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Abstract Super-resolution, the process of obtaining

one or more high-resolution images from one or more

low-resolution observations, has been a very attractive

research topic over the last two decades. It has found

practical applications in many real world problems in

different fields, from satellite and aerial imaging to med-

ical image processing, to facial image analysis, text im-

age analysis, sign and number plates reading, and bio-

metrics recognition, to name a few. This has resulted

in many research papers, each developing a new super-

resolution algorithm for a specific purpose. The current

comprehensive survey provides an overview of most of

these published works by grouping them in a broad tax-

onomy. For each of the groups in the taxonomy, the

basic concepts of the algorithms are first explained and

then the paths through which each of these groups have
evolved are given in detail, by mentioning the contribu-

tions of different authors to the basic concepts of each

group. Furthermore, common issues in super-resolution

algorithms, such as imaging models and registration al-

gorithms, optimization of the cost functions employed,

dealing with color information, improvement factors,

assessment of super-resolution algorithms, and the most

commonly employed databases are discussed.
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1 Introduction

Super-resolution (SR) is a process for obtaining one or

more High-Resolution (HR) images from one or more

Low-Resolution (LR) observations [1]-[618]. It has been

used for many different applications (Table 1), such as,

Satellite and Aerial imaging, Medical Image Process-

ing, Ultrasound Imaging [581], Line-Fitting [18], Auto-

mated Mosaicking, Infrared Imaging, Facial Image Im-

provement, Text Images Improvement, Compressed Im-

ages and Video Enhancement, Sign and Number Plate

Reading, Iris Recognition [153], [585], Fingerprint Im-

age Enhancement, Digital Holography [271], and High

Dynamic Range Imaging [552].

SR is an algorithm that aims to provide details finer

than the sampling grid of a given imaging device by in-

creasing the number of pixels per unit area in an image

[419]. Before getting into the details of SR algorithms,

we need to know about the possible hardware-based

approaches to the problem of increasing the number

of pixels per unit area. Such approaches include: (1)

decreasing the pixel size and (2) increasing the sensor

size [132], [416]. The former solution is a useful solution,

but decreasing the pixel size beyond a specific threshold

(which has already been reached by the current tech-

nologies) decreases the amount of light which reaches

the associated cell of the pixel on the sensor. This re-

sults in an increase in the shot noise. Furthermore, pix-

els of smaller sizes (relative to the aperture’s size) are

more sensitive to diffraction effects compared to pixels

of larger sizes. The latter solution increases the capaci-

tance of the system, which slows down the charge trans-

fer rate. Furthermore, the mentioned hardware-based
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Table 1 Reported applications of SR algorithms

Application Reported in

Satellite and Aerial imaging [3], [5], [6], [8], [9], [10], [22], [25], [28], [41], [51], [52], [54], [55], [59], [70], [79],
[96], [104], [107], [108], [109], [113], [114], [157], [159], [160], [161], [167], [175],
[196], [203], [234], [247], [258], [290], [304], [306], [345], [352], [371], [598], [603],
[606], [613]

Medical Image Processing [15], [27], [95], [107], [108], [109], [224], [239], [242], [243], [275], [351], [359], [398],
[450], [487], [488], [501], [539], [564], [565], [591], [614]

Automated Mosaicking [50], [56], [81], [216], [242], [246], [371], [530]

Infrared Imaging [51], [79], [306], [424], [515]

Facial Images [57], [71], [82], [85], [99], [100], [105], [127], [142], [154], [165], [187], [188],
[189], [190], [191], [192], [193], [194], [200], [208], [235], [270], [276], [285], [298],
[299], [301], [302], [304], [310], [311], [313], [314], [322], [323], [325], [327], [338],
[339], [340], [341], [343], [344], [347], [354], [355], [360], [372], [374], [379], [381],
[382][385], [396], [400], [403], [404], [407], [410], [411], [412], [413], [418], [419],
[424], [425], [433], [434], [435], [455], [456], [457], [458], [460], [461], [465], [467],
[469], [472], [474], [475], [480], [481], [482], [495], [502], [505], [522], [523], [523],
[524], [525], [527], [537], [548], [550], [556], [561], [569], [570], [571], [585], [599],
[605], [607], [609], [618]

Text Images Improvement [57], [71], [73], [74], [82], [133], [156], [180], [181], [195], [199], [209], [210], [217],
[241], [248], [201], [277], [281], [285], [288], [296] (Chinese text), [307], [313], [314],
[317], [319], [365], [368], [375], [387], [418], [419], [454], [470], [496], [538], [544],
[582], [596], [606], [613]

Compressed Image/Video Enhancement [103], [104], [110], [137], [161], [169], [222], [240], [268], [332], [366], [376], [384],
[438], [543], [580], [611],

Sign and Number Plate Reading [112], [130], [140], [174], [254], [288], [304], [365], [414], [422], [463], [483], [484],
[504], [508], [540], [547], [548], [582], [584], [610], [615]

Fingerprint Image Enhancement [245], [255], [237], [275]

approaches are usually expensive for large scale imaging

devices. Therefore, algorithmic-based approaches (i.e.,

SR algorithms) are usually preferred to the hardware-

based solutions.

SR should not be confused with similar techniques,

such as interpolation, restoration, or image rendering.
In interpolation (applied usually to a single image), the

high frequency details are not restored, unlike SR [160].

In image restoration, obtained by deblurring, sharpen-

ing, and similar techniques, the sizes of the input and

the output images are the same, but the quality of the

output gets improved. In SR, besides improving the

quality of the output, its size (the number of pixels

per unit area) is also increased [207]. In image render-

ing, addressed by computer graphics, a model of an

HR scene together with imaging parameters are given.

These are then used to predict the HR observation of

the camera, while in SR it is the other way around.

Over the past two decades, many research papers,

books [101], [294], [533] and PhD Theses [4], [78], [84],

[148], [182], [261], [263], [266], [312], [330], [389], [536]

have been written on SR algorithms. Several survey pa-

pers [47], [48], [131], [132], [155], [198], [265], [292], [350],

[416] have also been published on the topic. Some of

these surveys provide good overviews of SR algorithms,

but only for a limited number of methods. For example,

[47] and [48] provide the details of most frequency do-

main methods and some of the probability based meth-

ods, [131], [132], and [416] take a closer look at the re-

construction based SR methods and some of the learn-

ing based methods, [155], [198], and [265] have provided

a comparative analysis of reconstruction based SR al-

gorithms but only for a very few methods, and finally

[292] provides details of some of the single image-based

SR algorithms. None of these surveys provide a compre-

hensive overview of all the different solutions of the SR

problem. Furthermore, none of them include the latest

advances in the field, especially for the learning based

methods and regularized-based methods. In addition to

providing a comprehensive overview of most of the pub-

lished SR works (until 2012), this survey covers most

of the weaknesses of the previously published surveys.

The present paper describes the basics of almost all the

different types of super-resolution algorithms that have

been published up to 2012. Then, for each of these basic

methods, the evolving paths of the methods have been

discussed by providing the modifications that have been

applied to the basics by different researchers. Compara-

tive discussions are also provided when available in the

surveyed papers. The first parts (the basics of the meth-

ods) can be studied by beginners in the field so as to

have a better understanding of the available methods,
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Fig. 1 The proposed taxonomy for the surveyed SR algorithms and their dedicated sections in this paper.

while the last parts (the evolving paths of the methods

and the comparative results) can be used by experts in

the field to find out about the current status of their

desired methods.

The rest of this paper is organized as follows: the

next section provides a taxonomy covering all the dif-

ferent types of SR algorithms. Section 3 reviews the

imaging models that have been used in most SR al-

gorithms. Section 4 explains the frequency domain SR

methods. Section 5 describes the spatial domain SR al-

gorithms. Some other issues related to SR algorithms,

like handling color, the assessment of SR algorithms,

improvement factors, common databases, and 3D SR,

are discussed in Section 6. Finally, the paper comes to

a conclusion in Section 7.

2 Taxonomy of SR algorithms

SR algorithms can be classified based on different fac-

tors. These factors include the domain employed, the

number of the LR images involved, and the actual re-

construction method. Previous survey papers on SR al-

gorithms have mostly considered these factors as well.
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Table 2 Classification of reported SR algorithms based on the domain employed

Domain Reported in

Spatial [5], [6], [7], [8], [13], [14], [20], [22], [24], [25], [27], [29], [30], [31], [32], [34], [33], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [49], [50], [51], [53], [55], [56], [57], [58], [60], [61], [62], [63], [64],
[65], [66], [71], [72], [73], [74], [75], [76], [80], [81], [82], [83], [85], [86], [87], [88], [90], [91], [92], [93],
[94], [95], [96], [97], [99], [100], [102], [105], [107], [108], [109], [111], [112], [113], [115], [116], [117],
[118], [121], [122], [123], [124], [125], [127], [128], [129], [130], [133], [134], [135], [136], [138], [140],
[142], [146], [147], [149], [151], [152], [154], [156], [157], [158], [160], [163], [164], [165], [167], [170],
[172], [173], [174], [175], [176], [177], [180], [181], [185], [184], [186], [187], [188], [189], [191], [192],
[193], [194], [195], [196], [199], [200], [203], [204], [207], [208], [209], [213], [214], [215], [216], [217],
[218], [223], [224], [226], [227], [229], [230], [231], [232], [233], [234], [235], [238], [241], [242], [244],
[245], [246], [247], [248], [249], [250], [251], [252], [253], [254], [258], [257], [259], [260], [264], [270],
[272], [273], [275], [277], [276], [278], [279], [280], [281], [282], [283], [284], [285], [286], [287], [288],
[289], [290], [291], [293], [295], [296], [301], [303], [304], [305], [306], [307], [308], [309], [310], [311],
[313], [314], [316], [317], [319], [322], [323], [325], [326], [327], [328], [329], [331], [333], [334], [336],
[337], [340], [341], [342], [343], [344], [347], [349], [352], [353], [354], [355], [360], [362], [363], [364],
[365], [366], [367], [368], [369], [371], [372], [373], [375], [377], [378], [379], [380], [381], [382], [385],
[386], [387], [388], [391], [392], [393], [394], [418], [396], [397], [400], [402], [403], [404], [405], [406],
[407], [408], [409], [410], [411], [412], [413], [414], [418], [419], [418], [419], [421], [422], [424], [425],
[426], [427], [428], [429], [430], [432], [434], [435], [439], [440], [442], [443], [445], [446], [448], [449],
[450], [451], [452], [453], [454], [455], [456], [457], [458], [460], [461], [462], [463], [465], [467], [468],
[469], [470], [471], [472], [473], [474], [475], [477], [478], [479], [480], [481], [482], [484], [486], [488],
[490], [492], [493], [494], [495], [496], [498], [499], [500], [501], [502], [503], [504], [505], [506], [507],
[508], [510], [512], [513], [514], [517], [518], [520], [521], [522], [523], [524], [525], [526], [527], [528],
[529], [530], [531], [534], [535], [537], [538], [539], [540], [541], [542], [544], [545], [547], [548], [551],
[552], [553], [554], [555], [557], [558], [560], [561], [562], [563], [568], [569], [570], [572], [574], [575],
[576], [577], [578], [579], [582], [583], [584], [585], [586], [587], [588], [590], [591], [592], [593], [594],
[595], [596], [597], [598], [599], [601], [602], [604], [605], [606], [607], [608], [609], [610], [612], [613],
[614], [615], [616], [617], [618]

Frequency (Fourier) [1], [2], [3], [9], [11], [12], [15], [17], [19], [21], [46], [52], [59], [67], [68], [69], [70], [103], [104], [110],
[120], [137], [119], [126], [141], [144], [145], [161], [178], [197], [201], [211], [219], [221], [267], [321],
[351], [356], [359], [487], [358], [370], [390], [398], [399], [415], [423], [425], [431], [483], [491], [511],
[550], [566], [567], [581], [589]

Frequency (Wavelet) [79], [143], [150], [162], [179], [237], [257], [302], [320], [345], [356], [390], [399], [423], [425], [436],
[441], [447], [459], [476], [487], [489], [509], [516], [549], [564], [565], [565], [600]

However, the taxonomies they provide are not as com-

prehensive as the one provided here (Fig. 1). In this

taxonomy, SR algorithms are first classified based on

their domain, i.e., the spatial domain or the frequency

domain. The grouping of the surveyed papers based on

the domain employed is shown in Table 2. Though the

very first SR algorithms actually emerged from signal

processing techniques in the frequency domain, it can

be seen from Table 2 that the majority of these algo-

rithms have been developed in the spatial domain. In

terms of the number of the LR images involved, SR

algorithms can be classified into two classes: single im-

age or multiple image. Table 3 shows the grouping of

the surveyed papers based on this factor. The classi-

fication of the algorithms based on the number of the

LR images involved has only been shown for the spatial

domain algorithms in the taxonomy of Fig. 1. This is

because the majority of the frequency domain SR algo-

rithms are based on multiple LR images, though there

are some which can work with only one LR image. The

time line of proposing different types of SR algorithms

is shown in Fig. 2.

The single-image based SR algorithms (not all but)

mostly employ some learning algorithms and try to
hallucinate the missing information of the super-resolved

images using the relationship between LR and HR im-

ages from a training database. This will be explained

in more detail in Section 5.2. The multiple-image based

SR algorithms usually assume that there is a targeted

HR image and the LR observations have some relative

geometric and/or photometric displacements from the

targeted HR image. These algorithms usually exploit

these differences between the LR observations to recon-

struct the targeted HR image, and hence are referred

to as reconstruction based SR algorithms (see Section

5.1 for more details). Reconstruction-based SR algo-

rithms treat the SR problem as an inverse problem and

therefore, like any other inverse problem, need to con-

struct a forward model. The imaging model is such a

forward model. Before going into the details of the SR

algorithms, the most common imaging models are de-

scribed in the next section.
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Table 3 Classification of reported SR algorithms based on the number of LR images employed

Reported in

Single [1], [2], [26], [52], [59], [57], [61], [65], [66], [67], [69], [71], [76], [82], [85], [90], [94], [108], [109], [96], [99], [100],
[102], [103], [111], [121], [136], [138], [142], [146], [151], [154], [162], [164], [165], [173], [180], [237], [191], [192],
[193], [194], [200], [203], [207], [208], [213], [232], [233], [241], [242], [245], [259], [273], [275], [279], [280], [281],
[283], [285], [286], [287], [292], [301], [310], [311], [323], [326], [327], [329], [340], [341] , [342], [343], [344], [355],
[356], [360], [367], [372], [373], [379], [380], [382], [385], [386], [390], [391], [393], [394], [400], [402], [403], [404],
[405], [406], [407], [409], [410], [411], [412], [413], [422], [423], [424], [425], [434], [435], [436], [440], [442], [443],
[451], [452], [453], [455], [456], [457], [458], [447], [461], [462], [465], [467], [469], [472], [473], [474], [475], [480],
[481], [482], [486], [488], [493], [489], [494], [495], [498], [502], [503], [504], [505], [506], [509], [510], [516], [517],
[520], [521], [522], [523], [524], [525], [526], [527], [537], [539], [544], [545], [547], [548], [550], [553], [557], [558],
[561], [566], [568], [569], [570], [572], [576], [577], [578], [579], [584], [583], [586], [594], [595], [597], [599], [601],
[602], [607], [608], [612], [614], [616], [618]

