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Abstract

Bug bounty programs are gaining popularity, but practitioners have not agreed on their

effectiveness. We use a stylized model to analyze the economic trade-offs in bug bounty

programs. Our analysis provides six main insights: 1) Unless a firm needs to pay an excessive

bounty reward to entice a strategic hacker to participate, it is always beneficial for the firm to

launch a bug bounty program. (2) The firm enjoys two benefits from a bug bounty program:

attack diversion and protection delegation. (3) The firm optimally retains in-house protection;

the level of in-house protection and the bounty prize depend on the balance of two incentives:

bounty-payment squeezing and protection free-riding. (4) Law enforcement affects private

protection only when the level of enforcement is relatively small. In this case, strengthening

law enforcement increases the company’s payoff but could variously increase or decrease the

strategic hacker’s payoff. Excessive enforcement may make a system less secure. (5) When the

exogenous threat is significant, the company prefers a more capable participant. But when the

exogenous threat is small, the company prefers a complementary participant. (6) Bug bounty

programs need not provide better security protection.

1 Introduction

Every organization has valuable assets to secure. This need becomes critical and challenging in

the cyberspace. In general, the security of organizational assets depends on two factors. One

is an organization’s in-house protection measures such as security soft(hard)ware that detects

and prevents intrusions, security audits that reduce system bugs, and cybersecurity awareness and

training. The second is public deterrence measures such as cyber-laws which impose punishment or

polices which increase conviction rates. Existing studies on how to optimize each of these measures
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are extensive, and both sets of measures improve security essentially by reducing hacker’s gain from

the attack.

As new protection measures emerge, organizations have to decide whether and how to add

new measures into their protection. The bug bounty program is an emerging measure that taps

into the “wisdom of crowd” to improve system security (Maillart et al. 2017). It refers to a setting

where a software vendor pays an external party a bug bounty reward for disclosing the details of a

security-related vulnerability (Egelman et al. 2013). Many large organizations, including Google,

Tencent, and Facebook have been offering bug bounty programs. In 2017 alone, Google paid $2.9

million in bug bounty programs, with $112,500 being the biggest single reward (Keller 2018). In

2016, United States Department of Defense launched a bug bounty program called “Hack the

Pentagon”. It recently expanded this program with a ceiling reward of $34 million (Fbo.gov 2018).

Notwithstanding its popularity, many organizations are reluctant to use bug bounty pro-

grams. For example, Oracle’s chief security officer, Mary Ann Davidson, claimed that bug bounties

are uneconomic and “the new boy brand”, and that “we find 87% of security vulnerabilities our-

selves, security researchers find about 3% and the rest are found by customers. . .on a strictly

economic basis, why would I throw a lot of money at 3% of the problem when I could spend that

money on better prevention like, oh, hiring another employee to do ethical hacking.” (Oracle.com

2015). Similarly, Microsoft once claimed that “we dont think paying a per-vuln bounty is the best

way” (Fisher 2010) although it later offered a bug bounty program in 2013.

In this paper, we formally examine the economic trade-offs in using a bug bounty program.

Our analysis encompasses a firm owning a valuable and vulnerable system. To protect the system

from cyber-attacks, the firm is considering whether to invest in a bug bounty program. With this

setting, we study the nature of a bug bounty program by answering the following questions: (1)

Should the firm offer a bug bounty program? If so, how should the reward be set and what expected

benefits does such a program bring? (2) How does a bug bounty program affect the incentives of

the firm to invest in in-house protection? (3) How does a bug bounty program interact with law

enforcement? Can it help the firm arrive at better overall protection?

We develop a stylized model to address these questions. In our model, a firms wants to

protect a vulnerable system and a strategic hacker wants to identify the vulnerability for economic

benefits. There are some naive hackers who always want to attack the system. The firm can

focus on in-house protection or offer a bug bounty program. Without a bug bounty program,

the strategic hacker can benefit from directly exploiting the vulnerability, e.g., by stealing the

firm’s customer data and selling them through the black market or mis-using the customers’ bank

accounts. With a bug bounty program, the strategic hacker can exchange the vulnerability for a
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bounty reward.

Our analysis shows that the firm should offer a bug bounty program as long as the value

that a strategic hacker can obtain from attacking the system is not too high relative to the firm’s

potential loss. When the bounty program is offered, the firm enjoys two benefits. The first benefit

is attack diversion, where the firm can use a cheap price to divert the strategic hacker away from

attacking the system. The second benefit is protection delegation, where the firm can engage the

strategic hacker in protecting the system against exogenous threats.

When using the bug bounty program, the firm’s best strategy involves retaining in-house

protection capabilities. The incentive is to squeeze the bug bounty payment. Specifically, how the

firm designs the bug bounty program and selects its in-house protection strategy depend on the

balance of two incentives, viz. bounty-payment squeezing and protection free-riding. When the

exogenous threat is small, the firm tends to set a smaller bounty reward, which is just enough to

divert the strategic hacker away from attacking. It will respond to an increase in the strategic

hacker’s effort by strengthening its in-house protection, so as to reduce the probability of paying

the bounty reward, an incentive that we call bounty payment squeezing. When the exogenous

threat is significant, the firm tends to offer a bigger bounty reward, the size of which increases with

the threat. It will respond to an increase in the strategic hacker’s effort by cutting back in-house

protection, so as to incentivize more effort from the strategic hacker, an incentive that we call

protection free-riding.

We also analyze how law enforcement affects the bug bounty program. We find that law

enforcement affects the firm, the strategic hacker, and the bug bounty program only when the level

of enforcement is relatively small. When this happens, strengthening law enforcement increases

the firm’s payoff but could variously increase or decrease the strategic hacker’s payoff. Notably,

strengthening law enforcement could even generate negative results: The firm may cut back its

in-house protection, and the effectiveness of the bug bounty program could reduce, leading to a

less secure system.

Finally, we study whether the bug bounty program improves the overall security. Sur-

prisingly, a bug bounty program does not necessarily lead to better security. This unexpected

consequence happens when the firm cuts back too much in-house protection, which offsets the

security-enhancing effects the bug bounty program brings.

The rest of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 introduces the model. Section 4 analyzes the equilibrium outcomes and examines our

research questions. Section 5 concludes the paper.
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2 Related Literature

This study is related to three streams of research. The first stream is the economics of crowd-

sourcing. As reasoned by Fryer and Simperl (2017), bug bounty program can be conceptually

viewed as a crowdsourcing event because it appeals to a defined crowd (security researchers) with

a clear goal (identify vulnerabilities) and a defined benefit for both the workers (bounty reward)

and the requester (higher security). This literature lies at the intersection of the economics of

outsourcing (e.g. Lacity et al. 2009) and the theory of contests and tournaments (e.g. Szymanski

2003, Konrad 2007), and is primarily interested in the optimal design of crowdsourcing contests,

such as award structure (e.g. Terwiesch and Xu 2008) , incentive scheme (e.g. Horton and Chilton

2010), participation policies (e.g. Jeppesen and Lakhani 2010, Boudreau et al. 2011), etc.

