
Edge-Map: Optimal Performance Driven Technology Mapping for

Iterative LUT Based FPGA Designs�

Honghua Yang and D. F. Wong

Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712

Abstract

We consider the problem of performance driven
lookup-table (LUT) based technology mapping for FP-
GAs using a general delay model. In the general delay
model, each interconnection edge has a weight repre-
senting the delay of the interconnection. This model is
particularly useful when combined with an iterative re-
technology mapping process where the actual delays of
the placed and routed circuit are fed-back to the tech-
nology mapping phase to improve the mapping based
on the more realistic delay estimation. Well known
technology mappers such as FlowMap and Chortle-d
only minimize the number of levels in the technology
mapped circuit and hence are not suitable for such
an iterative re-technology mapping process. Recently,
Mathur and Liu in [ML94] studied the performance
driven technology mapping problem using the general
delay model and presented an e�ective heuristic algo-
rithm for the problem. In this paper, we present an
e�cient technology mapping algorithm that achieves
provably optimal delay in the technology mapped cir-
cuit using the general delay model. Our algorithm is a
non-trivial generalization of FlowMap. A key problem
in our algorithm is to compute a K-feasible network
cut such that the circuit delay on every cut edge is
upper-bounded by a speci�c value. We implemented
our algorithm in a LUT based FPGA technology map-
ping package called Edge-Map, and tested Edge-Map
on a set of benchmark circuits.

1 Introduction

Technology mapping of a Boolean circuit for
lookup-table (LUT) based �eld programmable gate
array (FPGA) designs is to convert the circuit into
a functionally equivalent network comprised of LUTs.
The technology mapping phase of FPGA designs is
preceded by a technology independent logic optimiza-
tion phase, and followed by placement and routing
phases. Since the routing resources in FPGAs are
more limited and slower compared with traditional
ASIC technologies, technology mapping has profound
impact on the placement and routing phases and hence
chip performance. Minimizing circuit delay has been
a goal for many previous technology mapping algo-

�This work was partially supported by the Texas Advanced
Research Program under Grant No. 003658459, by an Intel
FoundationGraduate Fellowship, by a DAC Design Automation
Scholarship, and by a grant from AT&T Bell Laboratories.

Cb

Cv

a b c d e

f g h

i j k

u v

...

Cu

Cf cC

Cg

Ch

(a) (b)

Figure 1: (a) A part of a technology mapped circuit.
Each circled area represents a feasible cone. (b) The
placed and routed circuit. Cv denotes the LUT imple-
menting the cone rooted at v.

rithms. Previous performance driven technology map-
ping algorithms for LUT-based FPGAs have focused
on minimizing the number of levels in the solution
and minimizing the estimated circuit delay in the so-
lution. The algorithms for minimizing the number
of levels include Chortle-d [FRV91] which minimizes
circuit level increase at each bin packing step, and
FlowMap [CD92] which gives an optimal mapping so-
lution with the minimum number of levels. However,
the number of levels in a technology mapped circuit
does not accurately re
ect the delay in a placed and
routed FPGA chip, since the net delays between LUTs
are in general non-uniform in the �nal design. The
heuristic algorithms for minimizing the estimated cir-
cuit delay include MIS-pga-delay [MSBSV91] which
combines technology mapping with layout synthesis
and resynthesis to minimize circuit delay, and more
recently heuristic mapping algorithms for delay mini-
mization with feed-backs from placement and routing
[CTC+93] and Bias-Clus in [ML94]. FlowMap [CD92]
can be modi�ed to handle the delay model that allows
di�erent delays for di�erent nets, but it requires the
same delay for all interconnections in the same net.

