SMOOTH MANIFOLDS AND THEIR APPLICATIONS IN HOMOTOPY THEORY
L. S. PONTRYAGIN

Introduction

The main aim of the present work is the homotopy classification of maps of the
(n + k)-sphere 3" into the n-sphere S™; this problem is however only solved here
for k=1, 2. The method described here in detail was published earlier in notes
{1, 2]. It was used by V. A. Rohlin [3] also to solve the problem for k = 3, but
there has been no success in the meantime in obtaining results for k> 3 by this
method. The method depends on the study of certain properties of smooth or, what '
comes to the same thing, differentiable manifolds of dimensions k and k+1. After
the appearance of the works [1-3] there appeared a series of works by French math-
ematicians [4] in which the classification of maps of spheres into spheres of lower
dimension was advanced very considerably. The methods of the French school of
topology are quite different from those applied here.

Smooth manifolds are the principal and perhaps even the unique tools of the
investigation, so Chapter 1 of the work is devoted to an independent study of them
in full, the study being carried out somewhat more comprehensively than is required
for subsequent applications. Besides the fundamental definitions Chapter 1 con-
tains a proof, somewhat simpler than Whitney’s [5], of the theorem on embedding
n-dimensional smooth manifolds in (2n + 1)-dimensional Euclidean space, and al-
so a statement and study of the problem of typical singular points of smooth maps
of an n-dimensional manifold into Euclidean space of dimension less than 2n + 1.

In Chapter 2 the method of applying smooth manifolds to the solution of the
homotopy problem is expounded. First of all it is established that, for the homo-
topy classification of maps of one smooth mamfo]d into another, one may restrict
attention to smooth maps and smooth deformauons. Then the method of applying
smooth manifolds to the homotopy classification of maps of the sphere =t g into
the sphere S" is described.

A smooth closed manifold % of dimension k, situated in Euclidean space
2n+ of dimension n + k, is said to be framed and is denoted by (M U) if at-each
point x € M there is given a system U(x) = iul(x), s, U, (x)} of n linearly inde-
pendent vectors orthogonal to M* and depending smoothly on x. By adjoining a
point at mfmlty q to Euclidean space we obtain the sphere st *h . Further let
€;, »*+, €, be a system of linearly independent vectors tangent to the s};chere st
at its north pole p. It turns out that there exists a smooth map f of ™ into S*
such that f~1(p) = #* and that the map f,» obtained by linearizing the map f at the

point x € Mk, transforms the vectors ”I(x)’ ceny ”n(") into the vectors €7, > €,
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:spectively. The homotopy class of a map f possessing these properties is
1iquely determined by the framed manifold (Mk, U). For each homotopy class of
aps of ™ into S” there exists a framed manifold such that the corresponding
ap f belongs to the given homotopy class. Two framed manifolds (Mg, Up) and
1’1‘, UI) determine the same homotopy class of maps of 2"+k into S” if and only
they are homologous in the following sense. Let Entk o ET be the direct prod-
ot of the Euclidean space E™¥ and the real line E! parametrized by the variable
We will suppose the framed manifold (M(I)‘, U,) situated in the space ErtE 0
ad (MI]”, Ul) situated in E"* x I, The framed manifolds (Mg, UO) and (M’I‘, UI)
ill be regarded as homologous if there is a smooth framed manifold (Mk+1, U) 1y-
1g in the strip 0 < ¢ < I, whose boundary consists of the manifolds Mg and M?
nd whose frame U coincides on the boundary with the given frames U, and U,.
The construction described makes possible the reduction of the problem of the
omotopy classification of maps of 2n+k into S” to the homology classification
f framed k-dimensional manifolds. The role played by k-dimensional and (k + I)-
imensional manifolds is evident here. The homology classification of O-dimen-
ional framed manifolds is trivial and it is correspondingly easy to classify maps
f =" into S™. The homology classification of I-dimensional and 2-dimensional
anifolds also presents no particular difficulties and leads to the homotopy class-
ication of maps of 3™ fnto ™ for k= 1, 2. Chapter 4 of this work is devoted
» this, The homology classification of 3-dimensional manifolds already presents
onsiderable difficulty. It has been obtained by V. A. Rohlin [31.
To achieve the homology classification of framed manifolds in this work, use
; made of homology invariants. With a framed submanifold (Mk, U) of Euclidean
pace E™E ge associate a homology invariant which appears simultaneously as
homotopy invariant of the corresponding map of 2n+k into ", For n=Fk+ 1
rere is the well-known Hopf invariant y of maps of 22k+1 into S**1, It is easy
» interpret the invariant y as a homology invariant of framed manifolds. In Chap-
it a definition of the invariant y is given which depends on the theory of smooth
anifolds, and it is interpreted as a homology invariant of a framed manifold. For
= 1 the Hopf invariant turns out to be the unique invariant; this fact is proved
by familiar methods) in Chapter 4. For the cases k=1, 2; n > 2 an invariant §
s constructed in Chapter 4. This invariant is aresidue class mod 2. From its ex-
stence it follows that the number of homotopy classes of maps of 3™ jnto S®
ot k=1, 2; n>2 cannot be less than 2. That this invariant is unique for all

ases except k= I, n= 2 is proved on the basis of the uniqueness of the invari-
nt y for k= 1.
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CHAPTER 1

Smooth manifolds and smooth maps
§1. Smooth manifolds

Here at the outset the definition is given of a smooth manifold—or, equivalent-
ly, a differentiable manifold of finite class—and the simplest ideas connected with
them are introduced; next, concepts playing an important role in the theory of smooth
manifolds are considered, namely., submanifolds of smooth manifolds, manifolds of
line elements of a smooth manifold, direct products of smooth manifolds, and mani-
folds of vector subspaces of a given dimension of some vector space. Together
with differentiable manifolds of finite class it is possible to define also infinitely
differentiable manifolds, where alil the functions considered are infinitely different-
iable and, in the same way, analytic manifolds, where all the functions corfsidered
are analytic. In the present work infinitely differentiable and analytic manifolds
play no role and so will not be considered.

The notion of a smooth manifold. A) Let E* be Euclidean space of din;‘ension
k with Cartesian coordinates xl, ee, «¥, By the half-space of the space E* we
shall understand the set Eg, given by the relation

xl<o. 1
By the boundary of the half-space E('I; we shall understand the hyperplane EF-1,

given by the relation

xl= 0. @
By a region of the half-space Eg we shall understand ar]: open subset of' E’é (which
may or may not be open in EF), Points of a region of EO’ belongix.'ng to its bounkd-
ary E%=1 will be called boundary-points of the region. A topological skpace M
with a countable base, each of whose points @ has a neighbouthood U® homeomor-
phic to some region Wk of the half-space Eg or the space Ek, will .be called a
topological manifold. (Evidently, each region of EE is homec.omorphxc t.o some re-
gion of E[])‘, but for the introduction of coordinate systems it is convenient fo con-
sider regions of both spaces.) If the point a corresponds to akboundar)f pomf of
the region Wk, it is called a boundary-point of the manifold M* and of its ne.lgh-
bourhood U*. It is known that the notion of boundary point is topologically invar-
iant. Manifolds possessing boundary points we shall sometimes call manifold's
with boundary; and manifolds not possessing boundary poiats we shall sometimes
call manifolds without boundary. Compact manifolds without boundary will be
called closed. It is easy to verify that the collection of all boundary points of the
manifold MF is a k- I)-dimensional manifold without boundary.

Definition 1. Let M* be a topological manifold of dimension k& and let U* be
a neighbourhood in M* homeomorphic to a region Wk of Eg or E¥, The choice of

a definite homeomorphism between /% and WF is equivalent to the introduction
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1to U¥ of a definite system X of coordinates xl, see, xk, corresponding to the
oordinates of the Euclidean space E*. Then two different systems of coordinates
. and Y in U* are always connected by a one-one bicontinuous transformation

yi =yl oee, xB), j=1, -, k. 3)
Je choose once and for all a fixed number m and suppose that the functions (3) are

ot only continuous, but m times continuously differentiable in the region U% and

!
hat the Jacobian l%l does not vanish., By this condition we associate each of

he systems X and Y with one and the same smoothness class of order m. It is
vident that different classes do not intersect and that each class is determined
y an arbitrary coordinate system belonging to that class. If, among all these
lasses, a particular class has been distinguished, the neighbourhood U* will be
alled m times continuously differentiable. On the strength of this two m times
ontinuously differentiable neighbourhoods U%, V¥ of the manifold M* always in-
uce in their common part two classes of coordinate system; if these classes co-
ncide we say that the neighbourhoods U* and V* are differentiably compatible.

f all neighbourhoods of some basis of neighbourhoods of the manifold MF are m
imes continuously differentiable and moreover pairwise compatible, the manifold
1% will be said to be m times continuously differentiable, or smooth of class m-
i sometimes simply smooth without indicating the number m, which, however, will
ways be assumed sufficiently large for our purposes. [ Analogously, if the func-
ions (3) are analytic, the manifold is called analytic.]

As is evident from the given definition, the property of a manifold of being dif-
erentiable is determined by properties of the neighbourhoods of some basis. If
vith the help of two bases in the manifold two differential structures are defined,
‘hey are considered to be the same if and only if the union of the two bases again
satisfies the conditions of definition 1. Actually, to determine a differential struc-
ure in a manifold it is sufficient to describe it in each neighbourhood of some cov-
rring of the manifold. Such a covering also determines, of course, the topology of
the manifold.

If only connected neighbourthoods are admitted— which is always possible—
then in each neighbourhood all distinguished coordinate systems fall into two
classes, in each of which the transitions (3) are realized by means of transforma-
:ions with positive Jacobian. Each of these classes will be called an orientation
of the given neighbourhood. It is evident that a smooth manifold is orientable if
and only if it is possible to choose compatible orientations of its neighbourhoods.
To each such choice corresponds a definite orientation of the manifold.

B) The boundary M%=1 of a smooth manifold M* may be itself regarded in a

natural way as a smooth manifold of the same class, by means of the following
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construction. Let U¥ be a neighbourhood in M%, with distinguished coordinate sys-
tem X, for which the intersection vk-1- Uk n M*-1 is non-empty. The equation .
of U1 in Uk evidently has the form %l = 0, and so it is natural to take x2,~- X
as distinguished coordinates in U1, 1f V¥ is another neighbourhood in ME (per-
haps coinciding with U*), with distinguished coordinate system Y, for which the
intersection VA~1= VE N M*=1 is non-empty, then in the common part of U¥ and

V% we have

yi=yf(x'1,...,xk), j=1,---,k, 4)
whence for x!= 0 we obtain
)’i=}’i(0,x2"",xk)y j=2,""k- (5)

From the differentiability of the relations (4) follows the differentiability of the
relations (5). Further, from the relation yI(O, x2, vy, £%) =0 it follows that in

k=1 () yh~1. , .
ve=in 57.(]2""’7’:) oyl Iy%--+ . ¥") ©)

L) 9% aad... . ah)
A, D
and since the left-hand side is non-zero we obtain -—L—-———L # 0. If the system

a(xz,---.x )

X is used to orient Uk, the system xg,° 5 X will beltaken as an orienting coor-
dinate system of the neighbourhood Uk'_l. Because lT > 0, the fact that

E T ) Ay -+, v x
a(xl’_."xk) a(xz’...’xk) ‘ .
boundary of a smooth oriented manifold acquires a natural orientation.

is positive implies that is positive. In this way, the

C) Let a be a point of a smooth manifold M*. Each coordinate system, de-
fined in some neighbourhood Uk of the point @ and belonging to the distinguished
class is called a local system of coordinates at the point a. It is evident that each
point a of the manifold Mk may be taken as origin of some local coordinate sys-
tem. A (contravariant) vector on the manifold M¥ at the point a is a function asso-
ciating with each local coordinate system at @ a system of k real numbers — com-
ponents of the vector relative to this coordinate system —in such a way that the
components ul, ceey, u* and vI, e, o* of one and the same vector relative to two
local coordinate systems xl ..., x* and yl, cee, yk are always connected by the
relation ¥ avica)

IS A AL T PR X %)
i=1 dx
It is evident that a vector is uniquely determined by its components relative to an
arbitrary local coordinate system. By defining a linear operation on vectors as :n
operation on their components, we turn the set of all vectors on the manifold M* at
the point @ into a k-dimensional vector space RZ, which is said to be tangent to

the smooth manifold M at the point a. To each local coordinate system at & cor
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:esponds, clearly, a definite basis in the tangent space, the components of any
vector with respect to this basis being the components with respect to the coordin-
ate system. If the point a belongs to the boundary M*~1 of the manifold M¥ it de-
ermines, besides the tangent space RI;, a space R’;—I tangent to M1, We rake
as local coordinates in M*~7 the parameters x2 e, x¥* (see B)) and ideatify the
k

vector of R¥~ with components u2, .«., u” with the vector of RL’ with components

9, 4l ..., uk; then we obtain a natural embedding of Rl;"l in Rg.
Smooth maps. D) Let MF and N be two smooth manifolds of class m, and let
% be a continuous map from the first to the second. We choose a local coordinate
system X at the point ¢ € M* and a local coordinate system Y at b = ¢h(a) € N%;
then in the neighbourhood of the point @ the map ¢ takes the form
yi= diad, oo, 5Py, j= 1, -0, L (8)
[f the functions gﬁi are n times continuously differentiable, n <m, they will be as
often differentiable for any other choice of local coordinate system; thus we may
say that the map ¢ itself is of smoothness class n. In what follows, in talking of

smooth maps, we will always suppose that n is sufficiently large for our purposes.

If the matrix || —g—:—ll has rank % at e, we will say that the map ¢ is regular at a.
It is easy to seexthat if the point a belongs to the boundary M*~1 of the manifold
W% then from the regularity of ¢ at a follows the regularity of ¢|Mk"1 at a. If
@ is regular at each point a € ME it is called regular. It is easy to verify that if
¢ is regular at a, then it is regular and homeomorphic in some neighbourhood of

a. A regular homeomorphic map is called a smooth embedding. The map ¢ is called

E¥Y
proper at a € M¥ if the rank of the matrix Hg(ﬁ—tn, j=1, -, b i=1, -,k is L
x

It is easy to see that the set of all improper points of the map ¢ is closed in ME,
The point b € Nlis called a proper point of the map ¢ if ¢ is proper at each
point of the set qS_I(b). The point a is called a singular point of ¢ if it is nei-

9!
ther regular nor proper; that is, if the rank of the matrix || -i)—ﬂ is less than each
dx

of k and [.

E) Every smooth map ¢ of the smooth manifold M in the smooth manifold N’
induces at each point a € M® a definite linear transformation ¢, of the vector
space RZ, tangent to M* at a, into the vector space Ri, tangent to N at b = ¢(a).
Namely, if local coordinate systems X and Y are chosen at the points a and b
respectively, then to the vector u € RL‘ with components ul oot u¥ relative to
the system X corresponds the vector v = ¢ (u) € Rg with components

ol = § ﬂ(_")_,;i,

. : j=d, 00,1 ' 9)
i=1 0
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relative to the system Y. It is not difficult to see that this definition is unambig-
uous; that is, for arbitrary choice of local coordinate systems it leads to the same
definition of ¢_. If the map ¢ is regular at g, the map ¢, is one-’-cone all1d may be
used to embed Rl; in R!. If the map ¢ is proper at @, then D (RY) = R;.

Definition 2. A smooth map ¢ of class n of a smooth manifold M¥ of class
m onto a smooth manifold Nk of class m, m > n, is called a smooth homeomorphism
if it is homeomorphic and regular. It is evident that if the map ¢ is a smooth home-
omorphism of class n, then the inverse map d)‘l is also a smooth homeomorphism
of class n. Tow manifolds are called smoothly homeomorphic if there exists a
smooth homeomorphism of one onto the other.

Some ways of constructing smooth manifolds. F) Let P7 be a subset of the
smooth manifold M* of class m, defined near each of its points by a system of k—r
independent equations. This means that for each point a € P' there exists a neigh-
bourhood UF, in the manifold M¥ with local system X, such that the intersection
P" () U* consists of all points whose coordinates satisfy the equations

Gl oo, xFy=0, j=1L oo k-r (10)

Further we assume that the functions 1,/;i are m times continuously differentiable
U . .
and that the functional matrix H——%-(T—Z- I, j=1 o k=r;i=1 -+, k, has rank
x
k- r; if, indeed a is a boundary point of the manifold M%, then we assume that

T UG L .
even the truncated functional matrix | g I, j=1,e-, k-r; i=2 , k,

has rank k — r. Under these conditions the set P’ assumes in a natural way the
structure of an r-dimensional manifold of class m, smoothly embedded in M, we
will call this manifold P" a submanifold of the manifold M. In addition it turns
out that the boundaries P! and ME=1 of the manifolds P" and M¥ satisfy the re-

lation

pr-1 . prmk—i, (11)
and, if a € P and RL‘, R’;"I, R;, R;_I are the tangent spaces to the manifolds
ME, Mk'l, Pr, P—1 at the point g, then

R-1- RN RE-L, (12)

a a a i
Here the spaces RE-1, R, RZ"I are considered as subspaces of the space R7
a
(see C) and E)).
To prove that P’ is an r-dimensional manifold and to give it a differential

structure we renumber, if necessary, the coordinates in such a way that the Jacob-

3y i(a)

ian | Lj=ldy oo b—ryi=r+ 1, .-+, k, is non-zero; but in the case of a

. 1
boundary point we do not alter the number of the coordinate x'. Then the system

: : : r+1 k.
(10) admits a unique solution with respect to the variables x™ %, »--, x7:
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xli=fial oo, 27, i=r+l oo,k (13)
In the case of a boundary point the coordinate %! figures among the independent
variables. The functions fi are defined and m times continuously differentiable in
any region W’ of the half-space Ej of the variables %1, «++, «” and determine a
homeomorphism of this region onto some neighbourhood U’ of the point @ in P,
Thus P’ is an r-dimensional manifold. The differential structure in the neighbour-
hood U' is defined by means of the coordinates x1, cer, xl,

The natural inclusion of the manifold PT in the manifold M* is given in U™ by
the relations
wi=axli=1, -0, r1; xi= fi(xl, cee,xh), i=r+ 1, -0k (14)
where the parameters x', ---, x” on the right are regarded as coordinates in UT and

the parameters xl, LRI 2k

on the left are coordinates in Uk. The relation (11) is
is evident. Now let a € P™"I; we prove relation (12). To the local system X there
corresponds some basis e, -+, ¢, of RL‘; a basis of the space R’;—I consists of

the vectors ey, ++ -, €;; a basis of the space R(’Z consists of the vectors

ko ofl

and a basis of Rra_l consists of all these vectors except the first. By considering
these bases we easily convince ourselves of the truth of relations (12).

To establish the compatibility of the coordinate systems introduce into P,
we consider, together with the point a, a point b € P™ with local system Y and

neighbourhoods V% and V', analogous to the neighbourhoods U* and U'. The re-
lations analogous to (13) will be:

yi=gl ooy, i=r+l e,k (15)
We suppose that U" and V' intersect; then U* and V¥ themselves intersect, so
let

yizyid oo, 2%, i1, k; (16)

xi=wiyl o ), is ek, a17)
be the transformations from X to Y and conversely. Substituting for P "

from (13) in (16), we obtain for the first r variables y:

yi=;i(x1,---,xr), i=1 -, r (18)
In the same way, substituting for yr'—l, vee, yk from (15) in (17), we obtain
xi=xil oo yh), i=1, .o, n (19)

The transformations (18) and (19) are m times continuously differentiable, and, as
they are mutally inverse, their Jacobians are also mutually inverse and so non-zero.
Thus assertion (F) is completely proved.

G) Let M* be a smooth manifold of class m > 2 and L% the set of all vec-
tors tangent to M* (see C)); thus L2% consists of pairs (a, u) where a € Mk,
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u € RE, By means of the following construction L?* becomes in a natral way a i
a . .
smooth 2k-dimensional manifold of class m — I. Let U* be a neighbourhood in M
with local system X. By U2 we will denote the set of all pairs (x, u) € L2k sub-
ject to the condition x € U*. The set UZ* constitutes a neighbourhood in L2% and
a distinguished coordinate system is defined in it as follows. Let PLARTT %" be
the coordinates of the point x in the system X and let ul, -+, uF be components
of the vector u relative to the local system X; then for coordinates of the pair
take the numbers

(x, u) we take nu xI,...,xk,u,I,.--,uk, 20)

If V* is a neighbourhood in M¥ (which may coincide with U*) with distinguished system
Y, such that x € V¥, and if the coordinates of the pair (x, u) in the neighbourhood y2, gen-
erated by the system Y, are y1, e, yk, ol, e, vk, . (21)
then the transition from the coordinates (20) to the coordinates (21) is evidently

given by the relations

yfzyi(xl,...,xk), =1 e, ks (22)
k i

wies O i ik (23)
i=1 Oxt

(see (9)). These relations are m — 1 times continuously differentiable and their
i . .

Jacobian is equal to lgz—lz which is evidently positive. Since the neighbourhoods
'3

of the type U?% cover licm‘, the given construction turas L2% into a smooth mani-
fold of class m - 1.

H) Let R* be a vector space of dimension k. By a ray u" in RE passing
through the vector u #-0, we will understand the totality of all vectors tu where ¢
is a positive real number. We fix a basis in R¥ and denote by Ri.‘—l the cooydinate
hyperplane u= 0. If the ray u* does not lie in Ri?_i there exists in 1" a unique
vector u satisfying the condition |u,il = ]; we call this vector fundamental with
respect to the plane Ri.‘_l. The totality of all rays'for which .the fundamental vec-
tor with respect to Ri.‘_l satisfies the condition u’=+1 (:r ut = ~1 we will denote
Uf;l or Uikz_l respectively. For coordinates of the ray u € U!‘;I, p=1or 2 we
take the components uI, vy, u 1, wtl oo u® of the vector u of the ray which
is fundamental with respect to the plane Rtl"‘l. As the system of all sets Uf-‘p—l
covers the space S*=1 of all rays, so S_k—l becomes a smooth manifold, evidently
homeomorphic to the (k- I)-dimensional sphere.

8) Let M* be a smooth manifold of class m. By its manifold of line elements
we understand the set LZ5~1 of all pairs (%, u"), where x € M* and u" is a ray of
Rk , to which is assigned a natural differential structure by means of the following
c;nstruction. Let U* be a neighbourhood in M* with distinguished system X. In
the vector space R’;, tangent to M% at the point x, there is defined a basis corre-

sponding to the local system X; in this way regions U‘.l;)_'i (see H)) are defined in
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the set SI;—I of rays of the space Rl;, with their coordinate systems. By U=l ge
denote the totality of all pairs (x, ") satisfying the condition x € Uk, u* € Ui’;—i’
and for coordinates of the pair (x, ) in U;;‘):_I we take the numbers

xl, cee, xk, u1, cee, u':_l,_uH'I, .ee, uk, (24)
where xI, seny, %% are the coordinates of the point x in the system X and ul, . --,ui—l,

u”’l’ ceny u* are the coordinates of the ray " in Uik—l . It is easy to verify that
the system of neighbourhoods Uf:‘l covers L2571 and that the coordinate systems
introduced into these neighbourhoods are compatible among themselves, so that

L1251 s a 2k - I)-dimensional smooth manifold of class m ~ 1.

K) Let M* and N! be two smooth manifolds of class m, Mk having no bound-
ary points, The directD) product PR - M% x NI, that is, the set of all pairs (x, ¥),

x € Mk, y € Nl, appears in a natural way as a smooth manifold of class m on the
basis of the following construction. Let U* and V! be arbitrary coordinate neigh-
bourhoods in the manifolds M* and N and let X and Y be coordinate systems in
them. The set U¥ x V! C M¥ x N! we take as a coordinate neighbourhood in the
manifold P¥t!| taking as coordinates of the point (x, y) € U¥ x V! the numbers
(xL, --- s xk, y1, ceey, yl) where (xl, v, xk) are the coordinates of the point x in
the system X and (yl, cee, yl) are the coordinates of the point y in the system Y.
It is immediately clear that the system of coordinate neighbourhoods so constructed
curns P** into a smooth manifold of class m. If M* and N! are oriented and the
systems X and Y correspond to the orientations of the manifolds then we regard
the system X, Y as corresponding to the orientation of Pk, In this way, the dir-
ect product of oriented manifolds acquires a natural orientation. If N1 is the
boundary of the manifold NY, then M* x N*=1 is the boundary of the manifold

ME x N,

L) Let E¥*! be a vector space of dimension % + [ and let G(k, ) the set of
all its k-dimensional subspaces. The set G(k, I} becomes a smooth (even analytic)
manifold on the basis of the following construction. Let E’(; € Gk, I) and let
(e, +++, ey f1» =+, f)) be a basis of E**L ith the property that the vectors
€, s € lie in Eg . We designate by E' the space spanned by the vectors
fis == > fy, and we let U*! stand for the set of all vector subspaces EX € Gk, I
intersecting E! in the zero vector only. If Ek e Ukl, it possesses a basis
(el,’ cen, el:) determined by the relations

. = ,
where “xi” is a matrix of real numbers. The elements xi., i=loeee by j=1000,1

!
1 7 .
ei=ei+%x§f., i=1,--k

of this matrix may be taken as coordinates of the element EF in the coordinate

1) Translatot’s note: i.e., topological product.
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neighbourhood UKL, 1e may be immediately verified that the totality of coordinate
neighbourhoods of the form U¥ define an analytic structure in G(k, I) so that

G(k, 1) becomes an analytic manifold of dimension kL

§ 2. Embedding smooth manifolds in Euclidean space

In the present section it will be shown that a compact k-dimensional smooth
manifold of class m > 2 may be mapped regularly and homeomorphically into Euclid-
ean space R2k+1 of dimension 2k + I and regularly into Euclidean space RZk of
dimension 2k, the map itself being smooth of class m. This proposition in some-
what stronger form, namely for m > I and without the requirement of compactaess,
was first proved by Whitney [5]; the proof given here is considerably simpler.

In the proof an essential role is played by the very elementary Theorem 1.

Smooth maps of manifolds unto manifolds of higher dimension.

Theorem 1. Let M* and N' be two smooth manifolds of dimensions k and I,
where k<1, and let ¢ be a smooth map of class 1 of the manifold M% into the
manifold N'. Then the set qS(Mk) is of the first category in NL, that is, it may be
represented as the union of countably many sets nowhere dense in N'. In particu-
lar, if the manifold ME is compact, the set &MY is also compact and NE— (MK
is1) everywhere dense in N

Proof. Let a € Mk, b = H(a), let Vbl be a coordinate neighbourhood of the

point b in N and let U: be a coordinate neighbourhood of a in Mk suclllghat .
qS(Uf) C Vbl' We choose neighbourhoods Uf]’ Ué‘2 of a in M% such that Uy C U,

6:2 C Ufl and U:] is compact. The regions U:2’ a € Mk, cover the manifold M.
A countable subcovering of this covering may be chosen and so it is sufficient, for
the proof of this theorem, to show that, for an arbitrary choice of the point a € Mk
the set gb(ﬁ:z) is nowhere dense in Vé. Since the region sz is a homeomorphic im-
age of a region of the Euclidean half-space EI(; we may simply regard U:Z as a
region of the half-space Eg. In the same way we may regard Vlf as a region of the
Euclidean half-space Eg. Thus ¢ may be regarded as a smooth map of class 1 of
the region U§ into the Euclidean space E! and it is sufficient for us to show that
the set d)(ﬁalfz) is nowhere dense in El. This we now prove.

From the smoothness of the map ¢ and the compactness of the set Ufl fol~
lows immediately the existence of a positive constant ¢ such that for any two

points x and x' of [7;‘1 the inequality

p(db(x), b (x') < eplx, x'), 1)
is satisfied. We choose an ¢-cube subdivision of the Euclidean half-space, that is.

we divide the half-space E(l)‘ in a regular way into cubes of edge-length €. We de-
note by @ the totality of all closed cubes of the chosen subdivision which meet

1) Translator’s note: The author uses 'A\B’ for the complement of B in 4.
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(7:;2. Since the set 5:2 is compact and so can be included in a sufficiently large

cube, the number of cubes of the collection { does not exceed cl/sk,

where ¢ 1
is a positive constaat not depending on ¢,

Let & be the distance between the sets
Eloc - :1 and U:Z' We suppose that the diameter eVE of each cube of Q is less
than 8. Then each cube KZ- of the collection @ lies in /%

a7 and in the light of the
inequality (1) the set &(K;) is contained in some cube L, of the space E! of edge-
length ¢\/%-¢, the volume of which is equal to . kl 2

-, In this way the whole
¢(U:2) is contained in a union of cubes I,

;» the number of which does not exceed
of the whole space g‘)(U(;“?) does not exceed the number
arbitrarily small, it follows from this that the set gb(Ua/‘z)

gion and, being compact, it must therefore be nowhere dense

cl/ek, and so the volume
c; clkl 2'El—k. Since ¢ is
does not contain a re
in EL,

In this way Theorem 1 is proved.,

Projection operators in Euclidean space. In what follows an essential role
will be played by projection operators.

Let C' be a vector space and BY a vector
subspace,

Regarding the space C” as an additive group and BY as a subgroup, we

btain a dissection of the space C' into residue classes modulo the subspace B9,

wnd moreover the residue classes themselves form a vector space AP of dimension

'=T-q. By associating with each element x € C’ the residue class 7 (x) € 4P

thich contains it, we obtain a linear map # of the space C' on the space AP,

alled the projection along the projecting subspace B?. More intuitively the space
(P may be realized as a linear subspace of dimension p of the space C"

, inter-
ecting BY only in the zero vector; then the operator 7 becomes the usual pro-
rction. If the space C7

is Euclidean then, defining BY as the orthogonal comple-
ent of the given subspace AP C C7, we obtain an orthogonal projection 7 of the
»ace C7 on the subspace 4P,

A) Let & be a smooth map of the smooth manifold M* ineo the vector space
", regular at the point a € Mk, and let 7 be the projection of the space C” along
e I-dimensional subspace B! onto the space A™ 1, It turns out that the map n¢
M ineo A™1 fails to be regular at the point a € M* (see $ 1, D) if and only if
e line ¢(a) + BI, passing through ¢(a) and parallel to B, touches SM*) at the
sint h(a).

To prove this we choose in the neighbourhood of the point @ a coordinate sys-
1

nox, .., xk, and we choose in C rectilinear coordinates yl, *++, ¥ such

1t the last axis coincides with BI. In the chosen coordinates the map ¢ assumes
2 form: y/ = ng’(xl, tee, xk), j=1, -4, where, by virtue of the postulated reg-
i

wity of ¢ at the point g, the rank of the matrix "8_‘"’ j=L e, rsi=leon k,
x

equal to k. To each vector u on M¥ at the point @ corresponds the vector

rﬁ—*q
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() = v € C7, tangent to qS(Mk) at the point ¢(a), with components vl, oo, ol
[determined by the relations 9, $1, L= 1l. If now the ‘map 7¢ is not regular at

Y : ,
the point a, the rank of the matrix ”%"’ j=l e, r—1;i=1,++., k, is less
%

than %, and so there exists a vector u £ 0, such that the vector v = qba(u) has the

property vl oI 0,v" £ 0, and this means that v € BL. If conversely there

-y
. exists a vector p = ¢a(u) £0, belonging to BI, then the rank of the matrix ng%;l[

J=1l,-ve,r=ILii=1, .., k is less than k; that is, the map #¢ is not regular
at the point a. )

B) Let ¢ be a smooth regular map, of class 2, of the smooth manifold M* in-
to the vector space C' of dimension r> 2k and let BY€E G(q, r— q) be a project-
ing subspace of dimension g <r— 2k of the space C' onto the space AP, The pro-
jection will be denoted by 7. By Qt; we denote the set of all those projecting sub-
spaces BY for which ¢ is not regular. It turns out that Qé is a set of the first
category in the manifold G(g, r - ¢) of all projecting directions.,

Let (x, u*) be an arbitrary line element in the manifold M* (see §1, I) and
let u be some non-zero vector of the ray u". To the vector u there corresponds,
in the light of the relations (9) of §1, a vector v = ¢x(u) £ 0. The ray v in the
space (', defined by means of the vector v, depends only on the line element
(x, u*) and we set »*= O(x, u”). It is easy to see that the map ® of the manifold
L2k~1 (see §1, 1) into the manifold S™!{ (see §l, H) is smooth of class 1, and so
O(LZ#=1y is of the first category in S™! (since r— 1> 2k - 1, see Theorem 1).
Thus, in the light of (A), (B) follows for g=1.

Repeated application of this construction enables us to prove assertion (B)
for arbitrary ¢ < r— 2k,

C) Let ¢ be a one-one smooth map, of class 1, of the smooth manifold M* in-
to the vector space C" and let BY € G(q, r - q) be a projecting subspace of dimen-
sion g <r- 2k~ I The projection will be denoted by #». By Q:II we denote the set
of all those projecting subspaces BY for which the map 7 is not one-one. It
turns out that Q;’ is a set of the first category in G(g, r- q).

Let x and y be two distinct but arbitrary points of the manifold M¥, By
D '(x, y) we denote the ray consisting of all vectors of the form U (y) - ¢ (x)),
where ¢ is a positive number. In this way we obtain a map @' of the manifold M2%
of all ordered pairs (x, y), % #y, into the manifold S~ of all rays in the space
C’. A differential structure may be introduced in a natural way into the manifold
M?% | and it is easy to verify that the map ®'is then smooth of class 1. Thus
@' (M?*) turas out to be a set of the first category in S”~! (see Theorem 1), from

which (C) follows for ¢ = 1. Applying this construction a sufficient number of times,
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ve obtain a proof of assertion (C) for arbitrary ¢ <r— 2k - L

From (B) and (C) there immediately follows

D) Let ¢ be a one-one regular, smooth map, of class 2 of the smooth manifold
W* into the vector space C” and let BY € G(g, r - ¢) be a projecting subspace of
limension g < r— 2k — 1. The projection will be denoted by =, and O will denote
the set of all those projecting subspaces B? for which the map n¢h is not both one-
one and regular. Since Qq = Q; U Q;’, Qq is a set of the first category in the mani-
fold G(g, r - q)

Embedding Theotem. E) Let qﬁl, ey, én be smooth maps, of class m, of the
smooth manifold M¥ into the vector spaces C,, ---, C, respectively. We denote
by C the direct sum of the spaces C), -, C,, consisting of all systems [ul,---,un]
where. u, € Ci‘ We define the direct sum ¢ of the maps ¢;,--+, ¢, by setting
Px) = [qSI(x), s, ¢n(x)], x €M, It is easy to see that ¢ is a smooth map, of
class m, of the manifold M% into C. It is easy to verify that, so long as one of the
maps ¢, <.+, ¢, is regular at the point a € M¥, then the map & is also regular
at a. Further, it is easy to verify that if two points @ and b of MF are transformed
into distinct points by at least one of the maps qSI, +++, ¢, then they are trans-
formed into distinct points by the map ¢.

Theorem 2. Let M* be a smooth manifold, of class m > 2. There exists a
smooth embedding, of class m, of the manifold M¥ into Euclidean space of finite
dimension.

