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Abstract

Analogously to the fact that Lawvere’s algebraic theories of (finitary)
varieties are precisely the small categories with finite products, we prove
that (i) algebraic theories of many–sorted quasivarieties are precisely the
small, left exact categories with enough regular injectives and (ii) algebraic
theories of many–sorted Horn classes are precisely the small left exact cat-
egories with enough M–injectives, where M is a class of monomorphisms
closed under finite products and containing all regular monomorphisms.
We also present a Gabriel–Ulmer–type duality theory for quasivarieties
and Horn classes.

1 Quasivarieties and Horn Classes

The aim of the present paper is to describe, via algebraic theories, classes of
finitary algebras, or finitary structures, which are presentable by implications. We
work with finitary many–sorted algebras and structures, but we also mention the
restricted version to the one–sorted case on the one hand, and the generalization
to infinitary structures on the other hand.

Recall that Lawvere’s thesis [11] states that Lawvere–theories of varieties, i.e.,
classes of algebras presented by equations, are precisely the small categories with
finite products, (in the one sorted case moreover product–generated by a single
object; for many–sorted varieties the analogous statement can be found in [4,
3.16, 3.17]). More in detail: If we denote, for small categories A, by ProdωA
the full subcategory of SetA formed by all functors preserving finite products,
we obtain the following:

(i) If K is a variety, then its Lawvere–theory L(K), which is the full subcat-
egory of Kop of all finitely generated free K–algebras, is essentially small,
and has finite products. The variety K is equivalent to ProdωL(K).
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(ii) If A is a small category with finite products, then ProdωA is equivalent to
a variety.

(Let us remark that, unless we consider varieties as concrete categories, the
correspondence between between varieties and finite–product theories is not natu-
ral. For example, if A and B are small categories with finite products, then from
the equivalence of ProdωA and ProdωB it does not follow that A and B are
equivalent. In other words, one variety can have many non–equivalent theories.)

We are going to prove the analogous result for quasivarieties of algebras, i.e.,
classes which can be defined by implications of the form

α1 ∧ α2 ∧ . . . ∧ αn −→ β (*)

where n ∈ ω and αi and β are equations (with both sides of the same sort).
The role of L(K) is played here by the algebraic theory of the quasivariety

K, which is the dual of the full subcategory Kfp of K formed by all finitely
presentable algebras.

Remark 1 The notion of theory can be introduced more generally, when recall-
ing first some basic facts from [8] needed throughout this paper:

(a) An object K of a category K is called finitely presentable provided that
K(K,−) preserves directed colimits; more explicitely: given a directed colimit

(Di
di−→ D)i∈I for some directed poset I, then for every morphism f : K → D

(i) there exists a factorization f ′: K → Di through the colimit, i.e., f = di · f ′
for some i ∈ I;

(ii) this factorization is essentially unique, i.e., if f ′′: K → Di also satisfies
f = di · f ′′, then there exists j ∈ I, j > i, such that the connecting map
Di → Dj merges f ′ and f ′′.

If K is a quasivariety, the usual concept of finite presentability (by generators
and relations) is equivalent to the categorical one above.

(b) A category is called locally finitely presentable if it is cocomplete and has
a set P of finitely presentable objects such that every K–object is a directed
colimit of P–objects. Every quasivariety is locally finitely presentable.

(c) A finite colimit of finitely presentable objects is finitely presentable. In
other words, the full subcategory Kfp of K formed by all finitely presentable
objects is closed under finite colimits in K. Moreover, Kfp is dense in K, i.e.,
every object K is a colimit of its canonical diagram w.r.t. Kfp (formed by all
arrows from finitely presentable objects into K).

Notation (1) For every locally finitely presentable category K we denote by
Th(K) the dual of Kfp. Th(K) is called the algebraic theory of K.
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(2) For every left exact (= finitely complete), small category A we denote
by LexA the full subcategory of SetA formed by all left exact (= finite–limits
preserving) functors.

The rôle of the theory has been made clear by Gabriel and Ulmer in [8]:

(I) For every locally finitely presentable category K the theory Th(K) is an
essentially small, left exact category, and K is equivalent to LexTh(K).

(II) For every small, left exact category A the category LexA is locally finitely
presentable, and A is equivalent to the theory Th(LexA).

Remark 2 The equivalences (I) and (II) are just the “object part” of the well-
known Gabriel–Ulmer duality. We devote the last part of our paper to a detailed
description of that duality because the existing descriptions in the literature
are incorrect. At this stage let us mention only that the embedding Kfp ↪→
K corresponds, under the equivalences above, to Yoneda embedding Y :Aop →
LexA given by Y (A) = A(A,−). Observe that, because Th(K) is essentially
small, forming LexTh(K) is essentially correct; see Section 4 for details. As a
consequence of Gabriel–Ulmer duality we get

(III) A locally finitely presentable category K has an essentially unique theory.
That is, if A is a left exact category with K ∼= LexA, then A ∼= Th(K).

