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Chapter 4. Vector spaces

4.1. Spaces and subspaces

A vector space is any set where the linear combination operation is defined on its elements.
In a vector space, also called a linear space, the elements are not important. The actual
elements that constitute the vector space are left unspecified, only the relation among them
is determined. An example of a vector space is the set Fn of n-vectors with the operation
of linear combination studied in Chapter 1. Another example is the set Fm,n of all m × n
matrices with the operation of linear combination studied in Chapter 2. We now define
a vector space and comment its main properties. A subspace is introduced later on as a
smaller vector space inside the original one. We end this Section with the concept of span
of a set of vectors, which is a way to construct a subspace from any subset in a vector space.

Definition 4.1.1. A set V is a vector space over the scalar field F ∈ {R,C} iff there
are two operations defined on V , called vector addition and scalar multiplication with the
following properties: For all u, v, w ∈ V the vector addition satisfies

(A1) u + v ∈ V , (closure of V );
(A2) u + v = v + u, (commutativity);
(A3) (u + v) + w = u + (v + w), (associativity);
(A4) ∃ 0 ∈ V : 0 + u = u ∀ u ∈ V , (existence of a neutral element);
(A5) ∀ u ∈ V ∃ (−u) ∈ V : u + (−u) = 0, (existence of an opposite element);

furthermore, for all a, b ∈ F the scalar multiplication satisfies

(M1) au ∈ V , (closure of V );
(M2) 1 u = u, (neutral element);
(M3) a(bu) = (ab)u, (associativity);
(M4) a(u + v) = au + av, (distributivity);
(M5) (a+ b)u = au + bu, (distributivity).

The definition of a vector space does not specify the elements of the set V , it only
determines the properties of the vector addition and scalar multiplication operations. We
use the convention that elements in a vector space, called vectors, are represented in boldface.
Nevertheless, we allow several exceptions, the first two of them are given in Examples 4.1.1
and 4.1.2. We now present several examples of vector spaces.

Example 4.1.1: A vector space is the set Fn of n-vectors u = [ui] with components ui ∈ F
and the operations of column vector addition and scalar multiplication given by

[ui] + [vi] = [ui + vi], a[ui] = [aui].

This space of column vectors was introduced in Chapter 1. Elements in these vector spaces
are not represented in boldface, instead we keep the previous sanserif font, u ∈ Fn. The
reason for this notation will be clear in Sect. 4.4. C

Example 4.1.2: A vector space is the set Fm,n of m × n matrices A = [Aij ] with matrix
coefficients Aij ∈ F and the operations of addition and scalar multiplication given by

[
Aij

]
+
[
Bij

]
=

[
Aij +Bij

]
, a

[
Aij

]
=

[
aAij

]
,

These operations were introduced in Chapter 2. As in the previous example, elements in
these vector spaces are not represented in boldface, instead we keep the previous capital
sanserif font, A ∈ Fm,n. The reason for this notation will be clear in Sect. 4.4. C
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Example 4.1.3: Let Pn(U) be the set of all polynomials having degree n > 0 and domain
U ⊂ F, that is,

Pn(U) =
{
p(x) = a0 + a1x+ · · ·+ anx

n, with a0, · · · , an ∈ F and x ∈ U ⊂ F
}
.

The set Pn(U) together with the addition of polynomials (p + q)(x) = p(x) + q(x) and the
scalar multiplication (ap)(x) = ap(x) is a vector space. In the case U = R we use the
notation Pn = Pn(R). C

Example 4.1.4: Let Ck
(
[a, b],F

)
be the set of scalar valued functions with domain [a, b] ⊂ R

with the k-th derivative being a continuous function, that is,

Ck
(
[a, b],F

)
=

{
f : [a, b]→ F such that f (k) is continuous

}
.

The set Ck
(
[a, b],F

)
together with the addition of functions (f + g)(x) = f (x) + g(x) and

the scalar multiplication (af )(x) = a f (x) is a vector space. The particular case Ck(R,R)
is denoted simply as Ck. The set of real valued continuous function is then C0. C

Example 4.1.5: Let ` be the set of absolute convergent series, that is,

` =
{

a =
∑

an : an ∈ F and
∞∑

n=0

|an| exists
}
.

The set ` with the addition of series a + b =
∑

(an + bn) and the scalar multiplication
ca =

∑
c an is a vector space. C

The properties (A1)-(M5) given in the definition of vector space are not redundant. As
an example, these properties do not include the condition that the neutral element 0 is
unique, since it follows from the definition.

Theorem 4.1.2. The element 0 in a vector space is unique.

Proof Theorem 4.1.2: Suppose that there exist two neutral elements 01 and 02 in the
vector space V , that is,

01 + u = u and 02 + u = u for all u ∈ V
Taking u = 02 in the first equation above, and u = 01 in the second equation above we
obtain that

01 + 02 = 02, 02 + 01 = 01.

These equations above simply that the two neutral elements must be the same, since

02 = 01 + 02 = 02 + 01 = 01;

where in the second equation we used that the addition operation is commutative. This
establishes the Theorem. ¤
Theorem 4.1.3. It holds that 0 u = 0 for all element u in a vector space V .

Proof Theorem 4.1.3: For every u ∈ V holds

u = 1 u = (1 + 0)u = 1 u + 0 u = u + 0 u = 0 u + u ⇒ u = 0 u + u.

This last equation says that 0u is a neutral element, 0. Theorem 4.1.2 says that the neutral
element is unique, so we conclude that, for all u ∈ V holds that

0 u = 0.

This establishes the Theorem. ¤
Also notice that the property (A5) in the definition of vector space says that the opposite

element exists, but it does not say whether it is unique. The opposite element is actually
unique.
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Theorem 4.1.4. The opposite element −u in a vector space is unique.

Proof Theorem 4.1.4: Suppose there are two opposite elements −u1 and −u2 to the
element u ∈ V , that is,

u + (−u1) = 0, u + (−u2) = 0.

Therefore,

(−u1) = 0 + (−u1)

= u+ (−u2) + (−u1)

= (−u2) + u + (−u1)

= (−u2) + 0

= 0 + (−u2)

= (−u2) ⇒ (−u1) = (−u2).

This establishes the Theorem. ¤
Finally, notice that the element (−u) opposite to u is actually the element (−1)u.

Theorem 4.1.5. It holds that (−1) u = (−u).

Proof Theorem 4.1.5:

0 = 0 u = (1− 1) u = 1 u + (−1) u = u + (−1) u.

Hence (−1) u is an opposite element of u. Since Theorem 4.1.4 says that the opposite
element is unique, we conclude that (−1) u = (−u). This establishes the Theorem. ¤

4.1.1. Subspaces. We now introduce the notion of a subspace of a vector space, which is
essentially a smaller vector space inside the original vector space. Subspaces are important
in physics, since physical processes frequently take place not inside the whole space but in a
particular subspace. For instance, planetary motion does not take plane in the whole space
but it is confined to a plane.

Definition 4.1.6. The subset W ⊂ V of a vector space V over F is called a subspace of
V iff for all u, v ∈W and all a, b ∈ F holds that au + bv ∈W .

A subspace is a particular type of set in a vector space. Is a set where all possible linear
combinations of two elements in the set results in another element in the same set. In other
words, elements outside the set cannot be reached by linear combinations of elements within
the set. For this reason a subspace is called a closed set under linear combinations. The
following statement is usually helpful

Theorem 4.1.7. If W ⊂ V is a subspace of a vector space V , then 0 ∈W .

This statement says that 0 /∈ W implies that W is not a subspace. However, if actually
0 ∈ W , this fact alone does not prove that W is a subspace. One must show that W is
closed under linear combinations.
Proof of Theorem 4.1.7: Since W is closed under linear combinations, given any element
u ∈ W , the trivial linear combination 0 u = 0 must belong to W , hence 0 ∈ W . This
establishes the Theorem. ¤

Example 4.1.6: Show that the set W ⊂ R3 given by W =
{

u = [ui] ∈ R3 : u3 = 0
}

is a

subspace of R3:
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Solution: Given two arbitrary elements u, v ∈ W we must show that au + bv ∈ W for all
a, b ∈ R. Since u, v ∈W we know that

u =



u1

u2

0


 , v =



v1

v2

0


 .

Therefore

au + bv =



au1 + bv1

au2 + bv2

0


 ∈W,

since the third component vanishes, which makes the linear combination an element in W .
Hence, W is a subspace of R3. In Fig. 29 we see the plane u3 = 0. It is a subspace, since
not only 0 ∈W , but any linear combination of vectors on the plane stays on the plane. C

3W = { u  =0 }

3uR
3

1u

u 2

Figure 29. The horizontal plane u3 = 0 is a subspace of R3.

Example 4.1.7: Show that the set W =
{

u = [ui] ∈ R2 : u2 = 1
}

is not a subspace of R2.

Solution: The set W is not a subspace, since 0 /∈ W . This is enough to show that W
is not a subspace. Another proof is that the addition of two vectors in the set is a vector
outside the set, as can be seen by the following calculation,

u =

[
u1

1

]
∈W, v =

[
v1

1

]
∈W ⇒ u + v =

[
u1 + v1

2

]
/∈W.

The second component in the addition above is 2, not 1, hence this addition does not belong
to W . An example of this calculation is given in Fig. 30. C

1

2W = { u  = 1 }

1

2uR
2

u

Figure 30. The horizontal line u2 = 1 is not a subspace of R2.
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U

x

V

R
2

x 2

x 1 1

2xR 2

W

x

Figure 31. Three subsets, U , V , and W , of R2. Only the set U is a subspace.

Example 4.1.8: Determine which one of the sets given in Fig. 31 is a subspace of R2.

Solution: The set U is a vector space, since any linear combination of vectors parallel to
the line is again a vector parallel to the line. The sets V and W are not subspaces, since
given a vector u in these spaces, a the vector au does not belong to these sets for a number
a ∈ R big enough. This argument is sketched in Fig. 32.

1

u

a u

U2xR
2

x 1

V
u

ua

x 2R
2

x

W

2xR
2

ua

u

x 1

Figure 32. Three subsets, U , V , and W , of R2. Only the set U is a subspace.

C

4.1.2. The span of finite sets. If a set is not a subspace there is a way to increase it into
a subspace. Define a new set including all possible linear combinations of elements in the
old set.

Definition 4.1.8. The span of a finite set S = {u1, · · · ,un} in a vector space V over F,
denoted as Span(S), is the set given by

Span(S) = {u ∈ V : u = c1u1 + · · ·+ cnun, c1, · · · , cn ∈ F}.

The following result remarks that the span of a set is a subspace.

Theorem 4.1.9. Given a finite set S in a vector space V , Span(S) is a subspace of V .

Proof of Theorem 4.1.9: Since Span(S) contains all possible linear combinations of
the elements in S, then Span(S) is closed under linear combinations. This establishes the
Theorem. ¤

Example 4.1.9: The subspace Span
(
{v}

)
, that is, the set of all possible linear combinations

of the vector v, is formed by all vectors of the form cv, and these vectors belong to a line
containing v. The subspace Span

(
{v,w}

)
, that is, the set of all linear combinations of two

vectors v, w, is the plane containing both vectors v and w. See Fig. 33 for the case of the
vector spaces R2 and R3, respectively. C
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1

v

2x R
2

Span{   }v

x

Span{   ,    }

w

v

3
xR

3

2x

x1

v w

Figure 33. Examples of the span of a set of a single vector, and the span
of a linearly independent set of two vectors.

4.1.3. Algebra of subspaces. We now show that the intersection of two subspaces is again
a subspace. However, the union of two subspaces is not, in general, a subspace. The smaller
subspace containing the union of two subspaces is precisely the span of the union. We then
define the addition of two subspaces as the span of the union of two subspaces.

Theorem 4.1.10. If W1 and W2 are subspaces of a vector space V , then W1 ∩W2 ⊂ V is
also a subspace of V .

Proof of Theorem 4.1.10: Let u and v be any two elements in W1 ∩W2. This means
that u, v ∈W1, which is a subspace, so any linear combination (au + bv) ∈W1. Since u, v
belong to W1 ∩W2 they also belong to W2, which is a subspace, so any linear combination
(au + bv) ∈ W2. Therefore, any linear combination (au + bv) ∈ W1 ∩W2. This establishes
the Theorem. ¤
Example 4.1.10: The sketch in Fig. 34 shows the intersection of two subspaces in R3, a
plane and a line. In this case the intersection is the former line, so the intersection is a
subspace.

x

x1

W
3xR

3

1

W 2

2

Figure 34. Intersection of two subspaces, W1 and W2 in R3. Since the
line W2 is included into the plane W1, we have that W1 ∩W2 = W2.

C

While the intersection of two subspaces is always a subspace, their union is, in general,
not a subspace, unless one subspace is contained into the other.
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Example 4.1.11: Consider the vector space V = R2, and the subspaces W1 and W2 given
by the lines sketched in Fig. 35. Their union is the set formed by these two lines. This set
is not a subspace, since the addition of the vectors u1 ∈ W1 with u2 ∈ W2 does not belong
to W1 ∪W2, as is it shown in Fig. 35.

W

R 2x2

1u

u 2

v

W1

x 1

2

Figure 35. The union of the subspaces W1 and W2 is the set formed by
these two lines. This is not a subspace, since the addition of u1 ∈ W1 and
u2 ∈W2 is the vector v which does not belong to W1 ∪W2.

C

Although the union of two subspaces is not always a subspace, it is possible to enlarge
the union into a subspace. The idea is to incorporate all possible additions of vectors in the
two original subspaces, and the result is called the addition of the two subspaces. Here is
the precise definition.

Definition 4.1.11. The addition of the subspaces W1, W2 in a vector space V , denoted
as W1 +W2, is the set given by

W1 +W2 =
{
u ∈ V : u = w1 + w2 with w1 ∈W1, w2 ∈W2

}
.

The following result remarks that the addition of subspaces is again a subspace.

Theorem 4.1.12. If W1 and W2 are subspaces of a vector space V , then the addition
W1 +W2 is also a subspace of V .

Proof of Theorem 4.1.12: Suppose that x ∈ W1 + W2 and y ∈ W1 + W2. We must
show that any linear combination ax + by also belongs to W1 + W2. This is the case, by
the following argument. Since x ∈ W1 + W2, there exist x1 ∈ W1 and x2 ∈ W2 such that
x = x1 + x2. Analogously, since y ∈ W1 +W2, there exist y1 ∈ W1 and y2 ∈ W2 such that
y = y1 + y2. Now any linear combination of x and y satisfies

ax + by = a(x1 + x2) + b(y1 + y2)

= (ax1 + by1) + (ax2 + by2)

Since W1 and W2 are subspaces, (ax1 + by2) ∈ W1, and (ax2 + by2) ∈ W2. Therefore, the
equation above says that (ax + by) ∈W1 +W2. This establishes the Theorem. ¤
Example 4.1.12: The sketch in Fig. 36 shows the union and the addition of two subspaces
in R3, each subspace given by a line through the origin. While the union is not a subspace,
their addition is the plane containing both lines, which is a subspace. Given any non-zero
vector w1 ∈W1 and any other non-zero vector w2 ∈W2, one can verify that the sum of two
subspaces is the span of

{
w1,w2

}
, that is,

W1 +W2 = Span
({

w1

}
∪
{
w2

})
.
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C

3

x

W  +  W1 2

x
3

x1

2

2W

W1

R

Figure 36. Union and addition of the subspaces W1 and W2 in R3. The
union is not a subspace, while the addition is a subspace of R3.

4.1.4. Internal direct sums. This is a particular case of the addition of subspaces. It is
called internal direct sum in order to differentiate it from another type of direct sum found
in the literature. The latter, also called external direct sum, is a sum of different vector
spaces, and it is a way to construct new vector spaces from old ones. We do not discuss this
type of direct sums here. From now on, direct sum in these notes means the internal direct
sum of subspaces inside a vector space.

Definition 4.1.13. Given a vector space V , we say that V is the internal direct sum of
the subspaces W1, W2 ⊂ V , denoted as V = W1 ⊕W2, iff every vector v ∈ V can be written
in a unique way, except for order, as a sum of vectors from W1 and W2.

A crucial part in the definition above is the uniqueness of the decomposition of every
vector v ∈ V as a sum of a vector in W1 plus a vector in W2. By uniqueness we mean the
following: For every v ∈ V exist w1 ∈ W1 and w2 ∈ W2 such that v = w1 + w2, and if
v = w̃1 + w̃2 with w̃1 ∈ W1 and w̃2 ∈ W2, then w1 = w̃1 and w2 = w̃2. In the case that
V = W1 ⊕W2 we say that W1 and W2 are direct summands of V , and we also say that W1

is the direct complement of W2 in V . There is an useful characterization of internal direct
sums.