A general delay model was proposed by Mathur and
Liu [ML94] that allows di�erent delays for di�erent
interconnections even if they belong to the same net.
This delay model re
ects the fact that the delays of
the interconnections in the same net may di�er signif-
icantly because of the positions of the logic blocks, the
limited routing resources in an FPGA chip, and the
substantial di�erences in delays among the available
routing resources. For example, in Figure 1 di�erent

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0150 $3.50

Init. Technology Mapping

Logic Optimization

Placement and Routing

Edge Delay Estimation

Re−Technology Mapping

Programming Unit

Init. Design Entry

Performance acceptable?
Yes

No

Figure 2: A typical CAD system for FPGAs with it-
erative re-technology mapping.

branches of the same net at the output of LUT Cc are
routed along di�erent paths with signi�cantly di�erent
delays. This model is particularly useful when com-
bined with an iterative re-technology mapping pro-
cess where the actual delays of the placed and routed
chip are fed-back to the technology mapping phase to
guide the re-technology mapping based on the more
realistic delay estimation. Figure 2 shows the steps
involved in a typical CAD system with iterative re-
technology mapping for implementing a circuit in an
FPGA. This kind of CAD systems requires a tech-
nology mapping algorithm which can consider inter-
connection delay information. Existing performance
driven technology mappers such as FlowMap assume
unit delay for all branches in a net and hence cannot
be used in the above iterative approach.

A heuristic technology mapping algorithm Bias-
Clus for minimizing circuit delay on this general delay
model was presented in [ML94]. Bias-Clus uses a bi-
ased depth �rst search to form \long" clusters along
the most critical paths, thus reducing delay on those
paths. Bias-Clus was implemented with an existing
placement and routing system, and the technology
mapping solutions produced by Bias-Clus were com-
pared with those produced by other algorithms. In
terms of the delay of the placed and routed circuit,
Bias-Clus outperforms FlowMap, showing that mini-
mizing the number of levels in the technology mapped
circuit does not ensure a low delay realization, and
that it is crucial to take into consideration some es-
timate of the actual delay incurred when a particular
edge is exposed in the technology mapping process.

In this paper, we present an e�cient technology
mapping algorithm that achieves provably optimal de-
lay in the technology mapped circuit using the gen-
eral delay model. Our algorithm is an improvement
over the previous heuristic approach in Bias-Clus for
the problem since Bias-Clus only reduces the delay on
the most critical paths and thus some previously non-
critical paths might become critical to o�set the gain
obtained on the most critical paths. Our algorithm is

di�erent from the previous technology mapping algo-
rithms for delay minimization in that we label circuit
delays on edges as well as on nodes. For example,
FlowMap assigns labels to nodes that represent level
numbers in the LUT network. Using the edge delay
labeling, we are able to solve the technology mapping
problem optimally on the more general delay model by
developing a new network
ow technique that �nds a
special network cut that avoids cutting through edges
with large circuit delays. Such special network cut
has the property that the circuit delays on all the cut
edges are upper-bounded by a speci�ed value.

The rest of the paper is organized as follows. In
Section 2, we formally de�ne our problem and the gen-
eral delay model that allows di�erent delays on di�er-
ent edges. Section 3 presents the optimal technology
mapping algorithm Edge-Map using the general delay
model. We show some experimental results in Sec-
tion 4, and conclude the paper in Section 5.

2 Problem Formulation

A combinational Boolean circuit is represented by
a directed acyclic graph (DAG) N = (V;E), where V
is the set of nodes representing gates and (PI) nodes,
and E is the set of directed edges representing inter-
connections between gates. A circuit is K-bounded if
the number of inputs to any node is no more than K.
The circuit in Figure 1 (a) is 3-bounded. In the rest of
the paper, we consider K-bounded circuits only1. A
K-feasible cone rooted at v, denoted by Cv is a sub-
graph of N consisting of v and some of its predecessors
such that any path connecting a node in Cv to v lies
entirely in Cv, and that the number of distinct input
nodes to Cv is no more than K.

