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Abstract

Over the last few years, both the development of ransomware strains as well as changes
in the marketplace for malware have greatly reduced the entry barrier for attackers to
conduct large-scale ransomware attacks. In this paper, we examine how this mode of
cyberattack impacts software vendors and consumer behavior. When victims face an
added option to mitigate losses via a ransom payment, both the equilibrium market
size and the vendor’s profit under optimal pricing can actually increase in the ransom
demand as well as the risk of residual losses following a ransom payment (which reflect
the trustworthiness of the ransomware operator). We further show that for intermedi-
ate levels of risk of the vulnerability being successfully exploited, the vendor restricts
software adoption by substantially hiking prices. This lies in stark contrast to outcomes
in a benchmark case involving traditional malware (non-ransomware) where the vendor
will choose to decrease price as security risk increases. Social welfare is higher under
ransomware compared to the benchmark in both sufficiently low and high risk settings.
However, for intermediate risk, it is better from a social standpoint if consumers do
not to have an option to pay ransom. We also show that the expected total ransom
paid is non-monotone in the risk of success of the attack, increasing when the risk is
moderate in spite of a decreasing ransom-paying population.
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1 Introduction

In recent years, ransomware has evolved to become a prevalent class of malware due to im-

proved use of encryption and attack vectors as well as increased maturity of cryptocurrency-

based payment systems (such as Bitcoin and Ethereum exchanges) which obfuscate via

pseudonymity the identity of transacting parties (Verizon 2018). Ransomware is an extortion-

based attack that infects a computer system and subsequently prevents either access to the

system (i.e., locker ransomware) or access to files or data (i.e., crypto ransomware) (Savage

et al. 2015). Victims are typically threatened with permanent loss of access unless they pay

a ransom. Having an additional decision for users (i.e., whether to pay ransom) disrupts

the economics underlying software usage and patching behaviors, and therefore ransomware

may necessitate management strategies and policies that conflict with what served prior

environmental characteristics well.

While ransomware attacks often involve human interaction1, as of late more insidious ran-

somware attacks that do not rely on human interaction for initial infection and/or spreading

have been successfully deployed (Barkly 2017). Some of these attacks rely on identifying

vulnerable systems via massive scale remote scanning of computer networks. As of 2015, a

new and virulent strain has emerged - ransomware with wormlike capabilities. In this case,

the malware has the ability to move laterally from an infected system to other unprotected

systems on the same computer network without interaction or additional hacker interven-

tion. For example, WannaCry, a ransomware worm based on leaked NSA tools, struck on

May 2017 and indiscriminately affected over 230,000 computers across 150 countries in a day

(Cooper 2018). One peculiar aspect of ransomware worms (compared to other ransomware

strains) is that the risk of infection is characterized by network externalities - the more

consumers that are unpatched in a network, the higher the risk for each of them.

Preventative actions are the best defense against ransomware (FBI 2016, U.S. Depart-

ment of Justice 2017, No More Ransomware Project 2017). In fact, the U.S. Department

of Health and Human Services delineates what healthcare providers are required to do to

prevent ransomware infection in order to be HIPAA compliant (U.S. Department of Health

and Human Services 2016). Timely patching of systems is considered best practices, but

many organizations and users regrettably do not do so. Sadly, this state of affairs has been

1For example, victims’ systems are compromised by opening an email attachment (typically sent via a
phishing attack) or by visiting a compromised web site.
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the defining characteristic of security vulnerabilities for decades, and ransomware similarly

exploits the same poor vulnerability management practices.

With WannaCry ransomware, Microsoft had released a patch on March 14, 2017, follow-

ing revelation of the vulnerability’s existence by The Shadow Brokers hacker group (Microsoft

2017b). Two months later, despite Microsoft having made the patch available, a sizeable

number of unpatched systems enabled WannaCry to spread as fast as it did. Even one month

after global news outlets alerted the world to the vulnerability being exploited by WannaCry,

many users and organizations had still not patched and, as a result, the NotPetya malware

was able to spread using the same vulnerability (Microsoft 2017a). In fact, even a whole year

after the original attack, some reputable companies had yet to complete the patching of all

their systems. For example, in March 2018, several unpatched computer systems in Boeing

Commercial Airplanes division were affected by WannaCry (Gates 2018). These incidents

highlight how large populations of unpatched users facilitate the development and spread

of ransomware, and also maintain the threat current. As software vendors and government

agencies grapple with the significant losses being incurred, they have sought to understand

how to respond to and operate in this new environment where consumers now face a decision

of whether or not to pay ransom.

Over the past decade, ransomware experienced tremendous growth and even held the

crown as the fastest growing cybersecurity threat (Cybersecurity Insiders 2017). According

to Malwarebytes (2017), six out of ten malware payloads were ransomware in the first quarter

of 2017. The number of ransomware variants increased 4.3 times between the first quarter of

2016 and the first quarter of 2017 (Proofpoint 2017). The number of ransomware attacks on

businesses tripled in 2016, from one attack every two minutes to one attack every 40 seconds

(Kaspersky 2016). Of the attacked companies, 71% had at least one machine successfully

infected (Barkly 2016). Moreover, 72% of the infected businesses lost access to data for two

days or more (Intermedia 2017). The overall damage that businesses incur from ransomware

attacks (including remediation and lost business) is expected to reach $11.5 billion by 2019

(Morgan 2017). Because of ransomware’s prevalence, businesses and users have now had

experiences with the threat and importantly begun to put strategies and policies in place

for managing it going forward (Ali 2016; Davis 2018; Mercer 2018). However, managing

cybersecurity is a difficult task because the threat landscape can fluctuate significantly year

to year driven by changing tides and the wide-ranging motivations of hackers.
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Hacker motivations span human curiosity, a desire for fame, an anti-establishment agenda,

economic objectives, hacktivism, and even cyberwarfare (Thomas and Stoddard 2012). Both

NotPetya and WannaCry, the recent and largest ransomware attacks in history, were at-

tributed to state actors, i.e., Russia and North Korea, respectively (Chappell and Neuman

2017; Marsh 2018). In the case of SamSam ransomware, two Iranian nationals were indicted

for their involvement; these hackers seemed to be more economically motivated and earned

$6 million in ransom payments (Barrett 2018). Similarly, Cryptolocker is speculated to have

generated over $30 million in ransom payments in 100 days (Jeffers 2013).

In that state actors’ motivations are typically political in nature, those responsible for

NotPetya and WannaCry did not bother to properly set up and configure effective processes

to receive payments and return decryption keys to those who paid (Greenberg 2018). De-

spite not having that intent, they clearly proved the feasibility of launching large-scale and

disruptive ransomware attacks. In the end, only 338 WannaCry victims paid the ransom

demand (Palmer 2018). An interesting question is whether these attacks could have caused

greater economic damages (and been even more successful from a malicious perspective)

had the ransom payment and decryption key delivery process actually been functional. For

SamSam and Cryptolocker, which were clearly motivated by revenue generation, an open

question is how would the scaling of such attacks to harness the worm-like characteristics

of large-scale attacks impact revenues, considering that business and end users would adjust

their patching and usage strategies to such threats in expectation. It is easy to see that the

actual potential of ransomware has yet to be observed, and the economic models we develop

in this paper aim to provide insight into what may lie on the horizon.

Most prior work has aimed at understanding how a software firm and its users react to

security risk tend to model both patching costs and security losses, and these models can

cover a wide variety of cyber attacks (August and Tunca 2006; Cavusoglu et al. 2008; Dey

et al. 2015). However, ransomware is unique in that it presents users with an opportunity

to pay in exchange for a possible reduction in security losses. Thus, we construct a model of

cyber security to include these primitive elements that uniquely define ransomware. Using

this model, we examine how the threat of ransomware affects consumers’ choices as they

face trade-offs between ex-ante security protection efforts like patching and ex-post ransom

payments to agents with unlawful motives. As a class of attacks, ransomware presents a

potential efficiency gain by offering a loss-mitigating payment opportunity, whereas in models
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of traditional attacks (see those listed above), victims typically do not have this opportunity

and instead incur large valuation-dependent losses. On the other hand, such shifting of

consumer incentives and their strategies modifies the network externality stemming from

unpatched usage which fundamentally alters a vendor’s incentives and the decision problem

he faces. In totality, we seek to understand how ransomware characteristics affect software

pricing, usage and security, and reflect on whether a shift in attack trends toward increased

representation from the ransomware class is helpful or hurtful to the economy.

2 Literature Review

This work contributes to several research streams falling under the general topic of economics

of information security, namely (i) economics of ransomware, and (ii) network security ex-

ternalities due to interdependent risks. Moreover, due to the peculiarities of ransomware

attacks, this work is directly related to the research stream on (iii) economic dynamics of

hostage taking and negotiation.

Ransomware attacks are perpetrated based on the concept of holding hostage a digital

asset and demanding a ransom for its release (Young and Yung 1996). There exists an estab-

lished research stream on hostage taking, ensuing negotiations, and outcomes in scenarios

involving human victims. Several empirical studies explore the effect of deterrence policies

and concession making on recurrence of hijacking events (Brandt and Sandler 2009, Brandt

et al. 2016) and factors impacting the attackers’ perpetration and negotiation effectiveness

(Gaibulloev and Sandler 2009). Other studies take a behavioral approach trying to under-

stand terrorist actions in hostage-taking events (e.g., Wilson 2000). Early game-theoretical

studies on this topic focus on the dynamics of the interaction between rational terrorists

and negotiators on the part of victims (governments, families, or other interested parties).

Lapan and Sandler (1988) look at multi-period scenarios where the terrorists are considering

an attack each period and there are potential reputation effects propagating through time,

based on government concessions during negotiations for prior attacks. They abstract the

number of victims and their model characterizes attack outcomes as constants regardless of

how many victims are affected. Selten (1988) explores an extension with multiple attackers

and victims but each instance of an attack represents a game with an isolated outcome in

which the attacker will proceed with attacking each victim separately only if he expects some
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benefit from the attack. Drawing parallels to cyberattacks, such modeling approaches can

be used to characterize attacks that are to some extent targeted. In contrast, in the case

of worm attacks (and in particular worm ransomware) executed at scale, even if the onset

of the attack is targeted (which may not even be the case for many ransomware attacks),

the brunt of the impact is due to the fact that the malware can spread laterally very fast

to other unprotected systems in an untargeted way without the attacker working through

a decision making process for every potential breach. In several of these attacks, the de-

manded ransom amount is hardcoded a priori to a default level rather than being adjusted

based on the value of the compromised digital asset to the consumer (e.g., WannaCry was

prompting all victims to pay $300-$500 per affected system). Furthermore, theoretical kid-

napping models usually involve dynamics between two parties (negotiators and attackers).

In contrast, many cyberattacks are enabled by vulnerabilities in an information system sold

by a legitimate vendor (developer). The vendor is partially responsible for how secure his

product is and can strategically create financial incentives for the adoption and patching of

the system by consumers. Our framework accommodates attacks with lateral spread that

are conducted at scale, and we also include the role of the vendor in influencing the size of

the consumer population that is vulnerable to the attack. Beyond the existence (Young and

Yung 1996) and observation of cryptovirological attacks, our work focuses on their impact

on software markets and the economic incentives that govern their efficacy.

The research agenda on the economics of information security has been extensively de-

veloped along multiple directions such as patching management and incentives (Cavusoglu

et al. 2008, Ioannidis et al. 2012, Dey et al. 2015, August et al. 2016, Lelarge 2009),

software liability (August and Tunca 2011, Kim et al. 2011), network security (August and

Tunca 2006, Chen et al. 2011, August et al. 2014), piracy (August and Tunca 2008, Lahiri

2012, Kannan et al. 2016, Dey et al. 2018, Kim et al. 2018), vulnerability disclosure (Cavu-

soglu and Raghunathan 2007, Arora et al. 2008, Choi et al. 2010, Mitra and Ransbotham

2015), and markets for information security and managed security services (Kannan and

Telang 2005, Dey et al. 2012, Gupta and Zhdanov 2012, Ransbotham et al. 2012, Dey et al.

2014, Cezar et al. 2017). However, study of the economic dynamics of markets affected

by ransomware remains relatively scarce. Different from other types of cyberattacks where

the full loss is realized if the attack is successful, ransomware attacks present victims with a

post-attack choice (and, in some cases, opportunity to negotiate): pay ransom (and hopefully
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retrieve access to the locked resource) or incur the full losses associated with giving up on

that digital asset. From the perspective of consumers, the game is more complex. Laszka

et al. (2017) explore security investments in risk mitigation (e.g, backups) and the strategic

decision of whether to pay ransom. They abstract away any preventive effort investments

by consumers (patching, firewalls, etc). In their study, the attacker’s effort is customized to

the victim, thus matching the dynamics of targeted attacks. In contrast, in our study, in

the case of untargeted attacks with lateral movement, preventive actions effectively impact

the spreading of the attack. Cartwright et al. (2018) adapt the models by Lapan and San-

dler (1988) and Selten (1988) to ransomware attacks and explore bargaining and deterrence

strategies. In particular, they show that the likelihood of irrational aggression in the absence

of payment and credible commitment to return files upon receipt of payment play key roles

in incentivizing victims to pay the ransom. Both of these papers consider the bargaining

nature of the ransom game, where the victims have the ability to propose a counter-offer to

the demanded ransom and engage in negotiations. Again, such a modeling approach is more

relevant to targeted attacks on a smaller scale, where the effort is minimal on the side of the

attacker to customize his handling of each victim. As mentioned above, many larger scale

untargeted ransomware attacks do not allow for bargaining and the ransom is fixed into the

code prior to the attack taking place. Hence, in our study, we focus more on the consumer

decision of whether to pay the ransom or not in the absence of a bargaining option.

Last but not least, neither the kidnapping literature nor the extant literature on eco-

nomics of ransomware capture the possibility of negative security network externalities which

characterize worm cyberattacks. Cartwright et al. (2018) mention potential spillover effects

of deterrence when there are two customer categories but they do not tie these effects to

the size of the vulnerable population. In the case of worm ransomware, due to autonomous

lateral spreading, the higher the number of unpatched systems on a network, the higher

the risk of infection to every single one of them. In such attacks, a system need not be an

initial target for it to eventually become compromised. Interdependent security risks have

been explored in several other papers (e.g., Kunreuther and Heal 2003, Choi et al. 2010,

Johnson et al. 2010, August and Tunca 2011, Hui et al. 2012, Zhao et al. 2013, Cezar

et al. 2017). We extend this literature by considering risk interdependencies in the context

of worm ransomware.
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3 Model and Consumer Market Equilibrium

3.1 Model Description

We study the market for a software product that exhibits security vulnerabilities exploitable

by worm ransomware attacks. We assume a unit-mass continuum of consumers whose val-

uations v for the software lie uniformly on V = [0, 1]. When a security vulnerability arises,

the vendor develops a security patch and makes it available to all users of the software.

Each consumer makes a decision to buy, B, or not buy, NB. Consumers who purchase pay

a price p, set by the vendor, for the product. Similarly, each buying consumer makes a

decision to patch, P , or not patch, NP . Consumers who decide to patch incur an expected

patching cost of cp > 0. Consumers who do not patch face the risk of being hit by an attack.

If unpatched, then the probability a consumer gets hit is given by πu, where π > 0 is the

probability the vulnerability is exploited and u is the size of the unpatched population of

users (which is endogenous to the model). With this specification, we capture the ability

of a ransomware worm to autonomously replicate and spread laterally to other unpatched

systems in the network.

We focus on large-scale ransomware attacks with no bargaining opportunities for the

consumers. Once hit, the consumer faces two options: pay the ransom demand, R, or do

nothing, NR. The representative ransomware operator demands a single ransom R > 0

across all victims, which is consistent with much of the ransomware in this family (Symantec

2016, F-Secure 2016). A ransomware victim of type v that does not pay the ransom incurs

losses αv, where α> 0. On the other hand, even consumers who pay ransom face a risk that

the attacker may not release the decryption key. This can happen for multiple reasons that

interact with the wide-ranging attacker motivations discussed in Section 1. For example,

an economically-motivated attacker may not release the key because he aims to extract

more out of the victims (Siwicki 2016). Or perhaps not releasing decryption keys is a result

of unintentional failures in either a manual process for producing and releasing keys or in

the systems that process ransom payments (Abrams 2016). Attackers with either political

motivations or other motivations less economic in nature may not have any intention to

produce or release the keys in the first place (Frenkel et al. 2017, Marsh 2018).

Because users face uncertain ransomware risks based on uncertain motivations, we param-

eterize the primary loss characteristics faced by users which presents the ability to analyze
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outcomes across the varied motivations that underlie hacker activity. In particular, users

who pay ransom still incur some residual valuation-dependent losses in expectation. We

model them as scaled losses by a factor δ ∈ [0, 1]. For example, δ = 1 represents the case

where the ransomware operator has no intention of releasing the decryption keys upon pay-

ment, and a smaller δ represents the opposite case where the operator uses well-functioning,

automated decryption key release systems and residual losses to paying users are minimal.

In general, one can vary over the (R, δ) parameter space to map to hacker motivations

and then gain insights into the equilibria that unfold when ransomware has characteristics

consistent with each motivation. This parametric approach is preferable here because the

wide-ranging and disparate motivations behind observed ransomware would make objective

specification (in malicious agent modeling) untenable. Moreover, it permits broader insights

into a threat landscape that is quite dynamic in nature; the version and intent of ransomware

seen today in WannaCry and NotPetya may look starkly different than the successful ran-

somware campaign of tomorrow which our model intends to inform upon.

The consumer action space is S= {(B,P ), (B,NP,R), (B,NP,NR), (NB)} and for a

given strategy profile σ : V → S, the expected utility function for consumer v is given by:

URW (v, σ),


v − p− cp if σ(v) = (B,P ) ;

v − p− πu(σ)(R + δαv) if σ(v) = (B,NP,R) ;

v − p− παu(σ)v if σ(v) = (B,NP,NR) ;

0 if σ(v) = (NB) ,

(1)

where u(σ),
∫
V 11{σ(v)∈{(B,NP,R),(B,NP,NR)}} dv is the size of the unpatched adopting popula-

tion in the presence of the ransomware threat. Without loss of generality, we assume that

δ ∈ [0, 1], π ∈ (0, 1), cp ∈ (0, 1), R ∈ [0,∞), and α ∈ (0,∞).

Beyond developing an understanding of market dynamics in the presence of ransomware

threats, one of our goals is to highlight differences in comparison to scenarios involving

traditional malware threats where victims do not have the option to pay ransom to mitigate

the impact of the attack. For this purpose, we use as a comparison benchmark the model from

August and Tunca (2006), which captures fundamental characteristics of software markets

in the presence of malware attacks with no ransom option. Their model considers only three

potential consumer strategies, SBM = {(B,P ), (B,NP ), (NB,NP )}, but still captures the

network externalities. For a given strategy profile σ : V → S, the expected utility function
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for consumer v is given by:

UBM(v, σ),


v − p− cp if σ(v) = (B,P ) ;

v − p− παuBM(σ)v if σ(v) = (B,NP ) ;

0 if σ(v) = (NB) ,

(2)

where uBM(σ),
∫
V 11{σ(v)∈{(B,NP )}} dv is the size of the unpatched adopting population un-

der the benchmark case.

3.2 Consumer Market Equilibrium

Before examining the impact of ransomware on the vendor’s decision, we first must charac-

terize how consumers behave in equilibrium for a given price. There are two factors that

complicate their decisions. First, the level of risk upon being unpatched is endogenously de-

termined by the actions of consumers. Second, this risk includes the behavior of both those

who would pay ransom as well as those who would not. Thus, we first focus on understand-

ing the effect of their strategic interactions on equilibrium behavior due to the externality

generated by both subpopulations. The consumer with valuation v selects an action that

solves the following maximization problem: max
s∈S

URW (v, σ) , where the strategy profile

σ is composed of σ−v (which is taken as fixed) and the choice being made, i.e., σ(v) = s.

We denote the optimal action that solves her problem with s∗(v). Further, we denote the

equilibrium strategy profile with σ∗, and it satisfies the requirement that σ∗(v) = s∗(v) for

all v ∈V . We next characterize the structure of the consumer market equilibrium that arises.

Lemma 1. Given a price p and a set of parameters π, α, cp, R, and δ, there exists a unique

equilibrium consumer strategy profile σ∗ that is characterized by thresholds vnr, vr, vp ∈ [0, 1].

For each v ∈V, it satisfies

σ∗(v) =


(B,P ) if vp<v≤ 1 ;

(B,NP,R) if vr<v≤ vp ;

(B,NP,NR) if vnr<v≤ vr ;

(NB) if 0≤ v≤ vnr .

(3)

Lemma 1 establishes that the consumer market equilibrium has a threshold structure.

The highest-valuation consumers have the most value to lose if attacked, so they patch in
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equilibrium (if the risk is sufficiently high). Those with lower valuations remain unpatched,

trading off a fixed cost of patching for valuation-dependent losses. Of those who are un-

patched, those with higher valuations are the ones who pay ransom to reduce the impact of

being unpatched on their valuation-dependent losses. Importantly, it can be the case that

no unpatched consumer (if R or δ is sufficiently high) pays ransom or even all unpatched

consumers pay ransom (if R or δ is sufficiently low).