Multiple [3], [5], [6], [7], [8], [9], [10], [13], [14], [17], [19], [20], [21], [22], [24], [25], [27], [29], [30], [31], [32], [34], [33], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [49], [50], [51], [53], [55], [56], [58], [60], [62], [63], [64],
[68], [70], [72], [73], [74], [75], [80], [81], [83], [86], [87], [88], [91], [92], [93], [95], [97], [103], [104], [105], [107],
[108], [109], [110], [112], [113], [115], [116], [117], [118], [122], [123], [124], [125], [127], [128], [129], [130], [133],
[134], [135], [137], [140], [147], [149], [150], [179], [152], [156], [157], [158], [160], [161], [163], [167], [170], [172],
[174], [175], [176], [177], [181], [185], [184], [186], [187], [188], [189], [195], [196], [199], [204], [209], [215], [216],
[217], [218], [223], [224], [226], [227], [229], [230], [231], [234], [235], [238], [244], [246], [247], [249], [250], [251],
[252], [253], [254], [258], [260], [264], [270], [272], [276], [278], [277], [282] [284], [288], [345], [289], [290], [291],
[293], [295], [296], [303], [304], [305], [306], [307], [308], [309], [313], [314], [316], [317], [319], [320], [322], [325],
[328], [331], [333], [334], [336], [337], [351], [352], [353], [358], [362], [363], [364], [365], [366], [368], [369], [371],
[375], [377], [378], [381], [387], [388], [399], [392], [418], [396], [397], [398], [399], [401], [408], [414], [418], [419],
[418], [419], [421], [422], [426], [427], [428], [429], [430], [431], [432], [441], [439], [440], [445], [446], [448], [449],
[450], [454], [476], [460], [463], [468], [459], [470], [471], [477], [478], [479], [480], [481], [482], [484], [485], [490],
[492], [496], [499], [500], [501], [507], [508], [512], [511], [513], [514], [518], [528], [529], [530], [531], [534], [535],
[537], [538], [540], [541], [542], [544], [547], [551], [552], [554], [555], [560], [562], [563], [567], [574], [575], [581],
[582], [587], [588], [590], [591], [592], [593], [596], [598], [604], [605], [606], [609], [610], [613], [615], [617], [126],
[141], [144], [145], [178], [197], [201], [211], [219], [221], [267], [321], [370], [491], [589]

3 Imaging Models

The imaging model of reconstruction based SR algo-

rithms describes the process by which the observed im-

ages have been obtained. In the simplest case, this pro-

cess can be modeled linearly as [25]:

g(m,n) =
1

q2

(q+1)m−1∑
x=qm

(q+1)n−1∑
y=qn

f(x, y) (1)

where g is an observed LR image, f is the original HR

scene, q is a decimation factor or sub-sampling param-

eter which is assumed to be equal for both x and y

directions, x and y are the coordinates of the HR im-

age, and m and n of the LR images. The LR image

is assumed to be of size M1 ×M2, and the HR image

is of size N1 × N2 where N1 = qM1 and N2 = qM2.

The imaging model in Eq. (1) states that an LR ob-

served image has been obtained by averaging the HR

intensities over a neighborhood of q2 pixels [25], [109].

This model becomes more realistic when the other pa-

rameters involved in the imaging process are taken into

account. As shown in Fig. 3, these parameters, aside

from decimation, are the blurring, warping and noise.

The inclusion of these factors in the model of Eq. (1)

results in [8]:

g(m,n) = d(h(w(f(x, y)))) + η(m,n) (2)

where w is a warping function, h is a blurring function,

d is a down-sampling operator, and η is an additive

noise. The down-sampling operator defines the way by

which the HR scene is sub-sampled. For example, in

Eq. (1) every window of size q2 pixels in the HR scene

is replaced by only one pixel at the LR observed image

by averaging the q2 pixel values of the HR window.

The warping function stands for any transformations

between the LR observed image and the HR scene. For

example, in Eq. (1) the warping function is uniform.

But, if the LR image of g(m,n) is displaced from the

HR scene of f(x, y) by a translational vector as (a, b)

and a rotational angle of θ, the warping function (in

homogeneous coordinates) will be as:

w

xy
1

 =

1 0 a

0 1 b

0 0 1

×
 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

−1×
mn

1


(3)

The above function will of course change depending

on the type of motion between the HR scene and the
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Fig. 2 The time line of proposing SR algorithms.

LR observations. The blurring function (which, e.g., in

Eq. (1) is uniform) models any blurring effect that is

imposed on the LR observed image for example by the

optical system (lens and/or the sensor) [99], [588] or

by atmospheric effects [125], [157], [260], [397], [401],

[418], [419], [541]. The registration and blur estimation

are discussed more in Section 3.1 and Section 3.2, re-

spectively.

If the number of LR images is more than one, the

imaging model of Eq. (2) becomes:

gk(m,n) = d(hk(wk(f(x, y)))) + ηk(m,n) (4)

where k changes from 1 to the number of the available

LR images, K. In matrix form, this can be written as:

g = Af + η (5)

in which A stands for the above mentioned degradation

factors. This imaging model has been used in many SR

works (Table 4).

Fig. 4 shows graphically how three different LR im-

ages are generated from a HR scene using different pa-

rameters of the imaging model of Eq. 4.

Instead of the more typical sequence of applying

warping and then blurring (as in Eq. (4)), some re-

searchers have considered reversing the order by first

applying the blurring and then the warping [171], [212],

[234]. It is discussed in [171] and [212] that the former

coincides more with the general imaging physics (where

the camera blur is dominant), but it may result in sys-

tematic errors if motion is being estimated from the



Super-resolution: A comprehensive survey 7

Fig. 3 The imaging model employed in most SR algorithms.

Fig. 4 Generating different LR images from a HR scene using different values of the parameters of the imaging model of Eq.
(4): f is the HR scene, wi, hi, di, and ηi (here i = 1, 2, or 3) are different values of warping, blurring, down-sampling, and
noise for generating gith LR image (Please zoom in to see the details).

LR images [171], [214]. However, some other researchers

have mentioned that these two operations can commute

and be assumed as block-circulate matrices, if the point

spread function is space invariant, normalized, has non-

negative elements, and the motion between the LR im-

ages is translational [156], [157], [158], [186], [588], [610].

The imaging model of Eq. (4) has been modified by

many other researchers (Table 4), for example:

– in [29], [45], and [273], in addition to the blurring

effect of the optical system, motion blur has been

taken into account. In this case, the blur’s point

spread function, h, of Eq. (4) is replaced by three

point spread functions such as hsensor∗hlens∗hmotion.

– [123], [219], [253], [312], [313], [314], [346] assume

that a global affine photometric correction resulting

from multiplication and addition across all pixels by

scalars λ and γ respectively is also involved in the

imaging process:

gk(m,n) = λkd(hk(wk(f(x, y))))+γk+ηk(m,n) (6)

The above affine photometric model can only han-

dle small photometric changes, therefore it has been

extended to a non-linear model in [289], which also
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Table 4 Different imaging models employed in SR algorithms

Reported in

Imaging model of Eq. 4 [13], [14], [20], [31], [34], [35], [41], [42], [43], [50], [55], [73], [81], [85], [87], [91], [92], [95], [97],
[113], [115], [116], [122], [128], [133], [138], [147], [149], [170], [174], [177], [181], [186], [187],
[188], [189], [199], [204], [209], [215], [216], [217], [218], [223], [224], [226], [227], [228], [230],
[231], [235], [242], [246], [248], [249], [250], [251], [252], [258], [260], [270], [272], [276], [277],
[279], [280], [281], [282], [285], [287], [288], [291], [293], [295], [296], [303], [305], [306], [307],
[308], [309], [316], [317], [319], [322], [325], [326], [328], [331], [333], [337], [347], [349], [353],
[354], [358], [362], [363], [365], [366], [367], [368], [369], [371], [375], [377], [378], [379], [380],
[381], [382], [388], [392], [406], [408], [414], [418], [422], [424], [428], [429], [432], [440], [450],
[455], [456], [460], [468], [470], [471], [478], [479], [480], [481], [482], [484], [485], [488], [490],
[492], [496], [501], [507], [508], [512], [514], [518], [526], [528], [529], [531], [535], [537], [538],
[540], [545], [547], [551], [555], [574], [575], [587], [590], [592], [601], [602], [606]

Modified imaging models [29], [30], [33], [38], [44], [45], [51], [62], [63], [64], [75], [80], [83], [86], [88], [93], [104], [105],
[107], [108], [109], [110], [112], [118], [123], [124], [125], [127], [129], [134], [137], [140], [156],
[157], [158], [160], [161], [163], [165], [172], [175], [205], [217], [226], [227], [229], [234], [238],
[247], [253], [264], [273], [278], [284] , [289], [312], [313], [314], [336], [360], [387], [397], [401],
[418], [419], [427], [445], [541], [581], [585], [613]

discusses the fact that feature extraction for find-

ing similarities would be easier between similarly

exposed images than it would with images having

large differences in exposure. Therefore, it can be

more efficient to carry out a photometric registra-

tion to find similarly exposed images and then do

the geometric registration.

– [62], [63], [64], [225], [278], [387], [427] assume that a

sequence of LR observations are blurred and down-

sampled versions of a respective sequence of HR

images, i.e., they don’t consider warping effect be-

tween LR images and their corresponding HR ones,

instead they involve warping between the super-

resolved HR images. This, provides the possibility

of using temporal information between consecutive

frames of a video sequence.

– [104], [110], [137], [161] change the above imaging

model to consider the quantization error which is

introduced by the compression process.

– [105], [127] change the imaging model of Eq. (4) in

such a way that the SR is applied to the feature

vectors of some LR face image observations instead

of their pixel values. The result in this case will not

be a higher resolution face image but a higher di-

mensional feature vector, which helps in increasing

the recognition rate of a system which uses these

feature vectors. The same modification is followed

in [165], wherein Gabor wavelet filters are used as

the features. This method is also followed in [360],

[585], but here the extracted features are directly

used to reconstruct the super-resolved image.

– [129], [163], [244], [246], [448], [596] change the imag-

ing model of Eq. (4) to include the effect of different

zooming in the LR images.

– [155], [156], [157], [158], [160] change the imaging

model of Eq. (4) to reflect the effect of color fil-

tering for color images which comes into play when

the color images are taken by cameras with only one

Charge-Coupled Device (CCD). Here some color fil-

ters are used to make every pixel sensitive to only

one color. Then, the other two color elements of the

pixels are obtained by demosaicing techniques.

– [175], [247], [613] adapt the imaging model of Eq.

(4) to hyper-spectral imaging in such a way that

the information of different spectra of different LR

images are involved in the model.

– [184], [229] reflect the effects of a nonlinear camera

response function, exposure time, white balancing

and external illumination changes which cause vi-

gnetting effects. In this case, the imaging model of
Eq. (5) is changed to:

gk = κ(αkAf + βk + ηk) + %k (7)

where κ is the nonlinear camera response function,

αk is a gain factor modeling the exposure time, βk
is an offset factor modeling the white balancing, ηk
is the sensor noise, and %k is the quantization error.

– [205] extends the imaging model of Eq. (4) to the

case where multiple video cameras capture the same

scene. It is discussed here that, just as spatial mis-

alignment can be used to improve the resolution in

SR algorithms, temporal misalignment between the

videos captured by different cameras can also be ex-

ploited to produce a video with higher frame rates

per second than any of the individual cameras.

– [238] uses an imaging model in which it is assumed

that the LR images are obtained from the HR scene

by a process which is a function of i) sub-sampling

the HR scene, ii) the HR structural information
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representing the surface gradients, iii) the HR re-

flectance field such as albedo, and iv) Gaussian noise

of the process. Using this structure preserving imag-

ing model, there is no need for sub-pixel misalign-

ment between the LR images and, consequently, no

registration algorithm is needed.

– [418], [419], [439] remove the explicit motion param-

eter of the imaging model of Eq. (4). Instead, the

idea of a probabilistic motion is introduced (this will

be explained in more detail in Section 5.1.3).

– [581] changes the imaging model of Eq. (4) for the

purpose of ultrasound imaging:

g(m,n) = hf(x, y) + η(m,n) (8)

where g is the acquired radio frequency signal and

f is the tissue scattering function.

3.1 Geometric Registration

For multiple-image SR to produce missing HR frequen-

cies, some level of aliasing is required to be present in

the LR acquired frames. In other words, multiple-image

based SR is possible if at least one of the parameters

involved in the imaging model employed changes from

one LR image to another. These parameters include mo-

tion, blur (optical, atmospheric, and/or motion blur),

zoom, multiple aperture [106], [446], multiple images

from different sensors [117], [205], and different channels

of a color image [117]. Therefore, in multiple-image SR

prior to the actual reconstruction, a registration step is

required to compensate for such changes, though, some

of the methods (discussed in Section 6.1.2) do the recon-

struction and the compensation of the changes simulta-

neously. The two most common types of compensation

for the changes between LR images are geometric regis-

tration and blur estimation. The geometric registration

is discussed in this section and the blur estimation in

Section 3.2.

Geometric registration compensates for the geomet-

ric misalignment (motion) between the LR images, with

the ultimate goal of their registration to an HR frame-

work. Such misalignments are usually the result of global

and/or local motions [6], [8], [20], [35], [36], [55], [123],

[243], [363]. Global motion is a result of motion of the

object and/or camera, while local motion is due to the

non-rigid nature of the object, e.g., the human face, or

due to imaging condition, e.g., the effect of hot air [363].

Global motion can be modeled by:

– a translational model (which is common in satellite

imaging) [170], [175], [181], [183], [217], [231], [397]

– an affine model [20], [55], [195], [291], [293], [351],

[425], [431], [483], [540] or

– a projective model [84], [85], [86], [216], [316], [490],

while local motion is modeled by a non-rigid motion

model [363]. In a typical non-rigid motion model, a set

of control points on a given image is usually combined

using a weighting system to represent the positional

information both in the reference image and in the new

image to be registered with the reference image.

The first image registration algorithm used for SR

was proposed in [6], in which translational and rota-

tional motions between the LR observations and the

targeted HR image were assumed. Therefore, according

to the imaging model given in Eq. (4), the coordinates

of the LR and HR images will be related to each other

according to:

x = xtk + qxm cos θk − qyn sin θk

y = ytk + qxm sin θk + qyn cos θk (9)

where (xtk, y
t
k) is the translation of the kth frame, θk

is its rotation, and qx and qy are the sampling rates

along the x and y direction, respectively. To find these

parameters, [6], [8], [20], [195], [196], [243], [596] used

the Taylor series expansions of the LR images. To do

so, two LR images g1 and g2 taken from the same scene

which are displaced from each other by a horizontal

shift a, vertical shift b, and rotation θ, are first described

by:

g2(m,n) = g1(m cos θ−n sin θ+ a, n cos θ+m sin θ+ b)

(10)

Then, sin θ and cos θ in Eq. (10) are expanded in their

Taylor series expansions (up to two terms):

g2(m,n) = g1(m+a−nθ−mθ
2

2
, n+b+mθ− nθ

2

2
) (11)

Then, g1 is expanded into its own Taylor series expan-

sion (up to two terms):

g2(m,n) =g1(m,n) + (a− nθ − mθ2

2
)
∂g1
∂m

+

(b+mθ − nθ2

2
)
∂g1
∂n

(12)

From this, the error of mapping one of these images on

the other one can be obtained as:

E(a, b, θ) =
∑

(g1(m,n) + (a− nθ − mθ2

2
)
∂g1
∂m

+

(b+mθ − nθ2

2
)
∂g1
∂n
− g2(m,n))2

(13)

where the summation is over the overlapping area of the

two images. The minimum of this error can be found

by taking its derivatives with respect to a, b and θ and

solving the equations obtained.
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It was shown in [6] that this method is valid only

for small translational and rotational displacements be-

tween the images. This algorithm was later on used

(or slightly changed) in many other works [13], [14],

[24], [51], [91], [172], [196], [264] [284], [303], [304], [306],

[307], [319], [480], [481], [482], [537], [574], [575].

