
 

                 
 
 

 

 
 

 
 

  

 
  

 

 
 
 

  
 
 

 
 
 

 

 

 

  
  

 
 

                                            
  

 

 

   
 

  

 

 
 

 
 

   

 
 

 
 

3.4 AUTOMATED TWO-HOUR THUNDERSTORM GUIDANCE FORECASTS 

Jerome P. Charba* 
Feng Liang 

Meteorological Development Laboratory 
Office of Science and Technology 

National Weather Service 
Silver Spring, Maryland 

1. INTRODUCTION 

Thunderstorms account for a large percentage 
of the air traffic delays, especially during the warm 
season.  The National Weather Service (NWS) 
provides air traffic managers with various auto-
mated and manual convective forecast products for 
tactical and strategical aviation operations. Still, 
great benefits to the air transportation industry 
could be reaped from improvements in the accu-
racy and resolution in thunderstorm forecasts.   

The Meteorological Development Laboratory 
(MDL) [formerly Techniques Development Labora-
tory (TDL)] of the NWS has provided automated 
statistically-based thunderstorm guidance fore-
casts since the early 1970s (Alaka et al. 1973). 
Over the years, most of this guidance has been 
based on the MOS approach (Glahn and Lowry 
1972).  One exception was a very short range (2-6 
h) thunderstorm product (Charba 1977), which 
made heavy use of recent observational data, in 
addition to numerical model output.  More recent 
MDL guidance products under 24 hours have been 
based on the Localized Aviation MOS Program 
(LAMP) approach (Glahn and Unger 1986; Charba 
1998; Glahn and Ghirardelli 2004).  In this ap-
proach, MOS forecasts issued two or four times 
daily are updated hourly, based on the latest ob-
servational data.  This article describes how LAMP 
is being applied to update a new MOS thunder-
storm product, with higher spatial and temporal 
resolution than previously available (Hughes 
2004). 

2. PREDICTAND 

The thunderstorm predictand is defined as the 
occurrence or non-occurrence of one or more 
cloud-to-ground (CTG) lightning strikes in a 2-h 
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period in a 20-km gridbox.  The CTG lightning data 
are from the National Lightning Detection Network 
(NLDN; Cummins et al.1998).  The geographical 
coverage of the thunderstorm gridboxes is shown 
in Fig. 1; the grid is compatible with that used for 
the National Digital Forecast Database (NDFD) of 
the NWS (Glahn and Ruth 2003).   [Coverage out-
side the continental United States (CONUS) is not 
presently possible because a sufficient lightning 
database does not exist there.] 

Figure 1. Thunderstorm forecast coverage, which 
extends 150 km beyond CONUS boundaries. 

When fully implemented, the product will be 
issued hourly for 0-2, 2-4, … , and 22-24 h projec-
tions. The basic form of the forecasts is probabil-
ity, but a categorical form will also be provided. 
The categorical forecasts are derived by applying 
objectively-specified thresholds to the probabilities.  

3. PREDICTORS 

The thunderstorm predictors were derived from 
multiple inputs, which include radar reflectivity 
measurements, CTG lightning reports, METAR 
observations, thunderstorm climatology, and to-
pography, in addition to the MOS forecasts.  The 
derivation of the predictors involves data quality 
control, various types of processing and analyses, 
and the application of advective models.  The fol-
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lowing sub-sections provide brief summaries of the 
predictor development. 

3.1 Radar Reflectivity and Lightning Strike Data 

Quality-controlled radar reflectivity data on a 
10-km grid were used to specify the maximum and 
mean reflectivities in 20-km gridboxes . (Charba 
and Feng 2005 discuss the source of the reflectiv-
ity data and the multiple quality control processes 
applied to remove non-precipitation echoes.) 
Heavy spatial smoothing was then applied to the 
20-km grids to obtain the predictor fields, as it was 
found the raw field contains no predictive informa-
tion beyond that contained in the smoothed field. 
Fig. 2 shows an example of the smoothing for the 