We denote the vendor’s profit function by Π(p) = p

∫
V
1{σ∗(v|p)∈{(B,NP,NR),(B,NP,R)(B,P )}}dv,

noting that marginal costs are assumed to be negligible for information goods. The vendor

sets a price p for the software by solving the following problem: max
p∈[0,∞)

Π(p), such that

(vnr, vr, vp) are given by σ∗(· | p). With the optimal price p∗ that solves the vendor’s prob-

lem, we denote the profits associated with this optimal price by Π∗ , Π(p∗). In the next

section, we will discuss how R and δ play a role in impacting the vendor’s pricing strategy

and, ultimately, in shaping equilibrium consumer behavior.

4 Impact of Ransomware Characteristics

4.1 Pricing-induced Market Structures

Because our model parameter space induces many different equilibria including those not

commonly found in practical settings, it is worthwhile to focus our analysis on subspaces

that are more relevant. As a simple example, it is natural that, in equilibrium, if patching

costs (cp) are really low then most users patch and if patching costs are too high, then

no user patches; however, neither outcome is characteristic of settings that are commonly

observed. To better focus on regions where key trade-offs are more active, we make the

following assumptions going forward:

Assumption 1. 1
2

(
3− 2

√
2
)
< cp <

1
2

(
2−
√

2
)

, and

Assumption 2. α < α < α ,

where α = cp(2−cp)2

(1−cp)2
and α =

−3+
√

(1−cp)(9−25cp)+cp(46−75cp+15
√

(1−cp)(9−25cp))

16(1−3cp)
.

While costs of patching involve inefficiencies due to downtime during the patching process,

usually the patch distribution and installation processes have been greatly streamlined and

sometimes automated for individual consumer and enterprise systems. When patching is
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done properly and in tandem with the adoption of fail-safe measures (such as restoration

capabilities / backups) the associated business costs are usually within reasonable ranges.

Similarly, such fail-safe measures can reduce the extent of damage of a ransomware (or other

type of malware) attack. For simplicity, in our model, we assume that patching is effective

at preventing the exploitation of the vulnerability. Moreover, the assumptions on cp and α

above are sufficient conditions to obtain the findings in our paper, which can extend well

beyond this focal region. Also note that our model can capture scenarios in which consumers’

losses if hit can exceed their valuations of the software (α > 1).2

It will be helpful to better understand how the vendor changes the consumer market

structure he induces via pricing in equilibrium based on some characteristics of the ran-

somware setting, e.g. size of the ransom demand R and security risk factor level π. Figure 1

provides a helpful illustration of how the consumer market equilibrium outcome fluctuates.

This figure depicts an instance of the focal region we study (defined by the assumptions

above), and it will be useful as a reference for the reader in keeping in mind which structures

are in play. Moreover, some subsequent figures study vertical and horizontal slices across

Figure 1 which can more easily be visualized here. For consistency, the capital letter labels

in these cases also refer back to the region labels of Figure 1.

Figure 1 shows that when R and π are sufficiently low, then prices are set such that

all customers of the software opt to remain unpatched and pay the ransom if hit. Overall,

the expected losses are sufficiently low in Region (A) of the figure that consumers do not

find it worthwhile to incur the cost to protect themselves by patching, and, if hit, they

also prefer to pay the ransom because R is relatively low. On the other extreme, if R and

π are sufficiently high, then the equilibrium outcome would be identical to the outcome

observed in a world without ransom. This is seen in Region (D), in which the equilibrium

outcome is 0<vnr<vp< 1. In a setting with a high security risk factor π, higher-valuation

consumers have a strong incentive to protect themselves from risk by patching. Those

with lower valuations prefer to remain unpatched and do not pay high ransom demands;

this results in the market outcome described. In the middle ground between these two

scenarios, we see that the equilibrium outcome aligns well with observations of the world

2For example, losses associated with reputation, customer goodwill and attack clean-up can often be
substantial and exceed a user’s valuation of the software itself. However, expected losses are necessarily less
than the user’s valuation. The user only makes trade-offs between paying ransom and incurring losses at the
last stage of the game, consistent with the sub-game perfect equilibrium solution concept we employ.
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Figure 1: Characterization of equilibrium consumer market structures across regions in the
ransom demanded (R) and security loss factor (π). Region labels describe the consumer
segments that arise in each region in order of increasing consumer valuations (from left to
right). Patching costs (cp = 0.28), security loss factor (α = 3), and residual loss factor
(δ = 0.1) are selected to ensure all consumer patching and ransom paying behaviors are
present for some sub-region.

today. In Region (C), the consumer market outcome is characterized by 0<vnr<vr<vp< 1,

in which some of the customers who opt to remain unpatched choose to pay the ransom if

hit. Region (C) will be in the spotlight throughout the paper, as it represents a region of the

parameter space corresponding well to practical outcomes. For completeness, we will also

examine neighboring parameter regions to portray a sense of how the equilibrium outcome

unfolds with perturbations in the levels of risk. In particular, if the risk factor is not as
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high as in Region (C), then one might expect 0<vnr<vr< 1 to arise in equilibrium, in

which no customer patches and higher-valuation customers opt to pay ransom if hit. Such

a region does arise, and it is depicted as Region (E). Similarly, with a high risk factor but a

smaller expected ransom demand, the outcome 0<vr<vp< 1 in which the highest-valuation

customers patch and all unpatched customers pay the ransom if hit also arises, depicted as

Region (B).

4.2 Role of the Ransom Amount, Risk and Residual Losses

With the newfound understanding of how the equilibrium outcome unfolds across different

regions of the parameter space, we next investigate regions of interest in more depth. In the

rest of this section, we describe and illustrate several insights into ransomware economics.

For example, one might expect that a higher ransom demand would negatively impact the

vendor and reduce the market share of the affected product. However, that is not always the

case, as is shown in the first proposition. For the majority of results and discussions in this

paper, we focus on residual losses for ransom-paying consumers being low (i.e., δ satisfying

an upper bound). This assumption matches more recent ransomware trends (Disparte 2018).

An economically-motivated hacker would generally deploy ransomware with characteristics

satisfying such conditions because the hacker’s goal is to generate ransom payments which

would be negatively impacted by post-payment malicious behavior. Despite ransom-paying

consumers requiring some belief about “honor among thieves”, for certain classes of hacker

motivations maintaining this honor would be in everyone’s best interest (Fleishman 2016).

To gain a broader view into diverse motivations and provide an overall more comprehensive

analysis, we relax this assumption in Proposition 5 and again in Section 4.3.2 to discuss

scenarios of high residual losses.

Proposition 1. There exists a bound δ̃ > 0 such that if δ < δ̃:

(a) if cpα < R < α
2−cp and cpα

R2−cpRα < π ≤ 1, then the equilibrium consumer market structure

is 0<vr<vp< 1 and the vendor’s profit under equilibrium pricing decreases in R. Fur-

thermore, the size of the market decreases in R despite the vendor’s optimal price also

decreasing in R.

(b) if α
2−cp < R < R̃ and cpα

R2−cpRα < π ≤ 1, then the equilibrium consumer market structure

is 0<vnr<vr<vp< 1 and the vendor’s profit under equilibrium pricing increases in R.

13



Moreover, the size of the market increases in R even though the vendor’s optimal price

also increases in R.3

When the ransom demand is not too low and the potential losses from the attack are

sufficiently high regardless of whether the victim pays ransom or not, then high-valuation

consumers elect to patch. It is important to note that the trade-off here centers on cp versus

πu(σ)(R + δαv) (i.e., the expected costs under a ransom-paying strategy). Therefore, a

patching population only emerges when R is large relative to cp, in that the likelihood of

an attack striking, πu(σ), can be low in equilibrium. Part (a) of Proposition 1 pertains

to a region of the parameter space in which the ransom demand is low enough that all

unpatched consumers simply pay the ransom if hit (but not so low that nobody patches).

This corresponds to Region (B) of Figure 1. Since all unpatched customers pay ransom,

all of them are negatively impacted by an increase in R. In particular, given some ransom

demand R, the consumer of type vr (the consumer indifferent between not purchasing and

purchasing) derives zero surplus upon purchasing the software. An increase in R induces

this customer (and others with low valuations) to strictly prefer not purchasing at all. In

that way, an increase in R hurts the vendor when all unpatched customers are paying the

ransom.

As R moves relatively higher, the unpatched population splits into subpopulations of

ransom payers and non-payers. This corresponds to Region (C) of Figure 1. An increase

in R incentivizes some unpatched consumers who would have paid ransom to strictly prefer

patching over remaining unpatched and risk getting hit with ransomware. This, in turn,

leads to a reduction in the size of the unpatched segment, thus reducing the risk of an

attack. As a result, those on the bottom end of the market who were unpatched but not

paying ransom now have higher surplus upon remaining unpatched. Consequently, consumers

of even lower valuations (who would not be in the market under a smaller R) now find it

incentive-compatible to use the software and remain unpatched, and the vendor is able to

profitably extract greater surplus by charging a higher price.

Figure 2 illustrates how an increase in the ransom demand (R) can benefit the vendor,

with the market size expanding despite an increase in price. In particular, panel (a) depicts

how the equilibrium consumer market structure changes in the ransom demand. Panel (a)

3For convenience, we define R̃ = min

(
1
2α(1 + cp), 14

(
α+

√
α(16cp + α)

))
.
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Figure 2: Impact of ransom demand (R) on the equilibrium market outcome, vendor’s price,
and the vendor’s profit. The parameter values are cp = 0.28, α = 3, δ = 0.1, and π = 0.6.
The capitalized letter region labels correspond to region labels in Figure 1. The legend in
panel (b) also applies to panel (c).

illustrates that when the ransom demand is high enough (roughly R > 1.96 in the figure),

then no unpatched customer pays ransom if hit. For a slightly lower ransom demand (roughly

between R = 1.58 and R = 1.96), then higher-valuation unpatched consumers pay ransom

if hit while those of lower valuations do not. In particular, in panel (a) we see the market

structure 0<vnr<vr<vp< 1 arises in equilibrium under vendor pricing for this range of R.

This market structure (in which all segments of the market are present) is the equilibrium

market structure for which the insights of part (b) of Proposition 1 are applicable.

The direct impact of an increase in the ransom demand on consumer behavior is illus-

trated in panel (a). Between R = 1.58 and R = 1.96, the threshold valuation (marking

the boundary between the patched population and the unpatched/ransom-paying popula-
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tion) decreases in R. An increase in the ransom demand causes those indifferent between

patching and not patching to strictly favor patching, precisely because, in this range of R,

higher-valuation unpatched consumers will pay ransom demands if hit. On the other hand,

unpatched consumers with lower valuations are not directly impacted by an increase in R,

because they do not pay ransom anyway. However, these consumers are indirectly impacted

by R; particularly, the negative externality that they endure upon remaining unpatched is

reduced due to increased patching behavior from higher-valuation consumers. As a result,

all else being equal these unpatched customers are now better off when observing a higher

ransom demand being charged, and the market size thus expands in R. This behavior can

be seen in panel (a), as the lower-most threshold valuation (i.e., the boundary between the

unpatched/non-paying population) decreases in R.

As a result of this dynamic, the vendor is also now better off with a higherR. Even holding

price fixed, more customers adopt as R increases. What is compelling is that an increase in

ransom demand provides natural incentives to patch in a way that only negatively affects

a sub-segment of the unpatched population. Only those who pay ransoms are negatively

impacted while those who do not actually benefit with an increase in the severity of the

extortion. Consequently, the vendor has incentives to increase the price of the software as

the ransom demand increases, which can be seen in panel (b), to extract back some surplus

from those lower-valuation unpatched consumers who benefitted. Ultimately, the vendor

benefits from an increase in the ransom demand when all market segments are present, as is

illustrated in panel (c) between R = 1.58 and R = 1.96.

In contrast, the dynamic discussed above is absent when the ransom demand is small

enough that all unpatched consumers simply pay ransom if hit. Referring back to Figure

2, when R < 1.58, the equilibrium market structure is given by 0<vr<vp< 1 (which cor-

responds to part (a) of Proposition 1). Therefore, in equilibrium, all unpatched consumers

are directly and negatively impacted by an increase in R. In this case, those lower-valuation

consumers now also feel the pinch associated with an increase in R, which drives the con-

sumer indifferent between not purchasing and purchasing but remaining unpatched to now

strictly prefer to exit the market. Contrasting with the above region, rather than benefitting

the vendor, an increase in R ultimately hurts the vendor.

The discussion above demonstrates how ransomware is fundamentally different from other

forms of attack in which victims have little recourse. By offering victims a chance to reduce
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their losses, ransomware attackers can sometimes segment the unpatched user population

into two interdependent tiers. The expansion or reduction of either tier indirectly impacts

both tiers simultaneously because all unpatched hosts are potential vectors for the spread of

ransomware. But now, in contrast to traditional modes of attack, an increase in the ransom

demand may directly affect only a single tier which helps the vendor to discriminate.

Besides understanding how the market is expected to evolve as attackers demand higher

ransoms, we also want to explore how the market changes as the inherent risk (π) of the

software being breached increases. We first analyze how the vendor adjusts his pricing

strategy with respect to risk.

Proposition 2. There exist bounds δ̃, πL, π̄L, πM , π̄M , πH > 0 satisfying the conditions

πL< π̄L<
α− 2R

3R2 − 4αR + α2
<πM < π̄M <

cpα

R2 − cpRα
<πH

such that if δ < δ̃ and α
2−cp < R < R̃, the vendor’s equilibrium price p∗ is decreasing in π on

(πL, π̄L), (πM , π̄M) and (πH , 1). But,

p∗|π ∈ (πM ,π̄M ) > max
(
p∗|π ∈ (πL,π̄L), p

∗|π ∈ (πH ,1)

)
.

When the inherent risk factor is low, i.e., π ∈ (πL, π̄L), consumers have no reason to patch.

However, for a higher range of ransom demands as specified in Proposition 2, consumers split

in their decision to pay ransom. In particular, the unpatched population separates into two

sub-populations in terms of their equilibrium strategies (those who pay and those who do

not pay if hit) leading to a consumer market outcome characterized by 0<vnr<vr< 1). As

the inherent risk factor increases through this range, the vendor mitigates the impact of

increased risk on his customers by lowering price. However, when the risk factor increases

further to π ∈ (πM , π̄M), there is a significant and strategic change in the equilibrium pricing

behavior of the vendor. This is the primary message of Proposition 2: when the risk factor is

in a middle range, the vendor strategically increases price to focus only on higher-valuation

customers. This pricing strategy changes the consumer market characterization to 0<vr< 1

in which all purchasing consumer remain unpatched and pay ransoms if hit. Lower-valuation

customers drop out of the market due to the increased risk and higher price. Notably, as

we will see later in Section 4.3, such a strategic increase in pricing can never happen in the
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benchmark case when ransomware is not present in the market.

One question of interest when examining the impact of the inherent risk factor on a

software market is how the expected total ransom paid by victims gets affected. Although

the size of the consumer population willing to pay ransom if hit (r) always shrinks as this

risk factor increases (as seen in panel (c) of Figure 3), it turns out that the expected total

ransom paid is in fact non-monotone which is illustrated in panel (e) of Figure 3.

Proposition 3. There exist bounds δ̃, π
M
, ¯̄πM , πH > 0 satisfying the condition

α− 2R

3R2 − 4αR + α2
< π

M
< ¯̄πM <

cpα

R2 − cpRα
<π

H
< 1

such that if δ < δ̃ and α
2−cp < R < R̃, the size of the consumer population whose strategy is

to pay ransom if hit, r(σ∗), decreases in π for all π > α−2R
3R2−4αR+α2 . However, the expected

total ransom paid increases in π on (π
M
, ¯̄πM) and decreases in π on (π

H
, 1).

Figure 3 illustrates Proposition 3. In particular, panel (c) plots the size of the consumer

segment that pays ransom if hit, r(σ∗), i.e., the mass of consumers whose equilibrium strategy

is (B,NP,R). Panel (d) illustrates the total mass of consumers who remain unpatched in

equilibrium, u(σ∗), i.e., the mass of consumers choosing either (B,NP,NR) or (B,NP,R),

while panel (e) illustrates the expected total ransom paid, i.e., T (σ∗) , πu(σ∗)r(σ∗)R. The

key point to note here is that the externality u(σ∗) depends not only on those consumers

willing to pay the ransom but also on those who remain unpatched and are not willing to

pay. Referencing the left-hand side of panel (a) in Figure 3, since the ransom demand R

is moderate, the unpatched population splits into the two tiers when the inherent risk π is

low (resulting in a market structure 0 < vnr < vr < 1). Note that the consumer indifferent

between paying and not paying does not depend on the risk, since at the decision node at

which a consumer is making a decision of whether or not to pay, the tradeoff is between

incurring a loss of αv and incurring a loss of R + δαv. The valuation of the consumer

indifferent between paying ransom and remaining unpatched versus just staying unpatched

is given by v = R
α(1−δ) . Since consumers who remain unpatched but do not pay ransom have

valuations even lower than this threshold, they are the ones to first drop out of the market

as π increases. Consequently, the size of the consumer population willing to pay ransom

if hit remains constant in π at first (see the left-hand side of panel (c)). Although u(σ∗)
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Figure 3: Impact of risk factor (π) on the equilibrium market outcome, vendor’s price, size
of the market segment willing to pay ransom if hit, size of the market segment willing to
remain unpatched, and expected total ransom paid. The parameter values are cp = 0.28,
α = 3, δ = 0.1, and R = 1.75.

necessarily shrinks, the overall risk πu(σ∗) increases as π increases such that the expected

total paid by victims is also increasing in π (illustrated in panel (e), to the left of π = 0.26).

When the vendor strategically increases price (for π between 0.26 and 0.36) as discussed

in Proposition 2, those low-valuation consumers who had been choosing (B,NR,NP ) drop

out of the market and also the size of the ransom-paying group shrinks which is now the

only segment present in the market. In the immediate vicinity of π= 0.26, as the market

structure changes, the overall risk externality πu(σ∗) (with u(σ∗) = r(σ∗)) suddenly drops.

The net impact of these two effects is a drop in the size of the expected total ransom paid by

victims around π= 0.26. Nevertheless, as risk increases, the ransom-paying population does

not decrease steeply. Hence, in this risk range, the expected total ransom paid by victims
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remains monotone increasing in π, albeit trailing behind the levels just prior to the market

structure change.

Around π= 0.36, the vendor finds it optimal to significantly drop price and all three

market segments emerge in equilibrium (i.e., 0 < vnr < vr < vp < 1). The significant drop in

price invites additional consumers to enter at the low end of the market and stay unpatched.

The increased risk associated with that entry induces the high valuation customers to shield

themselves from the risk by patching. In addition, the ransom-paying population keeps

shrinking. The sudden jump in the unpatched population u(σ∗) compensates for the drop in

r(σ∗), and overall the total expected ransom paid momentarily jumps upward. But perhaps

what is more notable is the change in monotonicity. As the risk increases even further, higher-

valuation consumers who were willing to just pay ransom if hit switch to patching at such a

rate that those low-valuation consumers who do not pay ransom are only marginally impacted

by the increased risk. Moreover, as discussed before, the marginal customer indifferent

between paying and not paying ransom is not affected by the overall risk level. Thus,

both the ransom-paying population r(σ∗) and the overall unpatched population u(σ∗) keep

shrinking. Nevertheless, unlike the low risk region, this dual shrinking effect dominates the

increase in the risk factor (π) and the expected overall ransom paid decreases.

While the option to pay ransom offers a recourse to mitigate value-dependent losses, it

also involves a secondary risk. When considering the ransom payment, victims in general are

not sure a priori that the attacker will deliver the promised decryption keys. As mentioned

in Section 3, this secondary risk is captured by the parameter δ. In the remainder of this

section, we explore how δ impacts the vendor’s profit, expected aggregate losses incurred by

the unpatched population, and aggregate consumer surplus. The latter two measures are

defined by:

UL ,
∫
V
1{σ∗(v)=(B,NP,NR)}παu(σ∗)vdv +

∫
V
1{σ∗(v)=(B,NP,R)}πu(σ∗)(R + δαv)dv ,

CS ,
∫
V
1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}URW (v, σ∗)dv.

Proposition 4. There exists a bound δ̃ > 0 such that if δ < δ̃, α
2−cp < R < R̃, and

cpα

R2−cpRα < π ≤ 1, then:

(a) the vendor’s profit will increase in δ, and
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(b) the aggregate unpatched losses and consumer surplus both decrease in δ.

Proposition 4 characterizes a market scenario that falls within Region (C) of Figure 1, in

which 0 < vnr < vr < vp < 1 is the ensuing equilibrium outcome. The results in Proposition

4 can be observed in the range 0 < δ < 0.204 in Figure 4. The vendor benefits from an

increase in residual loss factor δ for the same reason for which he benefits when R increases

(as discussed in part (b) of Proposition 1). An increase in δ only directly impacts ransom-

paying unpatched consumers, providing a disincentive for them to take that route. As some

consumers who were paying ransom switch to patching due to this increased risk of possibly

not receiving promised decryption keys, the aggregate risk externality decreases and the

vendor can increase the price while keeping the overall market relatively steady to extract

additional surplus (as seen in panels (a) and (b) of Figure 4). In short, when all market

segments are present in equilibrium, the vendor prefers greater potential residual losses

(whether stemming from failures with payment systems or decryption keys as well as mixed

motivations of hackers) because it presents an unusual and counter-intuitive opportunity to

charge a premium for higher risk in the market without losing too many consumers.