Theorem 4.1.14. A vector space V is the direct sum of subspaces W1 and W2 iff holds
both V = W1 +W2 and W1 ∩W2 = {0}.
Proof of Theorem 4.1.14:

(⇒) If V = W1 ⊕W2, then it implies that V = W1 + W2. Suppose that v ∈ W1 ∩W2,
then on the one hand, there exists w1 ∈W1 such that v = w1 + 0; on the other hand, there
is w2 ∈W2 such that v = 0 + w2. Therefore, w1 = 0 and w2 = 0, so W1 ∩W2 = {0}.

(⇐) Since V = W1 + W2, for every v ∈ V there exist w1 ∈ W1 and w2 ∈ W2 such
that v = w1 + w2. Suppose there exists other vectors w̃1 ∈ W1 and w̃2 ∈ W2 such that
v = w̃1 + w̃2. Then,

0 = (w1 − w̃1) + (w2 − w̃2) ⇔ (w1 − w̃1) = −(w2 − w̃2),

Therefore (w1 − w̃1) ∈ W2 and so (w1 − w̃1) ∈ W1 ∩W2. Since W1 ∩W2 = {0}, we then
conclude that w1 = w̃1, which also says w2 = w̃2. Then V = W1 ⊕W2. This establishes
the Theorem. ¤
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Example 4.1.13: Denote by Sym and SkewSym the sets of all symmetric and all skew-
symmetric n× n matrices. Show that Fn,n = Sym⊕ SkewSym.

Solution: Given any matrix A ∈ Fn,n, holds

A = A +
1

2

(
AT − AT

)
=

1

2

(
A + AT

)
+

1

2

(
A− AT

)
.

We then can decompose matrix as A = B + C, where matrix B =
(
A + AT

)
/2 ∈ Sym while

matrix C =
(
A−AT

)
/2 ∈ SkewSym. That is, we can write any square matrix as a symmetric

matrix plus a skew-symmetric matrix, hence Fn,n ⊂ Sym + SkewSym. The other inclusion
is obvious, that is, Sym + SkewSym ⊂ Fn,n, because each term in the sum is a subset of
Fn,n. So, we conclude that

Fn,n = Sym + SkewSym.

Now we must show that Sym∩SkewSym = {0}. This is the case, as the following argument
shows. If matrix D ∈ Sym ∩ SkewSym, then matrix D is symmetric, D = DT , but matrix D
is also skew-symmetric, D = −DT . This implies that D = −D, that is, D = 0, proving our
assertion that Sym ∩ SkewSym = {0}. We then conclude that

Fn,n = Sym⊕ SkewSym.

C
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4.1.5. Exercises.

4.1.1.- Determine which of the following
subsets of Rn, with n > 1, are in fact
subspaces. Justify your answers.

(a) {x ∈ Rn : xi > 0 i = 1, · · · , n};
(b) {x ∈ Rn : x1 = 0};
(c) {x ∈ Rn : x1x2 = 0 n > 2};
(d) {x ∈ Rn : x1 + · · ·+ xn = 0};
(e) {x ∈ Rn : x1 + · · ·+ xn = 1};
(f) {x ∈ Rn : Ax = b, A 6= 0, b 6= 0}.

4.1.2.- Determine which of the following
subsets of Fn,n, with n > 1, are in fact
subspaces. Justify your answers.

(a) {A ∈ Fn,n : A = AT };
(b) {A ∈ Fn,n : A invertible};
(c) {A ∈ Fn,n : A not invertible};
(d) {A ∈ Fn,n : A upper-triangular};
(e) {A ∈ Fn,n : A2 = A};
(f) {A ∈ Fn,n : tr (A) = 0}.
(g) Given a matrix X ∈ Fn,n, define
{A ∈ Fn,n : [A,X] = 0}.

4.1.3.- Find W1 +W2 ⊂ R3, where W1 is a
plane passing through the origin in R3

and W2 is a line passing through the
origin in R3 not contained in W1.

4.1.4.- Sketch a picture of the subspaces
spanned by the following vectors:

(a)
n
2
4

1
2
3

3
5 ,
2
4

3
6
9

3
5 ,
2
4
−2
−4
−6

3
5
o

;

(b)
n
2
4

0
2
0

3
5 ,
2
4

1
1
0

3
5 ,
2
4

2
3
0

3
5
o

;

(c)
n
2
4

1
0
0

3
5 ,
2
4

1
1
0

3
5 ,
2
4

1
1
1

3
5
o

.

4.1.5.- Given two finite subsets S1, S2 in a
vector space V , show that

Span(S1 ∪ S2) =

Span(S1) + Span(S2).

4.1.6.- Let W1 ⊂ R3 be the subspace

W1 = Span
“n
2
4

1
2
3

3
5 ,
2
4

1
0
1

3
5
o”
.

Find a subspace W2 ⊂ R3 such that
R3 = W1 ⊕W2.
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4.2. Linear dependence

4.2.1. Linearly dependent sets. In this Section we present the notion of a linearly de-
pendent set of vectors. If one of the vectors in the set is a linear combination of the other
vectors in the set, then the set is called linearly dependent. If this is not the case, the set is
called linearly independent. This notion plays a crucial role in Sect. 4.3 to define a basis of
a vector space. Bases are very useful in part because every vector in the vector space can
be decomposed in a unique way as a linear combination of the basis elements. Bases also
provide a precise way to measure the size of a vector space.

Definition 4.2.1. A finite set of vectors
{
v1, · · · , vk

}
in a vector space is called linearly

dependent iff there exists a set of scalars {c1, · · · , ck}, not all of them zero, such that,

c1v1 + · · ·+ ckvk = 0. (4.1)

On the other hand, the set
{
v1, · · · , vk

}
is called linearly independent iff Eq. (4.1) implies

that every scalar vanishes, c1 = · · · = ck = 0.

The wording in this definition is carefully chosen to cover the case of the empty set. The
result is that the empty set is linearly independent. It might seems strange, but this result
fits well with the rest of the theory. On the other hand, the set {0} is linearly dependent,
since c10 = 0 for any c1 6= 0. Moreover, any set containing the zero vector is also linearly
dependent.

Linear dependence or independence are properties of a set of vectors. There is no meaning
to a vector to be linearly dependent, or independent. And there is no meaning of a set
of linearly dependent vectors, as well as a set of linearly independent vectors. What is
meaningful is to talk of a linearly dependent or independent set of vectors.

Example 4.2.1: Show that the set S ⊂ R2 below is linearly dependent,

S =
{[1

0

]
,

[
0
1

]
,

[
2
3

]}
.

Solution: It is clear that[
2
3

]
= 2

[
1
0

]
+ 3

[
0
1

]
⇒ 2

[
1
0

]
+ 3

[
0
1

]
−
[
2
3

]
=

[
0
0

]
.

Since c1 = 2, c2 = 3, and c3 = −1 are non-zero, the set S is linearly dependent. C

It will be convenient to have the concept of a linearly dependent or independent set
containing infinitely many vectors.

Definition 4.2.2. An infinite set of vectors S =
{
v1, v2, · · ·

}
in a vector space V is called

linearly independent iff every finite subset of S is linearly independent. Otherwise, the
infinite set S is called linearly dependent.

Example 4.2.2: Consider the vector space V = C∞
(
[−`, `],R

)
, that is, the space of infin-

itely differentiable real-valued functions defined on the domain [−`, `] ⊂ R with the usual
operation of linear combination of functions. This vector space contains linearly indepen-
dent sets with infinitely many vectors. One example is the infinite sets S1 below, which is
linearly independent,

S1 =
{

1, x, x2, · · · , xn, · · ·
}
.

Another example is the infinite set S2, which is also linearly independent,

S2 =
{

1, cos
(nπx

`

)
, sin

(nπx
`

)}∞
n=1

.

C
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4.2.2. Main properties. As we have seen in the Example 4.2.1 above, in a linearly depen-
dent set there is always at least one vector that is a linear combination of the other vectors
in the set. This is simple to see from the Definition 4.2.1. Since not all the coefficients ci
are zero in a linearly dependent set, let us suppose that cj 6= 0; then from the Eq. (4.1) we
obtain

vj = − 1

cj

[
c1v1 + · · ·+ cj−1vj−1 + cj+1vj+1 + · · ·+ ckvk

]
,

that is, vj is a linear combination of the other vectors in the set.

Theorem 4.2.3. The set
{
v1, · · · , vk

}
is linearly dependent with the vector vk being a

linear combination of the the remaining k − 1 vectors iff

Span
({

v1, · · · , vk
})

= Span
({

v1, · · · , vk−1

})
.

This Theorem captures the idea behind the notion of a linearly dependent set: A finite
set is linearly dependent iff there exists a smaller set with the same span. In this sense the
vector vk in the Proposition above is redundant with respect to linear combinations.
Proof of Theorem 4.2.3: Let Sk =

{
v1, · · · , vk

}
and Sk−1 =

{
v1, · · · , vk−1

}
.

On the one hand, if vk is a linear combination of the other vectors in S, then for every
x ∈ Span(Sk) can be expressed as an element in Span(Sk−1) simply by replacing vk in terms

of the vectors in S̃. This shows that Span(Sk) ⊂ Span(Sk−1). The other inclusion is trivial,
so Span(Sk) = Span(Sk−1).

On the other hand, if Span(Sk) = Span(Sk−1), this means that vk is a linear combination
of the elements in Sk−1. Therefore, the set Sk is linearly dependent. This establishes the
Theorem. ¤

Example 4.2.3: Consider the set S ⊂ R3 given by S =
{


−2

2
−3


 ,




4
−6

8


 ,



−2
−3

2


 ,



−4

1
−3



}

.

Find a set S̃ ⊂ S having the smallest number of vectors such that Span(S̃) = Span(S).

Solution: We have to find all the redundant vectors in S with respect to linear combina-
tions. In other words, with have to find a linearly independent subset of S̃ ⊂ S such that
Span(S̃) = Span(S). The calculation we must do is to find the non-zero coefficients ci in
the solution of the equation




0
0
0


 = c1



−2

2
−3


 + c2




4
−6

8


 + c3



−2
−3

2


 + c4



−4

1
−3


 =



−2 4 −2 −4

2 −6 −3 1
−3 8 2 −3







c1
c2
c3
c4


 .

Hence, we must find the reduced echelon form of the coefficient matrix above, that is,

A =

2
4
−2 4 −2 −4

2 −6 −3 1
−3 8 2 −3

3
5→

2
4

1 −2 1 2
0 −2 −5 −3
0 2 5 3

3
5→

2
4

1 −2 1 2
0 2 5 3
0 0 0 0

3
5→

2
4

1 0 6 5
0 1 5

2
3
2

0 0 0 0

3
5 = EA.

This means that the solution for the coefficients is

c1 = −6c3 − 5c4, c2 = −5

2
c3 −

3

2
c4, c3, c4 free variables.

Choosing:

c4 = 0, c3 = 2 ⇒ c1 = −12, c2 = −5 ⇒ −12



−2

2
−3


− 5




4
−6

8


 + 2



−2
−3

2


 =




0
0
0


 ,
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c4 = 2, c3 = 0 ⇒ c1 = −10, c2 = −3 ⇒ −10



−2

2
−3


− 3




4
−6

8


 + 2



−4

1
−3


 =




0
0
0


 .

We can interpret this result thinking that the third and fourth vectors in matrix A are linear
combination of the first two vectors. Therefore, a linearly independent subset of S having
its same span is given by

S̃ =
{


−2

2
−3


 ,




4
−6

8



}
.

Notice that all the information to find S̃ is in matrix EA, the reduced echelon form of
matrix A,

A =



−2 4 −2 −4

2 −6 −3 1
−3 8 2 −3


→




1 0 6 5
0 1 5

2
3
2

0 0 0 0


 = EA.

The columns with pivots in EA determine the column vectors in A that form a linearly
independent set. The non-pivot columns in EA determine the column vectors in A that are
linear combination of the vectors in the linearly independent set. The factors of these linear
combinations are precisely the component of the non-pivot vectors in EA. For example, the
last column vector in EA has components 5 and 3/2, and these are precisely the coefficients
in the linear combination: 


−4

1
−3


 = 5



−2

2
−3


 +

3

2




4
−6

8


 .

C

In Example 4.2.3 we answered a question about the linear independence of a set S ={
v1, · · · , vn

}
⊂ Fn by studying the properties of a matrix having these vectors a column

vectors, that is, A =
[
v1, · · · , vn

]
. It turns out that this is a good idea and the following

result summarizes few useful relations.

Theorem 4.2.4. Given A =
[
A:1, · · · ,A:n

]
∈ Fm,n, the following statements are equivalent:

(a) The column vectors set {A:1, · · · ,A:n} ⊂ Fm is linearly independent;
(b) N(A) = {0};
(c) rank(A) = n

In the case A ∈ Fn,n, the set {A:1, · · · ,A:n} ⊂ Fn is linearly independent iff A is invertible.

Proof of Theorem 4.2.4: Let us denote by S =
{

v1, · · · , vn
}
⊂ Fm a set of vectors in a

vector space, and introduce the matrix A =
[
v1, · · · , vn

]
. The set S is linearly independent

iff only solution c ∈ Rn to the equation Ac = 0 is the trivial solution c = 0. This is equivalent
to say that N(A) = {0}. This is equivalent to say that EA has n pivot columns, which is
equivalent to say that rank(A) = n. The furthermore part is straightforward, since an n×n
matrix A is invertible iff rank(A) = n. This establishes the Theorem. ¤

Further reading. See Section 4.3 in Meyer’s book [3].
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4.2.3. Exercises.

4.2.1.- Determine which of the following
sets is linearly independent. For those
who are linearly dependent, express one
vector as a linear combination of the
other vectors in the set.

(a)
n
2
4

1
2
3

3
5 ,
2
4

2
1
0

3
5 ,
2
4

1
5
9

3
5
o

;

(b)
n
2
4

1
2
3

3
5 ,
2
4

0
4
5

3
5 ,
2
4

0
0
6

3
5 ,
2
4

1
1
1

3
5
o

;

(c)
n
2
4

3
2
1

3
5 ,
2
4

1
0
0

3
5 ,
2
4

2
1
0

3
5
o

.

4.2.2.- Let A =

2
4

2 1 1 0
4 2 1 2
6 3 2 3

3
5.

(a) Find a linearly independent set con-
taining the largest possible number
of columns of A.

(b) Find how many linearly indepen-
dent sets can be constructed using
any number of column vectors of A.

4.2.3.- Show that any set containing the
zero vector must be linearly dependent.

4.2.4.- Given a vector space V , prove the
following: If the set

{v, w} ⊂ V
is linearly independent, then so is˘

(v + w), (v−w)
¯
.

4.2.5.- Determine whether the set
n»1 2

2 1

–
,

»
2 1
1 1

–
,

»
4 −1
−1 1

–o
⊂ R2,2

is linearly independent of dependent.

4.2.6.- Show that the following set in P2 is
linearly dependent,

{1, x, x2, 1 + x+ x2}.

4.2.7.- Determine whether S ⊂ P2 is a lin-
early independent set, where

S =
˘

1 + x+ x2, 2x− 3x2, 2 + x
¯
.
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4.3. Bases and dimension

In this Section we introduce a notion that quantifies the size of a vector space. Before
doing that, however, we need to separate two main cases, the vector spaces we call finite
dimensional from those called infinite dimensional. In the first case, finite dimensional vector
spaces, we introduce the notion of a basis. This is a particular type of set in the vector
space that is small enough to be a linearly independent set and big enough to span the whole
vector space. A basis of a finite dimensional vector space is not unique. However, every
basis contains the same number of vectors. This number, called dimension, quantifies the
size of the finite dimensional vector space. In the second case above, infinite dimensional
vector spaces, we do not introduce here a concept of basis. More structure is needed in the
vector space to be able to determine whether or not an infinite sum of vectors converges.
We will not discuss these issues here.

4.3.1. Basis of a vector space. A particular type of finite sets in a vector space, small
enough to be linearly independent and big enough to span the whole vector space, is called
a basis of that vector space. Vector spaces having a finite set with these properties are
essentially small, and they are called finite dimensional. When there is no finite set that
spans the whole vector space, we call that space infinite dimensional. We now highlight
these ideas in a more precise way.

Definition 4.3.1. A finite set S ⊂ V is called a finite basis of a vector space V iff S is
linearly independent and Span(S) = V .

The existence of a finite basis is the property that defines the size of the vector space.

Definition 4.3.2. A vector space V is finite dimensional iff V has a finite basis or V is
one of the following two extreme cases: V = ∅ or V = {0}. Otherwise, the vector space V
is called infinite dimensional.

In these notes we will often call a finite basis just simply as a basis, without remarking
that they contain a finite number of elements. We only study this type of basis, and we
do not introduce the concept of an infinite basis. Why don’t we define the notion of an
infinite basis, since we have already defined the notion of an infinite linearly independent
set? Because we do not have any way to define what is the span of an infinite set of vectors.
In a vector space, without any further structure, there is no way to know whether an infinite
sum converges or not. The notion of convergence needs further structure in a vector space,
for example it needs a notion of distance between vectors. So, only in certain vector spaces
with a notion of distance it is possible to introduce an infinite basis. We will discuss this
subject in a later Chapter.