A 

B 

Figure 2. Maximum radar reflectivity in 20-km 
gridboxes advected 3 hours from 0900 UTC, 
27 July 1997 in (a) raw and (b) smoothed 
forms. The smoother extrapolates into missing 
data (white) areas in (a).  The reflectivity cate-
gories are: < 1 = <15 dbZ; 1 = 15–30 dbZ; 2 = 
30–40 dbZ; 3 = 40–45 dbZ; 4 = 45–50 dbZ; 5 = 
50-55 dbZ; 6 = ≥55 dbZ. 

maximum reflectivity field.  Similar predictor vari-
ables were derived from 1-h CTG lighting strike 
counts in 10-km gridboxes that are identical to 
those of the base radar reflectivity grids. 

3.2 Thunderstorm Climatology 

Monthly relative frequencies (RF) of the thun-
derstorm predictand for each 2-h period of the day 
were derived from a 10-year sample (1994-2003). 
An example RF field is shown in Fig. 3a. Due to 
the shortness of the sample, the raw RFs do not 
represent true climatic values, especially where the 
values are near zero.  Thus, weighted three-point 
averaging of the gridpoint values in four dimen-
sions was used to smooth the raw fields (Fig. 3b). 
The amount of smoothing applied for each of the 
two time dimensions (period-to-period and month-
to-month) and the two grid dimensions was mini-
mized to maximize detail in the smoothed grids. 

A 

B 

Figure 3. July relative frequency (%) of the thun-
derstorm predictand for 2000 – 2200 UTC in 
(a) raw and (b) smoothed forms.  



 

  

 

 
 

 
 

  
 

 
 

 

 

  

 
 

    
 

     
 
  

 

  

 

        

 
 

 
  

 

   
 

 
  

 
  

 

 

 
 

   

 
  

 
 

  
 
 

  

 
  

 
 

 

 

Effective use of the smoothed RF as a thun-
derstorm predictor is made by combining it with a 
relatively strong predictor of thunderstorms.  Spe-
cifically, it is applied as a product of itself and the 
MOS thunderstorm probability input.  In this prod-
uct, the current MOS probability instills day-to-day 
variations to an otherwise environmentally-ignorant 
climatological variable. 

3.3 METAR Observations, Topography, and 
Model Forecasts 

METAR observations, topography, and a few 
forecast fields from the National Centers for Envi-
ronmental Prediction (NCEP) Global Forecast Sys-
tem (GFS; Iredell and Caplan 1997) were used 
together to derive selected fields thought to be 
useful as thunderstorm predictors.  METAR obser-
vations of surface wind components, temperature, 
dew point etc. were objectively analyzed to an 80-
km grid (Glahn and Ghirardelli 2004).  The topog-
raphy, which was derived from 1-km ground eleva-
tions from the U.S. Geological Survey, was used 
mainly for computing fine-scale, terrain-forced ver-
tical velocity (TVV).  The small number of forecast 
fields from the GFS was for the derivation of pre-
dictors not included in the MOS thunderstorm re-
gression equations.  Examples are forecasts of 
surface winds used to compute TVV and surface 
moisture divergence, and 500-mb temperature 
forecasts used to compute surface-based convec-
tive instability indices. 

3.4 Advective Models 

Several advective models are applied to pro-
duce 1- to 24-h forecasts for all gridded observa-
tional variables embodied in the LAMP system 
(Glahn and Unger 1986).  The model used to ad-
vect the radar and lightning fields was especially 
useful because the advection extends the predic-
tive value of these variables well beyond that ob-
tained from the initial fields. Small predictor 
contributions result from forecasts from the sea 
level pressure and saturation deficit models. 

3.5 MOS Probability Forecasts 

Newly-developed MOS thunderstorm probabil-
ity forecasts on the same 20-km grid as for LAMP 
are used as a major predictor input.  The MOS 
thunderstorm probabilities, which are based on the 
NCEP GFS and will be produced four times daily 
(Hughes 2004), are defined identically to those for 
LAMP, except they apply to a 3-h period rather 
than to 2 hours.  In the LAMP application, the MOS 

probabilities are smoothed with a 1-2-1 smoother 
to remove fine scale variability, and some forecast 
periods are time-interpolated to better match the 
LAMP periods.  In the next section, we show how 
LAMP predictors effectively update the MOS fore-
casts, especially at early LAMP forecast projec-
tions.       

