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Abstract. In 1985, Janko and Tran Van Trung published an algo-

rithm for constructing symmetric designs with prescribed automorphisms.

This algorithm is based on the equations by Dembowski (1958) for tacti-
cal decompositions of point-block incidence matrices. In the sequel, the

algorithm has been generalized and improved in many articles.

In parallel, higher incidence matrices have been introduced by Wilson
in 1982. They have proven useful for obtaining several restrictions on the

existence of designs. For example, a short proof of the generalized Fisher’s

inequality makes use of these incidence matrices.
In this paper, we introduce a unified approach to tactical decomposi-

tions and incidence matrices. It works for both combinatorial and subspace

designs alike. As a result, we obtain a generalized Fisher’s inequality for
tactical decompositions of combinatorial and subspace designs. Moreover,

our approach is explored for the construction of combinatorial and subspace
designs of arbitrary strength.

1. Introduction

A combinatorial t-(v, k, λ) design (V,D) is a set V consisting of v points
together with a set D of k-subsets of V called blocks such that each t-subset of
V is contained in exactly λ blocks. In this paper we assume basic familiarity
with t-designs as given in [1] or [8]. The q-analogs of combinatorial designs
are called subspace designs. For an introduction to subspace designs and a
discussion of the mechanism of combinatorial q-analogs, the reader is referred
to [5].
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A fundamental result in design theory is Fisher’s inequality, stating that
#D ≥ #V for any non-empty design with t ≥ 2. An elegant proof was given
in [4] involving the point-block incidence matrix of the design. This approach
has been generalized in several directions: Based on tactical decompositions,
Block [3] and independently Kantor [13] proved a generalization of Fisher’s
inequality for the number of point and block orbits under a group action.
Ray-Chaudhuri and Wilson [21] used incidence matrices of s-subsets versus
blocks for s ≥ 1. Cameron [6] studied the same question for subspace designs.
As we will see, our article unifies all these generalizations of the method of
Bose.

The use of tactical decompositions in design theory has been initiated
by Dembowski [10], see also [11] and Beutelspacher [2, pp. 210–220]. Dem-
bowski’s main interest was to use tactical decompositions to study properties
of symmetric designs. From an algorithmic point of view, tactical decom-
positions were first used by Janko and Tran Van Trung [12] to construct
symmetric (78, 22, 6) designs. Their method was picked up and generalized in
numerous papers, see [7, 9, 17] to name just a few. In [19] the use of tactical
decompositions has been generalized to subspace designs.

The general approach outlined by Janko and Tran Van Trung is to first
enumerate all tactical decomposition matrices of designs with prescribed au-
tomorphisms up to permutations of rows and columns. For this, Dembowski
[10] has given powerful constraints for a matrix to be a tactical decompo-
sition of the point-block incidence matrix of a 2-design. In a second step,
all remaining tactical decomposition matrices are expanded – if possible – to
point-block incidence matrices of designs.

Compared with the well-known method of Kramer and Mesner [16] which
also restricts the search space to designs with prescribed automorphisms, the
method of Janko and Tran Van Trung has the advantage that it is not nec-
essary to compute all orbits of k-subsets of V and therefore allows the search
for 2-(v, k, λ) designs with larger k and smaller automorphism group. The
drawback however is that it does not reduce the search space if the prescribed
group of automorphisms is point-transitive, and that it seemed to be restricted
to 2-designs for a long time.

The majority of publications on the construction of designs with tactical
decompositions are based on the point-block incidence matrix and only involve
constraints derived from the property of a 2-design. The only exceptions we
are aware of are the articles [17, 18, 20], where constraints are given for the
tactical decomposition of the point-block incidence matrix of a t-design of
general strength t ≥ 2.

In this paper, we consider t-designs of any strength t and combine Wil-
son’s [24] equations for higher incidence matrices with tactical decomposi-
tions. General tactical decomposition matrices for the incidences of e-subsets
vs. blocks with e ∈ {0, . . . , t− 1} are introduced, and constraints are derived
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for any strength ≤ t. As a result we get a unification and generalization of all
above mentioned Fisher-like inequalities. Furthermore, we explore the capa-
bilities of combining higher tactical decomposition matrices with the method
of Janko and Tran van Trung for the construction of designs with t > 2. While
our approach is presented for classical block designs, it can also be adapted
to subspace designs in a straightforward way. The interplay to the equations
in [18] deserves further investigation.

2. Preliminaries

2.1. Combinatorial designs. It is well known that a t-(v, k, λ) design (V,D)
is also an s-(v, k, λs) design for 0 ≤ s ≤ t where

λs = λ

(
v−s
t−s

)(
k−s
t−s

) .
In particular, λ0 is the number of blocks of the design and λ1 is the number
of blocks each point is contained in, which is called the replication number.
It is also well known that for a t-(v, k, λ) design the number of blocks which
contain a given i-set of points and are disjoint to a given j-set of points is
equal to

λi,j = λ

(
v−i−j
k−j

)(
v−t
k−t

) ,

see e.g. [8, II.4.2, p. 80].

2.2. Higher incidence matrices. The v × λ0 point-block incidence matrix
N of a t-(v, k, λ) design (V,D) is defined by

NP,B =

{
1, if P ∈ B,

0, otherwise

for P ∈ V and B ∈ D. Bose [4] showed for the point-block incidence matrix
N of a 2-(v, k, λ) design the equation

(2.1) NN⊤ = λ1I + λ(J − I),

where I is the v × v identity matrix and J is the v × v all-ones matrix.

