

Full-stack performance

Aaron Schulz
5/21/2014

Basic Stack - overview

● HTML pages: Varnish → Apaches (MediaWiki)

● CSS/JS: Varnish → Apaches (MediaWiki; load.php)

● Media originals: Varnish → Swift

● Media thumbnails: Varnish → Swift → Apaches (MediaWiki;
thumb.php)

● Job runners run various tasks in the background

● Request to api.php routed to different apaches/MySQL

● Apaches and job runners contact various data stores:

– MySQL, memcached, redis, Swift, Elastic

Basic stack - diagram

● File:Wikimedia
Server Architecture
(simplified).svg

● (c) Ryan Lane

On the edge
● Use geographically spaced CDN nodes

– Wikimedia uses Varnish (esams,ulsfo,eqiad)

● Use predicable, cacheable, URLs
– https://en.wikipedia.org/wiki/Hello

– https://zh.wikipedia.org/zh-hk/萬維網
– https://zh.wikipedia.org/zh-ch/萬維網

● URLs with special parameters (uncached)
– http://en.wikipedia.org/wiki/Hello?oldid=609305559

https://en.wikipedia.org/wiki/Hello
https://zh.wikipedia.org/zh-hk/%E8%90%AC%E7%B6%AD%E7%B6%B2
https://zh.wikipedia.org/zh-ch/%E8%90%AC%E7%B6%AD%E7%B6%B2
http://en.wikipedia.org/wiki/Hello?oldid=609305559

On the edge

● Common URLs with non-canonical encoding
– Cached and rewritten in VCL

– https://gerrit.wikimedia.org/r/#/c/96941/3/modules/varnish/templates/vcl/wikimedia.vcl.erb,unified

● Strange non-cannonical URLs
– http://en.wikipedia.org/wiki/_Hello

– Redirects to canonical (low TTL on redirect)

https://gerrit.wikimedia.org/r/#/c/96941/3/modules/varnish/templates/vcl/wikimedia.vcl.erb,unified
http://en.wikipedia.org/wiki/_Hello

On the edge

● Try to use JavaScript to deliver banners
– Give the same JS via CDN at let it do the

random or geoip bucketing

– e.g. Central Notice, fundraising

● Do geoip lookups using VCL in the CDN
– https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Fgeoip.inc.vcl.erb

– https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Ftext-frontend.inc.vcl.erb

https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Fgeoip.inc.vcl.erb
https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Ftext-frontend.inc.vcl.erb

On the edge

● Package client script modules to avoid RTTs
– bits.wikimedia.org/en.wikipedia.org/load.ph&l

ang=en&modules=<...>

● Use base64 data URI for images in CSS
– img:hover{background:white

url(
AAANSUhEUgAAABAAAAAQCAAAAAA6m
KC9AAAAGElEQVQYV2N4DwX/oYBhgARg
DJjEAAkAAEC99wFuu0VFAAAAAElFTkSuQ
mCC)...

On the edge

● Avoid cache stampedes from CDN
– Default in Varnish for duplicate URL requests

– Called “collapsed forwarding” in Squid

● Avoid excess CPU on any one CDN node
– Normally use CARP style routing, but VCL

was employed to use random routing
(Special:CentralAutoLogin)

– https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Ftext-backend.inc.vcl.erb

https://git.wikimedia.org/blob/operations%2Fpuppet/72c2531ffa57de96303204c4aab5c1d9ef42c945/templates%2Fvarnish%2Ftext-backend.inc.vcl.erb

Backend caching - basics

● Avoid cache stampedes for resource
– CDN de-duplication not always enough

– Use MediaWiki “PoolCounter” to de-duplicate
work (the C daemon is reusable)

– Using memcached add() can work too :)

● Use memcached to avoid expensive work
– e.g. Page text, rendered page output

● Increase hit rate by avoiding fragmentation
– Move customizations to post-processing

Backend caching - stores

● Memcached: parser cache, text, random stuff
● Redis: user sessions, locking, complex stuff
● Sharded MySQL (SSDs): parser cache
● Swift: media thumbnails

Database performance - load

● When the DB is needed, try to a slave DB
● Only use the master for anti-dependencies
● LoadBalancer deals with slave lag

– Periodic slave lag position polling

– Check slave positions in memcached

– Avoid slaves with high lag

● Master DBs sharded vertically by project
– en.wikipedia => s1, commons => s4, ...