We assume that each con�gurable logic block in an
FPGA is a K-input 1-output lookup-table (K-LUT),
where K usually ranges from 3 to 9. The technology
mapping problem for K-LUT based FPGA design is to
cover the circuit with K-feasible cones such that every
node in the circuit is contained in one (or more) of the
K-feasible cones, and that each input to a cone is an
output of another cone. In Figure 1 (a), each circled
area represents a feasible cone. A technology mapping
solution SN of the circuit N is a DAG where each
node represents a K-feasible cone (or equivalently K-
LUT) in N , and an edge (Cu; Cv) exists if u is an input
node to Cv in N . An edge of the original circuit N
is visible if it is also in the edge set of the technology
mapping solution SN . The thick edges in Figure 1 (a)
are the visible edges. Note that the covering cones in
a technology mapping solution can be overlapping in
order to minimize delay, which means the nodes in the
overlapped area are duplicated.

The delay of an FPGA circuit depends on two fac-
tors: the delay in the K-LUTs and the delay in the
interconnections (i.e., visible edges). Since the access
time of a K-LUT is a constant independent of the
function it implements, we can ignore the constant de-
lay of a K-LUT by adding the constant to the delays
of the visible edges and then consider edge delays only.

1If a given circuit is not K-bounded, there are a few al-
gorithms such as tech-decomp in [BRSV87] and DMIG in
[CCD+92] to transform it into a K-bounded circuit.

Note that this modi�cation will not change the delay
along any path in a technology mapping solution.

We assume that each edge e in N has an estimated
delay given by �(e). Given a technology mapping so-
lution SN of the circuit N , the circuit delay at a node
v in N with respect to the mapping solution SN , de-
noted by d(v), is the maximum total delay of the vis-
ible edges along any path from a PI node to v; the
circuit delay at an edge e = (u;w) in N with respect
to SN , denoted by d(e), is the maximum total delay
of the visible edges along any path from a PI node to
the ending node w of e. Hence for every node v and
every edge e = (u;w) in N , if Cv is a K-feasible cone
rooted at v in the mapping solution SN , then d(e) and
d(v) can be computed by the following two recurrence
equations. Initially, d(i) = 0 for every PI node i.
d(e) = d(u) + �(e), where u is the starting node of e. (1)
d(v) = maxfd(e) j where e is an input wire to Cvg. (2)

A critical path in N with respect to the technology
mapping solution SN is a path starting at a PI node
and ending at a PO node o such that d(o) is maximum
among all PO nodes. A technology mapping solution
is optimal, if the delay of a critical path is minimum
among all technology mapping solutions.

3 An Optimal Performance Driven

Technology Mapping Algorithm

From Equations (1) & (2), we can see that an opti-
mal k-feasible cone of a node can be constructed using
some of the optimal cones of its predecessors. This
overall strategy is similar to that used in FlowMap.
FlowMap assigns labels to nodes that represent level
numbers in the LUT network, collapses nodes with the
maximum labels, and then �nds a network cut to be a
level optimal cone for a node. However, our algorithm
is a non-trivial generalization of FlowMap. Our de-
lay optimal technology mapping algorithm is di�erent
from FlowMap in that in order to deal with the di�er-
ent edge delays on the edges outgoing from the same
node, we label delays on edges as well as on nodes,
and then repeatedly �nd a network cut for which the
circuit delay on every cut edge is bounded. We design
a novel node-splitting technique to handle the delay
bound on the cut edges.

Our algorithm consists of two phases: the labeling
phase and the generating phase. In the labeling phase,
we �rst compute a K-feasible cone for each node v

that would give v an optimal delay in the technology
mapping solution. We process the nodes according
to their topological ordering2, from the PI nodes to
the PO nodes. The generating phase is very simple.
We generate the K-LUTs computed in the labeling
phase in a bottom-up fashion, by �rst generating the
K-LUTs for the PO nodes, and then generating the
K-LUTs for the input nodes of the already generated
K-LUTs.
3.1 The Labeling Phase

When computing a K-feasible cone for a node v, it
su�ces to consider the sub-circuit Nv consisting of v

2A topological ordering of all nodes in a circuit N is a linear
ordering L of the nodes such that node i appears before node j
in L if and only if i is a predecessor of j in N .

