
TRADING VOLUME AND SERIAL CORRELATION IN 

STOCK RETURNS* 


This paper investigates the relationship between aggregate stock market 
trading volume and the serial correlation of daily stock returns. For both stock 
indexes and individual large stocks, the first-order daily return autocorrelation 
tends to decline with volume. The paper explains this phenomenon using a model in 
which risk-averse "market makers" accommodate buying or selling pressure from 
"liquidity" or "noninformational" traders. Changing expected stock returns re- 
ward market makers for playing this role. The model implies that a stock price 
decline on a high-volume day is more likely than a stock price decline on a 
low-volume day to be associated with an increase in the expected stock return. 

There is now considerable evidence that the expected return 
on the aggregate stock market varies through time. One interpreta- 
tion of this fact is that it results from the interaction between 
different groups of investors. Suppose that some investors, 
"liquidity" or more generally "noninformational" traders, desire 
to sell stock for exogenous reasons. Other investors are risk-averse 
utility maximizers; they are willing to accommodate the selling 
pressure, but they demand a reward in the form of a lower stock 
price and a higher expected stock return. If these investors 
accommodate the fluctuations in noninformational traders' de- 
mand for stock, then they can be thought of as "market makers" in 
the sense of Grossman and Miller [1988], even though they may 
hold positions for relatively long periods of time and may not be 
specialists on the exchange. l 

It is hard to test this view of the stock market using data on 
stock returns alone, because very different models can have similar 
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NYSE volume, G. William Schwert for providing daily stock return data, Martin 
Lettau for correcting an error in the theoretical model, Ludger Hentschel for able 
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Institute for helpful comments. Campbell acknowledges financial support from the 
National Science Foundation and the Sloan Foundation. Wang acknowledges 
support from the Nanyang Technological University Career Development Assistant 
Professorship at  the Sloan School of Management. 

1. See also Campbell and Kyle 119931; De Long, Shleifer, Summers, and 
Waldmann 11989, 19901; Shiller 119841; Wang [1993a, 1993131; and others. 
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implications for the time-series behavior of returns. In this paper 
we use data on stock market trading volume to help solve this 
identification problem. The simple intuition underlying our work is 
as follows. Suppose that one observes a fall in stock prices. This 
could be due to public information that has caused all investors to 
reduce their valuation of the stock market, or it could be due to 
exogenous selling pressure by noninformational traders. In the 
former case, there is no reason why the expected return on the 
stock market should have changed. In the latter case, market 
makers buying stock will require a higher expected return, so there 
will tend to be price increases on subsequent days. The two cases 
can be distinguished by looking at  trading volume. If public 
information has arrived, there is no reason to expect a high volume 
of trade, whereas selling pressure by noninformational traders 
must reveal itself in unusual volume. Thus, the model with 
heterogeneous investors suggests that price changes accompanied 
by high volume will tend to be reversed; this will be less true of 
price changes on days with low volume. 

Shifts in the demand for stock by noninformational traders 
can occur at  low frequencies or at high frequencies. Daily trading 
volume is a signal for high frequency shifts in demand. Changes in 
demand that occur slowly through time are harder to detect using 
volume data because there are trends in volume associated with 
other phenomena such as the deregulation of commissions and the 
growth of institutional trading. We therefore focus on daily trading 
volume and the serial correlation of daily returns on stock indexes 
and individual stocks. Daily index autocorrelations are predomi- 
nantly positive [Conrad and Kaul, 1988; Lo and MacKinlay, 19881, 
but our theory predicts that they will be less positive on high- 
volume days. 

The literature on stock market trading volume is extensive, 
but is mostly concerned with the relationship between volume and 
the volatility of stock returns. Numerous papers have documented 
the fact that high stock market volume is associated with volatile 
returns; October 19, 1987, is only the best known example of a 
pervasive phen~menon .~  It has also been noted that volume tends 
to be higher when stock prices are increasing than when prices are 
falling. 

2. See Gallant, Rossi, and Tauchen [1992]; Harris [19871; Jain and Joh [19881; 
Jones, Kaul, and Lipson [19911; Mulherin and Gerety [19891; Tauchen and Pitts 
[1983]; and the survey in Karpoff [19871. Larnoureux and Lastrapes [I9901 ar e 
that serial correlation in volume accounts for the serial correlation in volaticy 
which is often described using ARCH models. 
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In contrast, there is almost no work relating the serial 
correlation of stock returns to the level of volume. One exception is 
Morse [1980], who studies the serial correlation of returns in 
high-volume periods for 50 individual securities. He finds that 
high-volume periods tend to have positively autocorrelated re- 
turns, but he does not compare high-volume with low-volume 
period^.^ Several recent papers study serial correlation in relation 
to volatility: LeBaron [1992al and Sentana and Wadhwani [19921, 
for example, show that the autocorrelations of daily stock returns 
change with the variance of returns. Below, we compare the effects 
of volume and volatility on stock return autocorrelations. 

The organization of our paper is as follows. In Section I1 we 
conduct a preliminary exploration of the relation between volume, 
volatility, and the serial correlation of stock returns. In Section I11 
we present a theoretical model of stock returns and trading 
volume. In Section IV we show that the model can generate 
autocorrelation patterns similar to those found in the actual data. 
We use both approximate analytical methods and numerical simu- 
lation methods to make this point. Section V concludes. 

A. Measurement Issues 

The main return series used in this paper is the daily return on 
a value-weighted index of stocks traded on the New York Stock 
Exchange and American Stock Exchange, measured by the Center 
for Research in Security Prices (CRSP) at  the University of 
Chicago over the period 7/3/62 through 12/30/88. Results with 
daily data over this period are likely to be dominated by a few 
observations around the stock market crash of October 19, 1987. 
For this reason, the main sample period we use in this paper is a 
shorter period running from 7/3/62 through 9130187 (1962-1987 
for short, or sample A). We break this period into two subsamples: 
7/3/62 through 12/31/74 (1962-1974 for short, or sample B), 
which is the first half of the shorter sample and which excludes the 

3. Some other papers have come to our attention since the first draft of this 
paper was written. Duffee [I9921 studies the relation between serial correlation and 
tradingvolume in aggregate monthly data, while LeBaron [1992bl uses nonparamet- 
ric methods to characterize the aggregate daily relation more accurately. Conrad, 
Hameed, and Niden [I9921 study the relation between individual stocks' return 
autocorrelations and the tradingvolume in those stocks. 
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period of flexible commissions on the New York Stock Exchange; 
and 1/2/75 through 9130187 (1975-1987 for short, or sample C), 
which is the remainder of the shorter sample period. Finally, we 
use the complete data set through the end of 1988 in order to see 
whether the extreme movements of price and volume in late 1987 
strengthen or weaken the results we obtain in our other samples. 
We call this long sample 1962-1988 for short, or sample D. 