Recall that an object A in a category A is M–injective w.r.t. a given class
M⊂ Amor if for every member m: B −→ C of M the map A(m, A):A(C, A) →
A(B, A) is surjective. A category has enough M–injectives provided that every
object is an M–subobject of an M–injective object. In case M is the class of all
regular monomorphisms, the category A is said to have enough regular injectives.
Projectivity is defined dually. Of particular importance will be, for any given class
P ⊂ Aobj, the class P⊥ of all morphisms to which every P–object is projective.
The following immediate consequence of the definition of finite presentability will
be used in the sequel:

Lemma 1 For any class P of finitely presentable objects the class P⊥ is closed
under directed colimits.

We will prove that algebraic theories of quasivarieties are precisely the small
left exact categories with enough regular injectives, or, somewhat more explicitely
(improving the main result of [1]) that the following hold:

(i’) If K is a quasivariety, then Th(K) is essentially small, left exact, and has
enough regular injectives. The quasivariety K is equivalent to LexTh(K).

(ii’) If A is a small left exact category with enough regular injectives, then LexA
is equivalent to a quasivariety.
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Moreover, we present a duality for quasivarieties and small, left exact cate-
gories with enough regular injectives which, inter alia, shows that

(iii’) For any quasivariety K, the small, left exact category A with K ∼= LexA
is essentially unique.

Our duality theory for quasivarieties is just a natural restriction of the Gabriel–
Ulmer duality.

Finally, we turn to Horn classes of finitary structures. Here we assume that
a signature of finitary (many–sorted) operations and relations is given, and a
Horn class is presented by implications as in (*) above, where now αi and β
are atomic formulas (i.e., either equations, or formulas r(t1, . . . , tn) where r is
an n–ary relation, and t1, . . . , tn are terms of the corresponding sorts). Horn
classes are locally finitely presentable categories. We will prove that algebraic
theories of Horn classes are precisely the small categories with finite limits and
enough M–injectives. Here M can be an arbitrary class of monomorphisms
which is closed under finite products (i.e., if for i = 1, 2, the morphisms mi: Ai →
Bi belong to M, then so does m1 × m2: A1 × A2 → B1 × B2) and contains
all regular monomorphims; classes of monomorphisms with these two properties
will be called left exact classes below. For example, in every Horn class K we
can consider the collection of all homomorphisms which are surjective (more
precisely: every sort yields a surjective function). This defines a left exact class
of monomorphisms in Th(K) as we prove below.

Quite analogously to the case of quasivarieties, we will prove the following:

(i”) If K is a Horn class, then Th(K) is essentially small, left exact, and
has enough M–injectives for the left exact class M of all surjective K–
homomorphisms. The Horn class K is equivalent to LexTh(K).

(ii”) If A is a small, left exact category with enough M–injectives, for some left
exact class M, then LexA is equivalent to a Horn class.

Again, the Gabriel–Ulmer duality yields a duality theory for Horn classes and
small, left exact categories with enough M–injectives. In particular,

(iii”) For any quasivariety K, the small, left exact category A with K ∼= LexA
is essentially unique.

Before proving the promised results, we mention a result proved by M. Makkai
[13, Lemma 5.1] concerning locally finitely presentable categories in general,
which will be used below.

Lemma 2 Let K be a locally finitely presentable category. For any finite category
A we have

Th(KA) = Th(K)A,

i.e., a functor F :A −→ K is finitely presentable in KA iff Fa is finitely pre-
sentable in K for every object a ∈ Aobj.
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Corollary 1 Every regular epimorphism in a locally finitely presentable category
K is a directed colimit (in K→) of regular epimorphisms of K with all domains
and codomains finitely presentable in K.

Proof. Given a coequalizer c: A −→ B of a pair f, g: D −→ A, apply Lemma 2
to the category A consisting of a single parallel pair to express (f, g) as a directed
colimit of parallel pairs fi, gi: Di −→ Ai with Di and Ai finitely presentable. Form
a coequalizer ci: Ai −→ Bi of fi, gi. Then Bi is finitely presentable, and c is a
directed colimit of ci in the category K→ of morphisms in K. 2

Remark 3 The formulation of Lemma 2 in [13] concerns, more generally, all
locally λ–presentable categories. Also Corollary 1 generalizes immediately to the
statement that, in any locally λ–presentable category K, every regular epimor-
phism is a λ–directed colimit (in K→) of regular epimorphisms of K with all
domains and codomains λ–presentable in K.