Database performance - load

● ChronologyProtector and user expectations
– Slave master position in user session on edit

– Next requests wait till the slave gets there

– Users can see their own edits right after
page save without needing the master DB

Database performance - indexes

● Create appropriate indexes
– Speed up reads and writes

– Narrow gap locking scope

– Useless indexes hurt (more so when unique)

● Reuse indexes via redundant WHERE clauses
– e.g. rev(id,timestamp)=>rc(oldid,timestamp)

● Be careful with many NULLs in an index
– True for any one value that dominates index

● Periodically run ANALYIZE to update stats

DB performance - transactions

● MediaWiki wraps all queries in a transaction
– Provides snapshot consistency, avoiding

phantom reads and missing foreign keys

– Exceptions and partitions leave no garbage

– Caveat: worse pessimistic locking

DB performance - transactions

● Keep read transactions short
– Reduces gap lock contention

– Avoids unpurged row build up

● Keep write transactions short
– Reduces slave lag

– Batch huge queries and move to job queue

– Move slow method calls before contentious
queries or after the transaction commits

DB performance - transactions

● MediaWiki is a complex monolith, with many
extensions subscribed to hooks

● Moving queries around can be difficult
● Solution: $dbw->onTransactionIdle(…)

– Pass a callback to happen post-commit

– Useful for contentious updates, cache
purges, and slow output dependencies

– Not 100% atomic anymore

DB performance - transactions

● Solution: onTransactionPreCommitOrIdle(…)
– Pass in a callback to happen right before

COMMIT but after other queries

– Useful for updating counter fields that need
to be atomic with the other changes (or are
fast enough that it doesn't matter)

● Passing closures lets us shift responsibility to
the DB classes to re-order operations

● Example: upload new file version, update DB,
commi, purge thumbnails

DB performance - transactions

Database performance

● SHOW ENGINE INNODB STATUS :)

● MediaWiki logs of errors and long-held locks

Bulk text storage performance

● ExternalStore (ES): sharded MySQL :)
● Revision metadata rows in the primary DB
● `revision` rows => `text` rows => ES URI
● Each cluster is a master and ~2 slaves
● As clusters fill up we add new ones
● Remark: older clusters have the oldest text...
● Maybe use Cassandra instead?

File storage performance

● Distributed object store (OpenStack Swift)
● Files replicated on 3 nodes; all used for GETs
● Only anti-dependencies use X-Newest: true
● Biggest 25 wiki media containers sharded

– Swift uses SQLite3 for containers :/

● Purging old thumbnails of files can involve
dozens on files...use curl_multi()

Search performance

● Uses a cluster of ElasticSearch nodes
– Still migrating from ad-hoc Lucene cluster

● 3 total replicates per index shard
● Mostly per project (e.g. en.wikipedia) indexes
● 1-20 shards per-index (en.wikipedia has 20)

Task queuing

● Job queue is sharded over 2 redis boxes
● Uses LUA commands to Redis

– Gives atomicity; reduces round trips

– Supports retries, delays, de-duplication

● Job runner itself is an ugly bash script :)
● Jobs include “slow” tasks like:

– Varnish, Elastic, HTML, and usage tracking
updates when a template changes, emails,
mass messages, video transcodes, ...

Profiling – Not Invented Here :)

Profiling reports

● performance.wikimedia.org/profiler/report
● graphite.wikimedia.org + gdash.wikimedia.org

– Stores the data points and lets you build
graphs using various filters and functions

Monitoring & logging

● icinga.wikimedia.org/icinga/
● ganglia.wikimedia.org/latest/
● noc.wikimedia.org/dbtree/
● logstash.wikimedia.org

– Easier to spot trends than for flat files

● Open source, yay!

Monitoring & logging

● Custom flat file logs on “fluorine” server
– Useful for AWK/grep + pipe bash-fu

General strategy for new code

● Don't worry about micro-optimizations
● Avoid the obvious performance pitfalls

– e.g. try not to scan millions of rows :)

● Non-obvious optimizations need evidence
● Add profiling calls around disk & network I/O
● Deploy, and handle the unforeseen problems
● Premature optimization can backfire with

bugs, cache churn, and extra index overhead

On the edge - future

● Logged in users bypass cache :/
– Solution using ESI and JavaScript?

● Pages with many assets slow
– e.g. http://en.wikipedia.org/wiki/Switzerland

– Browsers use ~6-8 concurrent connections

– Not enough; solution using SPDY?

● Varnish uses file nmap with SSDs
– Eww, hacky...wrap nginx?

http://en.wikipedia.org/wiki/Switzerland

Monitoring & logging - future

● Unlike for system failures, there are few
performance based SMS alerts

– People manually check various graphs

– Regressions that don't totally kill services or
saturate the network may persist until users
complain or may go unnoticed

Fin