Proof. We denote by K(¢) an arbitrary real function of the real variable ¢, dif-
ferentiable an arbitrary number of times, and satisfying the following conditions:

K(t)= 1 for |¢] <%; K@) =0 for {t| > I;
for —I1 < ¢ <~% the function K(¢) is monotone increasing; for %<t < I the func-
tion K(#) is monotone decreasing. It is easy to construct such a function. We put
Kitl 62 ..., t%)= . K1) K2y -- KGF),  i= 1, -0e, ky
KRIGL 22 oo iRy = KGey- K6 2)- - - K(eF).

Let R* be Euclidean space with Cartesian coordinates tl, ceey t
k+1

k RE+1

and let
be Euclidean space with Cartesian coordinates yl, «er, ¥, We designate by Q
the cube in the space R given by the inequalities |ti] <2, by Q' the cube in the
same space given by Iti[ < 1, and by Q" the cube given by |til < %. By QO we
designate the half cube of ¢ given by 1< 0. We now map the space R¥ into the
space R¥+1 by the relations

y/ = Ki(th, oo, ¢F), e Leee, kit L @)
It is easy to see that this map is arbitrarily often differentiable, and transforms the

set R¥ — Q1 jnto the origin of coordinates in R¥+1 ) that it maps the cube Q' con-
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tinuously and one-one, and finally that it maps the cube Q"regulatly.
Now let a be an arbitrary point of M%, and let Ug be a coordinate neighbour-
hood of a with coordinate system X, having its origin at the point a; finally let

¢ be a sufficiently small positive number so that, under the map
i

i i=1 .-,k 3)

€
of the neighbourhood U;‘ into the space Rk, the image of U‘f covers the whole of

the cube Q if a is an interior point of M* and covers the whole of the half cube
QO if a is a boundary point of ME, Let Q‘;, Q; be the inverse images of @', Q"

under this map.

Rk+1

We define a map ¢, of the manifold M* into Euclidean space by putting

x*

xl x
. ?_,..-’ —_—

rs € .
for points x € U* with coordinates x?, +«-, x%, and y!=0 for points x € Mk - Uk,
a a

yi=Ki

I is easy to see that ¢, is a smooth map of class m of the manifold M* into RkH,
. ! "
homeomorphic on Qa and regular on Qa.

By choosing from the neighbourhoods Q;’ a finite covering Q‘IIII’ e, Q;’n of
the manifold M* and forming the direct sum of the maps an], ceey, qsan correspond-
ing to these cubes (see E), we obtain the required map ¢ of the manifold ME into

finite-dimensional Euclidean space.

From the proposition we have proved the theorem stated in the opening para-
graph follows immediately. Indeed, the manifold MF can be regularly and homeo-
morphically embedded in a vector space CT of sufficiently high dimension (see
Theorem 2). Further, in the space C' there exists a projecting subspace Br—2k-1

A2k+] g regu-

such that the induced projection of the manifold M* into the space
lar and homeomorphic (see D). In the same way, in the space CT there exists a
projecting subspace B2k guch that the projection of the manifold into A%k s
regular (see B). We prove here a stronger Theorem 3 asserting that for an arbitrary

C2k+1 there exists an arbi-

smooth map of the manifold M* into Euclidean space
trarily near map of the manifold which is regular. For this formulation of Theorem
3 it is necessary to introduce the notion of proximity of maps of class m, taking
into account all derivatives up to and including order m.

We remark first of all that if f is a smooth map of a region W% of the Euclid-
ean half-space E’é into the vector space C7, the partial derivatives of the vector
function f(x) = f(xl, -+, x*) appear as vectors of the space C'.

F) Let M* be a smooth compact manifold of class m, let E! be a vector space
and let P be the set of all smooth maps of class m of the manifold ME into the
space E!. We introduce a topology into P by assigning to it a metric, depending

on a random choice of certain elements of construction. In fact, let US, Vs;
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s=1,-+-, n be finite collections of coordinate regions in the manifold M* such
that the regions U; s =1, ++-, n, cover the manifold M and satisfy the inclu-
sions (78 C VS; s=1, -+, n; and moreover in each region Vs let a coordinate sys-
tem Xs be chosen. Further let Y be a Cartesian coordinate system in the space
EL, We define the distance p(f, g) between two maps f and g in P in such a way
which depends on the choice of regions Us, V,, coordinate systems Xs; s=10,m
and coordinate system Y. For this we write the maps f and g, restricted to ¥,

in coordinate form by the rule

yi=fien=fih -+, 25, 4)

yi=g£(x)=g£(x1, ey x). (5)
Let iz, +--, i* be a set of non-negative whole numbers whose sum does not exceed
m. We set
ai1+. .. +ik(f£(x) - gé(x)) y
(0x! )i] . (axk)ik

The maximum of the function co;(x; PRI 79 with respect to x for x € U, we

Wl (x; gy oes i) = |

designate by msi(il, ««+, iy), and the greatest of all the numbers a);.(il, sy, ik),
when ij, ig, ) iys S, J vary over all admissible values, we take as the distance
p(f, g) between the maps f and g. It is easy to verify that the topological space

P does not depend on the random choice of systems of regions U, V,; s=1,--,n,
and coordinate systems Xs; s=1,-+-,n; Y. The topological space P is called
the space of maps of class m of the manifold M% into the space E'. The asser-
tion that, in arbitrary ‘proximity of class m’ to a map f, there exists a map posses-
sing a certain property A, means that in an arbitrary neighbourhood of the point f
of the space P there exists a map possessing the property 4.

Theorem 3. Let M* be a smooth compact k-dimensional manifold of class
m> 2, let AP be a vector space of dimension p, and let P be the space of maps
of class m of the manifold M* into the space AP. We denote the totality of all
regular maps in the set P by 11’ and the totality of all maps in P which are both
regular and homeomomhic we denote by I1. It turns out that the sets 11' and 11 are
always regions in the space P. Further, if p > 2k, the region 11 is everywhere
dense in P, and, if p> 2k + 1, the region 1l is everywhere dense in P.

Proof. We show first that the sets [I'and II are everywhere dense in the space
P for the values of p indicated in the theorem. Let fE P and let e be a smooth,
regular, homeomorphic map of class m of the manifold M* into a vector space BY
of sufficiently large dimension (see Theorem 2). We denote the direct sum of AP
and B by C7 and we regard AP and B9 as linear subspaces of the space C'.
The map h, direct sum of the maps f and e (see E) is regular and homeomorphic

and the projection of k onto AP along BY coincides with the map f. By virtue of
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propositions B and D it follows that, arbitrarily close to the projecting direction
B9 there exists a projecting direction Bg such that the projection g of the map A
is regular if p > 2k and both regular and homeomorphic if p > 2k + 1. Thus, arbi-
trarily close to the map f there exists a map g possessing the required properties.

We show that [1'is a region. Let f€ II'. Since the map f is regular at the

afl
point x € U, the rank of the matrix {__fiu at this point is equal to % (see F).
. doxt af!
From this it follows that the rank of a matrix near to || ——fs— Il is also k. Thus there
dx*
exists a sufficiently small positive number ¢' such that for p(f, g) < ¢' the map g

is regular at the point x. Since the first derivatives of the functions fs’ (x) are con-
tinuous and the sets (Z are compact and a finite number of them cover the manifold
Mk, there exists a sufficiently small positive number ¢ such that for p(f, g) <e the
map g is regular at every point of Mk,

To prove that II is a region we first note the following fact.

a) In the space Q of all linear maps of the Euclidean vector space E® into
the Euclidean vector space AP we introduce a metric by means of coordinate sys-
tems X and Y in these spaces. Let ¢ and ¢ be elements of O with coordinate
expressions:

.
y/=2¢£xl’ ]"_'I;"',P;
i=1

We define the distance p(p, ¢v; a]s the greatest of the numbers |<,‘bi - 1,/1” It turns
out that for each compact set F of non-degenerate maps there exists a sufficient-
ly small positive number & such that for p(F, ) < 8 we have
()| > 8-1xl,

where x is an arbitrary vector of EF,

This prcposition is easily proved by reductio ad absurdum from considerations
of continuity.

Let f € 1. It turns out that there exist small numbers & and ¢ such that for
p(f, g) <€ (see F)we have the inequality

p(g (a), g(x)) > 8p(f(a), f(x)), ©)

where @ and x are two arbitrary points of Mk. Indeed, when p(f(a), f(x)) <a,
where « is some positive constant, the maps f and g are sufficiently well repre-
sented near the point a by linear maps and moreover uniformly with respect to the
point a € M*. In this case the inequality (6) follows easily from proposition (a).
In the case when p(f(@), f(x)) > o the inequality (6) follows for sufficiently small
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¢ from the one-one property of the map f. From the inequality (6) and the one-one
property of the map f follows the one-one property of maps g sufficiently close
to f.

Thus, Theorem 3 is completely proved.

$3. Improper points of smooth maps

We recall first the definition of improper points of a map (see §1, D). Let ¢
be a smooth map of the manifold M¥ into the manifold N!. The point a of the mani-
fold MF is called an improper point of the map ¢ if the functional matrix of the
map ¢ at the point @ has rank less than I. The point b of the manifold N is
called an improper point of the map ¢, if the counterimage qS_I b of this point con-
tains at least one improper point of the map ¢. Thus it is necessary to distinguish
improper points of the map ¢ lying in M% from improper points of the map ¢ lying
in N'. If F is the set of all improper points of the map lying in the manifold Mk,
then @(F) is the set of all improper points of ¢ lying in N!. Theorem 4 following,
due to Dubovitskil [6], asserts that ¢(F) is a set of the first category in N, that
is, it may be represented as the countable sum of compact nowhere dense subsets
of N!. From this it follows that the set N! ~ $(F) of all proper points of the map
¢ lying in Nl is of the second category in N, that is, “it is big enough” and, in
any case, everywhere dense. This fact can be expressed in somewhat informal
terms by saying that the points of the manifold N are, in general, proper. Theorem
4 plays a very important role in the theory of smooth manifolds; from it may be de-
duced a whole series of results about what, in general terms, can occur under this
or that hypothesis. To deduce each of these results it is necessary to select prop-
erly the manifolds M* and N! and the map ¢. This choice can be described with
the help of the following very general and so somewhat vague proposition (A).

Reduction to general position. A) Let Q be some smooth manifold and let P
be some collection of functions on it, also forming a smooth manifold. For a given
function p € P on the manifold ¢ some point g € Q may be regarded as special 1)
in a sense which can be precisely explained. Pairs (P, 9 pE P, q € Q, are called
distinguished if the point g is special with respect to the function p. It is sup-
posed that the set of all distinguished pairs (p, q) forms a smooth submanifold Mk
of the manifold P x 0 (see $1; X, E). To each point (p, ¢} € M* may be set in
correspondence the point ¢(p, ¢) = p. In this way there arises a map ¢ of the mani-
fold M* into the manifold N! = P. If the point py € P is a proper point of the map
&, then each point ¢ € ¢ which is special with respect to the function p, may be
regarded as in some sense typical, and the collection QO of all points ¢ of the

manifold Q which are special with respect to the function p, consists of typical

1) Translator’s note: The reader may prefer the word *singular’ to the word ‘special’
here—either is a legitimate translation from the Russian.

a
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special points.

The construction (A) has numerous applications, some of which will be de-
scribed in $4. A very simple application of construction {A), of an illustrative
character, I give here in the form of proposition (B).

B) Let A" and B be two smooth submanifolds of a vector space E". The
manifolds A’ and BS are said to be in general position at the point a € A" B
if the tangents at this point to the manifolds A" and BS have an intersection of
dimension r + s — n. The manifolds 4" and B are said to be in general position
if they are in general position at each point of their intersection. It may readily be
verified that if A" and BS are in general position their intersection A'nNBsisa
submanifold of the space E" of dimension r+ s —n. Letp € E™. We denote by
AT . the manifold consisting of all points of the form p + x, where x € A". Thus
the manifold A; is obtained from the manifold A" by displacement along the vec-
tor p. It turns out that the set of all vectors p € E™ for which the manifolds A7
and BS are in general position is of the second category in E" so that there exist
arbitrarily small displacements p for which the manifolds A; and B® are in gen-
eral position.

To prove proposition (B) we make use of construction (A) by putting 0= 4" x 8%,
P = E" and regarding the point ¢=(a, b)) € A"x B® as special with respect to the
function p € E* if p+ a= b. The collection M* of all distinguished pairs (p, q),
where p € E", ¢ = (a, b) € A" x B® is thus defined by the relation p = b - a, that
is, the pair (p, q) is uniquely determined by the point ¢ = (a, b), and so there arises
in a natural way a smooth homeomorphism of the manifolds M* and A" x BS, by
means of which we can identify these manifolds. The map ¢ of the manifold M=
AT x BS into the manifold P = E7 is defined by the formula ¢(a, b) = b - a. A sim-
ple calculation shows that the point ¢ = (a, b) € M* is a proper point of the map
¢ if and only if the manifolds A} _, and BS are in general position at the point
b of their intersection. Thus the point p, € E™ is a proper point of the map ¢ if
and only if A;O and BS are in general position. From this and from Theorem 4
proved below the assertion of proposition (B) follows.

The theorem of Dubovitskii.. In the formulation due to Dubovitskii himself the
smoothness class of the map ¢ of the manifold M¥ into the manifold Nlis given
by the formula m = k-l + 1 and not by formula (1). In this sense Theorem 4 is
weaker than the theorem of Dubovitskii. Since the precise value of the smoothness
class is not essential in what follows, I give here the crude value (1) which makes

it possible to simplify the proof.

Theorem 4. Let M* and N' be two smooth manifolds of positive dimensions
k and | and let ¢ be a map of M% into N' of smoothness class
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m=m(k, )=2 (1)

N (k—l)(l?c— I+ 1).
It turns out that the set of all improper points of the rﬁap qS lying in the manifold
Nt is of the first category in N In fact, if the manifold ME is compact, the com-
plement of this set is an everywhere dense region in the manifold N

Proof. We consider first the case when the manifold ME is without boundary.
Let a € Mk, b = ¢(a), let Vé be a coordinate neighbourhood of the point b in the
manifold N and let UF be a coordinate neighbourhood of the point a in the mani-
fold M* such that qS(U ) C Vb‘ We choose neighbourhoods Ua]’ ng of the point
a in M* such that U" < U" Uk c Uy 57> and such that the set Uk /% is compact.
The regions uk2, a € M cover the manifold ¥, From this a countable subcover-
ing can be chosen and so for the proof of the theorem it is sufficient for us to es-
tablish the assertion of the theorem for the map ¢ of the manifold Uk c M* into
the manifold Vb' Since the region U is the homeomorphlc image of a region of
Euclidean space E% , we may sxmply suppose that U is itself a region of the space
EE, In exactly the same way we will suppose that Vb is a region of Euclidean
space EL. By this device the map ¢ becomes a smooth map of class m of the re-
gion Uk into Euclidean space E' and it is sufficient for us to demonstrate that

the set of improper points is of the first category in EL we prove this.

We fix the point @ and drop the index @ from the notation for its neighbour-
hoods. The map ¢ of the region U¥ of Euclidean space E* into Euclidean space

E! may be expressed in Cartesian coordinates:
yi=¢i(x)=¢i(x1, v, %), j=1,---, L )]

Here the functions gbi are m times continuously differentiable. We denote by F,

d
the set of all points x € U2k at which the functional matrix | i—“, i=1,0c, k;
xl

j=1,---, 1, has rank less than [. If K <[ Theorem 4 is a restatement of the al-
ready proved Theorem 1 so we suppose that £ > l. We put s =%k~ [+ 1. The func-
tion qSl will play a special role in what follows. From (1) it follows that m> s
and so the function (bl is still (s + I) times continuously differentiable. Let r be
a natural number not exceeding s. We denote by F the collection of all points of
F at which all the partial derivatives of qfx of orders 1, 2, --., r vanish. Evi-
dently we have:

F,oF 2D F.

s

It will be shown that the images of each of the sets FO ~F Fp =By e, F_,
F FS under the map ¢ are of the first category in EL. Thus it will be shown that

the set G(Fy) of improper points of the map ¢ is itself of the first category in EL
First we shall concern ourselves with the set Fs. The expansion of the func-

. I . . .
tion ¢ in a Taylor series at the point p € Fs does not contain terms of degree
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1,2, -+, s. From this and from the compactness of the set UI may be deduced the

existence of a positive constant ¢ such that for p € F x € U we have;
g - )| < e (olp, 2. 3)

The remaining functions q’)f; j=1,--+, 1= I satisfy the inequality:

lp7(0) - 7 (p)| < cplp, %), )
on account of the continuity of the first derivatives and the compactness of the set

UI' The constant c¢ in the 1nequaht1es (3) and (4) has been given a common value
for all the functions ¢I, j=1,2 -+, l. We choose in E* an e-cube subdivision,

that is, we divide the space E¥ ina regulat way into cubes of edge-length €, and
we denote by ( the totality of all closed cubes of the chosen subdivision which
intersect F_. Since the set F is compact, the number of cubes of { does not ex-
ceed cl/ek where ¢; is a posluve constant independent of e. Let § be the dis-
tance between the sets E¥ — U and U We will suppose that € < 8/\/k; then each
cube Kq of Q is contained in U1 . From this, together with the fact that the cube
K  contains a point p € F, and from the inequalities (3), (4) it follows that the
set qS(Kq) is contained in a rectangular paralielepiped Lq of the space E, one
edge-length if which is equal to 2eVE - eSt1 and the remaining (I - 1) edge-lengths
of which are equal to 2¢v/ k+¢. The volume of the parallelepiped Lq is equal to
2le llcl 2¢l+s, The compact set d)(F ) is contained in the sum of closed parallel-
epipeds Lq, the number of which does not exceed cl/e . From this it follows that
the volume of the set qS(F ) does not exceed ¢, ebrsk cge (¢, does not depend
on ¢), and since € is arbxtrarlly small the compact set qS(F ) does not contain a
region of the space E! and so is nowhere dense in E'.

If k=1, then in view of the hypothesis k> [ > I we have =1, s= I In this
case Fs = F, and from what has been proved the assertion of the theorem follows
for k= 1. This gives us the basis for an induction on k. We suppose the theorem
true when the manifold being mapped has dimension less than k and prove it for
manifolds of dimension k.

We prove that for 0 <r < s the set ¢(F - Fr+1) is of the first category in the
space El. In fact this part of the proof of the theorem will be carries out inductive-
ly. Lee pE€ F - F ;.

ivative of order (r+ I) of the function ¢>l which does not vanish at p. The value

Since p does not belong to F, ; there exists a partial der-

of this derivative at the point x € U* we denote by col(x). Since a)l(x) is a der-
ivative of order r+ I, it follows that w,(x) = da(x)/0x*, where w(x) is a derivative
of order r if r> 0 and the actual function qSl(x) if r=0. We will suppose for the
sake of definiteness that [ = k. We set

2= xi, i=1, ., k-1 2k = m(x):w(xl, cen, xk). (5)

Since am(p)/axk £ 0 it follows that the fundamental determinant of the trans-
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formation (5) is non-zero at the point p and so this transformation introduces new
coordinates z% ---, Z* into some neighbourhood W% of the point p. We will sup-
pose that Wp does not intersect -F, ; and we choose a neighbourhood Wk o1 of the
point p whose closure is compact and contained in W: By varying the pomt p we
can cover the set F F +1 bya countable system of neighbourhoods of the form
LA 7« Thus to prove that gb(F F.}) is of the first category, it is sufficient for us
to establish that ¢(F v 1) is nowhere dense in E!. We now concern ourselves

with the proof of this fact

We fix the point p and drop the index p from the notation for 1ts neighbour-

hoods. Substituting for xl, cesy, %% their expressions in terms of 71 AR zk, we

obtain from (2) an expression for the map ¢ relative to the coordinates zl, N zk
in the region W%, Let this expression be:
yi=¢i(x)=l/li(zl, cen, 2k, 6)
Here z, ..., zF are the new coordinates of the point x. We will consider the re-
gion Wk with coordinates zl, , zk as a smooth manifold. From the relations
(5) it follows that the map ¢ of the smooth manifold W into the space E! given
by the relations (6) has smoothness class m(k, 1) = r. For r= 0 the smoothness
class of the map ¢, so considered, is equal to m(k, )= m(k ~ 1, [ - I) (see (1)).
By the choice for r> 0 of the least favourable value for the smoothness class, ob-
tained for r= s ~ I = k— I, we see that for r> 0 the smoothness class of ¢ (as a
map of Wk is equal to m(k D= (k=-D=m(k~1,1)(see (1)). The set HC W of
all improper points of the map ¢ of the manifold W is determined by the equality
H=Wk N F This follows from the fact that the transformation (5) is not degener-
ate in Wk, We designate by W" I the submanifold of the manifold W%, given by the
equation z% = t. We remark that the smoothness class of the map of the manifold
Wf_l into E! is equal to m(k~ 1, I~ 1) for r=0 and to m(k -1, 1) for r> 0. We
now examine separately the cases r=0 and r> 0.
Let r=0. Then o) =é'x) = 2%, Thus the expression (6) for the map ¢

assumes the special form:

yi—;/,f(zl,... z2k) j=L -, 11 yl=zk. (7)
We denote by El ! the linear subspace of the space E! determined by the equation
y! = t. It follows from the relations (7) that qf)(Wk_I) C El -1, We denote by H, C
Wk ! the set of all improper points of the map ¢ of the manifold Wk— into El"
From the relations (7) it follows that H HN Wk~l If the set qS(F N Wk) con-
tained a region, then there would exist a value of ¢ for which the intersection
96(F0 N W;‘) N Eﬁ—l would contain a region of Ei_“. This however is impossible

since

S(F, (W) ( Bl gD BT = st 0 W™ = S,
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and the set ¢(H,) is, by the inductive hypothesis, of the first category in El 1,
Thus the set ¢(FyN W Y is nowhere dense in E! and the case r=0 is disposed
of.

Now let r> 0; then w(x) is a derivative of order r of the function qSl, and so
w(x) = 0 for x € F., Since, in the neighbourhood Wk, we have w(x)= zk, it fol-
lows that

F . Wecwki,
Let H'C Wk'l be the set of all improper points of the map ¢ of the manifold Wk"l
into the space El, It is easy to see that H () Wk_l C H' (see (6)), and since F N
Wk C H it follows from this and from (8) that F. Wk C H'. 1n view of the induc-
tive hypothesis the set ¢(H') is of the first category in E! and since Fn Wk
H', the set HEN W’;) is nowhere dense in El. This completes the analysis of
the case r> 0.

Thus Theorem 4 is proved for a manifold M* without boundary.

Finally let the manifold Mk possess a boundary M1, Let F'CM* ! be the
set of all improper points of the manifold M1 into the manifold N’ and let FCM*
be the set of all improper points of the map ¢ of the manifold M* into N, It is
easy to see that

Fnue-lcr.

Thus

FC(F-M-yy F.
The set F - M%1 may be regarded as the collection of all improper points of the
map ¢ of the manifold ME - Mk"l, which is without boundary. In exactly the same
way the set F' may be regarded as the totality of all improper points of the map ¢
of the manifold M*~ ! which is without boundary. Thus both the sets ¢(F - Mk-l)
and B(F') are of the first category in N!. The set ¢(F) is contained in their sum
and so is also of the first category in N,

Thus Theorem 4 is completely proved.
$4. Non-degenerate singular points of smooth maps
Let f be a smooth map of the manifold M* into the manifold N, Let a € M*
and b= f(a) € N be interior points of the manifolds M% and N'. In the neighbout-

hoods of the points a and b we introduce local coordinates xl, vy, xk and

yl, ree, yl, taking these points as origin of coordinates. Let
yl = fl@) = fie] «oe, xF)
be the expressions for the map f in the chosen coordinates.

We suppose that @ is a regular point of the map f, that is, that the rank of the

matrix ”g‘(%(;a‘)‘"’ j=1I1, .-, i=1,++-, k is equal to k, and we will assume for

af'(a)
dxt

definiteness that the determinant | s, j=1,+-, k, is non-zero. With these
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hypotheses the relations
Eafid oo, k), i=1 .0,k
can be used to introduce new coordinates fl, oo, «fk for the point x in the neigh-

bourhood of the point a. Let
gl &, =l eeeky oyl =L o ER), kel e, ]
be the expressions for the map f in these new coordinates. We introduce new coor-
dinates nl, ey, nl into the neighbourhood of the point b by setting
nimyl, b ksl =yl = bl ey, =k L, L
In the coordinates fl, feey, fk, r]l, ey nl the map f assumes the form
ni=&l, j=1-,knl=0 j=k+l---, L 1
We now suppose that the point a is proper, that is, that the rank of the matrix

i
{laf—-(tazll, j=1,---, 1l i=1,---, k is equal to [, and we assume for definiteness

x of (@)

that the determinant | .
dx’

Eo fited, oo, x®), =1 oo Eaxt, i=lt e,k

can be used to introduce new coordinates fl, v, fk for the point x in the neigh-

|, i, j=1,--+, 1, is non-zero. Then the relations

bourhood of the point a. If moreover we introduce the ideatity transformation

n/ =yf, j= 1,00, 1,
we see that, in the coordinates 61, ceey, fk, 171, ceey, nl, the map f assumes the
form . .

nl = &, j=1, -, L )
Thus, if the manifold M* is closed and if b € N! is a proper point of the map f,
then f'l(b) is a smooth (k- 1)-dimensional submanifold of M* with local coor-
dinates §k+1’ ceey, fk in the neighbourhood of the point a. If the manifolds M=
and N! are oriented and the orientations are given by the coordinate systems
erI, ceey «fk, fl, ceey, fl and 7]1, ey, 171 respectively, then the manifold f'l(b)

acquires a natural orientation, given by the coordinate system tle, v, fk.

We see that both in the case of a regular point @ and in the case of a proper
point @, the map has a very simple expression in properly chosen coordinate sys-
tems (see (1), (2)).

In $2 it was shown that in any proximity to an arbitrary smooth map of the
manifold M* into the vector space A2k there exists a regular map and that all
maps which are sufficiently close to a regular map are regular (see Theorem 3).

In this sense singular points (see $1, D) of maps of the manifold ME into the space
A%% are unstable —being destroyed by small movements of the map; regular points,
on the other hand, are stable. For maps of the manifold M* into the vector space

A2%=1 the situation is quite different: here the property of being a singular point
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is, in general, stable —not being destroyed by small movements. In this case the
problem arises of describing typical stable singular points. This problem was
solved by Whitney, and a new and much simpler proof of his theorem (see Theorem
6) is presented here. This theorem is not used in the present wark. The problem
of typical singular points is also solved here for maps of the manifold ME into the
one-dimensional vector space A1, that is, into a straight line (see Theorem 5; in
the sequel it isapplied to the homotopy theory of maps, see $14). Thus the prob-
lem of typical singular points of maps is solved for maps of manifolds of dimension
% into spaces of dimension (2k ~ 1) and I. For the remaining dimensions it is not
solved and presents considerable interest.

A regular map of the manifold ME into the vector space A%k s, in general,
non-homeomorphic — it can have self-intersections which can turn out to be unstable
under small movements of the map. The problem of typifying self-intersections is
also solved here (see (A) and (B); these propositions will be used in the sequel.

For the proof of Theorems 5 and 6 and also of proposition (B) essential use
is made of the construction (A) of the preceding paragraph and of Theorem 4.

Typical points of self-intersection for maps of a manifold M* into the vector
space E2k,

A) Let f be a smooth regular map of class m > I of the closed manifold Mk
into the vector space A2F and let @ and b be two distinct points of Mk which are
transformed by f into the same point f(a)= f(b) of the space A2k, Further let U
and ¥V be neighbourhoods of the points a and b in M® such that f is homeomor-
phic on each of them, and let Tﬁ and Tf be tangent at f(a) and f(b) to the mani-
folds f(U) and f(¥). We will say that the map f is typical at the pair of self-in-
tersections 1) a, b if the tangent spaces Tl; and TII: are in general position, that
is, intersect only in one point f(a) = f(b). It is evident that is this case, for suf-
ficiently small neighbourhoods U and V, the manifolds f(U) and f(V) have a
unique common point f(a)= f(b) (Implicit Function theorem), and that for small
movements of the map typical self-intersections are preserved. If the map fis
typical at each pair of self-intersections and if moreover no three distinct points
are transformed by f into the same point, then we will say that the map f is typi-
cal. Since the manifold #* is closed it follows that if the map f is typical at each
pair of self-intersections then there exist only finitely many pairs of self-intersec-
tions.

B) Let f be a smooth regular homeomorphism of the closed manifold M into
the vector space C2%+1, The collection P2k of all pairs (x, y), whete x € Mk,

y € Mk, % # y, forms in a natural way a smooth manifold of dimension 2k. With

1) Translator’s note: A pair of self-intersections (of f) is simply a pair of points at
which f takes the same value.
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each point (x, ¥) € P?% we associate the point o(x, y}= (f(y) ~ f(x))* € S2k, that
is, the ray of the vector f(y) — f(x) (see §1, H). Let e be an arbitrary non-zero
vector of the space C25+1 ) and n, the projection in the direction of the one-dimen-
sional subspace e containing the vector e. It turns out that the regular map 7 f
is typical at each pair of self-intersections (see (4)) if and only if the map o is
proper at the point e" € Sk, From this, in view of Theorem 4, it follows that,ar-
bitrarily close to any one-dimensional projecting direction, there exists a one-di-
mensional projecting direction e"" such that the map 7 f is typical at each pair

of self-intersections. Further it turns out that, arbitrarily close to any one-dimen-

. . - - . - . - * % . .
sional projecting direction, there exists a direction e, such that neof is typical.

We prove proposition (B). Let e, ---, €5y, be a basis of the vector space

2k+1
C25+1, we denote by W the collection of all vectors u = 3 u"en of the space
n=]

C%+1 for which u?5*1 > 0, and by W* the set of all rays ¥ with u € W. As coor-
dinates of the ray u" € W we take the numbersu’" = u"/u2k+1, n=1, ..., 2k;
thereby local coordinates are introduced into the region W* of the manifold S2% (see
$1, H). Now let a, b be two distinct points of the manifold M*. We choose a basis
€, 7 s €911 with €opy] = €= f() - f(a). In neighbourhoods of the points a and
b of the manifold M* we choose local coordinates x7, - .- , x% and yl, .o, yk

and let
W Pl e xFY = ), n= L e, 2k T 3)

W=yl ey = ), n=l e, 2k4 ] 4)
be the coordinate form of the map f in the neighbourhoods of the points a and b
respectively. By projecting in the direction of the vector e = f(b) — f(a) the points
b and a coalesce: 7 f(a) = ,f(b); and evidently the condition that the map 7, f

is typical at the pair of self-intersections a, b is implied by the condition that
the determinant

dfl(a) 9f2*(a)
Ot v Oxt
afl(a) 32 (a)
Ixk ... oxk )
IfE(b) IfF*b)
éyl ....... ayl
9f (b a2k @)
aykE .. dyk

is non-zero. In the neighbourhood of the point (a, b) of the manifold p2k we may
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. 1 k 1 k
take for coordinates the numbers x%, ++«, x*, y°, ---, ¥, and the map 0 assumes

the coordinate form
f3) = fa®)
f‘lz)kﬂ(y) _ fikﬂ(x)
With these coordinates the functional determinant of the map ¢ at the point (a, b)

*n

n=1, ..., 2k (©6)

evidently coincides to within sign with the determinant (5). Thus we have shown
that the regular map 7,f is typical at each pair of self-intersections if and only if
the map o is proper at the point e,

We now choose the ray e’ in such a way that the vector e is not parallel to
any vector tangent to the manifold f(Mk) and that the map o is proper at the point
e* € 5%k, 1n view of Theorems 1 and 4, the set of rays satisfying these conditions
is everywhere dense in the manifold 5%k, we suppose that there exist three dis-
tinct points @, b, ¢ of the manifold ME satisfying the condition 7,f(a) = 7,f(b) =
nef(c). We introduce local coordinates zl, . P in the neighbourhood of the
point ¢ in the manifold ME and let

W= ik e, )= fU2),  n=l e, 2k ] %)
be the coordinate form of the map f in the neighbourhood of the point ¢, analogous
to the expressions (3) and (4). If, now, x, y, z are three points of the manifold Mk,
close to the points a, b, ¢ respectively and such that f(x), f(y), f(z) lie on one
straight line, then we have

f:(x%—f'cl(z) fi&) = f2(2)

f§k+1(x)_ f§k+1(z) B f2+ley) - f§k+1(z) ’

Here we have 2k equations. We will regard these equations as defining implicit

functions xl, ceey, xk, yl, cee, yk of the independent variables zI, e, z¥, For

n=1 .-, 2k (8)

initial values we take x = @, y = b as solutions of z = c. With these initial values
of the functions and the independent variables the functional determinant of the
system (8) is non-zero since the determinant (5) is non-zero. Thus the system (8)
satisfies the conditions of the Implicit Function theorem. From this it follows that
the collection of point-triples x, y, z close to the triple a, b, ¢ and satisfying the
condition that the points f(x), f(y), f(z) lie in a straight line forms a k-dimension-
al manifold. Hence it readily follows from Theorem 1 that in arbitrary proximity
to the point " of the manifold S2% there may be found a point e; satisfying the
conditions of proposition (B).

Typical critical points of a real-valued function on a manifold.

C) Let f be a smooth map of class m > 2 of the manifold M* into the one-
dimensional Euclidean space E! or, equivalently, into a straight line, By choos-
ing a coordinate system on the line EL, we may write the map f in the form yl =

fl (x), x € Mk where fl is a real-valued function of class m defined on ME, In
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the neighbourhood of some point a € M* we introduce local coordinates xI, ceey %"

with origin at a and let yl ) fl(xl, - oy
be the expression for the map f in these coordinates. The point a is called a crit-
ical point of the function f1 and the number fl(a) is called the critical value of
the function f1 at a if all first order derivatives of f1 vanish at g, or, in other
words, if @ is a singular point of the map f (see $1, D). Expanding the functions
fl in a Taylor series at the critical point a we obtain

fle = fl@+ 2 apuixl + o ©)

i,

If the determinant laijl # 0, the critical (siilgular) point a is called non-degener-
ate. It may be seen by direct calculation that, at a critical point a of the function
f, the elements of the matrix 1 ai].H transform, under arbitrary changes of coordin-
ate system, as coefficients of a quadratic form. From this, indeed, it follows that
the non-degeneracy of singular points is an invariant property, that is, it does not
depend on the choice of coordinate system.

D) Let » be a smooth map of class m > 2 of the manifold MF into the Euclid-
ean vector space C9*1, Let u be a non-zero vector in C?*! and u' " the one~di-
mensional linear subspace containing the vector u. We will denote the orthogonal
projection of the space €7*! on to the line u*" by 7, . The set N7 of all pairs
of the form (x, u"), where x € MF and u” isa ray orthogonal to the manifold R(M%)
at the point A(x), may, in a natural way, be given the structure of a smooth g-di-
mensional manifold of class (m — I). With each point (x, u') € N9 we associate
the point v(x, u*)=u" €S9 (see §1, H), The map v is a smooth map of class
(m — 1) of the manifold N9 into S9. It turns out that the point a € M* is a singu-
lar point of the map 7 h of the manifold M* on to the line u  if and only if the
ray v is orthogonal to the manifold #(M*) at the point h(a). Further, if the ray "
is orthogonal to the manifold R(M*) at the point k(a), then the singular point a of
the map 7,k is non-degenerate if and only if the point (a, 4" is a proper point of
the map v.