Remark 4 We use various kinds of generators below (distinguishing between a
generator, which is a set of objects with a certain property, and a generating
object, if this set is a singleton) and here we want to recall some well–known
concepts.
Let G be a (small) set of objects in a category K with coproducts. Then G is

(a) a generator if, for each object K, the canonical morphism

eK :
∐
G∈G

∐
f :G→K

−→ K

is an epimorphism,

(b) an extremal generator if, for each object K, eK is an extremal epimorphism
(i.e., does not factor through any proper subobject of K),

(c) a regular generator if, for each object K, eK is a regular epimorphism.

An equivalent formulation for (a) and (b) is: every object is an (extremal) quo-
tient of a coproduct of G–objects. This simplification does not work for (c) in
general, see [2], but this does not matter in the realm of quasivarieties, due to
the following

Lemma 3 In any cocomplete category K with a generator P consisting of reg-
ularly projective objects, an epimorphism is regular iff it is extremal. Moreover,
the regular epimorphisms are precisely the morphisms in P⊥, provided P is an
extremal generator.
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Proof. Let {Gi | i ∈ I} be a generator in K, where each Gi is regularly
projective. Then the functor U = (K(Gi,−))I :K → SetI is faithful, has a
left adjoint, and preserves regular epimorphisms. By the proof of [3, 23.38], U
creates (regular epi, mono)–factorizations. But in any category with (regular
epi, mono)–factorizations, extremal epimorphisms are regular. If P is even an
extremal generator, i.e., if U in addition reflects isomorphisms, U — by the
creation-property above — also reflects regular epimorphisms. This proves the
final statement. 2

2 Algebraic Theories of Quasivarieties

Our characterization of theories of quasivarieties relies on well–known categorical
characterizations of quasivarieties. Since these (with or without minor modifica-
tions) tend to be reinvented now and again, we include a brief account.

Apparently Isbell was the first one to characterize quasivarieties in categorical
terms as follows [9]:

A category K is equivalent to a quasivariety iff K satisfies the following con-
ditions:

• K is cocomplete and has equalizers,

• K has an object P which is

(i) extremally projective,

(ii) extremally (= strongly) generating,

(iii) finitely presentable.

Actually, Isbell used instead of condition (iii) the somewhat weaker notion “ab-
stractly finite” since he allowed for implications slightly more general than in (*)
above.

Basically the same result was obtained by Linton [12] and later by Felscher
[7]. Their characterizations are essentially translations of the properties of P
in Isbell’s theorem into properties of the associated hom–functor K(P,−), by
weakening at the same time Isbell’s (co–)completeness conditions to the existence
of copowers of P , kernel pairs, and coequalizers of the latter. One can also use a
regularly generating object instead of on extremally generating one, as justified
by Lemma 3. Thus there is the following theorem:

Theorem 1 (Isbell–Linton–Felscher) For any category K the following are
equivalent:

(i) K is equivalent to a one–sorted quasivariety,
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(ii) K is cocomplete and has an extremally generating object which is regularly
projective and finitely presentable.

(iii) K is cocomplete and has a regularly generating object which is regularly
projective and finitely presentable.

(iv) K has kernel pairs, coequalizers of kernel pairs, and a regularly generating
object which is regularly projective, finitely presentable, and admits all co-
powers.

Not surprisingly, basically the same characterization theorem holds in the
many–sorted case; here only “generating object” has to be replaced by “gener-
ator”. The crucial equivalence of (i) and (iv) is formulated in [4] as Theorem
3.24. A similar result appears in [5] (Theorem 2.3) where, however, it is incor-
rectly claimed that every (finitary) quasivariety has a finite regular generator;
the category SetA, where A is an infinite discrete category, is a counterexample.

Theorem 2 For any category K the following are equivalent:

(i) K is equivalent to a (many–sorted) quasivariety.

(ii) K is cocomplete and has a regular generator consisting of regularly projec-
tive, finitely presentable objects.

Proof. (i) implies (ii) since in any quasivariety K every algebra K is a regular
quotient of a free algebra K∗ and K∗ is regularly projective (the regular epimor-
phisms are precisely the surjective ones). Hence the free algebras on finitely many
generators form the required generator. To prove that (ii) implies (i) we use the
following facts: (a) given a regular generator G of finitely presentable objects, all
finite coproducts of G–objects form a dense subcategory of finitely presentable
objects (see[8, 7.5]); (b) coproducts of regularly projectives are regularly projec-
tive again. Thus, K is cocomplete and has a small dense subcategory consisting
of regularly projective, finitely presentable objects. That this implies (i) is just
the essential statement of [4, 3.24]. 2

Remark 5 By Lemma 3 condition (ii) above could obviously be replaced by the
formally weaker condition (ii’) K is cocomplete and has an extremal generator
consisting of regularly projective, finitely presentable objects.

