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Change is clearly accelerating in the Arctic, and 

it has global implications for us all. We all have 

a stake in this future, but none more than the 

young people who are coming of age, living in 

the midst of this change. 

“
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While this report was being prepared, heat records continued 
being shattered around the world. Last summer, new maximum 
temperatures were recorded in Norway, Canada, Japan and 
California. Fires raged in many countries and the haze from 
forest fires obscured the view of the melting glaciers of the 
magnificent Stikine mountains in British Columbia.

The Arctic Council’s Snow, Water, Ice and Permafrost in the Arctic 
report succinctly summarizes the situation: “the Arctic’s climate 
is shifting to a new state.” The 2017 report says this shift could 
see the Arctic Ocean largely free of summer sea ice only two 
decades from now. 

Change is clearly accelerating in the Arctic, and it has global 
implications for us all. We all have a stake in this future, but none 
more than the young people who are coming of age, living in 
the midst of this change. 

The homes of the Inuit of the Alaskan island community of 
Shishmaref are being washed into the sea. As part of a photo 
project called Portraits of Resilience, young people from the 
village documented their struggle.

The Arctic in a new state

FOREWORD

“Did you ever lose your home?” wrote Renee Kuzuguk, whose 
family had to move its house from one coast of Shishmaref to 
the other. On the other side of the world, her words are echoed 
by Siobhan Turner, a student from Fiji who worries that her 
community will eventually have to move to the mainland, 
threatening their way of life and culture.

These two stories from young people thousands of kilometres 
apart show that the devastating impact of a changing Arctic is 
being felt across the world.

The Arctic people have a saying: “what happens in the Arctic does 
not stay in the Arctic.” To create awareness about the critical role the 
Arctic plays in sustaining all life on this planet, UN Environment and 
GRID-Arendal have produced a series of maps and graphics that 
illustrate the global consequences of change in this region. By 
undertaking a visual depiction of the changing Arctic, we hope 
to alert policymakers to the effects of human activity.

We have the science, we know the facts. It is time to make the 
right decisions for a sustainable future of the Arctic and the 
world as a whole.

Peter Harris
Managing Director
GRID-Arendal

Joyce Msuya
Acting Executive Director
UN Environment



Global Linkages8

In many people’s imaginations, the Arctic is an isolated region, 
disconnected from global concerns. Images of polar bears, vast 
expanses of ice and frozen tundra come to mind more easily 
than urban centres and villages where people use the Internet 
to connect with the rest of the world. From outside, the Arctic 
is seen as distant and out of mind, a vast homogeneous region. 
But if you look at it from a different perspective, you will see it is 
very much connected to the rest of the world.

The Arctic is home to just over 4 million people. Around 10 per 
cent of the population are indigenous, comprising dozens of 
different cultures and languages (Larsen and Fondahl, 2015). 
About 70 per cent of the Arctic population lives in the Russian 
Federation (Glomsrød et al., 2017). Except for Greenland 
and northern Canada, Indigenous Peoples are a minority. 
Nevertheless, they have survived and thrived everywhere in 
the Arctic for millennia. Throughout the region, people live 
in scattered communities of different sizes, from Murmansk 
in Russia, with a population of over 300,000, to villages like 
Paulatuk in the western Canadian Arctic, with just under  
300 people.

Like all regional economies, the Arctic economy serves two 
different markets: diamonds, iron, gold, zinc, oil and natural 
gas, fish and timber are produced for the international market, 
while the local economy is largely based on the public sector, 
which provides jobs and services to local residents (Larsen 
and Fondahl, 2015). In some areas, the local economy includes 
traditional activities such as fishing, hunting, herding and 
gathering, which provide local consumption and support 
vital cultural traditions of Arctic peoples (IPCC 2014; Larsen 
and Fondahl, 2015). The strength of the connections between 
the international and local economies varies across the north 
(Larsen and Fondahl, 2015).

The diversity of activities also means people in the Arctic are 
experiencing the socioeconomic effects of rapid change 
differently. This means the responses to the challenges facing 
the region outlined in this report need to be tailored to 
particular circumstances: in the Arctic, one size definitely does 
not fit all. The third Economy of the North report (Glomsrød et 
al., 2017) found major differences in the socioeconomic status 
of people living in the Arctic: inequality is highest in the Russian 
Arctic, high in North America and lower in the Nordic countries. 

Compared to 2006, the proportion of women and young people 
in North America is falling, while it is rising in Russia. In the 
Nordic Arctic, there have been both increases and declines in 
the proportion of women, with a fall in young people (Glomsrød 
et al., 2017). Still, many Arctic residents are relatively young and 
looking for work. This search means that they often have to 
leave the region where they grew up. Supporting the livelihoods 
of those who remain in the north and creating conditions for 
sustainable development is a long-standing challenge. The 
trade-off between supplying global markets and building 
sustainable societies in the Arctic is similar to many developing 
regions around the world.

Nearly 15 years ago, the Arctic Council published the Arctic 
Climate Impact Assessment (ACIA, 2004). The report raised 
the alarm about the dramatic effects of climate change on 
the region’s ecosystems and those who depend on them. It 
also highlighted the implications of a changing Arctic for the 
global climate system. The ACIA drew attention to a part of the 
world that for many had always seemed remote and with little 
bearing on the lives of the billions of people elsewhere. Since 
then, however, an enormous amount of research has confirmed 
the key findings of the ACIA, namely that climate change would 
cause changes in vegetation and animal ranges, as well as 

The Arctic: Not deserted,
quite connected
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coastal erosion and rising sea levels. Consequently, it would 
impact the lives and cultures of Arctic peoples throughout  
the region.

The Fairbanks Declaration, signed at the Arctic Council’s 2017 
Ministerial Meeting, recognized “that activities taking place 
outside the Arctic region, including activities occurring in Arctic 
States, are the main contributors to climate change effects and 
pollution in the Arctic” (Arctic Council, 2017). The Declaration 
also recognized climate change as the most serious threat to 
Arctic biodiversity.

While greenhouse gas (GHG) emissions and pollution from 
global activities mainly originate outside the region, they 
are causing wide-ranging changes and impacts on the Arctic 
environment. These changes will, in turn, affect the health of 
the planet as a whole. This means that people outside the Arctic 
share a common stake with people living in the Arctic.

The Arctic Council has taken the lead in communicating 
the effects of environmental change in the region and its 
implications for the rest of the planet. Using new graphics, this 
report builds on the Council’s work to sharpen the focus on a 

region at the forefront of environmental change. In doing so, 
it highlights a common global challenge and the need for 
solutions. Much of the data behind this report comes from the 
Arctic Council and the numerous assessments prepared by 
its working groups on climate, pollution, biodiversity, health, 
shipping and other matters.1

Produced by hundreds of authors, the sixth Global Environment 
Outlook (GEO-6) is the latest in a series of UN Environment 
flagship assessments examining the state of the environment, 
assessing the effectiveness of policy responses and looking 
at possible pathways to achieve internationally agreed 
environmental goals. Using many of the same sources, its main 
messages about the Arctic and the rapid changes under way, 
highlight the links between the Arctic and the rest of the world 
explored in this report.

Finally, meeting the challenges faced by the Arctic is part of 
a global effort to achieve the goals of the 2030 Agenda for 
Sustainable Development, adopted by the United Nations 
in 2015. The pursuit of these common goals is yet another 
example of the inextricable links between the Arctic and the 
rest of the world.

1. Arctic Contaminants Action Programme (ACAP), Arctic Monitoring and 
Assessment Programme (AMAP), Conservation of Arctic Flora and Fauna (CAFF), 
Emergency Prevention, Preparedness and Response (EPPR), Protection of Arctic 
Marine Environment (PAME), Sustainable Development Working Group (SDWG).
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Climate change

Global warming from anthropogenic emissions of carbon 
dioxide (CO2) and other GHGs continues. While the effects 
of a warming climate on terrestrial and marine ecosystems, 
health and livelihoods are extensive, they are less obvious for 
now, especially to those not directly and immediately affected. 
Yet, every year, there are more noticeable signs of a changing 
climate, such as the increased number of intense hurricanes or 
the heat waves and wildfires in the northern hemisphere in 2018 
(Samenow, 2018; Schiermeier, 2018). Such extreme weather is 
probably the main immediate consequence of climate change 
on societies worldwide. Nevertheless, the effects of change in 
the Arctic have long been felt by people living in the region.
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The Intergovernmental Panel on Climate Change (IPCC) 
uses four Representative Concentration Pathways (RCPs), 
each associated with the expected path or direction in 
the change in greenhouse gas concentrations based on a 
number of socioeconomic and other variables. RCP2.6 is the 
strictest mitigation scenario, followed by two intermediate 
scenarios, RCP4.5 and RCP6.0, and one very high GHG 
emission scenario, RCP8.5 (IPCC, 2014).