For a general t-(v, k, λ) design with t ≥ 2, the
(
v
e

)
× λ0 higher incidence

matrix N (e) for e ≤ k is defined by

N
(e)
E,B =

{
1, if E ⊂ B,

0, otherwise
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for E ∈
(
V
e

)
and B ∈ D. The

(
v
s

)
×

(
v
e

)
incidence matrix W (se) between

s-subsets and all e-subsets of V is defined by

W
(se)
S,E =

{
1, if S ⊂ E,

0, otherwise

for S ∈
(
V
s

)
and E ∈

(
V
e

)
. Wilson [24] showed for e+ f ≤ t the equation

(2.2) N (e) (N (f))⊤ =

min{e,f}∑
i=0

λe+f−i, i(W
(ie))⊤ W (if) .

Note that N (e)(N (f))⊤ contains in the row labeled by the e-subset E and
in the column labeled by the f -subset F the number of blocks of the design
which contain both E and F . It is clear that this number is λe+f−µ with
µ = #(E ∩ F ), i. e. (

N (e) (N (f))⊤
)
E,F

= λ#(E∪F ) .

Also in [24], Wilson proved among others the equation

(2.3) W (ie) N (e) =

(
k − i

e− i

)
N (i) for 0 ≤ i ≤ e ≤ k .

For e = 1 and i = 0 equation (2.3) simply states that each block of the design
contains k points.

2.3. Tactical decomposition matrices. Dembowski [10, 11] studied tacti-
cal decompositions of incidence structures from group actions, see also Beu-
telspacher [2, pp. 210–220].

Let (V,D) be a 2-(v, k, λ) design invariant under some group G. The
action of G partitions V into orbits P1, . . . ,Pm and D into orbits B1, . . . ,Bn.
Let N be the point-block incidence matrix of (V,D) and for i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n} let Ni,j be the submatrix of N whose rows are assigned to
the elements Pi and whose columns to the elements of Bj . Then Ni,j has a
constant number of ones in each row and a constant number of ones in each
column. Such a decomposition of N into submatrices Ni,j is called tactical.

If we replace for all i, j the submatrix Ni,j by the number of ones in each
row we get an (m× n)-matrix ρ, and if we replace the submatrix Ni,j by the
number of ones in each column we get an (m × n)-matrix κ. The matrices
ρ and κ are both called tactical decomposition matrix. In [10] the following
properties of ρ and κ and the matrices P = diag(#Pi) and B = diag(#Bi)
are shown:
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P · ρ = κ ·B(2.4)

ρ · (1, . . . , 1)⊤ = (λ1, . . . , λ1)
⊤(2.5)

(1, . . . , 1) · κ = (k, . . . , k)(2.6)

ρ · κ = (λ1 − λ) · I + λ · P · J(2.7)

Janko and Tran Van Trung [12] and many follow-up constructions are us-
ing these four equations to build up all non-isomorphic tactical decomposition
matrices ρ (and κ), usually row-by-row. In the next section we adapt Wilson’s
equations for higher incidence matrices for tactical decomposition matrices.

3. Higher tactical decomposition matrices

3.1. The tactical matrices R and K. We fix a finite set V of size v. For
x ∈ {0, . . . , v}, let Px be a partition of the set

(
V
x

)
. The part of Px containing

someX ∈
(
V
x

)
will be denoted by [X]. We call (P0, . . . ,Pv) a tactical sequence

of partitions on V if for all x, y ∈ {0, . . . , v} with x ≤ y and for all [X],X ∈ Px

and [Y ],Y ∈ Py, the numbers

R
(xy)
[X],Y = #{Y ∈ Y | X ⊆ Y } and K

(xy)
X ,[Y ] = #{X ∈ X | X ⊆ Y }

are well-defined, i. e. they do not depend on the choice of the representative
X of [X] nor of the representative Y of [Y ]. In this case, the above defined
numbers yield matrices R(xy),K(xy) ∈ ZPx×Py .1 A common source of tactical
sequences of partitions are permutation groups G ≤ SV , where for all x ∈
{0, . . . , v} the partition Px is the set of orbits of the induced action of G on(
V
x

)
. The trivial group G = {idV } leads to the extreme case that all Px are

discrete partitions, i. e. Px = {{X} | X ∈
(
V
x

)
}. We will refer to this situation

as the “case #G = 1”, where for all x ≤ y the matrix R(xy) = K(xy) equals
Wilson’s higher incidence matrix W (xy).

In the following, we fix a tactical sequence (P0, . . . ,Pv) of partitions on
V . The matrices R(xx) and K(xx) are #Px × #Px identity matrices. The
matrices R(0x) and K(0x) are of size 1 ×#Px, where all entries of K(0x) are

1, and R(0x) contains the part sizes, i. e. R
(0x)
{∅},X = #X .

