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Reducing metal artifacts by restricting
negative pixels
Gengsheng L. Zeng1,2* and Megan Zeng3

Abstract

When the object contains metals, its x-ray computed tomography (CT) images are normally affected by streaking
artifacts. These artifacts are mainly caused by the x-ray beam hardening effects, which deviate the measurements
from their true values. One interesting observation of the metal artifacts is that certain regions of the metal artifacts
often appear as negative pixel values. Our novel idea in this paper is to set up an objective function that restricts
the negative pixel values in the image. We must point out that the naïve idea of setting the negative pixel values
in the reconstructed image to zero does not give the same result. This paper proposes an iterative algorithm to
optimize this objective function, and the unknowns are the metal affected projections. Once the metal affected
projections are estimated, the filtered backprojection algorithm is used to reconstruct the final image. This paper
applies the proposed algorithm to some airport bag CT scans. The bags all contain unknown metallic objects. The
metal artifacts are effectively reduced by the proposed algorithm.
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Introduction
Due to the wide energy spectrum of x-rays, beam hard-
ening effects are severe when the object being imaged
contains metals. The beam hardening effects introduce
large errors in the x-ray computed tomography (CT)
projection measurements. These measurement errors in
turn produce artifacts in the reconstructed CT images.
Typical metal artifacts appear as dark and bright streak-
ings. This metal artifact problem has been recognized
for a long time and it is still an open problem [1].
Most methods to combat the metal artifacts are itera-

tive algorithm based [2–9]. Among these iterative algo-
rithms, projection data inpainting is popular. The basic
priciple of inpainting is first to remove the metal affected
measurements and to assume that there is no metal in
the object. Next, estimation methods such as

interpolation, lowpass filtration, or some non-linear ap-
proaches are used to inpaint the measurements that are
artifacially removed in the first step. Till now, the
impainting methods are still not accurate enough to re-
produce the true metal-free projections.
The modern metal artifact reduction methods are it-

erative methods. Iterative algorithms are designed to
optimize an objective function, which can contain Bayes-
ian terms. For example, the total variation (TV) norm is
effective in enforcing the peicewise constant prior [10,
11]. Noise weighting is often incorporated in the object-
ive function as well.
Our proposed method is inspired by the observation

that the metal artifacts usually have regions with nega-
tive pixel values. The innovation of this paper is to es-
tablish an objective function that restricts the negative
pixel values in the reconstructed images. The proposed
method will be presented in the next section. Results
with real x-ray CT measurements are presented. The
measurements are obtained from airport bags that con-
tain metal objects inside.
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Methods
A usual objective function in image reconstruction con-
sists of two parts: the data fidelity part and the Bayesian
part. The data fidelity part projects the image array to
generate pseudo projections and then matches them to
the measurements. Noise weighting can be applied in
the data fidelity part. The main purpose of the Bayesian
part is for regularization because the image reconstruc-
tion problem may be ill posed. An L2-norm of the re-
constructed image can be used to regularize the image
to enforce smoothness. The TV norm of the image can
be used to denoise and maintain the sharp edges, by en-
couraging the piecewise constant constraint. Projection
data inpainting is usually required before iterative image
reconstruction. Unfortunately, inpainting methods are
problematic and the pseudo projections are not the same
as the projections when metals are absent.
Our innovation is an objective function that does not

have a data fidelity term. Our objective function is in-
spired by the observation that the metal artifacts often
have regions with negative pixel values. However, the x-
ray attenuation coefficients cannot be negative. This
paper proposes an objective function, which is the
squared L2-norm of the negative pixel values of the fil-
tered backprojection (FBP) reconstruction.
Let A be the operator of the FBP algorithm, P be the

projection measurements, and X be the FBP reconstruc-
tion. Both P and X are expressed in the vector form, and
A is expressed in the matrix form. The FBP reconstruc-
tion X is AP. The elements in X are xi. Let Y be the col-
umn vector containing the entries

yi ¼ min 0; xið Þ ð1Þ

Thus, the vector Y is the same as the FBP reconstruc-
tion X, except that all positive pixels of X are set to zero.
The proposed objective function is the squared L2-norm
of Y as

F ¼ Yk k22 ð2Þ

We would like to minimize this objective function (2).
The variables for this objective function are the metal af-
fected projections PM. Here, the entries in PM are deter-
mined by following procedure:

Step 1: Use the FBP algorithm to generate a raw image
Xraw using raw projection measurements P. The raw
image may contain severe metal artifacts.
Step 2: Segment the raw image to obtain a metal-only
image, using a threshold value, for example, as the 1/3
of the maximum image value of Xraw. All image values
smaller than this threshold value are set to zero.