We also study the behavior of some other stock return series. 
For the period before CRSP daily data begin, Schwert [I9901 has 
constructed daily returns on an index comparable to the Standard 
and Poors 500. We use this series over the period 112126-6/29/62. 
The behavior of large stocks is of particular interest, since mea- 
sured returns on these stocks are unlikely to be affected by 
nonsynchronous trading. The Dow Jones Industrial Average is the 
best known large stock price index, and so we study its changes 
over the period 1962-1988. Individual stock returns also provide 
useful evidence robust to nonosynchronous trading, so we study 
the returns on 32 large stocks that were traded throughout the 
1962-1988 period and were among the 100 largest stocks on both 
7/2/62 and 12/30/88.4 

Stock market trading volume data were kindly provided to us 
by J. Harold Mulherin and Mason S. Gerety. These researchers 
collected data from The Wall Street Journal and Barron's on the 
number of shares traded daily on the New York Stock Exchange 
from 1900 through 1988. They also collected data on the number of 
shares outstanding on the New York Stock Exchange. For a 
detailed description of their data, see Mulherin and Gerety [19891. 

The ratio of the number of shares traded to the number of 
shares outstanding is known as turnover, or sometimes as relative 
volume. Turnover is used as the volume measure in most previous 
studies (for example, Jain and Joh [I9881 and Mulherin and Gerety 
[19891). Since the number of shares outstanding and the number of 
shares traded have both grown steadily over time, the use of 
turnover helps to reduce the low-frequency variation in the series. 
It does not eliminate it completely, however, as can be seen from 
the plot of the series presented in Figure I. Turnover has an 
upward trend in the late 1960s and in the period between the 

4. The 32 stocks are American Home Products, AT&T, Amoco, Caterpillar, 
Chevron, Coca Cola, Commonwealth Edison, Dow Chemical, Du Pont, Eastman 
Kodak, Exxon, Ford, GTE, General Electric, General Motors, ITT, Imperial Oil, 
IBM, Merck, 3M, Mobil, Pacific Gas and Electric, Pfizer, Procter and Gamble, RJR 
Nabisco, Royal Dutch Petroleum, SCE, Sears Roebuck, Southern, Texaco, USX, and 
Westinghouse. 
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R a w  Turnover  

Date  

FIGUREI 

Level of Stock Market Turnover, 1960-1988 


elimination of fixed commissions in 1975 and the stock market 
crash of 1987. The growth of turnover in the 1980s may be due in 
part to technological innovations that have lowered transactions 
costs. In addition, the variance of turnover seems to increase with 
its level during the 1980s. 

In our empirical work, we want to work with stationary time 
series. When we relate our empirical results to our theoretical 
model, we want to measure trading volume relative to the capacity 
of the market to absorb volume. For both these reasons we wish to 
remove the low-frequency variations from the level and variance of 
the turnover series. To remove low-frequency variations from the 
variance, we measure turnover in logs rather than in absolute 
units. To detrend the log turnover series, we subtract a one-year 
backward moving average of log turnover. This gives a triangular 
moving average of turnover growth rates, similar to the geometri- 
cally declining average of turnover growth rates used by Schwert 
[I9891 to explain stock return volatility. We explore some alterna- 
tive detrending procedures below. 

Our detrended volume measure is plotted in Figure 11. The 
figure shows no trends in mean or variance, but it does show 
considerable persistence. The first daily autocorrelation of de- 
trended volume is about 0.7, and the fifth daily autocorrelation is 



910 

I 

QUARTERLY JOURNAL OF ECONOMICS 

Deviat ions f rom 1y r  MA of Log Turnover 
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Date 

FIGUREI1 

Detrended Log Turnover, 1960-1988 


still about 0.5. The standard deviation of the series is close to 0.25; 
all these moments are stable across subsamples. 

We also need a measure of stock return volatility. We take the 
conditional variance series estimated by Campbell and Hentschel 
[I9921 using daily return data over the period 1926-1988. Camp- 
bell and Hentschel used a quadratic generalized autoregressive 
heteroskedasticity (QGARCH) model with one autoregressive term, 
two moving average terms, and a mean return assumed to change 
in proportion to volatility. The QGARCH model is very similar to 
the standard GARCH model of changing volatility, but it allows 
negative returns to increase volatility more than positive returns 
do. 

B. Forecasting Returns from Lagged Returns, Volatility, and 
Volume 

Table I summarizes the evidence on the first daily autocorrela- 
tion of the value-weighted index return. For each of our four 
sample periods, the table reports the autocorrelation with a 
heteroskedasticity-consistent standard error, and the R2 statistic 
for a regression of the one-day-ahead return on a constant and the 
return. This statistic, which we write as R2(1) in the table, is just 
the square of the autocorrelation. The remarkable fact is that the 
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TABLE I 
THE FIRST AUTOCORRELATION RETURNSOF STOCK 

(1 )  rt+l = cu + Prt 
(2) rt+l = a + (Z:=l P,Di)rt 

Sample period 

autocorrelation exceeds 0.15 in every sample period; it is about 0.2 
over the full sample and nearly 0.3 in the 1962-1974 period. 

Table I also shows the improvement in R 2 that can be obtained 
by allowing the first autocorrelation to vary with the day of the 
week. A regression of the one-day-ahead return on the current 
return interacted with five day-of-the-week dummies has an R 2  
statistic, labeled R2(2)in the table, that is at least 0.5 percentage 
points larger than the R 2of the basic regression. The increase in R 2  
is even greater in the 1962-1988 period, but much of this is due to 
the single week of the stock market crash. The day-of-the-week 
dummies are significant enough that we include them in all our 
subsequent regressions. 

Table I1 looks at  the relationship between volume and the first 
autocorrelation of the value-weighted index return. We regress the 
one-day-ahead stock return on the current stock return interacted 
not only with day-of-the-week dummies but also with volume. 
Alternatively, we interact the current return with dummies and 
with estimated conditional variance. Finally, we report a regres- 
sion in which the current return is interacted with dummies, 
conditional variance, volume, and volume squared. The last of 
these variables is included to capture any nonlinearity that may 
exist in the relation between volume and autocorrelation. 

Panel A of Table I1 uses the sample period 1962-1987. Over 
this period Table I showed that 5.7 percent of the variance of the 
one-day-ahead value-weighted index return can be explained by a 
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TABLE I1 
VOLUME,VOLATILITY,AND THE FIRST AUTOCORRELATION 

r t+l= cu + ( IL1  PiDi + ylVt + y z ~ f 2+ y3(1000uf2))rt 

Sample period 
and specification 

- -

Y1 

(s.e.1 
Yz 

(s.e.1 
'Y 3 

(s.e.1 R2 

A: 713162-9130187 
Volume 

Volatility 

Volume and volatility 

B: 713162-12131174 
Volume 

Volatility 

Volume and volatility 

C: 112175-9130187 
Volume 

Volatility 

Volume and volatility 

D: 713162-12130188 
Volume 

Volatility 

Volume and volatility 

regression on current return interacted with day-of-the-week 
dummies. The first row of panel A shows that this R2statistic can 
be increased to 6.5 percentage points by interacting the regressor 
with dummies and detrended trading volume. The coefficient on 
the product of volume and the stock return is -0.33 with a 
heteroskedasticity-consistent standard error of 0.06. This is eco- 
nomically as well as statistically significant. The standard devia- 
tion of detrended volume is about 0.25. Thus, as volume moves 
from two standard deviations below the mean to two standard 
deviations above, the first-order autocorrelation of the stock return 
is reduced by about 0.3. 