We prove proposition (D). The scalar product of the vectors u, v € ¢+l will
as usual be denoted by (u, v). Let u € CIH with (u, u) = I. The real function
(u, k(%)) of the variable x € Mk, defined on Mk, corresponds to the map rruh of the
manifold M* on to the axis u**. In local coordinates PO S xk, defined near

the point a, we have

ii (u, k) = (u, %(‘?) ) i=1eee, ke (10)

dx Ox
The vanishing of the left-hand side of all the relations (10) shows that a is sin-

gular point of the map n'uh, while the vanishing of the right-hand side shows that
the vector u is orthogonal to the manifold R(M*) at the point h(a). In this way it
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is proved that @ is a singular point of the map ﬂuh if and only if the ray u" is
orthogonal to R(M®) at the point A(a).

To establish the criterion of non-degeneracy of the singular point a of the
map "uoh we choose an qrtllonormal basis €4, >+ -, €grl for the vector space
€91 such that the vectors ey, < *+, €, are tangent to the manifold h(Mk) at the
point h(a), and the vector e_.; coincides with u,. In the corresponding coordin-

ates yl, eee, €7 of the space Catl the map h assumes near the point a the

form , . .
yi=Way=hed, oo, 2F),  j=1,--0,q+ L an

Since the vectors e, *++, ¢, are tangent to the manifold A(M*) at the point h(a)

it readily follows that ‘ Ok (a)
Oxt

It then follows that the relations

fi=hi(x1,"',xk), i=1,"'9k:

may be used to introduce new coordinates :fl, ceey tfk of the point x in the neigh-

l,-éo, isj=15"',k'

bourhood of the point a in M¥. In these coordinates the map k takes the form:
ko, g+1-k R
h(x)=_21 flei +‘21 ¢k+](x)'ek+i' (12)
= =
Since the vectors e, *+*, €, are tangent to the manifold h(M*) at the point h(a)
it follows that )
9@ _,
¢!

Let (x, u,*) be a point of the manifold N7 close to the point (a, uz) = (a, e;+1 )

i=1, 0,k j=1,--, g+ 1=k (13)

On the ray 1" we choose a vector u satisfying the condition

(u, €t 1) = 1I.
We denote the remaining ¢ components of the vector u in the basis e, «+ &+l
by ul, cee,u?: 4l = (u, e;), i=1,+-+, q. The condition that u be orthogonal to
h(MF)y at the point h(x) may now be expressed in the form

. g—k X k+j +1
0= (u, ah(’f) )= u +q2 ukHi 9¢ {(x) + 949 - (x)’ =1,--+, k (14)
j=1 a¢&t 9!

. . . * .
This relation shows that, as coordinates of the element (x, u ) of the manifold

N9, we may take the coordinates fl, v, EF of the point x and the components

uk+1, ««+, u? of the vector u. As coordinates of the ray " in the manifold S? we

take the first ¢ components of the vector u, calling these components vI, cee, 0
. . . . *,

to avoid confusion with the coordinates uk+1, <+, u? of the element (x, u )in the

manifold N9. Since v* =u’,i=1I, --+, g, the map v of the manifold N? into the

manifold S9 assumes in the chosen coordinates the form (see (14))
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- k+j I
i =_q2k b o ‘r/'(x) a¢q+ .(x), “ 1, ek,
j=1 35‘ acfl
vk+i=uk+i, i=1, e, g~k

An immediate calculation shows (see (13)) that the Jacobian of the map v at the
82¢q+1(a) ‘
agi. 9E* ’
(a, u;) is a proper point of the map v if and only if the relation
82¢q+1 ()

AEiIE*

is satisfied. Since the function d)q“(x) corresponds to the map nuoh of the mani-

point {(a, e;”) is equal to (—I)kl i,a=1,+++, k. Thus the point

[#£0 (15)

fold M* on to the axis uz*, the condition (15) coincides with the condition that a
be a non-degenerate singular point of the map "uoh- In this way the proof of asser-
tion (D) is completed.

Theorem 5. Let M* be a smooth compact manifold of class m2 3 with bound-
ary M5! consisting of two closed manifolds Mé‘_l and M’I‘—I, each of which may
be empty; and let f1 be areal function of class m defined on ME. We assume
that the function 1 takes the same value c; at all points of the manifold Mi.c_l,
i=0, 1, where cy<cy, and that for all interior points x of M the inequality
cp < fI (x) < ¢, is satisfied. We assume further that the critical points of the func-
tion fI do not lie on the boundary ME=1. It turns out that in any proximity of class
m (see $2, F) to the function fl there lies a function gl, coinciding with fI in
some neighbourhood of the boundary, such that all critical points of the function
g! are non-degenerate and that the critical values at distince critical points are
themselves distinct.

Proof. With the function f! we associate the map f of the manifold M¥ into
the one-dimensional Euclidean vector space Al. Let e be a regular homeomorph-

ism of class m of M¥ into the Euclidean vector space B? (see Theorem 2). We de-

note by €I the direct sum of the vector spaces 41 and B7 and we will consider the
spaces A1 and B? as orthogonal subspaces of the space I, e denote by & the direct
sum of the maps [ and e (see §2, E). The map £ is a regular homeomorphism of class m
of the manifold ¥ iato the Euclidean vector space %! such that the orthogonal project-
tion 7 of the map /& on to the straight line 41 coincides with {: f = wh. We show first
that in arbitrary proximity to the line Al there exists a line, orthogonal projection
on to which generates a function all of whose critical values are non -degenerate.
The function gl described in the statement of the theorem will be obtained by a

further modification.

Let N9 be the manifold of all normal elements (x, «’) of the manifold h(Mk),

defined in proposition (D), and let v be the map of the manifold N7 into the mani-
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fold S7, also defined in (D). We show that if u* € S9 is a proper point of the map
v, then all singular points of the map 7 h are non-degenerate. In fact, if a is a
singular point of the map 7 F, the ray u* is orthogonal to R(M*) at the point h(a)
and so (a, ©*) € N9. Since the map v is proper at the point (a, u") of the mani-
fold N9 the singular point a is non-degenerate (see (D)). Let ¢ be a given posi-
tive number and let u be a unit vector. of the space €9*! such that the function
B! = (u, h(x)) lies in e-proximity of class m to the function f1 and such that u'€E
S9 is a proper point of the map‘V, so that all critical points of the function B are
non-degenerate. In view of Theorem 4 such a vector u exists.

Let 8 be a positive number so small that for flx) < ¢y + 38 and also for
f1 (x) > ¢; — 38 the point x is not a critical point of the function fl. The exist-
ence of such a number 8 follows from the hypothesis of the theorem that on the
boundary M5! and consequently in some neighbourhood of it, there are no criti-
cal points of the function fl. Further let x(£) be a real function of class m of the
real variable ¢, taking the value zero of t < ¢y + 8 or t> ¢; — & and the value one
if ¢; 25212 cy+ 28. We put

k2 = L) + x(F1@) (1) - [ (16)
It is easy to see that if the positive number ¢, on which the construction of A (x)
depends, is chosen sufficiently small then all the critical points of the function
h2(x), defined by the relation (16), coincide with critical points of the function #x)
and so are non -degenerate. Since the function )(¢) vanishes for £ <cy + 8 and
t> c; - §, it follows that the functions h2(x) and fI(x) coincide in some neigh-
bourhood of the boundary AL,

We suppose now that at two distinct critical points a and b of the function
h2(x) we have AZ(a) = h2(b). Let Q be a neighbourhood of a containing no criti-
cal point of #2(x) distinct from a. As the neighbouthood (J we may take a region
which, in some local coordinates, has the form of a cube with centre at a. Let Q,’
Q" be cubes, centre a, similar to the cube Q@ and having edge-lengths respective-
ly a half and a quarter that of Q. It is easy to define on Q a smooth function x(x),
vanishing on @ — Q' and taking the value one on Q" (compare the proof of Theorem
2). We may extend the function x(x) to the whole manifold Mk by giving it the val-
ue zero outside the region (). We put

P (x) = h2(x) + ak(x).
It is easy to see that for sufficiently small a# 0 all critical points of the function
h3(x) are non-degenerate; moreover the critical values h3(a) and h3(b) are dis-
tinct. By iterating this process a finite number of times we arrive at the required

function gl(x). Thus Theorem 5 is proved.

Typical irregularities for maps of a manifold M¥ into the vector space E2k-1
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k. LA
by =3 Ee; + S plx)-ep s 27)
A i=1 j=1 !
where the functions ¢/(x) satisfy the conditions:
dpI(x) _
o&t

Let (x, «") be an element of the manifold L2%~1 (lose to the element (a, uB). The

0, ij=1,,k (28)

vector u is tangent to F(M*) at the point h(x) and so may be expressed in the
form f i x .
R . . ]
u = Eu‘-%(x__.)zﬁu‘ent DI 9¢ (,x)e.+k. (29)
i=1 o9&t =l Y, FY 7
On the, ray 4" we choose the vector u so that u! = I; then the expression (29)

takes the form

k. k j k k| j
u=el+2u”ei+2-a£—(y—c)ek+.+2 b u‘Me.+k- (30)
=2 j=1 361 1 j=1i=2 LY ]

As coordinates of the elements (x, u*) in the manifold L2k-1
numbers u2, cee, uk, rfl, ey fk. Since the first component of the vector u in the
space C?k s equal to one, the remaining components w2 .., vk

we may take the

of the vector
u may be taken as coordinates of the ray " in the manifold S24~1, In the chosen

coordinates the map 7 takes, in view of (30), the form
. . 9T L J
= u", i = 2,-..’ k; vk+,: _¢___(x)+2 ul.M, j: 1’.-., k. (31)
ax! =2 9x’ N
A direct calculation shows that the Jacobian of the map 7 at the point (a, uo) is

equal to a2¢j(a)
a¢logt

We now consider the map nubh. We will regard it as mapping MF into the vector
A2k-1

I’ i’j:],"',k' (32)

space with basis ey, **°, €y by means of projection along the line e;*.

We then have (see (27))

ko k
) =7, h(x) ZiEZ &he; +aél ¢ @ epia (33)

Thus we obtain

02f(a) =2’° #2p™a)

9&lagt a1 gglogt
?La.)‘:e"
gei !

It follows that, in the given case, the system of vectors (19) is linearly independ-

€Lias i:],-'-,k,

j=2, 000, k.

ent if and only if the Jacobian (32) is non-zero.

Thus, proposition (F) is proved.

Theorem 6. Let { be a smooth map of class m > 3 of the compact manifold
ME of dimension k into the vector space A2k=1 of dimension (2k — I). Then in

arbitrary proximity of class m to the map f there exists a map g all of whose
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singular points are non-degenerate and do not lie on the boundary ML of the

manifold Mk,

Proof. We will regard A2k=1 45 4 subspace of a vector space c2k

of dimen-
sion 2k. Let B! be a one-dimensional subspace of C%¢ not lying in A2E-1 e
denote by 7 the projection of the space C2% on'to 42571 in the direction BI.
Let a positive number ¢ be given and let /i be a regular map of the manifold M*
into C?* such that the map =} is in e-proximity to f (see Theorem 3). Let L2k
be the manifold of line elements on the manifold h(Mk) (see (F)); let L2k=2 be the
submanifold of L2k-1 consisting of all elements of the form (x, u*), where x €
M*~1, and, finally, let 7 be the map of the manifold L2%=1 jnto the sphere §2k-1
defined in (F). On the basis of proposition (F) it may readily be verified that if

u* € §2F~1 is not a singular point of the map + and does not belong to the set
T(L2k—2), then all singular points of the map 7, are non-degenerate and do not be-
long to the boundary of the manifold M. In view of Theorems 4 and 1 these exists
a vector u such that u” satisfies the conditions stated above and the map 7.}k is
in e-proximity to the map wh. Thus there exists a map g = @b in Ze-proximity to
the map f and satisfying the requirements of the theorem.

Thus, Theorem 6 is proved.

Canonical forms for typical critical points and typical non-regular poiats.

In propositions (C) and (E) certain singular points of maps of the manifold M¥
into the vector spaces 4! and A2k~ respectively were designated as non-degen-
erate. In Theorems S and 6 it was shown that all degenerate singular points of the
maps considered are unstable —being removable by small movements of the maps.
It was not shown, however, that the singular points described as non-degenerate
are stable — that they are preserved under small movements. The proof of this fact
does not present difficulties but it will not be given here. Also the structure of the
maps in the neighbourhood of a non-degenerate singular point will not be analysed.
To do so in complete detail would not be a simple matter, and here I give only re-

sults without proofs.

G) Let a be a non-degenerate critical point of the real-valued function fl(x)
defined on the manifold M5, In proposition (A) it was remarked that the expansion
of the function fl(x) in a Taylor series in the neighbourhood of the point a has
the form (9). It turns out (see [7]) that by a change of coordinates in the neighbour-
hood of the point a this expansion can be put in the form

iy = fl@ + 124 o or %) 2= S H Y- o= ), (34)
where the number s of positive squares is an invariant of the point a, that is, it
does not depend on the choice of coordinates in the neighbourhood of this point and
is not altered by small changes of the map. Thus a function defined on k-dimen-

sional manifolds can have (k + I) distinct types of non-degenerate critical points
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(s=0, -+, k). Since a map f of the manifold M* into a straight line does not
uniquely determine the function fl(x), points of distinct types for the function may
prove to be of the same type for the map. In fact change of sign of the function
fl(x) interchanges the roles of the numbers s and % - s, and so the corresponding
critical points belong to the same type of singular point for maps.

One next remarks that the transition from the expression (9) to the expression
(34) cannot be achieved, as may be shown, by a linear transformation of coordinates.
Obviously a linear transformation provides only the first step in the transition from
the expression (9) to the expression (34). Under a linear transformation terms of
the third and higher orders are preserved, whereas in the expression (34) they are
absent,

H) Let a be a non-degenerate singular point of the map f of the manifold Mk
into the vector space A2k-1 (see (E)). It turns out (see [8]) that in the neighbour-
hood of the points a and f(a) it is possible to transform (in general, non-linearly)
the coordinate systems so that the map f appears near the point a in the coordin-

ate form

yl = (x1)2, 72: x1x2’ ttts )’k’= xlx k’ )’]H]: x2’ 3’k+2= x3) A ] y2k—1 = xk‘ (35)

Here the points a and f(a) are the origins of coordinates.
Proposition (H) is a theorem requiring a somewhat involved proof.

The expressions (35) may be used to represent the geometrical character of
the map f near thepoint a, particularly if k= 2.

CHAPTER II
Normally-framed manifolds
$5. Smooth approximations to continuous maps and deformations

In this section it is shown that, for the homotopy classification of maps of one
smooth manifold into another, it is sufficient to consider only smooth maps and
smooth homotopies of them. This follows from the following facts. Let M* and N
be two smooth closed manifolds of class m. It turns out that in each homotopy
class of maps of N into M* there exists a smooth map of class (m - I) and if
two smooth maps of class (m — I) are homotopic then there exists a smooth homo-
topy of class (m — 3) of one map into the other. Thus, for the study of maps of
manifolds whose smoothness class is equal to m, one is involved in the consider-
ation of homotopies of smoothness class (m — 3). It would be possible, by using
a certain amount of ingenuity, to avoid this reduction of the smoothness class, but
since the results of this section will be applied only to the study of maps of
spheres into spheres, and spheres are analytic manifolds, the decrease of three
units in the smoothness is of no significance, and there would be no point in com-

plicating the proofs in order to keep the smoothness class fixed.
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The structure of the neighbourhood of a smooth submanifold.

The proposition below will only be used in the present section in applications
to closed manifolds; in this case the proof may be considerably simplified as may
readily be seen by reference to the actual proof. In the next section it is used in

the general case.

A) Let E™% be a Euclidean space, in which a Cartesian coordinate system
yl, cee, y"+k is chosen; let EO’ E, be the two hyperplanes of the space Entk

n+k ¢y, where ¢y < c;, and let Entk

defined by the equations y"”‘ =¢p and ¥
be the strip of E™* bounded by the hyperplanes, that is, the set of points satisfy-
ing the conditions ¢, < y"+k <¢j. Further let M{k be a smooth compact submani-
fold (see $1, F) of EM* of class m > 4 (if M* is closed it is sufficient to take
m > 2) with boundary M¥1, We denote by N, the normal to MF at the point z. It
has the structure of an n-dimensional linear subspace of the Euclidean space ErE,
With respect to the manifold M% we will further assume that at each of its bound-

En+k_
*

ary points it is orthogonal to the boundary of the strip ; that is, that for x €

ME=1 have: :
] we have N, C E, UE;. O

We designate by [/(z) = llj(z) the open ball in the Euclidean space N, with cen-
re z and radius 8 > 0, and by Hy(P), where PcC Mk, the union of all balls Hy(z)
for z € P. It turns out that, for & sufficiently small, the balls Hs(z) and Hs(z')
do not intersect if z £ z' and the set Wy = Ifs(Ml‘f) constitutes a neighbourhood of
the manifold M* in E7*E, By associating with each point y € W5 the unique point
z € M* such that y € Hs(z) we obtain a smooth map y — z = 7 (y) of the manifold
W5 into the manifold M*; in the case of a closed manifold M® this map has smooth-

ness class (m— I).

We prove proposition (A). Let a € M and let xl, v, %% be a local coordin-

are system defined in the neighbourhood of @, which is their origin, and let

,Vj:fi(x)=fj(x1"":xk), j=‘l""';n+k (2)
be the parametric equations defining the manifold ME in the neighbouchood of the
point a. The functions fi are defined for values.of the variables x1, ooy xk

satisfying the conditions ,
i .
%% <e, i=1,-, k

if @ is an interior point of Mk, and the conditions (3) together with the conditions
x'<0

if a is a boundary point of M%. Thus the functions fi determine a map [:z of the

open cube Ke’ given by the inequalities (3), or of the half cube KEI given by the

inequalitites (3) and (4). In the case of a boundary point a, we extend the func-

tions fi to positive values of the variable %! by putting
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i) = fied, oo, 2k = fl@, 22, -+, x%) + 940, x2 --r, 2Byl
!

+ @, 2 -, %) H2, 2 2 0.

(axl ¥
The extended functions fl determine a smooth regular homeomorphism f, of the
open cube K_(where ¢ is a sufficiently small positive number), for an arbitrary
point a € ME=L,

The equation of the normal Nfa(x)= Nx to the manifold f,(K/) at the point f(%)
may be written in vector form as

d
( f(x), y - f(x)) i=1 e,k (5)

dxt

Here y is a vector ranging over the normal N . We will regard the system of rela-

tions (5) as a system of equations for the unknown functions xl, cee, %% of the in-
dependent variables y y T, y"+“l‘ the components of the vector y. For the initial
values y = f (0) = a the system (5) has the evident solution xt=0, i=1,.--, k.

The functional determinant of the system (5) for these values is equal to (- 1)

30 9,0
Ot ]

is regular at the point 0. Thus the system (5) is solvable. Let x = o(y) or, in co-

|, & j=1,+++, k. This determinant is non-zero since the map f

ordinate form,

xi=ollyl oo,y i1 ek ©6)
be its solution, defined for all points y belonging to some neighbourhood Va of
the point a in the space EME, For y € V, there exists then one and only one
point x € K€ satisfying the condition y € Nx; the point x is determined by the
relation x = o(y). In other words, through each point y € V_ there passes a unique
normal N » where x € K,. From the continuity of the function o(y) it follows eas-
ily that there exist sufflclently small positive numbers 0, and ¢, such that for
8< 5 eLe the set HS (f (K )) is entirely contained in V and constitutes a neigh-

bourhood of the point a in the space EntE,

We now show that for boundary points a there exist positive numbers 3' ~and
ea' so small that for 8 < 8 and €< e the set HS (f (K )) is a nelghbourhood of the
point a in the strip E"+k For defxmteness we will assume that a € E then we

have

‘ O'I(yl, v, yn+k-—1’ ‘31) =0. )
Further it is immediately clear that el
doliyl, «oey y"H e
by L5 0. (8)
dy n+k

From what has been said it follows that for a point y suffxcxently near to a the
sign of o (y SETTIN y""k) coincides with the sign of y*** — ¢;, and this shows that

for sufficiently small numbers & and ¢ we have
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Hy(f, (K = Hy(f, (K.Y N EXE. ©)
Since Ha(f (K )) is a neighbourhood of the point ¢ in the space E’”k

view of (9), the set Hs(f (K )) is a nelghbourhood of the point a in the strip E;‘*k.

then, in

For an interior point a € Mk we set 5 =8, e =¢,. The collection of all regions U,=
f (K )ﬂMk 2 EM* covers the maqulde Let U S Up be a finite covering of Mk
There exists a number 7 > 0 so small that any two pomts of M* whose distance apart does
not exceed 7) belong, together, to one of the regions of the given finite covering. Now let
& be the smallest of the numbers 5 2T 7,--+,p and /2. Since HS (Mk) =
HS( YU-«-- U HS(U ), H My is a nelghbourhood of the manifold M in the strip F'H'k
Further for two dlstIlnct points z, z "€ M* the balls flg(z) and Hs(z ) do not inter-
sect. In fact, if p(z, z') < 8 the points z and z ' belong to the same region U,
and so, in view of what was proved earlier, the balls Hy(z) and Hy(z ') cannot in-
tersect. If, on the other hand, p(z, z') > 8, then the balls cannot intersect since
the distance between their centres is greater than the sum of their radii.

Thus, proposition (A) is proved.

Smooth approximations.

B) Let fI (x) be a continuous real-valued function defined on the smooth com-
pact manifold ME of class m > 2 and let ¢ be a positive number. There exists then
a smooth real-valued function of class m, g (x), defined on M* and satisfying the
condition |g (x) ~ fI (x)] < e. In other words, it is possible to approximate to a
function continuous on u* arbitrarily closely by a smooth function.

We prove proposition (B). In view of Theorem 2 we may suppose the manifold
M* embedded in Euclidean space E! of sufficiently large dimension. Let () be a
closed cube containing M%, In view of the well-known theorem of Uryson (see [9])
it is possible to extend the function fl(x), defined on Mk, to a continuous function
on (. It is then possible to approximate to this function to within ¢ by a polynom-
ial g1 (x) in the Cartesian coordinates of the point x € (. Regarded as a function
on Mk, gl(x) has the desired properties.

Theorem 7. Let M* be a smootk closed manifold of class m > 2, let N be a
smooth compact manifold of class m, and let { be a map of N into M*. We will
regard ME as a metric space. It turns out that for any positive € there exists a
smooth map h of class (m— 1) of N into ME, satzsfymg the condm,on p( flx),
h(x)) <¢, x € NL. In other words, a continuous map of N into MF may be approx-
imated arbitrarily closely by a smooth map.

Proof. In view of Theorem 2, we may suppose that the manifold M is a sub-
manifold of some Euclidean space E"'Hc Let 8 be the number defined for this sub-

manifold in proposition (A) and let €'< 8/ Vn+k . We denote the ‘components of the
vector f(x), x € N, by f (), *o f"+ {x). In view of proposition (B) there exist
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real-valued functions gi(x), i=1,.--, n+kof smoothness class m, defined on N?
and satisfying the inequality lfi(x) - gi(x)l <€ i=1,-++, n+ k. We denote by
g(x) the vector with components gl(x), N g"+k(x). The map g of the manifold
N! into EP** has smoothness class m and g(Nl) C WS (see (A)). For sufficiently
small €' the map b = g (see (A)) satisfies the requirements of the theorem.

C) A family of continuous map f,, 0 <¢< I of the closed manifold N into the
manifold M* is called a continuous family or deformation of the map fp into the
map f; if f,(x) is a continuous function of the pair of variables x, t. Let NEx I
be the direct product of the manifold N! and the interval [=1[0, 1] (see $1,K). We
put fu(x, &) = f,(x). It is plain that the family f, is continuous if and only if the
map f, is continuous. We will say that the family f, is smooth of class m or that
the deformation f, is smooth of class m if the map fi is smooth of class m. If the
maps f, and f; are connected by a smooth deformation they may be described as
smoothly homotopic. It is quite obvious that the relation of smooth homotopy is re-
flexive and symmetric. On the other hand the transitivity of the relation is not ob-

vious and requires proof. This we provide.

Let f ;, fy, f; be three smooth maps of class m of the manifold N into the
“manifold M*; let f;» =1 £t <0, be a smooth deformation of class m of f_; into f;
and let f,, 0 <t < 1, be a smooth deformation of class m of fy into f;. The defor-
mation f,, =1 <¢< I, is evidently continuous, but for ¢ = 0 it may fail to be smooth

so it must be medified to achieve a smooth deformation of class m. Let n be an
odd integer such that n> m. We put g,(x) = ftn(x). It is easy to see that g,, -1 <

t< 1, is a smooth deformation of class m of the map g_; = f_;. In this way, the

transitivity of the relation of smooth homotopy is proved.

D) Let M% and N! be two smooth closed manifolds of class m, of which the
manifold M¥ is a metric space. Then there exists a sufficiently small positive ¢
such that if f, and f; are two smooth maps of class m of the manifold N into
the manifold M* whcih are distant apart less than ¢, that is, such that plfplx),
[N <e x € N!, then there exists a smooth deformation of class (m — 1) of fo
into f;.

We prove proposition (D). In view of Theorem 2, we may assume that MF is a
submanifold of a Euclidean space E™*E of sufficiently high dimension. Let 8 be
the number defined for M¥ C E"* in proposition (A). ‘We will assume that the met-
ric in the manifold M* is given by the inclusion MF ¢ En*k | and we choose ¢ so
small that for p(x, x') < ¢ the segment joining the points x and x' lies in Ws. We
put

f, @) = a(fy(x) (I ~ &) + f;(x) ).
It is clear that f,, 0 <¢ < I, is a smooth deformation of class (m — 1) of the map

fp-into the map f; (see (A))
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Theorem 8. Let f,, 0 <¢< 1, be a continuous deformation of maps of the closed
manifold N into the closed manifold M* such that the maps f, and f; are smooth
of class m. Then there exists a smooth deformation of class (m ~ 2) of the map f,
into the map f;. In other words, if two smooth maps can be connected by a contin-
uous deformation then they can be connected by a smooth deformation.

Proof. To the deformation f, there corresponds a map f« of the manifold N«
I into M%. In view of Theorem 7 the continuous map fx can be approximated to
within € by a smooth map g, of class (m~— 1) of Nt x [ into Mk, To the smooth
map g« there corresponds a smooth deformation g,, 7 <t < 1, of maps of N into
M*. For sufficiently small ¢ the closeness of the maps fl and g;,i=0, 1, ensures
that they are connected by a smooth homotopy of class (m — 2) (see (D)). From all
this, in view of the transitivity of the property of smooth homotopy, it follows that

there exists a smooth homotopy of class (m — 2) between the maps fo and f7.
Thus, Theorem 8 is proved.
$6. The basic method

In this section we associate, with each smooth map of an (n+ k)-dimensional
sphere $"% into an n-dimensional sphere S", a smoothly-framed submanifold Mk
of Euclidean space E™*. The manifold M* is framed in that at each of its points
x there is given a system Ux) = {ul(x), e, un(x)} of linearly independent vec-
tors orthogonal to M* such that the vector u(x) depends continuously on x € Mk,
The framing is said to be smooth if the vectors u,(x) depend smoothly on x. The
manifold M together with its frame is called a normally-framed manifold and de-
noted by (Mk, U). It turns out that each smoothly-framed manifold (Mk, U) corre-
sponds to some map of the sphere 2n+k into the sphere S" and that maps to which
correspond identical smoothly-framed manifolds are homotopic. On the other hand
it is possible that there may correspond to two homotopic maps two normally-
framed manifolds which are not only not identical but even not homotopic to each
other. In this connection we introduce the notion of a homology between two nor-
mally-framed manifolds (Mg, UO) and (Mllc, Up), situated in the same Euclidean .
space E"%, Two normally-framed manifolds (Mg, ;) and (MII‘, U}) are said to be
homologous if in the product E"k o [ of the space E"E Gith the segment [ =
[0, 1 there exists a compact normally-framed submanifold (Mk+1, U) whose bound-
ary consists of the given manifolds M’g x 0 and M'Ic % 1 and whose frame U coin-
cides on the boundary with the frames U, x 0 and U; x 1 given on MI(; x 0 and
MIIc « 1. It turns out that two maps of S"** into S™ are homotopic if and only if
the associated smoothly-framed manifolds are homologous (the frame realising the
homology is not assumed to be smooth). In this way the problem of homotopy class-
ification of maps of spheres into spheres is reduced to the problem of homology

classification of smoothly-framed manifolds. On the other hand it must be admitted




42 L. S. PONTRYAGIN

that the problem of homology classification of framed manifolds in not a simple one.

Normally-framed manifolds ). Definition 2. Let E™E be a Euclidean space,
yhoo.o., y"+k Cartesian coordinates in it, let E, and E; be two hyperplanes of
E™E | given by the equations y’”'k = ¢y and y"+k =cy, ¢y < cj, and let EME be
the strip consisting of all points of the space E™k for which cg < y"+k < c;. Fur-
ther let #* be a smooth compact submanifold of class m of the strip E™E wich
boundary M5~ (see $1, F). If the manifold M¥ is closed the hyperplanes E, and
E, play no role and we will suppose that E?tk - EPtE We will regard the normal
Nx at the point x € M* as a vector space with its zero at x and we suppose that

N_CE,UE,, x€M,
that is, that the manifold M* is orthogonal at points of its boundary to the bound-
ary of the strip E',l+k (compare §5, A). In this way we will regard the manifold Mk
situated in the strip ETtE as normally-framed if in each vector space N a basis

uy (x), += -, un(x),

is given such that the vector u(x), considered as a vector of the space E"+k, is
a continuous function of the point x € ME. We will call the system U(x) =
{ul (%), +«+, un(x)} a frame 1) for the manifold Mk, and the manifold M* together
with the frame U(x) will be denoted by (Mk, U(x)) and called a normally-framed
manifold. We will call the frame U(x) orthonormal if at each point x € M* the ba-
sis U(x) is orthonormal. The frame U(x) will be called smooth of class m if each

vector u,(x) is a smooth function of x € M¥* of class m.

It should be remarked that every framed manifold1) is orientable and admits a
natural orientation if the Euclidean space E"** containing it is oriented. Indeed,
let e;,---, ey be a linearly independent system of vectors tangent to the mani-
fold M* at some point x. We will regard the system e;, <=+ €, as bestowing a
natural orientation on the manifold M* if the system ej, *+v, €, up(x), -, u, (%)
corresponds to the positive orientation of the space Entk,

In the following definition the notion of homology between two k-dimensional
framed submanifoldsgof the Euclidean space E™k is made precise.

Definition 3. Let (M’(;, U;) and (MII", U;) be two smooth framed submanifolds
of the Euclidean space E"*%, Let Ertkrl gk o Bl Ghere El is the real line
parametrized by £. We put E, = E™% x ¢, t=0, 1 and we denote by EX** the strip
in the space E?*#+1 bounded by the hyperplanes E, and E;. We will regard the
framed manifolds (Mg, UO) and (M’;, U1) as homologous if there exists a framed
submanifold (Mk+1, U) of the strip E2+k+1 such that

WAL N Ey = Mex 0, W E, < MEx 1,
and such that the frame U coincides on fo ¢t with the frame U, x t, t= 0, I. The

1) Translator’s note: Since the notion of a normal frame occurs very frequently we
shall generally omit the word ‘normal’.
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framed manifold (M{)‘, Up) is said to be nullhomologous if it is homologous to the
framed manifold (Ml;, U;), where M’IC is empty. In this case the framed manifold
(MF+1, U) realising the homology has as its boundary the manifold M¥. It turns out
that the homology relation is reflexive, symmetric and transitive so that the set of
all k-dimensional framed submanifolds of the Euclidean space E"E is divided in-
to homology classes.

It is clear that the homology relation for framed manifolds is reflexive and sym-
metric. We prove that it is transitive. Let (Mf], U_p, (Mlo‘, Up) and (MIIC, U;) be
three framed manifolds in the Euclidean space Entk satisfying the relations

Mk, U_p)~ ME, U~ MG, Ug) ™ Mk, U
Further let Entk+l = Entk « E1 pe the direct product of the Euclidean space Entk
with the real line E! parametrized by ¢; we pick out in it the strips By, i- 1%
£<i,i=0,1. Wepu E = EoU E.;. We will suppose that the homology
(Mf‘_l, U_p~ (M:‘, U)) is realised in the strip E4; by the manifold (Mf.’”, Us)),
i=0, 1. Now let m be a sufficiently large odd number. We define a map ¢ of the
strip E, into itself by setting Y(x, ) = (x,T/? ), x € E"*k. 4 is evidently homeo-
morphic, and regular at all points: (x, t) where t # 0. It is easy to verify that
M1 = xr/l(M’L;” U MI;H) is a smooth submanifold of the strip Ex. We denote the
system of vector U*i(x’ t) by Us(x, t); this should fead to no misunderstanding.

Let N::t ‘be the normal to the manifold M10°+1kU Ml]”] at fh“? point (x, t), .—1 el
and let N, be the normal to the manifold MEt1 at the point Yi(x, t). It is easy to
convince oneself that the space let may be projected orthogonally on to the space
N_, without degeneracies. Thus by taking for U(x, ¢) the orthogonal projection of
the system Us(x, t) on Nxt’ we obtain a framed manifold (Mk+1, ), realising the
homology (Mfl, U_ )~ (Ml;, U;) in the strip E.. Thus the transitivity of the ho-
mology relation is proved. :

Transition from maps to framed manifolds.

A) Let E™! be a Euclidean vector space. The sphere ST in E™! of dimen-
sion r and radius Y% is given by the equation

(x, x)= %-

Let p and g be two diametrically opposite points of S7, the first of which we will
call the north pole and the second the south pole. Further let Tp and Tq be the
tangent spaces to the sphere S at the points p and ¢, and let e;, -+, €, be an
orthonormal basis in the space TP’ giving a positive orientation to S”. We obtain
a basis for the space Tq by translating the vectors ej, «+*, €, from p to q. To
the chosen bases correspond certain coordinate systems in Tp and Tq. We now
introduce coordinates in the regions S” - ¢, S” — p, determined by the system
(p; e7> "> er). To this end, we denote by ¢(x) the image of the point x € 5 —~q
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under central projection from the centre ¢ on th the space I and we take the coordinates -
wl, -, & of the point ¢b(x) in [;) as coordinates of x in '~ ¢- In exactly the same way we
define the coordinates y%, ---, y" of the point x € S~ p by means of central pro-

jections from p on to Tq' It is easy to see that for x € S'— (p |J ¢) we have

13

i X
y = , (1)
(x1)2+ .. .+(xr)2
. :
wie ¥ (2)

124 et () )
In this way, 5" has the structure of an analytic manifold.