Despite the similarity, the bug bounty program differs from traditional crowdsourcing

settings in three notable ways, making previous analysis less applicable. First, in traditional

settings, participants mostly have no bargaining power so they are assumed to be “contract takers”,

whereas participants in bug bounty programs have substantial bargain power. For example, if an

organizer refuses to make a deal or offers too little rewards, it is possible for the bug finders to

monetize the vulnerability elsewhere, e.g., by directly attacking the organizer’s systems, which

in turn poses a threat to the organizer. Second, in previous settings, firms’ internal activities

are mostly independent of the crowdsourcing program outcomes. By contrast, in a bug bounty

program, the firm’s in-house protection will interact with the participants’ strategies. For instance,

higher in-house protection by the firm is likely to decrease the chance for participants to identify the

vulnerability and claim the bounty rewards. Third, in traditional contest-type of crowdsourcing

programs, quality is the most important measure of participants’ submissions. While in a bug

bounty program, the uniqueness of the submitted vulnerability is more important.

The second relevant stream is the literature on information security investment. This lit-

erature essentially focuses on how to allocate resources to minimize security costs. Following the

seminal work of Gordon and Loeb (2002), many studies have discussed how companies optimize

security investments under different settings and contexts, such as when there exists system in-

terdependency (e.g. Hausken 2006), when hackers strategically identify poorly protected system

(e.g. Cremonini and Nizovtsev 2009, Bandyopadhyay et al. 2014), and when companies share in-

formation (Gal-Or and Ghose 2005, Gao et al. 2015). Our main contribution to this literature is

analyzing the bug bounty program as an alternative security investment. This is interesting for

two reasons: (1) an in-depth understanding of bug bounty program is necessary to guide compa-

nies in setting up such a program; (2) compared with previous security investment approaches,

bug bounty programs create fundamentally different incentives for the hackers. Previous security
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investment approaches mostly aim to discourage hackers from identifying system vulnerabilities.

Bug bounty programs, on the other hand, encourage hackers to identify vulnerabilities as long as

they have incentives to submit the vulnerabilities for bounty rewards.

The last stream of research comprises studies specifically focusing on bug bounty programs.

Finifter et al. (2013), Zhao et al. (2015) and Ruohonen and Allodi (2018) provide descriptive

analysis of the existing bug bounty programs. They characterize many interesting aspects about

these programs, such as their economic efficiency, evolution of the discovered vulnerabilities, and

the participants behavioral patterns and trends, etc. Other studies examine the economic trade-

offs related to bug bounty programs, such as the relationship between the bounty reward and

vulnerability severity (Munaiah and Meneely 2016), the competition between different bug bounty

programs (Maillart et al. 2017), and the optimal mechanism to minimize invalid reports and allocate

the participants’ efforts (Zhao et al. 2017). To our knowledge, systematic investigation of a firm’s

incentive to launch a bug bounty program does not exist. This is what we contribute in this study.

3 Model

3.1 Setting

Consider a market with one firm who is planning security investment to protect a vulnerable system

and one strategic hacker who can benefit from exploiting the vulnerability in this system.1 For

simplicity, assume both the firm and the strategic hacker estimate the system has one vulnerability

through some preliminary costless security assessments. The firm can invest effort q ∈ [0, 1) to

identify the vulnerability. Equivalently, q can be interpreted as the probability of finding the

vulnerability, so q ∈ [0, 1). The total effort cost is mq2, where m is sufficiently large that prevents

q = 1, i.e., perfect security. If the vulnerability is left unfixed and eventually exploited by others,

then the firm will incur a monetary loss of λ.

Similarly, the strategic hacker can invest effort p ∈ [0, 1) to identify the vulnerability, with

cost kp2. Without a bug bounty program, the strategic hacker can monetize the vulnerability only

by attacking the system. We assume the gain in vulnerability exploitation, αλ, is proportional

to the value of the system, where 0 < α < +∞. However, vulnerability exploitation is risky. By

launching an attack against the firm’s system, the strategic hacker faces a probability, d, of being

caught and punished with a penalty, f . Both d and f are affected by government enforcement and

exogenous to the firm’s and strategic hacker’s decisions.2

1Following Kannan and Telang (2005) and Png and Wang (2009), we assume there is only one strategic hacker.
We will extend the analysis to N strategic hackers in future work.

2A remark: in reality the strategic hacker may also monetize the vulnerability in other ways, e.g. sell the
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Table 1: Model Notation
Variable Description

q the firm’s vulnerability identification effort
p the strategic hacker’s vulnerability identification effort

t the naive hackers’ vulnerability identification effort

m cost coefficient for the firm’s effort

k cost coefficient for the strategic hacker’s effort

λ the firm’s monetary loss from attack

α coefficient for the strategic hacker’s gain from attack

d
probability of being caught if the strategic hacker decides
to attack the system

f expected penalty if the strategic hacker were caught

R the size of bug bounty reward

With a bug bounty program, the strategic hacker can submit his discovery of the vulnera-

bility to the firm and earn a reward, R, which is set by the firm. The firm can fix the vulnerability as

soon as it is discovered. For simplicity, we assume the strategic hacker can exploit the vulnerability

and the firm can fix the vulnerability without incurring any cost.

The market also contains some naive hackers who always invest effort t ∈ [0, 1) in identi-

fying and exploiting the vulnerability in the firm’s system. We can interpret t as the probability of

naive hackers finding and exploiting the vulnerability. These naive hackers may attack the firm for

fun, ideology, or other malicious motives, and they are die-hard attackers who will not be attracted

by the bug bounty program.3 If the firm, the strategic hacker, and naive hackers simultaneously

find the vulnerability, we assume the firm will take action first, followed by the strategic hacker

and then the naive hackers.4 We assume the size of naive hackers is large to the extent that their

decision is not affected by the firm’s and strategic hacker’s decisions, i.e., t is exogenous.

Without a bug bounty program, the firm and the strategic hacker simultaneously decide

how much efforts to invest in protecting or attacking the system. With a bug bounty program, the

firm will announce and commit to a bug bounty reward first before all parties make their effort

choices. We focus on subgame-perfect Nash equilibria. Table 1 summarizes all the notations used

in this paper.

vulnerability through the black market. But as long as the expected benefit he can get increases with the value of
the system, and decreases with the government enforcement, (both of which we believe are reasonable assumptions)
the analysis still applies.

3We can also put some benign hackers, i.e. who will submit the vulnerability anyway, in the market. It is a
straightforward extension but there is no reason to believe it would bring additional insights.