VOLUME AND SERIAL CORRELATION IN STOCK RETURNS 913 

These strong results for volume are not matched by our 
volatility measure. When volume is excluded from the regression, 
volatility enters negatively, but it is statistically and economically 
insignificant. When volume and volume squared appear in the 
regression, volatility enters positively but is again insignificant. 
The quadratic term on volume is positive and not quite significant 
at  the 5 percent level. Thus, in panel A there is only weak evidence 
for any specification more complicated than the linear volume 
regression reported in the second row. 

In panels B and C of Table 11, we break the 1962-1987 period 
into subsamples 1962-1974 and 1975-1987. The strongest results 
come from the earlier subsample 1962-1974. In this period the 
average first-order autocorrelation of the stock return is almost 
0.3, and a regression of the one-day-ahead return on the current 
return interacted with day-of-the-week dummies gives an R2 
statistic of 8.4 percent. This can be increased by more than a 
percentage point by taking account of a linear relationship between 
the autocorrelation and trading volume. Once again volatility and 
quadratic volume terms add little. In the later subsample, 1975- 
1987, the first-order autocorrelation is much smaller on average. 
Volume raises the regression R2 from 4.3 percent only to 4.6 
percent, although the linear volume term is still statistically 
significant with a t-statistic of 2.9. In this period there is a stronger 
negative relationship between volatility and autocorrelation, al- 
though volume is still slightly superior to volatility when both are 
included in the regression. 

Finally, in panel D of Table I1 we ask whether the addition of 
the stock market crash period to the sample weakens or reinforces 
our results. I t  turns out that the most recent data weaken the effect 
of volume on the first-order autocorrelation of returns. Even in the 
1962-1988 period, however, volume remains significant at  the 5 
percent level. We note also that the 1962-1988 period is the only 
one for which day-of-the-week dummies make a major difference to 
the results. When these dummies are excluded, the volume effect 
becomes much stronger in the 1962-1988 period than in the 
1962-1987 period. This is because the stock price reversals of the 
week of October 19, 1987, are captured by day-of-the-week dum- 
mies when these are included, or by volume when dummies are 
omitted. 

Table I11 has exactly the same structure as Table I, but now 
the dependent variable is the two-day-ahead stock return so the 
table describes the second-order autocorrelation of the return. The 
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TABLE I11 
THE SECOND AUTOCORRELATIONOF STOCK RETURNS 

( 1 )  rt+z = cu + prt 
( 2 )  rt+z = a + (Zf=l PiDi)rt 

P 
Sample period (s.e.1 R2(1) R2(2) 

average second-order autocorrelation is small and statistically 
insignificant in every sample period. Even when day-of-the-week 
dummies are interacted with the current return, the R2statistic of 
the regression is less than 1.5 percent. 

Table IV, which has the same structure as Table 11, shows 
some evidence for volume effects on the second autocorrelation. 
However, the evidence is much weaker than that for volume effects 
on the first autocorrelation. Over the 1962-1987 sample period 
(panel A) we find that volume enters the regression significantly 
only when it is included in quadratic form. The linear coefficient is 
-0.23 with a standard error of 0.08, while the quadratic coefficient 
is 0.55 with a standard error of 0.15. These coefficients imply that 
the second-order autocorrelation falls with volume until volume 
reaches 0.2, about two-thirds of a standard deviation above its 
mean. At higher levels of volume the positive quadratic term 
dominates, and the autocorrelation starts to increase again. Look- 
ing at  subsamples in panels B and C, we find that the evidence for 
volume effects on the second autocorrelation comes entirely from 
the 1962-1974 period. Finally, in panel D we see that the addition 
of the stock market crash period leads to stronger evidence for a 
volume effect on the second autocorrelation. 

One might ask whether higher-order autocorrelations also 
change with trading volume. As a crude way to answer this 
question without having to look at  each autocorrelation individu- 



VOLUME AND SERIAL CORRELATION I N  STOCK RETURNS 915 

TABLE IV 
VOLUME,VOLATILITY, AUTOCORRELATIONAND THE SECOND 


rt+z = a + (ZL1 PiDi + ylVt + yzV; + y3(1000u;))rt 


Sample period 
and specification 

YI  
(s.e.1 

Yz 
(s.e.1 

Y3 

(s.e.1 R2 

A:713162-9130187 
Volume 

Volatility 

-0.028 
(0.060) 

Volume and volatility -0.233 0.550 0.071 0.008 
(0.079) (0.146) (0.276) 

B: 713162-12131174 
Volume -0.186 0.011 

(0.115) 
Volatility -0.012 0.009 

(0.338) 

Volume and volatility -0.390 1.149 -0.039 0.021 
(0.113) (0.345) (0.326) 

C: 112175-9130187 
Volume 0.074 0.003 

(0.069) 
Volatility 0.613 0.003 

(0.391) 

Volume and volatility -0.015 0.138 0.500 0.004 
(0.109) (0.175) (0.400) 

D: 713162-12130188 
Volume -0.178 0.016 

(0.089) 
Volatility 0.007 0.011 

(0.105) 

Volume and volatility -0.024 -0.241 0.072 0.019 
(0.087) (0.119) (0.102) 

ally, we have run regressions of stock returns on moving averages 
of past stock returns and on moving averages of past stock returns 
interacted with trading volume. Regressions of this sort (where the 
lags in the moving averages run from 1to 5 or from 2 to 6) yield 
results similar to those reported in Tables I1 and IV, with 
somewhat reduced statistical significance. This suggests that the 
main volume effects are in the first couple of autocorrelations, but 
that there are at  least no offsetting effects in higher autocorrela- 
tions out to lags 5 or 6. 
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TABLE V 
VOLUME, VOLATILITY, AND THE FIRST AUTOCORRELATION: 

ALTERNATIVEVOLUME MEASURES 
r t + ~= + (2:=1P,Di + y~Vt+ yzMAVt + ys(Vt + MAVt))rt 

Sample period and YI  Y z Y3 

specification (s.e.1 (s.e.1 (s.e.1 R2 

A: 713162-9130187 
Detrended volume -0.328 0.065 

(0.060) 
Total volume -0.156 0.064 

(0.028) 
Detrended and -0.313 -0.090 0.066 

trend volume (0.061) (0.037) 

B:713162-12131174 
Detrended volume -0.445 0.095 

(0.114) 
Total volume -0.227 0.087 

(0.081) 
Detrended and -0.417 0.292 

trend volume (0.108) (0.141) 

C: 112175-9130187 
Detrended volume -0.214 

(0.073) 
Total volume -0.132 0.047 

(0.040) 
Detrended and -0.218 -0.090 

trend volume (0.073) (0.046) 

D:713162-12130188 
Detrended volume -0.169 0.062 

(0.080) 
Total volume -0.091 0.063 

(0.050) 
Detrended and -0.134 -0.065 0.064 

trend volume (0.066) (0.059) 

C. Alternative Volume and Volatility Measures 

So far we have worked exclusively with detrended volume. It is 
natural to ask whether similar results could be achieved without 
detrending. To answer this, in Table V we run similar regressions 
to those in Table 11, but using total volume instead of detrended 
volume. We also run regressions including both the detrended 
series and the trend. The general pattern is that detrended volume 
has superior explanatory power to total volume, although this is 
not true in 1975-1987. When both detrended and trend volume are 
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included, the coefficient on detrended volume is always negative 
and significant, whereas the coefficient on the trend switches sign 
from positive in 1962-1974 to negative in 1975-1987. 