We now associate with each smooth map of the (n + k)-dimensional oriented
sphere En+k into the n-dimensional oriented sphere S” a closed normally-framed
manifold (M%, U) of dimension k situated in Euclidean space E"*k of dimension
(n+ k)

Definition 4. Let f be a smooth map of the oriented sphere 2n+k in the ori-
ented sphere S*. The north and south poles of 2n+k we denote by p' and ¢', the
tangent space to 2n+k at p' by E'H'k, and central projection of the region 2n+k-—
g' onto E™% from q' by ¢. As north pole of the sphere S* we choose an arbi-

trary proper point p of the map f, distinct from f(q') (see Theorem 4). Let e, ne
e, be an orthonormal system of vectors, tangent to S"* at the point p, giving an

orientation to the sphere S7. We denote the tangent space to S" at p by Tp' Since
p is a proper point of the map f, the set f—l(p) is a smooth k-dimensional sub-
manifold of the manifold E’H'k (see §1, F). Since, moreover, the set f_l(p) does
not contain the point ¢', it follows that Mk = géf—l(p) is a smooth closed submani-
fold of the Euclidean space E™k, The map f¢~! of E™* into S is proper at
each point x € M*. We denote the vector space tangent at x to the manifold Entk
by E;’+k (see $1, C). Since E™% is Euclidean space, the space E:+k may be
identified with the space EMt% by taking the point x as origin. We denote the nor-
mal and tangent to M* at x by N, and T respectively. The linear map of the
vector space E;+k on to the vector space I , corresponding to the map f¢ -1 we
denote by f_ (see $1, E). Since the map f¢—1 is proper at x, we have fx(E'”'k):
7};, and since qu"l(Mk) = p, [ (T.)= p. It thus follows that the map f_ of the vec-
tor space N, into the vector space Tp is a non-degenerate map on to Tp. We des-
ignate by u;(x) the counterimage in N of the vector e;, under f + The system
Ux) = {ul(x), cee, un(x)}, x € Mk, constitutes a smooth frame for the manifold M%
We associate the framed manifold (M*, U) with the map f: f— (M®, U), The cor-
respondence f— (M%, U) depends on the arbitrary choice of the system p, ey,

e, so that the correspondence f— (ME, Uy is more precisely written in the form

(f; pyegsvmseg) — (ME, O
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The pole p'of the sphere 2n+k is to be regarded as fixed, that is, it is invar-
iable on the study of all maps of the sphere 2n+k into the sphere S”. The pole p
of S* must be a proper point of the map f distinct from f(¢') and so cannot be
fixed from the start.

The following theorem, demonstrating that homotopic maps correspond to ho-
mologous framed manifolds, proves, in fact, the inessential nature of the choice
of the system p, e}, =+, €. '

Subsequently it will be proved that if two framed manifolds are homologous
then the corresponding maps are homotopic (see Theorem 10).

Theorem 9. Let f, and f; be two smooth maps of the oriented sphere A
into the oriented sphere S* (n > 2, k> 0) and suppose

k
(fo3 Pos €105 ***» &o) = Mg, Up)s
(fps Prs €35 ** s &) — W5, Up)

(see definition 4). It turns out that if the maps fy and f; are homotopic then the
framed manifolds (ME, Uy) and (M’I’:, U;) are homologous.

Proof. Since the orientations of the sphere S® determined by the tangential
systems e;5, ¢ *; €, and ey, *c 5 €, coincide, there exists an isometric map
6 of S™ on to itself, achieved by means of a continuous rotation and so homotopic
to the i&entity, which transforms the system pj, €;4, * =5 €, into the system p;,
€7s s €q1+ We put gy =fo, g7 = 0_1]’1. Since € is homotopic to the identity
the maps g, and g; are homotopic. Moreover it is easy to see that

(go; pPs €15 °° > en)"’ (Mg, Ug),
j k
(gl, P, 81, Tt en)—’ (MI, U])’
where
(P’ 619 *rty en)= (p()’ €1g> """ eno)'
Since the smooth maps g, and g; are homotopic these exsits a smooth homo-

topy g, connecting them (see Theorem 8); corresponding to this deformation there
is a smooth map g, of sk o [ into S® (see §5, C). We define a map ¢4 of the
manifold (2™ = q')x I on to the direct product E™*% » I by putting

s (x, t) = (¢(x), 8), 3)
and we will consider the product EMk I as a strip E%HE+] g the space ErtRtl_
Entk o EI, where E! is the real line. With regard to the map g« we make the fol-

lowing assumption.

+k
(a) The point p is a proper point of the map g« of the manifold X"~ x I and

does not belong to the set g, (g'x D)
In view of hypothesis (a), the set MEHL = @, g*_] (p) is a smooth compact sub-
manifold of the strip Ei‘”‘“. We denote by Nx the normal in E"+k+l to the mani-
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fold M**t1 a¢ the point x € ME+1 | Since the map g*(b*_] is proper at the point %,

it is regular on N, at the point x and so the system of vectors €;, ++-, e, corre-
sponds in Nx to the system of vectors Ulx) = {ul(x), oo, un(x)} (compare defini-

tion 4). With respect to the map g, we make one further hypothesis.

(b) The manifold ML s orthogonal, at points of its boundary, to the bound-
ary of the strip Et5+] (see definition 2).

From hypothesis (b) it follows that U(x) is a frame for the manifold MAHL and
it is easy to see that the framed manifold (M**+1, U) realises the homology between
the framed manifolds (Mg, Up) and (M’;, UI) (see definition 3). Thus to prove the
theorem it is sufficient to construct a smooth homotopy g,, connecting the maps g,
and gp» for which hypotheses (a) and (b) are satisfied. We do this.

Let b’t be an arbitrary smooth homotopy connecting the maps g, and g;. We
modify it to realise hypothesis (a). By assumption p is a proper point of the maps
8o and g distinct forms go(q') and gl(q'). Thus it follows that there exists a
positive ¢ satisfying the following conditions. For all py € S such that p(p, p«)<
¢ and for all ¢ such that £<e¢ or t> I — ¢ the point p. is a proper point of the map k, and
p(ht(q'), p) > €. We fix the positive number ¢ to satisfy the given conditions and
choose a point p. which is a proper point of the map k. not belonging to Ralg'x D)
and satisfying the conditions p(p, px) <€. Such a point ps exists by Theorems 4 and
1. We will regard the sphere S" as situated in the Euclidean vector space E"H
and write E"1 for the linear subspace orthogonal to the vectors p and ps«. We
denote by 0, the rotation of S through an angle  round E" ! and suppose that
eﬁ(p) = ps, 0 < B <m. We suppose that x(t) is a smooth real-valued function of

the parameter ¢, defined on the interval 0 <t < 1 and satisfying the conditions

0<x@ <1, x0)=x)=0;

x(@)=1for e<t<l—e.
We put 7, = GﬁX(t)' Then the given rotation 7, of the sphere S™ round E™, de-
pending on the parameter ¢, transforms the point p into the point p, as ¢ varies
from O to € and then transforms it back to its initial position as ¢ varies from
I -¢€ to 1. We now define a family of maps [, by setting

= (nz)—lhz'

The family is smooth and connects g, and g;. It turns out that for g, = [, hypoth-
esis (a) is fulfilled, For 0<t<e or [ —¢<t< ] we have lt(q');é p» Fore<t<
1 — ¢ the set lt_l (p) coincides with the set ht_l(p*) and so lt(q') # p in this case
also. We show that p is a proper point of the map l«. Let (a, t3) € l';l(p) and let
xl, ey, +"% be local coordinates in the neighbourhood of the point a. For the

point (a, ;) to be proper for the map /i it is necessary and sufficient that there
be n linearly independent vectors among the vectors
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ddlila, ty) .
dx!
For 0<ty<e or ]l —e<ty <[ there are indeed n linearly independent vectors

3¢»l*(a, to) aqﬁl*(a, tg)
axn+k ’ dat ’

s

among the first (n + k) of these, in view of the choice of €. For € <t; <I~¢ there
are n linearly independent vectors among these, in view of the choice of py. Thus
for g = lt hypothesis (a) is fulfilled.

In order to realise hypothesis (b), we construct a smooth real function s(t) of
the parameter ¢, 0 < t < I, satisfying the conditions

s(t) = 0 for OStS—I—,

3
s@)=1for 2 <<,
3 —
é§->0 for —1—<t<_2-,
de 3 3
and we put
gtzls(t)'

We show first that as before the hypothesis (a) is fulfilled for the homotopy g,.
Since ls(t)(q') # p, gt(q') # p. Now let (a, ty) be an arbitrary point of the set )
g:l(p) c Itk I, and let wl, oee, 2% be coordinates in a neighbourhood in 2
of the point a. Since (a, t3) € gII (p), it follows that (a, s(¢p)) € 171 (p). For g
to be proper at the point (g, ty) it is necessary and sufficient to have n linearly
independent vectors among the vectors

a¢g* (a, to) a¢g*(a, to) 8¢>g* (a, tO)

P R

For L. to be proper at the point (g, s(¢y)) it is necessary and sufficient to have

n linearly independent vectors among the vectors

dpli(a, s(ty)) dpli(a, s(ty))  Iplxla, s(ty))

» B >

axl axn+k ds
dpgsla, ty))  Oplila, slty) dsley) ds(ty)
1. < 2 8x\a, L _ s 0’ . 0 0 >0
For T< Ly 5 we have Y e 7 , where = ,

and so, since (a, s(to)) is proper for ls, it follows that (a, té) is proper for gs.

For 0<i, < é,— or % <ty <1 the point a belongs either to lo-l(p) or to l;l(p)

and so, in fact, among the vectors
8<,-bg,,(a, to) 8¢g*(a, 50)
9!
there are n which are linearly independent. Thus hypothesis (a) is fulfilled for

axn+k

the homotopy g,.

Since for 0 <t < L o for 2 <t<l wehave g, =g, or g, =g respective-

3
ly, the orthogonality of the manifold M*+1 o the boundary of the strip EntR] g
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evident.

Thus Theorem 9 is proved.

Theorem 9 is here proved only for the case n > 2; it can easily be proved al-
so for n = 1. However for this case it is without interest since the homotopy class-
ification of maps of Ek” into §! is quite elementary (see Theorem 12 for the case
k> 0).

Transition from framed manifolds to maps.

B) Let N" be a vector space with a specified basis u,, -++, u,. We denote by
K; the region of N consisting of the vectors &= flul ++«++ & u_ for which the
inequality (£1)2+ .- -4 (72 < o? is satisfied. We define a map A of N” on to the
sphere § by mapping the point & € K; to the point of S™ with coordinates

i fi Laqlm
(@ (D2 ("
(see(A)) and sending the whole of N™ - K! to the point ¢ € S'. From the relations

(1) and (2) it readily follows that the map A, has smoothness class m. Further it
is easily seen that the functional matrix of the map A_ at the point E=(0, -+, 0
is the identity. We now take for N" the space Tp with basis e, --+, e, and we

set w (%)= A px), x €S — g, w,(q) = g. We thus obtain a smooth map w, of class
m of S into itself and it is easily seen that w, is homotopic to the identity. It is

a smooth homeomorphism of the spherical neighbourhood K = ¢! (K}) onto S -
q and maps the set S" — K to the point ¢.

Theorem 10. Let 3™ and S* be two oriented spheres, let p' be a fixed
point of S and let E" be the tangent space to ™t the point p'. Fur-
ther let p, and p; be two points of 8" and let ey, -+, €,05 €15 "> €y be or-
thonormal systems of vectors, tangent to S* at the points p, and p, respective-
ly. Let Mx Uy) and (MII”, U,}) be two homologous smoothly-framed manifolds in
E™E_ It turns out that there exists a map go of SM into S* such that (see def-
inition 4)

(803 Pos €10s "2 €n0) ™ (M5, Ug)-
It further turns out that if f, and f; are two maps of 2n+k into S* such that
(fo: Pos €00 == » eyg) — ME, Up),

(s pr€qpy = os €pp) = s, U
the f, and f; are homotopic.
Proof. Since the systems of tangent vectors €10° """ €0 and €15t €,
give the same orientation to the sphere S” there exists an isometric map 6 of N
on to itself, obtained from the identity by rotation, by which the system p,, e,,, -

e,0 is transformed into p;, €, +++, ¢ ;. The maps f; and 6_1f1 are homq-
topic and

.o
]
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O72f15 pos egps *+*» n) = (MY, Uy
Thus to prove the second part of the theorem it is sufficient to consider the case
when
(Pg» €10> =+ *» €ng) = (P> €12 =" "5 €n 1
that is, to prove that from the relations
(fps Ps €gs ==+ » €) — (M, Up), 4)

(15 Pr €gp =0 2) — (M5, U)) )
it follows that f, and f; are homotopic.
We prove first that if
atk, Uy = (%, Up = Mk, U) ©6)
then the maps f, and f; are homotopic.

Let N, be the normal in the Euclidean space E™¥ o the manifold M* at the
point a, and let 7!, -+, 7" be the components of the vector 7 € N, relative to
the basis z,(a), ---, u,(a). In the neighbourhood S" — g of the point p in the sphere
S™ we introduce coordinates xl, .+, x®, with origin at the north pole p, by choos-
ing an orthonormal system e;, -+, e, at p (see (A)). From relations (4)—(6) it
follows that, near the point a, the maps f; and f; of the space N, into S" appear
in coordinate form as . .

) x‘-_-T"_‘....;i:],...,n,

xi=pit ey izl 00,
where we have written only terms of the first order and terms of higher order have
been omitted. Thus the maps f, and f; of the space N, into S* coincide near to
a up to terms of the second order. From this it follows that for n € Ws, where 8
is sufficiently small (see §5, A), the geodesic arc (f0¢_1 ), fIqS_I (1)) on the
sphere 5", connecting f0¢-1(n) and fIqS_I (1), does not pass through the point p.
We put W5'= qS_I(WS). Since the region W; contains the set f&I(p) = fI'I (p)=
gﬁ_z(ﬁ’lk), the closed sets fo(Sn— W) and fI(Sn —#5) do not contain p. For €Wy we put
(&) = p(HE), mp(£)). We transport the point fo(f), Ee€ WS', by uniform motion along the
geodesic segment (f5(£), f; (£)) so that it traverses the segment in unit time and
denote by A(&, t) its position at time ¢, 0 <t < 1. Let x(0) be a real function of
the variable o, defined on the interval 0 <o < 8 and having the following proper-
Hes: x(o)=1 for 0 <o <%8, x(8)=0,

0<x(@)<1 for 0<0<8.

We put ,
B (&) = (&, ty(a(£)) for &€ Vs,

ht(-f)= fo(&) for £€ St WSI'

The family of maps %,, 0 <t <1, yields a continuous deformation of the map fj, = kg
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into the map %;. Here the map %; has the following properties. There exists a
spherical neighbourhood K of the point p in the sphere 5", so small that

hTI K= [ )=V Wy,
and for £ € V we have

hy(6) = f1(E) N

It is now easy to prove that the maps f, and f; are homotopic. From (7) it follows
(see (B)) that the maps wh; and w,f; coincide. Since ®, is homotopic to the
identity, the maps k; and f, are homotopic and so f, and f; are also homotopic.

Thus it is proved that under the condition (6) it follows from (4) and (5) that
fo and f; are homotopic.

We now prove that if the framed manifolds (M¥%, Uy) and (Mé‘, U;), correspond-
ing to the maps f, and f;, are homologous then the maps are homotopic. Let
(Mk+1, U) be a framed submanifold of the strip PAGEIVE Noll LBV 2 E”+k+1,
fealising the homology between (Mloc, Uo) and (MIIC, UI ), (see definition 3). We de-
note the normal in E**%+1 to the manifold M**+! at the point a € ME+1 by N, and
take W; to be the neighbourhood of the manifold M1 in the swip E"* x 1, con-
structed in proposition (A) of $5. In the vector space Na we are given a basis
U(a). We choose a positive number & such that for arbitrary points a € ME+D e

havek the inclusion I_(_O_C WS (see (B)). We now define a map gy of the manifold
5" « I into the sphere S™ by setting

g (&) = A (@ (&) for $u(£) € Hy(a) (see §5, A),
g*(§)= q for QS*(E) € WS (see (3)).

To the map g, of 2n+k x I into S* corresponds a deformation g, of maps of p
into S®, From the properties of the map )\a (see (B)) it follows immediately that
the framed manifolds corresponding to the maps gp and g; coincide with the giv-
en manifolds (MI(;, UO) and (MII‘, UI)' Since the maps f; and g, correspond to the
same framed manifold (Mla, Up), the maps f; and g, are homotopic in view of what
was proved earlier, Similarly f; and g; are homotopic. Since g, and g; are con-
nected by the homotopy g,, they are also homotopic. In view of the transitivity

property of the homotopy relation the maps f() and f, are themselves homotopic.

n+k

Thus the second part of the theorem is proved. The proof of the first part is
contained in the last construction, as we now demonstrate }). We are given a framed
manifold (Mk, U). We denote the normal at a € M* by N_; in the vector space N,
we have a basis U(a). We define a positive number a such that for arbitrary a € ME
the inclusion Ea CWs holds (see $5, A). A map g of the sphere sk into the
sphere 5" is given by the rule

1) Translator’s note: The rest of the argument may well appear to the reader to be
superfluous.

SMOOTH MANIFOLDS AND THEIR APPLICATIONS IN HOMOTOPY THEORY 51

g(&) = A (@ (&) for $(&) € Hy(a),
g(&) = q for (&) £ V;.

From the properties of the map A it follows immediately that the framed manifold

(M*, U) corresponds to the map g. Thus the first part of the theorem is also proved.
Thus Theorem 10 is completely proved.

It is easy to prove that each framed submanifold (M%, U) of Euclidean space

E*+1 js homologous to zero. Thus Theorems 9 and 10 are without interest forn= I

§7. Homology groups of framed manifolds

In this section we first define the notion of a deformation of a framed manifold.
¥f the manifold is deformed smoothly in Euclidean space without self-intersections
and carries its frame continuously with it, then we say that we have a continuous
deformation of the framed manifold, It is easily proved that two framed manifolds
obtained from each other by deformation are homologous. Further an addition opera-
tion is introduced into the set of homology classes of framed manifolds in Euclid-
ean space in such a way that the set becomes a commutative group. If #; and 74
are two homology classes and (MII”, U)Emp (Mg, U,) € my, the sum my + 7y is defined tz be
the class containing the union of the two framed manifolds. Here it is necessary that # ; and
Mg be disjoint and that they are not ‘entangled’ with each other, as is possible
when the dimension of the ambient Euclidean space is less than 2k + 2). The ab-
sence of entangling signifies that the manifolds MII‘7 and Mlzc may be pulled apart
by means of a deformation of each. In order that both these conditions may be ful-
filled, it is assumed that Mé‘ and Mg lie on opposite sides of some hyperplane.

Homotopies of framed manifolds.

A) Let E™ be a Euclidean space, let X be a compact metric space and let
N: . be a linear subspace with fixed origin O(x, t), depending continuously‘on the
pa’ir (x, t), x € X, 0 < t < 1. Further let Ulx) = {ul(x), ses, un(x)} be a basis of
the vector space N;’O' depending continuously on x € X. Then there exists a ba-
sis Ulx, t) of N7 ,, depending continuously on (x, ¢) and coinciding with U(x) for
¢ = 0. If moreover the vector space N:,z does not depend on ¢ for x € Y C X, then
we have U(x, t) = U(x) for x €Y.

We prove proposition (A). Let € be a positive number so small that for |t ~-t'l<
¢, x € X, orthogonal projection of N: , onto N;‘,z’ is non-degenerate. We put Ulx, t)=
U(x). We suppose a basis Ulx, t)’already constructed for 0 <t <pe< 1, x€X
(p a non-negative integer). For pe <t < (p + I)e we construct a basis U(x, t) by
parallel transfer of the basis U(x, pe) to the point O(x, t) and orthogonal projec-
tion on to N" .

x,t

; . . 1 +k
B) Let E™ be a Euclidean space with Cartesian coordinates y~, ***, y?

R\ I

SO G



52 L. S. PONTRYAGIN

chosen in it; let E"** be the strip given by the conditions eg < y < ¢, bound-
ed by the hyperplanes E; and E,, and let M* be a smooth submanifold of the strip
ETL]‘, orthogonal at its boundary points to the boundary £, {J EI of the strip E;H'k
(see $5, A). We will call a smooth family of maps e, 0<t<1,of MFinto ERtE

a smooth deformation of the submanifold M* of the strip EntE i ey is the identity
map and e, is a regular homeomorphism of M on to a submanifold ez(Mk) of ETtk
which is orthogonal at its boundary points to the boundary of EF . X U is a frame
for M¥ and if a frame e‘(kU) is given for the manifold et(Mk), depending‘continu-
ously on ¢, for which eO(U) = U, then we say that e, is a deformation of the framed
manifold (Mk, U). (In the case of a closed manifold Mk, we take EPTE_ pntky
for arbitrary ¢ the map e . of M* is the identity, then e, gives a deformation of
the frame U of a fixed manifold M¥, yielding a homotopy of the frames e,(U) and
e (U) of M¥. Xt turns out that if e, is a smooth deformation of the submanifold Mk
of the strip E%*k and if a frame U is given for the manifold Mk, then there exists
a deformation e ¢ of the framed manifold (Mk , U). If moreover the deformation e,
holds the boundary points of M* fixed then the frame e, (1), 0<t <1, of et(Mk)
may be constructed to coincide with the original frame U on the boundary points

of ez(Mk). .

We prove proposition (B)., Let (Mk, U) be a framed submanifold of the strip
E2+k and let ‘et be a given smooth deformation of Mk. We construct a frame et(U)
of the submanifold et(Mk), depending continuously on ¢, such that ey(U) = U. We
denote the normal at the point e,(x) to the manifold et(Mk) by Nxt. By taking the
system of vectors U(x) as the initial basis of the space NxO’ we obtain, accord-
ing to (A), a basis U(x, t) of the vector space Nxt with origin at et(x). The sys-
tems of vectors U(x, t), x € Mk, provide for fixed ¢ the desired frame e,(U). Thus
proposition (B) is proved.

C) Let (Mk, U) be a smooth framed submanifold of the Euclidean space E""”‘,
and let e, be a deformation of it in E™k, Y turns out that the framed manifolds
(eo(Mk), e,(U)) and (eI(Mk), e;(U)) are homologous.

We prove this. We put s(t) = 362 - 203, It may readily be seen that the func-
tion s(t) satisfies the conditions

s=0, s(D=1, s'"(M=0, s')=0,

s'"(0)>0 for 0<t< L
We introduce the deformation f, of Mk, Uy by putting f, = €;qy Evidently we have
fo=-eo> f1=e;-
To prove that (fo(Mk), fo(U») and (fI(Mk), f;(U)) are homologous in the strip
Enthtl _ prtk o f Entk+] Ge define the submanifold M**! as the collection of
all points of the form (f(x), t), x € MELO<t< I Let Nx’t be the normal in E™*%
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i +k+1
to the manifold fz(Mk) at the point f,(x). We denote by Nxt the normal in E:’
to the manifold M ot the point (f,(x), ). Itis easily seen that N, = N, 8
for t= 0, I; thatis, M¥+1 s orthogonal at its boundary points to the boundary of
i
the strip EV*E+1 At points (f (=) 1), t£ 0, 1, the normals (N, ,, t) and N, are
distinct and so the system ft(U(x)) does not lie in N+ To obtain,-from the sys-
tem f,(U(x)), a system U(x, ¢) lying in N, , we project the system f,(U(x)) ortho-
gonally on to the space Nxt . It is easy to see that the projection involves no de-
generation. Thus the system U(x, t) is linearly independent and so constitute: a
frame for the manifold M¥t1, Since on the boundary sets (fo(Mk), 0) and (f;(M"), I)
the frame Ulx, t) coincides with the given frames (fo(U), 0) and (f;(U), D), the
framed manifold (M**1, U) realises the homology between
(f, (%), foU) and (f;(MF), V).

D) Every frame of a smooth manifold of class m is homotopic to a smooth
frame of class (m — I) of the same manifold.

Let M* be a smooth submanifold of class m of the strip ET’k and let U(x) =
{ul (%), =+, un(x)} be a framing of M*. We denote the components of the vector
u.(x) in Entk by uf(x), cee, u?“'k(x). Let ¢ be a positive number and let v{ be

[ b . ,

real-valued smooth functions of class m, defined on Mk, such that lui-(x)]—yi.(x)l <
¢ (see $5, B). We denote by v,(x) the vector in EPYE with-components v, (x)y +o°,
v;'""k (x), and by w;(x) the orthogonal projection of the vector v;(x) on to N,. We

put Wt(x) ={(l - u;(x) + twi(x)}, i=1,---,n.

The system Wt(x) is non-degenerate for sufficiently small ¢ and achieves a defor-
mation of the original frame U(x) = Wo(x) into the frame W;(x) which is smooth of
class (m~ I).

In $6 it was shown that the homotopy classification of maps of the sphere
™% into the sphere S” is equivalent to the homology classification of smoothly-
framed k-dimensional submanifolds of Euclidean space E"*k (see Theorems 9 and
10). In view of propositions (C) and (D), it is possible to remove the requirement
that the frame be smooth and consider arbitrary continuous frames of smooth mani-
folds. Indeed each continuous frame of a smooth manifold is homotopic to a smooth
frame (see (D)) and smooth frames of a given manifold which are homotopic (not
necessarily in a smooth way) are homologous and so correspond to homotopic maps
of spheres.

The homology group ﬂﬁ of framed manifolds.

E) Let (M%, U) be a framed submanifold of the Euclidean space E™** and
let { be a homothetic map of E"*® oq to itself. It is plain that (f(Mk), fy is
also a framed submanifold of the Euclidean space E"E_ If the map f preserves

the orientation of the space E™E_ then, as is easily seen, there exists a smooth
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family f, of homothetic maps of E™% on itself, depending smoothly on the para-
meter ¢, 0 < ¢ < I, such that f, is the identity and f; = f- The family fp0<t<,
realises a smooth deformation of the framed manifold (Mk, U) into the framed mani-
fold (f(M*), f(U)). Thus these framed manifolds are homologous (see (C)). From
this it follows that if a framed manifold is transported in space as a rigid body or
is compressed homothetically then it does not go out of its homology class.

Definition 5. We divide the collection of all framed k- dimensional submani-
folds of Euclidean space E™ jnto homology classes. We denote the set of classes
so obtained by Hl": and we define an addition operation in it in the following way.
Let 7; and 7, be two elements of Hl,f. We choose at random a hyperplane Enthk-l
in E"*% and from the classes 7, and 7, we choose representatives (M?, UI) and
(Mé, U,) in such a way that MII‘ and Mg lie on opposite sides of the hyperplane
Erth—1| I view of proposition (E) this is always possible. The framed manifold
(Mk, U)= (Mk, UI) U (Mg, U2) we define to be the union of the manifolds M’lc and
M’Z’:, taken with their given frames. It turns out that the homology class 7 of the
framed manifold (Mk, U) does not depend on the particular choice of hyperplane
E"+tk=1 and of representatives (M’IC, Up, (Mé, U,) of the homology classes m; and
7y. By definition we have 7 =7; + mp. It turns out, further, that by means of this
definition of addition the set H'I: becomes a commutative group. The homology
class of the empty framed manifold serves as the zero of the group. The element
—n inverse to 7 can be described in the following way. Let E"%~1 be an arbi-
trary hyperplane in E™E let (M*, U) be a framed manifold in the class = and let
o be the reflexion of the space E™*¥ relative to the hyperplane E™%~1_ The ho-
mology class —7 contains the framed manifold (c(MF), a(U)).

We prove first of all that the definition of addition in the set Hﬁ is invariant.
Suppose that, together with the hyperplane E™*=1 and framed manifolds (MIIC, Uy
and (MIZ‘:, U22 in the space E"tk, we have chosen a hyperplane EMR~1 and framed
manifolds (MI;, [jl) and (ﬁll\é‘, Uz) in the clasfes y andA Toe We show that the
framed manifolds (M’IC, upu (Mg, Uy} and (M;‘, upu (Mg, Uy) belong to the same
homology class. Then the invariance of addition will be proved. Clearly there ex-
ists an orientation-preserving isometry f of E™ on to itself, for which fE™*1) =
E=1 40d the manifolds f (M’I‘) and M’; lie on the same side of the hyperplane E™* k=1,
In view of remark (E) we have

f(MAf’ ﬁt) ~ (Mf, U,), i=1,2

fts, Oy U ot, Gy ~ @, Gy u (i, Uy
Thus theAqueftion reduces to the case when l'?""'k—l = E"F~1 and both represent-
atives (Mz‘, Ul) and (MII‘, U}) of the class m; lie on the same side of the hyper-
plane E™tA=1 jp the half-space ET’I‘, while both representatives (M’;, U,) and

e
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(M’ZC, Uy) of the class my lie on the other side of E"+:—1 in the. h'alf-space ET’k.
Let (M’j“, Uf) be a framed manifold in the stip E"P x [ reallsm.g the-hom(’l];g]y
(MII‘, U~ (Maéc, 01) and let (M'Izr""l, U;) be defined similarly. If,:h;: inclusions M7 C
E:‘_“"k x I and M’;H C E_T'k x I hold, the framed manifolds (M1+ , U;) and
(M’2°+1, UB) do not intersect andA their unio:—i is a framed manifold realising the homo-
mology (Mé‘, Upu (M, Uy~ Mk, Upu (M’2°, Uy). Let e be a vector in the space
En+k, orthogonal to E™E=1 ,nd directed towards the half-space ET”‘. We denote
by 8, the map of E*tE 1o itsélf sending the point x to the point x + te. We choose
the vector e so long that the inclusions

g (D) CEMH 1, g (M5 CETYF < 1
hold. We remark, finally, that the framed manifolds g_t(M’}:, Upu gt(Mg, U2) achieve
a deformation of (M’I‘, Upu (MIE, Uy) into g_; (M’I‘, Upy gI(Mg, U,) so that, in view
of (CZ, g_I(MII‘, UI)AU g’\l(M];, lA]2) '\»A(MI;, ql) U.(M ]2‘, Uy In exactly thz same way
g (1%, 0) U g%, G) ~ %, Uy) U (M3, Up). Thus e, Uy U 5, Up) ~
at, Upy u e, Uy,

Since addition is independent of the choice of representative it follows that
the class containing the empty framed manifold is the zero of the group Hﬁ; that
is, the zero is the class of nullhomologous framed manifolds. We prove that the
element —7 inverse to 7w may be described in the way indicated in the definition.

We will regard the Euclidean space E™E as lying in Entk+l and defined by
the equation y"""”’l = 0. We will also suppose that the points of M* are all aca
distance less than I from ErtF—1 (see (C)). Let ET’k and E"_+k be the half-
spaces into which E"*E is cut by the hyperplane E"¢~1 and let Mk c E'fk . We
rotate E’r’k in the half-space y’”’k'*’] > 0 of the space EP+E+D yndil it coincides
with E"_"'k ; in the course of the motion the framed manifold (ME , U) sweeps out
a framed submanifold (M**1, U*y of the half-space y"+k+1 > 0. The framed mani-
fold (MF*1 U*) lies entirely in the strip 0 < y"+k+1 <1 of EntEtl and realises
the nullhomology of the framed manifold M=, Uy U (a(MF), o(U)).

We divide the set of maps of " into S™ into homotopy classes and denote
by D n'n+k(5") the collection of these classes. Since there exists a well-defined
(1, 1) correspondence between elements of the group Hf and elements of the set
7. ;8" (see §6), the addition operation defined in H,l: induces an addition in
7, (8™) It is not difficult to show that the addition operation in 7, S ™) so de-
fined coincides with the usual addition of elements of homotopy groups (see [ 10]).
This fact, however, is neither proved nor used in the present work. For readers

familiar with the elements of homotopy theory the proof of this fact presents no

1) Translator’s note: Pontryagin uses itk (™)’ but we have preferred the standard
homotopy group symbol to avoid confusion with cohomotopy.
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problem.

Orthogonalization of frames. Proposition (G) below show that in the homology
theory of framed manifolds it is possible to restrict attention to orthonormal frames.
Proposition (H) gives an approach to the problem of the homotopy classification of
orthonormally framed manifolds of Euclidean space.

F) Let U= {"'1’ LRI u"} be a linearly independent system of vectors in a
Euclidean vector space EL. We will subject this system to a process of orthogonal-
ization, that is, we will find an orthonormal system U= {51, cee, En}, obtained from
the system U by the formula

L] .

where the coefficients a‘]- satisfy the conditions
a% = 0 for i> j; @’ >0 for i=j.

The coefficients ail. are uniquely determined by these conditions —they are ex-
pressed by means of scalar products of vectors of the system U. If the system U
is orthonormal then U = U. We put ‘

Ut =tul, ---, ub},

where

"E =u; (I - )+ ut.
The systems U’ are linearly independent since the matrices [[(1 - )8 + tat| are
non-singular. Thus the system U=U! is obrained from U = Y by means of a
continuous deformation uniquely determined by U.

G) Let U(x) be a frame for the manifold M*. The frame Ut(x) (see (F)) real-
ises a continuous deformation of the original frame U(x) into an orthonormal frame
U(x). If the original frame is smooth of class m, then so are all the frames Ut(x).
Finally if there is given a deformation U,(x), 0 <t < 1, of an orthonormal frame
Uo(x) inio another orthonormal frame Ul (x), then there exists an orthonormal defor-
mation Ut(x) of Uo(x) into Uj(x).

H) Let (Mk, V) be an orthomormally framed submanifold of oriented Euclidean
space E™*, In view of the remarks in definition 2 the manifold M* has a well-
defined orientation and we say that V is a frame for the oriented manifold M, Let
U be an arbitrary orthonormal frame for the oriented manifold M*. We compare the

frames V and U. In each normal Nx to the manifold M* there are two orthonor-
mal systems of vectors

Vix)= {vl(x), IEEXY vn(x)} and U(x) = {ul(x), e, un(x)};
so we have n )
u; () =].=21 fii @ox),  i= 1, +-e,m,

where f(x)= || fii (x)|| is an orthogonal matrix with positive determinant. Thus, to
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each orthonormal frame U there exists, for fixed V, a map f of M® into the mani-
fold [ of all orthogonal matrices with positive determinant: U — f. It is evident
that conversely to each map f of Mk into H, there corresponds a unique orthonor-
mal frame U: f— U. We suppose that, together with the fixed frame V, we are
given two orthonormal frames U, and U of the oriented manifold M¥; let Up— fos
U; — f;+ It is easy to see that the frames U, and U are homotopic if and only if
the maps f; and f; are homotopic. Thus the homotopy classification of frames of
the oriented submanifold M* of oriented Euclidean space ErtE s equivalent to
the homotopy classification of maps M* into the manifold Hn of all orthonormal

matrices of order n with positive determinant.