It is discussed in [8] that the above mentioned method

of [6] can be used for modeling other types of mo-

tion, such as perspective transformations, if the images

can be divided into blocks such that each block un-

dergoes some uniform motion [8], [369]. To speed up

this registration algorithm, it was suggested to use a

Gaussian resolution pyramid [8]. The idea is that even

large motions in the original images will be converted

to small motions in the higher levels (lower resolution

images) of the pyramid. Therefore, these small motions

are first found in the smaller images and then are in-

terpolated in the lower level (higher resolution) images

of the pyramid until the original image is met. This

method, known as optical flow, works quite well when

motion is to be computed between objects, which are

non-rigid, non-planar, non-Lambertian, and are subject

to self occlusion, like human faces, [55], [57], [58], [71],

[82], [99], [100], [115], [116], [128], [126], [176], [190],

[270], [288], [295], [296], [299], [307], [414], [468], [478],

[492], [500], [529], [534], [555], [592]. It is discussed in

[592] that using optical flows of strong candidate feature

points (like those obtained by Scale Invariant Feature

Transform (SIFT)) for SR algorithms produces better

results than dense optical flows in which the flow in-

volves every pixel.

Besides the above mentioned pixel-based registra-

tion algorithms, many other registration algorithms have

been used in reconstruction based SR algorithms [30],

[36], [37], [41], [50], [55], [123], [176], e.g., in:

– [30], [36], [37], [216] edge information (found by gra-

dient operators) is used for registering the LR im-

ages by minimizing the normalized Sum of Squared

Differences (SSD) between them. Given a reference

image and a new image, block matching [55], [77],

[160], [176], [210], [251], [252], [308], [309], [333],

[364], [366], [369], [397], [593] divides the images into

blocks of equal or adaptive sizes [366]. Each block in

the reference image is then compared against every

block in a neighborhood of blocks in the new im-

age. Different search techniques are possible for find-

ing the corresponding block of a reference block in

the new image: Sum of Absolute Differences (SAD)

[364], [369], [397], [542], [544], SSD [369], Sum of Ab-

solute Transform Differences (SATD), Sum of Squared

Transform Differences (SSTD) [282]. A comparison

of these search techniques can be found in [333].

Having applied one of these search techniques, the

block with the smallest distance is considered to be

the corresponding block of the current block. This

process is repeated for every block until the motion

vectors between every two corresponding blocks are

found. This technique works fine but fails to esti-

mate vectors properly over flat image intensity re-

gions [55], [176]. To deal with this problem, it is

suggested in [176] that motion vectors should only

be calculated from textured regions and not from

smooth regions.

– [184], [216], [229], [582] feature points are extracted

by Harris corner detection and then are matched us-

ing normalized cross correlation. After removing the

outliers by RANSAC, the homographies between

the LR images are found by again applying RANSAC

but this time to the inliers.

– [219], [274], [383] the sampling theory of signals with

Finite Rate of Innovation (FRI) is used to detect

step edges and corners and then use them for reg-

istration in an SR algorithm. It is shown in [274]

that this method works better than registration al-

gorithms based on Harris corners.

– [296] normalized cross correlation has been used to

obtain the disparity for registration in a stereo setup

for 3D SR.

– [322], [396], [455] Active Appearance Model (AAM)

has been used for registration of facial images in a

video sequence.

– [368] a feature-based motion estimation is performed

using SIFT features (and PROSAC algorithm for

matching) to obtain an initial estimate for the mo-

tion vectors between an input image and a reference

image. These estimated vectors are then used to ex-

tract individual regions in the input image which

have similar motions. Then, a region-based motion

estimation method using local similarity and local

motion error between the reference image and the

input image is used to refine the initial estimate

of the motion vectors. This method is shown to be

able to handle multiple motions in the input images

[368].

– [370] Fourier description-based registration has been

used.

– [371], [422], [592], [615] SIFT and RANSAC have

been used.

– [400] a mesh-based warping is used.

– [449] depth information is used for finding the reg-

istration parameters.

– [613] Principal Component Analysis (PCA) of hyper-

spectral images is used for motion estimation and

registration.

Each motion model has its own pros and cons. The

proper motion estimation method depends on the char-
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acteristics of the image, the motion’s velocity, and the

type of motion (local or global). The methods men-

tioned above are mostly global methods, i.e., they treat

all the pixels the same. This might be problematic if

there are several objects in the scene having different

motions (multiple motions) or if different parts of an

object have different motions, like different parts of a

face image [270], [381]. To deal with the former cases,

in [20] and later on in [42], [43], [86], [128], [147], [177],

[264] [284] it was suggested to find the motion vectors

locally for each object and use the temporal informa-

tion if there is any. To do so, in [147], [177] Tukey M-

estimator error functions of the gray scale differences of

the inlier regions are used. These are the regions which

are correctly aligned. Since these regions are dominated

by aliasing, the standard deviation of the aliasing can be

used for estimating the standard deviation of the gray

scale differences. The standard deviation of the aliasing

can be estimated using the results on the statistics of

the natural images [147], [177].

To give further examples of finding local motions,

the following can be mentioned:

– in [270], a system is proposed for face images, in

which the face images are first divided into sub-

regions and then the motions between different re-

gions are calculated independently.

– in [381] and [605], a Free From Deformation (FFD)

model is proposed for modeling the local deforma-

tion of facial components.

– in [35], the motion vectors of three channels of a

color image are found independently and then com-

bined to improve the accuracy of the estimation.

Global motion estimation between the images of a

sequence can be carried out in two ways: differential

(progressive) and cumulative (anchored). In the differ-

ential method, the motion parameters are found be-

tween every two successive frames [290]. In the cumu-

lative method, one of the frames of the sequence is cho-

sen as the reference frame and the motions of the other

frames are computed relative to this reference frame.

If the reference frame is not chosen suitably, e.g., if it

is noisy or if it is partially occluded, the motion esti-

mation and therefore the entire SR algorithm will be

erroneous. To deal with that,

– Wang and Wang [172] use subsequences of the in-

put sequence to compute an indirect motion vec-

tor for each frame instead of computing the motion

vector between only two images (a new image and

the reference image). These motion vectors are then

fused to make the estimation more accurate. Fur-

thermore, they have included a reliability measure

to compensate for the inaccuracy in the estimation

of the motion vectors.

– Ye et al. [216] propose using the frame before the

current frame as the new reference frame if the over-

lap between the reference frame and the current

frame is less than a threshold (e.g., 60%).

– Nasrollahi and Moeslund [480], [481], [482], [537],

and then [540] propose using some quality measures

to pick the best frame of the sequence as the refer-

ence frame.

3.2 Blur Estimation

This step is responsible for compensating for the blur

differences between the LR images, with the ultimate

goal of deblurring the super-resolved HR image. In most

of the SR works, blur is explicitly involved in the imag-

ing model. The blur effects in this group of algorithms

are caused by the imaging device, atmospheric effects,

and/or by motion. The blurring effect of the imaging

device is usually modeled by a so-called point spread

function, which is usually a squared Gaussian kernel

with a suitable standard deviation, e.g., 3×3 with stan-

dard deviation of 0.4 [248], 5×5 with standard deviation

of 1 [155], [184], [229], 15× 15 with standard deviation

of 1.7 [186], and so on. If the point spread function of

the lens is not available from its manufacturer, it is

usually estimated by scanning a small dot on a black

background [8], [13], [14]. If the imaging device is not

available, but only a set of LR images are, it can be

estimated by techniques known as Blind Deconvolution

[275] in which the blur can be estimated by degradation

of features like small points or sharp edges or by tech-

niques like Generalized Cross Validation (GCV) [68],

[92]. In this group, the blur can be estimated globally

(space-invariant blurring) [5] (1987), [6], [8], [9], [13],

[14]) or locally (space-variant blurring). Local blurring

effects for SR were first proposed by Chiang et al. [30]

(1996), [36], [37] by modeling the edges of the image as

a step function v+δu where v is the unknown intensity

value and δ is the unknown amplitude of the edge. The

local blur of the edge is then modeled by a Gaussian

blur kernel with an unknown standard deviation. The

unknowns are found by imposing some constraints on

the reconstruction model that they use [30] (1996), [36],

[37]. Shekarfroroush and Chellappa [70] used a gener-

alization of Papoulis’s sampling theorem and shifting

property between consecutive frames to estimate local

blur for every frame.

The blurring caused by motion depends on the di-

rection of the motion, the velocity, and the exposure

time [242], [273], [542]. It is shown in [542] that tempo-
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ral blur induces temporal aliasing and can be exploited

to improve the SR of moving objects in video sequences.

Instead of estimating the point spread function, in

a second group of SR algorithms known as direct meth-

ods (Section 5.1.3), a deblurring filter is used after the

actual reconstruction of the HR image [30] (1996), [36],

[37], [58], [74]. Using a high-pass filter for deblurring in

the context of SR was first proposed by Keren et al. [6].

In Tekalp et al. [16] and then in [58], [87], [242], [463],

[531] a Wiener filter and in [128] an Elliptical Weighted

Area (EWA) filter has been used for this purpose.

3.3 Error and Noise

In real-world applications, the discussed registration

steps are error prone. This gets aggregated when in-

consistent pixels are present in some of the LR input

images. Such pixels may emerge when there are, e.g.,

– moving objects that are present in only some LR

images, like a bouncing ball or a flying bird [125],

[534], [538].

– outliers in the input. Outliers are defined as data

points with different distributional characteristics

than the assumed model [124], [125], [155], [156],

[157].

A system is said to be robust if it is not sensitive to these

errors. To study the robustness of an algorithm against

outliers, the concept of a breakdown point is used. That

is the smallest percentage of outlier contamination lead-

ing the results of the estimation to be outside of some

acceptable range [157]. For example, a single outlier is

enough to move the results of a mean estimator out-

side of any predicted range, i.e., the breakdown point

of a mean estimator is zero. This value for a median

estimator is 0.5, i.e., this estimator is robust to outliers

when their contamination is less than 50 percent of all

the data point [157], [216].

Besides errors in estimating the parameters of the

system, an SR system may suffer from noise. Several

sources of noise can be imagined in such a system, in-

cluding telemetry noise (e.g., in satellite imaging) [22]

(1994), measurement noise (e.g., shot noise in a CCD,

analog to digital conversion noise [226]), and thermal

noise [184], [229]. The performance of the HR estima-

tor has a sensitive dependence on the model assumed

for the noise. If this model does not fully describe the

measured data, the results of the estimator will be erro-

neous. Several types of noise models are used with SR

algorithms, for example:

– linear noise (i.e., additive noise) addressed by:

– averaging the LR pixels [6], [8], [13], [14], [91]

– modeling the noise as a:

• Gaussian (using an l2 norm estimator)

• Laplacian (using an l1 norm estimator) [124],

[125], [155], [156], [157], [226], [227], [490],

[462], [541] which has been shown to be more

accurate than a Gaussian distribution.

– non-linear noise (i.e., multiplicative noise) addressed

by:

– eliminating extreme LR pixels [6], [8], [13], [14].

– Lorentzian modeling. In [308], [309] it has been

discussed that employing l1 and l2 norms for

modeling the noise is valid only if the noise in-

volved in the imaging model of Eq. (4) is addi-

tive white Gaussian noise, but the actual model

of the noise is not known. Therefore, it has been

discussed to use Lorentzian norm for modeling

the noise, which is more robust than l1 and l2
from a statistical point of view. This norm is

defined by:

L(r) = log(1 + (
r√
2T

)2) (14)

where r is the reconstruction error and

T is the Lorentzian constant.

Having discussed the imaging model and the param-

eters involved in the typical SR algorithms, the actual

reconstructions of these algorithms are discussed in the

following sections, according to the order given in Fig.

1.

4 Frequency Domain

SR algorithms of this group first transform the input

LR image(s) to the frequency domain and then estimate

the HR image in this domain. Finally, they transform

back the reconstructed HR image to the spatial domain.

Depending on the transformation employed for trans-

forming the images to the frequency domain, these al-

gorithms are generally divided into two groups: Fourier-

Transform based and Wavelet-Transform based meth-

ods, which are explained in the following subsections.

4.1 Fourier Transform

Gerchberg [1] (1974) and then Santis and Gori [2] in-

troduced the first SR algorithms. These were iterative

methods in the frequency domain, based on the Fourier

transform [178], which could extend the spectrum of a

given signal beyond its diffraction limit and therefore

increase its resolution. Though these algorithms were

later reintroduced in [26] in a non-iterative form, based

on Singular Value Decomposition (SVD), they did not
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become as popular as the method of Tsai and Huang [3]

(1984). Tsai and Huang’s system [3] (1984) was the first

multiple-image SR algorithm in the frequency domain.

This algorithm was developed for working on LR images

acquired by Landsat 4 satellite. This satellite produces

a set of similar but globally translated images, gk of

the same area of the earth, which is a continuous scene,

f , therefore, gk(m,n) = f(x, y), where x = m + ∆mk

and y = n+∆nk
. These shifts, or translations, between

the LR images were taken into account by the shifting

property of the Fourier transformation:

Fgk(m,n) = ei2π(∆mk
m+∆nk

n)Ff (m,n) (15)

where Fgk and Ff are the continuous Fourier transforms

of the kth LR image and the HR scene, respectively.

The LR images are discrete samples of the continuous

scene, therefore, gk(m,n) = f(mTm+∆mk
, nTn+∆nk

)

where Tm and Tn are the sampling periods along the

dimensions of the LR image. Thus, the discrete Fourier

transform of the LR images, Gk, and their continuous

Fourier transform, Fgk are related through [3], [126],

[398], [511]:

Gk(m,n) =
1

Tm

1

Tn

∞∑
p1=−∞

∞∑
p2=−∞

Fgk(
m

MTm
+

p1
1

Tm
,
n

NTn
+ p2

1

Tn
)

(16)

where M and N are the maximum values of the di-

mensions of the LR images, m, n, respectively. It is

assumed that the HR scene is band limited, therefore,

putting the shifting property Eq. (15) into Eq. (16) and

writing the results in matrix form results in [3] (1984):

G = ΦFf , (17)

in which Φ relates the discrete Fourier transform of the

LR images G to the continuous Fourier transform of the

HR scene, Ff . SR here is therefore reduced to finding Ff

in Eq. (17) which is usually solved by a Least Squares

(LS) algorithm. The seminal work of Tsai and Huang

[3] (1984) assumed ideal noise free LR images with no

blurring effects. Later on, an additive noise [9], [16],

[21], [68] and blurring effects [9], [68] were added to

Tsai and Huang’s method [3] (1984) and Eq. (17) was

rearranged as [9], [16], [21]:

G = ΦFf + η (18)

in which η is a noise term. From this model, Kim et al.

[9] tried to minimize the following error, E, using an

iterative algorithm:

‖E‖2 = (G−ΦḞf )
†(G−ΦḞf ) (19)

where Ḟf is an approximation of Ff which minimizes

Eq. (19) and † represents conjugate transpose [9]. Fur-

thermore, [9] incorporated the a priori knowledge about

the observed LR images into a Recursive Weighted Least

Squares (RWLS) algorithm. In this case, Eq. (19) will

be altered to:

‖E‖2 = (G−ΦḞf )
†A(G−ΦḞf ) (20)

in which A is a diagonal matrix giving the a priori

knowledge about the discrete Fourier transform of the

available LR observations, G. In this case, those LR

images which were known to have a higher signal-to-

noise ratio are assigned greater weights. In [9], [16] it

was assumed that the motion information was known

beforehand. To reduce the errors of estimating the dis-

placements between the LR images, [19], [21], [511] used

a Recursive Total Least Squares (RTLS) method. In

this case, Eq. (17) becomes:

G = (Φ + P)Ff + η (21)

where P is a perturbation matrix obtained from the

estimation errors [19], [21].