4We will change this sequence of action in future work
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3.2 Payoffs

3.2.1 No Bug Bounty Program

Without a bug bounty program, the strategic hacker’s utility is

Uattack = p(1− q)(αλ− df)− kp2, (1)

where p(1 − q) is the probability that the strategic hacker has identified the vulnerability first,5

αλ is the expected gain and df is the expected penalty from exploiting the vulnerability6.

Following the security investment literature(e.g. Gordon and Loeb 2002), the firm’s goal is

to maximize the expected net benefit from the security investment. Therefore, given the external

threats represented by p and t, the firm’s payoff is

Πattack = −[1− (1− t)(1− p)](1− q)λ−mq2. (2)

Here, [1− (1 − t)(1 − p)](1 − q) is the probability that the strategic hacker or naive hackers have

identified and exploited the vulnerability.

3.2.2 With a Bug Bounty Program

By submitting the vulnerability to the firm, the strategic hacker’s payoff is

Ubounty = Rp(1− q)− kp2. (3)

He will submit the vulnerability to the firm if and only if the reward exceeds the benefit he would

obtain from exploiting it himself, i.e., Ubounty ≥ Uattack. If the strategic hacker participates in the

bug bounty program, the firm’s expected payoff is

Πbounty = −t(1− p)(1− q)λ− p(1− q)R−mq2. (4)

The first term in (4) is the firm’s expected loss when naive hackers find the vulnerability earlier

than the firm and the strategic hacker. The second term is the expected (bug bounty) payment to

the strategic hacker when he finds the vulnerability earlier than others.

5Recall if the strategic hacker and naive hackers (but not the firm) find the vulnerability simultaneously, then
the strategic hacker will take action before naive hackers.

6This is a standard setup in criminology literature (e.g. Becker 1968, Chalfin and McCrary 2017)
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4 Analysis

We start with a simple setting where the firm and the strategic hacker have similar capability in

identifying the vulnerability, i.e., m = k. We relax this assumption in a later section.

4.1 Equilibrium With No Bug Bounty Program

Differentiating the strategic hacker’s payoff function in (1), his optimal investment is

p =
(αλ− df)(1− q)

2k
. (5)

For ease of analysis and exposition, we rewrite the firm’s expected payoff in (2),

Πattack = −[1− (1− t)(1− p)](1− q)λ− kq2

= −[1− (1− t)(1− p)](1− q)λ− k(1− q)2 + 2k(1− q)− k

= −k(1− q)2 + {2k − [1− (1− t)(1− p)]λ}(1− q)− k.

(6)

Differentiating (6) with respect to (1− q) and solving, we have

1− q =
2k − [1− (1− t)(1− p)]λ

2k
=

2k − tλ− (1− t)pλ
2k

(7)

Solving (5) and (7),

p∗attack =
(αλ− df)(2k − tλ)

4k2 + (αλ− df)(1− t)λ
, (8)

and

1− q∗attack =
2k(2k − tλ)

4k2 + (αλ− df)(1− t)λ
. (9)

Substituting in (6), the firm’s maximum payoff without a bug bounty program is

Π∗
attack =

4k3(2k − tλ)2

[4k2 + (αλ− df)(1− t)λ]2
− k. (10)

Similarly, substituting (8) and (9) in (1), the strategic hacker’s payoff is

U∗
attack = k

[
(αλ− df)(2k − tλ)

4k2 + (αλ− df)(1− t)λ

]2

. (11)
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4.2 Equilibrium With a Bug Bounty Program

Differentiating (3) with respect to p and solving, the strategic hacker’s optimal choice of p when

joining the bug bounty program is

p =
R(1− q)

2k
. (12)

Rewrite the firm’s payoff function in (4),

Πbounty =− λt(1− p)(1− q)− kq2 − p(1− q)R

= −k(1− q)2 + [2k − pR− λt(1− p)](1− q)− k.
(13)

Differentiating (13) with respect to (1− q) and solving, we have

1− q =
2k − pR− tλ(1− p)

2k
. (14)

Solving (12) and (14),

p∗bounty =
(2k − tλ)R

4k2 +R(R− tλ)
, (15)

and

1− q∗bounty =
2k(2k − tλ)

4k2 +R(R− tλ)
(16)

Substituting in (13), the firm’s maximum payoff conditional on R is

Πbounty =
4k3(2k − tλ)2

[4k2 +R(R− tλ)]2
− k. (17)

By (17), the firm gets the highest payoff when R = tλ
2 . However, for the strategic hacker to

participate in the bug bounty program, his payoff must exceed the payoff obtainable by attacking

the firm given the firm’s choice of q. Substituting (5) in (1) and (12) in (3) and comparing,

Ubounty ≥ Uattack if and only if [R(1−q)]2
4k ≥ [(αλ−df)(1−q)]2

4k , or

R ≥ αλ− df. (18)

We need to consider the following two cases.

Scenario 1: R = tλ
2 satisfies (18), or df ≥ λ(α− t

2 ). We have R∗ = tλ
2 and

Π∗
bounty1 =

4k3(2k − tλ)2[
4k2 − (tλ)2

4

]2 − k. (19)
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Scenario 2: R = tλ
2 does not satisfy (18), or df < λ(α− t

2 ). To incentivize the strategic hacker to

join the bug bounty program, the firm must raise the reward. Therefore, we have a corner solution,

R∗ = αλ− df . The firm’s maximum payoff with the bug bounty program is then

Π∗
bounty2 =

4k3(2k − tλ)2

[4k2 + (αλ− df)(αλ− df − tλ)]
2 − k. (20)

4.3 When Should a Bounty Program be Offered?

Summarizing the firm’s payoff in the various scenarios:

• With no bug bounty program: Π∗
attack = 4k3(2k−tλ)2

[4k2+(αλ−df)(1−t)λ]2 − k.

• With a bug bounty program and df ≥ λ(α− t
2 ): Π∗

bounty1 = 4k3(2k−tλ)2[
4k2− (tλ)2

4

]2 − k.

• With a bug bounty program and df < λ(α− t
2 ): Π∗

bounty2 = 4k3(2k−tλ)2

[4k2+(αλ−df)(αλ−df−tλ)]2
− k.

The magnitudes of these payoffs depend on λ, d, f, α and t. In particular, Π∗
bounty2 < Π∗

attack when

α > df
λ + 1, meaning when α is sufficiently large, it is not optimal for the firm to offer a bug

bounty program. Figure 1 depicts the optimal choices of the firm along different values of α and t.

The strategic hacker prefers the bug bounty program when his expected benefit from joining the

program exceeds that from launching a cyber attack, or R ≥ αλ− df .

Figure 1: Optimal choice of bounty program

When α exceeds df
λ + 1, the firm is better off focusing on in-house protection. Recall the

strategic hacker’s opportunity cost of not attacking the firm is αλ− df (provided he has identified

the vulnerability). To offset this opportunity cost, the bug bounty reward should increase with α

to entice the strategic hacker. However, when α is too large, the cost to offer the reward will be

excessive. The firm will prefer to shoulder the expected loss due to a vulnerability exploitation.