$8. The suspension operation
In this section we will define and to a certain extent study the suspension

operation for framed manifolds which plays an important role in the que stion of the
homotopy classification of maps of spheres into spheres. Let (M*, U) be a framed
submanifold of the Euclidean space E"tk regarded as a subspace of ErtRl At
each point x € M* we draw in EntE+D 5 upit vector u,, () perpendicular to the
hyperplane E™ in such a way that all the vectors u, (%), x € M*, are directed
in the same sense, and we put FU(x) = {ul (x), *++» un(x), un+1(x)¥ . The framed
manifold E(ME, U) = (M*, EU) of the Euclidean space Er+k+l g called the sus-
pension of (Mk, U). It turns out that the suspensions of homologous framed mani-
folds are homologous and that the induced map E of the group H’rf into the group
e
n+1 K
on to H5+I‘ if n>k+ 1 and an isomorphism if n> k+ 2 so that the groups Il 5,

(see definition 5) is a homomorphism. In Theorem 11 it is proved that E is

n£+3, -+« are all naturally isomorphic to each other.

In terms of maps of spheres the suspension operation can be described as fol-
lows. Let p' and g’ be the poles of the sphere Zn+k+1 and let 2n+k be its equa-
tor, that is, the section by the hyperplane perpendicular to the segment p 'q' and
passing through the midpoint of this segment. In the same way let p and ¢ be
poles of §7**+1 and S™ its equator. With the map f of ™ jnto S™ we assoc;:‘i-
ate the map Ef of En+k+1 into S**! which maps the meridan p'xq', x € =™ ,
of the sphere 2n+k+1 isometrically on to the meridan pf(x)q of §7+1, The suspen-
sion Ef of the map f was introduced, in the form described here, by Freudenthal
{11]. In this work this form will not be used. The fact that the suspension of maps
and the suspension of framed manifolds corre spond to each other in the sense of
definition 4 may be easily proved, but the proof will not be given here.

Definition 6. Let (M*, U), U(x) = {wl(x), ey un(x)}, be a framed submanifold
of the oriented Euclidean space E"* and let E***+1 be an oriented Euclidean
space containing E™E, Let ey, ==, e, beabasis of the vector space Entk,

E ntk+1

determining its orientation, and let e, ;. ; be a unit vector of , orthogonal
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to E'“"; '«;nd such that the basis ¢;, ..., € ks Cntkil determiries the orientation
of EM**l, We designate by u,_ (%) the vector emanating from the point x €Mk

and obtained from e_ , ; by parallel displacement. We set

EUx) =tug(x), -+, (), u,, g (e
Thea EM*, U) = (M%, EU) is a framed submanifold of Enté+l | The framed mani-
fold E(Mk, U) is called the suspension of (Mk, U). It turns out that if (MI(;, UO) ~
(Mf, U), then E(Mk, Up) ~ E(M’I‘, Uj). Thus the correspondence (Mk, Uy—s E(ME, U)
induces a map of H": into H',:”. This map turns out to be a homomorphism; we
will also denote it by E.

We show that if (M5, U))~ (%, U)), then EME, Up)~ EME, U)). Let
(M*+1 U*) be a framed submanifold of the strip E™*% [ realising the homology
(Mk, Uo) ~ (Mk, UI)' At the point y € M*+1 we choose a unit vector u:+1 (y) in the
strip Enth+l o orthogonal to the strip E™% » I and in the same direction as
€niisg We put EU*(y) = fug(yh «+=» un(y), ty, ;). It is plain that the framed
submanifold E(MFt1 U*y= (u*+, EU*) of the strip ErtEtl o | realises the homo-
logy E(ME, Up) ~ EME, Up.

That E is homomorphic is seen still more simply. The homomorphism E turns
out, in a range of cases, to be an epimorphism or even an isomorphism. We will
study these cases. For this we first prove the following proposition.

A) Let E"**1 be an oriented Euclidean space and let E"** be an oriented
hyperplane. Further let (4 k+1 , V) be an orthonormally framed submanifold of the
strip E"%+1 « [ such that M**1 actually lies in E™* x I. The case of a closed
manifold M¥*1 is not excluded. We will suppose the boundary of M*1 1o consist
of manifolds Mg x 0 and M’lc x 1 such that M’l; c Entk, M’I‘ C E™*k, We suppose

that ¥ has the form of a suspension on the boundary sets Mé‘ x 0 and Mﬁ‘ x 1,
that is,
Vix, r)y= EU(x)x 7, 7=0,]1,

where UT is a frame for the manifold M’;, r=0, 1, in E"% | Ateach point x € Mkl
we choose a unit vector un+1(x) orthogonal to E™ x | and appropriately sensed.
In the normal N_ to M¥*+1 a¢ the point x in the space E"% « I we have a basis
vy(x), <o Vo1 (x) Therefore the vector u, ;(x), which also lies in Nx ,
satisfies

Uy [ = PL@ v+ -+ @)y 0. ¢))
Let N be a Euclidean space of dimension (n + 1) with a given Cartesian coordin-
ate system and let ©" be the unit sphere in N with centre at the origin. We denote
the point (0, «++, 0, I) of c" by B. With each point x € M**+1 e associate the
point Y(x) of 6" with coordinates 1//1(;\:), ceey ¢n+1 (x). So defined, ¥ is a map
of M*1 jneo G sending the whole boundary to B. We suppose that there exists

|
|
|
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a deformation t,, 0 < ¢ < I, of the map Y = Yy to a map ¥, sending ME+T o B,
the boundary of Me+1 staying at B throughout the deformation. It then turns out
that there exists a deformation of the frame V into a frame EU, where U is a frame
for the manifold M¥*1 in E"*% x I, such that the frame restricted to the boundary
of M5+l remains constant throughout the deformation. For a closed manifold M1
this means that the framed manifold (Mk+1, V) is homologous to a framed manifold
E(Mk+1, U). For a non-closed manifold ME+L this permits us to deduce, from a
homology E(Mg, Uy~ E(M’IC, U;), realised by (M¥1 V), a homology (Mg, Uy~
M, U,

We prove proposition (A). We introduce into Nx Cartesian coordinates corte-
sponding to the basis v;(x), <+, y 1) and let A be the coordinate map of N
on to Nx. We set Yl(x, t) = /\xz/ll_t(x). The vector Y(x, t) of E™E+1 o I lies in Nx,
depends continuously on the pair of variables x, t, and satisfies Ylx, N=1v, +1(x),
Ylx, I)=1u, (x). The subspace of N_ orthogonal to ¥(x, t) we denote by P, ,.
Since Y(x, 0)= vn+1(x), the vectors vl(x), oo, vn(x) constitute a basis for Pxo’
By taking this initial basis and applying proposition (A) of §7 to the variable vec-
tor space th, we obtain a basis U(x, ) for F,,. Together with the vector ¥(x, t)
this basis gives us the required deformation of the frame V. Thus proposition (4)
is proved. )

Theotem 11. The homomorphism E of l'[ﬁ into II,’:_” is an epimorphisn‘z if
n> k+ 1 and an isomorphism if n> k+ 2. Thus the groups ﬂ’,“+2, H£+3, »oo are
in o natural way isomorphic to each other.

Proof. Let n>k+ I, 7 € Hﬁ+1’ and (ﬂ?k, (j) a framed submanifold of the
Euclidean space Entk+l in the homology class 7. In view of proposition (D) of
§2, there exists a one-dimensional direction El, projection along which maps M~
regularly without self-intersection on to a manifold M¥. We will regard the projec-
tion along E 1 as a map on to a hyperplane Entk orthogonal to El and containing
ME. We move each point x € ﬂik by rectilinear uniform motion along E! to coin-
cide with its image in M* under projection in such a way that it traverses the path
in unit time. This gives a deformation of M* into M*. In view of propositions (B)
and (G) of $7, there exists a deformation of the framed manifold (Mk, U) into an
orthonormally framed manifold M*, V). Since n> k+ I, the map Y of the mani-
fold M* into the sphere 6", constructed in proposition (A), is homotopic to the
constant map at B, and so the frame V of ME is homotopicAto a frame EU for the
same manifold. In view of proposition (C) of §7, we have (Mk, U)~ E(Mk, U). Let
7= H’; be the homology class of (Mk, U); then 7 = En. Thus it is established
that Hﬁ+1 = EH”: for n>k+ 1.

We suppose now that n > k+ 2 and show that E is an isomorphism; thus we

must show that for 7, 7; € Hﬁ, the relation Eﬂo = Eﬂ1 implies that my =7},
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Let (Mg, UO) and (M'IIC, UI) be orthonormally framed manifolds in the cla}\sses L0
and m;, situated in the Euclidean space EME ¢ ErtRl | purther lee (MFH) U be
a framed submanifold of the strip Emth+1 o | realising the homology E(Mg, Uy) ~
E(Mk, Ul ). We denote by E! the one-dimensional direction in the space Erth+ly |
orthogonal to E™E I, In view of proposition (D) of $2 there exists in arbitrarily
close proximity to é 1 a direction EI, projection along which maps the manifold
Mk+1 regularly and without self-intersection. We choose E! so close to E! that
the projection M¥+1 of M¥*1 in the direction E! lies in the strip E™* x I, The
deformation of M*¥*! into M**! leaves the boundary fixed, and so there may be de-
fined, in view of propositions (B) and (G) of §7, a deformation of (1]2’”’1, ﬁ) into
an orthonormally framed manifold (Mk+1, V) which leaves the frame restricted to
the boundary unaltered. Thus the homology E(Mz, Up) ~ E(MIIC, U;) may be achieved
by the framed manifold (M1, V) where M**1 C E"*% x I; that is, the conditions
of proposition (A) are fulfilled and so the framed manifolds (M’é, Uo) and (Mllc, Ul)

are homologous. Thus 7, = 7;.

Theorem 11 is therefore proved.

CHAPTER Il
The Hopf invariant
$9. The homotopy classification of maps of n-dimensional
manifolds into the n-sphere

In this section we give the homotopy classification of maps of smooth closed
oriented manifolds of dimension n into the n-sphere. The result is well-known ev-
en for arbitrary manifolds but it plays an important auxiliary role in this work. The
proof we give is by arguments specific to smooth manifolds so that the application
of the result in later sections is simplified. To begin with, the degree of a map is
defined and the simplest of its properties are proved. Next, on the basis of the
constructions of the earlier theory the classification of maps of 3" into S7 is giv-
en, providing an elementary illustration of the general results of preceding sections.
Finally the classification of maps of n-dimensional manifolds into S” is reduced
to the classification of maps of 2" o S™.

The degree of a map.

Definition 7. Let f be a smooth map of the r-dimensional oriented manifold P’
into the r-dimensional oriented manifold Q7 and let b be an interior point of Q,
which is a proper point of the map f and such that Fl(b) is compact and does
not meet the boundary of P”. Under these assumptions fZ(b) consists of a finite
number of points @y, v, ap, at each of which the functional determinant of the
map f is non-zero, and so has a definite sign (the manifolds P" and Q" are ori-

ented)., We denote by ¢, (= 1) the sign of the functional determinant of f at the

:
:
[
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point a;, i=1, -+, P, and we will call ¢, the degree of f at a; The sum ¢+++++
¢ we will call the degree of f at b. Now if both manifolds are closed, the set G
of all points b fulfilling the requirements set out above is a region e.verywhere
dense in Q" (see Theorem 4). It will be shown below (see (B)) that if moreover the
manifold Q7 is connected then the degree of f is the same for all points b€ G;

it will then be called the degree of fo It will also be shown below that (see (B))
the degrees of homotopic maps coincide. Thus, if PT is closed an§ Qr i.s closed
and connected, the degree is an invariant of homotopy class and so is defined for
arbitrary continuous maps.

A) Let Q7 be a closed connected manifold, P"*! a compact manifold with
boundary P7, f a smooth map of P+l into Q7 and b € Q7 a proper point of the
map f of P’ into Q7. It turns out that the map f|P" has degree 0 at b.

We prove this. Let V be a connected neighbourhood of b, consistin;-; of prop-
er points of f|P. It is easy to see that the degree is the same for all points of V.
So without loss of generality we may suppose that b is a proper point of the nllap
f of Pr*1 (see Theorem 4). Then f’l(b) is a one-dimensional submanifold Mt of
P! and so consists of finitely many components, some of which are homeomorphic
to a circle, the rest to a line segment. All points of f—l(b) in P are end-poin.ts
of components of the manifold M. Let LI be a component of M! homeomorphic
to an interval; we denote its end-points by g, and a;. In view of the results of
$4 (see (2)), for a given system of coordinates y=, -+ *» y" with origin at b, de- "
fined in some neighbourhood of b, it is possible to choose coordinates xl, cen, &
in the neighbourhood of a € L1 such that the map f takes the form:

yi=xi, i=1, 00,71

We will suppose that the coordinates yl, «+«, ¥ orient Q7. In the coordinates
xI, cee, #*1 the curve L is given by the equations % =0,+.+,x =0, that is,
"t is a parameter on the curve L1, We will suppose that a point on the curve
L! moves from ap to a; as the parameter 1 increases. Under these assump-l
tions the coordinates x°, » -, «"*1 may not determine the given orientation of P™

. . . . : r+1
and we denote by e(=11) the sign which distinguishes the orientation given in P

from the orientations determined by the coordinates x1, eey «H, It is easy to
verify that ¢ does not depend on the particular choice of system wl, eee, % a‘nd
does not alter under variations of the point a along the cusve L%, From the defi-
nition of the orientation of the boundary (see §1, B) it follows that the degree of
the map f|P is equal to —e(-I)" at a; and e(=1)" at a;. By applying these con-
siderations to all components of the manifold M! which are homeomorphic to line
segments, we conclude that the degree of f at b is zero. r
B) Let f, and f; be two homotopic smooth maps of the closed manifold P

into the connected closed oriented manifold Q" and let Gz be the set of all proper
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points b € Q" of the map f,, t =0, 1. It turns out that, if b € Gy N G;, the degrees
of f, and f; at b are equal. It further turns out that if b, and b; are two points
of G, the degrees of f; at b, and b, are equal.

We prove proposition {B). Since f, and f; are homotopic there exists a smooth
family f, connecting them (see Theorem 8). To the family f, there corresponds a
map fy of the product P x I (see €5, C). The boundary of the manifold P x I con-
sists of the manifolds P’ x 0 and P™ x 1. We choose the orientation of P" x I such
that P’ x 0 is contained in the boundary of the product P7 x I with positive sign;
then P™ x 1 is contained in the boundary of P’ x I with negative sign. From this
and from proposition (A) it follows that the degrees of the maps fp and f; at the
point b coincide.

We now prove that the degrees of the map f, coincide at all points b € G,
Let X be a coordinate system with origin at the point ¢ € Q7; let V be a spher-
ical neighbourhood of ¢ in this coordinate system; and further let b, and bI be
two points of V (] Gj. It is easy to construct a smooth homeomorphism ¢ of Q'
onto itself, under which all points of the set Q" — V remain fixed and which maps
50 to bl‘ The map ¢ is evidently homotopic to the identity. It is also evident
that the degree of ¢f, at b; is equal to the degree of f, at by; but, since ofo
and fo are homotopic, the degrees of these maps at b1 coincide. Thus the degrees
of f, atall points b € VN Gy are equal. Since Q" is connected and G is eve-
rywhere dense in Q7 it follows that the degrees of f;, at all points b € G, are
the same.

Maps of the n-sphere into the n-sphere.

C) Let (MO, U) be a O-dimensional framed submanifold of the oriented Euclid-
ean space E". Since MO is compact it consists of finitely-many poiats aj, *-*, @.
We give a; the index +1 if the vectors ul(ai), veey, ”n(“i) give a positive orienta-
tion to E® and the index —I in the opposite case. We call the sum IMO, U) of the
indices of the points a;,-c,a, the index of the framed manifold. It is clear that
the index of (M7, U) is equal to the degree of the associated map (see definition
4) of the oriented sphere =" into the oriented sphere S".

Theorem 12. If two maps f, and f; of the oriented sphere S" into the ori-
ented sphere S™ have the same degree then they are homotopic. Moreover every
integer appears as the degree of some map.

Proof. From proposition (C) and Theorem 10 it follows that it is sufficient to
establish a homology between framed 0-dimensional manifolds of the same index
and to prove the existence of framed manifolds of arbitrary index. It is easy to see
that two framed manifolds (Mg, U,) and (M?, Up), each of which consists of one

point of index +I, are obtainable from each other by a deformation (see §7, B) and
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so belong to the same homology class (see $7, C). Thus all ‘one-poiﬁt’ framed
manifolds of index +I belong to one homology class ¢. In exactly the same way
all ‘one-point’ framed manifolds of index —1 belong to one homology class ¢'. Since
under reflexion in an arbitrary hyperplane the space E™ reverses orientation it fol-
lows that ¢ = —¢ (see definition 5). Since, further, each O-dimensional framed mani-
fold (M0, U) is the union of a finite number of ‘one-point’ framed manifolds, some
of index + 1, the other of index — I, it follows that ¢ is a generator of the group [Ig,
such that (Mo, U) belongs to ‘the class I(MO, U)e. Thus two O-dimensional framed
manifolds of the same index are homologous. It is clear also that there exist 0-
dimensional framed manifolds of arbitrary index.

Thereby Theorem 12 is proved.

From Theorem 12 and (C) it follows that the group Hg or, what is the same
thing, the group 17"(3") is free cyclic.

D) Let f be a smooth map of the oriented sphere 2n+k into the oriented
sphere S* and let g be a smooth map of 2n+k into itself of degree v. We denote
by z the element of Hﬁ corresponding to the map f and by 7' the element of l’[”:
corresponding to fg. It then turns out that

'=vm. (1)
We prove (1). Let p'and q'be the north and south poles of 2n+k, let E™*% be the
tangent space to = ar p' and let ¢ be the central projection from q' of the
region 2"+k —q'onto E"*k, For v = 1 the map g is homotopic to the identity
(see Theorem 12), so that in this case the relation (1) is true. We prove it for v =
— 1. Since all maps of 2n+k to itself of degree — I are homotopic, it is sufficient
to consider one particular map g of degree — 1. Let E?tF=1 be an arbitrary hyper-
plane of E™% passing through the point p ' and let o be the reflexion of Entk
in this hyperplane. The map g = qS—qub of the region X e q' on to itself, to-
gether with the relation g(q') = ¢q' determines a map g of 3™% on to itself of
degree —1. For the map g so constructed the relation (1) is obvious.

Now let g be a smooth map of 2n+k into itself such that g—l (p') consists of
proper points of g and does not contain ¢'; this may always be achieved by a
small change in an arbitrary given map g. Let ng”I(p') ={ap, ==+ ar} ; we de-
note by ¢; the sign of the functional determinant of g at the point ¢>_1(ai). Fur-
ther let V; be the ball of radius 5 in E"* gith centre a;. We will take 8 so
small that a hyperplane E '1‘+k"'1 may be construced intersecting none of the V;
and having a preassigned part of the set {ao, cery ar} on one side of it, the rest
of the set on the other. We choose a positive number a so small that, if K, is
the spherical neighbourhood of P’ the set g_l (K,) consist of proper points of g
and splits into regions Ay, ++-, A,, where a; € Aiv each region being mapped by
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g smoothly and homeomorphically on to K. We suppose a so small, moreover,
that ¢(4;) C V,. We now define a map h; of 2"+k on to itself to coincide with
,g (see 1) (B)) on Ai and to map the set 2"+k - Ai to q'. Since the map k; has
degree ¢;, the framed manifold (M’i‘, U,) corresponding to the map fh; belongs to
the homology class ¢;7. It is evident that Mi-‘ C ¥, and that the framed manifold
(M, upu (MIZ‘, Upy---u (Mf, U) corresponds to the map fw,g. Since the maps
w,g and g are homotopic, then from what has been said and from the possibility of
the indicated method of constructing such hyperplanes E'IH'k‘I the validity of the
relation (1) follows.

Maps of n-dimensional manifolds into S ", Theorem 13 below completely solves
the problem of the homotopy classification of maps of closed orientable manifolds
of dimension n into S”. Theorem 13 is proved by the use of the information given
by Theorem 12 on the classification of maps of =" into S™,

Theorem 13. Two continuous maps fy and f; of the connected oriented smooth
manifold M into the oriented sphere S™ are homotopic if and only if they have
the same degree (see definition 7). If, in fact, the degree of a map is zero, then
the map is nullhomotopic, that is, contractible to a point. Moreover there exist
maps of arbitrary given degree.

Proof. To prove the first part of the theorem it is enough to show that if f,
and f ; are smooth maps of the same degree then they are homotopic. To reduce
the proof of this fact to Theorem 12, we show first that any finite collection Q of
points of the manifold M" is contained in a region B of M" smoothly homeomot-
phic to an n-dimensional ball.

It is easy to construct a smooth simple closed curve K, lying without self-
intersections in M", containing all the points of the set . We take M® tobe a
submanifold of the Euclidean space E2"+1, and we denote by N the normal in
E2n+1 (4 the curve K at the point x € K. Just as in proposition (A) of $5 we de-
note by Hy(x) the ball in the Euclidean space N, with centre x and radius J.
Then there exists a sufficiently small positive number & such that the set Ws =
Hy(K) is a neighbourhood of the curve K in E2™*! and such that by associating
with each point y € Wy the point x = 7(y) for which y € Hj (x), we obtain a smooth
map 7 of the manifold Ws on to the curve K (see §5, A). We distinguish on the
closed curve K a segment L containing all points of the set ¢ in its interior,
and we introduce on L a smooth parameter ¢, —I < ¢ < I. In this way, there corre-
sponds to each value of the parameter ¢, —I <¢< 1, a point x(t) € K. We denote
by T the tangent to the manifold M" at the point x €K and we set Nt'= Nx(t) N

Tx ®° In the vector space Nt' we introduce an orthonormal basis e(t),--- e, (0.

1) Translator’s note: The appropriate reference to @  and Ka. seems to be § 6, B.
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Using proposition (A) of §7 and the orthogonalization process (see §7, Gy, it is
got hard to see that this may be done in such a way that the basis e (t)-re, (8
depends smoothly on the parameter f. Let WS' = M"* N W, and let 7' be the restriction
of 7 to WSI. We denote #'~L(x(t)) by Ht" Let ¢ be a positive number. We denote

‘by H: the ball of radius v/ j_,2 , in the space Nt" with its centre at x(¢). By or-

thogonal projection X, of the manifold M® on to the space Tx @ Some neighbour-
hood of x(t) in M* is mapped by smooth regular homeomorphism on to some neigh-
bourhood of x(t) in Tx(t)' From this it follows that for sufficiently small & the pro-
jection X, is a smooth regular homeomorphism of the manifold /f t' on to some neigh-
bourhood of x(t) in Nt" and so there exists € so small that H: C xt(Ht' ), -1 <t<].
We denote the coordinates of the point z € H: with respect to the basis el(t), see,
e,_;(&) by ezl oer, ez" 1 and we take the numbers 2L, 271 ¢ as coordinates
of the point xt_l(z). The collection B of all points x:l(z), -1<t<1,z€ H:,
constitutes a region in M*, in which smooth coordinates 21, N 2.'"—1, t have been
introduced satisfying the condition O (z"1)2 + 12 < 1. Thus B is the
smooth homeomorph of an open n-dimensional ball.

We now choose in S” a point p such that the set ft"l(p), t=0, 1, consists of
proper points of the map f, (see Theorem 4); put ft'l(p)= Pt . Set Q="F, UP; and
let B be a spherical region in M" containing the finite set (. We take the point
p as north pole of S” and denote the south pole by ¢. Let a be a positive num-
ber so small that the spherical nieghbourhood K of p (see $6, B) satisfies the
conditions _

A, C B, where 4, = f{ 1K) £+ 0, 1, @
and let @, be the map of S” on to itself corresponding to the selected number a
(see $6, B). Since @, is homotopic to the identity, the maps w_f, and f, are homo-
topic, ¢t = 0, I. We will regard B as a ball of unit radius in some Euclidean space
R™, Then there exists a positive 3 <I such that the ball Bg of radius B con-
centric with B contains the sets A4,, t=0, I. Let )‘[3 be the map of R® onto S"
described in proposition (B) of 86. We define a map 6 of M" onto §" to coincide
with A,B on the ball B and tomap ¥, - B to q. Since the set .;1;, t=20, 1, is con~
tained in Bﬁ' the map 6 is a homeomorphism on At . We now define maps g,, ¢t =
0, 1, of S™ on to itself in the following way. On the set 6(4,) we define g, by
putting g, = a)a_ftﬁ—l and for x € S"” — 6(4,) we put g,(x) = ¢. From this defini-
tion of g, it follows that

gt6=waft, t=0, 1. 3)

The maps f, and (‘)aft evidently have the same degree at p and from relation 3)
it follows that the maps g, and f, also have the same degree at p. Since the maps
fo and f; have the same degree by hypothesis, it follows that the maps g, and
gy of S™ to itself have the same degree. Thus the maps g; and g; are homotopic
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(see Theorem 12). From this it follows that the maps g09 and g19 of U™ to S” are
homotopic and consequently (see (3)) the maps w_f, and w, f; are homotopic. Since
the maps w, f, and w, f; are homotopic to fo and f; respectively, these last maps
are also homotopic.

The construction of a map M" — S" with a given degree proceeds without
difficulty.

Thus Theorem 13 is proved.

§10. The Hopf invariant of maps of 24T o SKFI

In the homotopy classification of maps of spheres into spheres the Hopf in-
variaat, which was first introduced to prove that there exist an infinity of classes
of maps of the 3-sphere to the 2-sphere {12}, plays an important role. The invari-
ant was later defined by Hopf for maps of the (2k + I)-dimensional sphere to the
(k + I)-dimensional sphere. However for even values of k the invariant is always
zero. The Hopf invariant is defined as the linking coefficient of the counterim-
ages in 22 * of two distinct points of Sk+1 14 this section we first of all give
the definition of the linking coefficient of two submanifolds of Euclidean space in
the form first proposed by Brouwer [ 13], that is, by means of the degree of a map
and not by means of the intersection index (as it is now defined), This form corre-
sponds better to the character of the entire work. Then the Hopf invariant is de-
fined and, finally, it is characterised in terms of the framed manifold associated
with the map. Moreover we establish a series of connections between properties
of framed manifolds and properties of the Hopf invariant. These connections play
a decisive role in the classification of maps of the (n + 2)-dimensional sphere in-

to the sphere of dimension n.

The linking coefficient.

Definition 8. Let M* and N! be two closed smooth oriented manifolds of di-
mension % and [, and let f and g be maps of them into the oriented Euclidean
space E*++1 of dimension (k+ L+ 1) such that the set f(Mk) and g(Nl) do not
intersect. Further let S¥*% be a unit sphere in E¥+H1 | ith centre at some arbi-
trary point O, oriented as the boundary of a ball, and let M* « N! be the oriented
direct product (see §1, K) of M* and N. To each point (x, y) € ME Nl, x € Mk,
y € Nl, there corresponds the non-zero segment (f(x), g(y)) in Ebti+I passing
from the point f(x) to the point g(y). We draw a ray from O, parallel to the seg-
ment (f(x), g(y)), and we denote by x(x, y) the intersection of this ray with sk+,
The degree of the map ¥ of the oriented manifold M* x N' into the oriented sphere
Sk+l (see definition 7) is called the linking coefficientl) of the manifold-maps

1) Translator’s note: Or looping coefficient.

SMOOTH MANIFOLDS AND THEIR APPLICATIONS IN HOMOTOPY THEORY 67

“(f, M¥) and (g, N) and denoted by 5((f, M%), (g, NO). It is evident that if the .
“maps f and g vary continuously: f= f,» g = 8, in such a way that the sets f,(M")

and gz(Nl) intersect for no value of ¢, then the map X = X, also varies contkinuous-
ly and so the linking coefficient does not vary. In the special case when M* and

N! are submanifolds of the space E¥*+1 and the maps f and g are identity maps,
the linking coefficient is defined and is denoted in this case by oMk, Nb). It turns

out that

o (g, ND, (f, M4) = (~DEDED o f, 1), (g N (m

We prove formula (1). Let %' be the map of Nl x M% into S** analogous to
the map x constructed above. We denote by A the map of N M on to MF x N
which transforms the poiat {(y, x) into the point (%, y) and let p be the map of Sk
on to itself, mapping each point to the point diametrically opposite. It is evident
that the degree of A is (—I)kl and the degree of p is (—1)k+l+1. It is easy to see,
moreover, that X' = gxA. From this follows the validity of. formula (1).

A) We suppose that, instead of one map (g, N ly we are given two maps (gp» Né))
and (g;, Nf). We suppose further that there exists an oriented compact manifold l
N1 gith boundary, such that the oriented boundary consists of the manifolds N
and —NII and that there exists a map g of NH1 into EFFIHL c;:inciding with g,
on Nol and with g; on NII, such that the sets g(Nl+1) and (M) do not intersect.
It then turns out that

o ((f, M*), (g, NID = B((f, MFY (g7, N V- @

We prove this. The manifold M x Nol — M x Nll serves as the boundary of
M* < N1, To each point (x, y) € ME < N1 there corresponds the segment
(f(x), g(y)). We draw a ray from the point 0, parallel to the segment (f(x), g(y))
and we denote by x(x, y) its intersection with SkH. Thus we obtain a map X of
ME % N1 into S¥*! and so the degree of the restriction of ¥ to the boundary of
ME « N1 is zero (see §9, A). From this formula (2) follows directly.

The Hopf invariant.

Definition 9. Let f be a smooth map of the oriented sphere 32k+] into the oriented
sphere §%+1 k> 1. Further let p' and ¢ be the north and south poles of s2k+] et g2kt
be the tangent space to Sk 5 p', and let ¢ be the central projection from ¢ ! of the
set 22k+1 - q' on to E2¥+1, In §k+1 e choose distinct points a, and ayp, eackh
different from f(g') and proper points of the map f; then M’(; = qu_I (ay) and M=
qbf“l(al) are closed oriented submanifolds of the Euclidean space E2k+1 (gee the
introduction to $4, the orientation of the counterimage of a point). We put

y(D=yf, p’s ag, a) = o(ME, M), 3)
It turns out that y () is a homotopy invariant of the map f, and does not depend
on the particular choice of points p’ a, and aj; and that for even values of k

the invariant is always zero.
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We prove the invariance of the number (f).

Let f, and f; be two smooth homotopic maps of E2k+1 into S¥*1 and let f;
be a smooth deformation connecting them, To the deformation f, corresponds a map
f« of the product 325+ ] ineo SKH (see §5, C). We note that for sufficiently
small displacements of the points a; and a; the number y(f,), t=0, I, does not
change since the manifolds qut_I(ai) suffer only small deformations. So we may
suppose that the curve ft(q'), 0 <t <1 does not pass through ag or aj. Let r be
a sufficiently large natural number so that, if |t'— ¢] < ) the sets f;l(ao) and
ft_,l(al) do not intersect. We now displace the points a; and a; so that they are
proper points of the map f, and of the maps

1 -
f; £=0’ T,"'s'r_l, 1.

We prove that
v () =v(fp:
We denote by I the part of the interval | consisting of points ¢ satisfying S<
s+1 T
t< = and let Mf.t.l be the intersection of f*_l(ai) with 22k+1 x I . In view of
the conditions imposed on the points a, and a,, the set Mf+,'1 is an oriented sub-

manifold of 52¢*!

S

x IS with boundary —-f;l (a;) + f(""_lu)(ai). We denote by = the
2k+1 " N
projection of % x | along the axis [ on to Z2k+!, The map ¢n of Mf"’ildeter-
mines a ‘singular’ manifold (¢7, Mi‘:"il) with boundary —d)f;I (a;) = ‘M(:il)'(ai)'
. 2 —
Since the sets ¢n (M'I;j'é) and ¢ (M{‘:}) do not intersect it follows from (A) that

y(f(s+1))= y(fi)’
T

T

whence y(f;) =y (fy).
We prove now that y(f, p’, @y, a;) does not depend on the choice of points

a; and a;. Let the points bo and bI be chosen in place of a; and a;. There

evidently exists a smooth homeomorphism A of the sphere S+ o to itself, homo-

topic ,to the identity,'such that )\(ai) = bi’ i=0, 1. It is clear thaty (Af,p’, bys by) =
v{f, P, ay, a;) and since Af and f are homotopic, then in view of what was proved
earlier we obtain y(f, p’, by, bp) = y(f, P, ags a)

Similarly one proves that y(f, p’, @y, a;) does not depend on the choice of p’
since there is a rotation of 32¥+1 transforming p' into any other point of S2k+L

Finally we show that y(f) is zero if £ is even. Since y(f) does not depend
on the choice of @, and a; we may interchange their roles so we have

k  yk
o (ME, M%) = o (ME, ME),

Since however, in view of (1),

2
oMk, ME) = (— 1) ED ok, yl),
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it follows that o(M%, M¥)= 0 if & is even.

The Hopf invariant of a framed manifold. In as much as the homotopy classes
of maps of 22k+1 into S**! stand in (1,1) correspondence with the homology
classes of framed k-dimensional manifolds in (2k + I)-dimensional Euclidean space,
the invariant y(f) can be expressed as an invariant of homology class of framed
k-dimensional manifolds in (2% + I)-dimensional space. We give this expression
for y(f). )

B) Let (Mk, ), Ux) = {ul(x), see, uk+1(x)}, be a framed submanifold of the
oriented Euclidean space E2¥+! andlet N, be the normal to MF at the point x€ ME,
We will regard N, as a vector space with origin at x so that U(x) is a basis
of the space Nx. We choose an arbitrary vector ¢ = {cl, N ck+1} of some coor-
dinate Euclidean space N and we associate with each point x of M the point
clx) = clul(x)+ cert ck+1uk+1(x) of Nx' If the vector c is sufficiently small the
map c¢ is a homeomorphism of MF into E2%1 (see §5, A). It is clear that if c£0
the manifolds M* and c(Mk) do not intersect and that for two different non-zero
vectors ¢ and ¢’ the manifolds c(M*) and ¢'(MFare homotopic in the space EZH_
M*. Thus for sufficiently small non-zero ¢ the linking coefficient b(Mk, c(Mk))
does not depend on ¢, and we set

y*, U) = o (ME, o)),
It turns out that if f— (M*, U) (see definition 4), then
y(f) = y(ME, V). 4)
Since y(f) is a homotopy invariant of the map f, j/(Mk, U) is a homology invariant
of the framed manifold (Mk, ). '

S%*1 and let

We prove formula (4). Let f be a smooth map of 22k+1 into
p €5%*1 be a proper point of the map f distinct from f(g"). Then to construct the
framed manifold (M¥, U) corresponding to the map f we may take the poiat p as
north pole of Sk+1 (see definition 4). Let €y, e+, €, 7 be an orthonormal basis
for the tangent space at p to Sk+1 and 11, ceey, 5+ the corresponding coordin-
ates in the region Skl q (see §6, A). To obtain the invariant y(f) we take for
the point @, the pole p and for the point a; the points with coordinates c1, v,
c+1, With this choice of ay and a; the manifold M’O'; evidently coincides with M*
and the manifold M? approximates to c(Mk ) to wit.hin the second order of magni-
tude of the vector ¢. We see from this that b(Mk, c(MF)) = b(Mk, M’I‘) and relation
(4) is proved.

C) Let H’lf: 41 be the homology group of framed k-dimensional manifolds in ori-
ented Euclidean space E25+1 | with each element 7 € H’,:+1 we associate the inte-
ger y(m)= y(M*, U), where (M%, U) is a framed manifold in the class 7. In view
of what was proved earlier (see (B)), y(r) depends only on 7 and not on the partic-

ular choice of framed manifold (Mk, U). It turns out that y is a homeomorphism of
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Hi%—] into the additive group of integers. From this it follows that the set of all

k

elements 7 € IIf ; for which y(m)= 0 is a subgroup of ch+1 .