Theorem 3 A small category A is equivalent to the theory of some quasivariety
iff A is left exact and has enough regular injectives.

Proof. In any quasivariety K with a regular generator G consisting of finitely
presentable objects, all finitely presentable objects are regular quotients of finite
coproducts of members of G by [8, 7.6]. Moreover, if the members of G are
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regular projective so are their coproducts. Thus, in Th(K) every object is a
regular subobject of some regularly injective object.

For the converse, it is sufficient to prove, by the remark following Theorem 2
and by (II) above, that, for any locally finitely presentable category K such that
Kfp has enough regular projectives, the set

P = {K | K is regularly injective in Th(K)}
= {K | K is regularly projective in Kfp}

is an extremal generator of regular projectives in K. Since every object of K is
a colimit of finitely presentable objects, i.e., a colimit of a diagram in Kfp, and
since every object of Kfp is a regular quotient of some object of P , it is easy
to see that P is an extremal generator. To prove that every object K of P is
regularly projective in K, use Lemma 1, Corollary 1, and the fact that regular
epimorphisms in Kfp are regular epimorphisms in K, too. 2

Corollary 2 Every quasivariety is equivalent to LexA for some small, left exact
category A with enough regular injectives.

Remark 6 For one–sorted quasivarieties the existence of enough regular injec-
tives has to be strengthened to the existence of a single object I which

a. is regular injective

and thus, every power In is regular injective, and

b. every object is a regular subobject of In for some n ∈ ω.

That is,

a small category A is equivalent to the theory of some one–sorted
quasivariety iff A is left exact and has an object I satisfying a. and b.

This follows from the arguments given in the proof of Theorem 3 by replacing
the set P by {I} and using condition b. instead of the argument “every object
of Kfp is a regular quotient of some object of P”.

Remark 7 The generalization to infinitary algebras is straightforward. Let λ
be a regular cardinal. A λ–ary quasivariety is a class of Σ–algebras for a λ–ary,
many–sorted signature Σ given by implications∧

i∈I

αi −→ β

where αi and β are equations (with both sides of the same sort) and card I < λ.
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For each small, λ–complete category A with enough regular injectives, the
category LexλA, i.e., the full subcategory of SetA formed by all λ–continuous
functors, is equivalent to a λ–ary quasivariety.

Conversely, if K is a λ–ary quasivariety, then the full subcategory Thλ(K) of
Kop formed by all λ–presentable K–algebras is essentially small, λ–complete, has
enough regular projectives and fullfils

LexλThλ(K) ∼= K.

(The proof is analogous to that of Theorem 3.) Similarly, Remark 6 generalizes
to the λ–ary case.

3 Algebraic Theories of Horn Classes

The proof of the next theorem is based on a characterization of Horn classes
proved by J. Rosický in [15]. Here a set P of objects is called additive provided
that the class P⊥ of all morphisms to which every P–object is projective is closed
under coproducts (in the usual sense, i.e., given ei: Ki −→ Li in P⊥ for i ∈ I,
then

∐
i∈I ei:

∐
i∈I Ki −→

∐
i∈I Li lies in P⊥, too).

Theorem 4 ([15]) The following are equivalent for any category K:

(i) K is equivalent to a Horn class.

(ii) K is locally finitely presentable and has an additive generator consisting of
regularly projective, finitely presentable objects.

Remark 8 The following list of examples of additive sets of regularly projective
objects in a category K illustrates the above theorem:

POS In the Horn class POS of posets and monotone maps, 1 (a singleton poset)
is regularly projective and the class {1}⊥ is the class of all surjective mono-
tone maps, i.e., of all epimorphisms; thus 1 is a regularly projective, addi-
tive, generating object in POS.

QV In every quasivariety any regular generator G consisting of regular projec-
tives is additive: G⊥ here is the class of all regular epimorphisms (see
Lemma 3).

Cat In the locally finitely presentable category Cat of small categories and func-
tors, the only regularly projective objects are the discrete categories. For
any set P of those, P⊥ is the class of all functors which are surjective
on objects (this is closed under coproducts); however, no such set P is a
generator, see [5]. In particular, Cat is not a Horn class.
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Top In the category Top of topological spaces and continuous maps, 1 is a
regularly projective, additive, generating object. Note that Top fails to be
locally finitely presentable.

The following lemma generalizes the first example above, and its corollary is
crucial for the theorem to follow.

Lemma 4 Let K be a Horn class. Then the class of all surjective homomor-
phisms in K is closed under coproducts and contains all regular epimorphisms.