By contrast, when α ≤ df
λ + 1, the firm prefers to offer a bug bounty program. More
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importantly, when α is small and t is large, the firm will offer a relatively large bounty reward

to incentivize the strategic hacker to compete with naive hackers in discovering the vulnerability.

Our first proposition follows.

Proposition 1 The firm will offer a bug bounty program if and only if α ≤ df
λ + 1. The bounty

reward, R = tλ
2 when df ≥ λ(α− t

2 ), and R = αλ− df when df < λ(α− t
2 ).

In the remaining part of this paper, we assume α ≤ df
λ +1 so that the firm optimally offers

a bug bounty program. In addition, we mentioned in the model setting that k is sufficiently large

to prevent perfect security7. Now we can more accurately define what “sufficiently large” means

in this context. It means q∗attack < 1, which implies 2k > tλ.

Assumption 1 α ≤ df
λ + 1, so that the firm optimally offers a bug bounty program.

Assumption 2 2k > tλ, so perfect security is not economical.

4.4 Benefits of the Bug Bounty Program

To characterize the benefits brought by the bug bounty program, rewrite the firm’s payoffs in (2)

(with no bug bounty program) and (4) (with a bug bounty program):

Πattack = (1− q)[−t(1− p)λ− pλ]− kq2, (21)

Πbounty = (1− q)[−t(1− p)λ− pR]− kq2. (22)

In (21) and (22), conditional on the firm’s effort, the first term in the square bracket is the expected

loss when the vulnerability is identified by naive hackers. The second term is the expected loss or

bug bounty reward payable when the vulnerability is identified by the strategic hacker. The third

term is the firm’s in-house effort cost.

By Proposition 1, when the firm prefers the bug bounty program, we must have αλ−df ≤ λ.

Comparing the second term in the square bracket in (21) and (22), the firm can take advantage

of the deterrence effect due to government enforcement, df , and the difference in her valuation

of the system, λ, from that of the strategic hacker, αλ, and offer a bug bounty reward, R, that

is smaller than λ but yet enough to effectively dissuade the strategic hacker from attacking her

(recall R = tλ
2 < λ when df ≥ λ(α − t

2 ) and R = αλ − df when df < λ(α − t
2 )). We call this

benefit of the bug bounty program attack diversion. It leads to a Pareto improved outcome as

the firm does not need to suffer a full system loss and the strategic hacker can mostly receive a

higher payoff because he does not need to face the potential legal penalty.

7similar for m as m = k by assumption
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The bug bounty program offers another important benefit. Comparing (8) with (15) and

by Proposition 1, it is easy to see that p∗bounty ≥ p∗attack. This means that with the bug bounty

program, the strategic hacker will invest more effort to identify the vulnerability. Referring to the

first term in the square bracket in (21) and (22), an increase in p will decrease the chance that naive

hackers find the vulnerability. Hence, the bug bounty program can incentivize the strategic hacker

to compete with naive hackers. It is akin to “recruiting” the strategic hacker to help “protect” the

firm’s system. We call this benefit of the bug bounty program protection delegation. By (21)

and (22), the higher the threat due to naive hackers, t, the higher the benefit the firm can obtain

from enlisting the strategic hacker’s protection.

Furthermore, by (22) and Proposition 1, because the firm will offer R < λ, it prefers paying

the bounty reward to having the system attacked by the strategic hacker. The firm can calibrate

the strategic hacker’s effort by modifying R. When the naive hacker’s threat, t, is small, the firm’s

key concern is the attack from the strategic hacker. Hence, it will offer R just high enough to divert

the strategic hacker’s attack. As t increases, the threat due to naive hackers become prevalent.

The firm will now try to induce more effort from the strategic hacker, p, by offering even higher

bounty rewards so that the strategic hacker will compete with naive hackers. Figure 2 depicts how

the bug bounty reward changes with the threat from naive hackers.

Figure 2: Optimal choice of bounty reward

Observation 1 When the threat from naive hackers is small, i.e., t < 2(α − df
λ ), the firm will

offer a constant bounty reward R = αλ − df . The salient incentive is to divert attack away from

the strategic hacker. When the threat from naive hackers is significant, i.e., t ≥ 2(α− df
λ ), the firm

will offer R = λt
2 . The salient incentive is to delegate the protection to the strategic hacker.
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4.5 Managing Bug Bounty Program

This section is concerned about how to integrate the bug bounty program as a component of

comprehensive security strategies. Specifically, we seek to understand how the firm should balance

between in-house protection and the bug bounty program. Should the firm, following the logic of IT

outsourcing (e.g. Lacity et al. 2009), outsource the less-efficient in-house vulnerability identification

activities (e.g. hiring security researchers, penetration test, security audits, etc.) to the “crowd”,

and focus on selecting and fixing the identified vulnerabilities?

Comparing (9) and (16), it is easy to see qbounty < qattack, meaning the bug bounty

program does substitute in-house protection. However, by (16)

qbounty =
2ktλ−R(R− tλ)

4k2 +R(R− tλ)
=


2ktλ+(αλ−df)(αλ−df−tλ)

4k2+R(R−tλ) > 0, df < αλ− λt
2

2ktλ− (tλ)2

4

4k2+R(R−tλ) > 0, df ≥ αλ− λt
2

(23)

So qbounty > 0 always hold. Therefore, while outsourcing some of the protection work to

the “crowd”—the firm should never outsource all of them. Why would the firm (strategically)

retain the in-house protection work, even though they do not have advantage in it by assumption?

To understand this, let us first examine the incentive for the firm to take in-house protection

in a bug bounty program. By (4) we write the firm’s best response function,

∂Πbounty

∂q
= λt(1− p) + pR− 2kq. (24)

Therefore, the firm’s optimal in-house protection effort depends on three factors, repre-

sented by three terms in the right hand side of (24): (1) the marginal loss due to the system

attacked by naive hackers. The higher expected loss due to naive hackers, the greater incentive

for the firm to strengthen in-house protection. (2) the marginal bounty reward payable to the

strategic hacker. The higher the expected bounty payment, the greater the incentive for the firm

to step up its protection effort (because it helps reduce the chance that it needs to pay the bounty

reward.) (3) the marginal loss due to its own protection effort.

Having a more effective bug bounty program, i.e. higher p, affects the first two factors

in an opposite way. On the one hand, it reduces the cost in the first term (i.e. the threat from

naive hackers), so in terms of protecting the system against naive hackers, the necessity for the

firm to undertake in-house protection does reduce. We call this strategic response protection
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free-riding, as it arises when the firm wants to leverage the strategic hacker’s effort in finding the

vulnerability.

On the other hand, higher p increases the cost in the second term, hence the firm has

incentives to increase its in-house protection to reduce the chance of paying the bounty reward.