4.2 Wavelet Transform

The wavelet transform as an alternative to the Fourier

transform has been widely used in frequency-domain

based SR algorithms. Usually it is used to decompose

the input image into structurally correlated sub-images.

This allows exploiting the self-similarities between lo-

cal neighboring regions [356], [516]. For example, in

[516] the input image is first decomposed into subbands.

Then, the input image and the high-frequency subbands

are both interpolated. Then the results of a Stationary
Wavelet Transform of the high-frequency subbands are

used to improve the interpolated subbands. Then, the

super-resolved HR output is generated by combining

all of these subbands using an inverse Discrete Wavelet

Transform (DWT).

Similar methods based on the DWT have been de-

veloped for SR in [143] (2003), [150], [179], [257], [459].

In [162], [302], [320], [345], [399], [436], [447], [476],

[549], [564], [565], but the results obtained by DWT are

used as a regularization term in Maximum a Posteriori

(MAP) formulation of the problem (Section 5.1.6). In

[390], [423] they have been used with Compressive Sens-

ing (CS) methods (Section 5.2.1) and in [425] within a

PCA-based face hallucination algorithm (Section 5.2).

Wavelet based methods may have difficulties in ef-

ficient implementation of degraded convolution filters,

while they can be done efficiently using the Fourier

transform. Therefore, these two transforms have some-

times been combined together into the Fourier-Wavelet

Regularized Deconvolution [390].
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In addition to the above mentioned methods in the

frequency domain, some other SR algorithms of this do-

main have borrowed the methods that have been usu-

ally used in the spatial domain; among them are: [119],

[211], [321], [370], [589] which have used a Maximum

Likelihood (ML) method (Section 5.1.5), [144], [178],

[201] which have used a regularized ML method, [197],

[221], [267], [491], [511], [567] which have used a MAP

method (Section 5.1.6), and [141], [175] which have im-

plemented a Projection Onto Convex Set (POCS) method

(Section 5.1.4). These will all be explained in the next

section.

5 Spatial Domain

Based on the number of available LR observations, SR

algorithms can be generally divided into two groups:

single image based and multiple image based algorithms.

The algorithms included in these groups are explained

in the following subsections, according to the order given

in Fig. 1.

5.1 Multiple Image based SR Algorithms

Multiple image (or classical) SR algorithms are mostly

reconstruction-based algorithms, i.e., they try to ad-

dress the aliasing artifacts that is present in the ob-

served LR images due to under-sampling process by

simulating the image formation model. These algorithms

are studied in the following subsections.

5.1.1 Iterative Back Projection

Iterative Back Projection (IBP) methods (Table 5) were

among the first methods developed for spatial-based

SR. Having defined the imaging model like, e.g., the one

given in Eq. (5), these methods then try to minimize

||Af−g||22. To do so, usually an initial guess for the HR

targeted image is generated and then it is refined. Such

a guess can be obtained by registering the LR images

over an HR grid and then averaging them [8], [13], [14],

[20]. To refine this initial guess f (0), the imaging model

given in Eq. (4) is used to simulate the set of the avail-

able LR observations, g
(0)
k , k = 1..K. Then the error be-

tween the simulated LR images and the observed ones,

which is computed by

√
1
K

∑K
k=1 ||gk − g

(t)
k ||22 (t is the

number of iterations), is obtained and back-projected to

the coordinates of the HR image to improve the initial

guess [20]. This process is either repeated for a spe-

cific number of iterations or until no further improve-

ment can be achieved. To do so, usually the following

Richardson iteration is used in this group of algorithms:

f (t+1)(x, y) = f (t)(x, y) +
1

K

K∑
k=1

w−1k (((gk − g(t)k )ḋ) ∗ ḣ)

(22)

in which t is an iteration parameter, w−1k is the inverse

of the warping kernel of Eq. (4), ḋ is an up-sampling

operator, ∗ represents a convolution operation, and ḣ is

a debluring kernel which has the following relationship

with the blurring kernel of the imaging model of Eq.

(4) [20]:

||δ − h ∗ ḣ||2 <
1

1
K

∑
k=1K||wk||2

(23)

wherein δ is the unity pulse function centered at (0, 0)

[20]. If the value of a pixel does not change for a spe-

cific number of iterations, its value will be considered

as found and the pixel will not accompany the other

pixels in the rest of the iterations. This increases the

speed of the algorithm. As can be seen from Eq. (22),

the back projected error is the mean of the errors that

each LR image causes. In [97], [124], [125] it has been

suggested to replace this mean by the median to get

a faster algorithm. In [249] this method has been ex-

tended to the case where the LR images are captured

by a stereo setup.

The main problem with the above mentioned IBP

methods is that the response of the iteration can ei-

ther converge to one of the possible solutions or it may

oscillate between them [8], [13], [14], [20], [75], [83].

However, this can be dealt with by incorporating a pri-

ori knowledge about the solution, as has been done in

[81], [83], [124], [279], [280], [380], [406], [446], [492],

[552]. In this case, these algorithms will try to mini-

mize ||Af − g||2 + λ||ρ(f)||2, wherein λ is a regulariza-

tion coefficient and ρ is a constraint on the solution.

In [124], [125], [226], [227] it has been suggested to re-

place the l2 norm by l1 in both the residual term and

the regularization term. Beside increasing the speed of

the algorithm it has been shown that this increases the

robustness of the algorithm against the outliers which

can be generated by different sources of errors, such as

errors in the motion estimation [124].

Table 5 Reported IBP works

[5], [6], [8], [13], [14], [29], [35], [51], [75], [81], [83], [86],
[97], [124], [125], [128], [138], [147], [172], [177], [242], [249],
[264], [270], [279], [280] [284], [325], [369], [392], [406],
[446], [492], [501], [539], [546], [552]
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5.1.2 Iterative Adaptive Filtering

Iterative Adaptive Filtering (IAF) algorithms [62] (1999),

[63], [64], [156], [210], [225], [226], [227], [278], [334],

[387], [427], [463] have been developed mainly for gen-

erating a super-resolved video from an LR video (video

to video SR), and treat the problem as a state esti-

mation problem and therefore propose considering the

Kalman filter for this purpose. To do so, besides the

observation equation of the Kalman filter (which is the

same as in the imaging model of Eq. (1) there is the

need for one more equation, the state equation of the

Kalman filter, which is defined by:

fk = Bkfk−1 + ζk (24)

in which Bk models the relationship between the cur-

rent and the previous HR image and ζ represents the er-

ror of estimating Bk. Beside these two equations, which

were considered in the original works on using the Kalman

filter for SR [62] (1999), [63], [64], [278], [387], it is

shown in [210] that modeling the relationship between

the LR images can also be incorporated into the esti-

mation of the HR images. To do so, a third equation is

employed:

gk = Dkgk−1 + ξk (25)

where Dk models the motion estimation between the

successive LR images and ξ is the error of this estima-

tion.

These algorithms have the capability of including a

priori terms for regularization and convergence of the

response.

5.1.3 Direct Methods

Given a set of LR observations, in the first SR al-

gorithms of this group (Table 6) the following simple

steps were involved: first, one of the LR images was

chosen as a reference image and the others were regis-

tered against it (e.g., by optical flow [58], [115], [116],

[190], [299], [468]), then the reference image is scaled

up by a specific scaling factor and the other LR images

were warped into that using the registration informa-

tion. Then, the HR image is generated by fusing all the

images together and finally an optional deblurring ker-

nel may be applied to the result. For fusing the scaled

LR images, different filters can be used, such as mean

and median filters [125], [156], [157], [190], [216], [299],

[479], adaptive normalized averaging [167], Adaboost

classifier [364], and SVD-based filters [582]. These al-

gorithms have been shown to be much faster than the

IBP algorithms [30] (1996), [36], [37], [42], [43], [74].

Table 6 Reported Direct works

Method Reported in

Direct [30], [36], [37], [58], [74], [115], [116],

[124], [125], [156], [157], [226] (the last

five are known as shift and add),

[167], [176], [190], [299], [319], [364],

[397], [479], [544], [546], [582]

Non-parametric [418], [419], [426], [439], [514], [560],

[563], [617]

In [125], [156], [157], [216] it was shown that the me-

dian fusion of the LR images when they are registered,

is equivalent to the ML estimation of the residual of

the imaging model of Eq. (4) and results in a robust

SR algorithm if the motion between the LR images is

translational and the blur is spatially locally invariant.

The order of the above mentioned steps has some-

times been changed by some authors. For example, in

[195] and [319], after finding the motion information

from the LR images, they are mapped to an HR grid

to make an initial estimate of the super-resolved image.

Then, a quadratic Teager filter, which is an unsharping

filter, is applied to the LR images and they are mapped

to the HR grid using the previously found motion in-

formation to generate a second super-resolved image.

Finally, these two super-resolved images are fused us-

ing a median filter to generate the end result. It has

been shown in [195] and [319] that this method can

increase the readability of text images.

As opposed to the above algorithms, in some other

algorithms of this group, such as, e.g., in [290], after

finding the registration parameters, the LR pixels of

the different LR images are not quantized to a finite HR

grid, but they are weighted and then combined based on

their positions in a local moving window. The weights

are adaptively found in each position of the moving

window. To combine the LR pixels after registration,

in [306], Partition-based Weighted Sum (PWS) filters

are used. Using a moving window which meets all the

locations of the HR image, the HR pixel in the center of

the moving window is obtained based on the weighted

sum of the LR pixels in the window. In each window

location, the weights of the available pixels are obtained

from a filter bank using the configuration of the missing

pixels in the window and the intensity structure of the

available pixels [306].

In a recently developed set of algorithms, known

as non-parametric SR algorithms [418] (2009) (Table

6), which can also be classified in the group of Direct

methods, the two steps of motion estimation and fu-

sion are combined. In this group of algorithms, which
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is shown to work very well with video sequences, the

common requirement of SR algorithms for explicit mo-

tion estimation between LR input images has been re-

placed by the newly introduced concept of fuzzy mo-

tion. These methods can handle occlusion, local and

complex motions like those for facial components when

facial expressions change. Here the LR images are first

divided into patches. Then every patch of a given im-

age is compared to a set of patches, including the corre-

sponding patch and some patches in its neighborhood,

in the next LR image. Then based on the similarity

of these patches and their distances from the current

patch, a weight is associated to every patch indicating

the importance of this patch for producing an output

patch. Different methods have been developed for defin-

ing these weights. For example, in:

– [418], [419], [514], [560], [563], [617] they are defined

based on the Nonlocal-Means algorithm which has

been used for video denoising:

Ẑ = [
∑

(k,l)∈Ω

]w̄[k, l](DpR
H
k,l)

T (DpR
H
k,l)]

−1

[
∑

(k,l)∈Ω

(DpR
H
k,l)

T×

(
∑

t∈[1,...,T ]

∑
(i,j)∈NL(k,l)

w[k, l, i, j, t]RLi,jyt)]

(26)

where Ẑ is the reconstructed image which later on

should be deblurred, w̄[k, l] which is defined as:

w̄[k, l] =
∑

t∈[1,...,T ]

∑
(i,j)∈NL(k,l)

w[k, l, i, j, t], (k, l)

(27)

is the center of the current patch, N(k, l) is the

neighborhood of the pixel (k, l), Ω is the support

of the entire image, Dp is the downsampling opera-

tor, RHk,l is a patch extraction operator at the loca-

tion of (k, l) of the HR image, t is a time operator

which changes to cover all the available LR images,

T , RLi,j is a patch extraction operator at the location

of (i, j) of the LR image, y is the LR input image,

and w[k, l, i, j, t] is the weight associated to patch

(i, j) for reconstruction of patch (k, l) and is defined

by:

w[k, l, i, j] = exp(
−||R̂k,ly − R̂i,jy||22

2σ2
r

)

.f(
√

(k − i)2 + (l − j)2)

(28)

where the first term considers the radiometric sim-

ilarity of the two patches and the second one, f ,

considers the geometric similarities and may take

any form, such as a Gaussian, a box, or a constant,

and the parameter σr controls the effect of the gray

level difference between the two pixels [418], [419].

– [318], [426], [460], [464], [468] they are defined based

on steering kernel regression which takes into ac-

count the correlation between the pixel positions

and their values.

– [518] they are found using Zernike moments.

– [617] they are found based on the similarity of some

clusters in the images. These measures are defined

by Gaussian functions based on the structure and

intensity distance between the clusters.

– [509] they are found using wavelet decomposition.

It worth mentioning that sometimes, as in [391], the

above explained method of [418], [419] has been applied

to only one single image. In such a case, usually a res-

olution pyramid of the single input image is built and

then the method of [418], [419] is applied to the images

of this pyramid [391].

5.1.4 Projection onto Convex Sets

Another group of iterative methods are those based on

the concept of POCS [7] (1989), [38], [42], [43], [49],

[53], [72], [77], [93], [103], [122], [155], [175], [184], [204],

[243], [351]. These algorithms define an implicit cost

function for solving the SR problem [155]. Consider-

ing the imaging model given in Eq. (4), in the POCS

method it is assumed that each LR image imposes an

a priori knowledge on the final solution. It is assumed

that this a priori knowledge is a closed convex set, Sk,

which is defined as [38]:

Sk = {f | δl ≤ |dhkwkf − gk| ≤ δu} (29)

where gk is the kth LR image, f is the solution, and

δl and δu are the lower and upper bound uncertain-

ties of the model. Having this group of K convex sets,

the following iteration can be used to estimate the HR

unknown image [38]:

f (L+1)(x, y) = ℘m℘m−1...℘2℘1f
(L)(x, y) (30)

in which the starting point of the iteration is an ar-

bitrary point, and the projection operator ℘i projects

the kth estimate of the HR image onto the convex set

of the ith LR image. The results will be erroneous, if

some of the LR images suffer from partial occlusion,

or if their motion vectors have been estimated inaccu-

rately. To reduce these effects, [39] has used a validity

map to disable those projections which involve inaccu-

rate information.
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Different a priori knowledge have been used in the

literature along with the POCS method [7] (1989), [38],

[53], [72], [77], [93], [175], [184], [204], for example:

– amplitude constraint, energy constraint, reference-

image constraint, and bounded-support constraint

[7] (1989) .

– data consistency and aliasing/ringing removal [53].

– channel by channel total variation, luminance total

variation, inter-channel cross correlation sets, bound-

edness, and non-negativity constraints for color im-

ages [204].

It has been discussed in [93] that since projections

onto sets defined at edge locations cause a ringing effect,

it is better to reduce the amount of deblurring at the

edges by using blur functions at the direction of the

edge gradient more like an impulse. Furthermore, in

[184] it is discussed that defining the constraints on

individual pixel values rather than on the whole image

leads to a simpler implementation.

5.1.5 Maximum Likelihood

Let’s assume that the noise term in the imaging model

given in Eq. (5) is a Gaussian noise with zero mean

and variance σ. Given an estimate of the super-resolved

image, f̂ , the total probability of an observed LR image

gk is [22] (1994), [50], [87], [157], [253], [312], [358], [527]:

p(gk|f̂) =
∏
∀m,n

1

2
√
π

exp(− (ĝk − gk)2

2σ2
) (31)

and its log-likelihood function is:

L(gk) = −
∑
∀m,n

(ĝk − gk)
2

(32)

The ML solution [22] (1994) (Table 7) seeks a super-

resolved image, f̂ML, which maximizes the log-likelihood

of Eq. (32) for all observations:

f̂ML = arg max
f

(
∑
∀m,n

L(gk))

= arg min
f

(||ĝk − gk||22)
(33)

which can be solved by:

dL

df
= 2AT (Af − g) = 0 (34)

which results in:

f̂ML = (ATA)−1AT g (35)

The ML solution of an SR problem, which is equiv-

alent to the LS solution of the inverse problem of Eq.