Example 3.1. We consider v = 6, V = {1, 2, 3, 4, 5, 6} and the group
G = ⟨(1 2 3) (4 5 6)⟩ of order 3 acting on V . Abbreviating sets {a, b} as ab

1Formally, it would be more accurate to write R(x,y) and K(x,y) instead of R(xy)

and K(xy). For simplicity, we omit the separating comma whenever there is no danger of
confusion.
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etc., the orbits of G yield the partitions

P0 = {∅},
P1 =

{
{1, 2, 3}, {4, 5, 6}

}
,

P2 =
{
{12, 13, 23}, {14, 25, 36}, {15, 26, 34}, {16, 24, 35}, {45, 46, 56}

}
,

P3 =
{
{123}, {456}, {124, 235, 136}, {125, 236, 134}, {126, 234, 135},
{145, 256, 346}, {146, 245, 356}, {156, 246, 345}

}
.

The resulting matrices R(xy) and K(xy) with 0 ≤ x ≤ y ≤ 3 are2

R(00) = (1) K(00) = (1)

R(01) =
(
3 3

)
K(01) =

(
1 1

)
R(11) =

(
1 0
0 1

)
K(11) =

(
1 0
0 1

)
R(02) =

(
3 3 3 3 3

)
K(02) =

(
1 1 1 1 1

)
R(12) =

(
2 1 1 1 0
0 1 1 1 2

)
K(12) =

(
2 1 1 1 0
0 1 1 1 2

)
R(22) = I5 K(22) = I5

R(03) =
(
1 1 3 3 3 3 3 3

)
K(03) =

(
1 1 1 1 1 1 1 1

)
R(13) =

(
1 0 2 2 2 1 1 1
0 1 1 1 1 2 2 2

)
K(13) =

(
3 0 2 2 2 1 1 1
0 3 1 1 1 2 2 2

)

R(23) =


1 0 1 1 1 0 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 1
0 1 0 0 0 1 1 1

 K(23) =


3 0 1 1 1 0 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 1
0 3 0 0 0 1 1 1


R(33) = I8 K(33) = I8

As suggested by the example, the following lemma shows that matrices
R(xy) and K(xy) determine each other. For x ∈ {0, . . . , v} we define D(x) ∈
ZPx×Px as the invertible diagonal matrix with entries D

(x)
X ,X = #X .

Lemma 3.2. Let x, y ∈ {0, . . . , v} be integers with x ≤ y. Then for all
X ∈ Px and all Y ∈ Py we have

#X ·R(xy)
X ,Y = #Y ·K(xy)

X ,Y .

This can be rewritten as the equality of matrix products

D(x) R(xy) = K(xy) D(y).

2For the assignment of the elements of the partitions Px and Py to the rows and

columns, the partitions are ordered as listed above.
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Proof. Count the set {(X,Y ) ∈ X × Y | X ⊆ Y } in two ways.

Lemma 3.3. Let x, y, z ∈ {0, . . . , v} be integers with x ≤ y ≤ z. Then

R(xy) R(yz) =

(
z − x

y − x

)
R(xz) and K(xy) K(yz) =

(
z − x

y − x

)
K(xz).

Proof. We fix [X] = X ∈ Px and Z ∈ Pz. By counting the set

A =
{
(Y,Z) ∈

(
V
y

)
×Z | X ⊆ Y ⊆ Z

}
in two ways, we get that(

R(xy) R(yz)
)
X ,Z =

∑
Y∈Py

R
(xy)
X ,Y R

(yz)
Y,Z = #A = R

(xz)
X ,Z

(
z − x

y − x

)
.

The equality for the K-matrices is shown analogously.

Lemma 3.4. Let x, y ∈ {0, . . . , v} be integers with x ≤ y. Then

R(xy) =
1

(y − x)!
R(x,x+1) R(x+1,x+2) · . . . · R(y−1,y) and

K(xy) =
1

(y − x)!
K(x,x+1) K(x+1,x+2) · . . . · K(y−1,y).

Proof. The statement is true for x = y. For x < y, Lemma 3.3 gives
R(xy) = 1

y−x R(x,x+1)R(x+1,y), which inductively equals

1

y − x
R(x,x+1) · 1

(y − x− 1)!
R(x+1,x+2) · . . . ·R(y−1,y)

=
1

(y − x)!
R(x,x+1) · . . . ·R(y−1,y).

The statement for K(xy) is shown in the same way.

Remark 3.5. Lemma 3.4 shows that for any non-negative integer s, the
chain of matrices R(01), R(12), . . . , R(s−1,s) determines all the matrices R(xy)

with integers x, y and 0 ≤ x ≤ y ≤ s. Moreover, as the diagonal of the
diagonal matrix D(x) equals the row vector R(0x), by Lemma 3.2 also the
matrices K(xy) with 0 ≤ x ≤ y ≤ s are determined.

Lemma 3.6. Let x, y, z ∈ {0, . . . , v}.
(a) For y ≤ min(x, z), the entries of the matrix (K(yx))⊤ R(yz) ∈ ZPx×Pz

are given by(
(K(yx))⊤ R(yz)

)
[X],Z =

∑
Z∈Z

(
#(X ∩ Z)

y

)
.



8 M. KIERMAIER AND A. WASSERMANN

(b) For max(x, z) ≤ y, the entries of the matrix R(xy) (K(zy))⊤ are given
by (

R(xy) (K(zy))⊤
)
[X],Z =

∑
Z∈Z

(
v −#(X ∪ Z)

v − y

)
.