In an earlier version of this paper, we also used an unobserved 
components model to stochastically detrend volume. The resulting 
series was much less persistent than the detrended series used 
here, having a positive first-order autocorrelation and than a series 
of negative higher-order autocorrelations. The stochastically de- 
trended volume series gave results similar to but systematically 
weaker than those in Table II.5 This can be interpreted in terms of 
our theoretical expectation that the serial correlation of stock 
returns declines when volume increases relative to the ability of 
market makers to absorb volume. A one-year backward moving 
average of past volume, which reacts sluggishly to changes in 
volume, seems to be a better measure of market making capacity 
than an estimated random walk component from an unobserved 
components model, which reads very quickly to changes in v01ume.~ 

To check the robustness of this finding, we have also tried 
measuring volume as the deviations of log turnover from three- 
month and five-year backward moving averages. Both these alter- 
native moving average measures gave results similar to those 
reported in Table 11. Thus, it seems to be important to measure 
volume relative to a slowly adjusting trend, but the exact details of 
trend construction are not crucial. 

The results reported above also use a single measure of 
volatility, the fitted value from a QGARCH model. The choice of 
this particular model in the GARCH class is not critical since all 
models in this class give very similar fitted variances. Nelson 
[I9921 shows that high-frequency data can be used to estimate 
variance very precisely, even when variance is changing through 
time and the true model for variance is unknown. 

It  could be objected, however, that estimated conditional 
volatility cannot compete equally with trading volume because 
each day's conditional variance uses information only through the 

5. LeBaron [I992131 builds on the work of this paper to explore the relation 
between autocorrelation and high-frequency volume movements more thoroughly. 

6. Grossman and Miller [I9881 model the long-run determination of market- 
making capacity and show that in steady state the constant negative autocorrelation 
of stock price changes is determined by the cost of maintaining a market presence 
and the risk aversion of market makers. We believe that market-making capacity 
adjusts slowly to the steady state, and this is consistent with our empirical results. 
For simplicity, our theoretical model assumes that market-making capacity is fixed; 
it is a short-run counterpart to Grossman and Miller's long-run model. 
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TABLE VI 
THE FIRST AUTOCORRELATION OF STOCKRETURNS: SAMPLEALTERNATIVE PERIODS 

(1 )  rt+l = a + Prt 
(2 )  rt+l = a + (Z:=, PiDiIrt 

P 
Sample period (s.e.1 R2(1) R2(2) 

previous day. A simple way to respond to this is to add the current 
squared return to the regression, since in any GARCH model the 
squared return is the innovation in conditional variance. When we 
do this, we find that the current squared return sometimes enters 
significantly but does not have any important effect on the 
estimated volume effect. To save space, we do not report results for 
this specification. 

D. Evidence from Earlier Periods 

As a further check on the robustness of our results, in Tables 
VI and VII we look at  Schwert's [I9891 daily stock index 
return over the period from 1926. The tables use five different 
samples: the full pre-1962 data set 112126-6/29/62 (sample E); 
decadal subsamples 112126-12130139, 1/2/40-12/31/49, and 
113150-6/29/62 (samples F, G, and H, respectively); and a long 
sample splicing together Schwert's series with the CRSP value- 
weighted index over the period 112126-91 30187 (sample I).7 

Table VI shows that the average first autocorrelation of stock 
returns has varied considerably over the decades. In the 1930s it 
was very small at  0.015, but it increased to above 0.1 in the 1940s 
and 1950s. Table VII shows that the effect of volume on autocorre- 

7. Sample I is long enough that adding the stock market crash period has 
very little effect on the results, so to save space we do not report results for 
112126-12130188. 
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TABLE VII 

VOLUME,VOLATILITY,
AND THE FIRST AUTOCORRELATION: 

ALTERNATIVE PERIODSSAMPLE 
rt+l = a + (CL, PiDi + ylVt + yt + y3(1000u:))rt 

Sample period and 71 Y z '~3 

specification b e . )  b e . )  b e . )  R2 

E:112126-6129162 
Volume 

Volatility 

Volume and volatility 

F: 112126-12130139 
Volume 

Volatility 

Volume and volatility 

G:1/2140-12/31/49 
Volume 

Volatility 


Volume and volatility 


H: 113150-6129162 
Volume 

Volatility 


Volume and volatility 


I: 112126-9130187 
Volume 

Volatility 


Volume and volatility 
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TABLE VIII 
THE FIRST AUTOCORRELATION OF STOCK RETURNS: 

THE DOW JONESINDUSTRIALAVERAGE 
(1 )  rt+l = a + Prt 

( 2 )  rt+l = a + (Zf=l PLDi)rt 

Sample period 
P 

b e . )  R2(1)  R2(2)  

A: 713162-9130187 0.141 
(0.016) 

0.020 0.027 

lation has always been negative, although in many sample periods 
it is statistically significant only when squared volume and volatil- 
ity are also included in the regress i~n.~ Volatility is statistically 
significant only in the period 1950-1962. 

E. Nonsynchronous Trading 

All the empirical results so far have used the return on a 
value-weighted stock index. I t  could be objected that the serial 
correlation of the index return is mismeasured because the indi- 
vidual stocks in the index are not all traded exactly at  the close. In 
principle, nonsynchronous trading can lead to spurious positive 
autocorrelation in an index return, although Lo and MacKinlay 
[I9901 have shown that this effect is very small unless stocks fail to 
trade for implausibly long periods of time. 

As one way to respond to this objection, in Tables VIII and IX 
we repeat our basic regressions using price changes of the Dow 
Jones Industrial Average. Although this series omits dividends, 
this has only a minimal effect on daily autocorrelations. Nonsyn- 
chronous trading should also have only a trivial effect on the 
behavior of the Dow Jones. The average autocorrelation of the Dow 
Jones is much smaller than the average autocorrelation of the 

8. An anonymous referee has objected that we report results with squared 
volume only because they are statistically significant. We note, however, that we 
reported the same squared volume regressions in the first version of this paper 
which did not look at the older data. 
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TABLE IX 
VOLUME,VOLATILITY,AND THE FIRST AUTOCORRELATION: 

THE DOW JONES AVERAGEINDUSTRIAL 
rt+l = a + (Zf=,PiDi + ylVt + yzV; + y3(1000u;))rt 

Sample period 
and specification 

' ~ 1  

b e . )  
Yz 

b e . )  
Y3 

(s.e.1 R2 

A: 713162-9130187 
Volume 

Volatility 

-0.257 
(0.061) 

0.032 

Volume and volatility -0.358 0.278 0.080 0.033 
(0.074) (0.147) (0.268) 

B: 713162-12131174 
Volume -0.359 

(0.116) 
Volatility -0.128 0.046 

(0.304) 

Volume and volatility 

Volume -0.157 0.025 
(0.073) 

Volatility 

Volume and volatility -0.177 0.138 -1.036 0.027 
(0.102) (0.174) (0.372) 

D: 713162-12130188 
Volume -0.127 0.037 

(0.094) 
Volatility 

Volume and volatility -0.251 0.103 0.081 0.039 
(0.159) (0.142) (0.132) 

value-weighted portfolio, only one-half as large in some periods. 
However, there is still a highly significant estimated effect of 
volume on the autocorrelation. 