Proof. Let K be given in terms of some signature Σ; denote by StrΣ the
category of all Σ–structures and all homomorphisms.

(a) The statement of the lemma holds for StrΣ. In fact, let Σ0 be the signature
obtained from Σ by deleting all operational symbols. Then there is a natural
forgetful functor

V :StrΣ −→ AlgΣ0

into the category of all Σ0–algebras, which has a right adjoint (assigning to ev-
ery Σ0–algebra A the “largest” Σ–structure over A, i.e., all relations are maxi-
mal). Since in AlgΣ0 surjective homomorphisms are precisely the regular epimor-
phisms, the class of all surjective homomorphisms in StrΣ is V −1[RegEpi(AlgΣ0)].
Since V , as a left adjoint, preserves coproducts and regular epimorphisms, the
statement follows.

(b) The Horn class K, being closed under products and strong subobjects
in StrΣ, is an epi–reflective subcategory of StrΣ. Thus, for homomorphisms
ei: Ai → Bi (i ∈ I) of K, a coproduct ê in K is obtained from a coproduct∐

i∈I ei:
∐

i∈I Ai →
∐

i∈I Bi in StrΣ by forming reflections rA:
∐

i∈I Ai → RA and
rB:

∐
i∈I Bi → RB:

-
? ?

-

∐
i∈I Bi rB

RB

∐
i∈I ei ê

∐
i∈I Ai RA

rA

By (a),
∐

i∈I ei is surjective, as is rB as an epimorphism in StrΣ; thus, ê is
surjective.

The proof that regular epimorphisms of K are surjective is analogous. 2

Corollary 3 Let K be a Horn class. Then all surjective homomorphisms be-
tween finitely presentable K–objects form a left exact class of monomorphisms in
Th(K).
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Theorem 5 A small category A is equivalent to the theory of some Horn class
iff A is left exact and has enough M–injectives with respect to some left exact
class M of monomorphisms.

Proof. Given a Horn class K, its theory A = Th(K) has enough M–injectives,
where M is the set of all surjective Kfp–homomorphisms. In fact, since K is
an epireflective subcategory of StrΣ, the natural forgetful functor U from K
to SetS (where S is the set of all sorts of the signature Σ) has a left adjoint
F :SetS −→ K. Each object FX, where X is finitely presentable in SetS, is M–
injective in Th(K). Every finitely presentable object K of K is an M–quotient of
some FX with X finitely presentable: consider the directed family of all regular
subobjects of K generated by some finitely presentable X, then K equals to
one of them (since it is a directed colimit of the diagram formed by inclusion
maps). Thus Th(K) has enough M–injectives, which proves the implication by
Corollary 3.

For the converse it is sufficient to prove, by Theorem 5 and (II) above, that,
for any locally finitely presentable category K and any left exact class M of
monomorphisms in Th(K), the set

P = {K | K is M–injective in Th(K)}
= {K | K is M–projective in Kfp}

is a finitely additive generator consisting of regular projectives.
Regular projectivity of the objects of P follows by the same argument as in

the proof of Theorem 3, since M contains all regular epimorphisms in Kfp. Also,
P is obviously generating.

Finally, we prove that P⊥ is closed under coproducts. By Lemma 1 it is
sufficient to prove that P⊥ is closed under finite coproducts. Let

u: U −→ U ′ and v: V −→ V ′

be two arrows in P⊥. We will prove that, for every M–projective object K of
Kfp, each morphism

h: K −→ U ′ + V ′

factors through u+v in K. Since K, and hence K→, is locally finitely presentable,
u is a directed colimit of finitely presentable objects, which, by Lemma 2, means
that there exists a directed family of maps ui: U

′
i −→ Ui (i ∈ I) in K→

fp such that
u = colim ui; analogously v = colim vj for a directed family vj: V

′
j −→ Vj (j ∈ J)

in K→
fp. We denote the colimit maps as follows:

-
? ?

-

-
? ?

-

U u U ′

pi p′i

Ui U ′
i

ui

V v V ′

qj q′j

Vj V ′
j

vj
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Consequently, U ′ + V ′ = colim (U ′
i + V ′

j ) and, since K is finitely presentable, h
factors through some U ′

i + V ′
j , i.e., there exist i ∈ I, j ∈ J, and k: K −→ U ′

i + V ′
j

with
h = (p′i + q′j) · k.