We prove proposition (C). Let m; and 7y be two elements of ﬂ£+1 and let
(MII‘, Uup, (Mg, U,) be representatives of m;, 7y respectively lying on opposite sides
of some hyperplane E?% of the space EZ5+1, Further let $2% be a unit sphere in
E2F+D Gith centre O belonging to E?*, We choose an arbitrarily small vector ¢,
defining a displacement of the manifold M’I‘ U M’2‘ (see (B)). We have:

yimy+ my) = oMk U ME, M U ME).

The linking coefficient on the right-hand side is defined as the degree of the map
x of the manifold (MII‘ U M’zc) x c(Ml; U Mg) on to the sphere S?%  where the map X
is constructed by the method described in definition 8. We will determine the degree
of ¥ at a point p situated very near to the hyperplane E?%, Because of this choice
of p, the segment (x, c(y)), where x € M’;, y € c(Mg) cannot be parallel to (0, p).
In the same way, the segment (x, c(y)), where x € M’; ,y € c(Ml;) cannot be par-
allel to (O, p). From this it follows that

oMk U ME, oMt U MEY) = o (%, %) + o (M5, (b)),
That is, y(m+ 772)= )\(771 )+ Y(Tf2)-

Thus proposition (C) is proved.

D) Let f be a smooth map of the oriented sphere 52k+1

into the oriented
sphere Sk+1; let g be a map of 22k+1 to itself of degree o, and let h be a map
of Sk+1 1o itself of degree 7. We set f' = hfg. It turns out that
Y=oy ©)
It is sufficient to prove proposition (D) separately for the case when k is the
identity and the case when g is the identity. The validity of the relation (5) when
k is the identity follows from propesition (C) of this section and proposition (D)
of §9. We consider the case when g is the identity, that is, when f'=hf. Let
@y and @; be distinct points of ‘.§'k+1, different from f'(¢') and proper points of &
and Af. The Kl (a) = {a”, TREIR a"z§; t=0, 1, where the map f is proper at each
point a,;, t=0, I; i= 1,2, ---, r,. We denote by ¢; the sign of the functional
determinant of the map k at a,. We denote by EZk+] the tangent space to % *
at the north pole p' and by ¢ the central projection from q' of the set 22k+1—
q" on to E2k+1.' We -put qu":'I(az): M:‘, t=0, I; ¢f"1(ati)= Mf," It is easy to
see that k " " k
My = e, My UeppMzp U--- U ‘trtMtrt ’ ©)
where the signs €,; take account of the orientations of the manifolds. Since a,;
and aii are two distinct points of 5%+1 and proper points of f, the invariant y(f)

can be defined as b(Mgi, M’{i). ‘From this and from relation (6) it follows that
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3 .
y(f) = b(folng (UEEENY 60,0Mg,0: 6IlM’h U---u 51r1M1r1)=

r

o T1 To 21 2
=3 F oy D= )(,-51 60‘) (i=1€1i‘) =y

Thus proposition (D) is proved.

E) Let (Mk, V), Vix)= {vl(x), ceey vk+1(x)} be an orthonormally and smoothly
framed submanifold of the oriented Euclidean space E2k+1 guch that MF is itself
situated in the hyperplane E2k of EZ*+1, We denote by u(x) the unit vector, is-
suing from the point x € MF and perpendicular to the hyperplane E2k, Then we
have

u(x) = ¢/1(x)v1(x)+ st ¢k+1(x) vy, (%) o
Here ¢(x) = {¢1 (x), +--, ¢1k+1(x)§ is a unit vector in a coordinate Euclidean space
N, so that ¢ is a map of the manifold M* on to the unit sphere G* in N (the map
¢ was considered in (A) of §8). It turns out that the degree of ¢ is equal to
ey(Mk, V), where ¢ = *1 and depends only on k.

We prove proposition (E). We will suppose that the point $ = (0, ---, 0, D€
Gk isa proper point of the map . If this were not so, then it would be possible
to achieve it by a single orthogonal transformation applied to all the systems Vix),
x € M*, To compute y(Mk, V) we choose in E2k+1 4 unit sphere 52 with centre
at some point O and take as vector ¢ the vector {0, -++, 0, 8}. If the vector u(x)
undergoes parallel displacement to the point O its end-point lands up at a point
of S2* which we designate as u. We draw a ray from O parallel to the segment
(x, cy)); x, ¥ € M", and we denote by Xx(x, y) the intersection of this ray with 52k,
By definition y(Mk, V) is the degree of the map X of the manifold M* x M* into
the sphere §2%, We will calculate the degree of this map at the point u. In the
course of the calculation it will be shown that u is a proper point of the map X.
Let y(a, b) = u, then the segment (a, c(b)) is otthogonal_ti_the hyperplane E2k
and goes in the direction of the vector u, so that c(b) € Hg(a) (see §S, A). Since
moreover c(b) € H (), it therefore follows that for sufficiently small & we have
b= a(see $5, A). Thus for y(a, b) = u we have b=a and ¢(a) =B . Conversely

if Y(a) =L ,then x(a, a)=u. Ve take the point a as origin of coordinates O in

the space E2k+1 apd as basis we take the vectors u; = vl(a), RS T vk+1(a),
Upyos s Uggy]d where w0, °" %5 Ugpy ] is an orthonormal system of vectors tan-
gent to the manifold M* at the point a. The coordinates of the point x € M* in this
basis we will denote by 2z, -+, 22F+1(x), In the neighbourhood of the poiat a
in MF ivis easy to introduce coordinates xl, e , «% for the point x so that the
equations of the manifold M* takes the form

21 — zl(x), cee, zk+] - zk+1(x), zk+2 - zk+2(x) _ xl, -

2hHL o 2kt D) 2 oK (8)
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where 2i(x), i= 1, --+, k+ I is small of the second order with respect to p(a, x).

Transforming the system V(y) by parallel displacement to the point O = a, we ex-

press its vectors in terms of the basis Ups “* %5 Ugpy g by
k+1 2k+1
v =2 4o M tat gy, b g ®
Here b]'ﬁ is small of the second order relative to p(a, ¥), and jgs 2 # j, is small

of the first order relative to p(a, ¥). From this, in view of the orthonormality of the
system V(y), it follows directly that, with an accuracy up to the second order rela-
tive to p(a, y), the equations
a0 = I ay), if ), (10)
hold. Since ai].(y) = (u;, vl.(y)); iy j=1,++-, k+ I, then in view of rela.tions @),
(9) and (10) we have, with second order accuracy relative to p(a, y) Yl(y)=
—ak+1’i(y), j=1,--4, K l/fk+1 (y) = 1. Thus, with second order accuracy relative
to pfa, ¥) the point c(y) has, in the basis uy, --+, uy,, ;, the coordinates
—51/11(y), cee, —Sl/lk(y), 5, yl, cee, yk. In the same way and with second order ac-
curacy the point x has coordinates (see (8))
0, -, 0, 2% o0, 2",

Thus the components of the segment (x, c(y)) in the basis ug, ---

—5yl(y), - -, —00G), 8, ¥l -, e, ¥F - «F
with second order accuracy relative to p(a, x) + p(a, y). From this it follows that

at the point (a, @) the sign of the functional determinant of the map X differs from

s Uoke BT€

the sign of the functional determinant of the map  at the point a by a factor
¢ = 1 depending only on the dimension k. Thus proposition (E) is proved.
§11. Framed manifolds with zero Hopf invariant

The main aim of this section is the proof of Theorem 16 which asserts that
every framed manifold with Hopf invariant zero is homologous to a suspension.
This theorem represents a development of Theorem 11. Since the Hopf invariant
of an even-dimensional manifold is always zero, it follows from Theorem 16 that every
even-dimensional framed submanifold (Mk, U) of Euclidean space E2**+1 is homo-
logous to a suspension. This proposition will be applied in the present work only
to the case k= 2, for the classification of maps of 5"*2 jnto S™. From it and
Theorem 11 the conclusion follows that the number of homotopy classes of maps
of En+2 into S™, n > 2, cannot exceed the number of classes of maps of 24 into
52,

To prove Theorem 16 and also in some other cases it is desirable to deal with
connected framed manifolds. Theorem 14 ensures that every framed manifold is
homologous to a connected one. For the proof of this theorem it is necessary to

perform a ‘reconstruction’ of the manifold to convert it into a connected one. This
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reconstruction is somewhat cumbrously described in proposition (A) below, but the
geometrical idea is simple and consists in the following. The equation x2+y2—22=
~¢ represents a two-sheeted hyperboloid if ¢>0 and a one-sheeted hyperboloid if ¢ < 0.
In the strip of the space of the variables x, ¥, z, ¢ given by the inequality —1 £

t < 1, the equation determines a submanifold; the part of its boundary lying in the
hyperplane t= -1 is not connected, but the part of its boundary lying in the hyper-
plane t=1 is connected. In proposition (A) the reconstruction described here is
attached in a smooth way to a pair of parallel planes. In these planes ‘dents’ are
formed which, converging towards each other in a similar way to the sheets of the
two-sheeted hyperboloid, form tubes connecting spherical holes in the planes. To
apply the reconstruction described to arbitrary manifolds the almost obvious prop-
osition (C) is proved, asserting that a manifold may be flattened by deformation
near any of its points. By flattening the manifold at two points of its points, be-
longing to different components, we make it possible to apply the reconstruction
(A), uniting the two components of the manifold into one. Since it is necessary to
reconstruct framed manifolds we need also to concern ourselves with the reconstruc-
tion of frames. Propositions (B) and (D) are devoted to such constructions. The
reconstruction {A) is applied not only to obtain connected manifolds but also so
that it should be possible to embed a L-dimensional manifold in 2k-dimensional
Euclidean space.

The reconstruction of a manifold.

A) Let E*+2 pbe Euclidean space with coordinates fl, ey fk, 7, 7, and let
E’i+2 be the inequalities —I <7< I, whose boundary consists of the hyperplanes
Eﬁjl and Eﬁ}“l with equations r=—1 and 7=+1. Finally let H%*2 pe the part
of the strip E%+2 defined by the inequalities

(EN2e - ea P -Tgn L m

1 Fig. L.
. 2
It turns out that there exists a smooth submanifold Pk+1 of Elf’ , orthogonal at

its boundary points to the boundary of the strip EFt2apd héving the following

properties (see Fig. 1):
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a) Outside H**2 the manifold pk+l consists of all points satisfying the con-
dition || = L

b) The manifold PE] = PEl Ek_‘;l consists of all points of the hyperplane
Elfj:l], satisfying the condition |n] = I.

c) The intersection of Pé‘ = Pkl Eéﬂ'l with the hyperplane given by the
equation 7 = a, for |a| < I, is a sphere of radius p{a) < 1, given in the plane 7=
a, 7= 1 by the equation (£1)2+ -..+(&F)? = p?(a), such that p(a) tends to I as
|a| tends to I. Thus the set P’I‘ N H*2 goes not intersect the line fl =0,++-,
fk =0, r= I; moreover this set is connected if k> I and consists of two simple
arcs if k= 1.

To construct the manifold P¥*! we consider first, for conceptual simplicity,

the case k= 1. The coordinates .f], 7, r we now designate as x, y, t. Let
dx, y, =y - L+ )22 + t.

We consider the surface @ with equation ¢(x, ¥, ¢) = 0. It may be verified direct-

ly that this surface has no singular points, that is, that the equations

%%:0, —Z(—f—=0,-a~<é=0, d=10
are inconsistent. We consider the section Cﬁ of the surface @2 by the plane t=
B (1Bl < 1). The curve C_; splits into a pair of parallel lines y = £1. For —I<
BB < 0 the curve C,B is a hyperbola whose real axis is the line t= 3, x= 0. The
curve C, splits into a pair of intersecting lines y = *x. Finally for 0<B<I,
the curve C,B is a hyperbola whose real axis is the line ¢ =8, y = 0. For all val-
ues of 3 the curve Cﬁ passes through the points (1, +1, 8) and is symmetric
with respect to the coordinate planes x = 0 and y = 0. In our case the set i3 is
a cube, given by the inequalities |x} < I, |y| < I, |t| < 1. The part Qz of QZ ly-
ing in #% is supplemented by the points satisfying the conditions Iyl =1, x> 1,
|t| < 1. The surface we obtain we denote by P2, Then P? satisfies conditions
(a) - (c), but it is not smooth and is not orthogonal, on its boundary, to the bound-
ary to the boundary of the strip ES (¢} < I

We now turn to the case of arbitrary k. We introduce a function
dlad, oo, 2E, g, 1),
setting
Bl oo, 5y, =y L+ (D2 v (@)D e
It may be verified directly that the hypersurface given by
qS(xI, ces, xk, ¥, ty=0
has no singular points, that is, that the equations

] F) a d
_fs_ =0,...,_¢'=0, _q5_=0’ _?zo, ¢=0
dx! Ax* dy ot

are inconsistent. The hypersurface Qk+l may be visualized with the aid of the

§
% =
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remark that sections of it by arbitrary three -dimensional spaces containing the co-
ordinate plane (y, t) are surfaces 02 of the sort described above. We put Q’,,f"’l =
QF+1 n 11%+2, We supplement the set Qf+! by the points satisfying the conditions
Iyl =1, )24 oo r (52 > I, |t} < 1. Then the set P¥+1 we obtain is a manifold
satisfying the conditions (a)—(c), but not smooth at points of intersection with the
boundary of H*+2_ Moreover at boundary points it is not orthg\gonal to the bound-
ary of the strip E%*2, ye set about ‘rectifying’ the manifold P*+1,

Let x(s) be a smooth function of class m > 1, which is odd, monotone increas-
ing in its variable s, defined in the interval =1 <s < 1, and having the following
properties: D=1, XD =1

(=D =x"(=D= = XM(=D = x (D= x"(D=0= x™) =0,
X'(s)> 0 for }sl <lI.
Plainly such a function exists. We now define a map o of H%*2 oato itself by the
rule
U(xl, ceny xk’ ¥, t) = (61’ crey, fk, s t)
where 51 = xl, ceey fk = xk, 7= x(y), 7= x_l (t), X"l being the function inverse
to x. It is evident that o isa homeomorphism of H *2 on to itself, am.:l that o
and o—! are smooth at all interior points of H%+2, 1t is plain that ¢ fails to be
smooth only for ¢= +1, and o1 only for 7 = +1. It is easy to verify that, replac-
ing the part Qf"’l of the manifold ph+l by the set ¢ (Q’f{"l ), we obtain a manifold
P¥+1 satisfying all the conditions of proposition (A ).

B) Let W5+2 pe the e-neighbourhood of the set H**2 in the Euclidean space
EF+2 (see (A)), and let 6 l;e a smooth homeomorphism of Wkt2 ineo Euclidean
space En+k+]l Then there exists a frame V({) = {vl(é ), oty vn(é)} of the mani-
fold O(PF+1  Wk+2) in Ertktl including a given orientation in the manifold.

We prove proposition (B). Let O be the centre of H¥*? and let X be the
boundary of the convex set Wk+2 | Further let ¢ be an arbitrary point‘ of W2 and
(O, x) the segment passing through ¢ and joining O to a boundary point x € X.
We denote by ¢ the ratio of the segments (0, ¢) and (0, x) and we put (= (x, 1)
In this way we introduce polar coordinates in the region Wkt2 | with (x, 0)= O. We
denote by N, the normal at () to the manifold 6(Wk+2) in EMYE+L| We choose
an arbitrary basis vy, +++, v _; in N g+ In view of proposition (A) of §7 a bas'{s
vylx, t), 000, vn—-l(x’ £) can be chosen in N, so that'it depends continuously on
the ‘pair x, t and coincides for ¢ = 0 with the basis vy, -+-5 v,_;- We put vi(g):
v.x, t), i="1, -++, n— 1. We choose the vector vn(é) at 9({), where é€Pk+1 ﬂA
Wl’”’2, to be a unit vector normal to the manifold 0(P¥*+1y at 6({) and tangent to
the manifold O(W5+2). The vector vn(g) satisfying these conditions is uniquely
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determined up to sign. Since ph+l N WE+2 s connected, the entire field vn(C) is
uniquely determined up to sign, and, by choosing the direction of v _({) properly,
we can arrange that the coanstructed frame V({), { € Pk+1  WA+2 | induces on
O(PE+L (y WE+2) 4 given orientation.

C) Let M% be a smooth closed submanifold of Euclidean space E'”'k, let
a€MF, let T* be the tangent space to M* at @ and let & be a positive number. It
turns out that there exists a smooth deformation 7,, 0 <¢< 1, of the manifold Mk
fulfilling the following conditions. Let x € Mk; then: a) for p(a, x) > we have
Tz(x) = x; b) for p(a, x) <6, plx, 7,(x)) is of the second order of smallness relative
to p(x, a), that is, p(x, 7,(x)) < cpz(x, a), where ¢ is a constant independent of J;
c) for pla, x) < 7 we have 7,(x) € Tk,

We prove proposition (C). We will suppose & so small that the 3-neighbour-
hood of @ in M* is mapped smoothly, regularly and homeomorphically into Tk by
the orthogonal projection 7. Further let p(s) be a smooth even function of the
parameter s, - < s < oo, taking the value 0 for 0 <s < —g—, monotone increasing
for -3— < s < 8, and taking the value I for s > 8. Then the required deformation 7,
is defined by the formula:

7,{x)= xAt + w(x)- (I =AYt + x(I - ¢),
where A= p(p(a, x)).

D) Let (M*, U) be a framed submanifold of the strip E™** in the Euclidean
space E™¥ and let K’ be a neighbourhood of an interior point a € M¥ such that
its closure K' is homeomorphic to a k-dimensional ball. We will take K'tobea
ball of smaller radius concentric with K'. If there is given a frame V for the part
K' of MFinducing the same orientation as that induced by U, then there exists a
frame U' for M*, homotopic to U, and coinciding with U on M* — K’ and with V
on K.

We prove proposition (D). Let

U@ =tuyx), -+, u, 0}, V@) =tv;), -+, v, ()}

then we have n
(x) = _21 @), x€ K,

where )\(x)j i Al.j(x) | isa matrli; with positive determinant, depending continuous-
ly on x € K’, so that A is a continuous map of K' into the manifold L, ofall
matrices of order n with positive determinant. We regard K' as a ball in Euclid-
ean space E*, taken as a hyperplane of E¥t1 and let L be a rectilinear segment
in Ek+1 perpendicular to E* and having one of its end-points at the centre a of
K'. We denote the other end of the segment L by b. One may easily construct a
deft?fmation ¥, of maps of K'into K’ U L under which all points on the boundary
of K' remain fixed and such that ¥, (K) = b. Since the manifold Ln is connected
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the map A can be extended to a map A of K' UL into L, which transforms bto
the unit matrix. Then “p.ij(x) | = px) = M (x) is a matrix with, posi_t_i've deten.nin-
ant depending continuously on x € K'. We define the frame U'on K’ by setting
n
u; (x) =]_=21 i () vy ().
On the set M* — K' the frame U’ fulfills the requirements.

Manifolds with zero Hopf invariant.

Theorem 14. Each framed manifold in a Euclidean space is homologous to a
connected framed manifold in the same space.

Proof. Let (M_’f_l, U) be an oriented framed submanifold of oriented Euclidean
space E"+k, where n > 2. The case n-="1 is trivial, since in this case every
framed manifold is nullhomologous (see the end of $6). We suppose that Mfl is
not connected and show that there exists a framed manifold (ME 1 U,), homologous
to (Mﬁl, U), such that M’; has one component less than Mfl. The theorem will
then be proved. Let a_; and a; be two points of Mfl belonging to different com-
ponents. In view of proposition (C) we may suppose that M-’il is flat in the neigh-
bourhoods of both a_; and a;. Since n2 2, M_l_‘_l does not separate E™tE, From
this it easily follows that in Entk there lies a smooth simple curve L given para-

metrically by
, y=yln), =-2517<2  y2=y2),
intersecting M_’_‘_I only in the points a_; and a;, given by n=-1 and =1 re-
spectively. We suppose also that the curve L is orthogonal to Mf ; at the points
a_; and @;. Using proposition (A) of €7 and the orthogonalization process, it is
possible to provide the segment — 1,5<n < 1,5 on the curve L with an orthonor-
mal frame, that is, to construct at each point y{(n) of the segment an orthonormal
system of vectors, e (1), ***» €, kg (n), orthogonal to L at the point y(n) and
smoothly dependent on the parameter 7. We will suppose that the vectors ¢;(~ D,
cee, e (- 1), are tangent to M’_‘I and determine its orientation, and that the vectc')rs
e1(1), -+, €,(I) are tangent to Mfl and determine the opposite orientation. It is
possible to achieve this by subjecting the vectors e;(1), ***» en+k_1(r,) to an or-
thogonal transformation depending continuously on 7. Let Enk+l_ En+ s I, where
[ is the interval —1 < ¢ < I; we will regard the product space E'i+k+1 as a strip
in the Euclidean space En+kt+l | we now construct a map 0 of the subset HFk+2
(see (A)) of E¥*2 into E™*%*1  depending on a positive number p, mapping the
point (£, ... ,‘fk, N, 7) of H*+2 into the point (z, t) of E2+k+1

k .
z=y() +i=21 p&le (), (2)

, where

t=17.
Here z and y(n) are vectors of E™k, The given relations define a map @ not on-

ly on H¥*2 but also on some e-neighbourhood WE+2 of it in E**2, It is clear that
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if p is small enough the map 6 is a smooth regular homeomorphism of the manifold
Wk+2, Also, for sufficiently small p, the intersection of O(Wr+2) with Mlil x (=1)
is contained in neighbourhoods of the points a_; x (-I) and a; x (~I). We will
assume p so small that this intersection is contained in flat neighbourhoods of

ErE 5 [ as a

these points in Mﬁ] x (=I). Now Mfl x I is contained in the strip
submanifold. In this submanifold we replace the part lying in 9(Hk+2) by
0(Pk+1 n H*+2) (see (A)), namely we set:

Mk+1 _ (le-l « ! - 0([1k+2)) U 6(Pk+1 N Hk+2).
It may be seen directly that MF+1 is a smooth submanifold of Enth+l orthogonal
at its boundary points to the boundary of the strip E'i+k+1; moreover the part of
its boundary lying in the hyperplane E"*E o (< 1) coincides with M_]fl x (1), and
the part MI; % 1 lying in E™*¥% » I has one component fewer than Mf_l.

We now concern ourselves with the construction of a frame V for the manifold
M*+1 1o realise a homology (M_’i], Uy~ (Ml;, U,). We choose a frame V on the
manifold G(P*+1 N Wk+2), as described in (B), so that at the point a_j x (=) the
VECIOrs vy, ¢ty Uy and ug x (1), <=-yu, x (1) are obtained from each other by
a transformation with positive determinant. In the light of proposition (D) we may
suppose that the vectors uj X 1) .-, u, % (~1) coincide with our constructed
vectors vy, ***, ¥, in the intersection (M_’f_l x 1IN N 0(Hk+2). Thus the frame V
is constructed on the part g(P¥+1 (| H%*2) of the manifold. On the part ME+L
g(pE+1 N H**+2y we define the vectors Vg, e, U, At the point (x, t), x € M_’:I,

t € I, to be parallel to the vectors uI(x) x (=1), <+, un(x) % (= I). Thus the framed
manifold (M"H'I, V) is constructed.

So, Theorem 14 is proved.

Theorem 15. Let (M_k_l, U) be a framed submanifold of Euclidean space Entk,
n> k+ 1. Then there exists a framed submanifold (M, Wy of E***, homologous
to (Mf”_l, U) such that M* is connected and lies in a 2k-dimensional linear sub-
space E%¢ of EntE,

Proof. In view of Theorems 11 and 14 it is sufficient to prove Theorem 15 when
n=k+ ] and the manifold Mf_l is connected. In view of proposition (B) of $4
there exists a hyperplane E%* in E2k+1, such that the orthogonal projection 7 of
Mfl onto E% is typical, Let a_; and a; be two distinct points of Mfl satis-
fying the condition m(a_;)=n(a 1)+ There are only finitely many such pairs in M_Iil
(see $4, A). We ‘reconstruct’ the manifold M_"i] in the neighbourhood of the seg-
ment (a_j, a; ). Such a reconstruction may be effected for each pair of coincidences
of the map 7 of the manifold Mfl.

In view of (C) we may suppose that the manifold Mfl is flat near the points

a_; and a;. Let €5, <<, €}, be a system of linearly independent vectors, tangent
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to Mﬁl at the point a_; and orienting the manifold Mﬁl and let e, ;, +*-, e be
a system of linearly independent vectors, tangent to M_Ifl at a; and giving the op-
posite orientation to M_’_‘_I. We denote by eg;, ; the vector with origin at the mid-
point O of the segment {a_;, a;) and ending at the point a;. Taking the point 0]
as origin of coordinates and transferring all the vectors constructed to it, we obtain
a basis e, «--, ey, ; of the vector space E2k+1, Ler EZE+2_ E2R+1 4 I where
[ is the interval —1 < t < I; we consider E2k+2 as a strip in E%%*2 We construct
a map @ of the subset HE42 (see (A)) of E¥*2 jnto E2k+2, depending on a positive
number p, to be taken small enough to render the further constructions possible;
namely, 0 transforms the point (£ ..., &k n,nE H%*2 into the point (z, t) €

E%’HZ , where

k
z=ney, g+ piz,lfi(cos (%n + %)ei + sin(gn + %)er),
L=T7.
This formula defines a map ¢ not only of H%+2 byt also of some e-neighbourhood
Wk+2 of H%+2 in E**2, Here z is, in effect, a map of the set Hfg’I of points
(fl, ey cfk, 7, 7p), satisfying condition (1), into the vector space E2F+1, we re-
mark that the map 7z of the set H’;"LI is regular and bomeomorphic everywhere ex-
cept at points of the segment £6 =0, |n] < 1, so that the map #z of the manifold
PIkC H’I‘” into the space E?k is regular and homeomorphic. We replace the part
of the submanifold Mf‘_l x | of the strip E?k+1 « [ lying in OH2) by OPF+ () Hk+2)
(see (A)), namely we set
ME+TL (MEI I - 0(Hk+2)v) U 0(Pk+1 N H*+2),
It may be seen directly that M**1 is a smooth submanifold of Ezk+2, orthogonal
at its boundary points to the boundary of the strip E%"”; moreover the part of its
boundary lying in the hyperplane EZ%+1 « (~ 1) coincides with M_Ifl x (—=1), and the
part Ml; x 1 lying in E2¥*1 4 I is such that M’; has one fewer pairs of coincidences
of the map 7 than has Mfc_l. If &> I the connectedness of M_Ifl implies the con-
nectedness of Mé‘. If k= I Theorem 15 follows immediately from proposition (D)
of $13; there is no point in going through this proof if k= I since the manifold
M} we construct may turn out not to be connected.

We now concern ourselves with the construction of a frame V for the manifold
MF+T o realise a homology (Mﬁl, Uy~ (Mé‘, U,). This construction!) follows pre-
cisely the lines of the construction of the frame V in Theorem 14 (with n =% + I).

We will suppose that the reconstruction of Mf] which we have described has
been carried out simultaneously on all pairs of coincidences of the map 7. Then

the manifold Mﬂ‘ we obtain is mapped by the projection 7 regularly and homeomor-

Translator’s note: The Russian text reproduces the construction of Theorem 14
word for word.
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phically on to a submanifold ME - n(Mk) of the space E2%, This projection can be
realised by means of a deformation of the smooth submanifold ME 7 into the smooth
submanifold M . In view of proposition (B) of §7, this deformation can be extend-
ed to a deformation of framed manifolds. Thus we obtain the required framed sub-
manifold (Mk, W) of E2k+1,

Thus, Theorem 15 is proved.

Theorem 16. Let (ME, U Uy) be a framed submanifold of the Euclidean space
E2R+1 i y(M U )=20 (whlch is always true if % is even, see definition 9),
(see §$10, B). Then there exists a framed submanifold (MI’ V) of a hyperplane
E2k of E2%+D guch that (Mo, Up) ~ E(MI, V1), (see definition 6).

Proof. In view of Theorems 14 and 15 there exists a closed connected framed
submanifold (Mk Up) of E2R+1 guch that Mk C E%k and (Mk, U~ (M, Up) In
view of proposition (B) of $ 10 we have y(MI, U ) = 0. Thus in view of proposition
(E) of $10 the degree of the map ¢ of the mamfold Mk on to the sphere Gk is ze-
ro and so ¥ is nullhomotopic (see Theorem 13). In view of proposition (A) of §8
the framed manifold (M’;, U]) is homologous to a framed manifold E(M’;, V), where
(MII‘, V) is a framed submanifold of the space E2k,

Thus Theorem 16 is proved.

CHAPTER 1V.

Classification of maps of (n+ I)-dimensional and
(n+ 2)-dimensional spheres into the n-dimensional sphere
§12. The rotation group of Euclidean space

The main aim of this section is to establish the most elementary topological
properties of the group H of all rotations of the n-dimensional Euclidean vector
space E",properties Wthh will be used in the classification of maps of = +E in-
to S for k= 1, 2. It turns out (see Theorem 17) that the manifold #_ is connect-
ed and that for n > 3 there exist precisely two homotopy classes of maps of the
circle into H . As a means of establishing the topological properties of I we use
the well-known covering homotopy lemma, which is of great significance in its own
right, and also the description of the group /; by means of quaternions, which al-
so have considerable independent interest and are used in the sequel.

Quaternions. We recall the notion of a quaternion, which will be used both in
this and in the following sections.

A) Let % be a 4-dimensional Euclidean vector space with fixed Cartesian co-
ordinates. We write an arbitrary vector x = (x x2, x 4) € K in the form: x = o
ix? + jx3 + kx?, where i, j. k are the quaternionic units. We define a multiplica-
tion in K by demanding that it be distributive, that real numbers commute with the

quaternionic units and that the units themselves multiply according to the rules
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ij=—ji=k; jh=~kj=1; ki=-ik=7j; ii=jj=kk=-1. (1)
It is easy to verify that the multiplication in K so defined is assoc1at1ve. The
1 2

quaternion ¥, conjugate to x, is defined by putting xT=x —ix° - ]x - kot e is

readily seen that
Y T =FE. @)
The modolus of the quaternion x is defined as the non-negative real number {x] =

Vg =ValZe 22+ (%) 2+ (P we bave |ayl? = sy®y = my7 %= #ly 1% =
20%= 612 |y|2 | |
l¥|12x%=|%|*|y|“. Thus [xy] = {x| ¥l >

If x# 0, then |x|# 0 and there exists a quaternion x -, inverse to X, namely ™" =

‘xlz Thus the collection K of all quaternions forms an algebraic field. The field
x

K of quaternions contams the field D of real numbers, consisting of all quaterni-
ons of the form x = x!+ 0i + 0j + Ok. The collection G of all quaternions x satis-
fying the condition |x| = 1 forms, in view of (3), a multiplicative group. The set

2i+ x5+ 2%k is

G is the 3-sphere in the space K. A quaternion of the form x
called pure imaginary. The collection J of such quaternions forms a 3-dimension-
al vector space, orthogonal to the line D in K.

B) Let K be the field of quaternions, D the subfield of real numbers, J the
collection of all pure imaginary quaternions, and G the group of quaternions of
modulus unity (see (A)). With each quaternion g € G we associate the map !,[lg of
K into itself given by :/;g(x) Ry @
Since in view of (3) [gxg—l | = x|, the transformation !/Ig, being linear, is a rota-
tion of the Euclidean space K. Since ¢ (D) =D, the vector subspace J orthogon-
al to D is mapped by l,ll into itself; that is, J is itself rotated. It turns our that
by associating with each quaternion g € G the rotation v(g) = x,llg of J, we obtain
a homomorphism v of the group G on to the group H3 of all rotations of the Euclid-
ean 3-space J. The kerne! of the homomorphism v consists of the two elements
I and - 1. It further turns out that the subgroup S of all quaternions g € G for
which l/lg(i): i consists of all quaternions of the form cosa + isina.

We prove proposition (B). First of all we have

Yo (o) = ghah g™l = ¢ (hah_p) = (4, (D),
so that v 1s a homomorphism of G into H We show that v(G) = Hy. Let I=aj+
bk where a? + b2 = 1. It is easy to see that
21, li=-il (5)
Now let g=cosf + [sinf3. It follows from (5) that
¢ (@)= (cos B + lsmB)L(cosB —Isin3) = (cos B + Isin f*?) i=
= (cos 2f3 + Isin 2B)i = icos 23 + (bj ~ ak)sin 28, ©6)
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and from this it follows that by selecting the numbers a, b, 5 in a suitable way
we can transform the quaternion i into any quaternion of the set 52 =7 nG. Fur-
ther, by putting a = 0, b= I we obtain from (6)

t/,/g(i)= icos 2B + jsin 23, @)
and since in this case g commutes with % it follows that it is possible by a trans-
formation of the form i to realise an arbitrary rotation of J round the axis k.
Since G is a group it follows from what has been proved that it is possible to re-
alize an arbitrary rotation of J by a transformation of the form l,!/g. We remark fur-
ther that it follows from the laws of multiplication (1) that the only quaternions of
G commuting with i are those of the form cosa + isina so that the group ST con-
sists of the quaternions of the stated form. In the same way the quaternions of G
commuting with j are of the form cosa + jsina. Thus the kernel of the homomor-
phism v consists of the two elements + and — L.

Thus proposition (B) is proved.

Covering homotopies.

Lemma 1. Let ¢ be a smooth map of the closed manifold PP into the closed
manifold Q4, p > q, which is proper at every point. Further let f be a map of a
compact metric space R into PP and let g,, 0<t< 1, be a deformation of maps
of R into Q7 such that gy = ¢f. Then there exists a deformation f, of maps of R
into PP such that fy=f and @f, = g,. The deformation f, is said to cover the de-
formation g,. If, for some point x € R we have g,(x)= gy(%), all ¢, then also
f(x) = folx). If further R is a smootk manifold, f a smooth map and g, a smooth
deformation, then f, is also smooth.