Another way to respond to the nonsynchronous trading con- 
cern is to use data on individual stock returns. Nonsynchronous 
trading creates spurious positive autocorrelation in an index 
return because today's market return is measured contemporane- 
ously for those stocks that trade today, but only with a lag for 
nontraded stocks. However, nonsynchronous trading has only a 
trivial effect on measured individual stock return autocorrelations 
[Lo and MacKinlay, 19901. Even when one uses individual stock 
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TABLE X 

VOLUMEAND THE FIRST AUTOCORRELATION: STOCK
INDMDUAL RETURNS 

Equal-weighted index regression: 

~ E W , ~ + I  LYEw + Y E W ~ ~ ) ~ E W , L= + (C;=lP~w,iDi 

Pooled regression: 

rj,t+l+ clp + (C5=1 Pp,iDi + ypVt)rjjt, j = 1, . . . ,32 

Individual stock regressions: 

rj,t+1= aj + (CL1 Pj,iDi + yjVt)rj,t, j = 1, . . . ,32 

7 = (1132) Cgl  yj, f., = (1132) ZE1t,j 

-
YEW YP Y a, 

Sample period b e . )  (s.e.1 (# < 0) (# < -1.64) 

returns, aggregate volume is probably a better variable than 
individual volume because idiosyncratic buying or selling pressure 
does not create systematic risk for market makers. Accordingly, we 
combine individual stock returns with the single aggregate volume 
series. 

Table X summarizes results for 32 large stocks that were 
traded throughout the period 1962-1988 and were among the 100 
largest at both the beginning and end of the period. The first 
column of the table reports the volume effect on the autocorrela- 
tion of an equally weighted index of these stocks. The index is very 
similar to the Dow Jones, having an almost identical first autocor- 
relation and a correlation with the Dow Jones of about 0.95. Not 
surprisingly, therefore, the effect of volume on the index autocorre- 
lation is similar to the effect reported in Table IX. The second 
column of Table X shows the volume effect on the correlation of 
each stock return with its own first lag, where the individual 
returns are stacked together in a single pooled regression. The 
standard error is corrected for heteroskedasticity and for the 
contemporaneous correlation of individual stock returns, using the 
method of White [1984]. The volume effect on the own autocorrela- 
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tion of each stock return is smaller than the volume effect on the 
index return, but the statistical significance of the effect is not 
much reduced. 

The third column of Table X shows the average effect of 
volume on the first autocorrelation across 32 separate OLS regres- 
sions, one for each individual stock. Not surprisingly the cross- 
sectional average effect is close to the effect in the pooled regres- 
sion. The number of negative individual coefficients is also reported; 
at  least 25 of these coefficients are negative in every sample period. 
Finally, the fourth column of Table X shows the cross-sectional 
average t-statistic for the effect of volume on the autocorrelation, 
and the number of individual t-statistics that are less than -1.64 
(the 5 percent level for a one-tailed test, or the 10 percent level for a 
two-tailed test). The cross-sectional average t-statistic is less than 
-1in every period except 1975-1987, and as many as a third of the 
individual t-statistics are less than -1.64. 

We interpret these results as strong evidence that nonsynchro- 
nous trading is not solely responsible for the phenomena we have 
described. 

In this section we present a model of noninformational trading 
that can account for the empirical relationship between trading 
volume and the serial correlation of stock returns. Several authors, 
including Campbell and Kyle [19931, De Long, Shleifer, Summers, 
and Waldmann [1989, 19901, Grossman and Miller [19881, and 
Shiller [19841, have developed models in which expected stock 
returns vary through time as some investors accommodate the 
shifting stock demands of other investors. But none of these 
authors explicitly work out the implications of their models for 
trading volume. 

Most previous work has modeled noninformational trading as 
an exogenous process. De Long, Shleifer, Summers, and Waldmann 
[1989,1990] derive noninformational trading from shifting misper- 
ceptions of future stock payoffs. Here we derive noninformational 
trading from shifts in the risk aversion of some traders. We do this 
because we find it natural to relate changing demands to chang- 
ing taste^,^ but the basic intuition of our model carries through 

9. For simplicity, we treat shifts in investors' risk aversion as exogenous. More 
generally, investors' attitudes toward risk may depend on wealth and other state 
variables. This can lead them to follow dynamic hedging strategies even when they 
face a constant investment opportunity set [Grossman and Zhou, 19921. 
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regardless of how noninformational trading is introduced. Any 
such trading will give the same qualitative relation between 
volume and the serial correlation of returns. 

We consider an economy in which there exist two assets: a 
risk-free asset and a risky asset ("stock"). We assume that 
innovations in the stock price are driven by three random vari- 
ables: (i) the innovation to the current dividend, (ii) the innovation 
to information about future dividends, and (iii) the innovation to 
the time-varying risk aversion of a subset of investors. Shock (i) 
causes the payoff to the stock to be stochastic so that a premium is 
demanded by investors for holding it. Shock (iii) generates changes 
in the market's aggregate risk aversion, which cause the expected 
return on the stock to vary. Shock (ii) is in the model so that prices 
and dividends do not fully reveal the state of the economy and 
volume provides additional information. 

The properties of our model can be understood as follows. If a 
large subset of investors becomes more risk averse, and the rest of 
the economy does not change its attitudes toward risk, then the 
marginal investor is more risk averse, and in equilibrium, the 
expected return from holding the stock must rise to compensate 
the marginal investor for bearing the risk. Simultaneously, risk is 
reallocated from those people who become more risk averse to the 
rest of the market. The reallocation is observed as a rise in trading 
volume. Note that the rise in expected future returns is brought 
about by a fall in the current stock price that causes a negative 
current return. Therefore, a large trading volume will be associated 
with a relatively large negative autocorrelation of returns. 

A. The Economy 

Our model further specifies the economy as follows. The 
risk-free asset, which is in elastic supply, guarantees a rate of 
return R = 1+ r with r > 0. We assume that there is a fixed supply 
of stock shares per capita, which is normalized to 1. Shares are 
traded in a competitive market. Each share pays a dividend in 
period t of D, = D + D,. D >0 is the mean dividend, while D, is 
the zero-mean stochastic component of the dividend. (We use 
similar notational conventions for other variables below.) D, 
follows the process: 

We assume that the innovation ug,, is i.i.d. with normal distribu- 
tion ug,, - M(O, a:). 
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There are two types of investors in the economy, type A and 
type B. Both types of investors have constant absolute risk 
aversion. The type A investors' risk aversion parameter is a 
constant a ,  while the type B investors' risk aversion parameter is 
b,, which may change over time. Let w be the fraction of type A 
investors. 

Each period, investors solve the following problem: 

subject to 

where W, is wealth, X,is the holding of the risky asset, and Ptis the 
ex dividend share price of the stock, all measured at  time t.E, is the 
expectation operator conditioned on investors' information set Yt 
at  time t. 