Furthermore, as it turns out, the vendor would prefer that consumers have the worst

possible perception regarding the trustworthiness of the attacker whereas an economically-

driven hacker would prefer the opposite. Reports suggest that, compared to the early days of

ransomware attacks, the market for such attacks has become efficient and the success rate in

retrieving access to compromised assets following a ransom payment increased dramatically,

highlighting prevalent economic motivations on the attacker side (Disparte 2018). But, in

many cases, corporate victims that pay ransom do not publicize their actions (Cimpanu

2017), which makes it easier for the vendor to vilify attackers in an amplified way even when

decryption keys are often returned. Even a small number of failed interactions can damage

the hacker’s reputation and effectively cut off its revenue stream.

Proposition 4 further shows that the vendor’s expected profit can be the lowest at the

same δ that concomitantly gives the worst expected losses to the unpatched population

and the highest overall consumer surplus, as seen in panel (d) of Figure 4. As δ increases,

the ransom-paying unpatched population shrinks as customers at both ends of this segment

choose different strategies (higher-valuation customers choose to patch, while lower-valuation

customers choose not to pay ransom). Moreover, the overall unpatched population shrinks

as well, thus lowering the security risk externality. The redistribution of consumers among
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Figure 4: Impact of the residual loss factor (δ) on the equilibrium market outcome, vendor’s
pricing, vendor’s profit, aggregate unpatched consumer losses, and consumer surplus. The
parameter values are cp = 0.28, α = 3, R = 1.75, and π = 0.6.

segments and the reduced overall risk result in the aggregate expected losses to the unpatched

population decreasing in δ. Even though these expected losses to the unpatched population

are decreasing, the vendor mitigates the increased risk of residual losses by employing a higher

price to control the population size. Given the relatively stable (but slightly shrinking) size

of the market when δ < 0.204, the reduction in losses to the unpatched population is offset

by the larger premium, hence consumer surplus also decreases in δ.

Having fully explored the case where residual losses for ransom-paying consumers are low,

we next turn our attention to the case where residual losses become high. An economically-

motivated hacker may aptly be characterized as having a lower δ because revenue generation

requires a mass of consumers to pay ransom in equilibrium. In particular, a lower δ helps to

make this strategy incentive compatible for some subset of the consumer space. On the other

22



hand, a politically-motivated hacker or a hacker otherwise motivated may be significantly

less concerned about capping residual losses. In that generating ransom payments is no

longer a primary concern, the practical range of δ for hackers with these motivations may

become much broader. In this sense, it is worthwhile to also examine equilibrium outcomes

when δ is high and explore how the relevant comparative statics are impacted.

Proposition 5. If πα > 2(1−cp)cp
1−3cp

and δ > 1 − R
α

, then the equilibrium consumer market

structure is 0<vnr<vp< 1. The vendor’s equilibrium price, the size of the market, and

equilibrium profit are all constant in R and δ.

Proposition 5 formally demonstrates that as the residual losses become sufficiently high,

it is no longer incentive compatible for any user to pay ransom in equilibrium. Rather

than pay ransom, users will either remain unpatched and risk losses or incur patching costs

to shield them. A higher δ reflects a situation where the attacker tends not to fulfill any

agreement to release decryption keys after receiving ransom payments. This undermines

the upside of paying ransom and users avoid that strategy in equilibrium. Notably, once

the characteristics of the ransomware environment discourage ransom-paying strategies, the

equilibrium outcomes necessarily converge to those under the benchmark scenario. As can be

seen in the right-hand side of all panels in Figure 4, the relevant measures all become constant

in δ once the residual loss factor has become sufficiently high. Because of convergence to

the benchmark, one might naturally think of the benchmark instead as the outcome under

a politically-motivated hacker. However, in the next section, we will discuss why this might

be misleading despite the seeming equivalence between the two in the current cybersecurity

landscape.

4.3 Comparison to Benchmark

To help vendors and governments better understand how a software market with ransomware

present in the threat landscape is different from one where the threat landscape does not

give mitigation recourse to victims, we contrast findings from our model against findings

from the benchmark model introduced in Equation (2). In order for the comparison to be

meaningful, we focus on sensitivity analysis with respect to a common primitive shared by

the two models, namely the security risk factor, π. By comparing outcomes between the two

scenarios given a common risk factor, we focus in both cases on similar attack vectors for
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infiltration and spread within networks. As such, any difference in the nature and magnitude

of outcomes is attributable to the additional option for consumers to pay ransom and the

strategic behavior that results from its presence.

4.3.1 Low Residual Loss Factor (δ)

We begin with the case of low δ which represents ransomware designed with revenue gener-

ation in mind. First, we explore how the vendor’s optimal pricing strategy is different under

the two scenarios.

Proposition 6. There exists bounds δ̃ > 0 and 0 < π̂ < cpα

R2−cpRα such that if δ < δ̃ and

α
2−cp < R < R̃:

(a) if max
(

α−2R
3R2−4Rα+α2 ,

2cp
α

)
< π < π̂, then p∗RW > p∗BM ;

(b) if π̂ < π < 1, then p∗RW < p∗BM ;

(c) p∗BM is decreasing in π.

Proposition 6 is illustrated in Figure 5, with the bound π̂ ≈ 0.36 for the specified pa-

rameter set. Figure 5 depicts a cross-section of Figure 1 in the π-direction at R = 1.75. In

particular, for π ranging from 0 to 0.6, this slice cuts through Regions (E), (A), and (C) of

Figure 1; these region labels are also provided in panel (b) of Figure 5. When the risk factor

(π) is sufficiently small, whether ransomware is present in the landscape or not, no customer

has any incentive to patch since expected losses are small relative to the cost of patching.

In the ransomware scenario, since we are exploring a region with a moderate ransom de-

mand, the unpatched consumer indifferent between paying ransom and not paying ransom

(vr) derives strictly positive utility in equilibrium. Thus, the emerging market structure is

0<vnr<vr< 1 (as seen in panel (b) of Figure 5). Low-valuation consumers who adopt un-

der the given risk circumstances face expected losses that are small enough such that paying

ransom is not incentive-compatible for them. Hence, the lowest-valuation adopter under

ransomware scenario does not factor in the ransom demand in her utility, although she is

affected by the overall unpatched population size. Since the vendor cares about the entire

adopter population, the optimal price, profit, and total market size under both ransomware

and benchmark scenarios are the same in this region. This can be seen in Figures 5 and 6.
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Figure 5: Sensitivity of equilibrium consumer market structure and price with respect to risk
factor π under both benchmark and ransomware cases. The parameter values are cp = 0.28,
α = 3, δ = 0.1, and R = 1.75.

In particular, panels (a) and (b) of Figure 6 show the impact of π on the vendor’s profit and

equilibrium market size, M(σ∗),
∫
V 11{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}} dv.

As π increases into moderate and high ranges, we see differences in pricing strategy

(and corresponding market outcomes) between the two threat landscapes. While in both

scenarios the price remains piece-wise decreasing, the two pricing strategies present jumps
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Figure 6: Sensitivity of vendor’s profit, consumer market size, endogenous total risk level
(πu), and social welfare in equilibrium with respect to the risk factor (π) under both bench-
mark and ransomware scenarios. The parameter values are cp = 0.28, α = 3, δ = 0.1 and
R = 1.75.

at points of discontinuity (corresponding to changes in market structure) that highlight

significant differences in the vendor’s approach toward mitigating risk using price. In the

benchmark case, when the risk factor level first reaches a moderate level (around π ≈ 0.22),

the endogenous overall total security risk πu in equilibrium is also relatively high (as can

be seen from panel (c) of Figure 6). At such a risk level, the vendor has an incentive to

significantly drop his price (a discontinuous reduction, illustrated in panel (c) of Figure 5)

in a strategic manner to profitably increase the market size. Facing a larger unpatched

population, the highest-valuation consumers opt to patch, which insulates them from the

added externality introduced by more lower-valuation consumers joining the market but

not patching. However, in the vicinity of π= 0.22, this dynamic does not occur in the

26



ransomware case. In particular, if the vendor were to drop the price, some of the highest-

valuation consumers would not patch, even when facing this increased risk. Instead, they

would still opt to just pay the ransom and bear the valuation-dependent losses δαv. As long

as these highest-valuation customers remain unpatched, they continue to impose a negative

externality on all other unpatched customers in the market. Because of that, the vendor

cannot profitably expand the market through a significant drop in price, and the optimal

price in the ransomware case stays above the price of the benchmark case.

In a more striking contrast to the benchmark case, the vendor in the ransomware case

actually has an incentive to hike the price altogether to a higher range (still keeping price

piecewise decreasing in π) as risk increases further. This happens for π between 0.26 and

0.36, as can be seen in panel (c) of Figure 5. This outcome and the dynamics at play

which drive it have been analyzed in Proposition 2 and the related discussion. Notably, in

the benchmark case, the vendor never hikes the price when changing the market structure

from 0<vnr< 1 to 0<vnr<vp< 1 as the security risk increases. As risk increases, lower-

valuation consumers who do not patch are strongly impacted because there is not an option

to pay ransom in order to mitigate losses. As such, a price increase would hurt the unpatched

population even more, leading to a significant drop in market size and a lower profit.

Once the risk factor becomes sufficiently high, then the vendor drops price significantly

in the ransomware case, even below the benchmark level. This happens around π = 0.36 in

panel (c) of Figure 5. This move expands the market significantly at the low end, inviting a

large mass of unpatched customers to join the market (with a sizable fraction of the lowest-

valuation consumers opting to not pay the ransom if hit), as seen in panel (b) of Figure 5.

This behavior introduces significant overall risk to the market which is depicted in panel (c)

of Figure 6. As a result of this increase in the endogenous aggregate risk, high-valuation

consumers find it optimal to protect themselves from this risk by patching. Consequently, the

resulting consumer market equilibrium outcome is 0<vnr<vr<vp< 1, which most closely

resembles today’s software markets.

Interestingly, panel (a) of Figure 6 shows that, once the risk factor is high enough

(π > 0.22), the vendor will be strictly better off under the benchmark model than un-

der the ransomware model. When π ranges between 0.22 and 0.26, under ransomware, the

market keeps shrinking even though the price keeps dropping. At the same time, under the

benchmark, the big drop in price induces a significant increase in market size. This enables
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the vendor to obtain higher profits. When π ranges from 0.26 to 0.36, under ransomware, the

vendor significantly increases price so that risk from the unpatched population is mitigated.

In this region, nobody patches and the risk is too high - the vendor is better off shrinking the

consumer population rather than lowering the price. Moreover, the unpatched group that

pays ransom is highly elastic to risk in this region. On the other hand, under the benchmark,

the overall population remains relatively stable (only slightly decreasing), as the presence of

security risk alters the sizes of the patched and unpatched groups in opposite directions in a

balanced way. With prices relatively inelastic in this region, the profit under the benchmark

is superior.

When the risk factor is even higher (π > 0.36), the gap between the two profit levels

is shrinking but still the profit under the benchmark equilibrium dominates. Under ran-

somware, in that there are two unpatched groups (those who pay ransom and those who do

not), efforts to increase adoption via lower prices will be associated with very high aggregate

risk (πu). Thus, the reduction in price must be significantly greater for users to bear these

risks making it also much lower than the price employed in the benchmark case. This pre-

vents it from reaching the same profitability as the benchmark case. We also note that the

vendor’s profit is more elastic with respect to risk under the benchmark when π ∈ (0.22, 0.36)

compared to the ransomware case, but the ordering changes for higher risk levels (π > 0.36).

This suggests that the vendor has less incentive to improve security under the benchmark

compared to ransomware when risk is moderate, and has greater incentive to do so when risk

is high. Taken together with prior observations, consumers in today’s ransomware threat

landscape should be more mindful of the risks of remaining unpatched not only because of

the increased externality arising from a sizable unpatched population but also because of

decreased incentives by the vendor to produce secure software.

Lastly, we study the impact of ransomware on social welfare. In the ransomware case,

we denote the expected aggregate security attack losses incurred by the unpatched popu-

lation not paying ransom by NLRW ,
∫
V
1{σ∗(v)=(B,NP,NR)}παu(σ∗)vdv . Similarly, we de-

note the expected aggregate losses incurred by the ransom-paying unpatched population by

RLRW ,
∫
V
1{σ∗(v)=(B,NP,R)}πu(σ∗)(R + δαv)dv , and the aggregate expected patching costs

by PLRW ,
∫
V
1{σ∗(v)=(B,P )}cpdv . Accounting for all of these components, the total expected

security-related losses can be expressed as: LRW ,NLRW +RLRW +PLRW . Social welfare is
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then given by WRW ,
∫
V
1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}vdv−LRW . Similarly, for the bench-

mark case, we define NLBM ,
∫
V
1{σ∗(v)=(B,NP )}παu(σ∗)vdv , PLBM ,

∫
V
1{σ∗(v)=(B,P )}cpdv ,

LBM ,NLBM + PLBM , and WBM ,
∫
V
1{σ∗(v)∈{(B,NP ),(B,P )}}vdv − LBM . The presence of

an option to pay ransom can have a significant effect on the market structure, impacting

welfare in complex ways, which we illustrate in the next result.

Proposition 7. There exist bounds δ̃, π̃L, π˜M , π̃M , π˜H > 0 satisfying the condition 0 < π̃L <

π˜M < π̃M < cpα

R2−cpRα < π˜H < 1, such that if δ ≤ δ̃ and α
2−cp < R < R̃:

(a) if 0 < π < π̃L, then WRW > WBM ;

(b) if π˜M < π < π̃M , then WRW < WBM ;

(c) if π̃H < π < 1, then WRW ≥ WBM .

When risk is sufficiently low, consumers do not have strong incentives to patch. Whether

they have the option to pay ransom or not, consumers remain unpatched and, as discussed

before, the optimal price and market size are identical under the two scenarios. This can

be see in panels (b) and (c) of Figure 6 for π < 0.22. The only difference is that, in

the ransomware case, unpatched consumers with higher valuation manage to counter the

potentially high valuation-dependent losses by paying ransom. Therefore, the overall losses

are lower in the ransomware case, which leads to higher social welfare as can be seen in panel

(d) of Figure 6.

Social welfare is also higher in the ransomware case when risk is high (π > 0.36) but

for a different reason. In this region, high-valuation consumers patch under both scenarios.

However, under ransomware, the vendor employs a significantly lower price and achieves a

larger market size, including a larger unpatched population. Nevertheless, some of the un-

patched consumers are able to reduce their losses by paying ransom instead. These two effects

combined lead to higher social welfare under ransomware in comparison to the benchmark.

Notably, in the high risk region, the vendor’s interests are not aligned with the scenario

yielding higher social welfare. The vendor actually prefers that consumers do not have the

recourse of paying ransom. This in turn places additional pressure on consumers, leading

to a reduced unpatched population, and ultimately enabling the vendor to charge a higher

price.
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When the risk is within an intermediate range (π between 0.22 and 0.36 in Figure 5), the

vendor sets a higher price in the ransomware case compared to the benchmark, resulting in

a market size that is significantly lower under ransomware. While most (to all) unpatched

consumers pay ransom and nobody patches, the significant difference in market size between

the ransomware and benchmark cases ensures that social welfare is higher in the latter case,

matching also the vendor’s scenario preference.

4.3.2 High Residual Loss Factor (δ)

We turn our attention to residual losses being high (i.e., characterized by a high δ) which has

been representative of politically-motivated ransomware attacks such as WannaCry (Green-

berg 2018). As we saw in Section 4.2, once δ becomes high, users no longer have sufficient

incentive to pay ransom. Therefore, the remaining feasible strategies for users match those

under the benchmark scenario, which gives rise to equivalent equilibrium measures in both

cases. In particular, if δ > 1 − R
α

, then p∗RW = p∗BM . And consequently, Π∗RW = Π∗BM and

WRW = WBM .

Viewed differently, if politically-motivated hackers are utilizing ransomware attacks with

high residual losses, then they need not employ ransomware at all; traditional attacks result

in equivalent outcomes. However, given that high δ ransomware is actually deployed, this

equivalence brings forth the question of whether such ransomware could be even more harmful

depending on the motivation of the hacker. For example, if a politically-motivated hacker

targeted total losses associated with the software, then lowering δ to induce some ransom

payments would actually be more effective. Panel (a) of Figure 7 illustrates a case where

lowering δ to a medium range, i.e., δ ∈ (0.42, 0.56), increases expected losses relative to the

higher range, i.e., δ > 0.56.

In contrast, at a higher level of ransom demand, a politically-motivated hacker focused

on total expected losses might benefit from a minimal δ which greatly boosts total expected

losses as is illustrated in panel (c) of Figure 7. In this case, the behavior of politically-

motivated and economically-motivated hackers actually coincides unlike in the case of a

lower ransom demand shown in panel (a). On the other hand, as we discussed earlier, it

is not easy to translate politically-motivated to an objective goal. For instance, perhaps

politically-motivated could instead mean focused on reducing social welfare. In that case, a

high level of residual losses where equivalence with the benchmark is achieved would be more
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Figure 7: Impact of residual loss factor (δ) on total expected losses and social welfare. The
common parameter values are cp = 0.28, α = 3, and π = 0.6. Panels (a) and (b) illustrate
comparative statics for R = 1, while panels (c) and (d) do the same for R = 1.75.

effective at reducing welfare, which is illustrated in panel (d) of Figure 7. This case highlights

the inherent difficulty with hacker motivations: one gets polarizing predictions depending

on how even a single motivation (such as being political) gets operationalized. Layering on

that there are many diverse hacker motivations, this issue gets further compounded. In light

of these issues, our paper aimed to cover and provide insights across a broader set of these

motivations by exploring varying levels of R and δ in different regimes. Panel (b) of Figure

7 underscores the complexity that arises by depicting how a lower boundary value of δ is the

most effective at reducing welfare for a lower level of ransom demand.

31



5 Conclusion

With the rise of cryptocurrency-based payment systems, malicious hackers are finding it in-

creasingly profitable to conduct ransomware attacks. While traditional ransomware attacks

have been targeted in nature, modern ransomware variants are less targeted and instead

exhibit the capability to spread laterally across unprotected systems leading to large scale

reach and damage. In this paper, we study the impact of ransomware attacks on software

markets. The presence of ransomware in a software product’s threat landscape can qualita-

tively change the nature of the consumer market structure. In particular, by giving victims

an opportunity to mitigate their losses by paying ransom, ransomware operators segment

the unpatched consumer population into two interdependent tiers. Ransomware directly im-

pacts the ransom-paying consumer segment while indirectly impacting all market segments

through the negative security externality that all unpatched users generate. This segmen-

tation of consumer behavior drives unexpected findings. For example, both the equilibrium

market size and the vendor’s profit under optimal pricing can actually increase in the ransom

demand as well as the risk of residual losses following a ransom payment (which reflects the

trustworthiness of the ransomware operator). In such cases, software vendors would prefer

for consumers to believe that ransomware attackers are not trustworthy. Moreover, we also

show that the expected total ransom paid is non-monotone in the risk of success of the attack,

increasing when the risk is moderate in spite of a decreasing ransom-paying population.

In order to properly assess the market changes induced by the option to pay ransom,

we also compare and contrast market outcomes in the ransomware case to similar outcomes

under a benchmark scenario where consumers do not have the option to mitigate the losses

by paying ransom. For intermediate levels of risk, the vendor under the ransomware case

restricts software adoption by hiking the price to a significantly high level. This lies in stark

contrast to outcomes in the benchmark case where the vendor always decreases price as

security risk increases. While in low and high risk settings, social welfare is higher under

the ransomware case compared to the benchmark case, it turns out that for intermediate

risks levels, it is better from a social standpoint for consumers not to have an option to

pay ransom. When risk is high, a vendor in the ransomware case has incentives to set a

significantly lower software price compared to the benchmark case; this pricing behavior

leads to greater overall risk for consumers as a mass of low-valuation customers enter the
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market and choose to remain unpatched. While this market expansion is better for social

welfare overall, consumers in today’s world end up bearing more risk in a market with

ransomware due to increased unpatched usage.

When the hackers are unreliable (or politically-motivated) or the ransom demand is too

high, the ransomware and benchmark cases match in terms of outcomes. There are a myriad

of agendas that could motivate a hacker. Nevertheless, as we reveal in our discussion, when

the ransom demand level is high enough, a hacker might be able to exact the maximum level

of expected loss on the consumer population in the scenario of no residual losses (if paying

ransom). Also, when the ransom demand is low, a hacker could exact the maximum social

welfare loss at a relatively low level of residual loss. Taken together, these findings paint an

unexpected picture - hackers determined to exact maximum damage on society may actually

be inclined to help all victims who pay ransom to recover access to their compromised assets.