N

v

(a) (b)

vN

v

s

X

X

a b c

d e

CvvN

Figure 3: (a) A 3-bounded circuit N and a sub-circuit
Nv. (b) Nv augmented with s. A cut (X; �X). �X
corresponds to a 3-feasible cone Cv.

and all its predecessors (see Figure 3 (a)), since the
delay at v, d(v), depends only on the delays and the
K-feasible cones of its predecessors, and for all prede-
cessors u of v (except v) the delays d(u) and the K-
feasible cones Cu have already been computed since
they all precede v in the topological ordering. For
each edge e in Nv, d(e) can be easily computed by
d(e) = d(u) + �(e), where u is the starting node of e.
Note that d(e) are not necessarily increasing along the
edges in a directed path in Nv (see Figure 4 (a)), if
�(e) varies signi�cantly on di�erent edges3. If a place-
ment algorithm chooses to place the PO nodes �rst
and works toward the PI nodes, then it is often the
case that �(e) on the edges closer to the PI nodes are
much larger than those on the edges closer to the PO
nodes.

We use network maximum
ow techniques to com-
pute an optimal K-feasible cone for v, and develop a
novel node-splitting technique to handle di�erent edge
delays and bounded edge delays when minimizing de-
lay for v. We augment the single-sink DAG Nv with a
super source s. We �rst introduce some terminologies
on a single-source s and single-sink v digraph Nv. A
cut (X; �X) of Nv is a partition of nodes in N such that
s 2 X and v 2 �X. An edge whose starting node (end-
ing node) is in X and ending node (starting node) is in
�X is called a forward edge (backward edge). The edge
cut e(X; �X) induced by the cut (X; �X) is the set of
forward edges of Nv. The node cut n(X; �X) induced
by the cut (X; �X) is the set of nodes of X that are the
starting nodes of the forward edges in e(X; �X). In Fig-
ure 3 (b), e(X; �X) = f(a; v); (a; d); (b; d); (e; v)g, and
n(X; �X) = fa; b; eg. The node cut size of (X; �X) is the
number of nodes in n(X; �X), denoted by jn(X; �X)j.
The edge cut size of (X; �X) is the number of forward
edges in e(X; �X), denoted by je(X; �X)j. A cut is a
min-node cut if it has the minimum node cut size
among all cuts. A cut is a min-edge cut if it has the
minimum edge cut size among all cuts.

3However, the d(e) values on the visible edges along any path
in a mapping solution is non-decreasing because of Equations
(1) & (2).

Note that given a cut (X; �X) of node cut size � K

inNv, �X corresponds to aK-feasible cone Cv, n(X; �X)
corresponds to the set of input nodes to Cv (see Fig-
ure 3 (b)), and the circuit delay at v is given by

d(v) = maxfd(e)je is an edge in e(X; �X)g:

This is because d(e) = d(u) + �(e) where u is
the starting node of the edge e, represents the accu-
mulated visible edge delays at e. In order to min-
imize d(v), we need to �nd a cut (X; �X) such that
jn(X; �X)j � K and that the maximum delay d(e) at
the cut edges e in e(X; �X) is minimized. We sort the
values of d(e) for all edges e in Nv (whether visible or
not) into non-decreasing order:

d1 � d2 � : : : � dk � dk+1 � : : : :

We want to �nd the smallest dk such that there is
a cut (X; �X) in Nv with node cut size jn(X; �X)j � K,
and that for any cut edge e 2 e(X; �X); d(e) � dk.
Once we �nd such dk and (X; �X), then Cv = �X and
d(v) = dk is the optimal delay for v.

Let us denote a cut (X; �X) such that 8e 2

e(X; �X); d(e) � d, by d-cut (see Figure 4 (a)). A
d-cut is a cut such that the circuit delays on the cut
edges are bounded by d. We call a d-cut (X; �X) with
node cut size � K a K-feasible d-cut. We �rst need
to solve a sub-problem:

Given d, �nd a K-feasible d-cut in Nv.