(4), is an ill-conditioned problem, meaning it is sensi-

tive to small disturbances, such as noise or errors in the

estimation of the imaging parameters. Furthermore, if

the number of LR images is less than the square of the

improvement factor, it is ill-posed as well. This means

that there might not be a unique solution. To deal with

these problems, there is needed some additional infor-

mation to constrain the solution. Such information can

be a priori knowledge about the desired image. The a

priori term can prefer a specific solution over other solu-

tions when the solution is not unique. The involvement

of that a priori knowledge can convert the ML prob-

lem to a MAP problem, which is discussed in the next

section.

If the number of LR images over-determines the

super-resolved images, the results of ML and MAP are

the same and since the computation of ML is easier, it is

preferred over MAP. However, if the number of the LR

images is insufficient for the determination of the super-

resolved image, the involvement of a priori knowledge

plays an important role and MAP outperforms ML [22]

(1994).

5.1.6 Maximum A Posteriori

Given one or more LR images, gk, MAP methods [22]

(1994) (Table 7) find an estimate of the HR image, f̂ ,

using Bayes’s rules:

p(f̂ |g1, g2, ..., gk) =
p(g1, g2, ..., gk|f)p(f)

p(g1, g2, ..., gk)
(36)

By deleting the known denominator of the above

equation and taking logarithms, the estimated response

of the super-resolved image f̂ using the MAP method

is:

f̂MAP = arg max
f

(log(p(g1, g2, ..., gk|f)) + log(p(f))).

(37)

Since the LR images are independent of each other, the

above equation becomes:

f̂MAP = arg max
f

(log

K∏
k=1

p(gk|f) + log(p(f))), (38)

which can be rewritten as

f̂MAP = arg max
f

(

K∑
k=1

log p(gk|f) + log(p(f))). (39)
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Table 7 Reported Probabilistic based SR works

Method Reported in

ML [10], [22], [25], [28], [32], [33], [34], [40], [44], [46], [69], [73], [80], [87], [88], [113], [118], [123], [124], [125], [129],
[163], [184], [188], [189], [216], [251], [252], [253], [312], [279], [291], [406], [450], [527]

MAP [22], [28], [33], [34], [40], [41], [50], [55], [60], [73], [80], [84], [85], [91], [95], [104], [105], [107], [108], [109], [110],
[112], [123], [127], [129], [133], [134], [135], [137], [138], [140], [149], [152], [157], [160], [161], [163], [165], [170],
[181], [184], [187], [199], [209], [215], [217], [218], [223], [226], [227], [229], [231], [234], [235], [247], [248], [250],
[251], [252], [253], [258], [260], [272], [276], [277], [282], [288], [293], [295], [296], [303], [305], [307], [310], [311] ,
[312], [313], [314], [316], [322], [328], [331], [341], [351], [352], [353], [354], [362], [363], [365], [366], [368], [371],
[375], [377], [378], [388], [408], [418], [421], [424], [428], [432], [440], [468], [470], [471], [483], [484], [485], [490],
[496], [500], [506], [507], [508], [512], [526], [528], [529], [531], [535], [537], [538], [541], [547], [551], [555], [558],
[574], [575], [581], [587], [588], [590], [592], [596], [598], [606], [612], [613]

Using the same notations as used for ML, and assum-

ing a zero mean white Gaussian noise, the likelihood

distribution p(gk|f̂) can be rewritten as:

p(gk|f) =
1

C1
exp(

−||ĝk − gk||22
2σ2

k

) (40)

where C1 is constant, and σ2
k is the error variance. Then,

the a priori can be written in Gibbs form as:

p(f) =
1

C2
exp(−Γ (f)) (41)

where C2 is constant and Γ (f) is the a priori energy

function. Putting Eq. (40) and Eq. (41) into Eq. (39),

the MAP solution can be written as:

f̂MAP = arg min
f

(

K∑
k=1

||ĝk − gk||22 + λΓ (f)) (42)

where λ is the regularization parameter [109], [134],

[508]. For finding the best possible value of λ, different

approaches can be used [587]. For example, in [83] the

relationship between the residual term, ||Af −g||2, and

the regularization term, ||ρ(f)||2, is studied for different

values of λ to generate an L-curve. Then it is decided

that the desired value for λ is located at the corner of

this curve. In [91] GCV has been used to find the best

possible value for λ. In [507] it is suggested to use U-

curves for this purpose, it is also discussed that these

curves not only perform better than L-curves, they can

provide an interval in which the best value of the reg-

ularization term can be found. In this method first a

U-curve function is defined based on the data fidelity

and a priori terms of the SR algorithm, and then the

left maximum curvature point of the function is chosen

as the best value of the regularization term [507].

Based on the nature of the terms of Eq. (42), dif-

ferent optimization methods can be followed, which are

discussed in Section 6.2. The first term of Eq. (42) is

already given in Eq. (32), there are however many dif-

ferent possibilities for the second term, the regulariza-

tion term, which are discussed in the next subsections.

The regularization terms are mostly, but not always,

used when the solution of an inverse problem is under-

determined (they might be used when the system is

determied or over-determined as well: in this case they

are used mainly for removing any artifacts which might

appear after reconstruction). Therefore, there might be

many solutions for a given set of observations. The reg-

ularization terms, in the form of a priori knowledge,

are used to identify that one of these available solu-

tions which best fits some predefined desired conditions,

and also to help the convergence of the problem. Such

conditions can be, e.g., the smoothness of the solution,

discontinuity preserving, etc. These can be achieved by,

e.g., penalizing the high-gradients of the solution or by

defining some specific relationships between the neigh-

boring pixels in the solution. Regularization terms have

been used along with different SR methods: from itera-

tive methods, direct methods, POCS and ML, to MAP

methods.

Markov Random Fields (MRF) The first a priori

term used in the literature for SR along with a MAP

approach was introduced in [22] (1994) (Table 8), by

which the values of the obtained pixels in the super-

resolved image were updated according to the values of

the neighboring pixels (4x4 or 8x8). In other words, it

imposes a similarity on the structures of the neighbors.

This similarity can be best modeled by MRF. There-

fore, MRFs have been widely used in the SR literature

for modeling a priori knowledge. However, for reasons

of feasibility, MRFs are usually expressed by the equiv-

alent Gibbs distribution as in Eq. (41). In this case the

energy function of Eq. (41) can be written as:

Γ (f) =
∑
r∈R

Vr(f) =
∑∑∑

ρr(f) (43)

where Vr is a function of a set of local points r, which

are called cliques, R is the set of all of these cliques, and

ρr are potential functions defined over the pixels in each

clique r. The first two sums are for meeting all the pixels



Super-resolution: A comprehensive survey 19

and the last one for meeting all the cliques around each

pixel. These functions, which are usually defined for

pair-cliques, are homogeneous and isotropic [60] (1999),

[73], [84], [107], [108], [109], [134], [308], [309]. In the

simplest and most common case, these functions are

quadratic in the pixel values, resulting in (Tikhonov

Regularization (TR)) (8):

p(f) =
1

C
exp(−fTQf) (44)

where Q is a symmetric, positive definite matrix.

In the simplest case Q = I (a minimal energy reg-

ularization which limits the total energy of the image)

results in the a priori term ||f ||2 assuming a zero mean

and an i.i.d. Gaussian distribution for the pixel values.

This results in the following Gibbs distribution for the

a priori term [84], [95], [123], [135], [199], [247], [248],

[251], [258], [316], [378]:

p(f) =
1

C
exp(−||f − favg||

2

2σ2
f

) (45)

The Tikhonov regularization term does not allow dis-

continuities in the solution and therefore may not re-

cover the edges properly [353].

To preserve sharp edges, which carry important in-

formation, a distribution should be used which penal-

izes them less severely [313], [314]. To do so, Huber

MRFs (HMRF) [34] (1996) are designed. The Gibbs

distribution of a HMRF is defined as:

ρ(x) =

{
x2 if |x| ≤ α
2α|x| − α2 otherwise

where x here can be the first or the second derivative of

the image and α is a parameter separating the quadratic

and linear regions [260]. A HMRF a priori is an example

of a convex but non-quadratic prior, which results in

non-linear cost functions (Table 8).

If Q in Eq. (44) is non-diagonal, its off-diagonal el-

ements model the spatial correlations between neigh-

boring pixels, which results in a multi-variate Gaussian

distribution over f . This a priori term is known as a

Gaussian MRF (GMRF) [28] (1995). In this case,

Γ (of Eq. (43)) can be defined as a linear operator ap-

plied to f , like ||Γf ||2, which estimates the first and the

second derivatives of f and imposes spatial smoothness

(Table 8). Therefore, it removes the pixels with high fre-

quency energies. This helps to remove noise, but at the

same time smooths any sharp edges. Using the energy

function of Eq. (43), it can be expressed as:

Γ (f) =
∑∑m=4∑

m=1

ρr(d
m
i,jf) (46)

in which ρr is a quadratic function of the directional

smooth measurements of dmi,j which for every pixel lo-

cated at (i, j) are defined by [508]:

d1i,j = fi,j+1 − 2fi,j + fi,j−1,

d2i,j =

√
2

2
(fi,j+1 − 2fi,j + fi,j−1),

d3i,j = fi+1,j − 2fi,j + fi−1,j ,

d4i,j =

√
2

2
(fi−1,j+1 − 2fi,j + fi+1,j−1)

(47)

It is discussed in [508] that the proper weighting of this

directional smoothness measure can improve the per-

formance of this regularization term.

If the image gradients are modeled by Generalized

Gaussian distributions, a so called Generalized Gaus-

sian MRF (GGMRF) [27] (1995) a priori term can

be used, which has the following form:

ρ(f) =
1

C
exp(− fp

pσpf
) (48)

where 1 < p < 2. Similar to HMRF, GGMRF is also

a convex non-quadratic a priori [27] (1995), [84], [123],

[555].

In [109] and [134], this function has been defined as

a quadratic cost function on pairwise cliques on a first

order neighborhood:

ρ(f) =

N1∑
x=1

N2∑
y=1

(f(x, y)−f(x, y−1))2+(f(x, y)−f(x−1, y))2

(49)

Total Variation (TV) If α in the Huber formula-

tion of HMRF tends to zero, the Huber a priori term

converts to a so called TV norm that applies similar

penalties for a smooth and a step edge and tends to

preserve edges and avoid ringing effects (Table 8). It is

defined by:

ρ(f) = |∇f |1 (50)

where ∇ is the gradient operator. In [606] the TV terms

are weighted with an adaptive spatial algorithm based

on differences in the curvature.

Bilateral Total Variation (BTV) [125] (2003)

(Table 8), which is used to approximate TV, is defined

by:

ρ(f) =

P∑
k=0

P∑
l=0

αl+1||f − SkxSlyf ||1 (51)
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Table 8 Reported Regularized terms in MAP based SR works

Term Reported in

TR [84], [95], [123], [277], [328], [363], [365], [368], [388], [414], [500], [547], [551], [609]

MRF [84], [95], [104], [123], [258], [293], [508]

HMRF [23], [34], [55], [73], [84], [123], [133], [149], [253], [260], [272], [276], [282], [313], [314], [328], [375], [428], [452],
[588]

GMRF [28], [33], [84], [123], [129], [163], [181], [209], [276], [282], [305], [496], [535], [555], [574], [575], [598]

TV [73], [84], [124], [157], [245], [291], [307], [313], [314], [331], [353], [388], [414], [418], [419], [456] , [506], [512], [554],
[581], [596], [606]

BTV [125], [157], [226], [227], [252], [307], [322], [336], [388], [408], [428], [445], [470], [484], [485], [490], [528], [538],
[581], [590], [592], [605]

where Skx and Sly shift f by k and l pixels in the x

and y directions to present several scales of derivatives,

0 < α < 1 imposes a spatial decay on the results [125],

and P is the scale at which the derivatives are com-

puted (so it computes the derivatives in multiple scales

of resolution [226] (2006)).

It is discussed in [371] (2008) that this a priori term

generates saturated data if it is applied to Unmanned

Aerial Vehicle (UAV) data. Therefore, it has been sug-

gested to combine it with the Hubert function, resulting

in the following Bilateral Total Variation Hubert

(BTVH):

ρ(|x|) =

{
|∇x|2

2 if A < α
∂A
∂x otherwise

where A is the BTV regularization term as in Eq. (51)

and α is obtained by α = median[|A−median|A||]. It

is discussed in [371] that this term keeps the smooth-
ness of the continuous regions and preserves edges in

discontinuous regions.

In [471] (2010) a locally adaptive version of BTV,

LABTV, has been introduced to provide a balance be-

tween the suppression of noise and the preservation of

image details [471]. To do so, instead of the l1 norm

of Eq. (51), an lp norm has been used, where p for ev-

ery pixel is defined based on the difference between the

pixel and its surroundings. In smooth regions where

noise reduction is important, p is set to large values

close to two and in non-smooth regions where edge

preservation is important, p is set to small values close

to one. The same idea of adaptive norms, but using

different methods for obtaining the weights, has been

employed in [484], [490], [524], [531], [534], [538], [541].

Biomodality Priori (BP) which is modeled as an

exponentiated fourth order polynomial. The maxima of

this polynomial are located at centers of distributions

of the foreground and background pixels. It can be ex-

pressed as [181] (2005):

ρ(f) =
1

C
exp(

(fi,j − µ0)2(fi,j − µ1)2

$4
) (52)

where C is a normalization constant, µ0 and µ1 are the

centers of the peaks of the polynomial which in [181]

are estimated by Expectation Maximization (EM), and

$ is the width of the foreground and background dis-

tributions. It is shown in [181] that this a priori works

quite well for two class problems like text improvement

in which the text is considered as the foreground and

the rest of the image as the background.

Other Regularization Terms Other regularization

terms used in the multiple image SR literature are:

– Natural Image Prior [139], [342], [464], [513], [612]

– Stationary Simultaneous Auto Regression (SAR) [170]

which applies uniform smoothness to all the loca-

tions in the image.
– Non-stationary SAR [215] in which the variance of

the SAR prediction can be different from one loca-

tion in the image to another.

– Soft edge smoothness a priori, which estimates the

average length of all level lines in an intensity image

[279], [406].

– Double-Exponential Markov Random Field (DEMRF),

which is simply the absolute value of each pixel value

[282].

– Potts–Strauss MRF [303].

– Non-local graph-based regularization [357].

– Corner and edge preservation regularization term

[362].

– Multichannel smoothness a priori which considers

the smoothness between frames (temporal residual)

and within frames (spatial residual) of a video se-

quence [440].

– Non-local self-similarity [517].

– Total Subset Variation, which is a convex general-

ization of the TV regularization term [466].
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– Mumford–Shah Regularization term [526].

– Morphological-based Regularization [590].

– Wavelet based [345], [476], [549].

Another form of regularization term is used with

hallucination or learning based SR algorithms, which

are discussed in the next section.

5.2 Single Image based SR Algorithms

During the sub-sampling or decimation of an image,

the desired high-frequency information gets lost. The

generic smoothness priors discussed in the previous sec-

tion can regularize the solution but can not help re-

cover the lost frequencies, especially for high improve-

ment factors [214]. In single image based SR algorithms,

these generic priors are replaced by more meaningful

and classwise priors like, e.g., the class of face images.

This is because images from the same class have similar

statistics. Furthermore, the accuracy of multiple-image

based SR algorithms is highly dependent on the esti-

mation accuracy of the motions between the LR obser-

vations, which gets more unstable in real world applica-

tions where different objects in the same scene can have

different and complex motions. In situations like these,

single image based SR algorithms (a.k.a class based)

may work better [241]. There algorithms are either re-

construction based (similar to multiple image based al-

gorithms) or learning based. These are described in the

following two subsections.