Representative Concentration Pathways



13Global Linkages

“Arctic Amplification” is a phenomenon that causes higher 
temperatures near the poles compared to the planetary 
average because of a combination of feedback processes. 
For example, when sea ice melts in the summer, it opens 
up dark areas of water that absorb more heat from the 
sun, which in turn melts more ice. This “feedback loop” 
also includes the effects of melting snow and thawing 
permafrost. Arctic Amplification is most pronounced in 
winter and strongest in areas with large losses of sea ice 
during the summer (Dai et al., 2019).

Arctic Amplification
Some recent Arctic winters (2016 and 2018) showed extreme 
warm temperature anomalies as well as record lows in the 
winter sea ice extent (2015 to 2018) (NSIDC, 2019; Overland 
et al., in press). Indeed, under a medium- or high-emission 
scenario, projected air temperature changes for the Arctic will 
follow a winter warming trend more than double the rate for 
the northern hemisphere (AMAP, 2017a; IPCC, 2018). 

To meet the Paris Agreement target of keeping global average 
temperature increase well below 2°C and particularly to pursue 
efforts to limit it to 1.5°C above pre-industrial levels, countries 
need to dramatically step up their commitments to reduce 
GHG emissions (IPCC, 2018; UNEP, 2018). Continuing global 
emissions at rates of a medium-emission scenario (RCP4.5) 
projects global warming of 2.4 ± 0.5°C above pre-industrial 
levels by 2100 (Collins et al., 2013 (AR5)). At this rate of emissions, 
winter temperatures over the Arctic Ocean would increase 
3 to 5°C by mid-century and 5 to 9°C by late century (relative 
to 1986–2005 levels) (AMAP, 2017a). Due to past, present and 
near-future greenhouse gas emissions and heat stored in the 
ocean, Arctic winter temperatures will follow a similar pathway 
under all emission scenarios until mid-century; only afterwards, 
projections start to substantially diverge (AMAP, 2017a).
 
Increasing temperatures mean the Arctic will be a very different 
place in decades to come. This will not only have regional and 
local implications but will affect ocean circulation, sea levels 
and climate and weather patterns worldwide, with profound 
consequences for ecosystems and human populations. The 
AMAP (2017a) report emphasizes the urgency of adopting 
adaptation and mitigation actions. These must run in parallel, 
including and respecting indigenous knowledge and local 
knowledge, together with socioeconomic drivers.

The need for stronger and more urgent efforts to build resilience 
and limit climate-related hazards and natural disasters have 
resulted in the adoption of the Paris Agreement in 2015 and a 
Sustainable Development Goal (SDG 13) exclusively focused on 
climate change.

While climate mitigation and adaptation are daunting tasks, 
successful action will have benefits for people in the Arctic and 
the rest of the world. As many GHGs are also air pollutants that 
adversely affect human health and ecosystems, the positive 
impact of lowering emissions will be twofold: first directly on 
health and second on climate change.

As this publication was being prepared, the Intergovernmental 
Panel on Climate Change (IPCC) issued its special report on 
the implications of global warming of 1.5°C (IPCC, 2018). The 
picture it paints is compelling and its main message – that the 
world has very little time in which to act – is urgent.

GREENLAND
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Ice, snow and permafrost – the elements that form the 
cryosphere – are highly sensitive to heat. Alterations to the 
cryosphere caused by anthropogenic climate change will 
therefore alter the Arctic’s physical, chemical and biological 
terrestrial and marine systems, with complex consequences 
inside and outside the region (AMAP, 2017a).

Based on satellite monitoring from 1979 to the present, Arctic 
sea ice area has declined by around 40 per cent (Parkinson and 
DiGirolamo, 2016). There is a clear link between CO2 emissions 
and the extent of summer sea ice. Climate models predict that 
at the current rate of rising atmospheric CO2 concentration, the 
Arctic will be ice-free in summer by as early as the 2030s (AMAP, 
2017a), although there is considerable uncertainty between 
model estimates (Jahn et al., 2016). Given the energy already 
released into the environment in the form of carbon, the IPCC 
estimates we will pass the threshold of a 1.5°C increase in 12 
years (IPCC, 2018). This temperature is considered a “guardrail” 

Cryosphere: The melting continues

beyond which the effects of climate change will become 
increasingly severe and difficult to adapt to.

The snow season is becoming shorter and permafrost is 
thawing. Between 1982 and 2011, the Eurasian Arctic region 
had 12.6 fewer snow-covered days per year while Arctic 
North America had 6.2 fewer snow-covered days (Bokhorst 
et al., 2016). These changes affect snow properties and run-
off, with implications for the ecosystems and people who 
inhabit and use these areas (Bokhorst et al., 2016). Some of the 
coldest permafrost of the Arctic and High Arctic has warmed 
by more than 0.5°C since 2007–2009 (AMAP, 2017a). Warmer 
permafrost grounds such as in Scandinavia have shown 
smaller temperature increases. These regional differences 
are partly linked to differences in air temperature (AMAP, 
2017a). Thawing permafrost leads to unstable mountain 
slopes, coastal erosion and threatens human settlements and 
infrastructure (Hovelsrud, et al., 2011).

Climate change

Coastal  zones most vulnerable
to rising sea levels and floods Warm shallow current Cold saline deep current

Low
Countries

Coastal

Nile
Delta

Tonga
Fiji

TuvaluKiribati

Marshall

Banjul

Abidjan Niger Delta

 Po Delta

South Coast

Islands

Islands

Islands

Delta Mekong Delta
Thailand

Coastal

Coastal

Indus
outlets

Tianjin Shanghai

Guangzhou

Yingkou

Florida

Mississippi
Delta Northeast

coast

Deep water
formationDeep water

formation

UPWELLING PROCESS
Deep water returns 

to surface

UPWELLING PROCESS
Deep water returns 

to surface

WARM SURFACE
CURRENT

COLD SALINE
DEEP CURRENT

RECIRCULATED
DEEP WATER

Vera Cruz
Tabasco

Puntarenas

Coastal

Coastal

River mouth 
region

ATLANTIC
OCEAN

ARCTIC
OCEAN

PACIFIC
OCEAN

INDIAN
OCEAN

PACIFIC
OCEAN

Deep water formation

Sea level rise and ocean currents



15Global Linkages

Climate change

The melting cryosphere
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Further warming may also surpass tipping points for the 
stability of the Greenland ice sheet (AMAP, 2017a). The melting 
of ice on Greenland, Antarctica and other glaciers and ice caps 
each account for one-third of the land-based contribution to 
global sea level rise (Bamber et al., 2018). This will affect coastal 
communities and low-lying islands and ecosystems throughout 
the world (Noël et al., 2017), causing coastal flooding, erosion, 
damage to buildings and infrastructure, changes in ecosystems 
and seawater contamination of sources of drinking water.

Less Arctic sea ice means a prolonged period of open water 
that may in turn result in the expansion of economic activities, 
such as fisheries, oil and gas exploration and mining, in addition 
to more regular use of polar shipping routes. Furthermore, 
the freshening – and warming – of the Arctic Ocean from 
melting glaciers, sea ice and increased river flows affects ocean 

circulation by decreasing the formation of cold, dense, deep 
water, which may in turn weaken the Gulf Stream in the Atlantic 
Ocean, with further implications for global weather systems.

Climate induced changes to habitats and wildlife are increasing 
food insecurity for many Arctic peoples. Other effects include 
worsening travel conditions due to thawing of tundra and less 
time to use ice roads on frozen rivers in spring and autumn 
due to the lack of thick ice. This limits access to hunting and 
reindeer herding areas and affects the transportation of food 
from southern regions to northern communities. In addition 
to the threats they pose to food sources, declines in some 
species will also have cultural impacts. Within the Arctic, the 
integrity of ecosystems and the sustainability of communities 
are being challenged, affecting people’s lives and livelihoods 
(AMAP, 2018).