Example 4.3.1: We now present several examples.

(a) Let V = R2, then the set S2 =
{

e1 =

[
1
0

]
, e2 =

[
0
1

]}
is a basis of F2. Notice that

ei = I:i, that is, ei is the i-th column of the identity matrix I2. This basis S2 is called
the standard basis of R2.

(b) A vector space can have infinitely many bases. For example, a second basis for R2 is

the set U =
{

u1 =

[
1
1

]
, u2 =

[
−1

1

]}
. It is not difficult to verify that this set is a basis

of R2, since u is linearly independent, and Span(U) = R2.

(c) Let V = Fn, then the set Sn =
{

e1 = I:1, · · · , en = I:n
}

is a basis of Rn, where I:i is the

i-th column of the identity matrix In. This set Sn is called the standard basis of Fn.
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(d) A basis for the vector space F2,2 of all 2× 2 matrices is the set S2,2 given by

S2,2 =
{

E11 =

[
1 0
0 0

]
,E12 =

[
0 1
0 0

]
,E21 =

[
0 0
1 0

]
,E22 =

[
0 0
0 1

]}
;

This set is linearly independent and Span(S2,2) = F2,2, since any element A ∈ F2,2 can
be decomposed as follows,

A =

[
A11 A12

A21 A22

]
= A11

[
1 0
0 0

]
+A12

[
0 1
0 0

]
+A21

[
0 0
1 0

]
+A22

[
0 0
0 1

]
.

(e) A basis for the vector space Fm,n of all m× n matrices is the following:

Sm,n =
{

E11,E12, · · · ,Emn
}
,

where each m× n matrix Eij is a matrix with all coefficients zero except the coefficient
(i, j) which is equal to one (see previous example). The set Sm,n is linearly independent,
and Span(Sm,n) = Fm,n, since

A = [Aij ] =
m∑

i=1

n∑

j=1

AijEij .

(f) Let V = Pn, the set of all polynomials with domain R and degree less or equal n. Any
element p ∈ Pn can be expressed as follows,

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

that is equivalent to say that the set

S =
{
p0 = 1, p1 = x, p2 = x2, · · · , pn = xn

}

satisfies Pn = Span(S). The set S is also linearly independent, since

q(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n = 0 ⇒ c0 = · · · = cn = 0.

The proof of the latter statement is simple: Compute the n-th derivative of q above,
and obtain the equation n! cn = 0, so cn = 0. Add this information into the (n− 1)-th
derivative of q and we conclude that cn−1 = 0. Continue in this way, and you will prove
that all the coefficient c’s vanish. Therefore, S is a basis of Pn, ands it is also called the
standard basis of Pn.

C

Example 4.3.2: Show that the set U =
{



1
0
1


 ,




0
1
1


 ,




1
0
−1



}

is a basis for R3.

Solution: We must show that U is a linearly independent set and Span(U) = R3. Both
properties follow from the fact that matrix U below, whose columns are the elements in U ,
is invertible,

U =




1 0 1
0 1 0
1 1 −1


 ⇒ U−1 =

1

2




1 −1 1
0 2 0
1 1 −1


 .

Let us show that U is a basis of R3: Since matrix U is invertible, this implies that its
reduced echelon form EU = I3, so its column vectors form a linearly independent set. The
existence of U−1 implies that the system of equations Ux = y has a solution x = U−1y for
every y ∈ R3, that is, y ∈ Col(U) = Span(U) for all y ∈ R3. This means that Span(U) = R3.
Hence, the set U is a basis of R3. C

The following definitions will be useful to establish important properties of a basis.

Page = 19



124 G. NAGY – LINEAR ALGEBRA july 15, 2012

Definition 4.3.3. Let V be a vector space and Sn ⊂ V be a subset with n elements. The set
Sn is a maximal linearly independent set iff Sn is linearly independent and every other
set S̃m with m > n elements is linearly dependent. The set Sn is a minimal spanning set
iff Span(Sn) = V and every other set S̃m with m < n elements satisfies Span(S̃m) & V .

A maximal linearly independent set S is the biggest set in a vector space that is linearly
independent. A set cannot be linearly independent if it is too big, since the bigger the set
the more probable that one element in the set is a linear combination of the other elements
in the set. A minimal spanning set is the smallest set in a vector space that spans the whole
space. A spanning set, that is, a set whose span is the whole space, cannot be too small,
since the smaller the set the more probable that an element in the vector space is outside the
span of the set. The following result provides a useful characterization of a basis: A basis is
a set in the vector space that is both maximal linearly independent and minimal spanning.
In this sense, a basis is a set with the right size, small enough to be linearly independent
and big enough to span the whole vector space.

Theorem 4.3.4. Let V be a vector space. The following statements are equivalent:

(a) U is a basis of V ;
(b) U is a minimal spanning set in V .
(c) U is a maximal linearly independent set in V ;

Example 4.3.3: We showed in Example 4.3.2 above that the set U =
{



1
0
1


 ,




0
1
1


 ,




1
0
−1



}

is a basis for R3. Since this basis has three elements, Theorem 4.3.4 says that any other
spanning set in R3 cannot have less than three vectors, and any other linearly independent
set in R3 cannot have more that three vectors. For example, any subset of U containing two
elements cannot span R3; the linear combination of two vectors in U span a plane in R3.
Another example, any set of four vectors in R3 must be linearly dependent. C

Proof of Theorem 4.3.4: We first show part (a)-(b).
(⇒) Assume that U is a basis of V . If the set U is not a minimal spanning set of V , that

means there exists Ũ =
{
ũ1, · · · , ũn−1

}
such that Span(Ũ) = V . So, every vector in U can

be expressed as a linear combination of vectors in Ũ . Hence, there exists a set of coefficients
Cij such that

uj =
n−1∑

i=1

Cijũi, j = 1, · · · , n.

The reason to order the coefficients Cij is this form is that they form a matrix C = [Cij ]
which is (n− 1)× n. This matrix C defines a function C : Rn → Rn−1, and since rank(C) 6
(n− 1) < n, this matrix satisfies that N(C) is nontrivial as a subset of Rn. So there exists
a nonzero column vector in Rn with components z = [zj ] ∈ Rn, not all components zero,
such that z ∈ N(C), that is,

n∑

j=1

Cijzj = 0, i = 1, · · · , (n− 1).

What we have found is that the linear combination

z1u1 + · · ·+ znun =

n∑

j=1

zjuj =

n∑

j=1

zj
(n−1∑

i=1

Cijũi
)

=

n−1∑

i=1

( n∑

j=1

Cijzj
)
ũi = 0,
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with at least one of the coefficients zj non-zero. This means that the set U is not linearly
independent. But this contradicts that U is a basis. Therefore, the set U is a minimal
spanning set of V .

(⇐) Assume that U is a minimal spanning set of V . If U is not a basis, that means U is
not a linearly independent set. At least one element in U must be a linear combination of
the others. Let us arrange the order of the basis vectors such that the vector un is a linear
combination of the other vectors in U . Then, the set Ũ =

{
u, · · · ,un−1

}
must still span V ,

that is Span(Ũ) = V . But this contradicts the assumption that U is a minimal spanning set
of V .

We now show part (a)-(c).
(⇐) Assume that U is a maximal linearly independent set in V . If U is not a basis, that

means Span(U) $ V , so there exists un+1 ∈ V such that un+1 /∈ Span(U). Hence, the set

Ũ =
{
u, · · · ,un+1

}
is a linearly independent set. However, this contradicts the assumption

that U is a maximal linearly independent set. We conclude that U is a basis of V .
(⇒) Assume that U is a basis of V . If the set U is not a maximal linearly independent

set in V , then there exists a maximal linearly independent set Ũ =
{
ũ1, · · · , ũk

}
, with

k > n. By the argument given just above, Ũ is a basis of V . By part (b) the set Ũ must
be a minimal spanning set of V . However, this is not true, since U is smaller and spans V .
Therefore, U must be a maximal linearly independent set in V .

This establishes the Theorem. ¤

4.3.2. Dimension of a vector space. The characterization of a basis given in Theo-
rem 4.3.4 above implies that the number of elements in a basis is always the same as in any
other basis.

Theorem 4.3.5. The number of elements in any basis of a finite dimensional vector space
is the same as in any other basis.

Proof of Theorem (4.3.5: Let Vn and Vm be two bases of a vector space V with n
and m elements, respectively. If m > n, the property that Vm is a minimal spanning set
implies that Span(Vn) & Span(Vm) = V . The former inclusion contradicts that Vn is a
basis. Therefore, n = m. (A similar proof can be constructed with the maximal linearly
independence property of a basis.) This establishes the Theorem. ¤

The number of elements in a basis of a finite dimensional vector space is a characteristic
of the vector space, so we give that characteristic a name.

Definition 4.3.6. The dimension of a finite dimensional vector space V with a finite
basis, denoted as dimV , is the number of elements in any basis of V . The extreme cases of
V = ∅ and V = {0} are defined as zero dimensional.

From the definition above we see that dim{0} = 0 and dim ∅ = 0.

Example 4.3.4: We now present several examples.

(a) The set Sn =
{

e1 = I:1, · · · , en = I:n
}

is a basis for Fn, so dimFn = n.

(b) A basis for the vector space F2,2 of all 2× 2 matrices is the set S2,2 is given by

S2,2 =
{

E11 =

[
1 0
0 0

]
,E12 =

[
0 1
0 0

]
,E21 =

[
0 0
1 0

]
,E22 =

[
0 0
0 1

]}
,

so we conclude that dimF2,2 = 4.
(c) A basis for the vector space Fm,n of all m× n matrices is the following:

Sm,n =
{

E11,E12, · · · ,Emn
}
,
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where we recall that each m× n matrix Eij is a matrix with all coefficients zero except
the coefficient (i, j) which is equal to one. Since the basis Sm,n contains mn elements,
we conclude that dimFm,n = mn.

(d) A basis for the vector space Pn of all polynomial with degree less or equal n is the set
S given by S =

{
p0 = 1, p1 = x, p2 = x2, · · · , pn = xn

}
. This set has n+ 1 elements,

so dimPn = n+ 1.

C

Remark: Any subspace W ⊂ V of a vector space V is itself a vector space, so the definition
of basis also holds for W . Since W ⊂ V , we conclude that dimW 6 dimV .

Example 4.3.5: Consider the case V = R3. It is simple to see in Fig. 37 that dimU = 1
and dimW = 2, where the subspaces U and W are spanned by one vector and by two
non-collinear vectors, respectively.

dim ( U ) = 1          dim ( W ) = 2

V =  R
U3

0

W

Figure 37. Sketch of two subspaces U and W , in the vector space R3, of
dimension one and two, respectively.

C

Example 4.3.6: Find a basis for N(A) and R(A), where matrix A ∈ R3,4 is given by

A =



−2 4 −2 −4

2 −6 −3 1
−3 8 2 −3


 . (4.2)

Solution: Since A ∈ R3,4, then A : R4 → R3, which implies that N(A) ⊂ R4 while
R(A) ⊂ R3. A basis for N(A) is found as follows: Find all solution of Ax = 0 and express
these solutions as the span of a linearly independent set of vectors. We first find EA,

A =



−2 4 −2 −4

2 −6 −3 1
−3 8 2 −3


→




1 0 6 5
0 1 5

2
3
2

0 0 0 0


 = EA ⇒





x1 = −6x3 − 5x4,

x2 = −5

2
x3 −

3

2
x4,

x3, x4 free variables.

Therefore, every element in N(A) can be expressed as follows,

x =




−6x3 − 5x4

− 5
2 x3 − 3

2 x4

x3

x4


 =




−6
− 5

2
1
0


 x3 +




−5
− 3

2
0
1


 x4, ⇒ N(A) = Span

({



−6
− 5

2
1
0


 ,




−5
− 3

2
0
1



})
.
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Since the vectors in the span above form a linearly independent set, we conclude that a
basis for N(A) is the set N given by

N =
{



−6
− 5

2
1
0


 ,




−5
− 3

2
0
1



}
.

We now find a basis for R(A). We know that R(A) = Col(A), that is, the span of the column
vectors of matrix A. We only need to find a linearly independent subset of column vectors
of A. This information is given in EA, since the pivot columns in EA indicate the columns in
A which form a linearly independent set. In our case, the pivot columns in EA are the first
and second columns, so we conclude that a basis for R(A) is the set R given by

R =
{


−2

2
−3


 ,




4
−6

8



}
.

C

4.3.3. Extension of a set to a basis. We know that a basis of a vector space is not unique,
and the following result says that actually any linearly independent set can be extended into
a basis of a vector space.

Theorem 4.3.7. If Sk =
{
u1, · · · ,uk

}
is a linearly independent set in a vector spave V

with basis V =
{
v1, · · · , vn

}
, where k < n, then, there always exists a basis of V given by

an extension of the set Sk of the form S =
{
u1, · · · ,uk, vi1 , · · · , vin−k

}
.

The statement above says that a linearly independent set Sk can be extended into a basis
S of a a vector space V simply incorporating appropriate vectors from any basis of V . If a
basis V of V has n vectors, and the set Sk has k < n vectors, then one can always select
n− k vectors from the basis V to enlarge the set Sk into a basis of V .
Proof of Theorem 4.3.7: Introduce the set Sk+n

sk+n =
{
u1, · · · ,uk, v1, · · · , vn

}
.

We know that Span(Sk+n) = V since V ⊂ Sk+n. We also know that Sk+n is linearly de-
pendent, since the maximal linearly independent set contains n elements and Sk+n contains
n + k > n elements. The idea is to eliminate the vi such that Sk ∪ {vi} is linearly depen-
dent. Since the maximal linearly independent set contains n elements and the Sk is linearly
independent, there are k elements in V that will be eliminated. The resulting set is S, which
is a basis of V containing Sk. This establishes the Theorem. ¤

Example 4.3.7: Given the 3 × 4 matrix A defined in Eq. (4.2) in Example 4.3.6 above,
extend the basis of N(A) ⊂ R4 into a basis of R4.

Solution: We know from Example 4.3.6 that a basis for the N(A) is the set N given by

N =
{



−6
− 5

2
1
0


 ,




−5
− 3

2
0
1



}
.
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Following the idea in the proof of Theorem 4.3.7, we look for a linear independent set of
vectors among the columns of the matrix

M =




−6 −5 1 0 0 0
− 5

2 − 3
2 0 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1


 .

That is, matrix M include the basis vectors of N(A) and the four vectors ei of the standard
basis of R4. It is important to place the basis vectors of N(A) in the first columns of M. In
this way, the Gauss method will select these first vectors as part of the linearly independent
set of vectors. Find now the reduced echelon form matrix EM,

EM =




1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 6 5
0 0 0 1 5 3


 .

Therefore, the first four vectors in M are form a linearly independent set, so a basis of R4

that includes N is given by

V =
{



−6
− 5

2
1
0


 ,




−5
− 3

2
0
1


 ,




1
0
0
0


 ,




0
1
0
0



}
.

C

4.3.4. The dimension of subspace addition. Recall that the sum and the intersection
of two subspaces is again a subspace in a given vector space. The following result relates
the dimension of a sum of subspaces with the dimension of the individual subspaces and the
dimension of their intersection.

Theorem 4.3.8. If W1, W2 ⊂ V are subspaces of a vector space V , then holds

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Proof of Theorem 4.3.8: We find the dimension of W1 +W2 finding a basis of this sum.
The key idea is to start with a basis of W1 ∩ W2. Let B0 =

{
z1, · · · , zl

}
be a basis for

W1 ∩W2. Enlarge that basis into basis B1 for W1 and B2 for W2 as follows,

B1 =
{
z1, · · · , zl,x1, · · · ,xn

}
, B2 =

{
z1, · · · , zl,y1, · · · ,ym

}
.

We use the notation l = dim(W1 ∩W2), l + n = dimW1 and l + m = dimW2. We now
propose as basis for W1 +W2 the set

B =
{
z1, · · · , zl,x1, · · · ,xn,y1, · · · ,ym

}
.

By construction this set satisfies that Span(B) = W1 +W2. We only need to show that B is
linearly independent. Assume that the set B is linearly dependent. This means that there
is non-zero constants ai, bj and ck solutions of the equation

n∑

i=1

aixi +

m∑

j=1

bjyj +

l∑

k=1

ckzk = 0. (4.3)
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This implies that the vector
∑n
i=1 aixi, which by definition belongs to W1, also belongs to

W2, since
n∑

i=1

aixi = −
( m∑

j=1

bjyj +

l∑

k=1

ckzk

)
∈W2.