5.2.1 Learning based Single Image SR
algorithms

These algorithms, a.k.a, as learning based or Halluci-

nation algorithms (Table 9) were first introduced in [4]

(1985) in which a neural network was used to improve

the resolution of fingerprint images. These algorithms

contain a training step in which the relationship be-

tween some HR examples (from a specific class like

face images, fingerprints, etc.) and their LR counter-

parts are learned. This learned knowledge is then in-

corporated into the a priori term of the reconstruction.

The training database of learning based SR algorithms

needs to have a proper generalization capability [241].

To measure this, the two factors of sufficiency and

predictability have been introduced in [241]. Using

a larger database does not necessarily generate better

results, on the contrary, a larger number of irrelevant

examples not only increases the computational time of

searching for the best matches, but it also disturbs this

search [405]. To deal with this, in [405] it is suggested

to use a content-based classification of image patches

(like codebook) during the training.

Different types of learning based SR algorithms are

discussed in the following sub-sections.

Table 9 Reported Hallucination works

[4], [57], [58], [71], [82], [85], [99], [100], [127], [133], [142],
[154], [165], [187], [208], [235], [241], [250], [281], [285],
[327] [340], [341], [343], [344], [354], [360], [372], [373],
[379], [382], [394], [396], [400], [402], [403], [404], [409],
[425], [430], [434], [435], [442], [443], [455], [456], [457],
[458], [462], [465], [467], [469], [472], [474], [475], [488],
[493], [494], [495], [499], [502], [504], [510], [522], [525],
[527], [537], [550], [583], [599], [607], [609], [618]

Feature Pyramids The notable work in this group

was developed by Baker and Kanade [57] 1999, [71],

[82], [99], and [100] for face hallucination. In the train-

ing step of this algorithm, each HR face image is first

down-sampled and blurred several times to produce a

Gaussian resolution pyramid. Then, from these Gaus-

sian pyramids, Laplacian pyramids and then Feature

pyramids are generated. Features can be simply the

derivatives of the Gaussian pyramids which contain the

low-frequency information of the face images, Laplacian

pyramids which contain the band-pass frequency of the

face images, steerable pyramids which contain multi-

orientational information of the face images [208], etc.

Having trained the system, for an LR test image the

most similar LR image among the available LR images

in all the pyramids is found. In the original work of [57]

1999, [58], [71], and [82], the nearest neighbor technique

was used for finding the most similar images/patches.

But in [281] and [285], the LR images/patches were

arranged in a tree structure, which allows fast search

techniques to find the most similar patches. Having

found the most similar image/patch, the relationships

between the found LR image and its higher counter-

parts (which have been coded as child–parent struc-

tures) are used to predict/hallucinate the high resolu-

tion details of the LR input image as an a priori term

in a MAP algorithm similar to the one proposed in [25]

which uses an HMRF a priori term. However, the em-

ployed a priori term similar to most of the MAP meth-

ods considers local constraints in the reconstructed im-

age. Exactly this technique has been extended in [200]

to hallucinate 3D HR face models from LR 3D inputs.

Belief Network The notable work of this group was

developed by Freeman and Pasztor [65] and [66] (1999).
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These algorithms use a belief network such as a Markov

Network or a tree structure. In the case of the Markov

Network [23], [65], [66], [76], [102], [146], [203], [254],

[259], [275], [410], [448] both the LR image and its HR

counterparts are divided into patches. Then the cor-

responding patches in the two images are associated

to each other by a so called observation function. The

observation function defines how well a candidate HR

patch matches a known LR patch [259]. The neighbor

patches in the super-resolved HR image are assumed

to be related to each other by a so called transition

function [259]. Having trained the model (parameters),

it infers the missing HR details of LR input images

using a belief propagation algorithm to obtain a MAP

super-resolved image. For learning and inferring, the

Markov assumptions are used to factorize the posterior

probability. For inferring the HR patches, the following

equation is used:

f̂i = arg max
fi

P (fi)P (gi|fi)
∏
j

Lij (53)

where fi is the ith patch of the HR image f , gi is its

associated LR patch, and j changes to include all the

neighbor nodes of the ith patch and Lij is defined by:

Lij =
∑
fj

P (fj |fi)P (gj |fj)
∏
k 6=i

L̃jk (54)

where L̃jk is the Ljk from the previous iteration with

initial values of 1 [23], [65], [66] (1999), [76], [102], [146].

In [185], in addition to the association potential

function of [65], [66], [76], [102], and [146], which mod-

els the relationship between the LR and HR patches, a

so called interaction potential function is also used to

model the relationship between the HR patches. It is

shown in [185] that these two potential functions can

be used effectively to model the temporal information

which can be available in an input LR video sequence.

In [259] a system has been developed for hallucina-

tion of face images in which the transition and the ob-

servation functions of [23], [65], [66], [76], [102], [146] are

no longer static for the entire image, but are adapted

to different regions of the face image.

Similar to the above system, [111] has used a mix-

ture of tree structures in the belief network for learn-

ing the relationship between the LR images and their

corresponding HR ones in the training step.

Projection The a priori term learned in [57], [71],

[82], [99], [100] imposes local constraints on the re-

constructed super-resolved image. For imposing global

constraints, some SR algorithms have used projection-

based methods for learning the a priori term of the

employed MAP algorithm, e.g., in [85] (2001), [142],

[347], [400], [425], [442], [443], [452], [453], [457], [458],

[465], [467], [504] PCA in [323], [349], [502], [525] Inde-

pendent Component Analysis (ICA), and in [472]

Morphological Component Analysis (MCA) have

been used. In PCA every face is represented by its PC

basis, which is computed from training images at the

desired resolution f = V y − µ, where V is the set of

PC basis vectors and µ is the average of the training

images [85] (2001).

To consider both local and global constraints, Liu

et al. [90], [301] combined nonparametric Markov net-

works (for considering the local variances) and a PCA-

based a priori (for considering the global variances) for

face hallucination. In [276] and [465], a Kernel-PCA

based prior that is a non-linear extension of the com-

mon PCA was embedded in a MAP method to take

into account more complex correlations of human face

images. In [409] again Kernel PCA but this time with

RBF was used for face hallucination. In [127] PCA was

again used for hallucination, but not directly for hal-

lucination of face images, but for their features, i.e.,

the hallucination technique was applied to the feature

vector of the LR face image to hallucinate the feature

vector of the corresponding HR image, without actual

reconstruction of the image. This hallucinated feature

vector was then used for recognition. The same tech-

nique of [127] but with different types of features has

been used in some other works, e.g., in:

– [164], [165], [483], [585] Gabor filter responses are

used as features to hallucinate a texture model of

the targeted HR image. These systems can hallu-

cinate a frontal face image from rotated LR input

images.

– [151], [207], [206], [344] Local Visual Primitives (LVP)

have been used as features and then have been hal-

lucinated using a Locally Linear Embedding (LLE)

technique.

– [373] Two Orthogonal Matrices (TOM) of SVD of

facial images which contain the most important fea-

tures for recognition have been used in the SR algo-

rithm.

In PCA based methods, usually the matrices rep-

resenting each training image are first vectorized (by

arranging, e.g., all the columns of each matrix in only

one column) and then they are combined into a large

matrix to obtain the covariance matrix of the training

data for modeling the eigenspace. It is discussed in [360]

that such vectorization of training images may not fully

retain their spatial structure information. Instead, it is

suggested to apply such a vectorization to the features

extracted from training data and use them for SR. It

is shown in [360] that bilateral projections can produce

such features.
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It has been discussed in [379] (2008), [455], and [524]

that PCA-based hallucination methods are very sensi-

tive to occlusion since the PCA bases are holistic and

they mostly render the hallucination results towards the

mean face. Therefore, it has been proposed to use Non

Negative Matrix Factorization (NNMT) to divide

the face images into relatively independent parts, such

as eyes, eyebrows, noses, mouthes, checks, and chins.

Then, a MAP sparse-representation based algorithm

has been applied to these parts. A similar technique

has been used in [553].

Neural Networks The same concept of belief-network

based methods, but using different types of Neural

Networks (NN), has been employed in many differ-

ent SR algorithms. Examples of such networks are Lin-

ear Associative Memories (LAM) with single [61] and

dual associative learning [192], Hopfield NN [96], [326],

Probabilistic NN [130], [304], Integrated Recurrent NN

[136], Multi Layer Perceptron (MLP) [196], [354], [385],

[547], Feed Forward NN, [232], [233], and Radius Basis

Function (RBF) [327], [607].

Manifold Manifold based methods [151] (2004), [206],

[207], [310], [311], [327], [329], [343], [382], [386], [403],

[404], [469], [495], [521], [553], [561], [568], [569], [570]

assume that the HR and LR images form manifolds

with similar local geometries in two distinct feature

spaces [343]. Similar to PCA, these methods are also

usually used for dimensionality reduction. These meth-

ods generally consist of the following steps:

– Generate HR and LR manifolds in the training step

using some HR images and their corresponding LR

counterparts.

– In the testing step, first divide the input LR test

image into a set of LR patches. For each LR patch

of this image, lx:

– Find its k-nearest neighbor patches, lj , on the

LR manifold.

– Use these k-nearest neighbors to calculate the

weights, wLx , for reconstructing the patch lx:

arg min
wL

x

||lx −
∑

j∈NL(x)

wLxj lj ||2 (55)

where the summation of the weights is equal to

one.

– Use the involved weights and neighbors to find

the corresponding objects in the HR manifold to

reconstruct the HR patch of lx:

ĥx =
∑

j∈NL(x)

wHxjhj (56)

where NL(x) includes the neighbors of lx, and

the hjs are the HR patches associated to the LR

neighbor patches of lx .

Though most of the manifold based methods use

this manifold assumption that the reconstruction HR

weights are similar to the LR weights, i.e.: wLxj = wHxj ,

it is shown in [403], [404], and [469] that this might

not be completely true and therefore it is suggested to

align the manifolds before the actual reconstruction.

To do so, in [403], [404], and [469], a so called common

manifold has been used, which helps the manifold align-

ment by learning two explicit mappings which map the

paired manifolds into the embeddings of the common

manifold.

Unlike traditional dimensionality reduction techniques,

such as PCA and LDA, manifold based methods can

handle non-Euclidean structures. Reported manifold based

methods for SR have mostly been applied to face hal-

lucination and can be classified into three groups:

– Locally Linear Embedding (LLE) [151] (2004), [207],

[206], [344], [553], [561], [597].

– Locality Preserving Projections (LPP) [310], [311],

[327], [329], [382], [461], [495].

– Orthogonal Locality Preserving Projections (OLPP)

[343].

The main difference between LPP and LLE is that LPP

can handle cases which have not been seen during train-

ing better than LLE [329]. OLPP can produce orthog-

onal basis functions and therefore can provide better

locality preserving than LPP.

As opposed to the majority of the previously men-

tioned learning based SR systems, in which for generat-

ing each HR image patch only one nearest LR patch and

its corresponding HR patch in the training database are

used, in manifold based methods [151] (2004), [207],

[206], multiple nearest neighbor LR patches are used

simultaneously.

Manifold based methods are usually applied in two

steps. In the first step, they are combined with a MAP

method [310], [311], [495], [568], [569], [570] or a Markov

based learning method [206] like those in [65], [66], [76],

[102], [146], [203] to apply a global constraint over the

super-resolved image. In the second step, they use a dif-

ferent technique like Kernel Ridge Regression (KRR)

[343], [495], graph embedding [568], radial basis func-

tion and partial least squares (RBF-PLS) regression

[569], [570] to apply local constraints to the super-resolved

image by finding the transformation between low and

HR residual patches.

In these algorithms, the sizes of the patches, their

amount of overlap, the number of the patches involved

(the nearest LR patches), and the features employed
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for representing the patches (e.g., first and second order

gradients [151], edges [386]) are of great importance. If

the number of patches are too large, the neighborhood

embedding analysis gets difficult. If this number is too

small, the global structure of the given data space can

not be captured [310], [311], [386].

Tensor Tensors are a higher order generalization of

vectors (first order) and matrices (second order) [341].

Tensor analysis can be considered as a generalized ex-

tension of traditional linear methods such as PCA for

which the mappings between multiple factor spaces are

studied [340]. It provides a means of decomposing the

entire available data into multimodal spaces, and then

studies the mappings between these spaces [88] (2001),

[188], [189], [192], [193], [236], [262], [269], [340], [341],

[554].

In [188] the super-resolved reconstructed image is

computed by an ML identity parameter vector in an HR

tensor space, which is a space that has been obtained by

applying tensor decomposition to the HR training im-

ages. In [189] it is shown that the method of [188] can

improve the recognition rate of a face recognition sys-

tem. In [193] and [194], a patch-based tensor analysis is

applied to a given LR input image to hallucinate a face

image. To do so, the K1 nearest images of the input im-

age are first found in the training database. Then, the

input image is divided into overlapping patches and for

each patch the K2 nearest patches among the previ-

ously found K1 training images are found. The patches

are then weighted in a way that their fusion generates

an HR image which in case of down-sampling possesses

the minimum distance from the down-sampled versions
of the HR images involved. This patch-based approach

enforces local consistency between the patches in the

hallucinated image. In [340], a tensor based hallucina-

tion has been generalized to different facial expressions

and poses.

Compressive Sensing Though the sparsity of im-

ages had been implicitly utilized in many SR works,

recent advances in sparse signal processing has intro-

duced the possibility of recovering linear relationships

between HR signals and their LR projections, and has

motivated many researchers to explicitly use the spar-

sity of the images for SR algorithms. In sparse cod-

ing it is assumed that there is an overcomplete dictio-

nary like D ∈ Rn×K which contains K prototype image

patches. It is assumed that an HR image f ∈ Rn can

be represented as a liner combination of these patches:

f = Dα where α is a very sparse coefficient vector, i.e.,

||α||0 << K.

These algorithms [379] (2008), [380], [390], [486],

[498], [503], [505], [517], [557], [571], [572], [576], [578],

[579], [583], [595], [597], [601], [602], [604], [608], [614]

usually assume that there are two overcomplete dictio-

naries: one for the HR patches, Dh, and one for their

corresponding LR counterparts, Dl. The latter has been

produced from the former by a degradation process like

that in Eq. (4). Usually the mean of the pixel values of

each patch is subtracted from its pixels to make the

dictionaries more texture representative than intensity.

Given an input LR image, g, the above mentioned dis-

cussion for sparse coding is used to find a set of coeffi-

cients, α̂, which minimizes:

λ||α||1 +
1

2
||D̃α− g̃||22 (57)

where D̃ =

[
FDl

βPDh

]
and g̃ =

[
Fg

βw

]
in which F is a

feature extraction operator (usually a high-pass filter

[379] (2008), [380], [505], [601]), P extracts the over-

lapping area between the current target patch and the

previously reconstructed image, and β is a control pa-

rameter for finding a tradeoff between matching the LR

input and finding an HR patch which is compatible with

its neighbors.

Having found such an α minimizing Eq. (57), the

following equation is used to obtain an estimate for the

reconstructed HR image:

f̂ = Dhα̂ (58)

The reconstructed f̂ from Eq. (58) has been mostly

used as an a priori term in combination with other SR

methods. For example, in the following works, it has

been combined with:

– a MAP mehod [379], [390], [455], [517], [557], [583],

[595], [597], [601], [602], [604],

– an IBP method [380], [505],

– a Support Vector Regression [503], and

– a Wavelet based method [423].

CS algorithms have been successfully used for SR

along with wavelet based methods. However, due to

coherency between the LR images resulting from the

down-sampling process and the wavelet basis, CS al-

gorithms have problems with being directly employed

in the wavelet domain. To reduce this coherency, [423]

applies a low-pass filter to the LR inputs before using

the CS technique in the wavelet domain.