To unsuspecting victims, their propensity to facilitate a successful restoration of assets may

make them seem solely economically driven. These dynamics are driven by the network

security externalities characteristic to ransomware worms. Revisiting the argument from the

introduction, in the case of NotPetya and WannaCry, which correspond to high δ scenarios,

our analysis shows that it is possible that the outcome of the attacks could have been even

more destructive if actually some of the victims could have recovered access to their digital

assets by paying the ransom.
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Appendix

A Consumer Market Equilibrium

Lemma A.1. The complete threshold characterization of the consumer market equilibrium

is as follows:

(I) (0 < vnr < 1), where vnr =
πα−1+

√
1+πα(−2+4p+πα)

2πα
:

(A) p < 1

(B) R ≥ α(1− δ)

(C) 1 + πα ≤ 2cp +
√

1 + πα(−2 + 4p+ πα)

(II) (0 < vnr < vp < 1), where vnr is the most positive root of the cubic f1(x) , παx3 +

(1− (cp + p)πα)x2 − 2px+ p2 and vp = vnr + vnr−p
παvnr

:

(A) cpα(R− cpα(1− δ))(1− δ)2 ≤ R2(R− α(cp + p)(1− δ))π

(B) R− cpα(1− δ) > 0

(C) (−1 + cp + p)πα < −cp + c2
p

(III) (0 < vnr < vr < 1), where vnr =
πα−1+

√
1+πα(−2+4p+πα)

2πα
and vr = R

πα(1−δ) :

(A) p > 0

(B) −2Rπ + (1− δ)(−1 + πα +
√

1 + πα(−2 + 4p+ πα)) < 0

(C) R < α(1− δ)

(D) 2cpα + (R + αδ)(
√

1 + πα(−2 + 4p+ πα)− (1 + πα)) ≥ 0

(IV) (0 < vnr < vr < vp < 1), where vnr is the most positive root of the cubic f2(x) ,
δπαx3+(δ+Rπ−(cp+pδ)πα)x2−(2δ+Rπ)px+p2δ, vr = R

πα(1−δ) , and vp = vnr+
vnr−p
παvnr

:

(A) R > pα(1− δ)

(B) R2(R− (cp + p)α(1− δ))π > −(R− pα(1− δ))2δ(1− δ)

(C) α(cp − δ) + α2π(cp(πα + 2p− 2) + δ(α(p− 1)π − 3p+ 2)) +√
πα(πα + 4p− 2) + 1(α(πα(cp+δ(p−1))−cp+δ)+α(p−1)πR+R)+R(πα(α(p−

1)π − 3p+ 2)− 1) < 0

(D) Either

((
αcp(δ−1)3(2παp+1)+

√
(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2×

(αcp(δ − 1)2 + (δ − 1)R(πα(cp + p) + 1) + πR2) + (δ − 1)πR2(πα(cp + p) + 2) +
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(δ − 1)2R(2παcp + 3παp+ 1) + π2R3 < 0
)

and(
δ +

√
4α(δ − 1)2pπ + (δ + πR− 1)2 < πR + 1

))
, or((

αcp(δ− 1)3(2παp+ 1) +
√

(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2×

(−αcp(δ − 1)2 − (δ − 1)R(πα(cp + p) + 1)− πR2) + (δ− 1)πR2(πα(cp + p) + 2) +

(δ − 1)2R(2παcp + 3παp+ 1) + π2R3 > 0
)

and(
π(R− 2α(1− δ)p) > −δ +

√
4α(δ − 1)2pπ + (δ + πR− 1)2 + 1

))
(V) (0 < vr < 1), where vr =

−1−Rπ+δπα+
√

4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
:

(A) p < 1

(B) cp

(
αδπ +

√
2π(αδ(2p− 1) +R) + π2(αδ +R)2 + 1 + πR + 1

)
≥ 2(1−p)π(αδ+

R)

(C) Either

(
2δ +

√
4παδ(p+ πR) + (−παδ + πR + 1)2 ≤ παδ + πR + 1

)
, or(

2δ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 > παδ + πR + 1 and

παδ+
√

4παδ(p+πR)+(−παδ+πR+1)2−Rπ−1

2παδ
≤

− 2δp

παδ−2δ−
√

4παδ(p+πR)+(−παδ+πR+1)2+πR+1

)
(VI) (0 < vr < vp < 1), where vr is the most positive root of the cubic f3(x) = α2δ2πx3 +

(αδ(1 + 2Rπ− (cp + p)δπα))x2 + (R2π− 2αδ(p+ (cp + p)Rπ))x+ p2αδ − (cp + p)R2π

and vp = vr + vr−p
(R+vrαδ)π

:

(A)
(
αδπ +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 + πR− 1

)2

×(
π(−(αδ(2cp + 2p− 1) +R)) +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 − 1

)
+

2
(
αδπ − 2αδpπ +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 −Rπ − 1

)2

> 0

(B)
αδπ+
√

4αδπ(p+πR)+(−αδπ+πR+1)2−Rπ−1

2αδπ
> p

(C) Either

(
παcp + δ2 ≥ αδπ(cp + p) + δ + πR

)
, or((

παcp + δ2 < αδπ(cp + p) + δ + πR
)

and((
R

α(1−δ) ≤ p
)

or(
R

α(1−δ) > p and πR2(α(δ − 1)(cp + p) + R) ≤ (δ − 1)δ(α(δ − 1)p + R)2 and

R
α−αδ < cp + p

)))
A.2



Proof of Lemma A.1: First, we establish the general threshold-type equilibrium struc-

ture. Given the size of unpatched user population u, the net payoff of the consumer with

type v for strategy profile σ is written as

URW (v, σ),


v − p− cp if σ(v) = (B,P ) ;

v − p− πu(σ)(R + δαv) if σ(v) = (B,NP,R) ;

v − p− παu(σ)v if σ(v) = (B,NP,NR) ;

0 if σ(v) = (NB,NP ) ,

(A.1)

where

uRW (σ),
∫
V

11{σ(v)∈{(B,NP,R),(B,NP,NR)}} dv . (A.2)

Note σ(v) = (B,P ) if and only if

v − p− cp ≥ v − p− πu(σ)(R + δαv)⇔ v ≥ cp −Rπu(σ)

δπαu(σ)
, and

v − p− cp ≥ v − p− παu(σ)v ⇔ v ≥ cp
παu(σ)

, and

v − p− cp ≥ 0⇔ v ≥ cp + p,

which can be summarized as

v ≥ max

(
cp −Rπu(σ)

δπαu(σ)
,

cp
παu(σ)

, cp + p

)
. (A.3)

By (A.3), if a consumer with valuation v0 buys and patches the software, then ev-

ery consumer with valuation v > v0 will also do so. Hence, there exists a threshold

vp ∈ (0, 1] such that for all v ∈ V , σ∗(v) = (B,P ) if and only if v ≥ vp. Similarly,

σ(v) ∈ {(B,P ), (B,NR), (B,R)}, i.e., the consumer of valuation v purchases one of these

alternatives, if and only if

v − p− cp ≥ 0⇔ v ≥ cp + p, or

v − p− παu(σ)v ≥ 0⇔ v ≥ p

1− παu(σ)
, or

v − p− πu(σ)(R + δαv) ≥ 0⇔ v ≥ p+Rπu(σ)

1− δπαu(σ)
,

which can be summarized as

v ≥ min

(
cp + p,

p

1− παu(σ)
,
p+Rπu(σ)

1− δπαu(σ)

)
. (A.4)

Let 0 < v1 ≤ 1 and σ∗(v1) ∈ {(B,P ), (B,NR), (B,R)}, then by (A.4), for all v > v1,

σ∗(v) ∈ {(B,P ), (B,NR), (B,R)}, and hence there exists a v ∈ (0, 1] such that a consumer

A.3



with valuation v ∈ V will purchase the software if and only if v ≥ v.

By (A.3) and (A.4), v ≤ vp holds. Moreover, if v < vp, consumers with types in [v, vp]

choose either (B,NR) or (B,R). A purchasing consumer with valuation v will prefer (B,R)

over (B,NR) if and only if

v − p− πu(σ)(R + δαv) ≥ v − p− παu(σ)v ⇔ v ≥ R

α(1− δ)
. (A.5)

Next, we characterize in more detail each outcome that can arise in a consumer market

equilibrium, as well as the corresponding parameter regions. For Case (A.1), in which all

consumers who purchase choose to be unpatched and not pay ransom, i.e., 0 < vnr < 1,

based on the threshold-type equilibrium structure, we have u(σ) = 1 − vnr. We prove the

following claim related to the corresponding parameter region in which Case (A.1) arises.

Claim 1. The equilibrium that corresponds to case (A.1) arises if and only if the following

conditions are satisfied:

p < 1 and R ≥ α(1 − δ) and 1 + πα ≤ 2cp +
√

1 + πα(−2 + 4p+ πα). (A.6)

The consumer indifferent between not purchasing at all and purchasing and remaining

unpatched, vnr, satisfies vnr − p − παu(σ)vnr = 0. To solve for the threshold vnr, using

u(σ) = 1− vnr, we solve

vnr =
p

1− παu(σ)
=

p

1− πα(1− vnr)
. (A.7)

For this to be an equilibrium, we have that vnr ≥ 0. This rules out the smaller root of the

quadratic as a solution. Given the underlying model assumptions, the other root is strictly

positive, so the root characterizing vnr is

vnr =
πα− 1 +

√
1 + πα(−2 + 4p+ πα)

2πα
(A.8)

For this to be an equilibrium, the necessary and sufficient conditions are that 0 < vnr < 1,

type v = 1 weakly prefers (B,NR) to both (B,R) and (B,P ).

For vnr < 1, it is equivalent to have p < 1.

For v = 1 to prefer (B,NR) over (B,P ), we need 1 ≤ cp
πα(1−vnr) . Simplifying, this becomes

1 + πα ≤ 2cp +
√

1 + πα(−2 + 4pπα).

For v = 1 to prefer (B,NR) over (B,R), we need 1 ≤ R
α(1−δ) . Simplifying, this becomes

R ≥ α(1− δ). The conditions above are given in (A.6). �

Next, for case (II), in which the lower tier of purchasing consumers is unpatched and does

not pay ransom while the upper tier patches, i.e., 0 < vnr < vp < 1, we have u = vp − vnr.
Following the same steps as before, we prove the following claim related to the corresponding

parameter region in which case (II) arises.
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Claim 2. The equilibrium that corresponds to case (II) arises if and only if the following

conditions are satisfied:

cpα(R− cpα(1− δ))(1− δ)2 ≤ R2(R− α(cp + p)(1− δ))π and

R− cpα(1− δ) > 0 and (−1 + cp + p)πα < −cp + c2
p. (A.9)

To solve for the thresholds vnr and vp, using u = vp − vnr, note that they solve

vnr =
p

1− πα(vp − vnr)
, and (A.10)

vp =
cp

πα(vp − vnr)
. (A.11)

Solving for vp in terms of vnr in (A.10), we have

vp = vnr +
vnr − p
παvnr

. (A.12)

Substituting this into (A.11), we have that vnr must be a zero of the cubic equation:

f1(x) , παx3 + (1− πα(cp + p))x2 − 2px+ p2. (A.13)

To find which root of the cubic vnr must be, note that the cubic’s highest order term

is παx3, so lim
x→−∞

f1(x) = −∞ and lim
x→∞

f1(x) = ∞. We find f1(0) = p2 > 0, and f1(p) =

−cpπαp2 < 0. Since vnr − p > 0 in equilibrium, we have that vnr is uniquely defined as the

largest root of the cubic, lying past p. Then (A.12) characterizes vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vp < 1

and type v = vp weakly prefers (B,P ) over (B,R). Type v = vp preferring (B,P ) over (B,R)

ensures v > vp also prefer (B,P ) over (B,R), by (A.3). Moreover, type v = vp is indifferent

between (B,P ) and (B,NR), so this implies that v = vp weakly prefers (B,NR) over (B,R).

This implies that all v < vnr strictly prefer (B,NR) over (B,R) by (A.5).

For vp < 1, first note that from (A.10), we have πα(vp− vnr) = 1− p
vnr

while from (A.11)

we have πα(vp − vnr) = cp
vp

. So then solving for vp, we have

vp =
cpvnr
vnr − p

. (A.14)

Then using (A.14), a necessary and sufficient condition for vp < 1 to hold is vnr >
p

1−cp .

This is equivalent to f3( p
1−cp ) < 0, since p

1−cp > p. This simplifies to (−1+cp+p)πα < −cp+c2
p.

For vp > vnr, no conditions are necessary since vp was defined in (A.12), and vnr > p by

definition of vnr as the largest root of (A.13).

Similarly, vnr > 0, by definition of vnr.

To ensure that no consumer has incentive to pay ransom, it suffices to make sure that
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v = vp prefers to not pay ransom over paying ransom. By (A.5), we will need vp ≤ R
α(1−δ) .

Using (A.14), this is equivalent to vnr(R − cpα(1 − δ)) ≥ Rp. If R − cpα(1 − δ) ≤ 0, then

no vnr would satisfy this condition in equilibrium. Hence, R− cpα(1− δ) > 0 is a necessary

condition and we need vnr ≥ Rp
R−cpα(1−δ) . This simplifies to f [ Rp

R−cpα(1−δ) ] ≥ 0, which is

equivalent to cpα(R− cpα(1− δ))(1− δ)2 ≤ R2(R−α(cp+p)(1− δ))π. The conditions above

are summarized in (A.9). �
Next, for case (III), in which there are no patched users while the lower tier chooses to

not pay ransom and the upper tier pays ransom, i.e., 0 < vnr < vr < 1, we have u = 1− vnr.
Following the same steps as before, we prove the following claim related to the corresponding

parameter region in which case (III) arises.

Claim 3. The equilibrium that corresponds to case (III) arises if and only if the following

conditions are satisfied:

p > 0 and α
(
− 2Rπ + (1− δ)(−1 + πα +

√
1 + πα(−2 + 4p+ πα))

)
< 0 and

R < α(1− δ) and 2cpα + (R + αδ)(
√

1 + πα(−2 + 4p+ πα)− (1 + πα)) ≥ 0. (A.15)

To solve for the thresholds vnr and vr, using u = 1− vnr, note that they solve

vnr =
p

1− πα(1− vnr)
, and (A.16)

vr =
R

α(1− δ)
, (A.17)

where the expression in (A.17) comes from (A.5).

Solving for vnr in (A.16), we have

vnr =
−1 + πα±

√
1 + πα(−2 + 4p+ πα)

2πα
. (A.18)

Note that
−1+πα−

√
1+πα(−2+4p+πα)

2πα
< p while

−1+πα+
√

1+πα(−2+4p+πα)

2πα
> p, and since vnr >

p in equilibrium, it follows that

vnr =
−1 + πα +

√
1 + πα(−2 + 4p+ πα)

2πα
. (A.19)

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vr < 1

and that type v = 1 weakly prefers (B,R) over (B,P ). Type v = 1 preferring (B,R) over

(B,P ) ensures v < 1 also prefer (B,R) over (B,P ), by (A.3). Moreover, type v = vr is

indifferent between (B,R) and (B,NR), so this implies that v = vr strictly prefers (B,NR)

over (B,P ). This implies that all v < vnr strictly prefer (B,NR) over (B,P ) as well, again

by (A.3).

Note vnr > 0 is satisfied if p > 0 since vnr > p under the preliminary model assumptions.
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For vnr < vr, from (A.19) and (A.17), this simplifies to α
(
− 2Rπ + (1 − δ)(−1 + πα +√

1 + πα(−2 + 4p+ πα))
)
< 0.

For vr < 1, from (A.17), this simplifies to R < α(1− δ).
For v = 1 to weakly prefer (B,R) over (B,P ), we need 1 ≤ cp−Rπ(1−vnr)

παδ(1−vnr) . Substituting in

(A.19) and simplifying, this becomes 2cpα+(R+αδ)(
√

1 + πα(−2 + 4p+ πα)−(1+πα)) ≥ 0.

The conditions above are summarized in (A.15). �
Next, for case (IV), in which the top tier of consumers patches, the middle tier pays

ransom, and the bottom tier remains unpatched and does not pay ransom, i.e., 0 < vnr <

vr < vp < 1, we have u = vp−vnr. Following the same steps as before, we prove the following

claim related to the corresponding parameter region in which case (IV) arises.

Claim 4. The equilibrium that corresponds to case (IV) arises if and only if the following

conditions are satisfied:

R > pα(1− δ) and R2(R− (cp + p)α(1− δ))π > −(R− pα(1− δ))2δ(1− δ) and

α(cp − δ) + α2π(cp(πα + 2p− 2) + δ(α(p− 1)π − 3p+ 2))+√
πα(πα + 4p− 2) + 1(α(πα(cp + δ(p− 1))− cp + δ) + α(p− 1)πR +R)+

R(πα(α(p− 1)π − 3p+ 2)− 1) < 0 and

either

((
αcp(δ − 1)3(2παp+ 1) +

√
(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2×(

αcp(δ − 1)2 + (δ − 1)R(πα(cp + p) + 1) + πR2
)

+ (δ − 1)πR2(πα(cp + p) + 2)+

(δ − 1)2R(2παcp + 3παp+ 1) + π2R3 < 0
)

and(
δ +

√
4α(δ − 1)2pπ + (δ + πR− 1)2 < πR + 1

))
, or((

αcp(δ − 1)3(2παp+ 1) +
√

(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2×(
−αcp(δ − 1)2 − (δ − 1)R(πα(cp + p) + 1)− πR2

)
+ (δ − 1)πR2(πα(cp + p) + 2)+

(δ − 1)2R(2παcp + 3παp+ 1) + π2R3 > 0
)

and(
π(R− 2α(1− δ)p) > −δ +

√
4α(δ − 1)2pπ + (δ + πR− 1)2 + 1

))
. (A.20)

To solve for the thresholds vnr and vp, using u = vp − vnr, note that they solve

vnr =
p

1− πα(vp − vnr)
, and (A.21)

vp =
cp −Rπ(vp − vnr)
δπα(vp − vnr)

, (A.22)

Note that vr solves

vr =
R

α(1− δ)
, (A.23)
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where the expression in (A.23) comes from (A.5).

Solving for vp in (A.21), we have

vp = vnr +
vnr − p
vnrπα

. (A.24)

Substituting this into (A.22), we have that vnr must be a zero of the cubic equation:

f2(x) , δπαx3 + (δ + π(R− α(cp + δp)))x2 − p(2δ +Rπ)x+ p2δ. (A.25)

To find which root of the cubic vnr must be, note that the cubic’s highest order term

is δπαx3, so lim
x→−∞

f2(x) = −∞ and lim
x→∞

f2(x) = ∞. We find f2(0) = δp2 > 0, and

f2(p) = −cpπαp2 < 0. Since vnr − p > 0 in equilibrium, we have that vnr is uniquely defined

as the largest root of the cubic, lying past p. Then using (A.24), we solve for vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vnr < vr <

vp < 1.

The condition vnr > 0 is satisfied without further conditions, since vnr is the largest root

of the cubic greater than p by definition.

For vnr < vr to hold, we need vr > p and f2(vr) > 0. These conditions are equivalent to

R > pα(1− δ) and R2(R− (cp + p)α(1− δ))π > −(R− pα(1− δ))2δ(1− δ).
For vr < vp to hold, we need R

α(1−δ) < vnr + vnr−p
παvnr

by (A.23) and (A.24). Simplifying,

this becomes (1 − δ)παv2
nr + (1 − δ − Rπ)vnr − (1 − δ)p > 0. Then vnr needs to be larger

than the larger root of this quadratic or smaller than the smaller root. The two roots of the

quadratic are given by
−1+δ+Rπ±

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) . If vnr is larger than the larger root,

then a necessary condition is that this larger root is smaller than vr. On the other hand, if

vnr is smaller than the smaller root, then a necessary condition is that the smaller root is

larger than p, since by definition vnr > p.

Consider the first sub-case in which vnr is larger than the larger root of the quadratic. So

then the conditions are vnr >
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) and
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) <

R
α(1−δ) . For vnr >

−1+δ+Rπ+
√

4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) , either
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ≤ p,

or
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) > p and f2(
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ) < 0. The con-

dition
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ≤ p simplifies to R ≤ αp(1−δ). However, R > pα(1−δ)

from vr > p. SinceR > αp(1−δ), a necessary condition is f2(
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ) <

0, which simplifies to αcp(δ−1)3(2παp+1)+
√

(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2×

(αcp(δ − 1)2 + (δ − 1)R(πα(cp + p) + 1) + πR2)+(δ−1)πR2(πα(cp+p)+2)+(δ−1)2R(2παcp+

3παp+ 1) + π2R3 < 0. Lastly for this sub-case, we need that the quadratic root
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) < vr = R
α(1−δ) . This condition simplifies to

δ +
√

4α(δ − 1)2pπ + (δ + πR− 1)2 < πR+ 1. Altogether, these form the first set of condi-
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tions in (C) of case (IV).

In the second sub-case in which vnr is smaller than the smaller root of the quadratic, the

necessary and sufficient conditions are that
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) > p and vnr <

−1+δ+Rπ+
√

4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) . Note that the second condition is equivalent to

f2(
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ) > 0 since f2(x) > 0 for any x > vnr. The condition that

−1+δ+Rπ+
√

4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) > p simplifies to

π(R− 2α(1− δ)p) > −δ +
√

4α(δ − 1)2pπ + (δ + πR− 1)2 + 1.