A d-cut is a min-node d-cut if it has the minimum
node cut size among all d-cuts inNv . The sub-problem
can be reformulated as follows:

Given d, is the node cut size of

a min-node d-cut in Nv � K?

3.2 Finding A Min-Node d-Cut

An augmenting path from u to v in a
ow network
is a simple path from u to v in the undirected graph
resulted from the network by ignoring edge directions
that can be used to push additional
ow from u to
v. The capacity of a cut (X; �X) is the sum of the
capacities on the forward edges in e(X; �X).

The max-
ow min-cut theorem [FF62] says that,
given a max-
ow f in a
ow network G, let X = fv :
there is still an augmenting path from s to v in Gg,
and let �X be the set of the rest of the nodes inG. Then
(X; �X) is a cut of minimum capacity (which is equal
to jf j), and f saturates all forward edges in e(X; �X).
If all cut edges have unit capacity, then the edge cut
e(X; �X) is also a min-edge cut. We develop a novel
node-splitting technique to reduce the minimum node
cut size constraint to the minimum edge cut size con-
straint, and to handle the bounded delay constraint d
on the cut edges.

We construct a
ow network N 0
v from Nv by node-

splitting as follows (see Figure 4 (a) & (b)):

1: For each node u in Nv except s and v, de�ne two
nodes u1 and u2 with a bridging edge (u1; u2) in N

0
v.

2: For each edge e = (u;w) with d(e) � d, de�ne an
edge (u2; w1) in N 0

v.
3: For each edge e = (u;w) with d(e) > d, de�ne an
edge (u1; w1) in N 0

v.

vN

v

s

2 4 3

3 3

4

5
8

9

ed

cba

X

X

s

2 4 3

3 3

5

v

X’

N’v

9

a1

a2

b1

b2

c1

c2

d1

d2

e1

e2

10

10

6

6

9

9

8

4

X’

5 5

(a) (b)

Figure 4: (a) The labels on the edges are d(e) val-
ues, and (X; �X) is a 5-cut. (b) N 0

v is obtained after
node-splitting with d = 5. The thick edges (i.e., bridg-
ing edges) have unit capacity. The other edges have
in�nite capacity.

4: For the exceptional cases involving the source s and
the sink v in 2 & 3, if u = s then u2 = s, if w = v

then w1 = v.
5: Assign unit capacity to all bridging edges and in�-
nite capacity to all other edges in N 0

v.

Given a cut (X; �X) in Nv, we de�ne its correspond-
ing cut in N

0
v to be a cut (X0

; �X0) such that �X0 con-
tains all nodes split from the nodes in �X (including
v) as well as the nodes u2 where u is in the node
cut n(X; �X), and X

0 contains the rest of the nodes in
N

0
v. In Figure 4, the cut (X0

; �X0) in (b) is the cor-
responding cut of the cut (X; �X) in (a). Given a cut
(X0

; �X0) in N
0
v, if all forward edges in e(X 0

; �X0) are
bridging edges, we can similarly de�ne its correspond-
ing cut in Nv. By this de�nition, an edge (b; d) in Nv

is a cut edge in e(X; �X) if and only if b1 2 X
0 and

d1 2 �X0. Note that a min-edge cut in N
0
v contains

bridging edges only, since by the max-
ow min-cut
theorem the minimum capacity of an edge cut equals
a maximum total
ow (with a �nite
ow value) in N 0

v,
and we assign unit capacity to bridging edges and in�-
nite capacity to others. Further, the min-edge cut size
equals the capacity of the min-edge cut.