This is the key reason why firm should strategically retain in-house protection—it invests in self-

protection in the hope that the cost will be justified by the reduced bounty payment. Intuitively, if

a firm launches a bug bounty program with a very insecure system (e.g. zero in-house protection),

the expected bug bounty payment could be excessive. A smarter strategy for the firm is to find

and fix all the “easier” vulnerabilities. It is beneficially to do so as long as the cost of finding

“easier” vulnerability can lead to even greater reduction in later bounty payments. We call this

strategic response bounty-payment squeezing, as it arises when the firm wants to substitute

bounty payment by in-house protection.

Proposition 2 With a bug bounty program, the firm would retain in-house protection to squeeze

the bug bounty payment.

We next examine the strategic interaction (Bulow et al. 1985, Vives 2005) between the

firm and the strategic hacker. The purpose is to explore how the bug bounty program changes the

firm’s and the strategic hacker’s incentives to protect or attack the system.

4.5.1 No Bug Bounty Program

Differentiate (1) with respect to q and p, we have

∂2Uattack
∂p∂q

= − ∂2Uattack
∂p∂(1− q)

= df − αλ < 0, (25)

which implies the strategic hacker’s effort in identifying the vulnerability is a strategic substitute

(Bulow et al. 1985) with the firm’s effort. Intuitively, the higher effort the firm invests in in-house

protection, the lower expected payoff the strategic hacker would expect from attacking the system,

which causes him to scale down his investment.

Similarly, differentiate (2) with respect to p and q, we have

∂2Πattack

∂q∂p
= − ∂2Uattack

∂(1− q)∂p
= (1− t)λ > 0 (26)

because t < 1. Hence, the firm’s effort is a strategic complement (Bulow et al. 1985) with the

strategic hacker’s effort. Here, without a bug bounty program, the strategic hacker’s gain is the

firm’s loss. Hence, when the strategic hacker increases his effort, the firm will respond by spending
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more effort to compete with the strategic hacker.

Proposition 3 With no bug bounty program, the strategic hacker’s effort is a strategic substi-

tute with the firm’s in-house protection. By contrast, the firm’s in-house protection is a strategic

complement with the strategic hacker’s effort.

4.5.2 With a Bug Bounty Program

Here, the strategic hacker’s effort in identifying the vulnerability is affected by the firm’s effort and

the bounty reward. Differentiating (3),

∂2Ubounty
∂p∂q

= − ∂2Ubounty
∂p∂(1− q)

= −R < 0, (27)

∂2Ubounty
∂p∂R

= (1− q) > 0. (28)

Hence, the strategic hacker’s effort is again a strategic substitute with the firm’s effort. However,

his effort is a strategic complement with the bug bounty reward, R.

Differentiating the firm’s payoff function in (4),

∂2Πbounty

∂q∂p
= − ∂2Ubounty

∂(1− q)∂p
= R− λt. (29)

Depending on the relative magnitude of R and λt, the firm’s effort can be either a strategic sub-

stitute or a strategic complement with the strategic hacker’s effort in identifying the vulnerability.

From Figure 2, the only possibility for R ≥ λt is when t ≤ 2(α − df
λ ), i.e., the threat from naive

hackers is small, in which case R = αλ− df .

Taken together, for R ≥ λt and R = αλ − df , we must have t ≤ α − df
λ . Proposition 4

follows.

Proposition 4 With a bug bounty program, the strategic hacker’s effort in identifying the vulner-

ability is a strategic substitute with the firm’s effort. When the threat from naive hackers is low,

i.e., t ≤ α− df
λ , the firm’s effort is a strategic complement with the strategic hacker’s effort. When

t > α− df
λ , the firm’s effort is a strategic substitute with the strategic hacker’s effort.

Figure 3 summarizes all the strategic interactions between the firm and the strategic

hacker.

To understand the impact due to the naive hacker’s threat, t, we refer back to (24). When

the threat from naive hackers is significant, i.e., t > α − df
λ , the first term tends to dominate the

second term. It suggests when p increases, the gain from protection free-riding would be greater
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Figure 3: Strategic interactions (red solid line: best response of the firm, blue dotted line: best
response of the strategic hacker)

than the loss due to the bounty payment, so the firm tends to reduce its own in-house effort. By

contrast, when the threat from naive hackers is low, i.e., t ≤ α − df
λ , the bug bounty payment

becomes more significant. The firm will prefer to increase its effort to squeeze the bounty payment

in response to an increased p. Therefore, how the firm responds to the strategic hacker’s effort

depends on the external environment, viz. t.

4.6 Effect of Law Enforcement

We analyze how law enforcement affects the bug bounty program. For simplicity, we consider the

expected net penalty due to law enforcement, df , together instead of separately considering the

probability of apprehension, d, and the penalty term, f .8

Without a bug bounty program, by (8), (9), (10), and (11),

∂p∗

∂df
< 0,

∂q∗

∂df
< 0,

∂U∗
attack

∂df
< 0,

∂Π∗
attack

∂df
> 0. (30)

The interpretation is straightforward: law enforcement deters the strategic hacker by reducing his

expected payoff. The firm can ride on this deterrence effect and reduce its in-house effort while

enjoying a higher payoff. This result is consistent with classic economic theories which shows that

public enforcement reduces crime (e.g., see Chalfin and McCrary 2017).

With a bug bounty program, by (16), (19), (20), and Proposition 1, the firm’s payoff and

8In other settings, the probability of apprehension and the penalty term may produce different consequences in
the analysis (e.g., Becker 1968).
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its in-house effort are:

Π∗
bounty =


4k3(2k−tλ)2

[4k2+(αλ−df)(αλ−df−tλ)]2 − k, df < λ(α− t
2 )

4k3(2k−tλ)2

[4k2− (tλ)2

4 ]2
− k, df ≥ λ(α− t

2 )

(31)

q∗ =


1− 2k(2k−tλ)

4k2+(αλ−df)(αλ−df−tλ) , df < λ(α− t
2 )

1− 2k(2k−tλ)

4k2− (tλ)2

4

, df ≥ λ(α− t
2 )

(32)

Differentiating with respect to df ,

∂Π∗
bounty

∂df


8k3(2k−tλ)[2(αλ−df)−tλ]

[4k2+(αλ−df)(αλ−df−tλ)]3 > 0, df < λ(α− t
2 )

= 0, df ≥ λ(α− t
2 )

(33)

∂q∗

∂df
=


−2k(2k−tλ)[2(αλ−df)−tλ]

[4k2+(αλ−df)(αλ−df−tλ)]2 < 0, df < λ(α− t
2 )

= 0, df ≥ λ(α− t
2 )

(34)

(33) and (34) suggest that strengthening law enforcement increases the firm’s payoff and

decreases its in-house effort only when df is small. Recall from Observation 1 that when df <

λ(α − t
2 ), the optimal bounty reward is αλ − df , which is determined based on the strategic

hacker’s incentive compatibility constraint, (18). In this case, the firm actually prefers a smaller

bounty payment, tλ2 , but it has to offer a higher reward to entice the strategic hacker, which is to

its disadvantage. Referring to Figure 4, the gap between αλ− df and tλ
2 is the value that the firm

has to surrender to the strategic hacker. Strengthening the law enforcement, df , will decrease the

strategic hacker’s opportunity cost of submitting the vulnerability. This increases the “bargaining

power” of the firm and helps decrease the bounty reward, which indirectly increases the firm’s

profit.