Climate change
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Thawing permafrost is an important part of the changing 
cryosphere which scientists have been documenting – and 
many communities have been living with – for years. Permafrost 
is ground that remains frozen for two or more years and occurs in 
high latitudes and altitudes, as well as under Arctic continental 
shelves. It occupies approximately 22 per cent of the Earth’s 
surface (NSIDC, 2018). Across the world, these frozen soils hold 
an estimated 1,500 billion tons of carbon – double the amount 
of carbon currently in the atmosphere (Schuur et al., 2008) – and 
half the world’s soil carbon (AMAP, 2017a).

This carbon reservoir is stable as long as it stays frozen. However, 
as the climate changes and temperatures increase, these soils 
start to release their stored carbon. While the amount of GHG 
emissions attributed to thawing permafrost has been relatively 
low in recent decades, increased thawing is expected to make 
a significant contribution to CO2 and methane emissions. More 
GHGs entering the atmosphere will lead to further warming, 
which in turn will lead to even more thawing, in a process known 
as “positive feedback”. Results could include more frequent 
forest and tundra fires and terrestrial and aquatic habitat loss. 
New evidence suggests that permafrost is thawing much faster 
than previously thought, with consequences not just for Arctic 
peoples and ecosystems, but for the planet as a whole because 
of feedback loops. The local effects of thawing permafrost in the 
Arctic range from cracked walls and uneven roads to collapsing 
houses and vanishing heritage (Hollesen et al., 2018). One study 

Permafrost thaw: A sleeping giant awakes

estimates that thawing permafrost will pose a threat to almost 
4 million people and 70 per cent of current Arctic infrastructure 
by 2050 (Hjort et al., 2018).

The current area of permafrost in the northern hemisphere is 
approximately 15 million km2. This is projected to decrease to 
12 million km2 by 2040, followed by a rapid decrease to 5 to 8 
million km2 by 2080 (AMAP, 2017a). Studies show that near-
surface permafrost continues to warm and the active layer (the 
top layer of soil that thaws in the summer and freezes again in the 
fall) is deepening in most areas where permafrost is monitored 
(AMAP, 2017a). This change allows microbes to consume buried 
organic matter and release CO2 and methane. The release of large 
quantities of this highly potent GHG, is particularly concerning. 
However, while this can accelerate climate change, the magnitude 
and timing of these emissions and their subsequent impact is still 
largely unknown (AMAP, 2015a; Schuur et al., 2015).

Studies show that when permafrost thaws below thermokarst 
lakes (lakes formed in the depressions left by thawing 
permafrost) the results may be even more severe than the 
thawing of near-surface permafrost. The water at the surface 
speeds up the thawing process of the old carbon below and 
the gases rise quickly through the lake into the atmosphere, 
effectively “flash thawing” the permafrost below (Anthony et al., 
2018; Bartels, 2018). This deeper, abrupt thawing has yet to be 
included in current climate change models.

Climate change
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The thawing trend appears irreversible. While compliance with the 
existing Paris Agreement commitments would stabilize permafrost 
losses, the extent would still be 45 per cent below current values 

(AMAP, 2017a). Under a high emissions scenario, stable permafrost 
will likely only remain in the Canadian Arctic Archipelago, the 
Russian Arctic coast and the east Siberian uplands (AMAP, 2017a).

Climate change
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Short-Lived Climate Pollutants (SLCPs), also known as Short-
Lived Climate Forcers (SLCFs), are gases and particles that 
contribute to atmospheric warming and global climate change. 
In addition to their warming effect, many SLCPs also pose a threat 
to human health and ecosystems around the globe in the form 
of air pollution. SLCPs are mostly produced outside the Arctic but 
are transported to the region through the atmosphere. Despite 
gaps in knowledge, current research and models indicate with 
high confidence that methane, tropospheric ozone and black 
carbon all play a significant role in Arctic climate change. Their 
influence is twofold: first, direct warming in the Arctic from local 
emissions and the airborne transport of SLCPs to the Arctic; 
and, second, an overall increase in global temperatures, which 
indirectly contributes to warming in the Arctic (AMAP, 2015c).

Short-lived climate pollutants: It’s not just about CO2

While CO2 can remain in the atmosphere for centuries, SLCPs 
are classed as short-lived because they last from a few days 
to a decade. Methane persists for around nine years, is about 
30 times more potent as a GHG than CO2 and its effect on 
increased temperatures in the Arctic region is twice the global 
average (AMAP, 2015a). Methane is also a key component in the 
formation of tropospheric ozone, which is not emitted directly 
but formed through a reaction involving precursor gases and 
sunlight. Tropospheric ozone is likely to have contributed to 
direct warming in the Arctic (AMAP, 2015b). Black carbon from 
the burning of fossil and biogenic fuels only remains airborne 
for short periods, which means emission sources close to the 
Arctic have the greatest potential impact. When deposited on 
snow and ice black carbon can lower the albedo, the amount of 
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energy reflected back into space, and increase the absorption of 
sunlight, leading to accelerated melting. This in turn uncovers 
darker land and water surfaces that are more heat absorbent 
and thus contributes to a cycle of continued melting.

In 2017, the Arctic Council approved the shared goal of 
reducing black carbon emissions by 25 to 33 per cent from the 
2013 levels of member countries by 2025. The Council’s SCLP 
task force identified transport, domestic heating and burning 
from agriculture, forestry and wildfires as the main sources 
of black carbon in the region (Arctic Council, 2011). Another 
example of regional action is the Arctic Council’s Arctic 
Contaminants Action Programme (ACAP) and its Black Carbon 
Case Studies Platform, developed “to showcase mitigation 
projects or policies relevant to the Arctic.” The Platform is a 
repository of case studies produced by ACAP project partners 

showing how existing technologies can reduce black carbon 
emissions (ACAP, 2014).

The short lifetime of SLCPs provides an opportunity for rapid 
mitigation benefits that can slow the rate of warming through the 
implementation of instant measures. However, Arctic states are 
only responsible for 20 per cent of total anthropogenic emissions 
of methane and 10 per cent of total anthropogenic emissions of 
black carbon (AMAP, 2015b) and a significant proportion of Arctic 
warming can be attributed to SLCP emissions from outside the 
Arctic. This highlights the urgent need for global action to reduce 
SLCPs to compliment regional efforts to reduce emissions. One 
example is the Climate and Clean Air Coalition (CCAC), a voluntary 
partnership of more than 120 state and non-state partners 
working to raise awareness and reduce emissions across multiple 
sectors (UN Environment and CCAC, 2014).

Climate change
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The world’s oceans are becoming more acidic (or to be precise, less 
alkaline) because of CO2 emissions from human activity. The more 
CO2 is emitted into the atmosphere, the more the oceans absorb 
and the more “acidic” they become, i.e. the pH value of seawater 
is declining. The increase in ocean CO2 has caused average ocean 
surface acidity to increase by 30 per cent since the beginning of 
the industrial revolution (AMAP, 2013; Doney et al., 2009). Lower 
pH levels can affect life in the ocean: for example, sea creatures 
like corals, molluscs, sea urchins and plankton build their shells 
and skeletons from aragonite, a carbonate mineral. This mineral 
becomes less available when pH levels of seawater fall, meaning 
these creatures need more energy to build their shells (Comeau 
et al., 2009; O’Donnell et al., 2008; Sato-Okoshi et al., 2010).

Ocean acidification: It’s all about CO2

There are two main reasons why the Arctic marine environment 
and its ecosystems are particularly vulnerable to ocean 
acidification: firstly, cold water can hold more dissolved CO2 than 
warm water; secondly, fresh water is less resistant to changes 
in acidity than saltwater (known as “buffering capacity”). The 
increased fresh water input from rivers and melting ice is thus 
making the Arctic Ocean more susceptible. Therefore, ocean 
acidification is advancing primarily in polar areas. 

The reduction of seasonal sea ice cover is also causing larger 
areas of the ocean surface to be exposed to and absorb CO2 
from the atmosphere for longer periods (AMAP, 2013). More 
recently, the influence of other factors, such as the inflow of 
more acidic waters from the North Pacific and the thaw of 
terrestrial and underwater permafrost has been highlighted 
(Anderson et al., 2017; Bellerby, 2017; Semiletov et al., 2016). 
When permafrost thaws, it contributes substantially to the 
organic matter load of surface fresh water delivered to the 
ocean, which in turn contributes to acidification through 
decomposition. The release of methane by thawing subsea 
permafrost also contributes substantially to acidification 
(Bellerby, 2017; Biastoch et al., 2011).