Proof. For part (a), we fix two parts [X] = X ∈ Px and Z ∈ Pz. By
counting the set

A =
{
(Y,Z) ∈

(
V
y

)
×Z | Y ⊆ X ∩ Z

}
in two ways, we get that(

(K(yx))⊤ R(yz)
)
X ,Z =

∑
Y∈Py

K
(yx)
Y,X R

(yz)
Y,Z

= #A =
∑
Z∈Z

#{Y ∈
(
V
y

)
| Y ⊆ X ∩ Z} =

∑
Z∈Z

(
#(X ∩ Z)

y

)
.

Part (b) is shown similarly by counting {(Y,Z) ∈
(
V
y

)
×Z | X ∪ Z ⊆ Y }

in two ways. Alternatively, it can be derived from part (a) by dualization, or
it will follow as a special case of the later Lemma 3.11.

Lemma 3.7. Let x, y ∈ {0, . . . , v} be integers with x ≤ y. Then the matrix
K(xy) has constant column sum

(
y
x

)
, and the matrix R(xy) has constant row

sum
(
v−x
v−y

)
.

Proof. Lemma 3.3 with x← 0, y ← x and z ← y gives

(1 . . . 1) ·K(xy) =

(
x

y

)
· (1 . . . 1).

Lemma 3.6(b) with z = 0 gives

R(xz) · (1 . . . 1)⊤ =

(
v − x

v − z

)
· (1 . . . 1)⊤.

3.2. The tactical decomposition matrices ρ(x) and κ(x). Now we fix a non-
empty t-(v, k, λ) design (V,D) with t ≤ k ≤ v − t, such that the block set is
the union of parts in Pk, i. e. D =

⋃
B with B ⊆ Pk. Its numbers λi,j and

λi = λi,0 are defined as in Section 2. Since D is non-empty, λi,j > 0 for all
admissible i, j, i. e. for all non-negative integers i, j with i+ j ≤ t.

For x ∈ {0, . . . , k} we define the tactical decomposition matrices ρ(x), κ(x) ∈
ZPx×B via

ρ
(x)
[X],B = #{B ∈ B | X ⊆ B} and κ

(x)
X ,[B] = #{X ∈ X | X ⊆ B}.

By the properties of the fixed tactical sequence (P0, . . . ,Pv) of partitions on
V , this definition does not depend on the choice of the representatives. Note
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that ρ(x) is the restriction of R(xk) to the columns whose labels are contained
in B. The other way round, R(xy) is the matrix ρ(x) of the complete design(
V
y

)
. A similar note holds for the κ- and K-matrices. In particular, ρ(0) and

κ(0) are of size 1×#B, where all entries of κ(0) are 1, and ρ(0) contains the
sizes of the block parts.

The next lemma says that the matrices ρ(x) and κ(x) determine each other.
It is a direct consequence of Lemma 3.2. We define δ ∈ ZB×B as the diagonal
matrix with the entries δB,B = #B.

Lemma 3.8. Let x ∈ {0, . . . , k} Then for all X ∈ Px and all B ∈ B we
have

#X · ρ(x)X ,B = #B · κ(x)
X ,B.

This can be rewritten as the equality of matrix products

D(x) ρ(x) = κ(x) δ.

In the special case x = 1, Lemma 3.8 recovers Equation (2.4).

Example 3.9. We continue with Example 3.1 and consider G-invariant
2-(6, 3, 2) designs. Its λij-values are displayed in the following triangle.

λ0,0 = 10
λ1,0 = 5 λ0,1 = 5

λ2,0 = 2 λ1,1 = 3 λ0,2 = 2

There are several ways of forming unions of the orbits in P3 to get a G-
invariant 2-(6, 3, 2) design (V,D). We consider the one given by the 1st, 3rd,
6th and 8th orbit (in the ordering of Example 3.1), that is D =

⋃
B with

B =
{
{123}, {124, 235, 136}, {145, 256, 346}, {156, 246, 345}

}
.

The restriction of the matrices R(x3) and K(x3) to the corresponding columns
yields the following tactical decomposition matrices ρ(x) and κ(x) of (V,D).

ρ(0) =
(
1 3 3 3

)
κ(0) =

(
1 1 1 1

)
ρ(1) =

(
1 2 1 1
0 1 2 2

)
κ(1) =

(
3 2 1 1
0 1 2 2

)

ρ(2) =


1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 1 1

 κ(2) =


3 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 1 1


The following lemma shows that the matrices ρ(x) and κ(x) with lower

values of x are determined by the higher ones.
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Lemma 3.10. Let x, y be non-negative integers with x ≤ y ≤ k. Then

R(xy) ρ(y) =

(
k − x

y − x

)
ρ(x) and K(xy) κ(y) =

(
k − x

y − x

)
κ(x).

Proof. By Lemma 3.3, R(xy) R(yk) =
(
k−x
y−x

)
R(xk) and K(xy) K(yk) =(

k−x
y−x

)
K(xk). The restriction of these matrices to the columns belonging to

the elements of B gives the statement of the lemma.

As in Lemma 3.7, for x = 0 the K-equation in Lemma 3.10 states that
the sum of each column of κ(y) equals

(
k
y

)
. In the special case x = 0 and

y = 1, we get back Equation (2.6).

Lemma 3.11. Let e, f be non-negative integers with e+ f ≤ t. Then the
entries of the matrix ρ(e) · (κ(f))⊤ ∈ ZPe×Pf are given by(

ρ(e) (κ(f))⊤
)
[E],F =

∑
F∈F

λ#(E∪F ).