Furthermore, by the analysis following Proposition 4, for all t ≤ α − df
λ which implies

df < λ(α − t
2 ), the firm has incentives to squeeze the bug bounty payment, R, by increasing its

in-house effort, q. When the bounty reward is decreased due to law enforcement (see Figure 4),

the firm can correspondingly cut back its in-house protection.

Note that law enforcement brings benefit to the firm only when tλ
2 ≤ αλ − df . When

tλ
2 > αλ − df , or t > 2(α − df

λ ) (see Figure 2), the firm’s preferred bounty reward will already

entice the strategic hacker to submit the vulnerability to the firm, so law enforcement does not

matter any more. Therefore,
∂Π∗

bounty

∂df = 0 and ∂q∗

∂df = 0 when df ≥ λ(α − t
2 ). Similarly, law

enforcement matters only when αλ− df ≥ tλ
2 ⇒ αλ > tλ

2 , or t < 2α. If t ≥ 2α, the firm will offer
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Figure 4: Law enforcement and bounty reward

a high bounty reward anyway, meaning law enforcement cannot help it further.

Next, by (3), (15), and Proposition 1,

U∗
bounty =


k(αλ−df)2(2k−tλ)2

[4k2+(αλ−df)(αλ−tλ−df)]2 , df < λ(α− t
2 )

k(tλ)2(2k−tλ)2

4[4k2− (tλ)2

4 ]2
, df ≥ λ(α− t

2 )

(35)

p∗ =


(2k−tλ)(αλ−df)

4k2+(αλ−df)(αλ−df−tλ) , df < λ(α− t
2 )

(2k−tλ)tλ

2(4k2− (tλ)2

4 )
. df ≥ λ(α− t

2 )

(36)

Differentiating with respect to df ,

∂U∗
bounty

∂df


(1− 2k

αλ−df )
2k(1+ 2k

αλ−df )(2k−tλ)2(αλ−df)3

[4k2+(αλ−df)(αλ−df−tλ)]3 > 0, 0 ≤ df < max{αλ− 2k, 0}

(1− 2k
αλ−df )

2k(1+ 2k
αλ−df )(2k−tλ)2(αλ−df)3

[4k2+(αλ−df)(αλ−df−tλ)]3 ≤ 0, max{αλ− 2k, 0} ≤ df < λ(α− t
2 )

= 0, df ≥ λ(α− t
2 )

(37)

∂p∗

∂df
=


(1− 2k

αλ−df )
(1+ 2k

αλ−df )(2k−tλ)(αλ−df)2

[4k2+(αλ−df)(αλ−df−tλ)]2 > 0, 0 ≤ df < max{αλ− 2k, 0}

(1− 2k
αλ−df )

(1+ 2k
αλ−df )(2k−tλ)(αλ−df)2

[4k2+(αλ−df)(αλ−df−tλ)]2 ≤ 0. max{αλ− 2k, 0} ≤ df < λ(α− t
2 )

= 0, df ≥ λ(α− t
2 )

(38)

When df < λ(α − t
2 ), the analysis above suggests that strengthening law enforcement

18



decreases the bounty reward and indirectly decreases the firm’s in-house effort. These two effects

produce opposite incentives for the strategic hacker. A smaller bounty reward decreases the strate-

gic hacker’s expected revenue in finding the vulnerability, so he responds by reducing his effort.

However, a reduction in the firm’s in-house effort increases the strategic hacker’s expected gain,

making him increase his effort. Depending on the balance between these two competing effects,

law enforcement can variously increase or decrease the strategic hacker’s equilibrium effort. Figure

5 depicts the changes in the optimal R, q, p, and Ubounty with df .

Figure 5: Effect of law enforcement

When αλ−2k > 0, the strategic hacker’s payoff and effort increase first and then decrease

with stronger law enforcement. In particular, when df < αλ − 2k, the effect due to less in-

house protection effect (lower q) dominates the effect due to reduced bounty reward (lower R),

so the strategic hacker will increase his effort and get higher expected payoff. By contrast, when

αλ−2k ≤ df < λ(α− t
2 ), the bounty reward effect dominates the in-house protection effect, so the

strategic hacker will reduce his effort. When df ≥ λ(α − t
2 ), strengthening law enforcement does

not affect the firm’s strategy in the bug bounty program, and so it would not affect the strategic

hacker either. Our next proposition follows.

Proposition 5 Law enforcement does not have any effect on the firm, the strategic hacker, and

the bug bounty program when df ≥ λ(α − t
2 ). When df < λ(α − t

2 ), increasing law enforcement

increases the firm’s payoff and decreases its in-house protection effort. It increases (decreases) the

strategic hacker’s payoff and effort when df < αλ− 2k (df ≥ αλ− 2k).

Proposition 5 provides an interesting insight —too much law enforcement, i.e., df ≥ λ(α−
t
2 ), does not affect the strategic hacker because the bug bounty program offered by the firm can

already dissuade the strategic hacker from attacking it. In fact, when the law enforcement lies in
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some middle range, i.e., αλ − 2k ≤ df < λ(α − t
2 ), further increasing the enforcement could lead

the firm and strategic hacker to spend less efforts in identifying the vulnerability. This increases

the expected harm due to naive hackers and so makes the system less secure!

This counter-intuitive result arises because the enforcement has distorted the incentives of

the firm and strategic hacker. Without the enforcement, the firm is obliged to pay a bigger bounty

reward to the strategic hacker so that he will not attack the system. Strengthening the enforcement

increases the “bargaining power” of the firm and so squeezes the bug bounty reward size. This

causes both the firm and the strategic hacker to cut back their efforts. The firm invests less effort

because its bug bounty cost is now reduced. The strategic hacker reduces its effort because he gets

less reward from the bounty program.

Overall, the bug bounty reward, R, is an instrument for the firm to calibrate its own

effort and the strategic hacker’s effort in identifying the vulnerability. Enhancing law enforcement

beyond αλ−2k would disturb this calibration of R and lead to less secure protection of the system

or produces no effect when it goes beyond λ(α− t
2 ).

4.7 Are Bug Bounty Programs Economical?

Both Microsoft and Oracle criticized bug bounty programs based on cost-benefit arguments. For

example, Oracle rejected bug bounty programs because of the belief that it is more economical to

identify vulnerabilities themselves than to rely on external experts.