Step 3: Forward project the metal-only image to obtain
the indices of PM. Other projections in P are not af-
fected by metal and are denoted by PnotM.

We propose to use a gradient descent algorithm to
minimize the objective function (2) by updating the vari-
ables in PM. Let pj be an entry in PM. To find the gradient
of ∂F/∂pj is not straightforward, because the min function
in (1) makes (1) undifferentiable. We can use the subdif-
ferential concept to find the gradient of ∂F/∂pj as [12, 13].

∇F ¼ 2AT min 0;APf g ¼ 2ATY ð3Þ
where AT is the adjoint operator of the FBP algorithm

and min{0,AP} sets each positive entry of AP to zero.
Here, AP is the FBP image reconstruction using projec-
tions P, and AT is the forward projection followed by the
ramp filtration with the one-dimensional convolution
kernel, which is defined as

h nð Þ ¼

1
4

if n ¼ 0;

−
1

nπð Þ2 if n is odd;

0 otherwise:

8
>>><

>>>:

ð4Þ

The gradient descent iterative algorithm is given as

P kþ1ð Þ
M ¼ P kð Þ

M −βDAT min 0;AP kð Þ
n o

ð5Þ

where the super script (k) is the iteration index. The
projection vector P consists of two parts: the metal af-
fected part PM and the metal not affected part PnotM.
The metal not affected part PnotM does not get updated
from iteration to iteration. The operator D in (5) is a di-
mension reduction operator that discards the entries in
PnotM. The parameter β in (5) controls the step size of
the gradient descent algorithm.
The proposed algorithm (5) was implemented in

MATLAB and applied to some CT data of airport bags.
The original projections of airport bags were acquired
with an Imatron C300 clinical CT scanner. The contents
and details were not disclosed to us. The detector and x-
ray source details were unknown. The objects were
treated as unknown objects.
The step size β was chosen to be 1, and the number of

iteration was 500. The original CT data resolution was
0.5 mm. The original cone-beam data was reformatted
into parallel-beam, lower-resolution data with 0.92 mm
spatial resolution in this paper. The number of views for
the scaled-down version was 180 over 180°. The field-of-
view was 475 mm. The image was 475 mm × 475mm.
The parallel-beam data had 597 bins on each detection
row, and the bin size was 0.92 mm. The reconstructed
image was in a 420 × 420 two-dimensional array and the
pixel size was 0.92 mm.
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In our airport bag application, the ground truth is un-
available. Therefore, quantitative evaluation is not ap-
propriated. For metal reduction evaluations, ref. [14]
suggested task-based human observer studies or chan-
nelized Hotelling observer studies. The task is usually
small lesion detection in medical imaging, and the
ground truth should be known. Therefore, the suggested
studies do not apply in our situation. The only evalu-
ation we can perform is visual appearance evaluation,
which is subjective and may not be reliable enough to
make any definite conclusions. In this paper, we are very
careful not to make any strong claims about the super-
iority of the proposed algorithm. The only claim we
make in this paper is that the proposed method is differ-
ent from the method that sets all negative image pixels
to zeros.

Results
Some results obtained by the proposed algorithm are
shown in Figs. 1, 2, 3, 4 and 5 for 5 different airport
bags, respectively. Three images are shown in each fig-
ure: the raw FBP reconstruction, the proposed algorithm
followed by the FBP reconstruction, and the raw FBP re-
construction with negative pixels replaced by zeros. The
negative values are shown as the darkest color. The
metals appear as the brightest color. Since the attenu-
ation coeffecients are mach greater than the rest of the
object, the display window is set to [− 0.1a, 0.45a], where
a is the maximum image value. The display window for
the raw image and the final image is the same.
The negative image pixel values are only appear in the

close neighborhood of the metals in the raw FBP recon-
structions. After the proposed iterative algorithm
removes the negative image pixels, the dark streaking ar-
tifacts are also reduced. This phenomenon cannot be
achieved by simply setting the negative image pixel
values to zeros in the raw FBP reconstructions.
The raw FBP reconstruction images for bags 1–5 with

the negative image pixel values replaced by zeros are
also displayed in Figs. 1, 2, 3, 4 and 5 for comparison
purpose and they look almost the same as the raw FBP
images.
The raw sinogram and processed sinogram are com-

pared in Fig. 6. The proposed algorithm does not alter
the sinogram values if they are not affected by the
metals.
As a side product, the angularly aliasing artifacts (due

to insuffecient view angles) are also reduced with the
proposed algorithm.