The complex set of processes in Arctic waters means that 
acidification and the carbonate saturation state is highly 
seasonal and geographical. The East Siberian Sea and shelf have 
been identified as areas of particular concern, where extremely 
low levels of aragonite, known as “aragonite undersaturation”, 
have been observed (Semiletov et al., 2016).

Future projections suggest continuing changes in ocean 
chemistry over the coming decades. By the late twenty-
first century (2066–2085) all Arctic surface waters, with the 
exception of the Norwegian Sea and the Barents Sea, are 
projected to reach aragonite undersaturation, largely due 
to increased fresh water input from melting sea ice and the 
expected increase in precipitation and freshwater run-off 
(Steiner et al., 2014).

However, while global climate change is driving Arctic Ocean 
acidification, the impact is not limited to the Arctic. The 
connections between the Arctic Ocean and the North Atlantic 
lead to the spread of the corrosive impacts of aragonite-
undersaturated water from the Arctic into neighbouring regions 
(Anderson et al., 2017).

Research on the Arctic and elsewhere indicates that ocean 
acidification has the potential to drive changes in the Arctic 
marine environment from the organism to the ecosystem level, 
including direct impacts on individual species and groups and 
indirect effects through trophic interactions (AMAP, 2013). 
Despite the varying responses of organisms, with some positively 
influenced and others more adversely affected, current research 
suggests that future ocean acidification is likely to drive changes 
in Arctic organisms and ecosystems on a scale that will pose 
risks to fisheries and other ecosystem services in the region, 
affecting the associated human societies (AMAP, 2018a).

Climate change
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Climate change
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Despite a growing sense of urgency and increasing scientific 
interest, public awareness of ocean acidification is generally low 
(Mossler et al., 2017). The risk that ocean acidification will affect 

marine ecosystems is ranked with high confidence in the IPCC Fifth 
Assessment Report (IPCC, 2014). However, it is not recognized by 
the Paris Agreement on climate change (United Nations, 2015a).
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Pollution takes many forms, including chemical substances, 
sewage, wastewater and run-off, litter and different types of 
energy (light, heat and noise). UN Environment (2017) identifies 
seven main sources of pollution: food production and harvest, 
energy production, industry, manufacturing, the service sector, 
transport and improper management of waste.

While the biggest impact of pollution on people and 
environments is often near their source, other pollutants are 
transported over long distances by air, rivers and ocean currents. 
The geographical characteristics and the cold climate of the 
Arctic mean that the region functions as a sink for contaminants 
from around the globe and that many pollutants remain in 
the Arctic for long periods (AMAP, 2009). These pollutants are 
present in the air, water, snow, ice, soil and living organisms. 
Some can even accumulate throughout the food chain, posing 
a serious threat to the health of humans and animals.

The issue of pollution is complex. The harmful effects of many 
pollutants and their breakdown products and the impacts 
of multiple stressors on local communities and human and 
environmental health are widely recognized (AMAP, 2015d; 

AMAP, 2017b; AMAP, 2018b). Climate change may also affect 
the release of certain pollutants: more frequent forest fires, 
for example, will increase air pollution. In addition, climate 
change may modify the current routes by which pollution 
is transported to the Arctic, which could alter the degree of 
human exposure to contaminants (AMAP, 2015d). 

Pollution is not a new phenomenon and a number of international 
conventions (for example, the Stockholm Convention on Persistent 
Organic Pollutants, the Minamata Convention on Mercury, and the 
Montreal Protocol on Substances that Deplete the Ozone Layer) 
and national laws have been negotiated and established to address 
the chemicals known to be most harmful to the environment. This 
includes the ongoing repair of the ozone layer and the phasing out 
of numerous banned pesticides and chemicals (UN Environment, 
2017). This effort is strengthened by a number of the SDGs: target 
3.9 aims to substantially reduce the adverse impact on human 
health from hazardous chemicals and air, water and soil pollution; 
target 6.3 aims to improve water quality by reducing pollution and 
the release of hazardous chemicals and materials; and target 14.1 
works towards significantly reducing and preventing all kinds of 
marine pollution (United Nations, 2015b).

Pollution prevention
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Persistent Organic Pollutants (POPs) include numerous pesticides 
and industrial chemicals and their by-products that are known to 
adversely affect ecosystems, animals and humans. While there has 
been little direct use of POPs in the Arctic, they are transported 
to the region from southern latitudes by wind, rivers and ocean 
currents (AMAP 2018b). The Arctic functions as a sink for these 
contaminants and the problems associated with POPs have 
been on the agenda for a long time and are well documented 
by the extensive work of AMAP. Global efforts to regulate these 
substances include the Stockholm Convention and the UNECE 
Convention on Long-range Transboundary Air Pollution.

Contaminant levels and concentrations in the Arctic have been 
monitored in humans and animals for decades. This monitoring 
is important to understand past and current trends. Research 
shows that human exposure to POPs and mercury is falling in 
many parts of the Arctic. However, it remains high in certain 
communities, where levels of mercury and other chemicals 
exceed blood guidance levels (AMAP, 2015d).

The decline in the concentrations of some contaminants 
highlights the importance of international cooperation and 
control measures to limit the emission of harmful chemicals 
like POPs. As new chemical contaminants find their way to the 
Arctic, the need to strengthen existing international mechanisms 
becomes even more pressing. However, while international 
instruments like the Stockholm Convention continue to add to 
the list of restricted chemicals, an assessment by AMAP highlights 
the limitations of their scope. The large number of chemicals in 

Contaminants: Bad chemistry

common use can limit their effectiveness to address all emerging 
Arctic pollutants: there are around 150,000 chemical substances 
in use around the world and fewer than 1,000 are regularly 
monitored (AMAP, 2016). Limited knowledge and monitoring 
means there is often insufficient information on the toxicity and 
effects chemicals can have on ecosystems and humans.

One class of contaminants with similarities to POPs in terms 
of potential harmful effects, persistence and mobility, are 
microplastics and nanoplastics. These small particles made 
up of organic polymers are increasingly present in the world’s 
oceans, either broken down from larger plastics or deliberately 
manufactured. Microplastics can also act as a source of chemical 
contaminants, either by leaching additives as they age or by 
absorbing and transporting chemicals in marine waters (AMAP, 
2017b; Royer et al., 2018).

The problem of emerging chemicals is highly complex and 
we have yet to fully understand the magnitude of the issue 
or how unmonitored chemicals may affect humans, animals 
and ecosystems. As we phase out different types of chemical 
contaminant, we must ensure replacements do not create new 
problems. Chemicals recently detected in the Arctic may have 
been present in the environment for years or decades and there is 
a substantial time lag between detecting harmful chemicals and 
the establishment of international agreements to ban or restrict 
their use. Moreover, the persistence of many pollutants mean 
they continue to affect nature and humans long after the period 
for which restrictions are applied.

Pollution prevention
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Pollution prevention

Plastic makes up approximately three quarters of the litter in the 
world’s oceans (Bergmann et al., 2017a) and is one of the most 
widespread transboundary pollution problems affecting marine 
and coastal environments throughout the world. The presence of 
plastic debris in the marine environment has adverse socioeconomic 
impacts, both in terms of its presence (for example, debris on beaches 
or entangled in boat propellers and fishing gear) and its interaction 
with organisms (for example, ingestion and entanglement). The 
resulting impacts range from the individual to the ecosystem 
level (UN Environment and GRID-Arendal, 2016) and the Arctic 
is not immune to this threat (Hallanger and Gabrielsen, 2018).

It is widely accepted that activities on land are responsible for 
the largest share of plastic in the oceans (UN Environment and 
GRID-Arendal, 2016). Plastic debris travels from population centres 
into the ocean via rivers, wind or direct dumping. It is estimated 
that more than 150 million tons of plastics have accumulated 
in the world’s oceans, between 4.6 and 12.7 million tons added 
every year due to mismanaged plastic waste from coastal regions 
(Jambeck et al., 2015; UN Environment and GRID-Arendal, 2016).

Poor waste management in Arctic coastal communities has been 
highlighted as a potential local source of plastic debris (Strand, 
2018). However, Arctic sea floor and shoreline studies have found 
that in the Arctic, in contrast to more urbanized regions, plastic 
originating in the sea is more prevalent that plastic originating on 
land. This is shown by the predominance of plastic debris associated 

Plastic pollution: Going with the flow

with fishing activities (Bergmann et al., 2017b; Buhl-Mortensen 
and Buhl-Mortensen, 2017; Grøsvik et al., 2018; Nashoug, 2017).