Therefore,
∑n
i=1 aixi belongs to W1 ∩W2, and so is a linear combination of the elements of

B0, that is, there exists scalars dk such that

n∑

i=1

aixi =
l∑

i=1

dkzk.

Since B1 is a basis of W1, this implies that all the coefficients ai and dk vanish. Introduce
this information into Eq. (4.3) and we conclude that

m∑

j=1

bjyj +

l∑

k=1

ckzk = 0.

Analogously, the set B2 is a basis, so all the coefficients bj and ck must vanish. This implies
that the set B is linearly independent, hence a basis of W1 +W2. Therefore, the dimension
of the sum is given by

dim(W1 +W2) = n+m+ k = (n+ k) + (m+ k)− k = dimW1 + dimW2 − dim(W1 ∩W2).

This establishes the Theorem. ¤
The following corollary is immediate.

Corollary 4.3.9. If a vector space can be decomposed as V = W1 ⊕W2, then

dim(W1 ⊕W2) = dimW1 + dimW2.

The proof is straightforward from Theorem 4.3.8, since the condition of subspaces direct
sum, W1 ∩W2 = {0}, says that dim

(
W1 ∩W2) = 0.
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4.3.5. Exercises.

4.3.1.- Find a basis for each of the spaces
N(A), R(A), N(AT ), R(AT ), where

A =

2
4

1 2 2 3
2 4 1 3
3 6 1 4

3
5 .

4.3.2.- Find the dimension of the space
spanned by

n
2
664

1
2
−1

3

3
775 ,

2
664

1
0
0
2

3
775 ,

2
664

2
8
−4

8

3
775 ,

2
664

1
1
1
1

3
775 ,

2
664

3
3
0
6

3
775
o
.

4.3.3.- Find the dimension of the following
spaces:

(a) The space Pn of polynomials of de-
gree less or equal n.

(b) The space Fm,n of m× n matrices.
(c) The space of real symmetric n × n

matrices.
(d) The space of real skew-symmetric

n× n matrices.

4.3.4.- Find an example to show that the
following statement is false: Given a ba-
sis {v1, v2} of R2, then every subspace
W ⊂ R2 has a basis containing at least
one of the basis vectors v1, v2.

4.3.5.- Given the matrix A and vector v,

A =

2
4

1 2 2 0 5
2 4 3 1 8
3 6 1 5 5

3
5 , v =

2
66664

−8
1
3
3
0

3
77775
,

verify that v ∈ N(A), and then find a
basis of N(A) containing v.

4.3.6.- Determine whether or not the set

B =
n
2
4

2
3
2

3
5 ,
2
4

1
1
−1

3
5
o

is a basis for the subspace

Span
“n
2
4

1
2
3

3
5 ,
2
4

5
8
7

3
5 ,
2
4

3
4
1

3
5
o”
⊂ R3.
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4.4. Vector components

4.4.1. Ordered bases. In the previous Section we introduced a finite basis in a vector
space. Although a vector space can have different bases, every basis has the same number
of elements, which provides a measure of the vector space size, called the dimension of the
vector space. In this Section we study another property of a basis. Every vector in a finite
dimensional vector space can be expressed in a unique way as a linear combination of the
basis vectors. This property can be clearly stated in an ordered basis, which is a basis with
the basis vectors given in a specific order.

Definition 4.4.1. An ordered basis of an n-dimensional vector space V is a sequence
(v1, · · · , vn) of vectors such that the set {v1, · · · , vn} is a basis of V .

Recall that a sequence is an ordered set, that is, a set with elements given in a particular
order.

Example 4.4.1: The following four ordered basis of R3 are all different,

(



1
0
0


 ,




0
1
0


 ,




0
0
1



)
,

(



0
1
0


 ,




1
0
0


 ,




0
0
1



)
,

(



0
1
0


 ,




0
0
1


 ,




1
0
0



)
,

(



0
0
1


 ,




0
1
0


 ,




1
0
0



)
,

however, they determine the same basis S3 =
{



1
0
0


 ,




0
1
0


 ,




0
0
1



}

. C

4.4.2. Vector components in a basis. The following result states that given a vector
space with an ordered basis, there exists a correspondence between vectors and certain
sequences of scalars.

Theorem 4.4.2. Let V be an n-dimensional vector space over the scalar field F with an
ordered basis

(
u1, · · · ,un

)
. Then, every vector v ∈ V determines a unique scalars’ sequence(

v1, · · · , vn
)
⊂ F such that

v = v1u1 + · · ·+ vnun. (4.4)

And every scalars’ sequence (v1, · · · , vn) ⊂ F determines a unique vector v ∈ V by Eq. (4.4).

Proof of Theorem 4.4.2: Denote by U =
(
u1, · · · ,un

)
the ordered basis of V . Since U

is a basis, Span(U) = V and U is linearly independent. The first property implies that for
every v ∈ V there exist scalars v1, · · · , vn such that v is a linear combination of the basis
vectors, that is,

v = v1u1 + · · ·+ vnun.

The second property of a basis implies that the linear combination above is unique. Indeed,
if there exists another linear combination

v = ν1u1 + · · ·+ νnun,

then 0 = v − v = (v1 − ν1)u1 + · · · + (vn − νn)un. Since U is linearly independent, this
implies that each coefficient above vanishes, so v1 = ν1, · · · , vn = νn.

The converse statement is simple to show, since the scalars are given in a specific order.
Every scalars’ sequence (v1, · · · , vn) determines a unique linear combination with an ordered
basis

(
u1, · · · ,un

)
given by v1u1 + · · ·+ vnun. This unique linear combination determines

a unique vector in the vector space. This establishes the Theorem. ¤
Theorem 4.4.2 says that there exists a correspondence between vectors in a vector space

with an ordered basis and scalars’ sequences. This correspondence is called a coordinate
map and the scalars are called vector components in the basis. Here is a precise definition.
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Definition 4.4.3. Let V be an n-dimensional vector space over F with an ordered basis
U = (u1, · · · ,un). The coordinate map is the function [ ]u : V → Fn, with [v ]u = vu, and

vu =



v1

...
vn


 ⇔ v = v1u1 + · · ·+ vnun.

The scalars v1, · · · , vn are called the vector components of v in the ordered basis U .

Therefore, we use the notation [v ]u = vu ∈ Fn for the components of a vector v ∈ V in an
ordered basis U . We remark that the coordinate map is defined only after an ordered basis
is fixed in V . Different ordered bases on V determine different coordinate maps between
V and Fn. When the situation under study involves only one ordered basis, we suppress
the basis subindex. The coordinate map will be denoted by [ ] : V → Fn and the vector
components by v = [v]. In the particular case that V = Fn and the basis is the standard
basis Sn, then the coordinate map [ ]s is the identity map, so v = [v]s = v. In this case we
follow the convention established in the first Chapters, that is, we denote vectors in Fn by
v instead of v. When the situation under study involves more than one ordered basis we
keep the sub-indices in the coordinate map, like [ ]u, and in the vector components, like vu,
to keep track of the basis attached to these expressions.

Example 4.4.2: Let V be the set of points on the plane with a preferred origin. Let
S =

(
e1, e2

)
be an ordered basis, pictured in Fig. 38.

(a) Find the components vs = [v]s ∈ R2 of the vector v = e1 + 3e2 in the ordered basis S.
(b) Find the components vu = [v]u ∈ R2 of the same vector v given in part (a) but now in

the ordered basis U =
(
u1 = e1 + e2, u2 = −e1 + e2

)
.

Solution: Part (a) is straightforward to compute, since the definition of component of a
vector says that the numbers multiplying the basis vectors in the equation v = e1 + 3e2 are
the components of the vector, that is,

v = e1 + 3e2 ⇔ vs =

[
1
3

]
.

Part (b) is more involved. We are looking for numbers ṽ1 and ṽ2 such that

v = ṽ1u1 + ṽ2u2 ⇔ vu =

[
ṽ1

ṽ2

]
. (4.5)

From the definition of the basis U we know the components of the basis vectors in U in
terms of the standard basis, that is,

u1 = e1 + e2 ⇔ u1s =

[
1
1

]
,

u2 = −e1 + e2 ⇔ u2s =

[
−1

1

]
.

In other words, we can write the ordered basis U as the column vectors of the matrix
Us =

[
U
]
s

=
[
[u1]s, [u2]s

]
given by

Us =
[
u1s, u2s

]
=

[
1 −1
1 1

]
.

Expressing Eq. (4.5) in the standard basis means

e1 + 3e2 = v = ṽ1(e1 + e2) + ṽ2(−e1 + e2) ⇔
[
1
3

]
= ṽ1

[
1
1

]
+ ṽ2

[
−1

1

]
.
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The last equation on the right is a matrix equation for the unknowns vu =

[
ṽ1

ṽ2

]
,

[
1 −1
1 1

] [
ṽ1

ṽ2

]
=

[
1
3

]
⇔ Usvu = vs.

We find the solution using the Gauss method,
[
1 −1

∣∣ 1
1 1

∣∣ 3

]
→

[
1 0

∣∣ 2
0 1

∣∣ 1

]
⇒ vu =

[
2
1

]
⇔ v = 2u1 + u2.

A sketch of what has been computed is in Fig. 38. In this Figure is clear that the vector
v is fixed, and we have only expressed this fixed vector in as a linear combination of two
different bases. It is clear in this Fig. 38 that one has to stretch the vector u1 by two and
add the result to the vector u2 to obtain v. C

v

e

2

e 2u
2

x

x 1

u

1

1

Figure 38. The vector v = e1 + 3e2 expressed in terms of the basis U ={
u1 = e1 + e2,u2 = −e1 + e2

}
is given by v = 2u1 + u2.

Example 4.4.3: Consider the vector space P2 of all polynomials of degree less or equal two,
and let us consider the case of F = R. An ordered basis is S =

(
p0 = 1, p1 = x, p2 = x2

)
.

The coordinate map is [ ]s : P2 → R3 defined as follows, [p]s = ps, where

ps =



a
b
c


 ⇔ p(x) = a+ bx+ cx2.

The column vector ps represents the components of the vector p in the ordered basis S. The
equation above defines a correspondence between every element in P2 and every element in
R3. The coordinate map depend on the choice of the ordered basis. For example, choosing
the ordered basis S̃ =

(
p0 = x2, p1 = x, p2 = 1

)
, the corresponding coordinate map is

[ ]s̃ : P2 → R3 defined by [p]s̃ = ps̃, where

ps̃ =



c
b
a


 ⇔ p(x) = a+ bx+ cx2.
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The coordinate maps above generalize to the spaces Pn and Rn+1 for all n ∈ N. Given
the ordered basis S =

(
p0 = 1,p1 = x, · · · ,pn = xn

)
, the corresponding coordinate map

[ ]s : Pn → Rn+1 defined by [p]s = ps, where

ps =



a0

...
an


 ⇔ p(x) = a0 + · · ·+ anx

n.

C

Example 4.4.4: Consider V = P2 with ordered basis S =
(
p0 = 1, p1 = x, p2 = x2

)
.

(a) Find rs = [r]s, the components of r(x) = 3 + 2x+ 4x2 in the ordered basis S.
(b) Find rq = [r]q, the components of the same polynomial r given in part (a) but now in

the ordered basis Q =
(
q0 = 1, q1 = 1 + x, q2 = 1 + x+ x2,

)
.

Solution:
Part (a):This is straightforward to compute, since r(x) = 3 + 2x+ 4x2 implies that

r(x) = 3 p0(x) + 2 p1(x) + 4p2(x) ⇔ rs =




3
2
4


 .

Part (b): This is more involved, as in Example 4.4.2. We look for numbers r̃1, r̃2, r̃3 such
that

r(x) = r̃0 q0(x) + r̃1 q1(x) + r̃2 q2(x) ⇔ rq =



r̃0

r̃1

r̃2


 . (4.6)

From the definition of the basis Q we know the components of the basis vectors in Q in
terms of the S basis, that is,

q0(x) = p0(x) ⇔ q0s =




1
0
0


 ,

q1(x) = p0(x) + p1(x) ⇔ q1s =




1
1
0




q2(x) = p0(x) + p1(x) + p2(x) ⇔ q2s =




1
1
1


 .

Now we can write the ordered basis Q in terms of the column vectors of the matrix Qs =[
Q
]
s

=
[
q0s, q1s, q2s

]
, as follows,

Qs =




1 1 1
0 1 1
0 0 1


 .

Expressing Eq. (4.6) in the standard basis means



3
2
4


 = r̃0




1
0
0


 + r̃1




1
1
0


 + r̃2




1
1
1


 .
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The last equation on the right is a matrix equation for the unknowns r̃0, r̃1, and r̃2


1 1 1
0 1 1
0 0 1





r̃0

r̃1

r̃2


 =




3
2
4


 ⇔ Qsrq = rs.

We find the solution using the Gauss method,


1 1 1
∣∣ 3

0 1 1
∣∣ 2

0 0 1
∣∣ 4


→




1 0 0
∣∣ 1

0 1 0
∣∣ −2

0 0 1
∣∣ 4


 ,

hence the solution is

rq =




1
−2

4


 ⇔ r(x) = q0(x)− 2 q1(x) + 4 q2(x).

We can verify that this is the solution, since

r(x) = q0(x)− 2 q1(x) + 4 q2(x)

= 1− 2 (1 + x) + 4 (1 + x+ x2)

= (1− 2 + 4) + (−2 + 4)x+ 4x2

= 3 + 2x+ 4x2

= 3 p0(x) + 2 p1(x) + 4p2(x).

C

Example 4.4.5: Given any ordered basis U =
(
u1,u2,u3

)
of a 3-dimensional vector space

V , find Uu =
[
U
]
u
⊂ F3,3, that is, find ui = [ui]u for i = 1, 2, 3, the components of the basis

vectors ui in its own basis U .

Solution: The answer is simple: The definition of vector components in a basis says that

u1 = u1 + 0 u2 + 0 u3 ⇔ u1u =




1
0
0


 = e1,

u2 = 0 u1 + u2 + 0 u3 ⇔ u2u =




0
1
0


 = e2,

u3 = 0 u1 + 0 u2 + u3 ⇔ u3u =




0
0
1


 = e3.

In other words, using the coordinate map φu : V → F3, we can always write any basis U
as components in its own basis as follows, Uu =

[
e1, e2, e3

]
= I3. This example says that

there is nothing special about the standard basis S = {e1, · · · , en} of Fn, where ei = I:i is
the i-th column of the identity matrix In. Given any n-dimensional vector space V over F
with any ordered basis V, the components of the basis vectors expressed on its own basis is
always the standard basis of Fn, that is, the result is always

[
V
]
v

= In. C
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4.4.3. Exercises.

4.4.1.- Let S =
`
e1, e2, e3

´
be the standard

basis of R3. Find the components of the
vector v = e1 + e2 + 2e3 in the ordered
basis U
“

u1s =

2
4

1
0
1

3
5 , u2s =

2
4

0
1
1

3
5 , u3s =

2
4

1
1
0

3
5
”
.

4.4.2.- Let S =
`
e1, e2, e3

´
be the standard

basis of R3. Find the components of the
vector

vs =

2
4

8
7
4

3
5

in the ordered basis U given by

“
u1s =

2
4

1
1
1

3
5 , u2s =

2
4

1
2
2

3
5 , u3s =

2
4

1
2
3

3
5
”
.

4.4.3.- Consider the vector space V = P2

with the ordered basis S given by

S =
`
p0 = 1, p1 = x, p2 = x2´.

(a) Find the components of the poly-
nomial r(x) = 2 + 3x − x2 in the
ordered basis S.

(b) Find the components of the same
polynomial r given in part (a) but
now in the ordered basis Q given by`

q0 = 1, q1 = 1− x, q2 = x+ x2,
´
.

4.4.4.- Let S be the standard ordered basis
of R2,2, that is,

S = (E11,E12,E21,E22) ⊂ R2,2,

with

E11 =

»
1 0
0 0

–
, E12 =

»
0 1
0 0

–
,

E21 =

»
0 0
1 0

–
, E22 =

»
0 0
0 1

–
.

(a) Show that the ordered setM below
is a basis of R2,2, where

M = (M1,M2,M3,M4) ⊂ R2,2,

with

M1 =

»
0 1
1 0

–
, M2 =

»
0 −1
1 0

–
,

M3 =

»
1 0
0 1

–
, M4 =

»
1 0
0 −1

–
,

where the matrices above are writ-
ten in the standard basis.

(b) Consider the matrix A written in
the standard basis S,

A =

»
1 2
3 4

–
.

Find the components of the matrix
A in the ordered basis M.
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Chapter 6. Inner product spaces

An inner product space is a vector space with an additional structure called inner product.
This additional structure is an operation that associates each pair of vectors in the vector
space with a scalar. An inner product extends to any vector space the main concepts
included in the dot product, which is defined on Rn. These main concepts include the length
of a vector, the notioin of perpendicular vectors, and distance between vectors. When these
ideas are introduced in function vector spaces, they allow to define the notion of convergence
of an infinite sum of vectors. This, in turns, provides a way to evaluate the accuracy of
approximate solutions to differential equations.