Discussion
This paper uses a unique objective function for reducing
the errors in the projection measurements. The errors
are caused by beam hardening effects of the metalic

objects. The establishment of the objective function is
inspired by the observation that the metal artifacts in
CT FBP reconstructions may have some negative under-
shoots close to the metals. The new objective function is
to penalize those negative valued pixels. It is interesting
to observe that once the negative undershoots are re-
moved, the streaking artifacts are significantly reduced,
even though the streaking artifacts may not contain
negative pixels.
The traditional iterative algorithm’s main goal is to itera-

tively reconstruct the image. On the other hand, we use the
FBP algorithm to reconstruct the image in every iteration of
the proposed algorithm. Most iterative algorithms use image
pixels as the unknowns, while the proposed algorithm uses
the metal affected projections as the unknowns.
From our knowledge, this is the first time in image re-

construction that the L2-norm of the negative pixels is
used as the objective function to be minimized.
It is not straightforward to optimize an objective func-

tion that is undifferentiable. We do not know the partial
derivatives of the objective function with respect to the
varaibles, which are the metal affected projections. In
this paper, we propose a subdifferential to approximate
gradient, which does not exist. With this subdifferential,
a gradient descent algorithm is developed and tested
with real CT data.
From another point of view, the proposed algorithm is able

to minimize the some features of the metal artifacts. The
phenomenon of negative undershoots is one of the metal
artifact features. There could be other features. In principle,
once we can express the features, we are able to minimize
them. In our previous paper, the TV was used as a feature
for the metal artiacts [15]. The TV norm is useful and effect-
ive, but it may smooth the image too much.
We would like to point out that our method does not

belong to the traditional category of projection data
inpainting. In traditional projection data inpainting, the
metalic objects are first removed from the image by seg-
mentation methods, and the corresponding metal af-
fected projections are removed as well. The projection
data inpainting methods then replace the removed pro-
jections by estimations from the neighbors. The metal-
free image is reconstructed from the newly modifided
projections. The metal-only image and the metal-free
image are combined to generate the final image. In our
proposed algorihtm, the metalic objects and their projec-
tions are never removed. We don’t reconstruct metal-
free and metal-only images separately. The proposed al-
gorithm overcomes some difficulties of performing data
inpainting.

Conclusions
This paper suggests that the total ‘energy’ of the negative
image pixels be used as a feature of the metal artifacts.
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Fig. 1 CT image reconstruction of airport bag #1. Top: the raw FBP reconstruction; Middle: the reconstruction using the proposed algorithm;
Bottom: the raw FBP reconstruction with all negative pixel values replaced by zeros
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Fig. 2 CT image reconstruction of airport bag #2. Top: the raw FBP reconstruction; Middle: the reconstruction using the proposed algorithm;
Bottom: the raw FBP reconstruction with all negative pixel values replaced by zeros
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Fig. 3 CT image reconstruction of airport bag #3. Top: the raw FBP reconstruction; Middle: the reconstruction using the proposed algorithm;
Bottom: the raw FBP reconstruction with all negative pixel values replaced by zeros
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Fig. 4 CT image reconstruction of airport bag #4. Top: the raw FBP reconstruction; Middle: the reconstruction using the proposed algorithm;
Bottom: the raw FBP reconstruction with all negative pixel values replaced by zeros
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Fig. 5 CT image reconstruction of airport bag #5. Top: the raw FBP reconstruction; Middle: the reconstruction using the proposed algorithm;
Bottom: the raw FBP reconstruction with all negative pixel values replaced by zeros
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Minimizing this ‘energy’ leads to minimizing metal arti-
facts. Real airport CT scans were used to verify the feasi-
bility of the proposed algorithm. The results indicate
that the dark streaking artifacts around the metallic ob-
jects have been reduced. The images produced by the
proposed algorithm are different from the raw FBP re-
construction images with the negative image pixel values
replaced by zeros.
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