Like other parts of the world’s oceans, marine plastic pollution 
in the Arctic is not only the result of activities within the Arctic 
seas or its coastal areas. It is also linked to debris arriving from 
other parts of the globe and the large Arctic watershed. The 
Arctic Ocean receives enormous amounts of surface fresh water 
from rivers and run-off, which strongly influences the chemistry 
and dynamics of surface ocean water (Holmes et al., 2011). 
Furthermore, 79 per cent of water in the Arctic Ocean flows from 
the Atlantic and 19 per cent from the Pacific (Murray et al., 1998). 
The potential transfer of plastic pollution from relatively more 
populated parts of the Arctic watershed, such as the headwater 
areas of the basins of the Ob and Yenisei rivers in Russia, has yet to 
be investigated. However, the inflow of polluted water from the 
Atlantic, connected to the global thermohaline circulation2 (Cózar 
et al., 2017; van Sebille et al., 2012) and melting sea ice drifting 
from the inner central and coastal Arctic (Bergmann et al., 2017d; 
Fang et al., 2018) have been proposed as transfer mechanisms 
that contribute to higher concentrations of plastic in surface 
waters and sediments in the Fram Strait and the Barents and 
Chukchi seas. The higher level of plastic pollution in the Barents 
Sea is also reflected by the comparatively high incidence of 
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plastic ingestion by seabirds like northern fulmars compared to 
other Arctic locations at a similar latitude (Provencher at al., 2017).

The Arctic Council has recognized the potential effects of 
marine plastic litter on the Arctic environment and is assessing 

the current state of knowledge and how to monitor trends and 
impacts on ecosystems. An action plan for the protection of the 
Arctic Ocean from marine litter and microplastics is also being 
discussed and CAFF is undertaking work to address the impacts 
of plastics on seabirds.
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Although mercury (commonly known as quicksilver) is a naturally 
occurring element, human activity has resulted in increased 
concentrations in aquatic and land ecosystems around the 
globe (Driscoll et al., 2013; Streets et al., 2018). Anthropogenic 
mercury emissions come from a variety of sources, the largest 
of which are artisanal and small-scale gold mining and coal 
combustion (AMAP, 2011). While improved regulation in 
Europe has produced a small decline in atmospheric mercury 
in high northern latitudes, emissions in the tropics, especially 
Southeast Asia, are still increasing (Horowitz et al., 2014). Even 
though the Arctic only makes up a small proportion of global 
anthropogenic mercury, gaseous mercury from other parts of 
the globe is transported over large distances, meaning some of 
it eventually ends up in the Arctic. Mercury contamination in 
the Arctic remains a concern due to its documented uptake and 
accumulation in Arctic biota, especially marine mammals and 
terrestrial predators (AMAP, 2011).

Tracking the movement of mercury into the Arctic environment 
is complex, due to the different forms of mercury and the many 
possible transformations and mechanisms that concentrate 
or remobilize this element. Sunlight in spring, for example, 

Mercury rising

causes atmospheric mercury to react with oxygen, causing it to 
solidify. This solidified mercury is then deposited on land, sea ice 
and water surfaces. A large portion is quickly re-emitted to the 
atmosphere as gaseous mercury (Steffen et al., 2008). However, 
studies show that this process is largely confined to coastal areas 
and the quantity of mercury deposited is not sufficient to explain 
the increasing concentrations in Arctic ecosystems. Recent 
monitoring indicates that tundra vegetation could be the missing 
part of the equation, since a significant amount of circulating 
anthropogenic gaseous mercury finds its way into tundra soil via 
uptake from the atmosphere by tundra vegetation (Obrist et al., 
2017). The amount of mercury found in tundra soil also makes 
it one of the most important global sinks for gaseous mercury 
circulating in the atmosphere. Research has found that northern 
hemisphere permafrost soils contain an enormous amount of 
stored mercury, nearly twice as much as all other soils, the ocean, 
and the atmosphere combined (Schuster et al., 2018).

The impact of climate change on mercury distribution and 
availability is likely to be complex. In the Arctic, thawing 
permafrost will increase soil erosion, potentially releasing old 
stores of mercury and leading to an increase in the amount 
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entering the ocean from drainage and river flows. Tundra soils 
are a major global mercury sink and the erosion of these soils 
appears to be the dominant source of mercury entering the 
Arctic Ocean (Obrist et al., 2018).

Sea ice generally acts as a buffer to exchange between the 
air and the sea and mercury concentrations are higher under 
ice than in open waters. The loss of sea ice is likely to result in 
lower concentrations of mercury in some surface waters as 
more mercury is released into the atmosphere (DiMento et al., 
2019). Increased atmospheric and ocean temperatures may 
also result in higher microbial activity and increased formation 
of methylmercury, an organic and highly poisonous type of 
mercury formed when bacteria react with mercury in water, 

soil and plants (Angot et al., 2016). However, understanding the 
impact of climate change on an element as mobile as mercury 
is very difficult. There are many uncertainties and extensive 
research is required to understand the implications of predicted 
climatic changes on the environmental distribution of mercury.

The Minamata Convention, together with national climate 
policies to reduce the use of coal, is expected to cut global 
mercury emissions (Maas and Grennfelt, 2016). However, any 
gains may be offset by the release of legacy mercury stored in 
tundra soils and permafrost. If this mercury is released and enters 
the food web, it could result in dangerous contamination levels 
in the main sources of protein for humans, with devastating 
effects on food security in the Arctic.

Pollution prevention
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While the previous three sections have focused on sources 
of pollution in the Arctic, this section considers its health 
implications for people, wildlife and ecosystems. The spread 
of chemical contaminants and heavy metals from around the 
world, in addition to local emissions, are increasingly linked to a 
number of diseases and adverse effects on health (AMAP, 2015d). 
Despite falling concentrations of some contaminants, new and 
possibly harmful chemicals are emerging in large numbers and 
contaminants in Arctic apex predators are increasing (AMAP, 
2017b, 2018b).

Heavy metals, such as mercury, together with POPs, accumulate 
and magnify throughout the food chain, resulting in much 
higher concentrations in organisms higher up the food chain 
than in primary producers or low order consumers. Fish, for 
example, are a major source of contaminants for humans 
and marine mammals. Studies on upper trophic levels in the 
Arctic have shown that POPs and heavy metals may affect the 
hormone and immune systems, reproduction and behaviour of 
wildlife (AMAP, 2018b). For example, polychlorinated biphenyls 

Pollution and health: The invisible threat

(PCBs) and mercury are associated with weakened immune 
function in marine mammals, especially in polar bears in the 
central Canadian High Arctic and Alaska and pilot whales in the 
Faroe Islands (AMAP, 2018b). Several POPs have been shown to 
affect hormone production in Arctic mammals and seabirds. 
One example is thyroid hormone balance, which adversely 
affects reproductive capacity, growth, the immune system and 
the body’s ability to regulate temperature. However, there is 
still a lack of direct evidence of this cause–effect relationship, 
despite behavioural and morphological effects of POPs being 
consistent with hormone disruption (AMAP, 2018b).

Small and remote Arctic communities are often highly dependent 
on local sources of food and sensitive to environmental changes 
that can have adverse consequences for traditional ways of life 
and food security. Limiting mercury intake is especially important 
for pregnant women and small children as the element is 
a powerful neurotoxin and can affect foetal and childhood 
development (AMAP, 2015d; Ha et al., 2017; Karagas et al., 2012). 
However, providing dietary advice can be complex due to 

Pollution prevention
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Note: No circle reflects lack of data, not that the pollutant level is zero.
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varying contamination levels in different foods and areas of the 
Arctic. Consumption of most traditional foods is recommended 
as a healthy choice, prioritizing foods lower down the food chain 
with lower concentrations of contaminants. (AMAP, 2015d). High 
concentrations of chemicals and heavy metals in humans have 
also been linked to cancer, cardiovascular diseases and negative 
effects on the nervous system. Although the general trend in 
the Arctic has been a decline in human exposure to most metals 
and POPs, Inuit communities in Canada and Greenland are 
exceptions (AMAP, 2015d).