The condition that f2(
−1+δ+Rπ+

√
4pπα(1−δ)2+(1−δ−Rπ)2

2πα(1−δ) ) > 0 simplifies to αcp(δ−1)3(2παp+

1) +
√

(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2 ×
(−αcp(δ − 1)2 − (δ − 1)R(πα(cp + p) + 1)− πR2)+(δ−1)πR2(πα(cp+p)+2)+(δ−1)2R(2παcp+

3παp + 1) + π2R3 > 0. Altogether, these form the second set of conditions in (C) of case

(IV).

Lastly, we need vp < 1. Using (A.24), this simplifies to παv2
nr + (1 − πα)vnr < p. Then

vnr needs to be between the two roots of that quadratic,
−1+πα±

√
1−2πα+4pπα+(πα)2

2πα
. But

note that the smaller of the roots not positive, from 0 ≤ p ≤ 1 and πα > 0. There-

fore, vnr >
−1+πα−

√
1−2πα+4pπα+(πα)2

2πα
is satisfied without further conditions. For vnr <

−1+πα+
√

1−2πα+4pπα+(πα)2

2πα
, f2(

−1+πα+
√

1−2πα+4pπα+(πα)2

2πα
) > 0 is a necessary and sufficient con-

dition since
−1+πα+

√
1−2πα+4pπα+(πα)2

2πα
> p. This simplifies to α(cp−δ)+α2π(cp(πα+2p−2)+

δ(α(p−1)π−3p+ 2)) +
√
πα(πα + 4p− 2) + 1(α(πα(cp + δ(p−1))− cp + δ) +α(p−1)πR+

R) +R(πα(α(p− 1)π− 3p+ 2)− 1) < 0, which is condition (B) of case (IV). Altogether, the

conditions above are given in (A.20). �
Next, for case (V), in which there are no patched users while all consumers who purchase

are unpatched and pay ransom, i.e., 0 < vr < 1, we have u = 1 − vr. Following the same

steps as before, we prove the following claim related to the corresponding parameter region

in which case (V) arises.

Claim 5. The equilibrium that corresponds to case (V) arises if and only if the following
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conditions are satisfied:

p < 1 and

cp

(
αδπ +

√
2π(αδ(2p− 1) +R) + π2(αδ +R)2 + 1 + πR + 1

)
≥ 2(1− p)π(αδ +R),

and either 2δ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 ≤ παδ + πR + 1, or

2δ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 > παδ + πR + 1 and

παδ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 −Rπ − 1

2παδ
≤

− 2δp

παδ − 2δ −
√

4παδ(p+ πR) + (−παδ + πR + 1)2 + πR + 1
. (A.26)

To solve for the thresholds vr, using u = 1− vr, note it solves

vr =
p+Rπ(1− vr)
1− δπα(1− vr)

(A.27)

Then vr is one of the two roots of the equation above,
−1−Rπ+δπα±

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
.

However, the smaller of the two roots is negative, so vr must be the larger of the two roots

in equilibrium. Hence, we have

vr =
−1−Rπ + δπα +

√
4δπα(p+Rπ) + (1 +Rπ − δπα)2

2δπα
. (A.28)

For this to be an equilibrium, the necessary and sufficient conditions are p < vr < 1, and

no consumer prefers to patch or not pay ransom over paying ransom.

For vr > p, using (A.28), this simplifies to p < 1. For vr > p, using (A.28), this also

simplifies to p < 1. Similarly, vr < 1 also simplifies to p < 1.

For no consumer to strictly prefer patching over paying ransom, it suffices to have type

v = 1 weakly prefer paying ransom to patching. This is given as 1 ≤ cp−Rπ(1−vr)
δπα(1−vr) . Using

(A.28), this simplifies to cp

(
αδπ +

√
2π(αδ(2p− 1) +R) + π2(αδ +R)2 + 1 + πR + 1

)
≥

2(1− p)π(αδ +R).

For no consumer to strictly prefer not paying ransom over paying ransom, it suffices to

have v = vr weakly prefer not to buy over buying and not paying ransom (since type v = vr
is indifferent between the option of not purchasing and the option of purchasing, remaining

unpatched, and paying ransom). Now if 1− παu[σ] ≤ 0, then v(1− παu[σ])− p < 0, so that

everyone would prefer (NB,NP ) over (B,NP,NR). In this case, no further conditions are

needed. On the other hand, if 1−παu[σ] > 0, then we will need the condition vr ≤ p
1−πα(1−vr)

for v = vr to weakly prefer not buying over buying but not paying ransom.

In the first sub-case, the condition v(1− παu[σ])− p < 0 simplifies to

2δ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 ≤ παδ + πR + 1, using (A.28).
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In the second sub-case, the conditions 1 − παu[σ] > 0 and vr ≤ p
1−πα(1−vr) simplify to

2δ +
√

4παδ(p+ πR) + (−παδ + πR + 1)2 > παδ + πR + 1 and
παδ+
√

4παδ(p+πR)+(−παδ+πR+1)2−Rπ−1

2παδ
≤ − 2δp

παδ−2δ−
√

4παδ(p+πR)+(−παδ+πR+1)2+πR+1
. The condi-

tions above are summarized in (A.26). �
Lastly, for case (VI), in which the top tier patches while lower tier of the market remains

unpatched but pays the ransom, i.e., 0 < vr < vp < 1, we have u = vp − vr. Following the

same steps as before, we prove the following claim related to the corresponding parameter

region in which case (VI) arises.

Claim 6. The equilibrium that corresponds to case (VI) arises if and only if the following

conditions are satisfied:(
αδπ +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 + πR− 1

)2

×(
π(−(αδ(2cp + 2p− 1) +R)) +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 − 1

)
+

2
(
αδπ − 2αδpπ +

√
4αδπ(p+ πR) + (−αδπ + πR + 1)2 −Rπ − 1

)2

> 0 and

αδπ +
√

4αδπ(p+ πR) + (−αδπ + πR + 1)2 −Rπ − 1

2αδπ
> p and either(

παcp + δ2 ≥ αδπ(cp + p) + δ + πR

)
, or((

παcp + δ2 < αδπ(cp + p) + δ + πR
)

and

(( R

α(1− δ)
≤ p
)

or

( R

α(1− δ)
> p and πR2(α(δ−1)(cp+p)+R) ≤ (δ−1)δ(α(δ−1)p+R)2 and

R

α− αδ
< cp+p

)))
.

(A.29)

To solve for the thresholds vr and vp, using u(σ) = vp − vnr, we solve

vr =
p+Rπu(σ)

1− δπαu(σ)
=

p+Rπ(vp − vr)
1− δπα(vp − vr)

, and (A.30)

vp =
cp −Rπu(σ)

δπαu(σ)
=
cp −Rπ(vp − vr)
δπα(vp − vr)

. (A.31)

Solving for vp in terms of vr in (A.30), we have

vp = vr +
vr − p

(R + vrαδ)π
. (A.32)
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Substituting this into (A.31), we have that vr must be a zero of the cubic equation:

f3(x) , δ2α2πx3 − αδ(−1− 2Rπ + (cp + p)δπα)x2 + (R2π − 2αδ(p+ (cp + p)Rπ))x+

p2αδ − (cp + p)R2π. (A.33)

To find which root of the cubic vr must be, note that the cubic’s highest order term is

δ2α2πx3 > 0, so lim
x→−∞

f3(x) = −∞ and lim
x→∞

f3(x) = ∞. Note f3(− R
αδ

) = αδ
(
p+ R

αδ

)2
> 0,

f3(p) = −cp(R+pαδ)2π < 0, and f3(cp +p) = c2
pαδ > 0. Then the root between p and cp +p

is the largest positive root of the cubic. Since vr − p > 0 in equilibrium, we have that vr is

uniquely defined as the largest root of the cubic, lying past p. Then using (A.32) to define

vp, we have vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vr < vp < 1

and no consumer strictly prefers to not pay the ransom over either (B,P ) or (B,R).

First, note that vr > p implies both vr > 0 and vp > vr, from (A.32).

For vp < 1, using (A.32), this is equivalent to δπαv2
r + (1 + Rπ − δπα)vr − Rπ < p. For

this quadratic in vr to be less than a constant, vr needs to be between the two roots of the

quadratic,
−1−Rπ+δπα±

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
. Both roots exist since the radicand is strictly

positive.

Note that since p ≤ 1, then
−1−Rπ+δπα−

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
≤ p. Since we already

have conditions for vr > p, this implies that vr is larger than the smaller root of the quadratic

above.

Then the conditions we need for vp < 1 are vr <
−1−Rπ+δπα+

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
and

−1−Rπ+δπα+
√

4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
> p. The latter condition is given in (B) of case (VI).

With
−1−Rπ+δπα+

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
> p, it follows that a necessary and sufficient for

vr <
−1−Rπ+δπα+

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
is

f3(
−1−Rπ+δπα+

√
4δπα(p+Rπ)+(1+Rπ−δπα)2

2δπα
) > 0. This is given in (A) of case (VI).

Lastly, we need to ensure that no consumer has an incentive to choose to not patch and

not pay ransom. If 1−παu(σ) ≤ 0, then v(1−παu(σ)) ≤ 0 for all v so that everyone would

weakly prefer (NB,NP ) over (B,NR). In this case, we do not need further conditions.

Specifically, using (A.32), we have that u(σ) = vp − vr = vr−p
(R+vrδα)π

. So the condition

that 1 − παu(σ) ≤ 0 is equivalent to vr ≥ R+pα
α(1−δ) . Since R+pα

α(1−δ) > p, this is equivalent to

f3( R+pα
α(1−δ)) ≤ 0, which boils down to παcp + δ2 ≥ αδπ(cp + p) + δ + πR.

On the other hand, if παcp + δ2 < αδπ(cp + p) + δ + πR so that 1 − παu(σ) > 0, then

a necessary and sufficient condition for no one to strictly prefer (B,NR) over the other

options is for type v = vr to weakly prefer (NB,NP ) over (B,NR). This would imply that

all v < vr also have the same preference, from (A.4). Also, since v = vr is indifferent between

(NB,NP ) and (B,R), it follows that v = vr weakly prefers (B,R) over (B,NR). Then since

only higher-valuation consumers would prefer paying ransom from (A.5), it follows that all
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v > vr would also have the same preference. The condition that v = vr weakly prefers

(NB,NP ) over (B,NR) is vr ≤ p

1−πα( vr−p
(R+vrαδ)π

)
. This simplifies to vr ≥ R

α(1−δ) .

Now if R
α(1−δ) ≤ p, then no further conditions are needed since vr > p by definition of vr.

On the other hand, if R
α(1−δ) > p, then a necessary and sufficient condition for vr ≥ R

α(1−δ)
is for f3( R

α(1−δ)) ≤ 0 and R
α(1−δ) < cp (since vr < cp by construction). This simplifies to

πR2(α(δ − 1)(cp + p) + R) ≤ (δ − 1)δ(α(δ − 1)p + R)2 and R
α−αδ < cp + p. Altogether,

these conditions above are summarized in (A.29). This concludes the proof of the consumer

market equilibrium. �

B Conditions for the Results in Section 4

Conditions for 0 < vr < vp < 1 to arise in equilibrium: To facilitate reading of the

paper, the conditions of Propositions 1-7 are listed here. For sufficiently small δ, condition

set Γ0 is defined to be the intersection of the conditions given below (and similarly for the

other condition sets).

Condition set Γ0:

(1) cp < cp < cp

(2) α < α < α

(3) R < R < R

(4) π < π ≤ 1,

where

cp =
1

2

(
3− 2

√
2
)
, cp =

1

2

(
2−
√

2
)
, α =

cp(2− cp)2

(1− cp)2

α =
−3 +

√
(1− cp)(9− 25cp) + cp(46− 75cp + 15

√
(1− cp)(9− 25cp))

16(1− 3cp)
,

R = cpα,R =
α

2− cp
, and π =

cpα

R2 − cpRα
(which is positive). (A.34)

Condition set Γ0 is a refinement on a set of sufficient conditions for 0 < vr < vp < 1

to arise in equilibrium under optimal pricing. Specifically, Γ0 is contained in the parameter

region Γ0X defined below.

Condition set Γ0X :

(A) R < α
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(B) (i) cp >
1
2

(
3− 2

√
2
)
,

(ii) 2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0,

(iii) πα < cp(8 + (2 + 3cp)πα)

(iv) Either 2 + πα(7− 15cp + 6πα) < 0 or

πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα))

(C) α > 1+4Rπ−
√

1+4R2π2

2π

(D) cpR + α > 2R

(E) R2π > cpα(1 +Rπ)

(F) (i) cp(2 +Rπ) < Rπ,

(ii) R
α
< 1+cp

2

The proof is similar to the proof of condition set Γ1X except the difference is now that

instead of finding conditions for the optimal profit of 0 < vnr < vr < vp < 1 to dominate

0 < vr < vp < 1 and conditions for p∗IV to be interior to the region defining 0 < vnr <

vr < vp < 1, we now have conditions for the optimal profit of 0 < vr < vp < 1 to dominate

0 < vnr < vr < vp < 1 and for the p∗V I to be interior to the region defining 0 < vr < vp < 1

(given in (D) and (F) above).

Conditions for 0 < vnr < vr < vp < 1 to arise in equilibrium: We characterize a

region of the parameter space for which 0 < vnr < vr < vp < 1 arises under optimal pricing

in equilibrium. For sufficiently small δ, condition set Γ1 is defined to be the intersection of

the conditions given below.

Condition set Γ1:

(1) cp < cp < cp

(2) α < α < α

(3) R < R < R̃

(4) π < π ≤ 1,

where all the bounds (except R̃) were defined in condition set Γ0 and R̃ = min

(
1
2
α(1 +

cp),
1
4

(
α +

√
α(16cp + α)

))
.

Condition set Γ1 is a refinement on a set of sufficient conditions for 0 < vnr < vr < vp < 1

to arise in equilibrium under optimal pricing. Specifically, Γ1 is contained in the parameter

region Γ1X defined below.
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Condition set Γ1X :

In what follows, the conditions are categorized with letter labels that correspond to the

labels in the Proof of Proposition 1.

(A) R < α

(B) (i) cp >
1
2

(
3− 2

√
2
)
,

(ii) 2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0,

(iii) πα < cp(8 + (2 + 3cp)πα)

(iv) Either 2 + πα(7− 15cp + 6πα) < 0 or

πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα))

(C) α > 1+4Rπ−
√

1+4R2π2

2π

(D) (i) 2cp < Rπ

(ii) R(2R− α)π < 2cpα

(iii) α < 2R

(iv) R > cpα

(E) cp <
R2π

α(1+Rπ)

(F) R
α
> 1

2−cp

Conditions for 0 < vr < 1 to arise in equilibrium: We characterize a region of the

parameter space for which 0 < vr < 1 arises under optimal pricing in equilibrium. For suffi-

ciently small δ, condition set Γ2 is defined to be the intersection of the conditions given below.

Condition set Γ2:

(1) cp < cp < cp

(2) α < α < α

(3) R < R < R̃

(4) π < π < π,

where all bounds (except π) were defined in condition set Γ0 or Γ1 and π = max
(

−2R+α
3R2−4Rα+α2 ,

2cp
α

)
(which is positive, given conditions (1), (2), and (3) above).

Condition set Γ2 is a refinement on a set of sufficient conditions for 0 < vr < 1 to arise

in equilibrium under optimal pricing. Specifically, Γ2 is contained in the parameter region

Γ2X defined below.

Condition set Γ2X :
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(A) R < α

(B) (i) cp >
1
2

(
3− 2

√
2
)
,

(ii) 2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0,

(iii) πα < cp(8 + (2 + 3cp)πα)

(iv) Either 2 + πα(7− 15cp + 6πα) < 0 or

πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα))

(C) α > 1+4Rπ−
√

1+4R2π2

2π

(D) R2π < cpα(1 +Rπ)

(E) (i) 2cp(1 +Rπ) ≥ Rπ

(ii) Either 2 + 2Rπ > πα and 2R(1 +Rπ − πα) ≤ α, or

2 + 2Rπ ≤ πα

(F) R
α
> 1

2−cp

The proof is similar to the proof of condition set Γ1X except the difference is now that

instead of finding conditions for the optimal profit of 0 < vnr < vr < vp < 1 to dominate

0 < vr < 1 and conditions for p∗IV to be interior to the region defining 0 < vnr < vr < vp < 1,

we now have conditions for the optimal profit of 0 < vr < 1 to dominate 0 < vnr <

vr < vp < 1 and for the p∗V to be interior to the region defining 0 < vr < 1 (given in

(D) and (E) above). To facilitate the proof of Lemma A.3, we then impose the condition

πα > 2cp, which becomes part of the lower bound on π. Under the conditions of this case,

π = max
(

−2R+α
3R2−4Rα+α2 ,

2cp
α

)
< π = cpα

R2−cpRα . However, note that πα > 2cp is not a necessary

condition for this case to arise.

Conditions for 0 < vnr < vr < 1 to arise in equilibrium: We characterize a region of

the parameter space for which 0 < vnr < vr < 1 arises under optimal pricing in equilibrium.

For sufficiently small δ, condition set Γ3 is defined to be the intersection of the conditions

given below.

Condition set Γ3:

(1) cp < cp < cp

(2) α < α < α

(3) R < R < R̃

(4) 0 < π < −2R+α
2R(R−α)

,
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where all bounds were defined in condition set Γ0 or Γ1 and −2R+α
2R(R−α)

> 0 under the

conditions above.

Condition set Γ3 is a refinement on a set of sufficient conditions for 0 < vnr < vr < 1

to arise in equilibrium under optimal pricing. Specifically, Γ3 is contained in the parameter

region Γ3X defined below.

Condition set Γ3X :

(A) R < α

(B) (i) cp >
1
2

(
3− 2

√
2
)
,

(ii) 2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0,

(iii) πα < cp(8 + (2 + 3cp)πα)

(iv) Either 2 + πα(7− 15cp + 6πα) < 0 or

πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα))

(C) α < 1+4Rπ−
√

1+4R2π2

2π

(D) R2π < cpα(1 +Rπ)

(E) (i) 2cp(1 +Rπ) < Rπ

(ii) π < −2R+α
2R(R−α)

(F) R
α
> 1

2−cp

As in the previous cases, the proof is similar to the proof of condition set Γ1X .

C Proofs of Main Results

Proof of Proposition 1: From Lemma A.1, a unique consumer market equilibrium arises,

given a price p. Within each region of the parameter space defined by Lemma A.1, the

thresholds vnr, vr, and vp are smooth functions of the parameters, as well as the vendor’s

price p. In the cases where the thresholds are given in closed-form, this is clear. In the cases

where these thresholds are implicitly defined as the root of a polynomial, then the smoothness

of the thresholds in the parameters follows from the Implicit Function Theorem. Specifically,

for each of those cases, the threshold defined was the most positive root v∗nr (or v∗r) of a cubic

function of vnr (or vr), f(vnr, p) = 0. Moreover, the cubic f(vnr, p) has two local extrema

in vnr and is negative to the left of v∗nr and positive to the right of it (f(v∗nr − ε, p) < 0 and

f(v∗nr + ε, p) > 0 for arbitrarily small ε > 0). Therefore, ∂f
∂vnr

(vnr, p) 6= 0 so that the Implicit

Function Theorem applies. The thresholds being smooth in p implies that the profit function

for each case of the parameter space defined by Lemma A.1 is smooth in p. In our analysis,

we use asymptotic analysis to characterize the equilibrium prices and profits when needed,
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using Taylor Series representations in δ of the thresholds, price, and profit expressions. In

the following paragraphs, we find the profit-maximizing interior solution within the compact

closure of each subcase to characterize the conditions under which 0 < vnr < vr < vp < 1

arises in equilibrium under optimal pricing.

Sufficient conditions for 0 < vnr < vr < vp < 1 to arise in equilibrium are given in the

following:

(A) the case 0 < vnr < 1 does not arise in a consumer market equilibrium,

(B) the vendor’s interior maximizing price of 0 < vnr < vp < 1 does not induce 0 < vnr <

vp < 1 in a consumer market equilibrium since that price lies outside of the region which

would induce 0 < vnr < vp < 1 in equilibrium,

(C) the vendor’s interior maximizing price of 0 < vnr < vr < 1 does not induce 0 < vnr <

vr < 1 in a consumer market equilibrium since that price lies outside of the region which

would induce 0 < vnr < vr < 1 in equilibrium,

(D) the vendor’s interior maximizing price of 0 < vnr < vr < vp < 1 indeed induces

0 < vnr < vr < vp < 1 in a consumer market equilibrium,

(E) the vendor’s interior maximal profit of 0 < vnr < vr < vp < 1 dominates his interior

maximal profit of 0 < vr < 1, and

(F) the vendor’s interior maximal profit of 0 < vnr < vr < vp < 1 dominates his interior

maximal profit of 0 < vnr < 1.

(A): For (A), note that region of the parameter space defining 0 < vnr < 1 is given in

part (I) of Lemma A.1. In particular, R ≥ α(1− δ) is a necessary condition for 0 < vnr < 1

to arise. If R < α, then there would exist some δ̃ > 0 such that for δ < δ̃, R ≥ α(1 − δ)
is never satisfied. Therefore, a sufficient condition to guarantee that 0 < vnr < 1 does not

arise in equilibrium is R < α.