In particular, the matrix ρ(e) (κ(f))⊤ only depends on the tactical sequence
(P0, . . . ,Pv) of partitions and the parameters of the design, but not on the
specific choice of the blocks.

Proof. We fix two parts [E] = E ∈ Pe and F ∈ Pf . Counting the set

A = {(B,F ) ∈ D × F | E ∪ F ⊆ B}

in two ways, we see that(
ρ(e) (κ(f))⊤

)
E,F =

∑
B∈B

ρ
(e)
E,B κ

(f)
F,B

= #A =
∑
F∈F

#{B ∈ D | E ∪ F ⊆ B} =
∑
F∈F

λ#(E∪F ).

For the complete design D =
(
V
k

)
, Lemma 3.11 reduces to Lemma 3.6(b).

In the special case f = 0, Lemma 3.11 states that the sum of each row of
ρ(e) equals λe. In the special case e = f = 0, Lemma 3.11 yields the formula∑

B∈B #B = λ0, which says that the sizes of the block parts add up to the size
of the design. In the special case e = 1 and f = 0, we recover Equation (2.5).

The following lemma is contained in [24, proof of Prop. 1], essentially.

Lemma 3.12. Let x, y be non-negative integers with x+ y ≤ t. Then

λx =

y∑
j=0

λx+j, y−j

(
y

j

)
=

y∑
j=0

λx+y−j, j

(
y

j

)
.
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Proof. By x+ y ≤ t there exist disjoint subsets X and Y of V of size x
and y. Double counting the set {(B, J) ∈ D × 2Y | X ⊆ B and B ∩ Y = J}
gives the stated formula.

Theorem 3.13. Let V be a finite set of size v and let (P0, . . . ,Pv) be
a tactical sequence of partitions on V . Let (V,D) be a non-empty t-(v, k, λ)
design with t ≤ k ≤ v − t, such that the block set has the form D =

⋃
B with

B ⊆ Pk. Let e, f be non-negative integers with e+ f ≤ t.
Then

ρ(e) (κ(f))⊤ =

min(e,f)∑
j=0

λe+f−j, j (K
(je))⊤R(jf).

Proof. We fix two parts [E] = E ∈ Pe and F ∈ Pf . By Lemma 3.11(
ρ(e) (κ(f))⊤

)
E,F =

∑
F∈F

λ#(E∪F ).

By Lemma 3.12 (with x = #(E ∪ F ) and y = #(E ∩ F ); note that x + y =
e+ f ≤ t) and Lemma 3.6(a), this expression equals

∑
F∈F

min(e,f)∑
j=0

λe+f−j, j

(
#(E ∩ F )

j

)
=

min(e,f)∑
j=0

λe+f−j, j

(
(K(je))⊤R(jf)

)
E,F .

In the special case e = f = 1, Theorem 3.13 gives Equation (2.7).

3.3. The averaged matrices W (xy) and ω(x). In the case #G = 1, all parts
are of size 1 and hence R(xy) = K(xy) for all x ≤ y and ρ(x) = κ(x) for all x.
To mimic that situation, we introduce “averaged” versions of R(xy) and K(xy)

and of ρ(x) and κ(y), based on the transformation formulas in Lemma 3.2 and
Lemma 3.8.

As all diagonal matrices D(x) and δ have positive diagonal entries, it

makes sense to write
√
D(x) and

√
δ, where the diagonal entries are replaced

by their (positive) square roots. Clearly, all the matrices D(x),
√
D(x), δ and√

δ are invertible. Now for integers x, y with 0 ≤ x ≤ y ≤ v we define

W (xy) =
√
D(x) R(xy)

√
D(y)

−1

=
√

D(x)
−1

K(xy)
√
D(y)

and for an integer x with 0 ≤ x ≤ k we define

ω(x) =
√
D(x) ρ(x)

√
δ
−1

=
√
D(x)

−1

κ(x)
√
δ

Again, ω(x) is the restriction of the matrix W (xk) to the columns whose labels
are contained in B. In the case #G = 1, W (xy) and ω(x) equal Wilson’s W -
and N -matrices in [24].
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Example 3.14. In Example 3.9, we have

ω(0) =
(
1
√
3
√
3
√
3
)
,

ω(1) =

(√
3 2 1 1
0 1 2 2

)
,

ω(2) =


√
3 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 1 1

 .

Our above results can be transformed into formulas for the averaged ma-
trices.

Lemma 3.15. Let x, y, z ∈ {0, . . . , v} be integers with x ≤ y ≤ z. Then

W (xy) W (yz) =

(
z − x

y − x

)
W (xz).

Proof. By Lemma 3.3 we have R(xy) R(yz) =
(
z−x
y−x

)
R(xz). Therefore

√
D(x) R(xy)

√
D(y)

−1

·
√
D(y) R(yz)

√
D(z)

−1

=
(
z−x
y−x

)√
D(x) R(xz)

√
D(z)

−1

,

which gives the claimed statement.

Lemma 3.16. Let x, y ∈ {0, . . . , k} with x ≤ y. Then

W (xy) ω(y) =

(
k − x

y − x

)
ω(x).

Proof. Lemma 3.15 gives W (xy) W (yk) =
(
k−x
y−x

)
W (xk). Now we restrict

this equation to the columns belonging to the elements in B.