The emergence of new chemical contaminants is a continuous 
threat in the Arctic and around the globe. Our knowledge 

of their effects on humans and wildlife remains limited, 
highlighting the need for research on the cumulative effects 
of exposure to different stressors and the interrelated effects 
of different chemicals (AMAP, 2018b). Our understanding of 
contaminants must also take climate change into account, as 
it is projected to change transportation routes, flows in the 
food web and the level of ecosystem exposure (AMAP, 2015d, 
2018b). Hormone-disrupting chemicals and climate change 
are regarded as one of the most serious anthropogenic 
threats to biodiversity and ecosystems in the Arctic AMAP 
(2018b) and international cooperation and treaties to 
regulate the use of harmful chemicals play an important role 
in addressing this threat.
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The Arctic is home to over 21,000 species of plants, fungi, 
mammals, birds, fish, insects and invertebrates. The region is 
home to one third of the world’s shorebirds and two thirds of the 
global goose population which breed in the Arctic and sub-Arctic 
(CAFF, 2013). Many Arctic species are migratory and spend some 
of the year in other parts of the world. Others live only in the Arctic 
and thrive in its harsh climate. The ecosystems and biodiversity 
of the Arctic have also long provided the basis for livelihoods 
and cultural diversity (CAFF, 2013; CBD, 2011). Changes in Arctic 
biodiversity will first be felt by the people who directly rely on 
them but will also have effects far beyond the polar region.

The global loss of biodiversity is one of the major human-
induced environmental changes of the modern era. Its drivers 
include overexploitation, pollution, climate change, habitat 
loss and degradation, invasive species and diseases (Dirzo 
et al., 2014; WWF, 2016). Between 1970 and 2012, the WWF 
Living Planet Index reported an overall decline of 58 per cent 
in the world’s species, with the greatest losses in freshwater 
environments (WWF, 2016). While there are some variations 
across regions and species groups, habitat degradation and loss 
is reported as the greatest threat to biodiversity globally.

The story in the Arctic region is different. The Arctic Species Trend 
Index (ASTI) showed a general increase of 16 per cent in the 
abundance of Arctic species between 1970 and 2004 (McRae et 
al., 2010). ASTI tracks trends in over 300 Arctic vertebrate species, 
encompassing 35 per cent of all known vertebrates found in the 
region. While nonetheless present, pressures from habitat loss, 
pollution, exploitation and invasive species are relatively lower in 
the Arctic, largely due to a lack of intensive human encroachment 
compared to other parts of the world (CAFF, 2013). However, 
this trend is not consistent across the Arctic and varies across 
biomes, regions and groups of species. For example, while 

Low Arctic species populations – largely dominated by marine 
species – have increased by an average of 46 per cent, the figure 
for High Arctic species has decreased by an average of 26 per 
cent.3 The reported increase for some species can be partly 
attributed to the recovery of some vertebrate populations that 
had historically suffered from overharvesting, such as marine 
mammals. Non-migrant bird species have also increased, 
although the population sizes of migratory birds have fallen 
slightly (McRae et al., 2010). Migratory birds may be affected 
by conditions at any stage along their migration routes and 
these often occur outside of the Arctic, which shows how these 
species closely link the Arctic to the rest of the world.

Until recently, the negative impacts of anthropogenic stressors 
on Arctic biodiversity were relatively small. However, this is 
now changing as the Arctic region faces changes and new 
challenges, including increased human activity and pressure 
on resources. The most serious threat to Arctic biodiversity 
is now climate change: the increasing pressures and rates 
of change, including ocean acidification and the spread of 
invasive species, are expected to alter the Arctic ecosystem 
and displace species that are adapted to the extreme Arctic 
environments (McRae et al., 2010; CAFF, 2013).

The Arctic Council is working to mitigate threats to biodiversity, 
including through its Conservation of Arctic Flora and 
Fauna (CAFF) working group, which cooperates closely with 
international conventions including the World Heritage 
Convention, the Convention on Biological Diversity, the 
Ramsar Convention on Wetlands and the Convention on the 
Conservation of Migratory Species of Wild Animals (Convention 
on Migratory Species). The CAFF Circumpolar Biodiversity 
Monitoring Programme (CBMP) also coordinates circumpolar 
efforts to monitor and report on the state of Arctic biodiversity.

Biodiversity conservation

3. “Sub-Arctic”, “Low Arctic” and “High Arctic” are terms used to describe the 
Arctic according to the amount of woody vegetation present.
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Many Arctic species have adapted to the challenges of extreme 
weather conditions and scarce resources by migrating between the 
north and south or between marine and freshwater habitats, either 
annually or at different stages in the lives of individuals (Binder et 
al., 2011; Gauthreaux, 1982). As a result, several species living in 
the Arctic are migratory, including reindeer, marine mammals 
(including cetaceans and pinnipeds) many freshwater and 
diadromous fish (which spend parts of their lives in both fresh and 
saltwater environments) and numerous bird species. Inhabiting at 
least two different geographical areas, means migratory species 
can be affected by stressors both inside and outside the Arctic.

The fact that a large proportion of Arctic biodiversity is migratory 
means that changes in populations, distributions and migratory 
pathways can have a significant effect across entire Arctic 

Migratory species: Frequent travellers

ecosystems and the people who rely on them (CAFF, 2013). The 
challenges facing these species include overharvesting, habitat 
degradation and low population densities inside and outside 
the Arctic. Their populations and migratory patterns can also 
be affected by pollution, invasive species and the northern 
expansion of species from the south.

Subsistence hunting and fishing continue to be important for 
many communities in the Arctic (Council of Canadian Academies, 
2014; Nakhshina, 2016). This means changes in wildlife populations 
can pose a serious threat to the food security of Arctic peoples 
who depend on them (CAFF, 2013; Laidre et al., 2015; Troell et al., 
2017). Migratory species also provide opportunities for economic 
development through wildlife tourism, recreational hunting and 
fishing, which can all play an important role in local economies.

Biodiversity conservation
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Migratory species are an important ecological link between the 
Arctic and the rest of the world (CAFF, 2013; Deinet et al., 2015). In 
the tropics, the proportion of migratory bird species is often less 
than half of the total number of species, whereas in most areas 
of the Arctic over 80 per cent of bird species migrate (Somveille 
et al., 2013). Many migratory birds breeding in the Arctic face 
overharvesting and habitat degradation in their wintering areas 
south of the Arctic from the drainage of wetlands, urbanizing 
coastlines and riverbanks and the release of toxic chemicals 
into the environment. Of all Arctic migratory bird species, 
waterfowl and shorebirds suffer the most from habitat loss 
outside the Arctic (CAFF, 2013). Migratory fish are vulnerable 
to habitat alteration and overharvesting because they typically 
concentrate in particular locations and at predictable times of 
the year (CAFF, 2013). In addition to freshwater habitat changes, 
migratory fish travelling to the sea face similar pressures from 
commercial fishing as marine fish stocks. Fishing is likely to 
increase in the Arctic as the retreating sea ice makes marine 
areas more accessible (Zeller et al., 2011).

International coordination is key to successful conservation 
because migratory species face threats across their whole 
migratory range. The Convention on Migratory Species is the 
only global convention addressing the conservation of migratory 
species, their habitats and migration routes (CMS, 2018). In 
addition, the United Nations Agreement for the Implementation 
of the Provisions of the United Nations Convention on the Law of 
the Sea of 10 December 1982 relating to the Conservation and 
Management of Straddling Fish Stocks and Highly Migratory 
Fish Stocks entered into force in 2001 (United Nations, 2016).

Furthermore, CAFF has established the Arctic Migratory Birds 
Initiative (AMBI), which engages Arctic and non-Arctic states in 
efforts to conserve breeding, staging and overwintering areas 
of Arctic migratory bird species (Provencher et al., 2018). In 2017 
the five Arctic coastal states, together with Japan, China, South 
Korea and the European Union, also adopted an agreement to ban 
commercial fishing in the central Arctic Ocean for the next 16 years 
to protect the high seas area from unregulated fishing (IISD, 2017).

Biodiversity conservation
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For thousands of years, as humans have migrated over land 
and explored the oceans, they have helped to move species 
from one part of the world to another, both intentionally and 
unintentionally. These organisms introduced outside of their 
past or present distributional ranges by humans are invasive 
species. While the intentional relocation of some non-native 
species such as crops and livestock has led to the spread of 
agriculture, human population growth and economic benefits, 
many of these species can have unforeseen effects on the 
environment, economic activity and humans.