Since Kfp has enough M–projectives, there exist M–maps

m: Ū −→ U ′
i and n: V̄ −→ V ′

j

with Ū and V̄ both M–projective (in Kfp). Then, since M is closed under finite
coproducts in Kfp and K is M–projective, there exists k̄ such that the following
triangle

@
@@I

�
���

-Ū + V̄
m + n

U ′
i + V ′

j

k̄ k

K

commutes. Furthermore, Ū lies in P and u in P⊥, thus, p′i ·m factors through u;
analogously, q′j · n factors through v:

-
? ?

-

-
? ?

-

U u U ′

p′′i p′i

Ū U ′
i

m

V v V ′

q′′j q′j

V̄ V ′
j

n

This yields the desired factorization of h through u + v:

h = (p′i + q′j) · k

= (p′i + q′j) · (m + n) · k̄

= (u · p′′i + v · q′′j ) · k̄

= (u + v) · (p′′i + q′′j ) · k̄.

2

Corollary 4 Every Horn class is equivalent to LexA for some small, left exact
category A with enough M–injectives, where M is a left exact class of monomor-
phisms in A.

Remark 9 For one–sorted Horn classes the existence of enough M–injectives
has to be strengthened to the existence of a single object I which
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a. is M–injective

and thus, every power In is M–injective, and

b. every object is an M–subobject of In for some n ∈ ω.

That is,

a small category A is equivalent to the theory of some one–sorted
Horn class iff A is left exact and has an object I satisfying a. and b.
for some left exact class M of monomorphisms.

This is essentially the result of Keane [10] and follows by modifications of the
arguments in the proof of Theorem 5 analogously as in Remark 6.

Remark 10 The generalization to infinitary structures is straightforward: let λ
be a regular cardinal. A Horn class of λ–ary structures is a set of Σ–structures,
for a many–sorted λ–ary signature Σ, given by implications∧

i∈I

αi −→ β

where αi and β are atomic formulas with card I < λ.
Suppose A is a small, λ–complete category. Let M be a class of monomor-

phisms containing all regular ones and closed under coproducts of less than λ
members. Then if A has enough M–injectives, the category LexλA is equivalent
to a Horn class of λ–ary structures.

Conversely, every Horn class of λ–ary structures has the above form LexλA.
The proof is quite analoguous to that of Theorem 5.

Similarly, Remark 9 generalizes to the λ–ary case.

Remark 11 Obviously every small complete category A has a smallest and a
largest left exact class of monomorphisms: the class of all regular monomorphisms
and of all monomorphisms, respectively. If A has enough injectives w.r.t. the
smallest left exact class, the corresponding generator P in LexA is regular and
consists of regular projectives (see proof of Theorem 3) and hence one gets here
P⊥ = RegEpi(LexA) (see Lemma 3), which is automatically additive.

4 Gabriel–Ulmer Duality

It was probably conceived very early that Gabriel and Ulmer’s fundamental equiv-
alences (I) and (II) of Section 1

LexTh(K) ∼= K and Th(LexA) ∼= A
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have a certain kind of (contravariant) functionality. More precisely: Let Lex
denote the category of all small, left exact categories and all left exact functors.
Let LFP be the quasicategory1 of all locally finitely presentable categories and all
functors preserving limits and directed colimits (in other words: the morphisms
in LFP are precisely the right adjoints between finitely locally presentable cate-
gories, see [4, 1.66]). One obtains a functor

Lex :Lexop −→ LFP

assigning to every A in Lex the category LexA and defined on morphisms
F :A −→ B by composites with F on the right:

Lex(F ) = (−)F : LexB −→ LexA.

What is generally known as Gabriel–Ulmer duality (and what, in the strongest
2–categorical sense has been explicitly stated in [14]) is the statement that Lex is
an equivalence of categories. This, however, is wrong (note that Lex is category):

Lemma 5 LFP is not equivalent to a category.

Proof. Whereas in a category hom–sets are sets (or classes, in the Bernays–
Gödel terminology), LFP does not have this property. In fact, here a hom–set
LFP(K,L) can be as large as the collection of all subclasses of the class of all
sets: if K = L = Set, then, for each class C ⊂ Set, there obviously exists a
functor

FC:Set −→ Set with FC
∼= Id and FCX = X iff X ∈ C.

These functors FC are endomorphisms of Set in LFP which are pairwise distinct.
2

For this reason we have decided to devote the present section to the develop-
ment of a formally correct version of the Gabriel–Ulmer duality theorem. Observe
that the above functor Lex is faithful, but it is neither full (though it is “full up to
natural isomorphism”) nor isomorphism dense (though it is “isomorphism dense
up to equivalence of categories”).