Theorem 3.17. Let V be a finite set of size v and let (P0, . . . ,Pv) be
a tactical sequence of partitions on V . Let (V,D) be a non-empty t-(v, k, λ)
design with t ≤ k ≤ v − t, such that the block set has the form D =

⋃
B with

B ⊆ Pk. Let e, f be non-negative integers with e+ f ≤ t.
Then

ω(e) (ω(f))⊤ =

min(e,f)∑
j=0

λe+f−j, j (W
(je))⊤ W (jf).
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Proof. Left-multiplication by
√
D(e) and right-multiplication by

√
D(f)

−1

of the formula in Theorem 3.13 lead to√
D(e) ρ(e)

√
δ
−1
·
√
δ (ρ(f))⊤

√
D(f)

−1

=

min(e,f)∑
j=0

λe+f−j, j ·
√

D(e) (K(je))⊤
√

D(j)
−1

·
√
D(j) R(jf)

√
D(f)

−1

,

which gives the claimed statement.

Theorem 3.17 is the literal generalization of [24, Prop. 1]. It allows us to
further follow this famous paper investigating the definiteness of the symmet-
ric matrix ω(x) (ω(x))⊤.

Lemma 3.18. Let x be an integer with 0 ≤ 2x ≤ t. Then the matrix
ω(x) (ω(x))⊤ is positive definite.

Proof. Theorem 3.17 with x = e = f states that

ω(x) (ω(x))⊤ =

x∑
j=0

λ2x−j, j (W
(jx))⊤ W (jx).

All the matrices λ2x−j,j (W
(jx))⊤ W (jx) are positive semidefinite; note that

λ2x−j, j > 0 because of (2x − j) + j = 2x ≤ t. For j = x, the matrix

λ2x−j,j (W
(jx))⊤ W (jx) = λx,xI

⊤
x Ix is positive definite. Now being the sum of

a positive definite matrix and positive semidefinite matrices, ω(x) (ω(x))⊤ is
positive definite.

We remark that the condition 2x ≤ t in Lemma 3.18 cannot be dropped.
In Example 3.14, the matrix ω(2) is of size 5× 4, such that the (5× 5)-matrix
ω(2) (ω(2))⊤ cannot be regular.

Theorem 3.19. Let V be a finite set of size v and let (P0, . . . ,Pv) be
a tactical sequence of partitions on V . Let (V,D) be a non-empty t-(v, k, λ)
design with t ≤ k ≤ v − t, such that the block set has the form D =

⋃
B with

B ⊆ Pk.
Then #B ≥ #Px for all x ∈ {0, . . . , ⌊t/2⌋}.

Proof. Let x ∈ {0, . . . , ⌊t/2⌋}. By Lemma 3.18, the (#Px × #Px)-
matrix ω(x) (ω(x))⊤ is positive definite and hence regular. Therefore the rank
of the (#Px ×#B)-matrix ω(x) is #Px. So #Px ≤ #B.

In the case #G = 1, Theorem 3.19 specializes to the generalized Fisher’s
inequality [21, Thm. 1], see also [24, Thm. 1], which again generalizes the
ordinary Fisher’s inequality (which is the case #G = 1 and t = 2). Moreover,
in the case t = 2 Theorem 3.19 specializes to Block’s theorem, see [3, Cor. 2.2]
and [13, Thm. 4.1].
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4. Generalization to subspace designs

The definition of a block design only involves terms within the subset
lattice of the set V of finite size v = #V . Replacing this subset lattice (and
the derived notions) by the subspace lattice of a Fq-vector space of finite
dimension v, we get a q-analog of this definition. The resulting object is
known as a t-(v, k, λ)q subspace design (V,D), which therefore is defined as a
set D of k-dimensional subspaces of V such that each t-dimensional subspace
T of V is contained in exactly λ elements of D. Up to a certain point, the
theory of subspace designs closely matches the theory of block designs, where
the latter may be understood as the limit case q = 1, see [5].

We decided to restrict the presentation of Section 3 to the classical setting
of block designs for better readability. But all the results and proofs are still
true for subspace designs, in their natural q-analog counterpart. This means
that we can replace the subset lattice by the subspace lattice, implying that
the cardinality is replaced by the dimension, binomial coefficients are replaced
by Gaussian binomial coefficients, the set union is replaced by the sum of
subspaces, the permutation group SV is replaced by the group PΓL(V ), etc.

It’s indicated to add a few words on the counterpart of the numbers λi,j .
There are two natural q-analogs, which coincide in the case of block designs.
For a t-(v, k, λ)q subspace design on a v-dimensional Fq-vector space V , we
fix non-negative integers i and j with i+ j ≤ t and an i-dimensional subspace
I of V .

In the first variant (which is the one discussed in [5]), a (v−j)-dimensional
subspace J with I ≤ J ≤ V is fixed, and it is shown that the number

λ
(1)
i,j = #{B ∈ D | I ≤ B ≤ J} =

[
v − i− j

k − i

]
q

/

[
v − t

k − t

]
q

· λ

does not depend on the choice of I and J . This first variant is the more natural

one in the sense that λ
(1)
i,j captures the λ-values of all the reduced, derived,

residual and dual designs of (V,D) including their iterations and combinations
[14].