To sum up:

Summary of Conditions for (A)

(i) R < α

(B): For (B), first suppose that 0 < vnr < vp < 1 is induced. From (A.13), we have that

vnr is the largest root of the cubic:

f1(x) , παx3 + (1− πα(cp + p))x2 − 2px+ p2. (A.35)
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Then in equilibrium, p∗II and vnr must solve παv3
nr + (1−πα(cp + p))v2

nr− 2pvnr + p2 = 0.

From this, we have that

p∗II =
1

2
vnr

(
2 + παvnr ±

√
πα(4cp + παv2

nr)

)
. (A.36)

Can p∗II = 1
2
vnr

(
2 + παvnr +

√
πα(4cp + παv2

nr)
)

? Suppose it were. Then it follows that

p∗II >
1
2
vnr (2 + παvnr + παvnr) = vnr(1 + παvnr). This is a contradiction, since vnr > p∗II

in equilibrium (otherwise, some purchasing consumers would derive negative utility upon

purchasing). Therefore, we have in equilibrium that

p∗II =
1

2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)

)
. (A.37)

At the same time, implicitly differentiating (A.13) to find v′nr(p), we have that

v′nr(p) =
2p− vnr(p)(2 + παvnr(p))

2p+ vnr(p)(−2 + 2(cp + p)πα− 3παvnr(p))
. (A.38)

The profit function in this case is ΠII(p) = p(1− vnr(p)). Let CII be the compact closure

of the region of the parameter space defining 0 < vnr < vp < 1, given in part (II) of Lemma

A.1. By the Weierstrass extreme value theorem, there exists p in CII that maximizes ΠII(p).

If this p is interior to CII , this unconstrained maximizer satisfies the first-order condition.

Then p∗II must satisfy 1− vnr(p)− pv′nr(p) = 0. Substituting in (A.38), we have that p∗II and

vnr solve

1− vnr − p
(

2p− vnr(2 + παvnr)

2p+ vnr(−2 + 2(cp + p)πα− 3παvnr)

)
= 0. (A.39)

Solving for p, we have that

p∗II =
1

4

(
2 + 2παvnr − παv2

nr±√
8(−1 + vnr)vnr(2− cpπα + 3vnrπα) + (−2 + (−2 + vnr)vnrπα)2

)
. (A.40)

To rule out p∗II being the larger root (denote it p̃II), it is sufficient to have the condition

cp >
1
2

(
3− 2

√
2
)
. Suppose that p∗II was the larger root. We will show that it would then be

larger than vnr, which cannot happen in equilibrium. The inequality p̃II > vnr is equivalent

to
√

8(−1 + vnr)vnr(2− cpπα + 3vnrπα) + (−2 + (−2 + vnr)vnrπα)2 > −2 + vnr(4 + (−2 +

vnr)πα). But −2 + vnr(4 + (−2 + vnr)πα) < 0 from 0 < vnr < 1 and cp >
1
2

(
3− 2

√
2
)
.
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Therefore, p̃II > vnr, which cannot happen in equilibrium. So we have in equilibrium that

p∗II =
1

4

(
2 + 2παvnr − παv2

nr−√
8(−1 + vnr)vnr(2− cpπα + 3vnrπα) + (−2 + (−2 + vnr)vnrπα)2

)
. (A.41)

We want to show that p∗II >
1−cp

2
. To do that, we will show the following. First, we will

show that the two curves defined by (A.37) and (A.41) intersect at a point (p, vnr) in which

both vnr > 0 and p > 1−cp
2

.

First, define p1(vnr) and p2(vnr) to be the expressions given in (A.37) and (A.41), respec-

tively. Then p2(vnr) = 1−cp
2

for three possible solutions vnr = 1+cp
2
,
−1+πα±

√
1+πα(1−3cp+πα)

3πα
.

Note that
−1+πα−

√
1+πα(1−3cp+πα)

3πα
< 0 and

−1+πα+
√

1+πα(1−3cp+πα)

3πα
> 0, so only vnr = 1+cp

2

and vnr =
−1+πα+

√
1+πα(1−3cp+πα)

3πα
are positive solutions in vnr to the equation p2(vnr) = 1−cp

2
.

Then p1(1+cp
2

) = 1
8
(1 + cp)

(
4 + (1 + cp)πα−

√
πα(16cp + πα(1 + cp)2)

)
> p2(1+cp

2
) =

1−cp
2

, from cp ∈ (0, 1) and πα > 0.

Next, we will find conditions such that
−1+πα+

√
1+πα(1−3cp+πα)

3πα
< 1+cp

2
and conditions

such that p1(
−1+πα+

√
1+πα(1−3cp+πα)

3πα
) < 1−cp

2
= p2(

−1+πα+
√

1+πα(1−3cp+πα)

3πα
). Then we would

have p1(
−1+πα+

√
1+πα(1−3cp+πα)

3πα
) < p2(

−1+πα+
√

1+πα(1−3cp+πα)

3πα
), p1(1+cp

2
) > p2(1+cp

2
), and

−1+πα+
√

1+πα(1−3cp+πα)

3πα
< 1+cp

2
Applying the Intermediate Value Theorem, this implies that

there would exist an intersection of p1(vnr) and p2(vnr) between (
−1+πα+

√
1+πα(1−3cp+πα)

3πα
and

1+cp
2

, such that p > 1−cp
2

.

The condition
−1+πα+

√
1+πα(1−3cp+πα)

3πα
< 1+cp

2
can be simplified as πα < cp(8+(2+3cp)πα).

The condition p1(
−1+πα+

√
1+πα(1−3cp+πα)

3πα
) < 1−cp

2
can be simplified as: either 2 + πα(7−

15cp + 6πα) < 0 or πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα)).

Then under these combined conditions, we have that p∗II >
1−cp

2
.

Now, we want to find conditions such that this optimal price will not induce 0 < vnr <

vp < 1 in equilibrium. Note that region of the parameter space defining 0 < vnr < vp < 1

is given in part (II) of Lemma A.1. To make sure 0 < vnr < vp < 1 does not arise in

equilibrium for sufficiently small δ, it suffices to violate the first condition in part (II) of

Lemma A.1 by having cpα(R− cpα(1− δ))(1− δ)2 > R2(R− α(cp + p)(1− δ))π at p = p∗II .

It suffices to have cpα(R − cpα) + R2(−R + (cp + p)α)π > 0 at the p = p∗II . This simplifies

to p∗II >
(R−cpα)(−cpα+R2π)

R2πα
. But from the above, we found conditions for p∗II >

1−cp
2

, so a

sufficient condition for p∗II >
(R−cpα)(−cpα+R2π)

R2πα
is 1−cp

2
> (R−cpα)(−cpα+R2π)

R2πα
. This simplifies to

2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0.

Summary of Conditions for (B)
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(i) cp >
1
2

(
3− 2

√
2
)
,

(ii) 2cpα(R− cpα) +R2(−2R + α(1 + cp))π > 0,

(iii) πα < cp(8 + (2 + 3cp)πα),

(iv) Either 2 + πα(7− 15cp + 6πα) < 0 or

πα(3 + 75c2
p + 8πα) < 2cp(8 + πα(23 + 12πα))

(C): For (C), first suppose that 0 < vnr < vr < 1 is induced. From (A.19), we have

vnr =
−1 + πα +

√
1 + πα(−2 + 4p+ πα)

2πα
. (A.42)

The profit function in this case is ΠIII(p) = p(1 − vnr(p)). Let CIII be the compact

closure of the region of the parameter space defining 0 < vnr < vr < 1, given in part

(III) of Lemma A.1. By the Weierstrass extreme value theorem, there exists p in CIII that

maximizes ΠIII(p). If this p is interior to CIII , the unconstrained maximizer satisfies the

first-order condition.

Differentiating the profit function with respect to p and solving for the positive root of

the quadratic, we have that

p∗III =
1

9

(
4− 1

πα
− πα +

√
1 + πα + (πα)3 + (πα)4

πα

)
. (A.43)

The second-order condition is satisfied at this interior solution. The region of the param-

eter space defining 0 < vnr < vr < 1 is given in part (III) of Lemma A.1, so for this price to

actually induce 0 < vnr < 1, p∗III must satisfy those conditions.

In particular, a sufficient condition so that p∗III lies outside of the conditions specified

in (III) of Lemma A.1 is for −2Rπ + (1 − δ)(−1 + πα +
√

1 + πα(−2 + 4p+ πα)) > 0

at p = p∗III for sufficiently high δ. Omitting the algebra, this condition is equivalent to

α > 1+4Rπ−
√

1+4R2π2

2π
.

Summary of Conditions for (C)

(i) α > 1+4Rπ−
√

1+4R2π2

2π

(D): For (D), first suppose that 0 < vnr < vr < vp < 1 is induced. From (A.25), we have

that vnr is the largest root of

δπαx3 + (δ + π(R− α(cp + δp)))x2 − p(2δ +Rπ)x+ p2δ = 0. (A.44)
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A generalization of the Implicit Function Theorem gives that vnr is not only a smooth

function of the parameters, but it is also an analytic function of the parameters so that it can

be represented locally as a Taylor series of its parameters. More specifically, since f ′2(x) 6= 0

at the root for which vnr is defined, there exists a δ1 > 0 such that for δ < δ1, vnr =
∞∑
k=0

akδ
k

for some sequence of coefficients αk. Substituting vnr =
∞∑
k=0

akδ
k into (A.44), we have that

−a0(a0παcp − a0Rπ + pRπ) +
∞∑
k=1

akδ
k = 0.

Then a0 = 0 or a0 = pR
R−αcp are the only solutions for a0 that make the first term zero.

Now, a0 6= 0, since otherwise vnr < p for sufficiently low δ, which cannot happen. So

a0 = pR
R−αcp . Then substituting vnr = pR

R−αcp +
∞∑
k=1

akδ
k into (A.44) and similarly solving for

a1, we have a1 =
cppα2(c2pπα−Rπ(cp+pRπ))

R(R−cpα)3π2 . Continuing on this way, we have that

vnr =
pR

R− cpα
+
cppα

2(−cpR + c2
pα− pR2π)δ

R(R− cpα)3π
−

cppα
3(−cpR + c2

pα− pR2π)(cp(−2R + cpα)(−R + cpα) + pR2(R + cpα)π)δ2

R3(R− cpα)5π2
+
∞∑
k=3

akδ
k.

(A.45)

The profit function in this case is ΠIV (p) = p(1 − vnr(p)). Let CIV be the compact

closure of the region of the parameter space defining 0 < vnr < vr < vp < 1, given in part

(IV) of Lemma A.1. By the Weierstrass extreme value theorem, there exists p in CIV that

maximizes ΠIV (p). If this p is interior to CIV , the unconstrained maximizer satisfies the

first-order condition.

Substituting (A.45) into the first-order condition and expanding the optimal price as a

Taylor series in δ, we can then characterize the asymptotic expansion of the optimal price in

the same way we had done above with vnr. Omitting the algebra, we have that the interior

solution is given by

p∗IV =
R− cpα

2R
+
cpα

2(4cp + 3Rπ)δ

8R3π
+

cpα
3(16c3

pα− 4R3π2 + cpR
2π(−18 + 5πα) + 2c2

pR(−8 + 9πα))δ2

16R5(R− cpα)π2
+
∞∑
k=3

akδ
k. (A.46)
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The profit associated with this price is given by

Π∗IV =
R− cpα

4R
+
cpα

2(2cp +Rπ)δ

8R3π
+

cpα
3(32c3

pα− 4R3π2 + 8c2
pR(−4 + 3πα) + cpR

2π(−24 + 5πα))δ2

64R5(R− cpα)π2
+
∞∑
k=3

akδ
k. (A.47)

The consumer market equilibrium conditions for 0 < vnr < vr < vp < 1 are given in part

(IV) of Lemma A.1. We want these conditions to hold for p = p∗IV for sufficiently small δ.

Just for reference, the conditions are given again below.

(a) R > pα(1− δ)

(b) R2(R− (cp + p)α(1− δ))π > −(R− pα(1− δ))2δ(1− δ)

(c) α(cp − δ) + α2π(cp(πα + 2p− 2) + δ(α(p− 1)π − 3p+ 2)) +√
πα(πα + 4p− 2) + 1(α(πα(cp + δ(p− 1))− cp + δ) + α(p− 1)πR+R) +R(πα(α(p−

1)π − 3p+ 2)− 1) < 0

(d) Either

((
αcp(δ − 1)3(2παp+ 1) +

√
(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2 ×

(αcp(δ − 1)2 + (δ − 1)R(πα(cp + p) + 1) + πR2) + (δ − 1)πR2(πα(cp + p) + 2) + (δ −
1)2R(2παcp + 3παp+ 1) + π2R3 < 0

)
and(

δ +
√

4α(δ − 1)2pπ + (δ + πR− 1)2 < πR + 1
))

, or((
αcp(δ − 1)3(2παp+ 1) +

√
(δ − 1)2 + 2(δ − 1)π(2α(δ − 1)p+R) + π2R2 ×

(−αcp(δ − 1)2 − (δ − 1)R(πα(cp + p) + 1)− πR2) + (δ − 1)πR2(πα(cp + p) + 2) + (δ −
1)2R(2παcp + 3παp+ 1) + π2R3 > 0

)
and(

π(R− 2α(1− δ)p) > −δ +
√

4α(δ − 1)2pπ + (δ + πR− 1)2 + 1
))

Substituting in (A.46) for each of the conditions in the list above, we derive the sufficient

conditions for these conditions to hold for p = p∗IV for sufficiently small δ. Note that some of

these conditions are redundant given the others, and they can be simplified to the following

set of conditions:

Summary of Conditions for (D)

(i) 2cp < Rπ

(ii) R(2R− α)π < 2cpα

(iii) α < 2R
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(iv) R > cpα

(E): For (E), from (A.28), we have that

vr =
−1−Rπ + δπα +

√
4δπα(p+Rπ) + (1 +Rπ − δπα)2

2δπα
. (A.48)

The vendor’s profit function is given as ΠV (p) = p(1− vr(p)). Solving for the first-order

condition (and looking at only the positive root) gives

p∗V =

(
− 1− 2Rπ + 4δπα−R2π2 − 2Rδαπ2 − (δπα)2+

(1 +Rπ + δπα)
√

1 + π(2R− δα + (R + δα)2π)

)(
9δπα

)−1

. (A.49)

Substituting (A.49) into the profit function of this case yields the associated maximal

profit of this case. Characterizing this profit expression in terms of a Taylor Series expansion,

we have that

Π∗V =
1

4(1 +Rπ)
+
∞∑
k=1

akδ
k. (A.50)

On the other hand, the vendor’s profit of 0 < vnr < vr < vp < 1 was given in (A.47).

Comparing the two, there exists δ1 > 0 such that for δ < δ1, it follows that Π∗IV > Π∗V
whenever cp <

R2π
α(1+Rπ)

. To sum up:

Summary of Conditions for (E)

(i) cp <
R2π

α(1+Rπ)

(F): For (F) (in which 0 < vr < vp < 1 arises in equilibrium), from (A.33), we have that

vr is the largest root of

δ2α2πx3 − αδ(−1− 2Rπ + (cp + p)δπα)x2 + (R2π − 2αδ(p+ (cp + p)Rπ))x+

p2αδ − (cp + p)R2π = 0. (A.51)

Characterizing the asymptotic expansion of vr as we had done for earlier cases, we have

that

vr = cp + p−
c2
pαδ

R2π
+

2(c3
pα

2 + c3
pRα

2π + c2
ppRα

2π)δ

R4π2
+
∞∑
k=3

akδ
k. (A.52)
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The profit function for this case is given by ΠV I = p(1 − vr(p)). Assuming an interior

solution, the first-order condition gives

p∗V I =
1− cp

2
+
c2
pαδ

2R2π
+
∞∑
k=2

akδ
k. (A.53)

The corresponding profit is given by

Π∗V I =
1

4
(1− cp)2 +

(1− cp)c2
pαδ

2R2π
+
∞∑
k=2

akδ
k. (A.54)

The vendor’s profit of 0 < vnr < vr < vp < 1 was given in (A.47). Comparing this

with (A.54), there exists δ2 > 0 such that for δ < δ2, it follows that Π∗IV > Π∗V I whenever
R
α
> 1

2−cp . To sum up:

Summary of Conditions for (F)

(i) R
α
> 1

2−cp

The intersection of the conditions across (A), (B), . . . , (F) gives the conditions for Propo-

sition 1 in the condition set Γ1X .

We consolidate the conditions in Γ1X and add additional simplifying assumptions to

reduce the complexity of the characterization of the region of interest, yielding condition

set Γ1. Consequently, 0 < vnr < vr < vp < 1 arises in equilibrium under optimal pricing in

condition set Γ1 for sufficiently low δ. Following the same approach above, we 0 < vr < vp < 1

arises in equilibrium under optimal pricing in condition set Γ0 and 0 < vr < 1 arises in

equilibrium in condition set Γ2 for sufficiently low δ.

We want to show that in condition set Γ0, the vendor’s profit under optimal pricing

decreases in R, and the vendor’s price also decreases in R while the market shrinks. From

(A.54), d
dR

Π∗V I < 0 for sufficiently small δ. From (A.53), d
dR
p∗V I < 0 for sufficiently small δ

as well. Substituting (A.53) into (A.52) and differentiating with respect to R, we see that
d
dR
v∗r > 0. Therefore, the total market size 1− v∗r decreases in R.

We want to show that in condition set Γ1, the vendor’s profit under optimal pricing

increases in R, and the vendor’s price also increases in R while the market expands. From

(A.47), d
dR

Π∗IV > 0 for sufficiently small δ. From (A.46), d
dR
p∗IV > 0 for sufficiently small δ

as well. Substituting (A.46) into (A.45) and differentiating with respect to R, we see that
d
dR
v∗nr < 0. Therefore, the total market size 1− v∗nr increases in R. �

Lemma A.2. The complete threshold characterization of the consumer market equilibrium

of the benchmark case is as follows:

(I) (0 < vnr < 1), where vnr =
πα−1+

√
1+πα(−2+4p+πα)

2πα
:
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(A) p < 1

(B) Either 1 + πα− 2cp < 0, or

(C) 1 + πα− 2cp ≥ 0 and p ≥ (1−cp)(πα−cp)

πα

(II) (0 < vnr < vp < 1), where vnr is the largest root of the cubic f(x) = παx3 + (1− (cp +

p)πα)x2 − 2px+ p2 and vp = cpvnr
vnr−p :

(A) p < 1

(B) cp + (−1 + cp + p)πα < c2
p

Proof of Lemma A.2: This follows from the proof of Lemma A.1 with δ = 1. �

Lemma A.3. Under condition sets Γ0, Γ1, or Γ2, if 0 < vnr < vp < 1 arises in equilibrium

under optimal pricing of the benchmark case, then vnr >
1
2
.

Proof of Lemma A.3: From (A.37), we have that an expression of the vendor’s price as

a function of vnr when 0 < vnr < vp < 1 is induced in equilibrium is given by

p∗II =
1

2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)

)
. (A.55)

The conditions of either Γ0, Γ1, or Γ2 imply that p∗II >
1−cp

2
, from sub-conditions (B) in

Γ0X , Γ1X , or Γ2X respectively. Then 1
2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)
)
> 1−cp

2
. Simpli-

fying, this is equivalent to 2 + παvnr − 1−cp
vnr
−
√
πα(4cp + παv2

nr) > 0. In equilibrium, vnr
must satisfy this inequality.

Define q(x) = 2 + παx− 1−cp
x
−
√
πα(4cp + παx2). Note that the equilibrium vnr needs

to satisfy q(vnr) > 0. We note dq
dx
> 0 under 0 < x < 1, πα > 0, and 0 < cp < 1. Moreover,

limx→0+ <= −∞ and limx→1− > 0. Let ṽnr denote the unique root of q(x) between 0 and 1.

Then ṽnr is a lower bound on the equilibrium vnr. In particular, a necessary and sufficient

condition for ṽnr >
1
2

is for q(1
2
) < 0. This is equivalent to πα > 2cp.

We will need to show this condition holds for Γ0, Γ1, and Γ2.

For Γ0, given any parameters cp, α, and R, πα is smallest when π is the lowest it can be

given those parameters, which is the lower bound on π. So πα >
(

cpα

R2−cpRα

)
α. This bound

is strictly decreasing in R, given the conditions of Γ0, so πα >
(

cpα

R2−cpRα

)
α|R= α

2−cp
, where

R = α
2−cp is the upper bound on R under Γ0, given cp and α. So πα > cp(2−cp)2

(1−cp)2
. Under

Γ0 (specifically, when 1
2

(
3− 2

√
2
)
< cp <

1
2

(
2−
√

2
)
), we have cp(2−cp)2

(1−cp)2
> 2cp. Therefore,

πα > 2cp under Γ0.

For Γ1, given any parameters cp, α, and R, πα is smallest when π is the lowest it can

be given those parameters, which is the lower bound on π. Again, this implies πα >
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(
cpα

R2−cpRα

)
α. This bound is strictly decreasing in R, given the conditions of Γ1, so πα >(

cpα

R2−cpRα

)
α|R=R, where R = min

(
1
2
α(1 + cp),

1
4

(
α +

√
α(16cp + α)

))
is the upper bound

on R under Γ1, given cp and α. Since this bound is strictly decreasing in R, it follows that(
cpα

R2−cpRα

)
α|R=R ≥

(
cpα

R2−cpRα

)
α|R= 1

2
α(1+cp) = 4cp

1−c2p
. Therefore, πα > 4cp

1−c2p
. Under Γ1 (specif-

ically, when 1
2

(
3− 2

√
2
)
< cp <

1
2

(
2−
√

2
)
), we have 4cp

1−c2p
> 2cp. Therefore, πα > 2cp

under Γ1.