The proper setting for the duality is that of 2–categories and bifunctors (see
e.g. [6] for basic notions). Recall from [16] that if K and L are 2–categories, then a
2–functor (or, more generally, a lax functor) R :K −→ L is called a biequivalence
if

(a) for each object X of L there exists an object A of K such that RA ≈ X
(i.e., there exist 1–cells f : RA −→ X and g: X −→ RA and invertible
2–cells fg =⇒ 1X and 1RA =⇒ gf), and

1Recall from [3] that quasicategory is defined as category except that all objects do not
necessarily form a class, but a conglomerate (i.e., this belongs to a higher universe), and also
hom’s are conglomerates, in general; see [3] for a detailed discussion.
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(b) for each pair A, B of objects of K the functor

RA,B:K(A, B) −→ L(RA,RB)

is an equivalence of categories.

As remarked in [16], this implies that R has a left biadjoint which is also a biequiv-
alence (so being biequivalent is an equivalence relation on the conglomerate of
all 2–categories).

We will modify the above notation: By Lex we denote the 2–category of all
small, left exact categories (as objects), all left exact functors (as arrows), and
all natural transformations (as 2–cells).

For LFP we need to work with the concept of 2–quasicategory: this is defined
precisely as 2–category except that the set–theoretical restrictions on the sizes of
the conglomerates of i–cells are lifted (for i = 0, 1, 2). (Thus, 2–quasicategories
are related to 2–categories exactly as quasicategories are to categories.)

We denote by LFP the 2–quasicategory of all locally finitely presentable cate-
gories (as objects), all functors preserving limits and directed colimits (as arrows),
and all natural transformations (as 2–cells).

We denote by
Lex :Lexop −→ LFP

the 2–functor assigning to each object A the category LexA, and with

LexA,B:Lex(A,B) −→ LFP(LexB, LexA)

defined by

LexA,B(F
σ−→ F ′)H = HF

Hσ−→ HF ′

for F :A −→ B in LexA and H ∈ LexB.

Theorem 6 (Gabriel–Ulmer Duality) The 2–category Lex is dually biequiv-
alent to LFP. More in detail: The functor

Lex :Lexop −→ LFP

is a biequivalence.

Proof. (a) For each object K of LFP there exists an equivalent object of the
form Lex(A), namely LexTh(K) — see (I) in Section 1.

(b) LexA,B is an equivalence functor for each pair A,B of left exact categories.
Proof:
(b 1) LexA,B is faithful. In fact, let σ, τ : F −→ F ′ (for F, F ′:A −→ B)
be natural transformations with Lex(σ) = Lex(τ). For each object A we are
to show σA = τA. This follows from the fact that the component of Lex(σ)
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at H = B(FA,−) is Hσ:B(FA, F−) −→ B(FA, F ′−) and σA = (Hσ)A(1FA);
analogously with τ . Thus, Hσ = Hτ implies σA = τA.
(b 2) LexA,B is full. That is, given F, F ′:A −→ B in LFP, then every natural
transformation

τ : (−)F −→ (−)F ′,

i.e., every collection of natural transformations

τH : HF −→ HF ′ for H ∈ LexB

which, moreover, is natural in the variable H, has the form τ = Lex(σ) for some
2–cell σ: F −→ F ′ in Lex.

To prove this, observe that for each object A of A we have H = B(FA,−) in
LexB, and hence

τH :B(FA, F−) −→ B(FA, F ′−)

We define
σA = (τH)A(idA): FA −→ F ′A. (1)

It is obvious that, then,

(τH)B(f) = F ′f · σA for all f : A −→ B in A. (2)

Let us verify that σA is natural in A: given α: A1 −→ A2 in A the corresponding
Yoneda transformation

α∗:B(FA2,−) −→ B(FA1,−)

is a map of LexB, and since τH is natural in H,

τB(FA1,−) · α∗F = α∗F ′ · τB(FA2,−). (3)

Applying (3) to idFA2 , we get, by using (2):

σA2 · F ′α = Fα · σA1 .

Let us further verify that
τ = Lex(σ),

i.e. that τH = Hσ for each H ∈ LexB. In fact, the equality

(τH)A(α) = HσA(α) (4)

for all H ∈ ContB, A ∈ A, and α ∈ HFA, follows from the naturality of τH in
H, applied to the unique LexB–map

ϕ:B(FA,−) −→ H
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given by ϕA(idFA) = α: apply τH · ϕF = ϕF ′τB(FA,−) to idFA (using again (2)).
(b 3) LexA,B is isomorphism–dense, i.e., every map

T : LexB −→ LexA

in LFP is naturally isomorphic to Lex(F ) for some map F :A −→ B in Lex. To
prove this, recall that T is a right adjoint, and choose a left adjoint S of T ; recall
also that every left adjoint preserves the property of being a finitely presentable
object. Since finitely presentable objects of LexA (or LexB) are precisely the
representable functors, see [8], it follows that for every A(A,−) ∈ LexA we can

choose an object B
def
= FA in B such that B(B,−) ∼= S(A(A,−)

)
. Let us fix a

natural isomorphism

iA: S
(
A(A,−)

)
−→ B(FA,−) for all A ∈ A.