Around 480,000 invasive species are estimated to have been 
introduced around the world by humans (Pimentel et al., 
2001). Introduced species, such as the introduction of rats 
on islands where local species evolved without mammalian 
predators, often have severe effects on local biodiversity 
and can even cause extinctions, (Harper and Bunbury, 2015). 
However, not all introduced species may cause harm: 15 per 
cent of the more than 10,000 species introduced in Europe are 

Invasive species: Hitching a ride

currently known to have a negative ecological or economic 
impact (EEA, 2012).

Globally, invasive species are the second threat to biodiversity 
after habitat destruction (Bellard et al., 2016). Invasive species 
are introduced through unintentional transport of insects, 
algae and crustaceans as “stowaways” in airfreight, in shipping 
containers, on the hulls of ships and in ballast water. As trade 
volumes increase and countries become more and more 
connected, the likelihood of an increase in the number of 
invasive species rises (Seebens et al., 2017).

So far, the limited monitoring that has been conducted has 
found that the Arctic region has fewer recorded terrestrial and 
marine invasive species than areas further south (CAFF, 2013). 
Some of the best-known invasive species include the American 
mink (Mustela vison), which was introduced to Iceland and 
northern Scandinavia for fur farming, and the Pacific red king 
crab (Paralithodes camtschaticus), which was brought to the 
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Marine invasive pathways in the Arctic
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Barents Sea. While still considered invasive, harvesting red king 
crab has become a profitable industry for Norway and Russia 
(Lorentzen et al., 2018). Conversely, Arctic species have also 
been introduced in other parts of the world, for example the 
Atlantic salmon (Salmo salar), which has been introduced to 
Chile, Tasmania and the Pacific coast of the United States for 
commercial farming (Jones, 2004).

The ballast waters and hulls of commercial ships are the main 
means by which marine invasive species are transported and 
introduced to new coastal areas. One of the biggest concerns 
is the expected increase in shipping in and across the Arctic, 
since an ice-free Northern Sea Route offers major advantages 
for ships sailing between Europe and Asia compared to the 
Suez or Panama canals. Although the volume of trans-Arctic 
shipping is currently low, it is projected to rise over the coming 
decades (Melia et al., 2016; Smith and Stephenson, 2013). This 

development is significant because it will likely bring a wave of 
new marine species into the Arctic and northern hemisphere, 
creating new opportunities for their transfer between the 
Atlantic and Pacific Oceans (Miller and Ruiz, 2014).

By acting now, countries have a unique opportunity to limit 
the spread of invasive species. Recent measures, such as the 
International Convention for the Control and Management 
of Ships’ Ballast Water and Sediments and its enforcement 
in Arctic waters through the International Code for Ships 
Operating in Polar Waters are designed to help to prevent the 
spread of marine invasive species in the Arctic. Furthermore, the 
Protection of the Arctic Marine Environment (PAME) and CAFF 
working groups of the Arctic Council have developed the Arctic 
Invasive Alien Species Strategy and Action Plan setting out 
a circumpolar strategy based on the principles of prevention, 
early detection, rapid response, eradication and control.

Biodiversity conservation
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Global pandemics occur when a new disease suddenly appears 
against which humans have no immunity. They are often 
caused by a virus or other pathogens “jumping” from animals 
to humans. These transfers from animals to humans are called 
zoonoses and include infections or infectious diseases caused 
by viruses, bacteria, parasites, fungi and prions (proteins linked 
to several fatal neurodegenerative diseases). Zoonoses are 
transmitted through a variety of pathways, including through 
direct contact between animals and humans, biting insects, 
ingesting food and water contaminated with parasites and 
through the air. The Spanish flu of 1918, caused by the Influenza 
A virus found naturally in wild aquatic birds, claimed between 

Zoonoses: From animals to humans

30 and 50 million lives (Taubenberger and Morens, 2006) and is 
perhaps the best-known – and deadliest – example. The rabies 
virus and recent emerging diseases, such as the Ebola and Zika 
viruses, are other examples.

The greatest risk of emerging zoonotic diseases is thought to 
occur in tropical regions, where wildlife biodiversity and land-
use change is highest (Allen et al., 2017). However, given the 
high rate of warming in the Arctic, animal hosts or insect vectors 
may expand northward and survive, bringing them, together 
with their pathogens, into contact with human populations. 
A warmer climate could allow infected host species to 

Biodiversity conservation
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survive winters in larger numbers and expand their range. 
Hunting, gathering and certain forms of food preparation 
and preservation methods may increase the risk of zoonotic 
infections (Hueffer et al., 2013).

The frequency of contagious diseases in Arctic species has 
increased, for example, avian cholera outbreaks in marine birds in 
the northern Bering Sea and Arctic Archipelago, and mortalities 
in seals and walruses in the US Arctic (CAFF, 2017). Thawing 
permafrost on land also has the potential to release previously 
immobile spores of anthrax, as shown by the outbreak in Yamal in 
the Russian Arctic in 2016, which was widely covered in the media 
and resulted in the death of a 12-year-old boy, the hospitalization 
of around 100 people and the death of 2,300 reindeer (Goudarzi, 
2016). However, even if the risk of anthrax outbreaks is linked to a 
warming climate and the Arctic has the right conditions for them, 
outbreaks have been much more common further south and this 
situation is predicted to continue (Walsh et al., 2018).

Insects like mosquitoes and ticks have the potential to connect 
the Arctic and tropics (Evengård and Sauerborn, 2009) and 
there is already evidence of the northward spread of zoonotic 
diseases across Canada, Russia and Europe. For example, the 
number of reported cases of Lyme disease in Canada, which is 
transmitted by the black-legged tick, has been steadily rising 
in the last 10 years and has doubled between 2016 and 2017 
(Government of Canada, 2018). Climate warming is expected 
to support further expansion northwards, with the increase 
in the number of days over 0°C being the most important 
determinant for the establishment of ticks (Leighton et al., 
2012). Migratory birds also have the potential to transmit ticks 
over long distances.

Further research is needed to better understand the distribution 
and spread of climate-sensitive infectious diseases in Arctic 
ecosystems and societies to develop early warning systems and 
preventive measures.

Biodiversity conservation
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A shifting tree line, thawing permafrost and melting sea ice, 
coupled with rising temperatures and invasive species, are 
challenging and changing sensitive Arctic ecosystems and the 
people who depend on them. To address this new reality, Aichi 
Biodiversity Target 11 aims for at least 17 per cent of terrestrial 
and inland water and 10 per cent of coastal and marine areas 
to be under conservation, specifying the use of “effectively 
and equitably managed, ecologically representative and well-
connected systems of protected areas and other effective area-
based conservation measures, and integrated into the wider 
landscapes and seascapes” (CBD, 2011).

While this target has not yet been achieved internationally 
and the biological representativeness of protected areas 
remains low (UN Environment WCMC and IUCN, 2016), in the 
Arctic the target has been met and exceeded for terrestrial and 
inland water areas, with 2.8 million km² (20.2 per cent) under 
protection (CAFF and PAME, 2017). However, there remain gaps 
in representation and connectivity that need to be addressed.

The story is different for the Arctic marine environment. A 
significant number of the world’s ecologically or biologically 
significant marine areas (EBSAs) are in the Arctic (CBD, 2009). 
However, fewer than 1 per cent are in protected areas (CAFF 
and PAME, 2017). On its own, EBSA status offers no protection 

Protected areas: Filling the gaps

of any kind and while the number of marine protected areas has 
increased considerably in recent decades, only 4.7 per cent of the 
Arctic marine area (860,000 km²) is under some form of protection. 
The majority of these existing protected areas cover coastal and 
continental shelf areas, providing little or no protection of many 
habitats and deep-sea floor features of the Arctic Ocean (Harris et 
al., 2017). In light of concerns that retreating sea ice will cause the 
expansion of offshore industry into new areas, there is an urgent 
need to expand the current protected areas network to include 
these pristine environments. Adapting existing protected areas 
(both on land and at sea), including accommodating for shifts in 
species distributions as a result of climate change, will also play an 
important role in effectively protecting species and ecosystems 
in the coming decades.

Aichi target 11 also recognizes that safeguarding biodiversity 
needs the support of local populations. The Fourth Global 
Biodiversity Outlook (GBO-4) specified that further progress 
on this target could be made through the involvement of 
Indigenous Peoples and local communities in the “creation, 
control, governance and management of protected areas” (CBD, 
2014). The Edéhzhíe Protected Area in the Northwest Territories 
of Canada and the Laponia area in northern Sweden, are two 
examples of the co-management of resources and governance 
of protected areas in the Arctic.

