GIP Metadata Exchange 12
 Message Header 31
 Microsoft OS and Extended Compatible ID

Descriptors 27
 transport 10
 USB Configuration 23
 USB Configuration Descriptor 28
 USB Device Descriptor 28
 USB Device Qualifier Descriptor 27
 USB Interface Descriptors 29
 USB String Descriptors 26
Microsoft OS and Extended Compatible ID

Descriptors message 27

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 83
Preconditions 8
Prerequisites 8
Product behavior 85

R

References 5
 informative 6
 normative 5
Relationship to other protocols 8

S

Security
 implementer considerations 83
 parameter index 83

Standards assignments 9

T

Tracking changes 87
Transport 10

U

USB Configuration Descriptor message 28
USB Configuration message 23
USB Device Descriptor message 28
USB Device Qualifier Descriptor message 27
USB Interface Descriptors message 29
USB String Descriptors message 26

V

Vendor-extensible fields 9
Versioning 8