6.1. Dot product

6.1.1. Dot product in R2. We review the definition of the dot product between vectors
in R2, and we describe its main properties, including the Cauchy-Schwarz inequality. We
then use the dot product to introduce the notion of length of a vector, distance and angle
between vectors, including the special case of perpendicular vectors. We then review that
all these notions can be generalized in a straightforward way from R2 to Fn, n > 1.

Definition 6.1.1. Given any vectors x, y ∈ R2 with components x =

[
x1

x2

]
, y =

[
y1

y2

]
in the

standard ordered basis S. The dot product on R2 with is the function · : R2 × R2 → R,

x · y = x1y1 + x2y2.

The dot product norm of a vector x ∈ R2 is the value of the function ‖ ‖ : R2 → R,

‖x‖ =
√

x · x.
The norm distance between x, y ∈ R2 is the value of the function d : R2 × R2 → R,

d(x, y) = ‖x− y‖.

The dot product can be expressed using the transpose of a vector components in the
standard basis, as follows,

xT y = [x1, x2]

[
y1

y2

]
= x1y1 + x2y2 = x · y.

The dot product norm and the norm distance can be expressed in term of vector components
in the standard ordered basis S as follows,

‖x‖ =
√

(x1)2 + (x2)2, d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

The geometrical meaning of the norm and distance is clear form this expression in com-
ponents, as is shown in Fig. 40. The norm of a vector is the Euclidean length from the
origin point to the head point of the vector, while the distance between two vectors in the
Euclidean distance between the head points of the two vectors.

It is important that we summarize the main properties of the dot product in R2, since
they are the main guide to construct the generalizations of the dot product to other vector
spaces.

Theorem 6.1.2. The dot product on R2 satisfies, for every vector x, y, z ∈ R2 and every
scalar a, b ∈ R, the following properties:

(a) x · y = y · x, (Symmetry);
(b) x · (ay + bz) = a (x · y) + b (x · z), (Linearity on the second argument);
(c) x · x > 0, and x · x = 0 iff x = 0, (Positive definiteness).
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Figure 40. Example of the Euclidean notions of vector length and distance
between vectors in R2.

Proof of Theorem 6.1.2: These properties are simple to obtain from the definition of the
dot product.

Part (a): It is simple to see that

x · y = x1y1 + x2y2 = y1x1 + y2x2 = y · x.
Part (b): It is also simple to see that

x · (ay + bz) = x1(ay1 + bz1) + x2(ay2 + bz2)

= a (x1y1 + x2y2) + b (x1z1 + x2z2)

= a (x · y) + b (x · z).

Part (c): This follows from

x · x = (x1)2 + (x2)2 > 0;

furthermore, in the case x · x = 0 we obtain that

(x1)2 + (x2)2 = 0 ⇔ x1 = x2 = 0.

This establishes the Theorem. ¤
These simple properties are crucial to establish the following result, known as Cauchy-

Schwarz inequality for the dot product in R2. This inequality allows to express the dot
product of two vectors in R2 in terms of the angle between the vectors.

Theorem 6.1.3 (Cauchy-Schwarz). The properties (a)-(c) in Theorem 6.1.2 imply that
for all x, y ∈ R2 holds

|x · y| 6 ‖x‖ ‖y‖.
Proof of Theorem 6.1.3: From the positive definiteness property we know that the
following inequality holds for all x, y ∈ R2 and for all a ∈ R,

0 6 ‖ax− y‖2 = (ax− y) · (ax− y).

The symmetry and the linearity on the second argument imply

0 6 (ax− y) · (ax− y) = a2 ‖x‖2 − 2a (x · y) + ‖y‖2. (6.1)

Since the inequality above holds for all a ∈ R, let us choose a particular value of a, the
solution of the equation

a ‖x‖2 − (x · y) = 0 ⇒ a =
x · y
‖x‖2 .

Introduce this particular value of a into Eq. (6.1),

0 6 −
( x · y
‖x‖2

)
(x · y) + ‖y‖2 ⇒ |x · y|2 6 ‖x‖2 ‖y‖2.

This establishes the Theorem. ¤
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The Cauchy-Schwarz inequality implies that we can express the dot product of two vectors
in an alternative and more geometrical way, in terms of an angle related with the two vectors.
The Cauchy-Schwarz inequality says

−1 6 x · y
‖x‖ ‖y‖ 6 1,

which suggests that the number (x · y)/(‖x‖ ‖y‖) can be expressed as a sine or a cosine of an
appropriate angle.

Theorem 6.1.4. The angle between vectors x, y ∈ R2 is the number θ ∈ [0, π] given by

cos(θ) =
x · y
‖x‖ ‖y‖ .

Proof of Theorem 6.1.4: It is not difficult to see that given any vectors x, y ∈ R2, the
vectors x/‖x‖ and y/‖y‖ have unit norm. Indeed,

∥∥∥ x

‖x‖
∥∥∥

2

=
(x1)2

‖x‖2 +
(x2)2

‖x‖2 =
1

‖x‖2
[
(x1)2 + (x2)2

]
= 1.

The same holds for the vector y/‖y‖. The expression

x · y
‖x‖ ‖y‖ =

x

‖x‖ ·
y

‖y‖ ,

shows that the number (x ·y)/(‖x‖ ‖y‖) is the inner product of two vectors in the unit circle,
as shown in Fig. 41.

1

R
2

0

0

0

1

2

y

x

Figure 41. The dot product of two vectors x, y ∈ R2 can be expressed in
terms of the angle θ = θ1 − θ2 between the vectors.

Therefore, we know that

x

‖x‖ =

[
cos(θ1)
sin(θ1)

]
,

y

‖y‖ =

[
cos(θ2)
sin(θ2)

]
.

Their dot product is given by

x

‖x‖ ·
y

‖y‖ =
[
cos(θ1), sin(θ1)

] [
cos(θ2)
sin(θ2)

]
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2).

Using the formula cos(θ1) cos(θ2) + sin(θ1) sin(θ2) = cos(θ1 − θ2), and denoting the angle
between the vectors by θ = θ1 − θ2, we conclude that

x · y
‖x‖ ‖y‖ = cos(θ).

This establishes the Theorem. ¤
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Recall the notion of perpendicular vectors.

Definition 6.1.5. The vectors x, y ∈ R2 are orthogonal, denoted as x ⊥ y, iff the angle
θ ∈ [0, π] between the vectors is θ = π/2.

The notion of orthogonal vectors in Def. 6.1.5 can be expressed in terms of the dot
product, and it is equivalent to Pythagoras Theorem on right triangles.

Theorem 6.1.6. Let x, y ∈ R2 be non-zero vectors, then the following statement holds,

x ⊥ y ⇔ x · y = 0 ⇔ ‖x− y‖2 = ‖x‖2 + ‖y‖2.

Proof of Theorem 6.1.6: The non-zero vectors x and y ∈ R2 are orthogonal iff θ = π/2,
which is equivalent to

x · y
‖x‖ ‖y‖ = 0 ⇔ x · y = 0.

The last part of the Proposition comes from the following calculation,

‖x− y‖2 = (x1 − y1)2 + (x2 − y2)2

= (x1)2 + (x2)2 + (y1)2 + (y2)2 − 2(x1y1 + x2y2)

= ‖x‖2 + ‖y‖2 − 2 x · y.
Hence, x ⊥ y iff x · y = 0 iff Pythagoras Theorem holds for the triangle with sides given by
x, y and hypotenuse x− y. This establishes the Theorem. ¤

Example 6.1.1: Find the length of the vectors x =

[
1
2

]
and y =

[
3
1

]
, the angle between

them, and then find a non-zero vector z orthogonal to x.

Solution: We first find the length, that is, the norms of x and y,

‖x‖2 = x · x = xT x =
[
1 2

]
,

[
1
2

]
= 1 + 4 ⇒ ‖x‖ =

√
5,

‖y‖2 = y · y = yT y =
[
3 1

] [3
1

]
= 9 + 1 ⇒ ‖y‖ =

√
10.

We now find the angle between x and y,

cos(θ) =
x · y
‖x‖ ‖y‖ =

[
1 2

] [
3
1

]

√
5
√

10
=

5

5
√

2
=

1√
2
⇒ θ =

π

4
.

We now find z such that z ⊥ x, that is,

0 =
[
z1 z2

] [
1
2

]
= z1 + 2z2 ⇒

{
z1 = −2z2

z2 free variable

}
⇒ z =

[
−2

1

]
z2.

C

6.1.2. Dot product in Fn. The notion of dot product reviewed above can be generalized
in a straightforward way from R2 to Fn, n > 1, where F ∈ {R,C}.
Definition 6.1.7. The dot product on the vector space Fn, with n > 1, is the function
· : Fn × Fn → F given by

x · y = x∗ y,

where x, y denote components in the standard basis of Fn. The dot product norm of a
vector x ∈ Fn is the value of the function ‖ ‖ : Fn → R,

‖x‖ =
√

x · x.
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The norm distance between x, y ∈ Fn is the value of the function d : Fn × Fn → R,

d(x, y) = ‖x− y‖.
The vectors x, y ∈ Fn are orthogonal, denoted as x ⊥ y, iff holds x · y = 0.

Notice that we defined two vectors to be orthogonal by the condition that their dot
product vanishes. This is the appropriate generalization to Fn of the ideas we saw in R2.
The concept of angle is more difficult to study. In the case that F = C is not clear what the
angle between vectors mean. In the case F = R and n > 3 we have to define angle by the
number (x · y)/(‖x‖ ‖y‖). This will be done after we prove the Cauchy-Schwarz inequality,
which then is used to show that the number (x · y)/(‖x‖ ‖y‖) ∈ [−1, 1]. The formulas above
for the dot product, norm and distance can be expressed in terms of the vector components
in the standard basis as follows,

x · y = x1y1 + · · ·+ xnyn,

‖x‖ =
√
|x1|2 + · · ·+ |xn|2,

d(x, y) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2,

where we used the standard notation x =



x1

...
xn


, y =



y1

...
yn


, and |xi|2 = xixi, for i = 1, · · ·n.

In the particular case that F = R all the vector components are real numbers, so xi = xi.

Example 6.1.2: Find whether x is orthogonal to y and/or z, where

x =




1
2
3
4


 , y =




−5
4
−3

2


 , z =




−4
−3

2
1


 .

Solution: We need to compute the dot products x · y and x · z. We obtain

xT y =
[
1 2 3 4

]



−5
4
−3

2


 = −5 + 8− 9 + 8 ⇒ x · y = 2 ⇒ x 6⊥ y,

xT z =
[
1 2 3 4

]



−4
−3

2
1


 = −4− 6 + 6 + 4 ⇒ x · z = 0 ⇒ x ⊥ z.

C

Example 6.1.3: Find x · y, where x =




2 + 3i
i

1− i


 and y =




2i
1

1 + 3i


.

Solution: The first product x · y is given by

x∗ y =
[
2− 3i −i 1 + i

]



2i
1

1 + 3i


 = (2− 3i)(2i)− i+ (1 + i)(1 + 3i),

so x · y = 4i+ 6− i+ 1− 3 + i+ 3i, that is, x · y = 4 + 7i. C

The dot product satisfies the following properties.
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Theorem 6.1.8. The dot product on Fn, with n > 1, satisfies for every vector x, y, z ∈ Fn
and every scalar a, b ∈ F, the following properties:

(a1) x · y = y · x, (Symmetry F = R);
(a2) x · y = y · x, (Conjugate symmetry, for F = C);

(b) x · (ay + bz) = a (x · y) + b (x · z), (Linearity on the second argument);
(c) x · x > 0, and x · x = 0 iff x = 0, (Positive definiteness).

Proof of Theorem 6.1.8: Use the expression of the dot product in terms of the vector
components. The property in (a1) can be established as follows,

x · y = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxn = y · x.
The property in (a2) can be established as follows,

x · y = x1y1 + · · ·+ xnyn = (y1x1 + · · ·+ ynxn) = y · x.
The property in (b) is shown in a similar way,

x · (ay + bz) = x∗(a y + b z) = a x∗ y + b x∗ z = a (x · y) + b (x · z).

The property in (c) follows from

x · x = x∗ x = |x1|2 + · · ·+ |xn|2 > 0;

furthermore, in the case that x · x = 0 we obtain that

|x1|2 + · · ·+ |xn|2 = 0 ⇔ x1 = · · · = xn = 0 ⇔ x = 0.

This establishes the Theorem. ¤
The positive definiteness property (c) above shows that the dot product norm is indeed a

real-valued and not a complex-valued function, since x · x > 0 implies that ‖x‖ =
√

x · x ∈ R.
In the case of F = R, the symmetry property and the linearity in the second argument
property imply that the dot product on Rn is also linear in the first argument. This is a
reason to call the dot product on Rn a bilinear form. Finally, notice that in the case F = C,
the conjugate symmetry property and the linearity in the second argument imply that the
dot product on Cn is conjugate linear on the first argument. The proof is the following:

(ay + bz) · x = x · (ay + bz) = a (x · y) + b (x · z) = a (x · y) + b (x · z),

that is, for all x, y, z ∈ Cn and all a, b ∈ C holds

(ay + bz) · x = a (y · x) + b (z · x).

Hence we say that the dot product on Cn is conjugate linear in the first argument.

Example 6.1.4: Compute the dot product of x =

[
2 + 3i
6i− 9

]
with y =

[
3i
2

]
.

Solution: This is a straightforward computation

x · y = x∗y =
[
2− 3i −6i− 9

] [3i
2

]
= 6i+ 9− 12i− 18 ⇒ x · y = −9− 6i.

Notice that x = (2 + 3i)x̂, with x̂ =

[
1
3i

]
, so we could use the conjugate linearity in the first

argument to compute

x · y =
(
(2 + 3i)x̂

)
· y = (2− 3i) (x̂ · y) = (2− 3i)

[
1 −3i

] [3i
2

]
= (2− 3i)(3i− 6i),

and we obtain the same result, x · y = −9− 6i. Finally, notice that y · x = −9 + 6i. C

An important result is that the dot product in Fn satisfies the Cauchy-Schwarz inequality.
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Theorem 6.1.9 (Cauchy-Schwarz). The properties (a1)-(c) in Theorem 6.1.8 imply that
for all x, y ∈ Fn holds

|x · y| 6 ‖x‖ ‖y‖.
Remark: The proof of the Cauchy-Schwarz inequality only uses the three properties of the
dot product presented in Theorem 6.1.8. Any other function f : Fn × Fn → F having these
three properties also satisfies the Cauchy-Schwarz inequality.
Proof of Theorem 6.1.9: From the positive definiteness property we know that the
following inequality holds for all x, y ∈ Fn and for all a ∈ F,

0 6 ‖ax− y‖2 = (ax− y) · (ax− y).

The symmetry and the linearity on the second argument imply

0 6 (ax− y) · (ax− y) = a a ‖x‖2 − a (x · y)− a (y · x) + ‖y‖2. (6.2)

Since the inequality above holds for all a ∈ F, let us choose a particular value of a, the
solution of the equation

a a ‖x‖2 − a (x · y) = 0 ⇒ a =
x · y
‖x‖2 .

Introduce this particular value of a into Eq. (6.2),

0 6 −
( x · y
‖x‖2

)
(x · y) + ‖y‖2 ⇒ |x · y|2 6 ‖x‖2 ‖y‖2.

This establishes the Theorem. ¤
In the case F = R, the Cauchy-Schwarz inequality in Rn implies that the number

(x · y)/(‖x‖ ‖y‖) ∈ [−1, 1], which is a necessary and sufficient condition for the following
definition of angle between two vectors in Rn.

Definition 6.1.10. The angle between vectors x, y ∈ Rn is the number θ ∈ [0, π] given by

cos(θ) =
x · y
‖x‖ ‖y‖ .

The dot product norm function in Definition 6.1.7 satisfies the following properties.

Theorem 6.1.11. The dot product norm function on Fn, with n > 1, satisfies for every
vector x, y ∈ Fn and every scalar a ∈ F the following properties:

(a) ‖x‖ > 0, and ‖x‖ = 0 iff x = 0, (Positive definiteness);
(b) ‖ax‖ = |a| ‖x‖, (Scaling);
(c) ‖x + y‖ 6 ‖x‖+ ‖y‖, (Triangle inequality).