The set Y ,contains the stock price P, and the dividend D,. I t  
also contains a signal, St, which all investors receive at  time t about 
the future dividend shock UD,,+I: 

For simplicity, we assume that Stand E g , t + ~are jointly i.i.d. normal, 
E[u, ,+ ,I St] = St,ED,, - M(O,u?), and St- M(O,ui). 

B. The Equilibrium Price of the Risky Asset 

Let Ft(the "cum-dividend fundamental value" of the stock) be 
the present value of the expected future cash flow from a share of 
the stock, including today's dividend, discounted at  the risk-free 
rate. It is easy to show that 

and that the innovation variance of F,, a;, is given by 

In the case that investors are risk neutral, Ft - Dt gives the 
equilibrium ex-dividend price of the stock. When investors are risk 
averse, however, the equilibrium price will depend on the risk 
aversion of the market. 

Define a variable 2,that can be interpreted as the risk aversion 
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of the marginal investor in the market: 

abtz, = 
(1- o)a + ob, ' 

Let Z, = Z + z,. We assume that Z,follows an AR(1)process: 

We also assume that uz,,is independent of other shocks and is i.i.d. 
normal: uz,, - ~ ( 0 , u g ) .This assumption allows Z,, and thus b,, to 
be negative. This could be avoided, however, if we replaced the 
exponential utility assumption (1)by the assumption that inves-
tors' have mean-variance preferences; that is, they maximize the 
objective function E,Wt+l - ~ar ,W,+~l2 .All the results in the 
paper would follow, and we could restrict the Z, process to be 
bounded away from zero. 

Finally, we assume that ug I ug2 = - CQ)~/~U;.(R This 
assumption is used to derive an equilibrium price function where 
the price of the stock is a decreasing function of the aggregate risk 
aversion 2,. 

THEOREM1. For the economy defined above, there exists an 
equilibrium price of the stock that has the followingform: 

(7) Pt = Ft - Dt + (Po + PzZt), 

where pz = -((R - aZ)l2$)[l - and PO = 
(1- c ~ ~ ) ~ ~ / r< 0. 


Proof of Theorem 1. See Appendix A. 


C. Excess Stock Returns and Trading Volume 

The excess return per share on the stock realized at time t + 1 
is written as = P,+ + D,+l -RP,. Given the equilibrium price, 
the expected excess return anticipated by investors in period t, 
denoted bye,, is 

(8) e, = EIQ,+lJY,l= u$Zt, u2Q -- UF + pgui, 

where u$ = var [Q,+ I Y ,I. Then, we have 

where K = p Z l u ~ .Equation (8) states that the unexpected excess 
stock return per share has two components: innovations in ex-
pected excess returns per share and innovations in expected future 
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cash flows per share. Given the return process (9), the serial 
correlation in returns can be easily calculated: 

Clearly, PQ,,Q,+, is positive if az > 1/R and is negative if az < 1/R. 
Let Xp and Xt be, respectively, the optimal stock holdings of type A 
and type B investors. The solution of the optimization problem (1) 
yields 

E[Qt+l IPt,Dt,Stl 1 
Xp= a var [Qt+ 1 Pt,Dt,StI 

= -
a 

Zt, 

(11) 
E[Qt+l IPt,Dt,Stl 

= -12,.
X: = 6, var [Qt+l IPt,Dt,StI bt 

Changes in investors' preferences relative to one another 
generate trading. Xp (and x:) change as Zt changes: 

Trading volume is then 

Given the Zt process, mean trading volume is = EIVtl = (2ouz)I 
(ad m . Equation (13) completes the solution of the model for 
the joint behavior of volume and stock returns. 

IV. IMPLICATIONSOF THE MODELFOR VOLUMEAND SERIAL 
CORRELATION 

Investors in the economy have perfect information about the 
current level of 2,. They can use Zt to predict future excess returns 
as shown by equation (7).When Zt is high, the type B investors are 
highly risk averse and less willing to hold the stock. The price of the 
stock has to adjust to increase the expected future excess return so 
that the type A investors are induced to hold more of the stock. 

We, as econometricians, do not directly observe Zt or St. We 
observe only realized excess returns and trading volume.1° How- 
ever, these variables do provide some information about the 

10. We could actually use a finer information set containing dividends, prices, 
and volume. This would improve our inferences about 2,.For simplicity, however, 
we use only excess returns and volume in this paper. 
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current level of Zt and can help predict future returns. A low return 
due to a drop in the price could be caused either by an increase in Zt 
or by a low realization of St,i.e., bad news about future cash flow. 
However, changes in Zt will generate trading among investors, 
while public news about future cash flows will not. Therefore, low 
returns accompanied by high trading volume are more likely due to 
increases in Zt while those accompanied by low trading volume are 
more likely due to low realizations of St.In the case of an increase 
in Z,, the expected excess return for next period will be high, while 
for the case of low St,it will not. Thus, the autocorrelation of the 
stock return should decline with trading volume. 

A. Analytical Results 

In this subsection we use analytical methods to develop this 
intuition more formally. In the next subsection we use simulation 
methods to a similar end. 

We want to calculate the predictable component in the excess 
return based on the current return and volume: EIQt+l I Qt,Vtl = 
uiE [Zt I Qt,Vtl. The following theorem holds. 

THEOREM2. Under the assumptions we have made about the 
structure of the economy and the distribution of shocks, we 
have 

A quadratic approximation to equation (14) is 

(15) 	 1 Qtl = (+Q - O+vV?)&t, 
where (O+v) > 0. 

Proof of Theorem 2. See Appendix B. 

In order to understand the results in Theorem 2, first consider 
the case where volume Vt = 0. In this case, there is no change in 
the investors' relative risk aversion (i.e., Zt has remained the 
same). Hence, there should be no change in the expected excess 
return from the previous period. The realized excess return approx- 
imates the expected excess return in the previous period. Thus, 
E[Qt+iI Qt,Vt = 01 = +Q Qt . 

Now consider the case where volume is not zero. This implies 
that a risk preference shock has occurred. Note that if Q, = 0 (i.e., 
there were no unusual date t returns), then E[Q,+~ I Qt= O,Vtl = 0, 
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independent of the value of V,. Although volume implies that 2, is 
different from it does not reveal the direction of the change. If 
Q, is negative, however, we can infer that 2, is more likely to have 
increased than decreased, and thus the expected value of 2,is high. 
Given a negative Q,, the higher is V,, the higher is the implied value 
of 2,. 

We can re-express equation (15) in a form that looks more 
similar to the regression equations used in the previous section: 

where is positive while the sign of 4, is ambiguous. (See 
Appendix B. ) 

In Theorem 2 we only consider how current volume in addition 
to the current return can help in predicting future returns. In 
principle, we could use the whole history of returns and volume to 
forecast future returns. Let Y/e:= {Q,,V,: T It ]be the information 
set that contains the history of excess returns and volume up to 
and including period t .  The forecasting problem faced by an 
econometrician is to calculate the conditional expectation: 
E[Q,+ lY:l =@[Z,  JYt*l. This is a nonlinear filtering problem for 
which there is no simple solution. We could calculate the condi- 
tional expectation iteratively: having calculated the expectation 
conditional on the return and volume in the current period, we 
could calculate the expectation conditional on the return and 
volume in the current and the previous period, and so on [Wang, 
1993al. This process would reveal higher-order dynamic relations 
between return and volume, which could be related to empirical 
work like that of Brock, Lakonishok, and LeBaron [19921. How- 
ever, this is outside the scope of the current paper. 