Our analysis so far partly responds to this criticism by showing that a bug bounty program

can benefit a firm as long as cyber-attacks cost the firm more than what the hackers can gain from

directly attacking the system. For this attack diversion benefit, whether the in-house protection is

more cost-effective than the bug bounty program is irrelevant.

However, for the other type of benefit, viz. protection delegation, whether the in-house

protection is more economical is not trivial. So far, we have assumed that the firm and the strategic

hacker share exactly the same technology in identifying vulnerabilities. In this section, we relax

this assumption and analyze how cost difference affects the firm’s incentive to offer a bug bounty

program. Such cost difference can come from, e.g., different expertise or experience in cyber-attack

and protection.

Formally, by following the same analysis in the previous sections, we can derive the equi-

librium strategies and payoffs for the firm and the strategic hacker when m 6= k.
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With No bug bounty program

p∗ =
(αλ− df)(2m− tλ)

4mk + (αλ− df)(1− t)λ
, (39)

1− q∗ =
2k(2m− tλ)

4mk + (αλ− df)(1− t)λ
, (40)

Π∗
attack =

4k2m(2m− tλ)2

[4mk + (αλ− df)(1− t)λ]2
−m, (41)

U∗
attack =

k(αλ− df)2(2m− tλ)2

[4mk + (αλ− df)(1− t)λ]2
. (42)

With a bug bounty program

p∗ =
R∗(2m− tλ)

4mk +R∗2 − tλR∗ , (43)

1− q∗ =
2k(2m− tλ)

4mk +R∗2 − tλR∗ , (44)

Π∗
bounty =

4k2m(2m− tλ)2

(4mk +R∗2 − tλR∗)2
−m, (45)

U∗
bounty =

kR∗2(2m− tλ)2

(4mk +R∗2 − tλR∗)2
. (46)

The company’s net gain from the bug bounty program is

∆Π = Πbounty −Πattack = 4m(2m− tλ)2

[
1

(4m+ R∗2−tλR∗

k )2
− 1

(4m+ (αλ−df)(1−t)λ
k )2

]
. (47)

By Observation 1, R∗ = max{λt2 , αλ − df}. Hence, when α < df
λ + 1, 4m + R2−tλR

k < 4m +

(αλ−df)(1−t)λ
k , meaning ∆Π > 0. This is consistent with our earlier conclusion that whenever it is

not too expensive to attract the strategic hacker, it is beneficial for the company to offer a bug

bounty program. Meanwhile, the gain from the bug bounty program can be different depending

on the cost coefficient of the strategic hacker, k. So, we need to analyze how k affects ∆Π.

Differentiating ∆Π with respect to k,

∂∆Π

∂k
=

8m(2m− tλ)

k2

[
R∗2 − tλR∗

(4m+ R∗2−tλR∗

k )3
− (αλ− df)(1− t)λ

(4m+ (αλ−df)(1−t)λ
k )3

]
.

By proposition 1, there are two scenarios:

Scenario 1: t ≥ 2
(
α− df

λ

)
. We have R∗2 − tλR∗ = − (tλ)2

4 , and so ∂∆Π
∂k < 0. This

means that the firm’s gain from the bug bounty program is decreasing in k. When the exogenous

threat due to naive hackers, t, is high, the firm always prefers smaller k, meaning more capable

participants in the bug bounty program is good to the firm.
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Scenario 2: t < 2
(
α− df

λ

)
. We have R∗2 − tλR∗ = (αλ − df)(αλ − df − tλ). Let

k∗ = (αλ−df)(1−t)λ
4m

[
αλ−df−tλ

(1−t)λ

] 1
3

[
1 +

(
αλ−df−tλ

(1−t)λ

) 1
3

]
, then it is easy to show that

k ≤ k∗ ⇒ ∂∆Π

∂k
> 0,

and

k > k∗ ⇒ ∂∆Π

∂k
< 0.

This implies that the firm prefers a specific type of strategic hacker with cost k∗. Having more

skilled participants than k∗ actually decreases the firm’s payoff. In particular, the negative rela-

tionship between k and m in k∗ suggests that the firm prefers a complementary strategic hacker.

When it has a cost advantage, i.e., m is small, it prefers a less capable participant, i.e., a participant

with a large k, and vice versa.

When the firm has a cost advantage against the strategic hacker, the bug bounty program

mainly helps it divert attacks away from the strategic hacker. The firm wants to spend less in

the bug bounty program, and so it prefers less capable strategic hacker as it can then pay a lower

expected bounty reward. By contrast, when the cost for the firm to identify the vulnerability is

high, its main incentive is to delegate the protection to the strategic hacker. Hence, it prefers

a more capable strategic hacker who can help it beat naive hackers in finding the vulnerability.

When the exogenous threat due to naive hackers is salient, i.e., when t ≥ 2
(
α− df

λ

)
, the protection

delegation incentive dominates the attack diversion incentive. Therefore, a more capable strategic

hacker is better for the firm. Our next proposition follows.

Proposition 6 The firm prefers a more capable strategic hacker when t ≥ 2
(
α− df

λ

)
. It prefers

a complementary strategic hacker (i.e., a high cost firm prefers a low cost strategic hacker, and a

low cost firm prefers a high cost strategic hacker) when t < 2α− 2df
λ .

Proposition 6 suggests that the firm is less motivated to offer a bug bounty program when:

(1) the external threat, t, is large but the external capability to identify vulnerabilities is weak,

or (2) the external threat, t, is not large, but the external capability is not complementary to the

internal capability. In both scenarios, the benefit of a bug bounty program may not be lucrative

enough to motivate the firm to offer it.

Our analysis provides a sharp contrast between a bug bounty program and conventional

crowd sourcing contests. In the crowd sourcing literature or, more generally, the literature related

to contest theories (see, e.g., Terwiesch and Xu 2008, Fullerton and McAfee 1999, Konrad 2007),

a contest organizer prefers more capable contributors and they would devise mechanisms to select
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more capable participants to join the contests. In the case of a bug bounty program, although

more capable participants (strategic hackers) can help the firm protect its system better, it may

cost the firm more in diverting the attacks from the participants themselves.

4.8 Security Protection

We next analyze how a bug bounty program affects the overall security of the system. We use

S to denote the probability that the system is eventually exploited (Probability of exploited).

Then, 1−S represents the overall protection level of the system (Probability of protected). In the

remaining part, we focus on analyzing S, then the conclusion about 1-S is straightforward.

With no bug bounty program, the system is exploited if either the strategic hacker or naive

hackers find the vulnerability before the firm. Hence, Sattack = [1− (1− t)(1−pattack)](1−qattack).

Rewriting it, we have

Sattack = t(1− pattack)(1− qattack) + pattack(1− qattack) (48)

The first term measures the probability of vulnerability exploitation by naive hackers. The second

term measures the probability of vulnerability exploitation by the strategic hacker.