Proof of Theorem 6.1.11: Properties (a) and (b) are straightforward to show from the
definition of dot product, and their proof is left as an exercise. We show here how to
obtain the triangle inequality, property (c). The proof uses the Cauchy-Schwarz inequality
presented in Theorem 6.1.9. Given any vectors x, y ∈ Fn holds

‖x + y‖2 = (x + y) · (x + y)

= ‖x‖2 + (x · y) + (y · x) + ‖y‖2

6 ‖x‖2 + 2 |x · y|+ ‖y‖2

6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 =
(
‖x‖+ ‖y‖

)2
,

We conclude that ‖x + y‖2 6
(
‖x‖+ ‖y‖

)2
. This establishes the Theorem. ¤

A vector v ∈ Fn is called normal or unit vector iff ‖v‖ = 1. Examples of unit vectors are
the standard basis vectors. Unit vectors parallel to a given vector are simple to find.
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Theorem 6.1.12. If v ∈ Fn is non-zero, then
v

‖v‖ is a unit vector parallel to v.

Proof of Theorem 6.1.12: Notice that u =
v

‖v‖ is parallel to v, and it is straightforward

to check that u is a unit vector, since

‖u‖ =
∥∥∥ v

‖v‖
∥∥∥ =

1

‖v‖ ‖v‖ = 1.

This establishes the Theorem. ¤

Example 6.1.5: Find a unit vector parallel to x =




1
2
3


.

Solution: First compute the norm of x,

‖x‖ =
√

1 + 4 + 9 =
√

14,

therefore u =
1√
14




1
2
3


 is a unit vector parallel to v. C
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6.1.3. Exercises.

6.1.1.- Consider the vector space R4 with
standard basis S and dot product. Find
the norm of u and v, their distance and
the angle between them, where

u =

2
664

2
1
−4
−2

3
775 , v =

2
664

1
−1

1
−1

3
775 .

6.1.2.- Use the dot product on R2 to find
two unit vectors orthogonal to

x =

»
3
2

–
.

6.1.3.- Use the dot product on C2 to find a
unit vector parallel to

x =

»
1 + 2i
2− i

–
.

6.1.4.- Consider the vector space R2 with
the dot product.

(a) Give an example of a linearly inde-
pendent set {x, y} with x 6⊥ y.

(b) Give an example of a linearly de-
pendent set {x, y} with x ⊥ y.

6.1.5.- Consider the vector space Fn with
the dot product, and let Re denote the
real part of a complex number. Show
that for all x, y ∈ Fn holds

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2Re(x · y).

6.1.6.- Use the result in Exercise 6.1.5
above to prove the following generaliza-
tions of the Pythagoras Theorem to Fn
with the dot product.

(a) For x, y ∈ Rn holds

x ⊥ y ⇔ ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(b) For x, y ∈ Cn holds

x ⊥ y ⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2.

6.1.7.- Prove that the parallelogram law
holds for the dot product norm in Fn,
that is, show that for all x, y ∈ Fn holds

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
This law states that the sum of the
squares of the lengths of the four sides
of a parallelogram formed by x and y
equals the sum of the square of the
lengths of the two diagonals.
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6.2. Inner product

6.2.1. Inner product. An inner product on a vector space is a generalization of the dot
product on Rn or Cn introduced in Sect. 6.1. The inner product is not defined with a
particular formula, or requiring a particular basis in the vector space. Instead, the inner
product is defined by a list of properties that must satisfy. We did something similar when
we introduced the concept of a vector space. In that case we defined a vector space as a set
of any kind of elements where linear combinations are possible, instead of defining the set
by explicitly giving its elements.

Definition 6.2.1. Let V be a vector space over the scalar field F ∈ {R,C}. A function
〈 , 〉 : V × V → F is called an inner product iff for every x, y, z ∈ V and every a, b ∈ F
the function 〈 , 〉 satisfies:

(a1) 〈x,y〉 = 〈y,x〉, (Symmetry, for F = R);

(a2) 〈x,y〉 = 〈y,x〉, (Conjugate symmetry, for F = C);

(b) 〈x, (ay + bz)〉 = a〈x,y〉+ b〈x, z〉, (Linearity on the second argument);
(c) 〈x,x〉 > 0, and 〈x,x〉 = 0 iff x = 0, (Positive definiteness).

An inner product space is a pair
(
V, 〈 , 〉

)
of a vector space with an inner product.

Different inner products can be defined on a given vector space. The dot product is an
inner product in Fn. A different inner product can be defined in Fn, as can be seen in the
following example.

Example 6.2.1: We show that Rn can have different inner products.

(a) The dot product on Rn is an inner product, since the expression

〈x, y〉 = xTs ys =
[
x1 · · · xn

]
s



y1

...
yn



s

= x1y1 + · · ·+ xnyn, (6.3)

satisfies all the properties in Definition 6.2.1, with S the standard ordered basis in Rn.
(b) A different inner product in Rn can be introduced by a formula similar to the one in

Eq. (6.3) by choosing a different ordered basis. If U is any ordered basis of Rn, then

〈x, y〉 = xTuyu.

defines an inner product on Rn. The inner product defined using the basis U is not equal
to the inner product defined using the standard basis S. Let P = Ius be the change of
basis matrix, then we know that xu = P−1xs. The inner product above can be expressed
in terms of the S basis as follows,

〈x, y〉 = xTs M ys, M =
(
P−1

)T (
P−1

)
,

and in general, M 6= In. Therefore, the inner product above is not equal to the dot
product. Also, see Example 6.2.2.

C

Example 6.2.2: Let S be the standard ordered basis in R2, and introduce the ordered basis
U as the following rescaling of S,

U =
(
u1 =

1

2
e1,u2 =

1

3
e2

)
.

Express the inner product 〈x, y〉 = xTuyu in terms of xs and ys. Is this inner product the
same as the dot product?
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Solution: The definition of the inner product says that 〈x, y〉 = xTuyu. Introducing the

notation xu =

[
x̃1

x̃2

]

u

and yu =

[
ỹ1

ỹ2

]

u

, we obtain the usual expression 〈x, y〉 = x̃1ỹ1 + x̃2ỹ2.

The components xu and xs are related by the change of basis formula

xu = P−1xs, P = Ius =

[
1/2 0
0 1/3

]

us

⇒ P−1 =

[
2 0
0 3

]

su

=
(
P−1

)T
.

Therefore,

〈x, y〉 = xTuyu = xTs
(
P−1

)T
P−1ys =

[
x1, x2

]
s

[
4 0
0 9

]

su

[
y1

y2

]

s

where we used the standard notation xs =

[
x1

x2

]

s

and ys =

[
y1

y2

]

s

. We conclude that

〈x, y〉 = xTs
(
P−1

)2
ys ⇔ 〈x, y〉 = 4x1y1 + 9x2y2.

The inner product 〈x, y〉 = xTuyu is different from the dot product x · y = xTs ys. C

Example 6.2.3: Determine whether the function 〈 , 〉 : R3 × R3 → R below is an inner
product in R3, where

〈x, y〉 = x1y1 + x2y2 + x3y3 + 3x1y2 + 3x2y1.

Solution: The function 〈 , 〉 seems to be symmetric and linear. It is not so clear whether
this function is positive, because of the presence of crossed terms. So, before spending time
to prove the symmetry and linearity properties, we first concentrate on the property that
might fail, positivity. If positivity fails, we don’t need to prove the remaining properties.
The crossed terms 3(x1y2 + x2y1) in the definition of the inner product suggest that the
product is not positive, since the factor 3 makes them too important compared with the
other terms. Let us try to find an example, that is a vector x 6= 0 such that 〈x, x〉 6 0. Let
us try with

x =




1
−1

0


 ⇒ 〈x, x〉 = 12 + (−1)2 + 02 + 3[(1)(−1) + (−1)(1)] = 2− 6 = −4.

Since 〈x, x〉 = −4, the function 〈 , 〉 is not positive, hence it is not an inner product. C

Example 6.2.4: Consider the vector space Fm,n of all m× n matrices. Show that an inner
product on that space is the function 〈 , 〉F : Fm,n × Fm,n → F

〈A,B〉F = tr (A∗B).

The inner product is called Frobenius inner product.

Solution: We show that the Frobenius function 〈 , 〉F above satisfies the three properties
in Def. 6.2.1. We use the component notation A = [Aij ], B = [Bkl], with i, k = 1, · · · ,m
and j, l = 1, · · · , n, so

(A∗B)jl =

m∑

i=1

(
A
T )

ji
Bil =

m∑

i=1

AijBil ⇒ 〈A,B〉F =

n∑

j=1

n∑

i=1

AijBij .

The first property is satisfied, since

〈A,A〉F = tr (A∗A) =

n∑

j=1

m∑

i=1

∣∣Aij
∣∣2 > 0,
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and 〈A,A〉F = 0 iff Aij = 0 for every indices i, j, which is equivalently to A = 0. The second
property is satisfied, since

〈A,B〉F =

n∑

j=1

n∑

i=1

AijBij =

n∑

j=1

n∑

i=1

BijAij = 〈B,A〉F .

The same proof can be expressed in index-free notation using the properties of the trace,

tr
(
A∗ B

)
) = tr

(
A
T

B
)

= tr
[
(A
T

B)T
]

= tr
(
BT A

)
= tr

(
B∗ A

)
,

that is, 〈A,B〉F = 〈B,A〉F . The third property comes from the distributive property of the
matrix product, that is,

〈A, (aB + bC)〉F = tr
(
A∗ (aB + bC)

)
= a tr

(
A∗ B

)
+ b tr

(
A∗ C

)
= a 〈A,B〉F + b 〈A,C〉F .

This establishes that 〈 , 〉F is an inner product. C

Example 6.2.5: Compute the Frobenius inner product 〈A,B〉F where

A =

[
1 2 3
2 4 1

]
, B =

[
3 2 1
2 1 2

]
∈ R2,3.

Solution: Since the matrices have real coefficients, the Frobenius inner product has the
form 〈A,B〉F = tr

(
ATB

)
. So, we need to compute the diagonal elements in the product

ATB =




1 2
2 4
3 1



[
3 2 1
2 1 2

]
=




7 ∗ ∗
∗ 8 ∗
∗ ∗ 5


 ⇒ 〈A,B〉F = 7 + 8 + 5 ⇒ 〈A,B〉F = 20.

C

Example 6.2.6: Consider the vector space Pn([−1, 1]) of polynomials with real coefficients
having degree less or equal n ≥ 1 and being defined on the interval [−1, 1]. Show that an
inner product in this space is the following:

〈p, q〉 =

∫ 1

−1

p(x)q(x) dx. p, q ∈ Pn.

Solution: We need to verify the three properties in the Definition 6.2.1. The positive
definiteness property is satisfied, since

〈p,p〉 =

∫ 1

−1

[
p(x)

]2
dx > 0,

and in the case 〈p,p〉 = 0 this implies that the integrand must vanish, that is, [p(x)]2 = 0,
which is equivalent to p = 0. The symmetry property is satisfied, since p(x)q(x) = q(x)p(x),
which implies that 〈p, q〉 = 〈q,p〉. The linearity property on the second argument is also
satisfied, since

〈p, (aq + br)〉 =

∫ 1

−1

p(x)
[
a q(x) + b r(x)

]
dx

= a

∫ 1

−1

p(x)q(x) dx+ b

∫ 1

−1

p(x)r(x) dx

= a 〈p, q〉+ b 〈p, r〉.
This establishes that 〈 , 〉 is an inner product. C
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Example 6.2.7: Consider the vector space Ck([a, b],R), with k > 0 and a < b, of k-times
continuously differentiable real-valued functions f : [a, b] → R. An inner product in this
vector space is given by

〈f , g〉 =

∫ b

a

f (x)g(x) dx.

Any positive function µ ∈ C0([a, b],R) determines an inner product in Ck([a, b],R) as follows

〈f , g〉µ =

∫ b

a

µ(x) f (x)g(x) dx.

The function µ is called a weigh function. An inner product in the vector space Ck([a, b],C)
of k-times continuously differentiable complex-valued functions f : [a, b] ⊂ R → C is the
following,

〈f , g〉 =

∫ b

a

f (x)g(x) dx.

C

An inner product satisfies the following inequality.

Theorem 6.2.2 (Cauchy-Schwarz). If
(
V, 〈 , 〉

)
is an inner product space over F, then

for every x, y ∈ V holds

|〈x,y〉|2 6 〈x,x〉 〈y,y〉.
Furthermore, equality holds iff y = ax, with a = 〈x,y〉/〈x,x〉.
Proof of Theorem 6.2.2: From the positive definiteness property we know that for every
x, y ∈ V and every scalar a ∈ F holds 0 6 〈(ax − y), (ax − y)〉. The symmetry and the
linearity on the second argument imply

0 6 〈(ax− y), (ax− y)〉 = a a 〈x,x〉 − a 〈x,y〉 − a 〈y,x〉+ 〈y,y〉. (6.4)

Since the inequality above holds for all a ∈ F, let us choose a particular value of a, the
solution of the equation

a a 〈x,x〉 − a 〈x,y〉 = 0 ⇒ a =
〈x,y〉
〈x,x〉 .

Introduce this particular value of a into Eq. (6.4),

0 6 −
( 〈x,y〉
〈x,x〉

)
〈x,y〉+ 〈y,y〉 ⇒ |〈x,y〉|2 6 〈x,x〉 〈y,y〉.

Finally, notice that equality holds iff ax = y, and in this case, computing the inner product
with x we obtain a〈x,x〉 = 〈x,y〉. This establishes the Theorem. ¤

6.2.2. Inner product norm. The inner product on a vector space determines a particular
notion of length, or norm, of a vector, and we call it the inner product norm. After we
introduce this norm we show its main properties. In Chapter 8 later on we use these
properties to define a more general notion of norm as any function on the vector space
satisfying these properties. The inner product norm is just a particular case of this broader
notion of length. A normed space is a vector space with any norm.

Definition 6.2.3. The inner product norm determined in an inner product space
(
V, 〈 , 〉

)

is the function ‖ ‖ : V → R given by

‖x‖ =
√
〈x,x〉.
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The Cauchy-Schwarz inequality is often expressed using the inner product norm as follows:
For every x, y ∈ V holds

|〈x,y〉| 6 ‖x‖ ‖y‖.
A vector x ∈ V is a normal or unit vector iff ‖x‖ = 1.

Theorem 6.2.4. If v 6= 0 belongs to
(
V, 〈 , 〉

)
, then

v

‖v‖ is a unit vector parallel to v.

The proof is the same of Theorem 6.1.12.

Example 6.2.8: Consider the inner product space
(
Fm,n, 〈 , 〉F

)
, where Fm,n is the vector

space of all m×n matrices and 〈 , 〉F is the Frobenius inner product defined in Example 6.2.4.
The associated inner product norm is called the Frobenius norm and is given by

‖A‖F =
√
〈A,A〉F =

√
tr
(
A∗A

)
.

If A = [Aij ], with i = 1, · · · ,m and j = 1, · · · , n, then

‖A‖F =
( m∑

i=1

n∑

j=1

|Aij |2
)1/2

.

C

Example 6.2.9: Find an explicit expression for the Frobenius norm of any element A ∈ F2,2.

Solution: The Frobenius norm of an arbitrary matrix A =

[
A11 A12

A21 A22

]
∈ F2,2 is given by

‖A‖2F = tr
([A11 A21

A12 A22

] [
A11 A12

A21 A22

] )
.

Since we are only interested in the diagonal elements of the matrix product in the equation
above, we obtain

‖A‖2F = tr

[
|A11|2 + |A21|2 ∗

∗ |A12|2 + |A22|2
]

which gives the formula

‖A‖2F = |A11|2 + |A12|2 + |A21|2 + |A22|2.

This is the explicit expression of the sum ‖A‖F =
( 2∑

i=1

2∑

j=1

|Aij |2
)1/2

. C

The inner product norm function has the following properties.

Theorem 6.2.5. The inner product norm introduced in Definition 6.2.3 satisfies that for
every x, y ∈ V and every a ∈ F holds,

(a) ‖x‖ > 0, and ‖x‖ = 0 iff x = 0, (Positive definiteness);
(b) ‖ax‖ = |a| ‖x‖, (Scaling);
(c) ‖x + y‖ 6 ‖x‖+ ‖y‖, (Triangle inequality).

Proof of Theorem 6.2.5: Properties (a) and (b) are straightforward to show from the
definition of inner product, and their proof is left as an exercise. We show here how to
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obtain the triangle inequality, property (c). Given any vectors x, y ∈ V holds

‖x + y‖2 = 〈(x + y), (x + y)〉
= ‖x‖2 + 〈x,y〉+ 〈y,x〉+ ‖y‖2

6 ‖x‖2 + 2 |〈x,y〉|+ ‖y‖2

6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 =
(
‖x‖+ ‖y‖

)2
,

where the last inequality comes from the Cauchy-Schwarz inequality. We then conclude that

‖x + y‖2 6
(
‖x‖+ ‖y‖

)2
. This establishes the Theorem. ¤

6.2.3. Norm distance. The norm on an inner product space determines a particular notion
of distance between vectors. After we introduce this norm we show its main properties.

Definition 6.2.6. The norm distance between two vectors in a vector space V with a
norm function ‖ ‖ : V → R is the value of the function d : V × V → R given by

d(x,y) = ‖x− y‖.