Theorem 2 provides some justification for the exploratory 
regressions we reported in the empirical section of the paper. The 
theorem states that aggregate risk aversion (and hence the ex- 
pected stock return) is related to the lagged stock return and to the 
lagged return interacted with volume. The coefficient on the 
volume-weighted lagged return should be negative, as we found in 
the data. Note that there is some slippage between the theoretical 
variables in our model and the variables measured in our empirical 
work. The model generates predictions about the level of turnover 
and the serial correlation of returns per share, while our empirical 
work concerns the detrended log of turnover and the serial 
correlation of log returns per dollar invested. 
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B. Simulation Results 

Although the analysis of the previous subsection makes our 
basic point, that volume and serial correlation should be negatively 
related in our heterogeneous-agent model, it is not clear whether 
this effect is quantitatively important for plausible parameter 
values. In this subsection we run some simple simulations to 
address this question. The model of Section 111, with normal 
driving processes, is straightforward to simulate because it is a 
linear model conditional on investors' information. I t  only becomes 
nonlinear when we condition on the smaller information set 
containing volume and returns alone. The key question is how to 
calibrate the parameters of the model. 

We begin by describing the riskless and risky assets in the 
economy. We set the riskless interest rate R equal to 1.01 at  an 
annual rate, or 1.00004 at  a daily rate assuming that there are 250 
trading days in a year. We set the autoregressive parameter for the 
stock dividend, aD, equal to one. This makes the dividend a random 
walk. In daily data any plausible dividend process will have CYDvery 
close to one, and the model is simplified by setting it equal to one. 
Next we normalize the stock price so that it equals one when all the 
stochastic terms equal zero, and set stochastic terms to zero at the 
beginning of our simulations. This normalization means that the 
average stock price should not be too far from one during our 
simulation periods, although the stock price process has a unit root 
so there is no fixed mean. The normalization makes absolute price 
variability close to percentage price variability, and it ensures that 
the coefficient of absolute risk aversion and the coefficient of 
relative risk aversion are similar if initial riskless asset holdings are 
small.l1 

The next step is to pick a plausible value for the innovation 
variance u i  of the stock's fundamental value F,. We choose ug = 
(0.0U2, so that the standard deviation of the daily stock return (in 
the absence of shifting risk aversion) is 1percent. This is a little 
higher than the average in postwar data. Equation (4) gives the 
implications of this choice for the variances of the dividend signal 
Stand the contemporaneous dividend innovation E,. If there is no 
dividend signal, then a: = 0, and the implied variance of the 
dividend innovation E, is uf = (R If all dividend - ~ ) ~ u i l R ~ .  

11. Note that riskless asset holdings of the agents are not identified by the 
model. With exponential utility, these holdings do not affect demand for the risky 
asset. 
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information is received one day in advance, then at = 0, and a: = 
(R - The simulation results are only trivially affected by I ) ~ U ~ .  
varying the relative importance of the dividend signal and the 
contemporaneous dividend innovation. 

We now turn to the specification of the two groups of investors. 
Suppose initially that both groups have the same average risk 
aversion coefficient. Then this coefficient can be identified from the 
stock demand equation (11).When all investors have constant risk 
aversion a,  then (1 1) implies that a = E[Q,+J lvar If stock 
price equals fundamental value, then var [Q,+J = a: = (0.01)2. 
Setting a = 3 gives a reasonable value for E[Q,+J of 0.0003, or 7.5 
percent at an annual rate. This procedure for estimating average 
risk aversion is a variant of that proposed by Friend and Blume 
[19751. 

Next we consider o, the proportion of market-making agents. 
Given the Z, process, this parameter plays two roles. First, in 
equation (13) the trading volume generated by a given shift in Z, is 
proportional to ola.  Second, in equation ( 5 ) the mapping between 
Z, and the risk aversion of liquidity traders b, is determined by o. 
When o is small, Z, moves almost one-for-one with b,; when o is 
large, on the other hand, large shifts in b, result in smaller changes 
in 2,. 

It  turns out that if we set a = 3, then we must also pick a very 
small value of o, 0.0005. Figure I shows that turnover is typically 
0.5 percent or less. In exploratory simulations with larger values of 
o ,  the variation in Z, required to explain the effect of volume on 
autocorrelation generates too much trading volume when market- 
makers have risk aversion a = 3. We can, however, increase the 
fraction of market-makers if we also make market-makers more 
risk averse, since volume is determined by the ratio ola.  We obtain 
almost identical simulation results, for example, if we set o = 0.005 
and a = 30, while keeping the mean of 2, equal to 3 to match the 
mean stock return. 

The trickiest part of the calibration is to specify the dynamics 
of the Z, process. We would like to pick a process that generates 
realistic stock price behavior. Equation (6) gives the price innova- 
tion variance aspgag + a;. Unfortunately, the coefficientpz is itself 
a function of a; and the other parameters of the model. When a; = 
0, however, Appendix A shows that pz = pz(0) = -uil(R - az). 
The coefficient pz(0) is the value of pz that obtains when Z is 
deterministic. As a simple way to calibrate the model, we define a 
coefficient A equal to the standard deviation of price innovations 
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caused by randomness in Z divided by the standard deviation of 
innovations in fundamental value, evaluated usingpz(0): 

Solving this equation for a;, we find that 

(18) ug = A2(R - ~ i ~ ) ~ / u i .  

This equation can be substituted into the condition that ug Iuz2, 
which guarantees a real solution for the coeffi~ientp~. We can then 
restate that condition in the simple form A I0.5. Thus, only 
limited extra stock price variability can be generated by shifting 
risk aversion. 

In preliminary simulations, we varied A over the permissible 
range from 0 to 0.5, while at the same time varying the persistence 
parameter over its permissible range from 0 to 1.We found a 
strong negative relation between trading volume and the first 
return autocorrelation only for A values above about 0.2, and % 

values below about 0.5. With smaller values of A, shifting risk 
aversion did not have a sufficient effect on stock price behavior to 
be readily detectable, even with very large numbers of observa- 
tions. With larger values of az,price changes caused by changing 
risk aversion are largely permanent so trading volume does not 
strongly signal that price movements will be reversed. For the final 
simulations reported below, we picked A = 0.25 and = 0, 0.25, 
and 0.5. 

Once we have chosen parameter values, we can solve for the 
price coefficients po  and pz. The final step is to choose an initial 
dividend Do to meet our requirement that the initial price equal 
one. We then draw normal innovations with the appropriate 
variances and create artificial data on stock prices and trading 
volume. We create series that have 3000 observations (roughly the 
number of observations in our 1962-1974 and 1975-1987 sub- 
samples) after discarding the first 100 observations. 