For a direct counterpart of Lemma 3.12 we need the second variant [22,
15], though. Now a j-dimensional subspace J of V having trivial intersection
with I is fixed, and it is shown that the number

λ
(2)
i,j = #{B ∈ D | I ≤ B and J ∩B = {0}}

= qj(k−i)

[
v − i− j

k − i

]
q

/

[
v − t

k − t

]
q

· λ

= qj(k−i)λ
(1)
i,j
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does not depend on the choice of I and J . For the proof of Lemma 3.12 we
note that the counted set can be rewritten as

{B ∈ D | I ≤ B and J ∩B = {0}} = {B ∈ D | B ∩ (I + J) = I},

where the inclusion “⊇” is clear and the inclusion “⊆” follows from the di-
mension formula

dim(B ∩ (I + J))

= dim((B ∩ (I + J)) ∩ J) + dim((B ∩ (I + J)) + J)− dim(J)

≤ dim(B ∩ J) + dim(I + J)− dim(J) = 0 + (i+ j)− j = i.

In the case e = f = 1, the subspace design version of Theorem 3.13 is
contained in [19, Thm. 2]. In the case #G = 1, the subspace design version
of Theorem 3.19 is contained in [6, statement (3’)], see also [22, Thm. 2.3].

5. Algorithmic use

The practical use of higher tactical decomposition matrices for computer
construction has yet to be explored. We conclude this paper by applying
higher tactical decomposition matrices to the small design parameters 3-
(10, 4, 1), which have also been investigated in [17, Sec. 2]. The corresponding
λij-values are displayed in the following triangle.

λ0,0 = 30
λ1,0 = 12 λ0,1 = 18

λ2,0 = 4 λ1,1 = 8 λ0,2 = 10
λ3,0 = 1 λ2,1 = 3 λ1,2 = 5 λ0,3 = 5

We fix a group G of order 3 acting on the 10-element set V with exactly
one fixed point. Now we consider G-invariant 3-(10, 4, 1) designs with exactly
three fixed blocks, i. e. we fix (up to a permutation of the columns)

ρ(0) =
(
1 1 1 3 3 3 3 3 3 3 3 3

)
.

According to [17], up to isomorphism there are eight tactical decomposition
matrices ρ(1) fulfilling the equations (2.4)–(2.7), thereby corresponding to
designs with the reduced parameters 2-(10, 4, 4). The extended method of
[17] then shows that exactly one of these eight matrices leads to a G-invariant
3-(10, 4, 1) design.

As a proof of concept, we test if the restrictions given by Section 3 lead
to the same result. The choice of V = {0, . . . , 9} and

G = ⟨(1 2 3) (4 5 6) (7 8 9)⟩
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results in the partitions

P1 =
{
{0}, {1, 2, 3}, {4, 5, 6}, {7, 8, 9}

}
,

P2 =
{
{01, 02, 03}, {04, 05, 06}, {07, 08, 09}, {12, 13, 23}, {14, 25, 36},
{15, 26, 34}, {16, 24, 35}, {17, 28, 39}, {18, 29, 37}, {19, 27, 38},
{45, 46, 56}, {47, 58, 69}, {48, 59, 67}, {49, 57, 68}, {78, 79, 89}

}
and the R- and K-matrices3

R(01) =
(
1 3 3 3

)
,

K(01) =
(
1 1 1 1

)
,

R(02) =
(
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

)
,

K(02) =
(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

)
,

R(12) =


3 3 3 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 1 1 1 1 1 1 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0 2 1 1 1 0
0 0 1 0 0 0 0 1 1 1 0 1 1 1 2

 and

K(12) =


1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 1 1 1 1 1 1 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0 2 1 1 1 0
0 0 1 0 0 0 0 1 1 1 0 1 1 1 2

 .

First, we reproduced the following 8 representatives for ρ(1).

ρ
(1)
1 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 0 2 1 1 2 1 2 1 2 0
1 0 1 1 1 1 1 2 0 2 1 1
0 1 0 1 1 1 1 1 1 1 1 3



ρ
(1)
2 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 0 2 1 1 2 1 2 1 2 0
1 0 1 1 1 1 1 1 0 1 2 2
0 1 0 1 1 1 1 2 1 2 0 2



ρ
(1)
3 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 0 2 1 1 2 1 2 1 2 0
1 0 0 1 1 2 1 1 0 2 1 2
0 1 1 1 1 0 1 2 1 1 1 2



3Again, for the assignment to the columns and rows, the partitions Px are assumed
to be ordered as above.
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ρ
(1)
4 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 0 3 1 1 1 1 2 1 1 1
1 0 1 1 1 1 2 1 0 1 1 2
0 1 0 0 1 1 1 2 1 2 2 1



ρ
(1)
5 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 0 1 2 2 2 1 0 1 1 2
1 0 1 1 0 1 1 2 1 1 2 1
0 1 0 2 1 0 1 1 2 2 1 1



ρ
(1)
6 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 1 1 2 1 2 1 0 1 1 2
0 1 0 1 1 1 0 2 1 2 2 1
1 0 0 2 0 1 2 1 2 1 1 1



ρ
(1)
7 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 1 1 2 1 2 1 0 1 1 2
0 1 0 1 1 0 1 2 2 1 2 1
1 0 0 2 0 2 1 1 1 2 1 1