4. REGRESSION EQUATIONS 

4.1 Equation Development 

The regression equations are derived sepa-
rately for each of the 13 geographical regions 
shown in Fig. 4.  The regions were drawn subjec-
tively, with guidance from the LAMP thunderstorm 
climatology fields. 

Figure 4. Geographical regions used for deriving 
the regression equations. 

Six years of historical data (1998-2003) are 
presently used for experimental development of 
the regression equations.  This substantial sample 
allows for seasonal stratification of the equations, 
with separate equations for the summer (1 July – 
15 October), cool (16 October – 31 March), and 
spring (1 April – 30 June) periods.  Also, separate 
equations are developed for each hour of the day. 

At this point, we are in the beginning stages of 
the equation development.  Experimental equa-
tions have been developed for the summer for one 
hourly cycle time, with tests of a few additional 
candidate predictors still pending.  Despite the lim-
ited equation development to date, we expect the 
predominant predictor properties exhibited the ex-
perimental equations to be retained in the final 



 

  

 
  

  
   

 

 

 
 

  

 

 
  

 

 

 
 

 
 

   

 

 

 
 

 
 

 
 
 

   
 

 

 

 
 
 

equations.  Thus, a brief examination of the predic-
tor properties is presented. 

4.2 Predictor Ranking 

One approach used to assess the contribution 
of the various predictors in the regression equa-
tions was to examine their order of selection in the 
screening regression process.  Predictors selected 
earliest have greatest contributions to the forecast 
probabilities because they explain the most predic-
tand variance.  It was found the observed and ad-
vected lightning variables ranked first, the MOS 
thunderstorm forecasts second, observed and ad-
vected radar variables third (the low overall ranking 
is due partly to the strong correlation with the light-
ning variables), and thunderstorm climatology last. 
It should be noted these rankings are based on all 
LAMP forecast projections combined.  When a 
lightning predictor (or a radar predictor) was se-
lected first, the predictand variance explained was 
invariably for the shortest forecast projection.   

4.3 Example Forecast 

Another approach used to assess the impact 
of predictors in the regression equations was to 
compare the forecast probability fields with predic-
tor fields in cases selected from the (independent) 
1997 season.  Fig. 5 shows the 1-3 h LAMP thun-
derstorm probability from the 0900 UTC data ob-
servation time on 27 July 1997, together with two 
dominant predictor fields.  Note that the advected 
lightning count (Fig. 5b) and MOS probability pre-
dictors (Fig. 5c) are strongly reflected in the LAMP 
forecast (Fig. 5a). Also note that the 2-h LAMP 
forecast contains greater spatial detail and higher 
peak probabilities than the 3-h MOS forecast. 
Further, the detail in the LAMP forecast corre-
sponds well with the reported lightning count pat-
tern (Fig. 5d).  On the other hand, the correspond- 

A 
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C 

D 

Figure 5. For 27 July 1997, (a) 1-3 h LAMP thun-
derstorm probability (%) forecast and (b) 1-h 
lightning count advected 3 hours from 0900 
UTC, (c) 9-12 h MOS thunderstorm probability 
(%) forecast from 0000 UTC, and (d) the ob-
served lightning count in 20-km gridboxes for 
the LAMP forecast valid period.  



 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

  

 

  

 

 
 

 
  

 

 
 

 
 
 

 
 

 

 
 

  
 

 

ing 11-13 h LAMP forecast (Fig. 6a) is quite similar 
to the 19-22 h (time-interpolated) MOS forecast 
(Fig. 6b). Also, the peak LAMP probabilities are 
almost the same as the peak MOS values.  Thus, 
we see that the updating capability of LAMP is 
strong at the shortest forecast projection and rela-
tively weak at the longer projection.  