Illustrative simulation results are reported in Table XI. The 
table shows regression results for a standard AR(1) return model 
and for our model interacting the return with trading volume. All 
parameters are fixed as described above, except for the parameter 
% which describes the persistence of shifts in risk aversion. This 
parameter is 0 in panel A of Table XI, 0.25 in panel B, and 0.5 in 
panel C. In panel A we find a strong effect of volume on the first 
autocorrelation of returns. The t-statistic on volume is 3.67, and 
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TABLE XI 
SIMULATIONS AND THE FIRST AUTOCORRELATION OF VOLUME 

rt+l= a + (P + ylVt)rt 

Specification 

Volume 

B:a, = 0.25 
AR(1) 

Volume 

C:a, = 0.5 
AR(1) -0.005 0.000 

(0.261) 
Volume 0.024 -14.07 0.001 

(0.840) (1.26) 

the addition of volume to the regression increases the R2statistic 
by more than 50 percent (although of course the R remains very 
low in absolute terms). The coefficient on volume is -16.2, while 
the standard deviation of volume (not shown in the table) is 0.0036. 
Thus, when volume moves from two standard deviations below the 
mean to two standard deviations above, the autocorrelation of the 
stock return falls by 0.23, an economically significant amount. 

As the persistence of risk aversion increases, the relation 
between volume and autocorrelation weakens. Results in panel B 
are only slightly weaker than those in panel A, but in panel C the 
coefficient on volume is statistically insignificant although the 
point estimate is still negative. Even with % = 0.5, the half-life of a 
shift in risk aversion is only one trading day, so it is clear that risk 
aversion shifts must be highly transitory for our model to fit the 
data. 

A related problem for our model is that the parameter values 
in Table XI imply extreme movements in average risk aversion 2,. 
The simulation reported in panel A has a sample average for 2, of 
3.42, close to the population value of 3. The sample standard 
deviation is 25.2, with a minimum of -89 and a maximum of 88. 
Given that market-makers are assumed to be a very small fraction 
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of the market, the implied movements of liquidity traders' risk 
aversion b, are almost equal to those of 2,.(As noted above, a larger 
value of o would imply larger movements in b, relative to Z,, 
worsening this problem.) As % increases, the movements in Z, are 
slightly dampened, but they remain extreme even when % = 0.5. 
The sample average Z, in panel C is 2.80, with a standard deviation 
of 14.4, a minimum of -46, and a maximum of 57. 

This difficulty arises for the following reason. Persistent shifts 
in Z, have large effects on prices, but as noted above, they do not 
generate a strong high-frequency relationship between volume and 
serial correlation. Volume interacted with the lagged stock return 
helps to identify the recent change in the expected stock return; 
but this is not a good guide to the current level of the expected stock 
return when the expected return follows a persistent time series 
process. Transitory shifts in Z,, on the other hand, have small 
effects on prices because small temporary price movements can 
create large temporary changes in expected returns. Equation (18) 
shows that as the persistence parameter CYZ falls, Z, must become 
more variable for any given price impact parameter A. Thus, to get 
a strong effect of volume on serial correlation, we need very large 
transitory shifts in risk aversion. This is an example of the 
well-known fact that high-frequency predictability in asset returns 
is hard to explain using a frictionless model with utility-
maximizing risk-averse agents. Our model has an advantage in 
that it allows for heterogeneous and time-varying risk aversion, 
but it does not entirely escape this problem. 

Our model has another empirical difficulty related to persis- 
tence. We have found that the autocorrelation of stock returns 
depends on a detrended volume measure that is fairly persistent, 
having a first daily autocorrelation of about 0.7 and a fifth daily 
autocorrelation that still exceeds 0.5. When one extracts the 
high-frequency component of volume by using an unobserved 
components model or subtracting a few days' moving average of 
volume [LeBaron, 1992131, the relation between volume and auto- 
correlation becomes much weaker. This contradicts the implication 
of our model that volume is an MA(1) process when market average 
risk aversion Z, is white noise (and close to an MA(1) process when 
risk aversion is a transitory AR(1) process). I t  should, however, be 
possible to generalize the model to mitigate this problem. Since 
volume depends on the absolute value of the change in market 
average risk aversion Z,, a conditionally heteroskedastic process for 
Z, could produce persistent movements in volume. 
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In this paper we have documented a striking fact about 
short-run stock market behavior: the first daily autocorrelation of 
stock returns is lower on high-volume days than on low-volume 
days. This phenomenon appears even in very large stock indexes 
and individual stock returns, so that it is unlikely to be due to 
nonsynchronous stock trading. We have proposed an alternative 
explanation relying on the idea that trading volume occurs when 
random shifts in the stock demand of noninformational traders are 
accommodated by risk-averse market-makers. If we allow large 
transitory shifts in noninformational demand, then our model fits 
many of the features of the data. 

The proof of Theorem 1 follows a fairly standard pattern. 
First, we conjecture that the equilibrium price function has the 
given form. Second, we solve the optimization problem of both type 
A and type B investors given the conjectured price function. 
Finally, we impose the market-clearing condition to verify the 
conjectured price function. 

If the price function takes the conjectured form, the excess 
return per share of the stock, denoted by &,+I = Pt+1+ Dt+1-RP,, 
can be expressed as 

The conditional distribution of the future excess return is normal 
and has the following moments: 

E[Qt+l141= -r(po + PZZ)+ PZ(% - R)z,, 
var [Qt+llA] I u i  = u i  + pgui. 

Given the price function, the solution to the optimization 
problem (1) gives the optimal holdings of type A and type B 
investors: 

EL&,+, IPt,Dt,Stl 
(A.2a) X 4  = a var [Q,+I IP~,D~,S~I 
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The market-clearing condition states that 

(A.3) OX: + (1- O)X; = 1. 

Hence, 

Since ola + (1- o)lb, = l/Zt,we have 

(A.5) (OIZ- R)pz = a:, -r(po + pZZ)= u:Z. 


Under the condition that a; Iuj2,we have two real roots forpz: 


For Q < 1,both roots are negative. We choose the root that gives 
the right limit when a: goes to zero. In the case that u :-+ 0,pz 
should go to zero. This leads to the solution forpz which is the root 
with the positive sign. po is then given bypo= (1- %)pZ Elr. 

Define At = (ola)(Z,- Zt-l).Thus, Vt = I A t  1 .  Also, define EF,, 

= Ft-Et-l [Ftl.E F , ~gives the innovation process to F,.Then, 

(A.7) & t + l  = Pz(Zt+l- 2,)+ E ~ , t + l .  

Let 2be the covariance matrix of (&,,A,). 


LEMMA.Given that Q, +,, Q, and A t  are jointly normal, we have 


(~4.8) E[Q,+ 11 Q,, Vtl = $g Qt t ) ~ t ,- $v tanh (OV~Q 

where 


and 
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Proof of Lemma. See Wang [1993al. 

It is easy to show that 

- -o (1+ R ) P Z U ~  
uQt+l ,At  - a 1+ % a 

Hence, 

To a quadratic approximation, equation (A.8) can be re-ex- 
pressed as 

Clearly, O+v > 0. This completes the proof of Theorem 2. We can 
further write Vt = V + Vt, where V = E[V,] is the mean volume. To 
the same order of approximation, equation (A.9) becomes 

(A.10) a&,+,Q,,V,I = (4, - +,Vt)&,,I 
where 4o = - (04v)pand = > 0. 
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