It is discussed in [579] that preserving the local topo-

logical structure in the data space results in better re-

construction results. While trying to do so, the inco-

herency of the dictionary entries should be taken into

account. To do this:
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– [423] applies a low-pass filter to the LR inputs before

using the CS technique in the wavelet domain, and

– [579] uses the nonlocal self-similarity concept of man-

ifold based learning methods.

5.2.2 Reconstruction based Single Image SR
algorithms

These algorithms [138], [202], [279], [286], [287], [361],

[367], [393], [406], [430], [444], [499], [519], [545] similar

to their peer multiple image based SR algorithms try

to address the aliasing artifacts that is present in the

LR input image. These algorithms can be classified into

the following three groups.

Primal Sketches The idea of a class-based a priori,

which is used in most of the hallucination-based algo-

rithms, mostly for the class of face images, was extended

to generic a prioris in [138] (2003), [286], [430], and

[499], where primal sketches were used as the a pri-

ori. The key point in primal sketches is that the halluci-

nation algorithm is applied only to the primitives (like

edges, ridges, corners, T-junctions, and terminations)

but not to the non-primitive parts of the image. This is

because the a priori term related to the primitives can

be learned but not those for the non-primitives. Having

an LR input image they [138] (2003) first interpolate

(using bicubic interpolation) it to the target resolution,

then for every primitive point (basically every point on

the contours inside the image) a 9×9 patch is consid-

ered. Then, based on the primal sketch prior, and using

a Markov chain inference, the corresponding HR patch

for every LR patch is found and replaced. This step

actually hallucinates the high frequency counterparts

of the primitives. This hallucinated image is then used

as the starting point for the IBP algorithm of [20] to

produce an HR image.

Gradient Profile Using the fact that the shape statis-

tics of the gradient profiles in natural images are robust

against changes in image resolution, a Gradient Pro-

file prior has been introduced in [367] (2008) and [545].

Similar to the previous approaches that learn the re-

lationship between the LR and HR images, Gradient

Profile based methods learn the similarity between the

shape statistics of the LR and HR images in a training

step. This learned information will be used to apply a

gradient based constraint to the reconstruction process.

The distribution of this gradient profile prior is defined

by a general exponential family distribution (General-

ized Gaussian Distribution (GGD)) [367] (2008), [545]:

g(x, σ, λ) =
λα(λ)

2αΓ ( 1
λ )

exp(−[α(λ)|x
σ
|]
λ
) (59)

where Γ is the Gamma function and α =
√
Γ ( 3

λ )/Γ ( 1
λ )

is the improvement factor. An interesting property of α

is that it makes the second moments of the above GGD

equal to σ2. This means that the second order of this

prior can be used for estimating σ. Finally, λ controls

the shape of the distribution [367], [545].

Fields of Experts Fields of Experts (FoE) is an

a priori for learning the heavy non-Gaussian statistics

of natural images [202] (2005), [393]. Here usually con-

trastive divergence is used to learn a set of filters, J ,

from a training database. Having learned these filters

or bases, the a priori term is represented as:

ρ(x) =
1

Z(Θ)

K∏
k=1

N∏
i=1

φi(J
T
i x(k);αi) (60)

where Z(Θ) is a normalization factor, Θ = {θ1, ..., θN},
θi = {αi, Ji}, K is the number of cliques, N is the

number of experts, and the αs are positive parameters

which make the experts have proper distributions. The

experts, φi, are defined by:

φi(J
T
i x(k);αi) = (1 +

1

2
(JTi x)2)−αi (61)

Other reported reconstruction based a priori in this

group include:

– Wavelet based [162], [302], [320], [436], [447].

– Contourlet Transform based [237], [437], [600].

– Bilateral filters used for edge preserving in an IBP

method in [280] for dealing with the chessboard and

ringing effects of IBP.

– Gaussian Mixture Model based methods [586].

6 Discussion of other related issues in SR

In this section, some other issues that might arise while

working with SR algorithms are discussed, including:

the methods for optimizing the cost functions in SR al-

gorithms, color issues, improvement factors, the assess-

ment of SR algorithms, the most commonly employed

databases in these algorithms, 3D SR algorithms, and

finally, speed performance of SR algorithms. But before

going into the details of these issues, we first discuss

some combined SR algorithms in the next subsection.

6.1 Other SR Methods

6.1.1 Combined methods

The above mentioned methods for solving the SR prob-

lem have often been combined with each other, resulting
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in new groups of algorithms. Examples of such combi-

nations can be found in:

– [31] and [38], where ML and POCS are combined,

which allows incorporating non-linear a priori knowl-

edge into the process.

– [104] and [161]: MAP and POCS are combined and

applied to compressed video.

– [138] MAP and IBP are combined.

– [422], [480], [481], [482], [515], [537], [544], [547] where

a reconstruction based SR is followed by a learning

based SR.

6.1.2 Simultaneous methods

The reconstruction of the super-resolved image and the

estimation of the involved parameters sometimes have

been done simultaneously. For example, in [10], [41],

[44], [46], [113], [217], [224], [293], [295], [315], [328],

[331], [429], [432], [468], [512], [529], [551] a MAP method

has been used for simultaneous reconstruction of the

super-resolved image and registration of the LR images.

In these cases, the MAP formulation of Eq. (62) will be,

as in [41], [44]:

p[f,Wk|gk] = p[gk|f,Wk]p[gk,Wk] (62)

wherein Wk can include all the decimation factors or

only some of them, as in the blur kernel [10], [46] and

the motion parameters [41], [44].

In other groups of simultaneous SR algorithms, the

blurring parameter is estimated at the same time that

the reconstruction of the super-resolved image is being

carried out. Examples of this group are:

– [70] which uses a generalization of Papoulis’ sam-

pling theorem and the shifting property between

consecutive frames;

– [68], [92] which use a GCV-based method;

– [186], [214], [231], [258], [313], [365], [378], [418] where

a MAP-based method has been used.

Finally, in a third group of simultaneous SR algo-

rithms, all the involved parameters are estimated simul-

taneously, as in [112], [140], [316].

6.2 Cost Functions and Optimization Methods

The most common cost function, from both algebraic

and statistical perspectives, is the LS cost function,

minimizing the l2 norm of the residual vector of the

imaging model of Eq. (4) [155], [184], [223]. If the noise

in the model is additive and Gaussian with zero mean,

the LS cost function estimates the ML of f [155].

Farsiu et al. [124], [226], [227] proposed to use l1
instead of the usual l2 for both the regularization and

error terms, as it is more robust against outliers than

l2. However, choosing the proper optimization method

depends on the nature of the cost function. If it is a

convex function, gradient based methods (like gradi-

ent descent, (scaled) conjugate gradient, preconditioned

conjugate gradient) might be used for finding the solu-

tion (Table 10). The only difference between conjugate

and gradient descent is in the gradient direction.

If it is non-linear, a fixed-point iteration algorithm

like Gauss–Seidel iteration [27] (1995), [295], [301], [307],

[313], [314], [316], [529] is appropriate. If it is non-

convex, the time consuming simulated annealing can be

used [5] (1987), [6], [135], [241], [483], or else Graduated

Non-Convexity [95], [293], [496] (with normalized con-

volution for obtaining an initial good approximation),

[540], EM [113], [181], [288], [454], Genetic Algorithm

[174], Markov Chain Monte Carlo using Gibbs Sam-

pler [209], [214], [234], [241], [254], [612], Energy Min-

imization using Graph-Cuts [248], [279], [305], [535],

Bregman Iteration [353], [590], proximal iteration [357],

(Regularized) Orthogonal Matching Pursuit [390], [464],

and Particle Swarm Optimization [448] might be used.

Table 10 Reported Gradient based Optimization works

[217], [51], [87], [91], [109], [118], [133], [172], [181], [184],
[197], [199], [204], [216], [218], [221], [223], [226], [229],
[251], [252], [253], [272], [276], [279], [289], [322], [328],
[351], [367], [371], [394], [406], [408], [464], [470], [493],
[528], [545], [558], [588], [608]

6.3 Color Images

Dealing with color images has been discussed in sev-

eral SR algorithms. The important factors here are the

color space employed and the employment of informa-

tion from different color channels. The most common

color spaces in the reported SR works are shown in Ta-

ble 11.

For employing the information of different channels,

different techniques have been used. For example, in

– [13], [138], [151], [180], [246], [286], [322], [367], [386],

[391], [537], [538], [545] the images are first con-

verted to YIQ color space (in [162], [557], [558], [608]

to YCbCr). Since most of the energy in these rep-

resentations is concentrated in the luminance com-

ponent, Y, the SR algorithm is first applied to this
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Table 11 Reported Color Spaces used in SR algorithms

Color Space Reported in

YIQ [13], [151], [180], [246], [286], [322], [367],

[386], [391], [537], [538], [545]

YCbCr [160], [162], [557], [558], [608]

RGB [117], [155], [156], [157], [158], [226], [227],

[377]

YUV [203], [216], [287], [392], [394], [397], [473],

[493], [546]

L*a*b [552]

component and the color components are simply in-

terpolated afterwards.

– [470] the same process has been applied to all the

three YCbCr channels of the images.

– [441], [463], [526], [555] the same process has been

applied to all the three RGB channels of the images.

– [117] the information of every two different chan-

nels of an RGB image are combined to improve the

third one, then at the end, the three improved chan-

nels are combined to produce a new improved color

image.

– [155], [156], [157], [158], [226], [227], [377], inspired

by the fact that most of the commercial cameras use

only one CCD where every pixel is made sensitive to

only one color and the other two color elements of

the pixel are found by demosaicing techniques, ad-

ditional regularization terms for luminance, chromi-

nance, and non-homogeneity of the edge orientation

across the color channels in RGB color space are

used. Similar terms have been used for the same

purpose in [160] but the images are first converted

to the YCbCr color space.

– [279], [406] alpha matting along with soft edge smooth-

ness prior has been used.

– [287] the SR algorithm has been applied to the lu-

minance component of the images in YUV color

space, then the absolute value of the difference of

the luminance component of each pixel in the super-

resolved image from its four closest pixels in the

LR image are computed as d1, d2, d3, and d4. Then

these weights are converted to normalized weights

by wi = d−αi /w, where w =
∑4
i=1 d

−α
i and α is a

partitive number which defines the penalty for a de-

parture from luminance. Finally, the obtained wis

are used to linearly combine the color channels of

the four neighboring pixels to obtain the color com-

ponents of the super-resolved pixel.

6.4 Improvement Factor and Lower Bounds

The bounds derived so far for the improvement factor of

a reconstruction based SR algorithm are of two types:

The first type is deterministic, based on linear mod-

els of the problem and looking at, e.g., the condition

numbers of the matrices and the available number of

LR observations. These deterministic bounds tend to

be very conservative and yield relatively low numbers

for the possible improvement factors (around 1.6). It is

shown in [89], [166], [255] that for these deterministic

bounds, if the number of available LR images is K and

the improvement factors along the x and y directions

are sx and sy, respectively, under local translation con-

dition between the LR images, the sufficient number of

LR images for a reconstruction based SR algorithm is

4(sxsy)2. Having more LR images may only marginally

improve the quality of the reconstructed image, e.g., in

[89], [166], [255] it is discussed that such an improve-

ment can be seen in only some disjoint intervals.

Another class of bounds on the improvement fac-

tors of reconstruction based SR algorithms are stochas-

tic in nature and give statistical performance bounds

which are much more complex to interpret. These are

more accurate and have proven to be more reliable, but

they are not used very often because there are many “it

depends” scenarios, which are to some extent clarified

in [168], [256], [317], [423] where using a Cramer–Rao

bound (which is a lower bound for the MSE of Eq. (63))

it is shown that this bound is about
sxsyσ

2
noise

K+1 for re-

construction based SR algorithms.

It is discussed in [212] that one may check the prac-

tical limits of reconstruction based SR algorithms which

are regularized by Tikhonov-like terms by Discrete Pi-

card Condition (DPC).

In [300] and [348], a closed-form lower bound for the

expected risk of the Root Mean Square Error (RMSE)

function between the ground truth images and the super-

resolved images obtained by learning based SR algo-

rithms has been estimated. Here it is discussed that

having obtained the curve of the lower bound against

the improvement factor, a threshold at which the lower

bound of the expected risk of learning based SR al-

gorithms might exceed some acceptable values can be

estimated. In [491] and [588], it is discussed that precon-

ditioning the system can allow for rational improvement

factors [597].

In [591], it is discussed that all the images in the

available LR sequence do not necessarily provide use-

ful information for the actual reconstructed image. To

measure the usefulness of the images, a priority mea-

sure is assigned to each of them based on a confidence

measure, to maximize the reconstruction accuracy, and
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at the same time to minimize the number of the sample

sets.

Despite the above mentioned theoretical thresholds,

the reported improvement factors listed in Table 12 are

mostly higher than these bounds. Beside the improve-

ment factors reported in the table the following ones

have been reported by at least one paper: 9 [572], 10

[373], [520], 12 [599], and 24 [329].

6.5 Assessment of SR Algorithms

Both subjective and objective methods have been used

for assessing the results of SR algorithms. In the subjec-

tive method, usually human observers assess the qual-

ity of the produced image. Here the results of the SR

algorithms are presented in the form of Mean Opin-

ion Scores (MOP) and Variance Opinion Score (VOP)

[497]. With objective methods, the results of SR algo-

rithms are usually compared against the ground truth

using measures like MSE and (Peak) Signal to Noise

Ratio (PSNR). MSE is defined as:

MSE =

∑qN1−1
k=0

∑qN2−1
l=0 (f̂k,l − fk,l)

2∑qN1−1
k=0

∑qN2−1
l=0 (fk,l)

2
(63)

The smaller the MSE, the closer the result is to the

ground truth. PSNR is defined as:

PSNR = 20 log10

255

RMSE
(64)

where RMSE is the square root of the MSE of Eq. (63).

Though these two measures have been very often

used by SR researchers, they do not represent the Hu-

man Visual System (HSV) very well [220]. Therefore,

other measures, such as the Correlation Coefficient (CC)

and Structural SImilarity Measure (SSIM) have also

been involved in SR algorithms [220], [255]. CC is de-

fined by:

CC =

∑qN1−1
k=0

∑qN2−1
l=0 d1d2∑qN1−1

k=0

∑qN2−1
l=0 d1

∑qN1−1
k=0

∑qN2−1
l=0 d2

(65)

where d1 = fk,l − µf , d2 = f̂k,l − µf̂ , µf and µf̂ are

the mean of f and f̂ , respectively. The maximum value

of CC is one which means a perfect match between the

reconstructed image and the ground truth [220]. The

other measure, SSIM, is defined by:

SSIM =
(2µfµf̂ + C1)(2σff̂ + C2)

(µ2
f + µ2

f̂
+ C1)(σ2

f + σ2
f̂

+ C2)
(66)

where C1 and C2 are constants, σf and σf̂ are the stan-

dard deviations of the associated images, and σff̂ is

defined by:

σff̂ =
1

qN1 × qN2 − 1

qN1−1∑
k=0

qN2−1∑
l=0

d1d2 (67)

To use SSIM, the image is usually first divided into

sub-images, and then Eq. (67) is applied to every sub-

image and the mean of all the values is used as the

actual measure between the super-resolved image and

the ground truth. A mean value of SSIM close to unity

means a perfect match between the two images. It is dis-

cussed in [594] that SSIM favors blur over texture mis-

alignment, and therefore may favor algorithms which

do not provide enough texture details. Table 13 shows

an overview over the objective measurements used in

SR algorithms. Besides those reported in the table, the

following objective measurements have been used in at

least one paper:

– Correlation Coefficient in [220], [495],

– Feature Similarity in [557],

– Triangle Orientation Discrimination (TOD) [264],

[284], [336], [445]

– Point Reproduction Ratio (PRR) and Mean Seg-

ment Reproduction Ratio (MSRR) [497]: PRR mea-

sures the closeness of two sets of interest points (ex-

tracted by Harris, or SIFT), one generated from the

super-resolved image and the other from the ground

truth. MSRR works with similar sets but the inter-

est points are replaced by the results of some seg-

mentation algorithms.