Sacred natural sites are also being recognized for their 
importance in the conservation of both biological and cultural 
diversity and “as a tool for the preservation of fragile northern 
social-ecological systems” (Heinämäki and Herrmann, 2017). 
However, there is often little or no legal protection for such 
sites in the Arctic. Moreover, GBO-4 noted that greater progress 
towards meeting the Aichi targets requires “promoting initiatives 
that support traditional and local knowledge of biodiversity and 
promote customary sustainable use, including traditional health 
care initiatives, strengthening opportunities to learn and speak 
indigenous languages, research projects and data-collection 
using community-based methodologies, and involving local and 
indigenous communities in the creation, control, governance 
and management of protected areas” (CBD, 2014).

While traditional protected areas will continue to play a 
significant role in meeting current challenges, for example by 
providing carbon storage and essential habitat refugia, more 
effort is needed to address conservation beyond their borders. 
Both international cooperation and the involvement of Arctic 
peoples who are dependent upon these ecosystems and know 
them best will both be vital.

Biodiversity conservation
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The Arctic is facing multiple pressures and drivers of change 
from both inside and outside the region. These changes 
affect ecosystems, climate and human society in different and 
interconnected ways. The consequences have knock-on effects 
both at local, regional and global levels and the pace and extent 
of the changes mean that the Arctic and the rest of the world 
will be a very different place in the decades to come. Adapting 
to the changes presents a major challenge for people in the 
Arctic and beyond. Challenges can no longer be managed in 
isolation: a holistic, ecosystem-based approach that considers 
multiple drivers and cumulative pressures is needed.

The Arctic region has a significant impact on the global climate 
and there are strong feedback mechanisms between the Arctic 
and the rest of the world. Global emissions drive the melting 
of ice caps and glaciers, significantly contributing to rising 
sea levels, which will affect coastal and island communities 
throughout the world. Rising temperatures in the Arctic – twice 
the global average – thaw permafrost and melt snow and sea 
and land ice, which exacerbates the albedo effect. While climate 
change may create new economic opportunities, it is important 
that these are developed, managed and governed sustainably 
to ensure they do not cause more emissions and pollution or 
increase the risk of accidents that could damage ecosystems 
and people.

The geographical characteristics and cold climate of the Arctic 
make the region a sink for contaminants from around the globe 
and many pollutants remain there for long periods. While local 
sources of pollution exist, most pollutants come from lower 

latitudes. The good news is that international cooperation has 
been established. There are now a number of conventions, 
such as the Minamata Convention to reduce global mercury 
emissions, to address the chemicals known to be most harmful 
to the environment. However, there is no room for complacency: 
more than 150,000 chemical substances are in use around the 
world, fewer than 1,000 of which are regularly monitored. While 
there is still much we do not know, including the impacts of 
climate change and the role of plastic pollution in redistributing 
pollutants, we do know that POPs and heavy metals accumulate 
throughout the food chain and pose a serious threat to the 
health of both humans and wildlife.

The slightest change in temperature can have a substantial 
effect on ecosystems. This makes climate change the most 
serious threat to biodiversity in the Arctic. Moreover, it 
exacerbates all other threats, including overharvesting, habitat 
degradation, pollution, the spread of invasive species and 
disease. The graphics in this report explore some of the key 
Arctic–global linkages for biodiversity, focusing on the impact 
of rising global CO2 levels and ocean acidification in the Arctic 
on marine ecosystems and the impact of climate change and 
related socioeconomic changes (including increased shipping) 
on the likely spread of invasive species into the Arctic. Arctic 
migratory species are also linked to the rest of the world: habitat 
degradation and loss, beside overharvesting along migratory 
flyways and waterways outside the Arctic, have a direct impact 
on these species. The spread of climate-sensitive zoonotic 
diseases into the Arctic from the south is also closely linked to 
global climate change.

Conclusion and
key messages
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Climate change

•	 Many changes are already “locked-in” for the Arctic. In the 
years and decades to come, adaptation that integrates and 
respects local knowledge and Indigenous knowledge will be 
vital to help Arctic societies address the coming challenges.

•	 Global action is also needed to reduce CO2 emissions to avoid 
tipping points. These include the thawing of permafrost, which 
could release large amounts of carbon into the atmosphere and 
derail efforts to meet the long-term goal of the Paris Agreement 
on climate change. Other possible tipping points are related to 
increased fresh water input or ocean acidification, with direct 
impacts on ocean circulation and ecosystems.

•	 Longer-term efforts to transition to low-carbon economies, 
both in the Arctic and globally, must be complemented 
by instant measures to reduce SLCPs, including methane, 
tropospheric ozone and black carbon. Immediately controlling 
SLCPs across the world could cut the rate of warming in the 
Arctic by up to two-thirds by mid-century.

•	 Concerted efforts are also needed to ensure that governments 
around the world understand the very real implications of Arctic 
climate change for their own countries and act appropriately.

Pollution

•	 As new chemical contaminants find their way to the Arctic, the 
need to strengthen international mechanisms becomes even 
more pressing. This includes an improved global approval 
system for new chemicals and exploring alternative control 
actions for chemicals not covered by existing conventions.

•	 Many pollutants remain in the Arctic for long periods. Some 
accumulate and build-up in the food chain, posing a health 
risk to people, animals and ecosystems.

•	 Tackling pollution both in the Arctic and globally has clear 
benefits for human health.

•	 The Arctic acts as a sink for chemicals and heavy metals and 
emerging evidence shows that the Arctic Ocean, its coastline and 
sea floor also act as a sink for plastics from around the world as 
well as from Arctic sources. Concerted regional and global action, 
with the participation of Arctic countries and stakeholders, is 
needed to manage the problem of plastic pollution.

•	 Increased understanding of the global effects of environmental 
change in the Arctic and the ways these changes affect 
ecosystems and the people who depend on them creates 
an opportunity for the harmonization and rationalization of 
multi-contaminant monitoring programmes.

Key messages
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Biodiversity

•	 International coordination and action outside the Arctic, 
including through the Convention on Migratory Species, to 
limit or stop overharvesting and habitat degradation in critical 
staging or wintering grounds is crucial for the conservation of 
Arctic migratory species.

•	 Future ocean acidification will likely mean changes in Arctic 
organisms and ecosystems reach a scale that will affect human 
societies.

•	 Early warning and further research and understanding is 
needed to adequately prepare for and prevent the spread of 
new, climate-sensitive zoonotic diseases in the Arctic.

•	 The risk of new invasive species both on land and at sea is also 
likely to rise in the future. This will require coordinated national 
and international action, including the measures outlined in 
documents such as the Arctic Invasive Alien Species Strategy 
and Action Plan.

•	 Arctic marine conservation is not always well prepared for 
all environmental changes as protected areas do not always 
cover biodiversity and ecological hotspots.

•	 To adapt to the coming changes, Arctic protected areas and 
networks on land and at sea will need to be flexible and 
adaptable to remain effective at conserving biodiversity. 
An example of this is being able to accommodate changes 
in species and ecosystem ranges as a result of climate 
change. Indigenous Peoples and other local communities 
must be involved in the creation, control and governance of 
protected and conserved areas to ensure fair and sustainable 
management of ecosystems and resilient local livelihoods, as 
outlined in Aichi Biodiversity Target 11.

In the years and decades to come,

adaptation that integrates and

respects local knowledge and

Indigenous knowledge will be vital

to help Arctic societies address

the coming challenges.

“
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The Arctic region is changing. It is dealing with multiple pressures and drivers of change from 

both inside and outside the region that are affecting ecosystems, climate and human society. 

The consequences have knock-on effects at the local, regional and global levels. The pace  

and extent of change means that the Arctic and the rest of the world will be a very different 

place in the decades to come. Adapting to the changes is a major challenge for people in the 

Arctic and beyond.

Global Linkages: A graphic look at the changing Arctic examines three interlinked topics: 

climate change, pollution and biodiversity. It provides visual representations of some of 

the most prominent changes in the region and how they are linked to the rest of the world. 

The publication highlights why these challenges can no longer be managed in isolation. It 

also calls for a holistic, ecosystem-based approach to promote a sustainable future for the  

Arctic that will also benefit the rest of the world.