ρ
(1)
8 =


1 1 1 0 3 3 0 0 3 0 0 0
0 0 1 2 1 1 2 1 1 1 2 0
1 0 0 2 1 1 1 1 1 2 0 2
0 1 0 0 1 1 1 2 1 1 2 2


For each of these eight matrices ρ(1), we determine all possible matrices ρ(2)

as the solutions of the matrix equations

R(02) ρ(2) =

(
k

2

)
ρ(0),

R(12) ρ(2) =

(
k − 1

1

)
ρ(1),

ρ(2) (κ(0))⊤ = λ2 · (1, . . . , 1)⊤ and

ρ(2) (κ(1))⊤ =

1∑
j=0

λ3−j, j (K
(j2))⊤R(j1)

from Lemma 3.10 and Theorem 3.13 which give linear restrictions on the
entries of the matrix ρ(2). For the evaluation, we note that κ(0) = (1 1 1 1)
and that κ(1) is determined by Lemma 3.2 by the given ρ(1). The right hand
side of the last equation equals

4 4 4 1 1 1 1 1 1 1 1 1 1 1 1
6 3 3 9 6 6 6 6 6 6 3 3 3 3 3
3 6 3 3 6 6 6 3 3 3 9 6 6 6 3
3 3 6 3 3 3 3 6 6 6 3 6 6 6 9


⊤

.
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Solving this system of Diophantine linear equations with the second author’s
software solvediophant [23] shows that – just as in [17] – exactly one of the

eight matrices ρ(1) (namely ρ
(1)
8 ) can be extended to a higher decomposition

matrix ρ(2). One of the 47 040 solutions is

ρ(2) =



0 0 1 0 1 1 0 0 1 0 0 0
1 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0
0 0 0 2 0 0 0 1 1 0 0 0
0 0 0 1 1 0 1 0 0 1 0 0
0 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 1 2 0
1 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 0 2
0 1 0 0 0 0 0 1 0 0 1 1



.

What remains to do is the so-called indexing step, assigning to each col-
umn of ρ(2) a suitable element of P4. In this case, it is almost trivial to read
off the (unique) design belonging to ρ(2) based on the partitions P1 and P2.
We give two examples.

The fourth column belongs to a set B of blocks of size #B = ρ
(0)
4 = 3. The

fifth row of ρ(2) is assigned to the part {14, 25, 36} of P2. So by ρ
(2)
5,4 = 2, two

blocks in B contain {1, 4}, two blocks contain {2, 5} and two blocks contain
{3, 6}. The only possibility is B = {1245, 1346, 2356}.

The fifth column belongs to a set B of blocks of size #B = ρ
(0)
5 = 3. By

ρ
(1)
2,5 = 1, there is a unique block B ∈ B containing 1. By ρ

(1)
1,5 = 1, 0 ∈ B. By

ρ
(2)
6,5 = 1, there is a unique block B ∈ B containing {1, 5}. So 5 ∈ B. Similarly,

ρ
(2)
9,5 = 1 implies 8 ∈ B. Hence B = {0158} and therefore B is the G-orbit

{0158, 0269, 0347}.
In this way, we end up with the design given by the partition

B =
{
{0456}, {0789}, {0123},
{1245, 1346, 2356}, {0158, 0269, 0347}, {0167, 0248, 0359},
{1268, 1357, 2349}, {1478, 2589, 3679}, {0149, 0257, 0368},
{1569, 2467, 3458}, {1279, 2378, 1389}, {4579, 5678, 4689}

}
.



HIGHER INCIDENCE MATRICES AND TACTICAL DECOMPOSITION MATRICES19

We would like to add a few more remarks. Note that in general, Lemma 3.2
will give additional divisibility conditions on the entries of a matrix ρ(e) de-
pending on the orbit lengths. However, in this specific example, these are
trivial.

The approach to determine the whole matrix ρ(2) by solving a single
system of equations is not yet optimal, since even in this small example there
are already 47 040 solutions for ρ(2). A reduction of isomorphic copies up to
permutation of rows and columns still has to be implemented.

It is conceivable that an interleaved row-by-row enumeration strategy of
all tactical decomposition matrices ρ(e), 0 ≤ e < t will allow to counter
the combinatorial explosion of solutions by an intermediate rejection of iso-
morphic partial tactical decomposition matrices. In particular, a row-by-row
enumeration strategy will be mandatory if the prescribed automorphisms are
point-transitive.

In the ordinary approach only using the decomposition matrices ρ(1) and
κ(1), the indexing step is usually a non-trivial computational problem. In our
above example the matrix ρ(2) was quite helpful to this end. Therefore the
higher tactical decomposition matrices might also prove useful as an interme-
diate computational goal for the indexing step.

Finally, we note that for the construction of combinatorial designs or sub-
space designs with prescribed automorphisms it is irrelevant if the right hand
sides of equations involving ρ(e) (κ(f))⊤ are determined from Theorem 3.13 or
from Lemma 3.11. But unlike Lemma 3.11, the variant in Theorem 3.13 does
not require the exact knowledge of the partitions Pi. This might be useful if
the tactical decomposition does not stem from a prescribed automorphisms,
but is determined by prescribing the sizes of the partition of the blocks of
the design (i. e. ρ(0)) together with a chain of tactical decomposition matrices
R(01), R(12), . . . , R(t−1,t) (see Remark 3.5) such that each matrix R(i,i+1) has
constant row sum equal to v − i (as required by Lemma 3.7).
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