Proof. We denote the couaterimage of y € J7 under ¢ by My: My ¢ 1y,
From formula (2) of $4 it follows that My is a (p—-g)-dimensional submanifold of
PP. In view of Theorem 2 we may suppose that PP is a smooth submanifold of a
Euclidean vector space A4 of sufficiently high dimension. We denote the normal in
A at %, to M}’O by N"O' We show now that if the point y is close enough to y,
there exists only one point of intersection y(xy, y) of N, with M, close to
%y To prove this we introduce such local coordinates into neighbourhoods of the
points x; and y, of the manifolds PP and (9, namely wl oo, P andvyl, cooyyd,

with origins at x; and y, respectively, that ¢ takes the form

y1=x1,---,yq=xq (8)

(see §4, formula (2)). Let x = 0(x1, .++, xP) be the parametric equation of the
manifold PP near x;. The normal N"O in the Euclidean vector space 4 is de-

fined by the system oe equations

(x — x,, 9__0;((»),_;:_,,0&))=0, i=qg+1-+-,p, 9)

dJx*
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where x is a radius-vector describing the linear space N"O' As parametric equa-
tion of the manifold My we may take

x=0yh +on, 9, x0T, e 2P), 10)
where y1, .-+, ¥ are coordinates of the point y and x97L ..., xP are local coor-
dinates in the manifold M_. Therefore to find the point y{xg, y) we must substi-
tute the value of x from equation (10) in the equations (9) and then solve the sys-

tem of equations we obtain for the unknowns xq+1, .++, xP. By substitution we ob-

tain
1 30(0,--+,0)
(0()’1, Tty )’q, xq+1’ Tty xp)"‘ 9(}’0, Tty yg, xg+15 e ’xg)’T =

-0, an
i=q+ 1.+, pe

Here we have a system of (p — ¢) equations in the (p — q) unknowns X9 Lo 2P,

With the initial conditions y! =0, -+, y? = 0 the system (11) has the unique so-

lution x9t1 = 0, .+, x* = 0. The functional determinant of the system (10) with

these initial conditions has the form

[(86(0,---,0) 960, - - -, 0)
Ol T 9
which is non-zero since the vectors 80(03;—‘;1-0—1, i=g+1,--+,p are linearly in-

dependent. Thus if y is sufficiently close to y, there exists only one point x

:‘; i’]'=q+1,"°’P’

close to x, and satisfying the condition
x=ylx;, y) € Nxo N My.
Since PP is compact it follows that there exists a positive number & so small
that if p(y, qS(xo)) < 8 the function y(xg, y) is defined and is a continuous function
of its arguments x, € PP and y € (9. This function possesses the following two
properties y(xo, qs(xo )= 5, 12
dlylxg, ) = v. 13)
Only these properties of y will be used in the sequel.
We pass now to the construction of the deformation f,, using the function y.
We put f, = f. Let € be so small that if = t'| <e, u €R, then plg, @), gt,(u)) <8,
We suppose ft defined for all values of ¢t satisfying 0 < ¢ < ne< I where n is a
non-negative integer. We define f, for values of ¢ satisfying ne <t < (n+1)e by
putting v
f.w) = y(f, (), g (14)
From relations (12) and (13) it follows that fes 50O defined, is a continuous defor-

mation satisfying the condition g, = :ﬁft.
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Thus Lemma 1 is proved.
The rotation group of Euclidean space.

C) Let E™ be a Euclidean vector space, let 571 be the sphere in it given

by (x, x)=1, let Hn be the rotation group of E" and let a be a fixed point of s,

It turns out that /1 is a smooth manifold of dimension L‘—n;—” and that, by asso-

ciating with each element / the point x(h) = h(a) we obtain a swooth map X of

fl onto $%1 hich is proper at each of its points.

We prove proposition (C). Let e;, -+-, e, be an orthonormal basis for the

space E". If # € H_ then

h.(e].) = %hijei’ (15)
In this way, to each rotation h there corresponds an orthogonal matrix Hhi- | with
positive determinant: kb — “hij Il, and, conversely, to each orthogonal matrix ”"i;’“
with positive determinant there corresponds in view of (15) a definite rotation of E”, In
the light of the correspondence A —» “hij“ we identify the group /I, with the group
of all orthogonal matrices of order n with positive determinant. As is known the

orthogonality condition for matrices takes the form

F. = Sii’ where Fii = %hiahja' (16)
We show that the numbers 4, i > j, may be taken as local coordinates of the ma-
trix h € { near the identity matrix Hsii"' For this it is enough to show that, for

the initial values hii = Sii the system of equations (16) is solvable for the vari-
ables hii where i < j. We remark that since Fii = F}'i’
the functions F;]. for i < j, so that the number of equations is equal to the number

we need only to consider

of unknowns. We have

oF,.
ij
a_hkl= E(Sm%h;a +h
Ak
ahkl

i <j, k<1 is strict then the equations j=k, i = | are inconsistent and the second

ia 8180y );

for hij = Bij this gives

= Biksjl + 5;/:5;'1- If at least one of the inequalities

summand is zero. Thus the functional matrix of the system of functions Fil" i<,
of the variables h“, k < 1, is diagonal and the diagonal elements are all equal to

1 or 2, so that the solubility of the system (2) is proved. Let U be a neighbout-
hood of the identity in which the equations (16) are solvable and in which, conse-
quently, the numbers h’ij’ i > j, may be taken as coordinates. Let hy € f ; then
Uho is a neighbourhood of the matrix %, and we take as coordinates of the element
hhy € Uk the coordinates of the element kin U. Let Uk, and Uh; be two over-
lapping neighbourhoods. It is easy to see that the transformation from the coordin-
ate system for Uk, to the coordinate system for Uk is achieved by smooth func-

tions. Thus Hn is a smooth manifold.
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Since H [, is a group, some element of which transforms the point ¢ into an
arbitrary point of the sphere, it follows that x(H )= S™~1 and that it is sufficient
to demonstrate that  is proper at one point of the manifold H_, for instance, the
point HSi’.“. For a=e; there corresponds to the matrix “hi,'“ under the map Y the
point of §7~1 with coordinates hipsi=1,0005me Since hgys kgt b, are
coordinates of the element | h’ii“ in U, and the numbers hy;, =< °s h, | can be taken
as coordinates of the point x(h), it is evident that x is proper at the point Hsiin.

Thus proposition (C) is proved.

Theotem 17, Let H_ be the rotation group of the Euclidean vector space E",
n > 3. It turns out that H is a connected manifold and that there exist precisely
two komotopy classes of maps of the circle ST into H, of which one consists of
all nullhomotopic maps and the other of all maps which are not nullhomotopic. The
maps in the latter class can be described in the following way. Let E? be an arbi-
trary two-dimensional subspace of the vector space E" and let E™2 be the ortho-
gonal complement of E2. The rotation group H, of the plane E?, which is homeo-
morphic to SI, may be regarded in a natural way as a subg}oup of H, by extend-
ing each rotation of E? to a rotation of the whole of E™ by defining it to be the
identity on E" 2, It turns out that a map g of ST into H, is nullhomotopic in i
if and only if its degree is even. It further turns out that every map k of S! into
H is deformable to a map g of ST into H, in such a way that every point x for
which h(x) € H, remains stationary during the deformation.

Proof. Let 5™ ! be the unit sphere in E", a € §$7~1 apd y the mapof H,
into S"! defined in proposition (C). Clearly the set x~L(a) is the subgroup H__,
of Hn consisting of all rotations of the space E™1 orthogonal to the vector a.

Let f; be a smooth map of the compact manifold ¥, r <n - 2, into H. We
show that there exists a deformation f,, 0 <t < 1, of the map f, which does not
move the images of those points of #" mapped into H,_; and such that f; maps
the whole of M to H,_;: f;(M")CH, _;. In view of Theorem 1 the set xfp(M") is
nowhere dense in 5" and so there exists a smooth deformation g, of the map
gy = Xfy which leaves at a the images of the points in ggl(a) and such that
gI(M') = a. The deformation fz covering g, has the required properties (see Lemma 1).

If we consider the case M" = 5! we see that an arbitrary map of the circle s
into the manifold H_ is homotopic to a map into H_;. 1t n—1>3 then, by a sec-
ond application of the same argument, we see that an arbitrary map of ST into Hn
is homotopic to a map into H

n—2°
space E"2 of E"1, Repeating this process further we conclude that an arbitrary

where Hn_2 is the rotation group of some sub-

map of S% into H_ is homotopic to a map into H, C H.

We show that if the map g of S! into H, is nullhomotopic in H thenitis a
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also nullhomotopic in Hy, where Hy, CH, C H. Let K2 be a disk bounded by the
circle S1. Since g is nullhomotopic in H it may be extended to a map of the whole
disk K? into H.. Applying the process described above in the case M™ = K2 we
deduce that g is nullhomotopic in Hj. To prove the theorem it remains to estab-
lish that a map g of $! into H, is nullhomotopic of and only if the degree o of
the map g is even,

To prove this fact we make use of the homomorphism v of the group G on to
H3 (see (B)). The map v is smooth and proper at every point and transforms exact-
ly two points of G into each point of H,. We remark further that oyl (Hy) is
a circle which is mapped by v on to the circle H2 with degree 2 (see (7))

We suppose that o = 2p and let v be a map of $! into 21 of degree p. Then
the map wvv of §! into Hz has degree 2p =0, and so is homotopic to g. Since the
map v is nullhomotopic in G, the map vv is nullhomotopic in H3. Thus the map
g is also nullhomotopic in H,.

We suppose now that the map g of S! into H, is nullhomotopic in Hj, so that
there exists a deformation g, 0 <t < I, of maps of s! into fl; such that g;=g
and 50(51) is a single point of H;. Let p be a point of G such that v(p) = go(SI)
and let f, map §! o p. Then vf; = g; and in view of Lemma 1 there exists a
covering defor]mation f, of the deformation g,; vf; = g;. Consequently f; is a map
of S! into X such that vf; = g}, so that the degree of g; is even (since the de-
gree of vlzl is 2). ’

The connectedness of the manifold H" is easily proved directly. It also fol-
lows from the fact that there exists only one class of nullhomotopic maps of $! into H..

Thus Theorem 17 is proved. .

D) With each map % of a one-dimensional manifold M into the group H,n>2 we
associate [3(h), a residue class mod 2. If n> 3 and M! is connected the class B(h)
is zero of k is nullhomotopic and non-zero otherwise. If M! is not connected we
define B(k) to be the sum of the classes (k) for each compenent. If n =2 we
define B(k) to be the degree of the map k, reduced mod 2. Given two maps f and
g of ST into H we define their group-product h = fg by setting

h(x)= f(x)g(x), =x€ s,
where on the right-hand side we have the product in the group H  of the elements
f(x) and g(x). It turns out that
Bh) = B(f) + Bg) an

We prove formula (17). Let T2 = S1 x S! be the direct product of the circle s?
with itself, that is, the collection of all pairs (x, y), x € 51, y € 51, We define a
map ¢ of the torus T2 into H by setting

dlx, y)= f(x)g(y)
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Further let a be a fixed point on S, Without loss of generality we may suppose

that f(a) = gla) = ¢ € . We define three maps fg's b’ of S jnto T2 by setting

@)= a), g@=(az2), ~E@=C0:
Plainly
¢f'=f ¢g'=g dh'=h
It is known and easy to prove that the map A " of S! into T? is homotopic to a map
}: of S! into the lemniscate (S!x a) U (ax S1y such that St is mapped with de-
gree 1 on to each side of S! x a, ax S!. Then the maps bh' and Gk are homo-
topic. Moreover for the map qﬁiz it may immediately be verified that B(h) =
B@f')+ Blpg'). Thus formula (17) is proved.
§13. Classification of maps of the 3-sphere into the 2-sphere

In this section the homotopy classification of maps of 5% into §2 is given,
namely, it is proved that the Hopf invariant y (see $10) is in this case the unique
homotopy invariant of maps and can take arbitrary integer values. An important
role in the proof is played by the Hopf map of 23 into S2 whcih is convenieat-
ly described by means of quaternions. Let K be the quaternionic field, G the col-
lection of quaternions of modulus unity, and let ] be the collection of all pure im-
aginary quaternions (see §12, A). As the sphere 23 we take G and as the sphere
S? we take the intersection G () J. With each element g € G we associate the el-
ement w(g), by putting w(g) = gig"l, where i is the quaternionic unit. It turns out
that the map o so defined is proper at each point and has Hopf invariant I. Only
these properties of the map @ are used for the solution of the classification prob-
lem of maps of 23 into S2. The solution also requires the fact that every map of
the sphere S™, n > 2, into the circle $! is nullhomotopic. The proof of this quite
elementary theorem is also given here.

Maps of spheres into circles.

Theorem 18. Every map of the sphere S™ into the circle S, n> 2, is null-
homotopic.

Proof. Let p and ¢ be the north and south poles of S™ and let S be its
equator, that is, the section by the hyperplane perpendicular to the segment pg and
passing through its midpoint. For each point x € 571 there is a unique meridian
pxq on the sphere S" passing through «x, that is, a great semicircle on S" join-
ing p and q and passing through x. On the meridian pxq we introduce an angular
coordinate @, reckoned from the point p. We denote the point y on the meridian
pxq with angular coordinates a by (x, a). We have (x, 0)=-p, (x, 7)= g, and for
each point y € §"— (p |J ¢) there is a unique expression y =(x, a), where 0 <
a<m.

Let f be an arbirtaty map of 5" into SI, On the circle S! we introduce the

v
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we obtain from (4), ignoring second order terms,

wh) =i+ 2(x3j+ %) (cos x —:i sinx)i. (5)
From this it follows that
ax(§)= 2&(cos x ~ i sinx). 6)
Thus if we express the quaternion ¢ in polar coordinates p, 3, that is, if we put
&= jplcos B —isinf),
is a rotation in the plane [ through an angle x with simul-
taneous magnification by a factor of 2.

~

then it is plain that &

The normal Ni at the point cosx + i sinx to the circle 5! is given by the
parametric equations (2). As in proposition (A) we put uy(x) = {1, 0}, ugx) = {0, 1.
To the map ¢ there corresponds a map ¢ of the tangent space Pi to G at x on
to the linear space E3 (see §1,E) It may be verified directly that

#,.9,(j) =uy(x), & q,(k)=u;(x). )]
For the construction of the frame V = {vl (x), vz(x)} corresponding to the map o,
we must, according to definition 4, choose vectors e; and e, in R? and then find
vectors vl(x), v2(x) in Ng such that €;= (mq‘,v"l)xv](x), ey = ((uc,b_l)xvz(x). in the
choice of e; and e, and the calculation of the vectors vl(x) and uz(x) it is help-
ful to note that

. - -] -] - ~] -
04771 051 gl = 57 ®
So, by taking e = r(-—2-) s €9 = "(‘;— ), we obtain, according to (6)—(8),

~-] [k .
v;(x) = ((/)qu)wxl (-5) = ¢, g (k(cosx +isinx)=
= ¢qu(k cosx + J sinx) = ul(x) cosx + uz(x) sin x,
v2(x) = (quqx)a;l(—;— ): ¢qu(j(cos x+ i sin x)) =
= ¢, q, -k sinx + j cos x) = —u (%) sinx + uy(x) cos .
Thus, in view of (A), we obtain y(Sl, Vy=1 and so y(w)= I
Lemma 1 is thereby proved.
Classification of maps of the 3-sphere into the 2-sphere.

Lemma 2. Let n,(S7) be the set of homotopy classes of maps of S™ into ST,
n>3,r=2,3 and let & be the map of 33 into S? described in Lemma 1. It is
evident that if f, and f; are two homotopic maps of S" into 3° then the maps
wfy and wf; of S" into 52 are also homotopic. Thus for a € nn(23) the collec-
tion of maps wa belongs to a single class w@)€ n‘n(S2). It turns out that & maps
the set rrn(Es) on to the set n'n(S2) and that only the zero element of nn(ES) is
mapped by & to the zero element of Tru(52).

It follows immediately from the definition of addition in the group ﬂn(Sr), which has not
been described explicitly in the present work, that & is a homomorphism of the group nn(Z'g)

into the group nn(S2 ). Thus we may conclude from Lemma 2 that & is an isomorphism of

SMOOTH MANIFOLDS AND THEIR APPLICATIONS IN HOMOTOPY THEORY 91

ﬂn(zg) on to 77"(52)- However this result is not used in what follows.

Proof. We show first that &~1(0) = 0. Let f be a map of 5" into 3% such that
of is a nullhomotopic map of S” into $2, Then there exists a continuous family
g, 0 <t < I, of maps of S™ into §2, such that g = of and g; maps S" to a point
¢ of S2. In view of Lemma 1 of $12 there exists a continuous family f, of maps
of S™ into I° such that fo = f and ©f, = g,. Since g(5M=c¢, f1(S™ Caolc)
and in view of Lemma 1 the set w"l(c) is homeomorphic to a circle. Thus, fl’ and
consequently also fo, is nullhomotopic in 3" by Theorem 18.

We show now that, given any 3 € nn(Sz), we can find an element o € n"(ES)
such that &(a) = B. We will think of S™ as the unit sphere with centre at the ori-
gin of coordinates in the Euclidean space E™* with a fixed coordinate system
wl eee, 271, We denote the set-of all points of S" satisfying the condition 2l <
0 by E_, the set of all points satisfying the condition St >0 by E+, and the
set of all points satisfying -0 by S7=1, As north pole of the sphere S" we
take the point p = (0, 0, ---, 0, 1), and as south pole the point ¢=(0, 0,---,0,-1).
It is clear that there exists a map of S" on to itself which is homotopic to the
identity and which maps the hemisphere E_ to q. From this it follows that the
class 3 contains a map g transforming E_ to a single point ¢ fo S2, Let Pi be
the half-plane in E™*! containing the point x € 57~1 and bounded by the line
passing through p and g. The intersection of the half-plane Pi with the sphere
S™ and the hyperplane "1 = ] — ¢ is denoted by (x, t). Thus to the pair (x, ¢),

x € "1 0 <t <1, corresponds a well-defined point (x, ¢) € E, and each point
y € E+ can be expressed in the form y = (x, t), where the expression is unique if
y#£ p while p = (x, 0) where x is an arbitrary point of "1, we put g,(x) = glx t),
This defines a family g,, 0 <t < 1, of maps of $7=1 jnto $? with 8 (8" Iy=¢ and
go(sn-l) = g(p) = b, Let a be an arbitrary point of the circle w~1(b) and let f be
the map of S"! into x? sending the whole of 57! to a. In view of Lemma 1 of
§12 there exists a deformation fp02ts 1, of maps of $71 into 3 such that
fop=f and wf, = g,. We put f(z, O)= f,(x). The map f so defined is a map of the
hemisphere E+ under which "7 is mapped into the circle w~1(c). Since a map
of $* 1 into the circle @ 1(¢) is nullhomotopic (see Theorem 18), the map f of
the hemishpere E, can be extended to a map f of the whole sphete S™ such that
f(E)C @~1(¢c). The map f so constructed satisfies the condition wf = g N

Thus Lemma 2 is proved.

Theorem 19. The homomorphism y of the group Hé into the group of integers
is an isomorphism (see $10, C). From this it follows that two maps f, and f; of
33 into S2 are homotopic if and only if y(fy) = y(f;) and, moreover, that for each
integer ¢ there exists amap f of % into S2 with y(f) = c.

Proof. We show first that the kernel of y consists of the zero element of ﬂ;
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only. For this it is sufficient to show that a map g of 23 into §% satisfying the
condition y(g) = 0 is nullhomotopic. In view of Lemma 2, there exists a map f of
53 into itself such that wf and g are homotopic, and, consequently, y(of) = 0. By
proposition (D) of $10 the degree ¢ of the map f is given by the equation y(wf) =
26 = 0, so that 0= 0. Thus (see Theotem 12) the map f of 3" into itself and con-
sequently also the maps wf and g are nullhomotopic.

We show that for any integer o there is a map [ of 3% into S? such that y(g) =
o; that is, we show that y is an epimorphism. In fact, let { be a map of 2" on to
itself of degree ¢. Then we have, by (D) of § 10, y(of)=0-1=0.

Thus Theorem 19 is proved.

B) Putting together proposition (A) and Theorem 19, we see that each I-dimen-
sional framed manifold in 3-dimensional Euclidean space is homologous to a
framed manifold (SI, V(r)), as constructed in (A), where r is a suitably chosen in-
teger.

§ 14, Classification of maps of the (n+ I)-sphere into the n-sphere

In this section it is proved that if n > 3 there exist exactly two homotopy
classes of maps of 3" into S, The proof is based on the construction of a ho-
mology invariant 84!, U) of framed manifolds in Euclidean space ErHl 5> 2
which is a residue class mod 2 and can take either of the values 0 or I. Thus,
just from the existence of the invariant § it follows that there are at least two
classes of maps of En+1 into S* for n > 2. The invariant & may be described in
the following way. Let U(x) = {ul(x), caey, un(x)} be an orthonormal frame for the
manifold M1, and let u,,1(x) be a unit vector tangent to M ar the point x. The
system U'(x) = {ul(x), IR (x)} is obtained from some fixed orthonormal ba-
sis of E"t! by a rotation A{x). Thus there arises a map h of the manifold M1 in-
to the manifold Hn+1 of all rotations of E™I, In the case of a connected curve
M the invariant 8 is defined to be zero if & is not nullhomotopic, and equal to
1 otherwise. In the case of a manifold #! which is not connected the invariant §

is defined to be the mod 2 sum of the values of & on the components.

As a preliminary to the proof of the invariance of the residue class 0 a gen-
eral Lemma 1 is proved in which a framed manifold (Mk+1, U) inducing a homology
is subjected to ‘improvement’. An improved manifold (M5 Uy has the property
that its intersection with the hyperplane E™E o ¢ is a framed manifold for all val-
ues of the parameter ¢t with the exception of a finite number of critical values.
Since for non-critical values of the parameter ¢ the framed manifold (Mlt‘, Ut) de-
pends continuously on the parameter ¢, the invariance of & remains to be proved
only when the parameter ¢t passes through a critical value. In passing through a

critical value the manifold (Mf, U,) undergoes a comparatively simple reconstruc-

é
é
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tion, thanks to which fact the proof of the invariance of & goes through.

For a I-dimensional framed submanifold of 3-space the two invariants y and
5 have been defined; it turns out that & is obtained from the integer y by reducing
mod 2. Since every I-dimensional framed manifold may be obtained by suspending
a I-dimensional framed submanifold of 3-space (see Theorem 11), we may use in
the classification of maps of 2n+1 into S for n > 3 the known classification of
maps of the 3-sphere into the 2-sphere. Precisely, it is proved that if yML, U)is
even then EML, U)~ 0. It is fhereby established that there cannot exist more than
two classes of maps of 2"+1 into S” for n > 3.

The ‘improvement’ of a framed manifold inducing a homology.

Lemma 1. Let (Mg, U,) and (M’I‘, Ulk) be two homologous framed submanifolds
of the Euclidean space E"tE gnd let (M*Y1, U) be a framed submanifold of the
strip EM* <1 inducing the homology (Mg, Up) ~ (Ml;, U)). We will call the point
(g 8y) critical —and the value £, of the parameter t a critical value —if the
tangent Tg” to MF1 o (xg, tg) lies in the hyperplane Enth tge It turns out
that it is always possible to choose the framed manifold (ME+1) U) inducing a ho-
mology between the given framed manifolds in such a way that a) there exist only
finitely-many critical points of the manifold M*+1 and the critical values of t at
distinct critical points are distinct; b) at an arbitrary critical point (x5, yp) of the
manifold M*¥+1 an orthonormal basis €, ***s €,,y may be chosen so that, in the
coordinates x, -+, "% corresponding to this basis, with origin at %, the mani-
fold M**1 ;s given near (xg ty) by the equations

t=1¢, +I.‘§10‘.(xi)2, ot =tI; 2o £ 0, )

I=

and the frame U={u(x, t), - +-, u,(x, 0} is given near (%, ty) by the formulae

uj(x, £) = oe —f=§1120ixiei), o=tL; uy(m, )= ep g, ooy u (% ) =€p,py (2)
where e is the unit vector in the strip E"'% x I in the direction of the ¢ axis.

Proof. Let (Ng"’l, ¥,) be a framed manifold inducing the homology (M’O‘, Up) ~
(MII‘, Up). with each point y = (x, t) of N{)H'I we associate the real number f(y) =
f(x, t) =t. In view of Theorem 5 there exists a real-valued function g(y), defined
on N(’g"'l, coinciding with f near the boundary of Ng+l, and in e-proximity of the
first order to f, all of whose critical points are non-degenerate and such that the
critical values at critical points are distinct. We now associate with each point
y = (x, t) of N:;’” the point ¢ _(y) = (x, t + s(g(y) ~ f(y)), where s isa fixed num-
ber such that 0 < s < I. For sufficiently small ¢ the map ¢ is regular and homeo-
motphic, Thus r;bs is a deformation of the smooth submanifold Ng+1 into a submani-
fold N¥+1= ¢ (NF+D).

It is evident that the critical points of the function g(y) coincide with the
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critical points of the manifold N’;+1. Thus condition a) above holds for the mani-
fold M¥+1 - N+,

We subject the manifold N’;’H now to a further ‘correction’, so that condition
b) may also be fulfilled.

Let y, = (%, £p) be an arbitrary critical point of Nk+1 and let Tk+1 be the
tangent to N’1‘+1 at the pomt yg+ The space Tk 1 jies in the hyperplane Btk tps
so that Tk+1 Th+1 Tk+1 C E"*, In the space E"** 'we choose a basis
€y, + =+, €, such that the VECtors €y, -**, €1, lie in T**1, In the neighbour-
hood of the point (x,, ¢,) the manifold N’H'I is described in the corresponding co-

ordinates by the equations
t=ty+ Pl o, )+ Yl oo, 2D, 3)
T gl e, DY, j=2 e, 4)

where ¢ is a non-singular quadratic form in the variables xl, sy, xk"’l; Yisa

function which is small of the third order relative to = \/(xl Y24 oo (FHH25

and l/li are functions which are small of the second order relative to &. By choos-

Tk+1

ing the axes in in a suitable way, we can bring ¢ into the form

L2 P
b= 3 N2, 5)
. i=
where A is a non-zero real number. We begin by ‘correcting’ the manifold N’IH'I in

the neighbourhood of the point (xo, to). Let x(n) be a smooth real-valued mono-
tone function of the variable 7 =0, satisfying the conditions

x0) =0 for 05175-—;—; x) =1 for n > 1.

x(& s)= sy (—g—) +1-s,
k+1

where a is a sufficiently small positive number. We define the manifold N1+s by

We put

the equations bl
t=1, +‘21 X:(xi)2 + X(f’ S)‘/’(xly T xk+1)1
i=
k+]_x(é‘ s)W(xl .o k+1) ]_2 cee,m,
for £<a, |t— tol < a, and we take Nk+1 Nk+1 elsewhere. It is clear that the

submanifold NI+ s realises a smooth defotmatlon of the submanifold Nk+1 into the

submanifold N’ZHI, where the latter is given in {<a, [£2 l,‘oi <aby the equations
L3¢ B
=gy 2 Nad)? + x(%) Y, s e, 25D, 6)
=

xk+i=x(§>¢f(x1,...,xk+1), =2, n @)
It is evident that in a sufficiently small neighbourhood of (x,, t;), namely, for

§< -, |t— tol < a, the manifold N12°+1 is given by the equations
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t=»to+2)\'(x)2 =0, j=2,000,m (8)

We show that Nk+1 has no critical points distinct from those of Nj k1 Eor this it
is sufficient to study the points of N5 k+1 given by the equations (6), (7) and satis-
fying the condition £ < a, and show that among them only the point &=0 is critical.

We have
dt

d=*

where ¢
NG = ZS;(:Q_)_ 2 Gl en, D 4 x(—f—) a¢(x1,...,xk+1).
6 b b —ira et ettt e

a @ dx*t

= 2, 69,

Thus ) ¢ 2
6% s =L & + €™

It is clear that for sufficiently small a we have

|9|_ 1.5 é<a,
Now if for £ < a we have -‘-}i— =0,z=1,---,k+ 1, then
X; i i
xt=-0" (C)]

Hence by squaring each of the equations (9) and summing we obtain £2 36" Y2 <
_’_‘i_l_._ £2, so that {"2 < 7;-1——1- £2 and this is only possible if &= 0.
(k+ 1)?

We now subject the manifold N k+l ¢ a further correc tion so that the equations

for it near the critical point (xo, to) take the form (1). We express the numbers pU

in the form A’ = 21 , where the a; are positive numbers and ol =+l Let a' be
a sufficiently small positive number such that if Ixfl <a’, |t~ fpl < o' the mani-
fold N’;‘I is given by the equations (8). We now define a smooth function « (1)
of the variable 7, || < a', depending on the positive number a and satisfying the

conditions '

ko) > 05 K ()= an for [l < B; k(1) =7 for lnl > g—.
Here f3 is a positive number so small that a function « (1) sansfymg the stated
conditions exists. We define the manifold Nk+1 for ‘x‘l < a' by the equations
t=ty+ NI - )& + s, (x‘))2 =0, j=2,00,m, 10)
and we take Nk+1 to coincide with N3 k1 elsewhere. It may be verified directly
that the mamfold Nk"'i realises a smooth deformation of Nk+1 into a manifold
Nk+1 and that the critical points of Nk+1 and Nk+1 comcnde. Moreover the equa-
tions of Nk+1 near the point (xo, to) have the form (1.
By carrying out the reconstruction indicated near each critical point of the

manifold Nk+1 we construct a manifold Mk+1, and, since it is obtained from the
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manifold NIOH'I by a series of consecutive smooth deformations, there must exist

a frame V for the manifold ME+1 guch that the framed manifold (Mk+1, V) induces
the homology (Mg, Up) ~ (M;‘, U)). By choosing the number o = +1 informula (2)
in a suitable way we may ensure that the frames U and V determine the same ori-
entation in ME+D and so, near the critical point (xo, to), it is possible so to de-
form the frame V that it passes into the frame U (see $11, D). By carrying out
this correction near each critical point of the manifold Mk+], we obtain the re-
quired frame U,

Thus Lemma 1 is completely proved.

The invariant & of maps of s+ a0 S™,

Theorem 20, Let (ML, U) be a l-dimensional orthonormally framed submani-
fold of the oriented Euclidean space EMI n> 2, U = fuyx), - -5 u (o) At
each point x € ML we draw the unit vector u, ;(x) tangent to thel) curve M1, so
directed that the sequence u (), ***, u, (x), u,, 1(x) determines the positive ori-
entation of the space ErL, Further let €, s €y bean orthonormal basis of
E"*! determining its positive orientation. Then

n+l

ui(x)=._2] hil-(x)ei, i=1--e,n+1, 1n
where h(x) = Hhi.(x) || is an orthogonal matrix with positive determinant, depend-.
ing continuously on x € M1, Thus h is a continuous map of M1 into the menifold
H, . of all rotations of the Euclidean space E™ e set

ML, Uy = Bh) + r(MD)  (mod 2),
where r(M1) is the number of components of ML and the residue class B(h) is de-
fined in proposition (D) of $12. It turns out that the residue class 5(M1, U) is an
invariant of the homology class of the framed manifold M1, Uy so that if the map
f of 3™ into SP corresponds to the framed manifold (M1, U), then, by putting
8(f) = d(ML, U)

we obtain an invariant 8(f) of the homotopy class of the map f. The residue class
SML, U) does not depend on the orientation of E™ yor on the particular choice
of basis e}, -+, e,
Proof. We prove first the invariance of S(ML, U) under change of basis. Let
1 be another orthonormal basis of E™*! also determining its positive

el '
1’ » €ny

orientation; then
n+l1

ef;fz“fke;l’ j=1-ee,mt
where a= || a’.kll is an orthogonal matrix with positive determinant. Using the ba-

]

D there corresponds to the framed manifold (MI, U) not the matrix

. 1
sis ej, ++-, €

Translator’s note: Pontryagin uses the word ‘curve’ synonymously with ‘one-dimen-
sional manifold’ — he does not assume connectedness.
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h(x) but the matrix % '(x) = h(x)a. Since the manifold Hn+1 is connected, there ex-
ists a mauix e, € H  ;, depending continuously on the parameter ¢, 0<t<1, such
that a; =@ and @, is the unit matrix, The map h, = ha, realises a continuous de-
formation of % into k' so that k is homotopic to &' and thus the residue class
S(MI, U) does not depend on the choice of basis €, -**, €, ;.

We now show that S(M! , U) is independent of the orientation of E™1, Under
change of orientation of E**! the vector u,, ;) is replaced by ~u, ;(x)and, in
the basis €, ---, e, ;, the orientation may be changed by'replacing e,.1 by—e
With these changes we obtain instead of k(x) the matrix k' (x), obtained from h(x)
by multiplying by — I the last row and column. We associate with each matrix
le Hn+1 the matrix ' obtained from ! by multiplying by — I the last row and col-
umn. If we take for EZ the plane with basis e, e, then it is seen that under the
map [ — I the curve H,, which is not nullhomotopic in Hn+1 (this is described
in Theorem 17), is mapped identically on to itself. Thus (M, U) does not alter
under change of orientation of E™H,

Finally we prove the principal property of the residue class 8(ﬂ11 , U)—its in-
variance with respect to the choice of the framed manifold (Ml, U) from its homo-

logy class.

Let ﬂMé, Uy) and (Mf, U)) be two framed submanifolds of the space E™t1 and
let (M2, U) be a framed submanifold of the strip E™1 I inducing the homology
(MI, Uo)m(Mf, UI) and chosen to satisfy conditions (a) and (b) of Lemma 1. The
intersection M2 ] (E** x t) lies in E™1 ¢ and so has the form Mf CEMI 1t
is easy to see that, if (x, t) is not a critical point of the surface M2, the set Mtl
is, near the point x, a smooth curve, so that, if ¢ is not a critical value of the pa-
rameter, Mtl is a smooth submanifold of E"*!, We construct a frame Vz of the mani-
fold Mtl. Let (x, t) be a non-critical point of the manifold M2, let V(x, t)x t be
the orthogonal projection of the system of vectors U(x, t) on to the hyperplane
Entl t, and let Vt(x) be the system obtained from V(x, t) by means of the ortho-
gonalization process (see §7, G). Since all the vectors of the system U(x, t) are
orthogonal to M? ac the point (x, t), it follows that all the vectors of the system
V(x, t) are orthogonal to Mtl at the point x. Since (x, ¢) is not a critical point it
follows that the vectors of the system V(x, t) are linearly independent. Thus the
system Vt(x) constitutes a frame for the manifold M tI for non-critical values of ¢.
To the framed manifold (Mtl, V,) there corresponds a map h, of Mf into H ;. From
general continuity considerations it follows that when the parameter ¢ varies con-
tinuously without passing through a critical value, the residue class 8(le’ V)
reamins unchanged. We prove that it also remains unchanged when the parameter
t passes through a critical value toe The invariance of 3(M1 , U) will follow from

this in view of the relations Vj, = U, V; = U}.




98 L. S. PONTRYAGIN

Let (x), £;) be the unique critical point of the manifold M2 at which the pa-
rameter ¢ has the critical value 2,. Near the point (x5 tp) the manifold M? is
given by the equations

t=ty+ A ? + 02(x)2, o= t1, o = 11,

[ JER o3 S

(see (1)). It follows from this that if ¢ is near to the equation of the manifold
M f near x; has the form

al(xl)2+02(x2)2=t-to; B eee= o0, (12)
Further it follows from (2) that the system Vt(x), for sufficiently small lt - ta! and

for x near x, is given by the formulae

1 2
(vt)I(x)=o(al—g_—eI+a2—2-e2> (v) = e j=2,---,m, (13)

where &= \/ W (12)2. To study the residue class 8(4’1‘, V,) we take for E?