Also note that existing node-splitting techniques
used in [CD92] and [YW94] do not distinguish edges
by their delays, and treat all edges the same as in
item 2 during node-splitting. Using the existing node-
splitting techniques, any edge (b; d) in Nv can be-
come a cut edge by cutting through the bridging edge
(b1; b2) in N

0
v, since removing (b1; b2) would separate

b1 from d1 (see Figure 4). Our new node-splitting
technique treats edges di�erently in items 2 & 3 ac-
cording to their delays, and by de�ning an edge (b1; e1)
in N 0

v for an edge (b; e) in Nv with delay > d, cutting
through the bridging edge (b1; b2) will not separate b1
and e1 and hence (b; e) will not be a cut edge in Nv.
We show in Lemma 3.1 that this technique e�ectively

prevents an edge with delay > d from becoming a cut
edge in a cut we �nd in Nv.

Lemma 3.1 (X; �X) is a d-cut in Nv i� its corre-

sponding cut (X0
; �X0) in N

0
v contains bridging edges

only in its edge cut. Further, jn(X; �X)j = je(X0
; �X0)j.

Our sub-problem can again be reformulated as fol-
lows:

Is the edge cut size of a min-edge cut in N 0

v � K?

This problem can be solved by a direct application
of the max-
ow min-cut theorem.

3.3 The Complete Algorithm

We now give the complete Edge-Map algorithmand
prove its optimality.
Algorithm Edge-Map
Input: A circuit N = (V;E), a delay function � : E ! <, and K.
Output: An (delay) optimal mapping solution S = (VS; ES).
begin

/* The labeling phase */
0. Assign 0 to d(u) for each PI node u;
1. Sort the nodes in V by topological order into a list VT ;
2. for each node v in VT in topological order
3. Construct Nv ;
4. Compute d(e) = d(u) + �(e) for each edge e = (u;w) in Nv ;
5. Sort the di�erent values of d(e) for all edges e in Nv :

d1 < d2 < � � � < dk < dk+1 < � � �;
6. k = 1; done = false;
7. while not done

8. Find a a min-node dk-cut (X; �X) in Nv ;
if jn(X; �X)j > K then k = k + 1;
else done = true;

/* The generating phase */
9. VS = �; L = the list of PO nodes in N ;
10.while L is not empty
11. Remove a node v from L;
12. VS = VS [fCvg; L = L[fall input nodes to Cvg;

We �rst present 2 lemmas that are necessary in
proving Theorem 3.1.
Lemma 3.2 For any node v in Nv, d(v) � the opti-
mal delay dopt(v) of v in an optimal K-LUT technol-
ogy mapping solution.

Lemma 3.3 For any node v in N , if Cv is generated
in the generating phase, then the delay of v in the
technology mapping solution is � d(v).
Theorem 3.1 Algorithm Edge-Map produces an (de-
lay) optimal K-LUT technology mapping solution, and
it runs in O(Knm logm) time where n, m are the
numbers of nodes and edges in the circuit, respectively.

Proof: Lemma3.2 proves the optimality of the label-
ing phase, and Lemma 3.3 shows that the K-feasible
cones generated in the generating phase are an optimal
technology mapping solution.

By the max-
ow min-cut theorem [FF62], the min-
imum capacity of an edge cut (i.e., the size of a min-
edge cut since a minimum capacity edge cut can have
only bridging edges with unit capacity) is equal to a
maximum total
ow in N

0
v. Since we are only inter-

ested in �nding a min-edge cut with size no more than
K in N

0
v, and each augmenting path in N

0
v from s to

v increases the
ow by one unit (since a bridging edge
has unit capacity), we only need to �nd at most K+1
augmenting paths in N 0

v to compute a maximum
ow
in step 8 (also see [CD92]). If we can �nd K + 1 aug-
menting paths in N

0
v, then the maximum
ow value

and the min-edge cut size in N 0
v is at least K +1, and

there is no need to compute the exact maximum
ow
in N 0

v.
Since �nding an augmenting path takes O(m) time,

�nding a min-edge cut with edge cut size no more than
K takes O(Km) time. Hence steps 8 takes O(Km)
time. We can use a binary search strategy in the
loop in step 7 to search for the smallest k such that
there exists a min-node dk-cut of node cut size � K.
Hence steps 7-8 takes O(Km logm) time. Since we
compute the optimal delay for each node in N in
topological order at step 2, the whole algorithm takes
O(Knm logm) time.