Given a morphism f : A −→ A′ in A, the Yoneda lemma guarantees that there is
a unique map Ff : FA −→ FA′ for which the natural transformation

i−1
A · S

(
hom(f,−)

)
· iA′ :B(FA′,−) −→ B(FA,−)

is given by composites with Ff . It is easy to verify that this defines a functor
F :A −→ B. To prove that

T ∼= Lex(F ),

it is sufficient to show that Lex(F ) is a right adjoint to S, i.e., that there is an
isomorphism

S(H) −→ K

H −→ KF
natural in the variables H ∈ LexA and K ∈ LexB. Since LexA is locally finitely
presentable, thus every object H is a directed colimit of finitely presentable (=
representable) objects, it is sufficient to find such a natural isomorphism for
H = A(A,−) where A ∈ A is arbitrary. And this is just Yoneda lemma: we have
a natural isomorphism between A(A,−) −→ KF and B(FA,−) −→ K, and the

latter is (via the iA’s) naturally isomorphic to S
(
A(A,−)

)
−→ K. 2

Remark 12 We can, by Theorem 3, restrict the biequivalence Lex :Lexop −→
LFP to a dual biequivalence between the quasicategory of all quasivarieties (a
full sub–quasicategory of LFP) — sorry for the two independent uses of “quasi”
here! — and the category of all small, left exact categories with enough regular
injectives (a full subcategory of Lex).

As a corollary we get immediately from the properties of the 2–functor Lex:

Corollary 5 For every quasivariety K there exists a unique, up to equivalence
of categories, small left exact category A with enough regular injectives such that
K ∼= LexA.
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Analogously, Theorem 5 yields a dual biequivalence for Horn classes, thus:

Corollary 6 For every Horn class K there exists a unique, up to equivalence of
categories, small left exact category A with enough M–injectives for some left
exact class M of monomorphisms in A such that K ∼= LexA.

Remark 13 As observed above the functor Lex has an adjoint biequivalence
LFP −→ Lexop (which, however, cannot be a functor, see Lemma 5). In order
to characterize this biequivalence we turn to a description of the Gabriel–Ulmer
duality as presented in [14]. There the authors work with the 2–quasicategory
LEX, defined as Lex except that the objects are allowed to be (large) categories.
Then they observe that the category Set serves as a schizophrenic object for LEX
and LFP. That is, the functors

LFP(−,Set):LFP −→ LEXop, LEX(−,Set):LEXop −→ LFP

form a dual 2–adjunction. Observe that, for every locally finitely presentable
category K, we have

Th(K) ∼= LFP(K,Set).

In fact, every LFP–map F :K → Set is a right adjoint, thus is representable,
and since F preserves directed colimits, it is represented by a finitely presentable
object of K. Thus, Th(K) is equivalent, by Yoneda lemma, to LFP(K,Set).

Consequently, one can restrict the above functors to the full subcategory LeX
of LEX over all essentially small left exact categories. One then obtains a dual
2–adjunction (claimed to be an equivalence — the Gabriel–Ulmer duality — in
[14])

LFP(−,Set):LFP −→ LeXop, LeX(−,Set):LeXop −→ LFP

The trouble is that, in order to get from LeX to Lex, we have to choose a
skeleton, and this cannot be performed functorially. However, we can choose
(one of equivalent) bifunctors

Sk:LeXop −→ Lexop

such that SkA is a skeleton of A and, on morphisms, SkF (A) ∼= F (A) for each
A in A. This leads to the following diagram

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z}

?

-
�

LeX(−,Set)
LFP

LFP(−,Set)
LeXop

SkLex

Lexop

18



Then Sk ◦ LFP(−,Set) is a biequivalence biadjoint to Lex.
Let us remark that the equivalence (I) in Section 1 was not precisely formu-

lated (since Lex cannot be composed with Th(−) ∼= LFP(−,Set), and
LeX(K,Set) will, for K not in Lex, only be a quasicategory equivalent to an
LFP–object). More precisely should (I) state that

K ∼= Lex(Sk(ThK)).

Unfortunately, size is not the only trouble with the above description of Gabriel–
Ulmer duality: though — neglecting size problems — the functors LFP(−,Set)
and LeX(−,Set) are dually 2–adjoint with front and back adjunctions given by
the equivalences (I) and (II) of Section 1, they do not form a (2–) equivalence,
since these equivalences fail to be isomorphisms in LFP and LeX respectively.
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