Theorem 6.2.7. The norm distance in Definition 6.2.6 satisfies for every x, y, z ∈ V that

(a) d(x,y) > 0, and d(x,y) = 0 iff x = y, (Positive definiteness);
(b) d(x,y) = d(y,x), (Symmetry);
(c) d(x,y) 6 d(x, z) + d(z,y), (Triangle inequality).

Proof of Theorem 6.2.7: Properties (a) and (b) are straightforward from properties (a)
and (b), and their proof are left as an exercise. We show how the triangle inequality for the
distance comes from the triangle inequality for the norm. Indeed

d(x,y) = ‖x− y‖ = ‖(x− z)− (y− z)‖ 6 ‖x− z‖+ ‖y− z‖ = d(x, z) + d(z,y),

where we used the symmetry of the distance function on the last term above. This establishes
the Theorem. ¤

The presence of an inner product, and hence a norm and a distance, on a vector space
permits to introduce the notion of convergence of an infinite sequence of vectors. We say
that the sequence {xn}∞n=0 ⊂ V converges to x ∈ V iff

lim
n→∞

d(xn,x) = 0.

Some of the most important concepts related to convergence are closeness of a subspace,
completeness of the vector space, and the continuity of linear operators and linear trans-
formations. In the case of finite dimensional vector spaces the situation is straightforward.
All subspaces are closed, all inner product spaces are complete and all linear operators and
linear transformations are continuous. However, in the case of infinite dimensional vector
spaces, things are not so simple.
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6.2.4. Exercises.

6.2.1.- Determine which of the following
functions 〈 , 〉 : R3 × R3 → R defines
an inner product on R3. Justify your
answers.

(a) 〈x, y〉 = x1y1 + x3y3;
(b) 〈x, y〉 = x1y1 − x2y2 + x3y3;
(c) 〈x, y〉 = 2x1y1 + x2y2 + 4x3y3;
(d) 〈x, y〉 = x2

1 y
2
1 + x2

2 y
2
2 + x2

3 y
2
3 .

We used the standard notation

x =

2
4
x1

x2

x3

3
5 , y =

2
4
y1

y2

y3

3
5 .

6.2.2.- Prove that an inner product func-
tion 〈 , 〉 : V × V → F satisfies the fol-
lowing properties:

(a) 〈x, y 〉 = 0 for all x ∈ V , then y = 0.
(b) 〈ax, y 〉 = a 〈x, y 〉 for all x, y ∈ V .

6.2.3.- Given a matrix M ∈ R2,2 introduce
the function 〈 , 〉M : R2 × R2 → R,

〈y, x〉M = yTM x.

For each of the matrices M below de-
termine whether 〈 , 〉M defines an inner
product or not. Justify your answers.

(a) M =

»
4 1
1 9

–
;

(b) M =

»
4 −3
3 9

–
;

(c) M =

»
4 1
0 9

–
.

6.2.4.- Fix any A ∈ Rn,n with N(A) = {0}
and introduce M = ATA. Prove that
〈 , 〉M : Rn × Rn → R, given by

〈y, x〉 = yTM x.

is an inner product in Rn.

6.2.5.- Find k ∈ R such that the matrices
A, B ∈ R2,2 are perpendicular in the
Frobenius inner product,

A =

»
1 2
3 4

–
, B =

»
1 2
k 1

–
.

6.2.6.- Evaluate the Frobenius norm for the
matrices

A =

»
1 −2
−1 2

–
, B =

2
4

0 1 0
0 0 1
1 0 0

3
5 .

6.2.7.- Prove that ‖A‖F = ‖A∗‖F for all
A ∈ Fm,n.

6.2.8.- Consider the vector space P2([0, 1])
with inner product

〈p, q 〉 =

Z 1

0

p(x)q(x) dx.

Find a unit vector parallel to

p(x) = 3− 5x2.
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6.3. Orthogonal vectors

6.3.1. Definition and examples. In the previous Section we introduced the notion of inner
product in a vector space. This structure provides a notion of vector norm and distance
between vectors. In this Section we explore another concept provided by an inner product;
the notion of perpendicular vectors and the notion of angle between vectors in a real vector
space. We start defining perpendicular vectors on any inner product space.

Definition 6.3.1. Two vectors x, y in and inner product space
(
V, 〈 , 〉

)
are orthogonal or

perpendicular, denoted as x ⊥ y, iff holds 〈x,y〉 = 0.

The Pythagoras Theorem holds on any inner product space.

Theorem 6.3.2. Let
(
V, 〈 , 〉

)
be an inner product space over the field F.

(a) If F = R, then x ⊥ y ⇔ ‖x− y‖2 = ‖x‖2 + ‖y‖2;
(b) If F = C, then x ⊥ y ⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2.

Proof of Theorem 6.3.2: Both statements derive from the following equation:

‖x− y‖2 = 〈(x− y), (x− y)〉
= 〈x,x〉+ 〈y,y〉 − 〈x,y〉 − 〈y,x〉
= ‖x‖2 + ‖y‖2 − 2 Re

(
〈x,y〉

)
. (6.5)

In the case F = R holds Re
(
〈x,y〉

)
= 〈x,y〉, so Part (a) follows. If F = C, then 〈x,y〉 implies

‖x−y‖2 = ‖x‖2 +‖y‖2, so Part (b) follows. (Notice that the converse statement is not true
in the case F = C, since Eq. (6.5) together with the hypothesis ‖x− y‖2 = ‖x‖2 + ‖y‖2 do
not fix Im

(
〈x,y〉

)
.) This establishes the Theorem. ¤

In the case of real vector space the Cauchy-Schwarz inequality stated in Theorem 6.2.2
allows us to define the angle between vectors.

Definition 6.3.3. The angle between two vectors x, y in a real vector inner product space(
V, 〈 , 〉

)
is the number θ ∈ [0, π] solution of

cos(θ) =
〈x,y〉
‖x‖ ‖y‖ .

Example 6.3.1: Consider the inner product space
(
R2,2, 〈 , 〉F

)
and show that the following

matrices are orthogonal,

A =

[
1 3
−1 4

]
, B =

[
−5 2

5 1

]
.

Solution: Since we need to compute the Frobenius inner product 〈A,B〉F , we first compute
the matrix

ATB =

[
1 −1
3 4

] [
−5 2

5 1

]
=

[
−10 1

5 10

]
.

Therefore 〈A,B〉F = tr
(
ATB

)
= 0, so we conclude that A ⊥ B. C

Example 6.3.2: Consider the vector space V = C∞
(
[−`, `],R

)
with the inner product

〈f , g〉 =

∫ `

−`
f (x)g(x) dx.

Consider the functions un(x) = cos
(
nπx
`

)
and vm(x) = sin

(
mπx
`

)
, where n, m are integers.

(a) Show that un ⊥ vm for all n, m.
(b) Show that un ⊥ um for all n 6= m.
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(c) Show that vn ⊥ vm for all n 6= m.

Solution: Recall the identities

sin(θ) cos(φ) =
1

2

[
sin(θ − φ) + sin(θ + φ)

]
, (6.6)

cos(θ) cos(φ) =
1

2

[
cos(θ − φ) + cos(θ + φ)

]
, (6.7)

sin(θ) sin(φ) =
1

2

[
cos(θ − φ)− cos(θ + φ)

]
. (6.8)

Part (a): Using identity in Eq. (6.6) is simple to show that

〈un, vm〉 =

∫ `

−`
cos

(nπx
`

)
sin

(mπx
`

)
dx

=
1

2

∫ `

−`

[
sin

( (n−m)πx

`

)
+ sin

( (n+m)πx

`

)]
. (6.9)

First, assume that both n−m and n+m are non-zero,

〈un, vm〉 = −1

2

[ `

(n−m)π
cos

( (n−m)πx

`

)∣∣∣
`

−`
+

`

(n+m)π
cos

( (n+m)πx

`

)∣∣∣
`

−`

]
. (6.10)

Since cos((n±m)π) = cos(−(n±m)π), we conclude that both terms above vanish.
Second, in the case that n −m = 0 the first term in Eq. (6.9) vanishes identically and

we need to compute the term with (n + m), which also vanishes by the second term in
Eq. (6.10). Analogously, in the case of (n + m) = 0 the second term in Eq. (6.9) vanishes
identically and we need to compute the term with (n−m) which also vanishes by the first
term in Eq. (6.10). Therefore, 〈un, vm〉 = 0 for all n, m integers, and so un ⊥ vm in this
case.

Part (b): Using identity in Eq. (6.7) is simple to show that

〈un,um〉 =

∫ `

−`
cos

(nπx
`

)
cos

(mπx
`

)
dx

=
1

2

∫ `

−`

[
cos

( (n−m)πx

`

)
+ cos

( (n+m)πx

`

)]
. (6.11)

We know that n−m is non-zero. Now, assume that n+m is non-zero, then

〈un,um〉 =
1

2

[ `

(n−m)π
sin

( (n−m)πx

`

)∣∣∣
`

−`
+

`

(n+m)π
sin

( (n+m)πx

`

)∣∣∣
`

−`

]

=
`

(n−m)π
sin((n−m)π) +

`

(n+m)π
sin((n+m)π). (6.12)

Since sin((n±m)π) = 0 for (n±m) integer, we conclude that both terms above vanish.
In the case of (n + m) = 0 the second term in Eq. (6.11) vanishes identically and we

need to compute the term with (n−m) which also vanishes by the first term in Eq. (6.12).
Therefore, 〈un,um〉 = 0 for all n 6= m integers, and so un ⊥ um in this case.

Part (c): Using identity in Eq. (6.8) is simple to show that

〈vn, vm〉 =

∫ `

−`
sin

(nπx
`

)
sin

(mπx
`

)
dx

=
1

2

∫ `

−`

[
cos

( (n−m)πx

`

)
− cos

( (n+m)πx

`

)]
. (6.13)
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Since the only difference between Eq. (6.13) and (6.11) is the sign of the second term,
repeating the argument done in case (b) we conclude that 〈vn, vm〉 = 0 for all n 6= m
integers, and so vn ⊥ vm in this case. C

6.3.2. Orthonormal basis. We saw that an important property of a basis is that every
vector in a vector space can be decomposed in a unique way in terms of the basis vectors.
This decomposition is particularly simple to find in an inner product space when the basis
is an orthonormal basis. Before we introduce such basis we define an orthonormal set.

Definition 6.3.4. The set U = {u1, · · · ,up}, p > 1, in an inner product space
(
V, 〈 , 〉

)
is

called an orthonormal set iff for all i, j = 1, · · · , p holds

〈ui,uj〉 =

{
0 if i 6= j,

1 if i = j.

The set U is called an orthogonal set iff holds that 〈ui,uj〉 = 0 if i 6= j and 〈ui,ui〉 6= 0.

Example 6.3.3: Consider the vector space V = C∞
(
[−`, `],R

)
with the inner product

〈f , g〉 =

∫ `

−`
f (x)g(x) dx.

Show that the set

U =
{

u0 =
1√
2`
, un(x) =

1√
`

cos
(nπx
`

)
, vm(x) =

1√
`

sin
(mπx

`

)}∞
n=1

is an orthonormal set.

Solution: We have shown in Example 6.3.2 that U is an orthogonal set. We only need
to compute the norm of the vectors u0, un and vn, for n = 1, 2, · · · . The norm of the first
vector is simple to compute,

〈u0,u0〉 =

∫ `

−`

1

2`
dx = 1.

The norm of the cosine functions is computed as follows,

〈un,un〉 =
1

`

∫ `

−`
cos2

(nπx
`

)
dx

=
1

2`

∫ `

−`

[
1 + cos

(2nπx

`

)]
dx

= 1 +
`

2nπ

[
sin

(2nπx

`

)∣∣∣
`

−`

]
⇒ 〈un,un〉 = 1.

A similar calculation for the sine functions gives the result

〈vn, vn〉 =
1

`

∫ `

−`
sin2

(nπx
`

)
dx

=
1

2`

∫ `

−`

[
1− cos

(2nπx

`

)]
dx

= 1− `

2nπ

[
sin

(2nπx

`

)∣∣∣
`

−`

]
⇒ 〈vn, vn〉 = 1.

Therefore, U is an orthonormal set. C

A straightforward result is the following:

Theorem 6.3.5. An orthogonal set in an inner product space is linearly independent.
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Proof of Theorem 6.3.5: Let U = {u1, · · · ,up}, p > 1, be an orthogonal set. The zero
vector is not included since 〈ui,ui〉 6= 0 for all i = 1, · · · , p. Let c1, · · · , cp ∈ F be scalars
such that

c1u1 + · · ·+ cpup = 0.

Then, for any ui ∈ U holds

0 = 〈ui, (c1u1 + · · ·+ cpup〉 = c1〈ui,u1〉+ · · ·+ cp〈ui,up〉.
Since the set U is orthogonal, 〈ui,uj〉 = 0 for i 6= j and 〈ui,ui〉 6= 0, so we conclude that

ci〈ui,ui〉 = 0 ⇒ ci = 0, i = 1, · · · , p.
Therefore, U is a linearly independent set. This establishes the Thorem. ¤
Definition 6.3.6. A basis U of an inner product space is called an orthonormal basis
(orthogonal basis) iff the basis U is an orthonormal (orthogonal) set.

Example 6.3.4: Consider the inner product space
(
R2, ·

)
. Determine whether the following

bases are orthonormal, orthogonal or neither:

S =
{

e1 =

[
1
0

]
, e2 =

[
0
1

]}
, U =

{
u1 =

[
1
1

]
, u2 =

[
−1

1

]}
, V =

{
v1 =

[
1
3

]
, v2 =

[
3
1

]}
.

Solution: The basis S is orthonormal, since e1 · e2 = 0 and e1 · e1 = e2 · e2 = 1. The basis
U is orthogonal since u1 · u2 = 0, but it is not orthonormal. Finally, the basis V is neither
orthonormal nor orthogonal. C

Theorem 6.3.7. Given the set U = {u1, · · · , up}, p > 1, in the inner product space
(
Fn, ·

)
,

introduce the matrix U = [u1, · · · , up]. Then the following statements hold:

(a) U is an orthonormal set iff matrix U satisfies U∗U = Ip.
(b) U is an orthonormal basis of Fn iff matrix U satisfies U−1 = U∗.

Matrices satisfying the property mentioned in part (b) of Theorem 6.3.7 appear frequently
in Quantum Mechanics, so they are given a name.

Definition 6.3.8. A matrix U ∈ Fn,n is called unitary iff holds U−1 = U∗.

These matrices are called unitary because they do not change the norm of vectors in Fn
equipped with the dot product. Indeed, given any x ∈ Fn with norm ‖x‖, the vector Ux ∈ Fn
has the same norm, since

‖Ux‖2 =
(
Ux

)∗(
Ux

)
= x∗U∗Ux = x∗U−1Ux = x∗x = ‖x‖2.

Proof of Theorem 6.3.7:
Part (a): This is proved by a straightforward computation,

U∗U =




u∗1
...

u∗p



[
u1, · · · , up

]
=




u∗1u1 · · · u∗1up
...

...
u∗pu1 · · · u∗pup


 =




u1 · u1 · · · u1 · up
...

...
up · u1 · · · up · up


 = Ip.

Part (b): It follows from part (a): If U is a basis of Fn, then p = n; since U is an
orthonormal set, part (a) implies U∗U = In. Since U is an n × n matrix, it follows that
U∗ = U−1. This establishes the Theorem. ¤

Example 6.3.5: Consider v1 =




1
1
2


, v2 =




2
0
−1


, in the inner product space

(
R3, ·

)
.

(a) Show that v1 ⊥ v2;
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(b) Find x ∈ R3 such that x ⊥ v1 and x ⊥ v2.
(c) Rescale the elements of {v1, v2, x} so that the new set is an orthonormal set.

Solution:
Part (a):

[
1 1 2

]



2
0
−1


 = 2 + 0− 2 = 0 ⇒ v1 ⊥ v2.

Part (b): We need to find x =



x1

x2

x3


 such that

v1 · x =
[
1 1 2

]


x1

x2

x3


 = 0, v2 · x =

[
2 0 −1

]


x1

x2

x3


 = 0,

The equations above can be written in matrix notation as

AT x = 0, where A =
[
v1, v2

]
=




1 2
1 0
2 −1


 .

Gauss elimination operation on AT imply

[
1 1 2
2 0 −1

]
→

[
1 0 −1/2
0 1 5/2

]
⇒





x1 =
1

2
x3,

x2 = −5

2
x3,

x3 free.

There is a solution for any choice of x3 6= 0, so we choose x3 = 2, that is, x =




1
−5

2


.

Part (c): The vectors v1, v2 and x are mutually orthogonal. Their norms are:

‖v1‖ =
√

6, ‖v2‖ =
√

5, ‖x‖ =
√

30.