(see Theorem 17) the plane with basis e;, e5. We consider the two distinct cases:
1) ol = 6? and 2) ol = 02,

In case 1 we will assume for definiteness that ol = 62 = — 1. Under this hy-
pothesis the manifold ¥ tl , with ¢ <, contains a component determined by equa-
tions (12) which is a circle of small radius in the ordinary metric. We denote this
component by SI, 1t is easy to see that the map k, maps the circle S? on to the
circle H, with degree I, For t> ¢, the component given by equations (12) becomes
imaginary, that is, vanishes, while at the same time all the other components of
M1 together with their frames vary continuously. Thus in the first case as the pa-
rameter ¢ passes through a critical value ¢, the residue class B(h,) changes by
1 and so does the number of components of M so that the residue class 6(Mz’ V)
does not vary.

In case 2 the set Mtl near the point x, is described by the equation (1) -

(x2)2 = 0, that is, it is a cross Kt , the union of two segments intersecting in a

point. From this we see that the component L, of M containing the cross K

is homeomorphic to a lemniscate. Since the surface M is orientable, the nelgh-
bourhood of the lemniscate L on M2 is homeomorphic to a doubly-connected
plane region and hence it may %e seen that the part L of the set M lying near the
lemniscate L, t) consists of two components S and 52 if ¢ lies on one side of
tp, and consists of one component ST i t hes on the other side of ¢,. If we de-
note the resldue classes B(h ) corresponding to the components S Sl and SI by
B B2 and B then to prove the invariance of 8 it is sufficient to prove that §;+
B3 =+ 1 (mod2). We prove this. We denote by K, the part of the curve L, ly-
ing near the cross K . This part is described by the equation (2?2 = al(t— toh
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and so is a hyperbola. From formula (13) we see that h (K ) C H, and moreover
that for ¢t < ty the set h (K ) covers two quarters of the c1:cle H and for &> ty it
covers the other two quarters. In view of Theorem 17 the map k, of L is homotop-
ic to a map h for which A, (L ) C Hy and such that k, and h agree on K,. From
what has been said it follows easlly that the sum of the degtees of the maps h of
the curves S and S for ¢ < t, differs by unity from the degree of the map h of
the curve S for t> ¢, Thus [31 + ,82 = B + 1 (mod 2) and the invariance of the
residue class S(#!, U) is completely proved.

Theorem 20 is thereby proved.

We pick out some easily verified properties of the invariant 8(M1, U).

A) Let H1 be the group of homology classes of framed Idimensional submani-
folds of the Euchdean space E™ Since 8(M!, U) is an invariant of homology
class, we may put &(7) = 8(M1 U), where M1, U) is a framed manifold in the class
7 € ﬂ It may be verified immediately that & is a homomorphism of H into the
group of residue class mod 2. It is, further, clear that if En is the suspension of
7, that is, EML, U) € En (see $8), then 8(Em) = 8(n).

The classification of maps of 2n+1 into S".

Theorem 21. For n > 3 the homomorphism 3 of HI into the group of residue
classes mod 2 is an isomorphism (onto), so that H1 is cyclw of order 2. Thus
there exist precisely two homotopy classes of maps of 3™ into S*(n > 3). Fur
ther the homomorphism & of HZ is epimorphic and since Hz is mapped isomorphi-
cally on to the group of mtegers by the isomorphism y (see Theorem 19), it follows
that the homomorphism 8y~1 of the group of integers on to the group of integers
mod 2 is just reduction mod 2.

Proof. Let (5! , U) be an orthonormally framed submanifold of Euclidean space
E"+1 s? being homeomorphic to a circle, U(x) = {ul(x), cees Uy (x)}. To calculate

the invariant 8(51, U) we denote by u, I(x) a suitably duected unit vector tan-

gent to ST at the point x, and let e;, -+-, €, be a basis for E**l. We have
n+1
u..(x)= 2 h'.(x)e.,i= L,.eeun+ 1, (14)

so that k(x) = |k; (x) | is an orthogonal matrix with positive determinant, and h is
a continuous map of the circle ST into H nyls In view of the definition of the in-
variant B(M , U) (see Theorem 20), we have

88!, Uy= B(h)+ 1(mod 2). 15)
Further let g(x) = || g;](x)N be an orthogonal matrix of order n with positive deter-

minant, such that g is a continuous map of S into H We set

Ui(x) =]§1g”(x)ul(x), i= 1: LA (2
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and dem;te by g[U] the frame V(x) = {vl(x), aee, vn+1(x)} . To compute the invar-
iant 8(5%, g[U1) we put v, 1®) =2, (%) and denote by g'(x) the matrix of order
(n + 1) obtained from g(x) by adding elements g,

(x) and g, (x), where only

, n+l +1,i
gn+1’n+1(x) is non-zero, and is equal to I. It is clear that for n > 2 we have

L' =B
(see § 12, D). Further we have
n+l .
vi(x) =],2k=1g”(x)hlk(x) ek! i= 1, e, D+ 1,
Thus in view of proposition (D) of §12 we have
581, glUl = Bgh) + 1= Bg") + Bhy + 1= 8(SL, U) + Blg). 17)

It immediately follows from Theorem 11 and proposition (B) of $13 that, for
each framed manifold (Ml, W) of the Euclidean space E" there is a homology

ML, Wy~ E2(S, 1), (18)
where (SI, V(r)) is the framed submanifold of Euclidean 3-space E3 constructed

in proposition (A) of $13, and E"2 is the suspension operation iterated (n—:2)
times.

We have
=80l 12
where
cos rx sinrx
8 = .
—sinrx cosrx

(see §$13, A). Thus
B(g(r)) = r(mod 2). (20
It may be immediately verified that S¢S, V(O)) = 0. Hence, in view of (17),
(19) and (20) it follows that
8(S", V) = r(mod 2). @1
Since y(Sl, V(r)) = r (see $13, A) it follows from (21) that the homomorphism 8y‘1
of the group of integers into the group of residue classes mod 2 is just reduction

mod 2. The second part of Theorem 21 is thus proved.

Further we have

!
EVin= 80l EVop}»
where
cos rx sinrx 0
g('r)(x) = | ~sinrx cosrx O ,
0 0 1

so that B(g('r)) = r(mod 2). Since y(SI, V(O)) =0, (SI, V(O)) ~ 0 (see Theorem 19)
and so E(S% V(O)) ~ 0. Consequently E(S, V(r)) ~ 0 if the map g('r) of the circle
ST into [13 is nullhomotopic (see §7, H), which is true if ris even, So E(SI, Vi)~
0 if S(E(S, V(r))) = 0. Hence and from relation (18) it follows that, for n > 3, ®
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5(M1, W)= 0 implies that ML W)~ 0. Since S(E"‘Z(SI, V(D)= 1 the framed mani-

fold E"_Z(SI, V,,y) is not nullhomologous. Thus it is established that the homo-
1) 8

morphism 8 maps the group H’{ isomorphically on to the group of residue classes

mod 2.
Theorem 21 is thereby proved.

§15. Classification of maps of the (n+ 2)-sphere into the n-sphere.

It is proved in this section that for n > 2 there are exactly two homotopy
classes of maps of 2n+2 into S™. The proof is based on the construction of a ho-
mology invariant 5(M2, U) of the framed manifold (M2, U) in Euclidean space E™2,
which is a residue class mod 2 and can take either of the values 0 or 1. Thus,
just from the existence of the invariant 5, it follows that there exist at least two
classes of maps of 2"+2 into S™. The invariant 8 may be described in the follow-
ing way, Let U(x) = {ul(x), vee, un(x)} be an orthonormal frame for a manifold M2
and let C be a smooth simple closed curve on M2, The unit normal to C touching
the surface M2 at the point x € C we denote by u,_;(x) and we set V(x)=
{uI(x), sy, un+1(x)} . The invariant 8(C, V) (see §14) is defined for the I-dimen-
sional framed manifold (C, ¥); we denote it in the given case by 8(C). We suppose
first that M2 is a connected surface whose genus we designate by p. There exists
on M? a system of smooth simple closed curves AI’ seey Ap’ BI’ s, BP such
that Ai and B; intersect, but do not touch, at a single point, i =", -+, p, but no

two other curves intersect at all. It turns out that the residue class
P
8(M2, U) = 2 8438
i=

does not depend on the choices made in the construction and is a homology invar-
iant of the framed manifold (M2, U). If the surface M2 is not connected the invar-
iant & is defined to be the sum of its values on the components.

It follows from Theorems 11 and 16 that the number of classes of maps of 2n+2
into S™ does not exceed the number of classes of maps of 24 into S2. The num-
ber of such classes of maps of 24 into §? is, in view of Lemma 2 of $13, no great-
er than the number of classes of maps of 24 into S% and this last is, in view of
Theorem 21, equal to 2. Thus it is established that the number of classes of maps
of 2"+2 into S® is no greater than two.

A) Let M2 be an orientable surface, that is, a smooth closed orientable mani-
fold of dimension 2, and let ¥ I be a curve, that is, a smooth closed I-dimension-
al manifold. Further let f be a smooth regular map of M! into M? such that no
three distinct points of M are mapped to the same point of M2, We will further
make the hypothesis about the map f that if the two distinct points aand b of Ml
are mapped by f to the same point ¢ = f(a)= f(b), then neighbourhoods of a and

b on M! are transformed by f into curves having different tangents at c. Under
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these conditions the set C = f(MI) is called a smooth curve on the surface M2, i
M! is oriented the curve C= f(MI) is also to be regarded as oriented. A point of
the form ¢ = f(a) = f(b), where a #-b, is called a double point of the curve C, It
is easy to see that a curve on a surface has only finitely-many double points. If
C= fI(M§) = fz(Mé), that is, if the curve C may be obtained as the result of two
distinct maps f; and f, of distinct curves M% and Mé, such that f; and f, satisfy
the conditions listed above, then there exists a smooth homeomorphism ¢ of M%
on to M; such that fyé = f;. In view of this it is possible to define the compon-
ents of C as the images of the components of the curve ML, We will not exclude
the case of an empty curve, It is easy to see that if €= f(MI) is a curve on the
surface then, provided the map f' is sufficiently close to the map f in the sense
of proximity of class I, the set f'(MI) is also a curve on the surface. We will say
that the curve C'= f'(M!) is obtained from the curve C by a small displacement.
B) The curve C on the surface M2 is said to be nullhomologous (more pre-
cisely, nullhomologous mod 2) if there exists on M? an open set G such that C=
G - G and that in any neighbourhood of a point x € C there are points of M2 not
belonging to G; in symbols, C = AG; C~ 0. It is evident that a small displace-
ment transforms a nullhomologous curve into a nullhomologous curve. Let Cc ; and
C2 be two curves on M2 such that the double points of one do not belong to the
other and that at each point of intersection of the two curves the tangents to them
are distinct. In this case C1 U CZ is again a curve and we will say that the curves
C, and C, admit addition, writing C; + C, for the curve C; U C,. It is easy to
see that if two arbitrary curves are given on M2 then, by subjecting one of them to
a suitably chosen small displacement we obtain two curves which admit addition.
If two curves C; and Cj are nullhomologous and admit addition, their sum is again
nullhomologous. In fact, let C) = AG,;, C,=AG,. We set G=(G,UGy)~
(G; N Gy). It is easy to see that C; + C; = AG. We will write the relation Cp+ Gy~
0 instead as C;~ Cy. Then the relation C;~ C, only makes sense if C; and G,
admit addition. If the curves C; and C2 do not admit addition then subjecting one
of them, for instance CI’ to a small displacement we obtain curves CI' and C2
admitting addition. If moreover CI'.\, Cy, then we write C;~ Cy. This definition
is legitimate since the relation CI"’ C, is independent of the choice of curve CI"
The relation is reflexive, symmetric and transitive, so that the curves on the sur-
face M? are divided into homology classes. We denote the totality of these classes
by Al= A1(M?). We introduce an addition operation into AL If 2 > Zg are two
elements of Al and C, € z;, Cy € z, are curves admitting addition, then the
class z containing the curve CI + C2 is, by definition, the sum of the classes z;
and z,, z = z; + z5. The group Al is called the connectivity group of the surface

M2. All its non-zero elements are of order 2. A finite system of curves CI’ ceey Cq
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on M2 is called a homology basis if, given any curve C on the surface M2, we
have a relation q
C Niz‘l C;s
where € = 0 or I (mod 2) and if it follows from the relation
C~0
that the residue classes ¢; are zero.

C) Let C; and C, be two curves on M? admitting addition. We denote by
I(Cy, C,) the number of points of intersection of C; and C,, reduced mod 2, and
call ](Cl’ CZ) the intersection index. It is easy to see that

](CI +.Cy, Cg) = J(Cy, C)+ I(Cy, C3)
and that CI ~ 0 implies J(C;, C5) =0. From this it follows that if CI ~ Dy, C2 ~
D,, then I(C,, Cy)=1(D}, Dy). Thus, putting I(z;, 29)=J(Cy, Cy), where C, €
z, Cy € z,, we obtain a well-defined intersection index of two homology classes.
It turns out that, on any surface M2, there exists a homology basis consisting of-

curves A;, «+-, AP’ By, -, BP such that

](Ai, A,') = ](B,;, Bf) =0; J(Ai, B,) = 8,’,‘? 2a j= 1,--+, p. (1)
Such a basis is called canonical. It immediately follows that for any homology
class z € Al we have the relation

J(z, 2)=0,
and further that, if z; is a non-zero class, then there exists a class zj such that
](zl, zg) = L
If M2 is connected we may take for the curves 44, ---, Ap, By, eee, BP
curves giving a canonical dissection of the surface M2. In this case p is the ge-
nus of the surface. If M2 is not connected the required homology basis may be ob-
tained as the union of bases of the components; in this case p is the sum of the

genera of the components of M2,

Theotem 22. Let (M2, U) be an orthonormally framed surface in the oriented
Fuclidean space E™*2 with basis €;, e, yielding the orientation, let Ulx)=
{ul(x), vee, un(x)}, and let C= f(MI) be an oriented curve on M% Let y € M1,
We denote by i, o(y) the unit vector tangent at f&y) to the curve f(MI) and ori-
ented as the curve and we denote by 12"+1(y) the unit vector tangent to M? at f(y),
orthogonal to izn+2(y) and directed so that the vectors ul(f(y)), cee, u (),
ﬁn+1 (y), ?LM_z(y) give the positive orientation to E**2, For convenience of nota-
tion we also put ﬁi(y) =u(f(y), i=1--+,n. We have

n+2
() =i§1 hify)ej i=1, -0, nt 2
where h(y) = | hi].(y) I| is an orthogonal matrix with positive determinant, so that
 is a continuous map of the manifold M1 into the group H .o Weset

5M2, U, €)= 8(C) = Bh) + r(C) + s(C), @
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where P(h) is defined in proposition (D) of $12, r(C) is the number of components
of the curve C, and s(C) is the number of its double points. It tums out that 8(C)
is an invariant of the homology class z € Al containing the curve C, so that we
may set 8(M2, U, z) = 8(z) = 8(C). Further it turns out that for two arbitrary homo-
logy classes z; and z, of M? we have
8(z; + 29) = 8(z)) + 8(zp) + I (2], z9). 3)

Proof. We prove first that the residue class B() does not depend on the ba-
sis ej, +++, e, o noron the orientation of the curve C= f(M1 ). If we take anoth-
er basis e;, see, er:+2 in place of e, -+, €, 9 then we have

n+2 ,
o= kews I=Lamr 2

where [ = “lk“ is an orthogonal matrix with positive determinant. By the change
of basis the matrix h(y) is replaced by the matrix h'(y)= H(y)L. Since H__, is
connected the maps % and h' are homotopic and so it follows that 3(h) does not

depend on the choice of basis €, «--, € If now we reverse the orientation of

n+2*
the connected curve C =-f(SI) it becomes necessary to replace the vectors ﬁn+1(y)
.and un+2(y) by —’un+1(y) and —un+2(y). The matrix h(y) is thereby transformed
into the matrix h (y) = [- h(y), where ’lii =0, for i #j,

bi=+=lyp=1 by a1 =iz, ne2 =-1

Since the matrix [ = Hl‘“ belongs to H, 5, the maps h and k' are homotopic, and

so the value of (k) does not depend on the orientation of the connected curve.
Evidently the same conclusion 2

is valid for arbitrary curves. 1

To prove that 8(C) is an invar-

iant of the homology class z con- Cq
taining the curve C, we introduce a ol
reconstruction operation on the ori- c

ented curve C near a double point q,
as a result of which the curve is
transformed into the oriented curve

_ 1 1. \
Ca = fa(Ma). The map of Ma into

H_ o corresponding to the curve C,

will be denoted by /. The recon- Fig. 2.
struction operation will be defined in such a way that the curve Ca has one dou-
ble point fewer than C and moreover fulfills the conditions
¢, ~ G &C) = 8(C).
In view of proposition (C) and (D) of §11 it may be supposed that near the
double point a the surface M2 coincides with the plane E2, the curve C with two
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pi=1,e0,m.

We take these lines as axes of a coordinate system xl, x2 defined near the point

intersecting straight lines and the vectors u(x) with the vectors e

a on M2. We choose the directions of the axes so that movement along the curve
in the positive direction corresponds to an increase in the coordinates, We will
take the curve Ca to coincide with C outside a neighbourhood of the point a and
to be given near the point a by the equation xl. %% = —¢ where ¢> 0 (see Fig. 2),
In this way the orientation of C is naturally transferred to C_. It is easy to verify
that if both branches of the curve C passing through a belong to one of its com-
ponents then, after the reconstruction, instead of this component there appear two
distinct components of Ca. On the other hand, if the two branches of the curve C
passing through a belong to distinct components of the curve C then, as a result
of the reconstruction, instead of these two components there appears a single com--
ponent of the curve Ca. Thus in both cases r(C) + s(Q) = r(Ca) + s(Ca) (mod 2).

We show that B(h) = B(h,). Indeed the transformation hf~! maps a neighbour-
hood of the point a on the curve C into two points of the circle [12 (see Theorem
12), and the transformation hafa_l transforms the part of Ca pear the point a into
the circle #, with degree 0. It follows from this that 8(C) = 8(C,). It is evident
that the curves Cand C_ are homologous.

As a result of a finite number of such reconstructions, we obtain from C a
curve O(C) without double points and fulfilling the conditions

0(C) ~ C, S(O(C)) = B(C). ) )
We show now that if the curve C is without double points and is nullhomolog-

ous on M2, then

8(Cy=0. (5)
Let C = AG; then C is a smooth surface bounded by the curve C. It is easy

to define on G a smooth function ¥, positive and less than [ in G and zero on C,
whose derivative does not vanish on C. In the strip E™+2 o I, where I is the in-

terval 0 <t < I, we consider the surface p? given by the equation

t=+vVx(x), x € G,

It is easy to see that P2 has the curve C x 0 as its boundary and is orthogonal
to the boundary set E*2 5 0 of the suip E"*2 x I, Since the surface P? is homeo-
morphic to the orientable surface G we may regard it as oriented. Since the vec-
tors of the system U(x) are orthogonal to the surface G at the point x, the vectors
of the system U(x) x t are orthogonal to the surface at the point xx ¢, We adjoin
to the system U(x) x ¢ a unit vector u, 1% t) x ¢t so that the system E(x, )%t
obtained provides an orthonormal frame for the oriented surface P2 in the oriented
strip E™Z x I. The vector u, (% 0) so obtained is orthogonal to the curve Cand
touches the.surface M2 at the point x, Thus by adjoining the vector 1, (% 0)to

the system U(x) we obtain a frame V(x) for the curve C such that the framed
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curve (C, V) is nullhomologous. Further by adjoining to the system V(x)a vector
u, (%), tangent to the curve C at the point x, we obtain a system {(x) on the ba-
sis of which we may calculate the residue class 3(C). By comparing the construc-
tion of the residue class 8(C), given here, with the construction of the residue
class 8(C, V) (see Theorem 20)' we see that
80Oy =8(C, V).

Since the framed manifold (C, V) is nullhomologous, 8(C) = 8(C, V) = 0 (see The-
orem 20). Thus relation (5) is proved.

Let C; and C, be two arbitrary curves on M2 admitting addition. We have 1)

S(C1 + Cy) = s(CI) + s(C2)+ J'(CI, C2) (mod 2),
r(CI + C2) = T(CI) + r(C2),

,B(CI + C2) = '8(61) + B(CZ)'
Hence it follows that
8(C, + Cy)=8(Cp+3(Cy + J(Cy, Cy) (6)
If in particular Cl ~ C,, then I(Cl, C2) = 0 and from relations (6), (5) we obtain
8(C)) +8(C2) = 8(C1 +Cy)= B(O(CI + Cz)) =0.
It is thus proved that 6(C) is a homology invariant. From this and from relation

(6) applied to arbitrary curves C; and C, admitting addition the validity of formu-
Ia (3) follows.

Thus Theorem 22 is proved.

Theorem 23. Let (M2, U) be an orthonormally framed submanifold of Euclid-
ean space E"*? and

AI’“.’AP’ BI’.“’Bp N
an arbitrary canonical basis of the surface M2, It turns out that the residue class
P
8=8(M, U)= :1 8(4;)5(B)) (8)
i=
does not depend on the special choice of cononical basis (7) and is an invariant
of the framed manifold M2, Uy,
Proof. We consider an arbitrary canonical basis
I ! 14 ]
A]; "'9Ap’ B],""BP 6]
of the surface M? and show that
p P
% 8(4,)8(B)=2% 5(4/Y5(B)). (10)
i=1 = B g

A direct proof of equation (10) for arbitrary canonical bases (7) and (9) pre-

sents considerable computational difficulties, so we will consider 3 special types

1) Translator’s note: The author permits himself to write ‘8(C)" for ‘BGRY in view
of what has already been proved.
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of transformation of canonical bases and show, fairly easily, that for each separate
type of transformation formula (10) is valid. In conclusion it will be proved that
any transformation from one arbitrary canonical basis (7) to another (9) may be ef-
fected by a sequence of applications of the special transformations. Thus the in-
variance of & will be completely demonstrated.
Transformation 1. Let j be an integer not exceeding p. We put

A}.’: B]., BI.'= A,.; Ai’= A, Bi'= By, i# ] (11)
It is obvious that the basis Ai’, eee, Al;’ B;, oo, B;: defined by these relations
is again canonical and that relation (19) bolds in this case.

Transformation 2. We put

14
Ai'=k£—]a’ikAk9 i=1I -, p, (12)

P
B;:kgl b]kBk’ j= 1, s P (13)

where a;, and bjk are residue classes mod 2. For the basis (12) —(13) to be can-
onical it is necessary that the matrix a = || a;; | be non-singular, that is, have de-
terminant 1, and that the matrix b= || bii“ should be connected to the matrix a by

the relation

(14)

! [
that is, denoting the unit matrix by e and the transpose of b by b, ab = e or

ij?

%“ikbjk =3

a1 = b’', whence b'a= e. The last relation gives

p
= ayby, = Oy (15)

1

Thus P P
2048 (B)) = iza(j:zl ai’.A]-> 3(131 bikBk) _

4 P
=i,§k=1 aiibikS(A,.) 3(By) =j,%=1 BikS(AI.( 8(By) =]EI 8(AI.) 5(37)
(see (3)) and relation (10) holds for transformation 2. We remark that transformation
2 is uniquely determined by the matrix a giving the equations (12). The equations
(13) are, in view of formula (14), uniquely determined by the equations (12). We
will say that the equations (12) and (13) are compatible if relation (14) holds.

Transformation 3. We put

1 .
Ai=Ai+ %cikBk’ i=1,+--,p, (16)
_ B!- B, i1, e, pe a7
In order that ](Ail’ Ai') =0; i j=1,--+,p, it is necessary and sufficient that
cij = Cji» (18)

In fact,
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/(A-', A-’)= I, zc‘kBk) + f(zcikBk’ A].) =

—zck k+zclk8k] ]L+ Ci]-.

If the relation (18) is fulfilled then the basis (16)—(17) is canonical. We prove that

for transformation 3 the relation (10) holds. We have
:23(/4;)5(8;) = iza(Ai + 2y, B8 (B) -
= ?;(5(/19 + E%B(Bk) + %cik](Ai, B)8(B;) =

= 125(Ai)8(8i) +5,,_ ¢; ;0 (B,)8(B) +§kcik5ik5(3i).
Further
f’kcika(Bi)B(Bk) = izciiB(Bi)a(Bi) = ‘?“‘ciia(Bi)
(since the calculations are taken mod 2) and
iicikaika(gi) = 2¢;;8(B)).
Thus relation (10) is fulfilled.

We consider now an arbitrary transformation from the canonical basis (7) to an

atbitrary canonical basis (9). We have
A;:]zri’-A]. + %sikBk‘ (19)

The rank of the rectangular matrix of p rows and 2p columns defined by this trans-
formation is equal to p, that is, one of its p-rowed minors is non-zero. By apply-
ing to the basis (7) sufficiently often a transformation of type 1 we may arrive at
a new basis, which we again denote by A4, -+, Ap, B, ..+, B, such that in
formula (19) the minor l'iil is non-zero, Applying to the basis 4,,---, Ap’ Bpeees Bp
a transformation of type 2 with matrix Ha ” qlr i, we bring the transformation
(19) into the form (16). We introduce now a canomcal basis A . A;)', B;, .o, B

P
by applying transformation 3:

A"—A + 2 skBk’ B!'=B,.

The transition from this basis to the basxs (9) is given by the formulae
4/= 4],
B 1 _ g A " 2 ’ BII
i—i“l Tij )+ szk k* 20
The relation f(Ai', Bi’) = Sij gives E’Sjkaik = 5.» or s.:=05,.. Thus the transform-

2] 2] 17
ation (20) assumes the form

P
B/= B!+ X rl.4!,
]:] 7]
that is, it is a transformation of type 3 in which the sets of curves Ai and B, have

changed roles. Thus the transition from the basis (7) to the basis (9) has been ac-

complished by a sequence of applications of transformations 1-3.
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Theorem 23 is thereby proved.

Theotem 24, If two framed submanifolds (M2, Up) end (M%, U)) of the Euclid-
ean space E™? are homologous then we have

S(M2, Uy = 542, Uy) 21)
(see (8)). In this way we associate with each element w of the group II the resi-
due class 8(m)= 8(M2, U), where (M2, U) is a framed manifold in the cla.ss mo It
turns out that, for n> 2, 8 is an isomorphism of Hn on to the group of residue
classes mod2. From this assertion it follows that there exist exactly two homo-
topy classes of maps of the sphere "2 into the sphere S*, n> 2.

Proof. We first prove relation (21). Let (M‘g U) be a framed submanifold of
of the strip E™*2 x [ reahsmg the homology (M2, Uy~ (MI’ U;), as constructed
in Lemma 1 of $14. We set M X t= M3 N (En+2 « t) If the point (x, t) € M3 s
not a critical point of M3 then a neighbourhood of the point x in the set M2 isa
smooth surface, so that for non-critical values of ¢ the set M isa surface. If
(g, ty) is a critical point of the manifold M3, the set Mf is given, for small val-
ues of |- t0| near the point x,, by the equations

1(x1)2+02(x2)2+03(x3)2—t—to, xt == a2, (22)
(see §14 formula (3)). If the point (x, t) € M3 is not a critical point of M3 , then

the image under orthogonal projection of the frame U(x, t) on to the hyperplane
E"t2 x ¢ is a linearly independent system of vectors. We denote the system ob-
tained from it by orthogonalisation by V/(x)x t. For non-critical values of the pa-
rameter ¢ the system V, constitutes an orthonormal frame for the manifold M

When the parameter t iacreases continuously without passing through a cnncal
value the framed manifold (Mt’ V) undergoes continuous deformation and it follows
from general continuity considerations that the residue class S(M V,) does not
in this case change. Thus to prove (21) it is sufficient to show that the residue
class B(ME, V,) does not vary as t passes through the critical value ¢ = ¢,, We do
this, distinguishing two distinct cases.

Case 1. Let o! = 02 = 03, For definiteness we take ol=02=03=+1, Un-
der this hypothesis the manifold Mtz acquires after passing through a critical val-
ue a new component, consisting of a small sphere, while in the remaining compon-
ents it is deformed continuously togetl;er with its frame. Since the adjunction of a
sphere as a separate component does not affect the genus of the sutface the can-
onical basis may be taken as unchanged and so S(Mf, V,) does not vary.

Case 2. Let the numbers o7, o?, o3 be not all equal, For definiteness we take
ol =62 = 41, 03 = = 1. Under this hypothesis the surface M2 has for ¢ <¢, the
form near x, of a hyperboloid of two sheets and for ¢t > ¢, the form of a hyperbo-

loid of one sheet. This alteration is equivalent to gluing a tube to the surface M
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t < t,, are connected by the tube then the basis of the surface M does not change
on passing through t, and so 5(112, V,) remains invariant. If the tube is glued to
one componeant, then the basis of the surface must be supplemented by two curves.
We examine this in detail. Let Aj, - A , By, - B be a canonical basis of
112 t <ty. We will assume that the curves consutunng thlS basis are situated far
from the point %, so that the basis varies continuously as ¢ passes through the
critical value ¢, whence the residue classes 8(4, ;) and 8(3 ) i=1++-,p re-
main unchanged. As the curve 4 p+1 ©O0 M we take the circle cut out of the part
of Mz near to x, by the hyperplane %5 = ¢, where ¢ is a small positive number.
For t <t, it is evidently nullhomologous on 11 and since the frame on it varies
continuously as ¢t passes through the value to, it follows that 5(Ap+1) = 0, Now
let B ; bean arbitrary curve on Mt’ t> t,, having intersection index 1 with Ap+

such a curve evidently exrsts. We put
P
- R' . ' ’
Bp+1 = PP+1 +i§1](B" Bp+1)Ai +i§1](Ai, Bp+1)Bi‘

It is evident that the curves AI’ cee, AP+1’ BI ..+, B 4+ form a canonical basis
for the surface M , > t; and since 3(Ap+1) = 0, then S(A ])S(B 1) = 0. Thus
3(312 V) is preserved unchanged as the parameter ¢ passes rhrough the critical
value f,, so that 3(110, )= S (M2, V). Since by =V U, = V}, the relation (21)
holds.

From this assertion it follows that 8 is a map of the group Hz into the group
of residue classes mod 2. By virtue of the definition of addition in Hz it is plain
that 8 is a homomorphism,

We now show that 8 is a homomorphism on to the whole group of residue
classes mod 2. For this it is sufficient to show that there exists a framed mani-
fold (M2, U) such that 3(M2, U) = 1. Since evidently,

S(EM2, Upy=8(M2, 1), n22,

where E is the suspension operatiom, it is sufficient to consider the case n= 2.

Let E* be Euclidean vector space with orthonormal basis e;, €y, e3, €4 and
corresponding coordinates xl, :\f?, x3, x4 let E3 be the linear subspace defined

by the equation <t =

0, and let M2 be an ordinary metric torus lying in E3 and
having the axis ey as its axis of rotation. On the torus M? we introduce the usual
circular coordinates ¢, ¥/ and we determine the surface M2 by the equations

= (2 + cos @) cos Y,
22 = (2 + cos @) sin, (23)

%3 = sing.
We designate by A, the curve on M? given by the equation ¥ = 0 and by BI the

curve given by ¢ = 0. Obviously the system AI’ B, constitutes a canonical basis
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for M2, We denote by v,;(x) the unit vector in E3 normal to 12 at the point x =
(¢, ¥) and directed outwards from M2, and we denote by v,(x) the vector issuing

from x parallel to e,. We define the frame U(x) = {u; (=), 1no(x)} by the relations
uy(x) = vy(x) cos (p—1) — vo(x) sin (b—1),
uy(x) = vy{«) sin (d=1) + vy(x) cos @-),

(24)

and show that

(M2, Uy= L (25)
Let C be any simple closed curve on M2, We denote by vy(x) the unit tangent
vector to C at the point x = (¢, ) € C and by vy(x) the unit vector tangent to M2
at z and orthogonal to v,(x). We add to the relations (24) the relations
ug(x) = v3(x), ug(x) = vy(x). (26)
The relations (24) and (26) together give the transition from the system V(x) to the

system U(x). We denote the matrix of this transition by f(x), x € C. It is easy to
see that for C= A1 or Bl we have

B = L @7

Further for C = AI we have

x= (0, 0); vl(x) = e} cos + e3 sin ¢b; v2(x) = ey4;

v3(x) = ey; v4(x) =-—¢; sing + ez cos b,
so that the transition from the system €], €9, €3, €4 O the system V(x) is given
by an orthogonal matrix g(x) for which
By =1. : (28)
For C= B we have similarly

x= (0, ¥); v)(x)=e; cosyr + ey smtl; vy(x) = 45

v3(x) = — eg; vy(x) = —¢; sin Y+ ey cos U,
so that the transition from the system e}, e,, €3, €4 tO the system V(x) is given
by a matrix g(x) for which
Plg)= 1. 29)
In both cases C=4; and C= B, the transition from the system e}, ey, €3, €4 10
the system U(x) is given by a matrix h(x) = g(«) f(x), for which
At = Blg) + B =
(see (27)—(29) and §12 D). Thus in view of formulae (2) and (8) we have
84 =1 8(B)=1, 807, U)=1,
and relation (25) is proved.
We prove finally that & is an isomorphism. For this it is sufficient to show
that the group Hi has no more than two elements since it is mapped on to the whole
group of residue classes mod 2, It follows from Theorems 11 and 16 that for each

framed manifold (:‘112, U) in the Euclidean space E™2 we have
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(M2, Uy~ E"2 (N2, 1),
where (N2, V) is a framed manifold of 4-dimensional Euclidean space and Er—2
is the (n-2)-fold suspension operation. Thus it is sufficient to show that ﬂg has
no more than two elements, that is, that there exist no mote than two classes of
maps of $% into S2. In view of Lemma 2 of §13, the number of classes of maps of
5% into S2 does not exceed the number of classes of maps of S% into S3, but
this last is equal to two by virtue of Theorem 21.

Thus Theorem 24 is proved.
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INVESTIGATIONS IN THE HOMOTOPY THEORY
OF CONTINUOUS MAPPINGS

{Il. General theorems of extension and classification ™

M. M. POSTNIKOV

This paper is devoted to answering questions concerning the search for cri-
teria for two given continuous maps of an arbitrary cellular polyhedron into an ar-
bitrary arcwise connected topological space to be homotopic. The paper consists
of two paragraphs divided into sections. In Section 1 this question is reduced to
the analogous question for simplicial maps of semi-simplicial complexes. In Sec-
tion 2 the reduced question is completely solved.

The reduction described in Section 1 requires the preliminary computation of
the natural systems (or at least of some segment) of the spaces considered. Thus,
the results of this paper have essentially a conditional character. The extension
and classification theorems proved here can be applied to concrete spaces only in
so far as their natural systems are known.

A considerable amount of work has been devoted recently to computing natural
systems (mainly the first non-trivial factor). Combining the results of that work
with the results of the preseat paper leads to concrete extension and classification
theorems. The author does not know a single concrete extension and classification
theorem which it would be impossible to obtain in the way indicated, by an auto-
matic computation from the general theorems proved here.

In an appendix several purely algebraic propositions are proved with the help
of geometric considerations. It would be interesting to find algebraic proofs of them.

This paper is a direct continuation of the author’s work [1]. Because of this,
the numbering of sections and theorems of this paper continues the numbering of
sections and theorems of that work. In references to this work we indicate the sec-
tion (or proposition), and chapter (introduction, I and II). A short announcement of
this work was published in D. A.N, 8.S.S.R. [21.
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