Note that FlowMap takes O(Knm) time. Hence
our Edge-Map algorithm is only slower than FlowMap
by a factor of logm in the worst case using the general
delay model. As a special case, Edge-Map can gener-
ate the same results as FlowMap, by setting �(e) = 1
for all edges in N .

3.4 Post-Processing

In the post-processing phase, we want to reduce
the number of LUTs in the (delay) optimal solution
without increasing the optimal circuit delay. Although
making a previously non-visible edge visible would
possibly increase the delay in an optimal mapping so-
lution, packing an entire LUT into its fanout LUT will
not increase the delay in an optimal mapping solution
since the d(e) on the visible edges along any path in
the solution is non-decreasing because of Equations
(1) & (2).

We discovered that for a given LUT with output v,
we can apply Flow-Pack [CD92] operations to pack a
set of the predecessor LUTs of LUT v into a single K-
LUT. Flow-Pack operations will not increase the cir-
cuit delay in our optimal mapping solution since they
pack multiple (entire) LUTs into their fanout LUTs.

4 Experimental Results

We have implemented our Edge-Map algorithm in
a version of SIS [BRSV87] that contains the FlowMap
package [CD92], using the C language on Sun SPARC
workstations. We tested Edge-Map on a set of ISCAS
and MCNC benchmark circuits that were decomposed
into 2-input circuits of simple gates using tech-decomp
and dmig.

Initially, we assigned every edge in a net an esti-
mated delay based on the number of nodes contained
in the net, and applied the Edge-Map algorithm to
obtain a delay optimal mapping solution for the ini-
tial delay estimation. We then applied a performance
driven placement program on the mapped circuit to
obtain delay estimation for the visible edges. This de-
lay information was re-assigned to the visible edges of
the technology mapping solution.

There are several strategies to assign delay estima-
tion to the invisible edges in a LUT in the previous
mapping solution. (1) Each invisible edge in a LUT re-
ceives a delay estimation 0. This strategy was adopted
by Bias-Clus. (2) Each invisible edge in a LUT re-
ceives a delay estimation equal to the average delay of
the visible edges incoming to the LUT and the visible
edges outgoing from the root of the LUT. (3) Each in-
visible edge in a LUT receives a delay estimation equal
to the maximum delay of the visible edges incoming to

Circuit Delay # of LUTs
Circuit Gates Flow- Edge- imp. Flow- Edge-

Map Map % Map Map
5xp1 104 23.6 20.8 11.9 25 27
9sym 200 42.0 34.5 17.9 67 71
9symml 191 39.3 36.1 8.2 61 62
apex6 779 94.7 63.5 32.9 274 285
apex7 247 53.2 35.0 34.2 94 104
count 216 55.6 34.2 38.5 77 68
des 3263 250.3 143.3 42.7 1311 1580
duke2 392 71.5 49.0 31.5 195 224
rd84 141 41.1 29.3 28.7 49 57
vg2 120 39.3 27.3 31.5 47 55

Average 27.8

Table 1: Comparison of the delay and the number
of LUTs generated by FlowMap and Edge-Map (both
with FlowPack).

the LUT and the visible edges outgoing from the root
of the LUT. We believe (3) is better than (1) & (2)
since it would assign all edges along a critical path
a large delay value, thus discourage cutting through
any edge along a critical path in the next technology
mapping phase.