For Γ2, this condition follows from π > π. This bound is strictly decreasing in R, given

the conditions of Γ1. So πα >
(

cpα

R2−cpRα

)
α|R= α

2−cp
, where R = α

2−cp is the upper bound on

R under Γ0, given cp and α.

Then in all cases, we have πα > 2cp, which implies that q(1
2
) < 0. Then it follows that

vnr > ṽnr >
1
2
. �

Lemma A.4. Under either condition set Γ0, Γ1, or Γ2, if 0 < vnr < vp < 1 arises in

equilibrium under optimal pricing of the benchmark case, then vnr <
1+cp

2
.

Proof of Lemma A.4: Again, from (A.37), we have that an expression of the vendor’s

optimal price as a function of vnr when 0 < vnr < vp < 1 is induced in equilibrium is given

by

p∗II =
1

2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)

)
. (A.56)

The vendor’s profit function as a function of vnr is given by ΠII(vnr) = p(vnr)(1 − vnr).
To prove the lemma, we will show that d

vnr
ΠII(vnr) < 0 for vnr ∈ [1+cp

2
, 1].

Using the above expression of p∗(vnr), we have that

d

vnr
ΠII(vnr) =

1

2

(
(−1 + vnr)παvnr

(
− 1 + vnr

√
πα

4cp + παv2
nr

)
+

(−1 + 2vnr)

(
− 2 + παvnr +

√
πα(4cp + παv2

nr)

))
. (A.57)

Now to show that this negative for all vnr ∈ [1+cp
2
, 1], we will show that it is negative when

vnr is a convex combination of 1+cp
2

and 1. In particular, substituting vnr = w+ (1−w)1+cp
2

into (A.57), we will show that this expression is negative for all w ∈ [0, 1].

In particular, d
vnr

ΠII(vnr)|vnr=w+(1−w)
1+cp

2

< 0 is equivalent to

πα(32cp(w + cp − wcp)− (1 + 3w(−1 + cp)− 3cp)(1 + w + cp − wcp)2πα) <√
πα (16cp + (1 + w + cp − wcp)2πα)

(
8w(1− cp) + 8cp − πα+

(−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πα
)
. (A.58)
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Now we examine several subcases.

Subcase 1: w ≥ 1
3
. First, suppose that w ≥ 1

3
. This implies that > 0 and

(
8w(1− cp) +

8cp − πα+ (−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πα
)
> 0 as well, for any πα > 0 and

0 < cp < 1. In this case, both the left and right side of the inequailty are positive. We isolate

the radicand and square both sides. Simplifying and omitting the algebra, this is equivalent

to

64cp(w + cp − wcp)2 > −(4(w(−1 + cp)− cp)(w3(−1 + cp)
3 + (−3 + cp)cp(−1 + 3cp)+

w(−1 + cp)(1 + cp)(1 + 11cp)− w2(1− cp)2(2 + 15cp))πα+

w(1 + 3w(−1 + cp)− 3cp)(−1 + cp)(1 + w + cp − wcp)3(πα)2) (A.59)

Now viewing the left-hand side as a constant function in α and the right-hand side as a

quadratic function in α, we want to show that the quadratic in α is smaller than a constant

in α. With w ≥ 1
3
, the coefficient on α2 on the right-hand side is negative. Then it suffices

to show that the maximum of that quadratic is less than 64cp(w+cp−wcp)2. Differentiating

the right-hand side of the inequality with respect to α and solving for the maximum, we find

that the maximizing α is negative. Therefore, the right-hand side of (A.59) is maximized at

α = 0, which would the right-hand side of the inequailty 0. Then to show that the inequality

above holds for all α > 0, it suffices to show that 64cp(w+ cp−wcp)2 > 0, which is true since

cp > 0 and 1
3
≤ w ≤ 1. �

Subcase 2a: 0 ≤ w < 1
3
and 1 − 2

3(1−w)
≤ cp < 1 Now suppose that 0 ≤ w < 1

3
and

1 − 2
3(1−w)

≤ cp < 1. Going back to the original inequality we want to show, to show that
d
vnr

ΠII(vnr)|vnr=w+(1−w)
1+cp

2

< 0 we need to show that

πα(32cp(w + cp − wcp)− (1 + 3w(−1 + cp)− 3cp)(1 + w + cp − wcp)2πα) <√
πα (16cp + (1 + w + cp − wcp)2πα)

(
8w(1− cp) + 8cp − πα+

(−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πα
)
. (A.60)

When 0 ≤ w < 1
3
, 1 − 2

3(1−w)
≤ cp ≤ 1, and πα > 0, then 32cp(w + cp − wcp) − (1 +

3w(−1 + cp)− 3cp)(1 + w + cp − wcp)2πα > 0 and 8w(1− cp) + 8cp − πα +

(−2 + 3w(−1 + cp) − 3cp)(w(−1 + cp) − cp)πα > 0. Then similar to Subcase 1, both the

left-hand side and right-hand side of the inequality are positive. We isolate the radicand and

square both sides. Omitting the algebra, we again have the inequality (A.59).

When cp > 1− 2
3(1−w)

, the coefficient on the quadratic α term of (A.59) is negative, and
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the same argument as Subcase 1 applies to show that the inequality holds for all α > 0 when

π > 0, 0 ≤ w < 1
3
, and 1− 2

3(1−w)
≤ cp ≤ 1.

On the other hand, if cp = 1 − 2
3(1−w)

, then (A.58) reduces to πα(1 − 3w) − (1 −

w)
√

πα(3+πα−w(9+πα))
1−w , which holds for πα > 0 and 0 ≤ w < 1

3
. �

Subcase 2b: 0 ≤ w < 1
3
and 0 < cp < 1 − 2

3(1−w)
. Lastly, consider when 0 ≤ w < 1

3

and 0 < cp < 1− 2
3(1−w)

.

Firstly, if 32cp(w + cp − wcp)− (1 + 3w(−1 + cp)− 3cp)(1 + w + cp − wcp)2πα ≥ 0, then

8w(1− cp) + 8cp− πα+ (−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πα > 0 holds as well, for

any π > 0, α > 0, w ∈ [0, 1], and cp ∈ (0, 1). In that case, again the inequality (A.58) would

reduce to (A.59), and the same argument from Subcase 1 would apply to show that (A.58)

holds.

On the other hand, consider if 32cp(w+ cp−wcp)− (1 + 3w(−1 + cp)− 3cp)(1 +w+ cp−
wcp)

2πα < 0. If 8w(1− cp) + 8cp − πα+ (−2 + 3w(−1 + cp)− 3cp)(w(−1 + cp)− cp)πα ≥ 0,

then (A.58) holds without further conditions since the left-hand side would be negative while

the right-hand side would be non-negative.

However, if 8w(1−cp)+8cp−πα+(−2+3w(−1+cp)−3cp)(w(−1+cp)−cp)πα < 0, then

we can divide by it and isolate the radicand of (A.58). Squaring both sides and omitting the

algebra, this is equivalent to

64cp(w + cp − wcp)2 < −(4(w(−1 + cp)− cp)(w3(−1 + cp)
3 + (−3 + cp)cp(−1 + 3cp)+

w(−1 + cp)(1 + cp)(1 + 11cp)− w2(1− cp)2(2 + 15cp))πα+

w(1 + 3w(−1 + cp)− 3cp)(−1 + cp)(1 + w + cp − wcp)3(πα)2) (A.61)

Since 0 ≤ cp < 1− 2
3(1−w)

, the coefficient on the quadratic α term in (A.61) is positive. So

to prove the inequality for all α, it suffices to show that the minimum of this quadratic in α is

larger than 64cp(w+ cp−wcp)2. Finding the minimizer of the quadratic in α and comparing

it to the lower bound on α given by 8w(1−cp)+8cp−πα+(−2+3w(−1+cp)−3cp)(w(−1+

cp)−cp)πα < 0, we find that the quadratic is minimized at α = 8(w(1−cp)+cp)

(1+3w(−1+cp)−3cp)(1+w+cp−wcp)π
.

The right-hand side of (A.61) evaluated at this α is indeed larger than 64cp(w + cp − wcp)2

when 0 < cp < 1− 2
3(1−w)

and 0 ≤ w < 1
3
. �

Then exhausting all sub-cases, it follows that (A.58) holds for all w ∈ [0, 1]. In particular,

this means that d
vnr

ΠII(vnr) < 0 for any vnr ≥ 1+cp
2

. Therefore, vnr <
1+cp

2
whenever

0 < vnr < vp < 1 is induced in equilibrium. �

Proof of Proposition 2: Under Condition Set Γ3, for sufficiently low δ, the consumer

market equilibrium structure that arises under optimal pricing is 0 < vnr < vr < 1.

The vendor’s price, provided in (A.43), is again given as
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p∗III =
1

9

(
4− 1

πα
− πα +

√
1 + πα + (πα)3 + (πα)4

πα

)
. (A.62)

Note that lim
π→0

p∗III =
1

2
. Furthermore, d

dπ
[p∗III ] < 0 under the conditions of Γ3. Therefore,

p∗III <
1
2

for π > 0.

On the other hand, under Condition Set Γ2, for sufficiently low δ, the consumer market

equilibrium structure that arises under optimal pricing is 0 < vr < 1.

The vendor’s price, provided in (A.49), is again given as

p∗V =

(
− 1− 2Rπ + 4δπα−R2π2 − 2Rδαπ2 − (δπα)2+

(1 +Rπ + δπα)
√

1 + π(2R− δα + (R + δα)2π)

)(
9δπα

)−1

. (A.63)

Then p∗V has an asymptotic expression in δ given by

p∗V =
1

2
− πα

8(1 +Rπ)2
δ +

∞∑
k=2

akδ
k. (A.64)

Then for sufficiently small δ, p∗V is arbitrarily close to 1
2
. In particular, under the condi-

tions of Γ2, d
dπ

[p∗V ] < 0. Recall from Γ2 that we have α−2R
3R2−4αR+α2 < π < π = cpα

R2−cpRα . Since

an upper bound for π in Γ2 is π, it follows that a lower bound for p∗V is p∗V |π=π. This gives

p∗V >
1
2
− cpα2(R−cpα)δ

8R3 .

Since p∗III <
1
2

for π > 0 and p∗V >
1
2
− cpα2(R−cpα)δ

8R3 , then for sufficiently small δ, there exists

a intervals (π1, π2) and (π3, π4) where that π2 <
α−2R

3R2−4αR+α2 < π3 such that for sufficiently

small δ, the vendor’s price (p∗V ) for any π ∈ (π3, π4) is greater than his price (p∗III) for any

π ∈ (π1, π2).

Lastly, under Condition Set Γ1 (in particular, when π > π5 for some π5 >
cpα

R2−cpRα), the

equilibrium market outcome is 0 < vnr < vr < vp < 1. The vendor’s price, provided in

(A.46), is given here again:

p∗IV =
R− cpα

2R
+
cpα

2(4cp + 3Rπ)δ

8R3π
+

cpα
3(16c3

pα− 4R3π2 + cpR
2π(−18 + 5πα) + 2c2

pR(−8 + 9πα))δ2

16R5(R− cpα)π2
+
∞∑
k=3

akδ
k. (A.65)

Taking the derivative with respect to π, we have d
dπ

[p∗IV ] < 0 for sufficiently small δ.

Moreover, R−cpα
2R

< 1
2

under the conditions of Γ1 so that for sufficiently small δ, p∗IV < p∗V . �

A.30



Proof of Proposition 3: Under the conditions of Proposition 3, the equilibrium market

outcome is either 0 < vr < 1 or 0 < vnr < vr < vp < 1, by Γ1 and Γ2. The boundary between

these two cases in π is π = π = cpα

R−cpRα .

The measures of interest are the size of the consumer segment willing to pay ransom and

the expected total ransom paid. We examine each case separately, and then compare their

measures at the boundary between the two cases.

For 0 < vr < 1, the size of the consumer segment willing to pay ransom in equilibrium

is given as r(σ∗) , 1 − vr. In this market structure, vr was given by (A.48). We provide it

again below.

vr =
−1−Rπ + δπα +

√
4δπα(p+Rπ) + (1 +Rπ − δπα)2

2δπα
. (A.66)

The vendor’s price p∗V for sufficiently small δ was given by (A.49).

Again, p∗V has an asymptotic expression in δ given by

p∗V =
1

2
− πα

8(1 +Rπ)2
δ +

∞∑
k=2

akδ
k. (A.67)

Substituting this into the expression for vr and simplifying r(σ∗), we have the equilibrium

size of the consumer segment willing to pay ransom is

rV (σ∗) =
1

2(1 +Rπ)
+
∞∑
k=1

akδ
k. (A.68)

Note that this is strictly decreasing in π for sufficiently small δ.

On the other hand, for 0 < vnr < vr < vp < 1, the size of the consumer segment willing

to pay ransom in equilibrium is given as r(σ∗) , vp− vr. In this market structure, vr and vp
were given by Case (IV) in Lemma A.1. In particular, vr = R

πα(1−δ) and vp = vnr+ vnr−p
παvnr

. The

asymptotic expression for vnr is given in (A.45). Substituting in the vendor’s price, given in

(A.46) and simplifying r(σ∗), we have the equilibrium size of the consumer segment willing

to pay ransom in this case is

rIV (σ∗) =
1

2
− R

α
+

cp
Rπ

+
∞∑
k=1

akδ
k. (A.69)

Note that this is also strictly decreasing in π for sufficiently small δ.

To show that r(σ∗) decreases for π > α−2R
3R2−4αR+α2 , we need to show that there is a drop in

the r(σ∗) at the boundary π = π of these two cases. Note that lim
π→π

rV (σ∗) =
R− cpα

2R
while

lim
π→π

rIV (σ∗) =
1

2
−cp. Given the conditions of the focal region, it follows that R−cpα

2R
> 1

2
−cp,

completing the proof of the first statement in the proposition.
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For the expected total ransom paid, that is given by T (σ∗) , πu(σ∗)r(σ∗)R, where u(σ∗)

is the size of the consumer segment willing to remain unpatched.

For 0 < vr < 1, this is given as

TV (σ∗) =
Rπ

4(1 +Rπ)2
+
∞∑
k=1

akδ
k. (A.70)

For 0 < vnr < vr < vp < 1, this is given as

TIV (σ∗) = cp

(
1

2
− R

α
+

cp
Rπ

)
+
∞∑
k=1

akδ
k. (A.71)

Under the conditions of Γ2, we have that d
dπ

[TV (σ∗)] > 0, while under the conditions of

Γ1, we have that d
dπ

[TIV (σ∗)] < 0. This completes the proof. �

Proof of Proposition 4: If 0 < vnr < vr < vp < 1 is induced in equilibrium, then from

(A.47), the vendor’s profit is given by

Π∗IV =
R− cpα

4R
+
cpα

2(2cp +Rπ)δ

8R3π
+
∞∑
k=2

akδ
k, (A.72)

for some sequence of coefficients ak.

Differentiating with respect to δ, we have that d
dδ

(Π∗IV ) = cpα2(2cp+Rπ)

8R3π
+
∞∑
k=1

bkδ
k for some

sequence of coefficients bk. It follows that for sufficiently small δ, d
dδ

(Π∗IV ) > 0.

The aggregate unpatched loss measure given as

UL,
∫
V
1{σ∗(v)=(B,NP,NR)}παu(σ∗)vdv +

∫
V
1{σ∗(v)=(B,NP,R)}πu(σ∗)(R + δαv)dv .

Under condition set Γ1, the equilibrium outcome is given as 0 < vnr < vr < vp < 1.

Consequently, aggregate unpatched losses are given as

UL∗IV =

∫ vr

vnr

πα(vp − vnr)vdv +

∫ vp

vr

π(vp − vnr)(R + δαv)dv . (A.73)

Substituting (A.46) into (A.45), we can characterize the equilibrium vnr threshold as

vnr(p
∗
IV ) =

1

2
+

cpα
2δ

8R(R− cpα)
+
∞∑
k=2

akδ
k. (A.74)

Then substituting (A.46) and (A.74) into (A.24), we can characterize the equilibrium vp
threshold as
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vp(p
∗
IV ) =

1

2
+

cp
Rπ

+
cpα(8c2

pα +R2π(−4 + πα) + 4cpR(−2 + πα))δ

8R3(R− cpα)π2
+
∞∑
k=2

akδ
k. (A.75)

Finally, the asymptotic expansion of vr = R
α(1−δ) is given by

vr(p
∗
IV ) =

R(1 + δ)

α
+
∞∑
k=2

akδ
k. (A.76)

Substituting in (A.74), (A.76), and (A.75) into the above expression, the asymptotic

characterization of the aggregate unpatched losses is given as

UL∗IV =
cp(8cpα− (−2R + α)2π)

8Rπα
+

cp

(
R(2R−α)(4R3−4cpR2α+Rα2−2cpα3)

α(−R+cpα)
− 24c2pα

π2 + 2cp(4R2−8Rα+α2)

π

)
16R3

δ +
∞∑
k=2

akδ
k. (A.77)

Taking the derivative with respect to δ, we have

d

dδ
[UL∗IV ] =

cp

(
R(2R−α)(4R3−4cpR2α+Rα2−2cpα3)

α(−R+cpα)
− 24c2pα

π2 + 2cp(4R2−8Rα+α2)

π

)
16R3

+
∞∑
k=1

akδ
k.

(A.78)

We will show that

cp

(
R(2R−α)(4R3−4cpR

2α+Rα2−2cpα
3)

α(−R+cpα)
−

24c2pα

π2
+

2cp(4R
2−8Rα+α2)

π

)
16R3 < 0 under Γ1.

Multiplying both sides by π2, this is equivalent to R(−2R+α)(−4R3+4cpR2α−Rα2+2cpα3)π2

α(−R+cpα)
+2cp(4R

2−
8Rα + α2)π − 24c2

pα < 0. This is a quadratic in π, and the coefficient of the second-order

term is negative under the conditions of Γ1. For this to hold, either there are two real roots

and π is larger than the larger root of that quadratic or smaller than the smaller root of that

quadratic, or there are not two real roots (in which case the inequality is always satisfied).
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When the roots exist, the larger of the two roots is given by

π̃1 =

(
cpα((R− cpα)(4R2 − 8Rα + α2)+(
− (R− cpα)(176R5 − 16(2 + 11cp)R

4α + 8(−3 + 4cp)R
3α2 − 8(1 + 3cp)R

2α3+

(−1 + 32cp)Rα
4 + cpα

5)

) 1
2
)(

R(2R− α)(4R3 − 4cpR
2α +Rα2 − 2cpα

3)

)−1

(A.79)

Under Condition Set Γ1, one of the conditions is π > cpα

R2−cpRα . We will show that
cpα

R2−cpRα > π̃1 so that π > cpα

R2−cpRα implies that π > π̃1. This implies that d
dδ

[UL∗IV ] < 0 for

sufficiently small δ under the conditions of Γ1.

The inequality cpα

R2−cpRα > π̃ is equivalent to

(
24(R− cpα)

)(
(R− cpα)(4R2 − 8Rα + α2)−(
− (R− cpα)(176R5 − 16(2 + 11cp)R

4α + 8(−3 + 4cp)R
3α2−

8(1 + 3cp)R
2α3 + (−1 + 32cp)Rα

4 + cpα
5)

) 1
2
)−1

<
1

R2 − cpRα
(A.80)

Under the conditions of Γ1, denominator of the left-hand side is negative, the numerator

is positive, and the right-hand side is positive. So then cpα

R2−cpRα > π̃1, which implies that
d
dδ

[UL∗IV ] < 0 for sufficiently small δ under the conditions of Γ1.

Similarly, denote consumer surplus as CS,
∫
V
1{σ∗(v)∈{(B,NP,NR),(B,NP,R),(B,P )}}U(v, σ)dv.

Under the condition set Γ1, this becomes

CS∗IV =

∫ vr

vnr

v − p∗IV − πα(vp − vnr)vdv +

∫ vp

vr

v − p∗IV − π(vp − vnr)(R + δαv)dv+∫ 1

vp

v − p∗IV − cpdv . (A.81)

Substituting in (A.46), (A.74), (A.76), and (A.75) into the above expression, the asymp-

totic characterization of consumer surplus is given as
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CS∗IV =
1

8

(
1 + cp

(
−8 +

4R

α
+

3α

R

))
+

cp(4c
2
pα

2 + cpα(−4R2 + 4Rα− 3α2)π +R(4R3 − 2R2α +Rα2 − 2α3)π2)

8R3απ2
δ +

∞∑
k=2

akδ
k.

(A.82)

Taking the derivative with respect to δ, we have

d

dδ
[CS∗IV ] =

cp(4c
2
pα

2 + cpα(−4R2 + 4Rα− 3α2)π +R(4R3 − 2R2α +Rα2 − 2α3)π2)

8R3απ2
+
∞∑
k=2

akδ
k.