– Feature Similarity (FSIM) in [557] using Histogram

of oriented Gradients (HoG),

– Blind Image Quality Index and Sharpness Index

[582],

– Expressiveness and Predictive Power of image patches

for single-image based SR [594],

– Spectral Angle Mapper [613] for hyper-spectral imag-

ing, and

– Fourier Ring Correlation [511].

Beside these assessment measures, some authors have

shown that feeding some real world applications by im-

ages that are produced by some SR algorithms improves

the performance of those applications to some degree,

for example, in:

– [181], [319], [547] the readability of the employed

Optical Character Recognition (OCR) system has

been improved.

– [189], [190], [213], [298], [299], [322], [323], [338],

[339], [349], [433], [453], [469], [480], [510], [537],



Super-resolution: A comprehensive survey 29

Table 12 Reported improvement factors of different SR algorithms

Improvement Factor Reported in

2 [9], [16], [21], [46], [133], [150], [151], [179], [160], [162], [174], [207], [209], [210], [215], [216], [217],
[223], [231], [237], [241], [247], [251], [252], [273], [281], [285], [345], [308], [309], [317], [323], [326],
[331], [344], [349], [353], [360], [364], [367], [368], [369], [377], [439], [449], [451], [454], [457], [458],
[464], [486], [493], [496], [512], [514], [525], [540], [542], [545], [547], [555], [556], [560], [569], [570],
[576], [577], [581], [592], [593], [596], [597], [599], [605], [606], [610], [613], [616], [119], [141], [197],
[267], [277], [321], [370], [398]

3 [84], [85], [87], [113], [124], [138] , [151], [160], [174], [226], [227], [228], [241], [245], [251], [252], [279],
[281], [283], [285], [306], [349], [367], [380], [391], [403], [404], [406], [439], [442], [443], [493], [514],
[517], [520], [545], [551], [557], [558], [563], [576], [579], [586], [593], [595], [597], [599], [601], [605],
[608], [610], [612], [617], [126]

4 [30], [36], [37], [61], [84], [85], [90], [91], [94], [105], [112], [113], [127], [128], [136], [140], [151], [157],
[160], [164], [165], [167], [174], [180], [187], [188], [189], [191], [192], [193], [194], [200], [207], [208],
[217], [226], [227], [228], [235], [248], [253], [259], [257], [270], [273], [279], [287], [303], [302], [310],
[311], [313], [314], [323], [336], [343], [347], [349], [353], [367], [369], [373], [377], [379], [345], [386],
[391], [392], [394], [403], [404], [406], [411], [412], [413], [423], [425], [435], [439], [442], [443], [445],
[449], [451], [454], [456], [457], [458], [471], [474], [475], [480], [481], [482], [493], [494], [495], [502],
[505], [511], [514], [520], [525], [527], [531], [535], [537], [540], [542], [545], [547], [548], [550], [555],
[556], [559], [560], [568], [569], [570], [571], [574], [575], [584], [583], [588], [597], [599], [602], [605],
[607], [608], [610], [616], [618], [144], [201], [211], [267], [321]

5 [79], [249], [251], [252], [276], [306], [349], [439], [465], [541], [590]

6 [313], [314], [403], [404], [442], [443], [469], [599]

8 [57], [71], [82], [99], [100], [164], [187], [200], [207], [217], [235], [274], [287], [367], [373], [392], [454],
[467], [520], [524], [545], [556], [559], [578], [594], [599]

16 [154], [217], [287], [367], [545], [556], [559], [578]

[556], [585], [599], [605], [607], [609], [618], the recog-

nition rates of the employed face recognition sys-

tems are increased.

– [239] better contrast ratios in the super-resolved PET

images are obtained.

– [422] the recognition rate of a number plate reader

has been improved.

6.6 Databases

According to Table 1 SR algorithms have been most

employed in systems working with facial images. This

is indeed a specific application of SR algorithms which

enjoys having well established public databases com-

pared to other applications like, satellite imaging, med-

ical image processing, etc. Table 14 shows the list of the

most common 2D facial databases that have been used

in SR algorithms. Table 15 shows more details about

these databases. One feature which is interesting for SR

databases is providing ground truth data for different

resolutions (i.e., different distances from the camera).

Among the most common databases reviewed (shown

in Table 15), only CAS-PEAL facial database provides

such a data.

Beside the list shown in Table 14, the following

facial databases have been used in at least one sys-

tem: Cohn-Kanade face database [208], NUST [323],

[349], BioID [394], [400], Terrascope [299], Asian Face

Database PF01 [327], FG-NET Database [341], Korean

Face Database [355], Max Planck Institute Face Database

[355], IMM Face Database [382], PAL [396], [455], USC-

SIPI [489], [503], [577], Georgia Tech [407], [523], ViD-

TIMIT [400], FRI CVL [480], Face96 [480], FEI face

database [571], MBGC face and iris database [585],

SOFTPIA Japan Face Database [605].

The following list shows some of the reported databases

that SR algorithms have used in other applications than

facial imaging:

– Aerial imaging: Forward Looking Infrared (FLIR)

[79], IKONOS satellite [196], [603], Moffett Field

and BearFruitGray for hyper-spectral imaging [175],

Landsat7 [345]

– MDSP dataset (a multi-purpose dataset): [155], [157],

[227], [228], [454], [598]

– Medical imaging: PROPELLER MRI Database [351],

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database [488], DIR-lab 4D-CT dataset [614], and

3D MRI of the Brain Web Simulated Database [488],

[564], [565]

– Natural images: Berkeley Segmentation Database

[393]

– Stereo pair database [475]
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Table 13 Reported measures for assessing different SR algorithms

Measure Reported in

(Mean, Peak) Signal to Noise Ratio [34], [35], [40], [42], [43], [44], [46], [55], [61], [62], [63], [64], [113], [128],
[150], [179], [157], [170], [172], [175], [176], [186], [187], [208], [209], [210],
[216], [217], [218], [143], [223], [227], [230], [231], [257], [232], [233], [234],
[235], [237], [238], [246], [247], [248], [270], [272], [273], [274], [278], [281],
[285], [291], [301], [307], [308], [309], [316], [325], [326], [333], [340], [347],
[352], [353], [356], [357], [359], [487], [358], [360], [362], [364], [366], [369],
[378], [381], [392], [393], [394], [418], [396], [397], [401], [405], [408], [411],
[412], [413], [418], [418], [419], [441], [420], [428], [429], [431], [432], [434],
[435], [439], [440], [448], [449], [450], [452], [453], [456], [457], [458], [460],
[461], [464], [465], [468], [470], [471], [474], [475], [485], [492], [495], [496],
[498], [501], [502], [503], [506], [508], [512], [511], [514], [517], [518], [522],
[524], [525], [567], [526], [527], [528], [531], [538], [539], [540], [541], [544],
[545], [546], [547], [548], [553], [554], [555], [557], [558], [559], [561], [562],
[563], [568], [569], [570], [571], [572], [574], [575], [577], [579], [584], [586],
[590], [591], [595], [596], [601], [602], [604], [605], [608], [610], [612], [613],
[614], [617], [119], [178], [201], [267], [415], [589]

(Root, Normalized, or Mean) Squared Error [25], [33], [35], [38], [53], [62], [63], [64], [93], [94], [95], [96], [99], [100], [107],
[108], [109], [136], [138], [142], [146], [179], [154], [162], [187], [190], [199],
[200], [213], [235], [242], [243], [246], [250], [253], [255], [258], [259], [270],
[276], [278], [279], [280], [286], [290], [291], [293], [299], [304], [305], [313],
[314], [327], [334], [354], [378], [380], [386], [387], [418], [403], [404], [405],
[406], [407], [409], [423], [429], [441], [455], [472], [479], [490], [494], [495],
[502], [505], [507], [508], [517], [518], [520], [521], [522], [523], [531], [535],
[554], [557], [558], [568], [569], [570], [572], [576], [578], [583], [596], [602],
[612], [613], [126], [141], [211]

Structural Similarity Measures [220], [270], [275], [293], [355], [366], [420], [428], [439], [449], [456], [485],
[493], [495], [507], [520], [522], [524], [527], [552], [554], [555], [557], [558],
[561], [563], [568], [569], [570], [571], [572], [579], [586], [590], [595], [601],
[608], [612]

Mean Absolute Error [290], [296], [306], [355], [375], [589]

Moreover, there are many SR works that are tested

on common images, like Lena (for single image SR) and

resolution chart (for single and multiple-image SR).

6.7 3D SR

HR 3D sensors are usually expensive, and the available

3D depth sensors like Time of Flight (TOF) cameras

usually produce depth images of LR, therefore SR is of

great importance for working with depth images. Much

research on 3D SR has been reported [10], [28], [33],

[80], [135], [250], [346], [354], [459], [560], [578]. Most

of these methods have used 2D observations to extract

the depth information. However, in [200], [250], [296],

[324], [354], [388], [421], [578] 3D to 3D SR algorithms

have been developed to generate HR 3D images from

LR:

– 3D inputs using a hallucination algorithm [354], [355].

– stereo pair images [296].

– images captured by a TOF camera using a MAP SR

algorithm [388], [421].

To do so, e.g., in [354] two planer representations have

been used: Gaussian Curvature Image (GCI) and Sur-

face Displacement Image (SDI). GCI and SDI model the

intrinsic geometric information of the LR input meshes

and the relationship between these LR meshes and their

HR counterparts, respectively. Then, the hallucination

process obtains SDI from GCI, which has been done by

RBF networks. In [355], the result of a hallucination

algorithm has been applied to a morphable face model

to extract a frontal HR face image from the LR inputs.

Another group of 3D SR algorithms, a.k.a joint im-

age upsampling, work with a LR depth map and a HR

image to super-resolve a HR depth image, like in [297],

[532], [573]. This technique has been well applied to

aerial imaging, in which for example a HR panchro-

matic image and a LR multi-spectral image are used

to produce a HR multi-spectral image. This method in

aerial applications is know as pan-sharpening, like in

[54], [114], [159], [603].
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Table 14 Reported facial databases employed in different SR algorithms.

Databases Some of the references that have reported their results based on this database

FERET [57], [58], [60], [71], [82], [99], [187], [188], [189], [191], [192], [193], [194], [208], [235], [259], [276], [310],
[311], [322], [338], [339], [343], [344], [347], [400], [403], [404], [407], [425], [433], [434], [435], [442],
[443], [453], [456], [465], [469], [475], [480], [522], [523], [556], [607]

CAS-PEAL [409], [411], [412], [413], [457], [458], [461], [467], [474], [475], [502], [524], [525], [569], [570], [583], [618]

Multi-PIE CMU [301], [302], [340], [338] , [339], [433], [453], [475], [510], [527], [561], [609], [618]

YaleB [187], [188], [189], [235], [276], [329], [360], [394], [400], [442], [443], [495]

AR [187], [188], [189], [206], [208], [235], [349], [360], [382], [456], [522]

XM2VTS [191], [192], [194], [213], [190], [298], [299], [355], [556], [618]

FRGC [298], [338], [339], [379], [505], [510], [556], [618]

ORL [185], [373], [405], [609]

USF HumanID 3D [200], [250], [354]

GTAV [382], [456], [522]

Table 15 Description of the 2D facial databases employed in different SR algorithms. The table can be read like this, e.g.,
CAS-PEAL database contains 99,594 facial images of 10,040 subjects, the images are originally color image of size 640x480,
and have been taken from 21 different viewpoints, under 5 different expressions, 10 different lightning conditions, and at 3
different resolutions.

Databases images subjects size color gray viewpoints expressions illumination distance

FERET 2,413 856 512x768 - 4 2 - -

CAS-PEAL 99,594 1,040 640x480 - 21 5 10 3

Multi-PIE 750,000 337 3072x2048 - 15 6 19 -

YaleB 16,128 28 640x480 - 9 - 64 -

AR 4,000 126 768x576 - - 4 3 -

XM2VTS 1,180 295 720x576 - 5 - - -

FRGC 50,000 200 1704x2272 - - 2 3 -

ORL 400 40 92x112 - 4 - - -

GTAV 1,118 44 320x240 - 9 3 3 -

6.8 Speed of SR algorithms

SR algorithms usually suffer from high computational

requirements, which obviously reduces their speed per-

formances. For example, POCS algorithms may oscil-

late between the responses and get too slow to converge.

Some MAP methods, if they use non-convex prior terms

for their regularization, may require computationally

heavy optimization methods, like simulated annealing.

Some researchers have tried to develop fast SR systems

by imposing some conditions on the input images of the

system. For example in:

– [87] a ML based method was developed which was

fast but only when the motion between its LR in-

puts is pure translational. Similar approach of con-

sidering translational motion has been followed in

[397].

– [124], [364], [479] a ML method was developed for

the case that SR problem is over-determined. In this

case the there is no need for a regularization term

and the huge matrix calculations can be replaced by

shift and add operations. This is mostly the case for

the Direct SR algorithm in which different types of

filters are utilized, for example in [290], [533] adap-

tive Wiener filter has been used (Section 5.1.3).

– [131], [221] preconditioning of the system has been

used so that one can use a faster optimization method,

like CG.

In some SR algorithms it has been tried to improve

the speed of a specif step of the system. For example:

– in [252], [277], [308], [333] faster registration algo-

rithms are used.

– in [217] parallel processing has been used.

– some of the learning based approaches perform fast

in their testing phase, but they need a time consum-

ing training step and are mostly application depen-

dent, like in [130], [292], [304].
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7 Conclusion

This survey paper reviews most of the papers published

on the topic of super-resolution (up to 2012), and pro-

poses a broad taxonomy for these works. Besides giving

the details of most of the methods, it mentions the pros

and cons of the methods when they’ve been available

in the reviewed papers. Furthermore, it highlights the

most common ways for dealing with problems like color

information, the number of LR images, and the assess-

ment of the algorithms developed. Finally, it determines

the most commonly employed databases for the differ-

ent applications.

This survey paper has come to its end, but we have

still not answered a very important question: What are

the state-of-the-art super-resolution algorithms? The

fact is that the answer to this question is highly de-

pendent on the application. A super-resolution algo-

rithm that is good for aerial imaging is not necessarily

good for medical purposes or facial image processing.

In different applications, different algorithms are lead-

ing. That’s why there still are many recent publications

for almost all types of the surveyed algorithms. This

is mainly due to the different constraints that are im-

posed on the problem in different applications. There-

fore, it seems difficult to compare super-resolution al-

gorithms for different applications against each other.

Generating a benchmark database which can include

all the concerns of the different fields of application

seems very challenging. But generally speaking, com-

paring the frequency domain methods against the spa-

tial domain methods, the former are more interesting

from the theoretical point of view but have many prob-

lems when applied to real world scenarios, e.g., they

mostly have problems in the proper modeling of the

motion in real world applications. Spatial domain meth-

ods have better evolved for coping with such problems.

Among these methods, the single-image based meth-

ods are more application-dependent while the multiple-

image based methods have been applied to more gen-

eral applications. The multiple-image based methods

are generally composed of two different steps: motion

estimation, then fusion. These had and still have limited

success because of their lack of robustness to motion er-

ror (not motion modeling). Most recently, implicit non-

parametric methods (see the last paragraph of Section

5.1.3) have been developed that remove this sensitivity,

and while they are slow and can not produce huge im-

provement factors, they fail very gracefully and produce

quite stable results at modest improvement factors.
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