A 

B 

Figure 6. (a) 11-13 h LAMP thunderstorm prob-
ability (%) from 0900 UTC and (b) 19-22 h 
(time-interpolated) MOS thunderstorm prob-
ability (%) from 0000 UTC on 27 July 1997.  

Before the LAMP forecasts could be compara-
tively scored against MOS, it was necessary to re-
calibrate the MOS probabilities from their 3-h valid 
period to the LAMP 2-h period.  This was done by 
deriving calibrated MOS (CMOS) regression equa-
tions, wherein the LAMP 2-h predictand was re-
gressed, with the MOS thunderstorm probability as 
the sole predictor. The probabilities from the 
CMOS equations were then used in the compara-
tive verification with LAMP.  The validity of this ap-
proach was demonstrated in an experiment 
wherein special MOS regression equations with 2-
h valid periods were developed using the same 
predictors as those for the 3-h MOS equations.  In 
comparison tests of the 2-h CMOS probabilities 
with the 2-h MOS probabilities, it was found the 
two sets of forecasts were essentially identical. 

The Brier Score improvement of LAMP over 
CMOS as a function of LAMP projection from 0900 
UTC during the 1997 summer is shown in Fig. 7. 
As before, the MOS forecasts are from the 0000 
UTC cycle, so 9 hours must be added to obtain 
their projections.  The independent sample is com-
posed of all days of the 1997 summer and all grid-
points within the CONUS.  The sample sizes range 
from 2,381,731 cases at the 3-h projection to 
1,835,161 cases at the 25-h projection.  The re-
duction in sample size with increasing projection 
results from the advection of radar and lightning 
data coverage boundaries into the forecast area.   
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5. FORECAST PERFORMANCE 

A useful objective measure of forecast skill for 
the LAMP probability forecasts is the improvement 
in Brier Score (Brier 1950) over the MOS forecast 
input. The MOS forecast as a performance bench-
mark is meaningful, in part because Hughes  
(2004) has already shown the MOS thunderstorm 
forecasts are skillful relative to thunderstorm clima-
tology. Thus, the improvement over MOS specifi-
cally measures the updating effectiveness of 
LAMP. 

4 

2 

0 
3 5 7 9 11 13 15 17 19 21 23 25 

FORECAST PROJECTION (H) 

Figure 7. Brier Score improvement (%) of LAMP 
over MOS as a function of LAMP forecast pro-
jection for the 1997 summer.  The forecast pro-
jections are relative to the 0900 UTC LAMP 
cycle; the MOS forecasts are from the 0000 
UTC cycle.   



 

  

   
 

 

 
 

 
 

  

 

 
 

 
  

 

 

  
 

  
 

 
  

  

 

    

 
 
 

 
 

 

  
  

 

 

 
 

  
 

  
 

 
 

 

 
 

 

 

 

 

 
 
 

 

 
 

Fig. 7 shows the benefit of the LAMP updating 
was substantial at the 3-h projection, but the bene-
fit decreased sharply with increasing projection. 
Specifically, the LAMP improvement of about 18% 
at the 3-h projection decreases to zero by 15 hours 
and rises only slightly thereafter. 

6. REMARKS AND PLANS 

With the completion in the near future of the 
0900 UTC LAMP development for the summer 
season, only small improvements in the results 
presented here are expected.  However, as sub-
sequent efforts turn to other cycles and seasons, 
substantial improvements in the results may occur. 
This optimism rests on the belief that the combina-
tion of 0900 UTC LAMP cycle and summer season 
may be among the most challenging for LAMP to 
yield significant updating value.  The reason is that 
predictive information derived from observational 
fields may be minimal at this early morning hour for 
the summer season. 

We expect to begin experimental production of 
the LAMP thunderstorm forecasts over the CONUS 
in real time in late 2005.  The probability and cate-
gorical forecasts will be produced on NCEP’s 
mainframe computer and likely made available on 
the internet. 
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