(A.83)

We will show that
cp(4c2pα

2+cpα(−4R2+4Rα−3α2)π+R(4R3−2R2α+Rα2−2α3)π2)

8R3απ2 < 0 under the con-

ditions of Γ1. This is equivalent to cp(4c
2
pα

2 + cpα(−4R2 + 4Rα− 3α2)π +R(4R3 − 2R2α+

Rα2−2α3)π2) < 0. This is a quadartic in π, with negative second-order term. Again, for this

to hold, either there are two real roots and π is larger than the larger root of that quadratic

or smaller than the smaller root of that quadratic, or there are not two real roots (in which

case the inequality is always satisfied). Under the conditions of Γ1, the larger of the two

roots is given by

π̃2 =
8cpα

4R2 − 4Rα + 3α2 +
√
−48R4 + 24R2α2 + 8Rα3 + 9α4

. (A.84)

Under the conditions of Γ1, cpα

R2−cpRα > π̃2, and since π > cpα

R2−cpRα is a condition of Γ1, it

follows that π > π̃2 when Γ1 holds. Therefore, d
dδ

[CS∗IV ] < 0 for sufficiently small δ under

the conditions of Γ1. �

Proof of Proposition 5: From the consumer utility function (A.1), a consumer of valua-

tion v prefers (B, NP, R) over (B, NP, NR) iff v−p−πu(σ)(R+δαv) ≥ v−p−πu(σ)αv. This

is equivalent to v ≥ R
α(1−δ) . Consequently, if R

α(1−δ) > 1 (or δ > 1 − R
α

), then no consumer

would prefer (B, NP, R) over (B, NP, NR).

As (B, NP, R) is a strictly dominated option under this condition, consumers are left

with (NB), (B, NP, NR), and (B, P) as incentive-compatible choices. Consequently, when

δ > 1− R
α

, the consumer market equilibrium characterization no longer depends on R or δ,

and the complete characterization of the consumer market equilibrium is given in Lemma

A.2.

In particular, if p < 1 and cp + (−1 + cp + p)πα < c2
p are satisfied, then the equilibrium
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outcome is 0 < vnr < vp < 1. From Lemma A.4, we have vnr < 1+cp
2

in equilibrium

for 0 < vnr < vp < 1 to arise under optimal pricing. This implies that, in this case,

v = 1+cp
2

gets positive surplus from remaining unpatched. Expressing this in terms of the

consumer’s utility function, we have 1+cp
2
− p− πα(vp − vnr)1+cp

2
> 0. This is equivalent to

p < 1+cp
2
− πα(vp − vnr)1+cp

2
. Then in equilibrium under optimal pricing, p < 1+cp

2
.

Then p < 1 is satisfied under optimal pricing. Furthermore, a sufficient condition for

cp+(−1+cp+p)πα < c2
p to be satisfied under optimal pricing is cp+

(
−1 + cp +

(
1+cp

2

))
πα <

c2
p using the upper bound for the vendor’s optimal price in the preceding paragraph. This is

equivalent to πα > 2(1−cp)cp
1−3cp

. Hence, if πα > 2(1−cp)cp
1−3cp

and δ > 1− R
α

, then 0 < vnr < vp < 1

is the equilibrium outcome, and no measures of interest change in R or δ. �

Proof of Proposition 6: First, we will show that under the conditions of Γ2, whether

0 < vnr < 1 or 0 < vnr < vp < 1 arises under the benchmark case, we will still have

p∗RW > p∗BM . Then we will prove that when under the conditions of either Γ1, the equilibrium

outcome of the benchmark case is 0 < vnr < vp < 1 and compare the price when ransomware

is present to the price in that benchmark regime.

Under Γ2, the equilibrium outcome is 0 < vr < 1 so that the vendor’s profit function is

given as ΠV (p) = p(1−vr(p)), where vr(p) comes from (A.28). Using the first-order condition

to solve for the vendor’s price, we have

p∗V =

(
− 1− 2Rπ + 4παδ −R2π2 − 2Rδαπ2−

(δπα)2 + (1 +Rπ + δπα)
√

1 + π(2R− αδ + (R + δα)2π)

)(
9δπα

)−1

. (A.85)

Then p∗V has an asymptotic expression given by

p∗V,RW =
1

2
+
∞∑
k=1

akδ
k. (A.86)

First, suppose that the equilibrium of the benchmark case was 0 < vnr < 1. Then the

expression for vnr given a price p when 0 < vnr < 1 is the outcome is given in (A.8). The

vendor’s profit function of this case is given as ΠI(p) = p(1− vnr(p)). Substituting in (A.8)

and solving for the first-order condition, we have that p∗I =
−1+πα(4−πα)+

√
1+πα+(πα)3+(πα4)

9πα
.

From this, we have d
dπ
p∗I < 0 whenever πα < 1. However, 0 < vnr < vp < 1 is induced in

the benchmark case whenever πα ≥ (2−3cp)cp
α(1−2cp)

. Therefore, if 0 < vnr < 1 is induced, then

π < (2−3cp)cp
α(1−2cp)

. However, we have (2−3cp)cp
α(1−2cp)

< 1 for 0 < cp <
1
3
, which means that (2−3cp)cp

α(1−2cp)
< 1

under the conditions of Γ2. Therefore, the derivative of the benchmark price with respect to π

is negative under Γ2 when 0 < vnr < 1 is induced. Noting that p∗I |π=
2cp
α

< 1
2

from 0 < cp <
1
3
,

it follows that p∗I |π=
2cp
α

< p∗V,RW for sufficiently small δ. Moreover, since the benchmark
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price is decreasing in π, we have p∗I,BM < p∗V,RW for any π > max( α−2R
3R2−4Rα+α2 ,

2cp
α

) whenever

0 < vr < 1 is induced in ransomware case and 0 < vnr < 1 is induced in the benchmark case.

On the other hand, if the equilibrium of the benchmark case was 0 < vnr < vp < 1, then

from (A.37), an expression of the vendor’s price as a function of vnr when 0 < vnr < vp < 1

is induced in equilibrium is given by

p∗II,BM(vnr) =
1

2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)

)
. (A.87)

From Lemmas A.3 and A.4, we have that 1
2
< vnr <

1+cp
2

when 0 < vnr < vp < 1 is the

equilibrium outcome. We will show that (A.87) is increasing in vnr and then show that when

evaluated at vnr = 1+cp
2

, the expression is lower than (A.86) for sufficiently low δ.

The expression d
dvnr

p∗II,BM(vnr) > 0 is equivalent to 2 + vnrπα

(
2− vnr

√
πα

4cp+v2nrπα

)
>√

πα(4cp + v2
nrπα). This simplifies to (1 + vnrπα)

√
4cp + v2

nrπα >
√
πα(2cp + v2

nrπα). This

is true when vnr >
1
2
, which holds by Lemma A.3. Hence, (A.87) is increasing in vnr.

Now, (A.87) evaluated at vnr = 1+cp
2

is given by

p∗II,BM

(
1 + cp

2

)
=

1

4
(1 + cp)

(
2 +

1

2
(1 + cp)πα−

√
πα

(
4cp +

1

4
(1 + cp)2πα

))
. (A.88)

The inequality p∗II,BM

(
1+cp

2

)
< 1

2
is equivalent to π > 2cp

α(1+cp)2
. We will show that a lower

bound on π (when π is in either Γ1 or Γ2) is larger than 2cp
α(1+cp)2

.

The lower bound on π for Γ2 is −2R+α
3R2−4Rα+α2 . First, note that d

R

[ −2R+α
3R2−4Rα+α2

]
> 0, for

R > 0 and α > 0. So the lower bound on π decreases as R decreases. The lowest R

can be to remain in Γ1 or Γ2 is R = α
2−cp . At this value of R, the lowest π can be is( −2R+α

3R2−4Rα+α2

)
|R= α

2−cp
= cp(2−cp)

α(1−c2p)
. This value of π satisfies π > 2cp

α(1+cp)2
, so all π in either Γ1 or

Γ2 do too. Combined with the conditions of Γ2, this proves that there exists a bound δ̃ and

π1 <
cpα

R2−cpRα such that when 0 ≤ δ < δ̃, when π ∈
(

α−2R
3R2−4Rα+α2 , π10

)
, then p∗RW > p∗BM .

On the other hand, consider when π ∈
(

cpα

R2−cpRα , 1
)

. Then since this parameter set is

in Γ1, the equilibrium outcome under ransomware is 0 < vnr < vr < vp < 1. The vendor’s

price of this case is given in (A.46). To show that this is smaller than the vendor’s price in

the benchmark case for sufficiently low δ, since (A.87) is increasing in vnr, it suffices to show

that (A.87) evaluated at a lower bound of vnr is greater than (A.46).

Note that from Lemma A.3, we have that πα > 4cp
1−c2p

. However, 4cp
1−c2p

> (2−3cp)cp
(1−2cp)

so that

0 < vnr < vp < 1 is always induced in the benchmark case rather than 0 < vnr < 1 when

Γ1 holds. We compare (A.46) to p∗II,BM
(

1
2

)
= 1

8

(
4 + πα−

√
πα(16cp + πα)

)
, since vnr >

1
2

by Lemma A.3. The expression 1
8

(
4 + πα−

√
πα(16cp + πα)

)
> R−cpα

2R
is equivalent to

2cpα + R(−2R + α)π > 0, which is one of the conditions in Condition Set Γ1X for the
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optimal price of 0 < vnr < vr < vp < 1 to be an interior solution (given in the proof of

Proposition 1). Combined with the conditions of Γ1, this proves that there exists a bound δ̃

such that when 0 ≤ δ < δ̃, when π ∈
(

cpα

R2−cpRα , 1
)

, then p∗RW > p∗BM .

Lastly, we show that in the benchmark case, the vendor’s price will always be decreasing

in π, even when the market structure changes. First, suppose that π is low enough that the

equilibrium market structure under optimal pricing is 0 < vn < 1. Then given a price p, vn
was given in (A.7).

The vendor’s profit function is then ΠI(p) = p(1− vn(p)), and the vendor’s price is given

as

p∗I =

√
α4π4 + α3π3 + απ + 1 + απ(4− απ)− 1

9απ
. (A.89)

Taking the derivative with respect to π and noting that πα < 1 for this case to arise in

equilibrium, we have that the vendor’s price decreases in π.

When π is sufficiently large, then the equilibrium market structure may change to one

in which high-valuation consumers patch. At this point in π, we’ll show that the vendor’s

price cannot correspond to a strategic price jump. Suppose to the contrary that the vendor

hikes the price at some π̃, and let π1 < π̃ < π2 be such that the equilibrium market outcome

of π1 is 0 < vn < 1 and the equilibrium outcome of π2 is 0 < vn < vp < 1. Let π1 and π2

arbitrarily close, so that given ε > 0, π2 and π1 are chosen so that π2
π1
< 1 + ε. Suppose that

the vendor’s price at π2 is greater than his price at π1, so that p∗(π1) < p∗(π2). Given π,

denote the consumer indifferent between buying and not buying as vn(π). The net utility of

an unpatched consumer when π = π1 is given as U(v,NP ) = v − p(π1)− π1α(1− vn(π1))v.

The net utility of a consumer who patches if U(v, P ) = v − p(π1) − cp. Then for v = 1 to

prefer to remain unpatched at π1, it must be that cp ≥ π1α(1− vn(π1)).

Conversely, at π = π2, for v = 1 to strictly prefer to patch, it must be that cp <

π2α(vp(π2)−vn(π2)), where vp(π2) is the type indifferent between patching and not patching.

Combined with the above inequality, we have that π1(1 − vn(π1)) < π2(vp(π2) − vn(π2)).

This is equivalent to 1− π2
π1
vp(π2) < vn(π1)− π2

π1
vn(π2). Since π2

π1
is arbitrarily close to 1 and

1−vp(π2) > 0, it follows that vn(π1) > vn(π2). This means that the type v = vn(π1) remains

a customer even when π = π2.

However, if v = vn(π1) remains a customer even when π = π2, then her net utility

must non-negative at π = π2. Since her net utility was exactly 0 at π = π1, we have that

vn(π1)− p(π2)− π2α(vp(π2)− vn(π2))vn(π1) ≥ vn(π1)− p(π1)− π1α(1− vn(π1))vn(π1). This

is equivalent to p(π1) + π1α(1 − vn(π1))vn(π1) ≥ p(π2) + π2α(vp(π2) − vn(π2))vn(π1). Since

p(π2) > p(π1) by assumption, we have π1α(1− vn(π1))vn(π1) > π2α(vp(π2)− vn(π2))vn(π1).

This is equivalent to 1 − π2
π1
vp(π2) > vn(π1) − π2

π1
vn(π2), a contradiction to the inequality in

the previous paragraph. Therefore, in the benchmark case, a change in market structure

cannot be associated with a strategic increase in price.

Lastly, suppose that the equilibrium market structure is 0 < vn < vp < 1. We will show

that under the assumptions of the focal region, the vendor’s price remains decreasing in π.
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Using (A.13) and employing asymptotic analysis, the vendor’s price when 0 < vn < vp < 1

is the induced market structure is given by:

p∗II =
1− cp

2
−

2c2
p(1− 3cp)

(1 + cp)3πα
−

16c3
p(−3 + cp(8 + cp(−5 + 8cp)))

(1 + cp)7(πα)2
+
∞∑
k=3

ck

(
1

α

)k
. (A.90)

Note that α > α = (2−cp)2cp
(1−cp)2

and cp ∈ (1
2
(3 − 2

√
2), 1

2
(2 −

√
2)) in our focal region imply

that α > 1 + 1√
2
≈ 1.71. Then note that d

dπ

[
1−cp

2
+

2c2p(−1+3cp)

(1+cp)3πα
− 16c3p(−3+cp(8+cp(−5+8cp)))

(1+cp)7(πα)2

]
< 0

for all π ∈ [0, 1] when α <
16cp(−3+8cp−5c2p+8c3p)

(1+cp)4(−1+3cp)
. This condition on α holds under the conditions

of the focal region (since
16cp(−3+8cp−5c2p+8c3p)

(1+cp)4(−1+3cp)
> ᾱ under 1

2
(3−2

√
2) < cp <

1
2
(2−
√

2)), which

implies that the vendor’s price remains decreasing in π when the induced market outcome

is 0 < vn < vp < 1. �

Proof of Proposition 7: First, note that the conditions cp < cp < cp, α < α < α,

and R < R < R̃ are common to both conditions sets Γ1 and Γ2. The only difference

between Γ1 and Γ2 are the π conditions. In particular, when π > π = cpα

R2−cpRα , then

0 < vnr < vr < vp < 1 arises in equilibrium while if π < π ≤ π (where π = −2R+α
3R2−4Rα+α2 ), then

0 < vr < 1 arises.

Under Γ2, the equilibrium outcome is 0 < vr < 1 so that the vendor’s profit function is

given as ΠV (p) = p(1−vr(p)), where vr(p) comes from (A.28). Using the first-order condition

to solve for the vendor’s price, we have

p∗V =

(
− 1− 2Rπ + 4παδ −R2π2 − 2Rδαπ2−

(δπα)2 + (1 +Rπ + δπα)
√

1 + π(2R− αδ + (R + δα)2π)

)(
9δπα

)−1

. (A.91)

Then the equilibrium vr has an asymptotic expression given by

v∗r =

(
1− 1

2 + 2Rπ

)
+
∞∑
k=1

akδ
k. (A.92)

The welfare function of this case is given by

SW ,
∫
V
1{σ∗(v)=(B,NP,R)}v − πu(σ∗)(R + δαv)dv .

Consequently, welfare is given as

SW ∗
V =

∫ 1

vr

v − π(1− vnr)(R + δαv)dv . (A.93)
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Substituting in (A.92) into the above expression, the asymptotic characterization of the

welfare is given as

SW ∗
V =

3 + 2Rπ

8(1 +Rπ)2
+
∞∑
k=1

akδ
k. (A.94)

In particular, when π = π = cpα

R2−cpRα , then SW ∗
V = (R−cpα)(3R−cpα)

8R2 +
∞∑
k=1

akδ
k.

On the other hand, in the benchmark case, we will put bounds on the equilibrium welfare

of 0 < vnr < vp < 1. From (A.37), we have that an expression of the vendor’s optimal price

as a function of vnr when 0 < vnr < vp < 1 is induced in equilibrium is given by

p∗II =
1

2
vnr

(
2 + παvnr −

√
πα(4cp + παv2

nr)

)
. (A.95)

We also have that vp = cpvnr
vnr−p from (A.14). The welfare of this case is given by

SWII =

∫ vp

vnr

v − πα(vp − vnr)vdv +

∫ 1

vp

v − cpdv . (A.96)

Substituting in (A.14) for vp, we have that the welfare expression as a function of vnr is

given as

SWII(vnr) =

(
− v3

nr(πα)2 + cp

√
πα(4cp + v2

nrπα) + πα

(
2 + cp(−4 + vnr)+

v2
nr

(
− 2 +

√
πα(4cp + v2

nrπα)
)))(

4πα

)−1

. (A.97)

Using vnr >
1
2

from Lemma A.3, that (A.97) is strictly decreasing in vnr for any π > 0,

α > 0, and R > 0 follows from the condition cp <
1
3
. This condition holds under cp < cp.

Since the welfare function strictly decreases in vnr, it follows that the equilibrium welfare

must be at least as much as the welfare function evaluated at an upper bound on vnr. In

particular, we use Lemma A.4 to have that 1+cp
2

is an upper bound on the equilibrium vnr.

Then the equilibrium welfare of 0 < vnr < vp < 1 must be more than (A.97) evaluated at

vnr = 1+cp
2

. Under the set of overlapping conditions of Γ1 and Γ2 stated in the proposition,

SWII(
1+cp

2
)|π=π > SW ∗

V |π=π. Since the region of Γ2 extends from π = π to π = π, it follows

that for some small enough interval to the left of π = π, the welfare of the benchmark case

dominates the social welfare expression when ransomware is present in the threat landscape.

Hence, there exists an ε > 0 such that for sufficiently small δ, if cpα

R2−cpRα − ε < π < cpα

R2−cpRα ,

then SWRW < SWBM .

Now consider when π is sufficiently small. Note that in the benchmark case, for 0 < vnr <

vp < 1 to hold, one of the conditions is that cp + (−1 + cp + p)πα < c2
p. For sufficiently small
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π, this cannot hold since it becomes cp > 1. Therefore, 0 < vnr < 1 arises in equilibrium

for sufficiently small π in the benchmark case. The asymptotic expression for the welfare in

this case is given by

SWI =
3

8
− πα

4
+
∞∑
k=1

akπ
k. (A.98)

At the same time, under the ransomware case, we can immediately rule out the following

market structures from arising in equilibrium since at least one of the conditions in (A.1)

would fail to hold in their respective cases for sufficiently low π: 0 < vnr < vr < vp < 1,

0 < vr < vp < 1, 0 < vnr < vp < 1. Then note that we can rule out 0 < vnr < 1 from the

condition R < α, which is a subcondition in Γ1 and Γ2. Lastly, 0 < vr < 1 fails to hold under

sufficiently small π under the conditions R > cpα, R < α(1+cp)

2
, and R > α

2−cp (subconditions

of Γ1 and Γ2).

Therefore, the equilibrium market outcome must be 0 < vnr < vr < 1. For sufficiently

small π, the equilibrium welfare is given as

SWIII =
3

8
+

(R2 − 2Rα)π

4α
+
∞∑
k=1

akπ
k. (A.99)

Comparing against (A.98), we see that ransomware dominates the benchmark for suf-

ficiently low π. Therefore, there exists a bound an ε > 0 such that if 0 ≤ π < ε, then

SWRW ≥ SWBM for sufficiently low δ.

Lastly, consider the case of sufficiently high π. Under the conditions of Γ1, the equilibrium

market outcome is given as 0 < vnr < vr < vp < 1. Then the asymptotic expression of the

equilibrium welfare of this case is given as

SWIV =
1

8

(
3 + cp

(
−8 +

4R

α
+
α

R

))
+
∞∑
k=1

akδ
k. (A.100)

On the other hand, the benchmark case would have 0 < vnr < vp < 1 arising in equilib-

rium for high π. A lower bound on the equilibrium welfare is then given as SWII(
1+cp

2
)|π=1,

where SWII comes from (A.97). This becomes 1
32

(
16+4(−7+cp)cp+4cp

√
(1 + cp)2 + 16cp

πα
−

(1 + cp)
3πα+ (1 + cp)

2

(
− 4 +

√
πα(16cp + (1 + cp)2πα)

))
. Under the condition 16cpR

2 +

R

(
4cpα + (1 + cp)

3α2 − α
√
α(16cp + (1 + cp)2α)− c2

pα
√
α(16cp + (1 + cp)2α)− 2cpα×(

2
√

(1 + cp)2 + 16cp
α

+
√
α(16cp + (1 + cp)2α)

)))
+ 4cpα

2 > 0, (A.100) dominates this ex-

pression for sufficiently low δ. Note that this is a quadratic expression in R, and under the

conditions cp ∈ [cp, cp] and α ∈ [α, α], the discriminant of the quadratic is negative so that

this condition holds. Therefore, under the assumptions of the proposition, there exists a

bound an ε > 0 such that if 1− ε < π ≤ 1, then SWRW ≥ SWBM for sufficiently low δ. �
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