Table 1 shows the delay optimal technology map-
ping solutions generated by Edge-Map for the circuits
using the delay estimation obtained through the place-
ment program. We also tested FlowMap on the same
set of circuits and computed the the circuit delays of
the level optimal solutions using the same delay esti-
mation, and applied Flow-Pack to reduce the number
of LUTs in the solutions generated by both FlowMap
and Edge-Map. We compared the circuit delay and
the number of LUTs generated by Edge-Map with
that generated by FlowMap in Table 1. Our results
show that Edge-Map and FlowMap generate compa-
rable number of LUTs, but Edge-Map improves the
delay by 27.8% on average. The results demonstrate
that the number of levels in a technology mapped cir-
cuit does not accurately re
ect the delay in a placed
and routed FPGA chip, since the net delays between
LUTs are in general non-uniform in the �nal design.
We observed that FlowMap produced solutions with
longer delays on larger circuits. That was to be ex-
pected since larger circuits have signi�cantly di�erent
delays on di�erent edges and hence considering edge
delay information is essential.

5 Conclusions and Discussions

In this paper we have presented a delay optimal
LUT based technology mapping algorithm, using a
general delay model that allows di�erent delays for
di�erent interconnections even if they belong to the
same net. Our experimental results show that our al-
gorithm outperforms existing level optimal technology
mappers using the general delay model.

We have developed novel techniques in �nding a cut
where the circuit delays on the cut edges are bounded.
This technique is likely to have applications in other
technology mapping and circuit partitioning problems.

We assumed that the input circuits to our algo-
rithm are combinational in this paper. However, this

does not limit our technology mapping algorithm to
combinational circuits only. When given a netlist of
a general sequential circuit, we can �rst remove all
the sequential elements from the netlist to obtain a
combinational circuit, then compute an optimal tech-
nology mapping of the combinational circuit, and then
assign the sequential elements to proper LUTs based
on the connectivity information between the sequen-
tial elements and the LUTs and the availability of the
sequential elements slots in the LUTs.

Acknowledgments We thank Jason Cong and
Eugene Ding for their assistance in our experiment
and comparative study.

References

[BRSV87] R. K. Brayton, R. Rudell, and A. L.

Sangiovanni-Vincentelli. MIS: A Multiple-
Level Logic Optimization. IEEE Trans. on

CAD, pages 1061{1081, Nov. 1987.

[CCD+92] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng,

and P. Trajmar. DAG-Map: Graph-Based

FPGA Technology Mapping for Delay Opti-
mization. IEEE Design and Test of Comput-

ers, Sept. 1992.

[CD92] J. Cong and Y. Ding. An Optimal Technology

Mapping Algorithm for Delay Optimization

in Lookup-Table Based FPGA Designs. In
Proc. of the IEEE Int'l Conf. on Computer-

Aided Design, pages 48{53, Nov. 1992.

[CTC+93] C.-S. Chen, Y.-W. Tsay, T. Hwang C., H. Wu,

and Y.-L. Lin. Combining Technology Map-

ping and Placement for Delay-Optimization
in FPGA Designs. In Proc. of the IEEE Int'l

Conf. on Computer-Aided Design, Nov. 1993.

[FF62] J. R. Ford and D. R. Fulkerson. Flows in

Networks. Princeton University Press, 1962.

[FRV91] R. J. Francis, J. Rose, and Z. Vranesic. Tech-

nology Mapping for Delay Optimization of

Lookup Table-Based FPGAs. InMCNC Logic

Synthesis Workshop, 1991.

[ML94] A. Mathur and C. L. Liu. Performance Driven
Technology Mapping for Lookup-Table Based

FPGAs Using the General Delay Model. In

Int'l ACM/SIGDA Workshop on Field Pro-

grammable Gate Arrays, Feb. 1994.

[MSBSV91] R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Performance Di-

rected Synthesis for Table Look Up Pro-

grammable Gate Arrays. In Proc. of the IEEE
Int'l Conf. on Computer-Aided Design, pages

572{575, 1991.

[YW94] H. Yang and D. F. Wong. Area/Pin Con-

strained Circuit Clustering for Delay Mini-

mization. In Int'l ACM/SIGDA Workshop on

Field Programmable Gate Arrays, Feb. 1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