With a bug bounty program, the system will be exploited only by naive hackers. Hence,

Sbounty = t(1− pbounty)(1− qbounty) (49)

Comparing (48) and (49), it is straightforward to see that the bug bounty program changes the

protection of the system in the following three ways:

1. Removing pattack(1− qattack), i.e., the bug bounty program diverts the strategic hacker away

from launching an attack. This effect raises the overall protection of the system.

2. By (8), (15), and Proposition 1, pbounty > pattack, so the t(1 − p) factor is smaller in (49).

Conditional on the firm’s in-house protection, the competition between the strategic hacker

and naive hackers is increased, which reduces the threat from naive hackers. This effect also

raises the overall protection of the system.

3. By (9), (16), and Proposition 1, qbounty < qattack, which causes t(1 − p)(1 − q) to increase.

Hence, the bug bounty program causes the firm to cut back its in-house protection effort.

This effect decreases the overall protection of the system.

Although counter-intuitive, the system could become less secure with the bug bounty
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programs provided that the third effect dominates the first two effects. Formally, we compare

Sbounty and Sattack. With no bug bounty program,

Sattack = [1− (1− t)(1− pattack)](1− qattack)

= [1− (1− t)(1− (αλ− df)(2k − tλ)

4k2 + (αλ− df)(1− t)λ
)]

2k(2k − tλ)

4k2 + (αλ− df)(1− t)λ
.

(50)

With a Bug Bounty Program,

Sbounty = t(1− pbounty)(1− qbounty)

= t(1− (2k − tλ)R

4k2 +R(R− tλ)
)

2k(2k − tλ)

4k2 +R(R− tλ)

=


t(1− (2k−tλ)(αλ−df)

4k2+(αλ−df)(αλ−df−tλ) ) 2k(2k−tλ)
4k2+(αλ−df)(αλ−df−tλ) , df < αλ− λt

2

t(1− (2k−tλ)λt2

4k2− (λt)2

4

) 2k(2k−tλ)

4k2− (λt)2

4

, df ≥ αλ− λt
2 .

(51)

The relative magnitude of Sattack and Sbounty depends on the parameters, meaning the

bounty program need not provide better protection. Suppose that k = 100, λ = 500, t = 0.2,

α = 0.5. We have tλ = 100 and αλ = 250. From (50) and (51):

Sattack = [1− 0.8 ∗ (1− 100(250− df)

40000 + 400 ∗ (250− df)
)]

200 ∗ 100

40000 + 400 ∗ (250− df)
(52)

and

Sbounty = 0.2 ∗ (1− 100 ∗R
40000 +R(R− 100)

)
200 ∗ 100

40000 +R(R− 100)

=


0.2 ∗ (1− 100∗(250−df)

40000+(250−df)(150−df) ) 200∗100
40000+(250−df)(150−df) , df < 200

0.2 ∗ (1− 100∗50
40000−2500 ) 200∗100

40000−2500 , df > 200

(53)

Figure 6 plots the relative magnitudes of Sattack, Sbounty and Sbounty − Sattack along

different value of df .

In this numerical example, the bug bounty program leads to better overall protection only

when df is extreme, i.e., when it is near 0 or αλ. When law enforcement is moderate, having a

bug bounty program is actually not good in terms of system protection!

The intuition is as follows. The difference between λ and R = αλ−df is the smallest when

df is close to 0. By (9) and (16), q∗bounty will be closest to q∗attack, meaning we will have the least

reduction in in-house protection. The first two security-enhancing effects characterized above due

to the introduction of the bug bounty program will dominate the third security-decreasing effect,
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Figure 6: Sattack, Sbounty, Sbounty − Sattack with df

leading to better overall protection.

As df increases, qbounty gradually moves away from qattack. Hence, the negative impact due

to the reduction in in-house protection becomes more prominent until it dominates the first two

security-enhancing effects characterized above. The bug bounty program then becomes undesirable

from a system protection point of view.

When df becomes sufficiently large, in particular, when df ≥ λ(α − t
2 ), Proposition 5

suggests that pbounty and qbounty are no longer affected by law enforcement. Hence, the overall

protection with a bug bounty program, 1 − Sbounty, becomes constant. By contrast, without

a bug bounty program, increasing df will continue to decrease qattack which tends to worsen the

protection. When this reduction in protection is large enough, the overall security level will become

lower than that with a bug bounty program.

Observation 2 A bug bounty program need not provide better protection.
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5 Conclusion

Despite its popularity, the merit of bug bounty programs is controversial, with many open questions

ranging from how to design and operate bug bounty programs to whether they can fulfill the

fundamental mission of security improvement. This study sheds light on these important issues.

We develop a security game framework to analyze the trade-offs in offering a bug bounty program.

We find that the bug bounty program is beneficial to a firm as long as it is not too costly for the firm

to entice the strategic hacker to participate in the bounty program. With a bug bounty program,

the firm enjoys two benefits: attack diversion and protection delegation. To get the best out of the

bug bounty program, the firm should calibrate the bounty reward and in-house protection with

reference to the severity of exogenous threat, reflecting the balance of two incentives, viz. bounty-

payment squeezing and protection free-riding. Surprisingly, a firm should always retain in-house

protection even though it is not more efficient in security protection, and bug bounty programs do

not guarantee better security protection.

This study has important managerial implications. We show that the bug bounty program

is not a a one-size-fits-all solution. Firms do need to evaluate their own security environment, the

value and vulnerability of their systems, and in-house protection strategies to make better use of

bug bounty programs. More importantly, our analysis clarifies some fundamental controversies

about bug bounty programs, concerning its relationship with in-house protection and whether it

actually brings economic and security benefits when the firms are variously competent/incompetent

in security protection. We hope these clarifications can help firms make better decisions when

considering bug bounty programs as a component of their comprehensive security strategies.

This work also provides some useful insight to law enforcement and public policies. As

shown in our analysis, law enforcement interacts with private protection in a nuanced manner when

a bug bounty program is introduced. We show that too much enforcement can reduce both in-

house protection and the effectiveness of the bug bounty program (e.g., by reducing the probability

that participants in the bug bounty program can identify the vulnerability), leading to even less

secure system. As the bug bounty program is increasingly popular, the government can make use

of this analysis in guiding its extent of intervention.

In terms of research, this study provides novel insights on security protection. Previous

studies on security investment mostly focus on “sticks”, i.e., how we could punish or deter hackers

by lowering their expected pay from launching an attack (e.g., by strengthening in-house protection

or punishment terms). Contrary to this literature, a bug bounty program acts more like a “carrot”

and provides incentives to encourage hackers to hack ethnically. As demonstrated in our analysis,
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combining the “carrot” and “stick” is often superior to having the “stick” alone. It is promising

for future research to focus more on “carrots” when deliberating about information security.
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