Therefore, the orthonormal set is

{
u1 =

1√
6




1
1
2


 , u2 =

1√
5




2
0
−1


 , u3 =

1√
30




1
−5

2



}
.

Finally, notice that the inverse of the matrix

U =




1√
6

2√
5

1√
30

1√
6

0 − 5√
30

2√
6
− 1√

5
2√
30


 is U−1 =




1√
6

1√
6

2√
6

2√
5

0 − 1√
5

1√
30
− 5√

30
2√
30


 = UT .

C

6.3.3. Vector components. Given a basis in a finite dimensional vector space, we know
that every vector in the vector space can be decomposed in a unique way as a linear com-
bination of the basis vectors. What we do not know is a general formula to compute the
vector components in such a basis. However, in the particular case that the vector space
admits an inner product and the basis is an orthonormal basis, we have such formula for
the vector components. The formula is very simple and is the main result in the following
statement.
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Theorem 6.3.9. If
(
V, 〈 , 〉

)
is an n-dimensional inner product space with an orthonormal

basis U = {u1, · · · ,un}, then every vector x ∈ V can be decomposed as

x = 〈u1,x〉u1 + · · ·+ 〈un,x〉un. (6.14)

Proof of Theorem 6.3.9: Since U is a basis, we know that for all x ∈ V there exist scalars
c1, · · · , cn such that

x = c1u1 + · · ·+ cnun.

Therefore, the inner product 〈ui,x〉 for any i = 1, · · · , n is given by

〈ui,x〉 = c1 〈ui,u1〉+ · · ·+ cn 〈ui,un〉.
Since U is an orthonormal set, 〈ui,x〉 = ci. This establishes the Theorem. ¤

The result in Theorem 6.3.9 provides a remarkable simple formula for vector components
in an orthonormal basis. We will get back to this subject in some depth in Section 7.1.
In that Section we will name the coefficients 〈ui,x〉 in Eq. (6.14) as Fourier coefficients of
the vector x in the orthonormal set U = {u1, · · · ,un}. When the set U is an orthonormal
ordered basis of a vector space V , the coordinate map [ ]u : V → Fn is expressed in terms
of the Fourier coefficients as follows,

[x ]u =



〈u1,x〉

...
〈un,x〉


 .

So, the coordinate map has a simple expression when it is defined by an orthonormal basis.

Example 6.3.6: Consider the inner product space
(
R3, ·

)
with the standard ordered basis

S, and find the vector components of x =




1
2
3


 in the orthonormal ordered basis

U =
(

u1 =
1√
6




1
1
2


 , u2 =

1√
5




2
0
−1


 , u3 =

1√
30




1
−5

2



)
.

Solution: The vector components of x in the orthonormal basis U are given by

xu =



〈u1, x〉
〈u2, x〉
〈u3, x〉


 ⇒ u =




9√
6

− 1√
5

− 3√
30


 .

Remark: We have done a change of basis, from the standard basis S to the U basis. In
fact, we can express the calculation above as follows

xu = P−1xs, where P = Ius =




1√
6

2√
5

1√
30

1√
6

0 − 5√
30

2√
6
− 1√

5
2√
30


 = U.

Since U is an orthonormal basis, U−1 = UT , so we conclude that

xu = UT xs =




1√
6

1√
6

2√
6

2√
5

0 − 1√
5

1√
30
− 5√

30
2√
30







1
2
3


 =




9√
6

− 1√
5

− 3√
30


 .

C
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6.3.4. Exercises.

6.3.1.- Prove that the following form of the
Pythagoras Theorem holds on complex
vector spaces: Two vectors x, y in an
inner product space

`
V, 〈 , 〉

´
over C are

orthogonal iff for all a, b ∈ C holds

‖ax + by‖2 = ‖ax‖2 + ‖by‖2.

6.3.2.- Consider the vector space R3 with
the dot product. Find all vectors x ∈ R3

which are orthogonal to the vector

v =

2
4

1
2
3

3
5 .

6.3.3.- Consider the vector space R3 with
the dot product. Find all vectors x ∈ R3

which are orthogonal to the vectors

v1 =

2
4

1
2
3

3
5 , v2 =

2
4

1
0
1

3
5 .

6.3.4.- Let P3([−1, 1]) be the space of poly-
nomials up to degree three defined on
the interval [−1, 1] ⊂ R with the inner
product

〈p, q 〉 =

Z 1

−1

p(x)q(x) dx.

Show that the set (p0,p1,p2,p3) is an
orthogonal basis of P3, where

p0(x) = 1,

p1(x) = x,

p2(x) =
1

2
(3x2 − 1),

p3(x) =
1

2
(5x3 − 3x).

(These polynomials are the first four of
the Legendre polynomials.)

6.3.5.- Consider the vector space R3 with
the dot product.

(a) Show that the following ordered ba-
sis U is orthonormal,

“ 1√
2

2
4

1
−1

0

3
5 , 1√

3

2
4

1
1
1

3
5 , 1√

6

2
4
−1
−1

2

3
5
”
.

(b) Use part (a) to find the components
in the ordered basis U of the vector

x =

2
4

1
0
−2

3
5 .

6.3.6.- Consider the vector space R2,2 with
the Frobenius inner product.

(a) Show that the ordered basis given
by U = (E1,E2,E3,E4) is orthonor-
mal, where

E1 =
1√
2

»
0 1
1 0

–
E2 =

1√
2

»
1 0
0 −1

–

E3 =
1

2

»
1 −1
1 1

–
E4 =

1

2

»
1 1
−1 1

–
.

(b) Use part (a) to find the components
in the ordered basis U of the matrix

A =

»
1 1
1 1

–
.

6.3.7.- Consider the inner product space`
R2,2, 〈 , 〉F

´
, and find the cosine of the

angle between the matrices

A =

»
1 3
2 4

–
, B =

»
2 −2
2 0

–
.

6.3.8.- Find the third column in matrix U
below such that UT = U−1, where

U =

2
4

1/
√

3 1/
√

14 U13

1/
√

3 2/
√

14 U23

1/
√

3 −3/
√

14 U33

3
5 .
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6.4. Orthogonal projections

6.4.1. Orthogonal projection onto subspaces. Given any subspace of an inner product
space, every vector in the vector space can be decomposed as a sum of two vectors; a vector
in the subspace and a vector perpendicular to the subspace. The picture one often has in
mind is a plane in R3 equiped with the dot product, as in Fig. 43. Any vector in R3 can
be decomposed as a vector on the plane plus a vector perpendicular to the plane. In this
Section we provide expressions to compute this type of decompositions. We start splitting
a vector in orthogonal components with respect to a one dimensional subspace. The study
of this simple case describes the main ideas and the main notation used in orthogonal
decompositions. Later on we present the decomposition of a vector onto an n-dimensional
subspace.

Theorem 6.4.1. Fix a vector u 6= 0 in an inner product space
(
V, 〈 , 〉

)
. Given any vector

x ∈ V decompose it as x = xq + xp− where xq ∈ Span({u}). Then, xp− ⊥ u iff holds

xq =
〈u,x〉
‖u‖2 u. (6.15)

Furthermore, in the case that u is a unit vector holds xq = 〈u,x〉u.

The main idea of this decomposition can be understood in the inner product space
(
R2, ·

)

and it is sketched in Fig. 42. It is obvious that every vector x can be expressed in many
different ways as the sum of two vectors. What is special of the decomposition in Eq. 6.15
is that xq has the precise length such that xp− is orthogonal to xq (see Fig. 42).

x

u x

x

Figure 42. Orthogonal decomposition of the vector x ∈ R2 onto the sub-
space spanned by vector u.

Proof of Theorem 6.4.1: Since xq ∈ Span({u}), there exists a scalar a such that xq = au.
Therefore u ⊥ xp− iff holds that 〈u,xp−〉 = 0. A straightforward computation shows,

0 = 〈u,xp−〉 = 〈u,x〉 − 〈u,xq〉 = 〈u,x〉 − a 〈u,u〉 ⇔ a =
〈u,x〉
‖u‖2 .

We conclude that the decomposition x = xq + xp− satisfies

xp− ⊥ u ⇔ xq =
〈u,x〉
‖u‖2 u.

In the case that u is a unit vector holds ‖u‖ = 1, so xq is given by xq = 〈u,x〉u. This
establishes the Theorem. ¤
Example 6.4.1: Consider the inner product space

(
R3, ·

)
and decompose the vector x in

orthogonal components with respect to the vector u, where

x =




3
2
1


 , u =




1
2
3


 .
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Solution: We first compute xq =
u · x
‖u‖2 u. Since

u · x =
[
1 2 3

]



3
2
1


 = 3 + 4 + 3 = 10, ‖u‖2 =

[
1 2 3

]



1
2
3


 = 1 + 4 + 9 = 14,

we obtain xq =
5

7




1
2
3


. We now compute x p− as follows,

x p− = x− xq =




3
2
1


− 5

7




1
2
3


 =

1

7




21
14
7


− 1

7




5
10
15


 =

1

7




16
4
−8


 ⇒ x p− =

4

7




4
1
−2


 .

Therefore, x can be decomposed as

x =
5

7




1
2
3


 +

4

7




4
1
−2


 .

Remark: We can verify that this decomposition is orthogonal with respect to u, since

u · x p− =
4

7

[
1 2 3

]



4
1
−2


 =

4

7
(4 + 2− 6) = 0.

C

We now decompose a vector into orthogonal components with respect to a p-dimensional
subspace with p > 1.

Theorem 6.4.2. Fix an orthogonal set U = {u1, · · · ,up}, with p > 1, in an inner product
space

(
V, 〈 , 〉

)
. Given any vector x ∈ V , decompose it as x = xq + xp− , where xq ∈ Span(U).

Then, xp− ⊥ ui, for i = 1, · · · , p iff holds

xq =
〈u1,x〉
‖u1‖2

u1 + · · ·+ 〈up,x〉‖up‖2
up. (6.16)

Furthermore, in the case that U is an orthonormal basis holds

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up. (6.17)

Remark: The set U in Theorem 6.4.2 must be an orthogonal set. If the vectors u1, · · · ,up
are not mutually orthogonal, then the vector xq computed in Eq. (6.17) is not the orthogonal
projection of vector x, that is, (x − xq) 6⊥ ui for i = 1, · · · , p. Therefore, before using
Eq. (6.17) in a particular application one should verify that the set U one is working with is
in fact an orthogonal set. A particular case of the orthogonal projection of a vector in the
inner product space

(
R3, ·

)
onto a plane is sketched in Fig. 43.

Proof of Theorem 6.4.2: Since xq ∈ Span(U), there exist scalars ai, for i = 1, · · · , p such
that xq = a1u1+· · ·+apup. The vector xp− ⊥ ui iff holds that 〈ui,xp−〉 = 0. A straightforward
computation shows that, for i = 1, · · · , p holds

0 = 〈ui,xp−〉 = 〈ui,x〉 − 〈ui,xq〉
= 〈ui,x〉 − a1 〈ui,u1〉 − · · · − ap 〈ui,up〉

= 〈ui,x〉 − ai〈ui,ui〉 ⇔ ai =
〈ui,x〉
‖ui‖2

.
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x

u1

u 2
R

3

x

U

x

Figure 43. Orthogonal decomposition of the vector x ∈ R3 onto the sub-
space U spanned by the vectors u1 and u2.

We conclude that the decomposition x = xq + xp− satisfies xp− ⊥ ui for i = 1, · · · , p iff holds

xq =
〈u1,x〉
‖u1‖2

u1 + · · ·+ 〈up,x〉‖up‖2
up.

In the case that U is an orthonormal set holds ‖ui‖ = 1 for i = 1, · · · , p, so xq is given by
Eq. (6.17). This establishes the Theorem. ¤

Example 6.4.2: Consider the inner product space
(
R3, ·

)
and decompose the vector x in

orthogonal components with respect to the subspace U , where

x =




1
2
3


 , U = Span

({
u1 =




2
5
−1


 , u2 =



−2

1
1



})
.

Solution: In order to use Eq. (6.16) we need an orthogonal basis of U . So, need need to
verify whether u1 is orthogonal to u2. This is indeed the case, since

u1 · u2 =
[
2 5 −1

]


−2

1
1


 = −4 + 5− 1 = 0.

So now we use u1 and u2 to compute xq using Eq. (6.17). We need the quantities

u1 · x =
[
2 5 −1

]



1
2
3


 = 9, u1 · u1 =

[
2 5 −1

]



2
5
−1


 = 30,

u2 · x =
[
−2 1 1

]



1
2
3


 = 3, u2 · u2 =

[
−2 1 1

]


−2

1
1


 = 6.

Now is simple to compute xq, since

xq =
9

30




2
5
−1


 +

3

6



−2

1
1


 =

3

10




2
5
−1


 +

1

2



−2

1
1


 =

1

10




6
15
−3


 +

1

10



−10

5
5


 ,

therefore,

xq =
1

10



−4
20
2


 ⇒ xq =

1

5



−2
10
1


 .
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The vector x p− is obtained as follows,

x p− = x− xq =




1
2
3


− 1

5



−2
10
1


 =

1

5




5
10
15


− 1

5



−2
10
1


 =

1

5




7
0
14


 ⇒ x p− =

7

5




1
0
2


 .

We conclude that

x =
1

5



−2
10
1


 +

7

5




1
0
2


 .

Remark: We can verify that x p− ⊥ U , since

u1 · x p− =
7

5

[
2 5 −1

]



1
0
2


 =

7

5
(2 + 0− 2) = 0,

u2 · x p− =
7

5

[
−2 1 1

]



1
0
2


 =

7

5
(2 + 0− 2) = 0.

C

6.4.2. Orthogonal complement. We have seen that any vector in an inner product space
can be decomposed as a sum of orthogonal vectors, that is, x = xq + xp− with 〈xq,xp−〉 = 0.
Inner product spaces can be decomposed in a somehow analogous way as a direct sum of
two mutually orthogonal subspaces. In order to understand such decomposition, we need to
introduce the notion of the orthogonal complement of a subspace. Then we will show that
a finite dimensional inner product space is the direct sum of a subspace and it orthogonal
complement. It is precisely this result that motivates the word “complement” in the name
orthogonal complement of a subspace.

Definition 6.4.3. The orthogonal complement of a subspace W in an inner product
space

(
V, 〈 , 〉

)
, denoted as W⊥, is the set W⊥ = {u ∈ V : 〈u,w〉 = 0 ∀ w ∈W}.

Example 6.4.3: In the inner product space
(
R3, ·

)
, the orthogonal complement to a line is

a plane, and the orthogonal complement to a plane is a line, as it is shown in Fig. 44. C

0

R
U

U

3

V

R
3

0

V

Figure 44. The orthogonal complement to the plane U is the line U⊥,
and the orthogonal complement to the line V is the plane V ⊥.

As the sketch in Fig. 44 suggests, the orthogonal complement of a subspace is a subspace.

Theorem 6.4.4. The orthogonal complement W⊥ of a subspace W in an inner product
space is also a subspace.
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Proof of Theorem 6.4.4: Let u1, u2 ∈ W⊥, that is, 〈ui,w〉 = 0 for all w ∈ W and
i = 1, 2. Then, any linear combination au1 + bu2 also belongs to W⊥, since

〈(au1 + bu2),w〉 = a 〈u1,w〉+ b 〈u2,w〉 = 0 + 0 ∀w ∈W.
This establishes the Theorem. ¤

Example 6.4.4: Find W⊥ for the subspace W = Span
({

w1 =



−1

2
3



})

in
(
R3, ·

)
.

Solution: We need to find the set of all x ∈ R3 such that x · w1 = 0. That is,

[
−1 2 3

]


x1

x2

x3


 = 0 ⇒ x1 = 2x2 + 3x3.

The solution is

x =




2x2 + 3x3

x2

x3


 ⇒ x =




2
1
0


 x2 +




3
0
1


 x3,

hence we obtain

W⊥ = Span
({




2
1
0


 ,




3
0
1



})
.

The orthogonal complement of a line is a plane, as sketched in the second picture in Fig. 44.
Remark: We can verify that the result is correct, since

[
−1 2 3

]



2
1
0


 = −2 + 2 + 0 = 0,

[
−1 2 3

]



3
0
1


 = −3 + 0 + 3 = 0.

C

Example 6.4.5: Find W⊥ for the subspace W = Span
({

w1 =




1
2
3


 , w2 =




3
2
1



})

in
(
R3, ·

)
.

Solution: We need to find the set of all x ∈ R3 such that x ·w1 = 0 and x ·w2 = 0. That is,

[
1 2 3
3 2 1

] 

x1

x2

x3


 = 0

We an use Gauss elimination to find the solution,

[
1 2 3
3 2 1

]
→

[
1 0 −1
0 1 2

]
⇒





x1 = x3,

x2 = −2x3,

x3 free.

⇒ x =




1
−2

1


 x3,

hence we obtain

W⊥ = Span
({




1
−2

1



})
.

So, the orthogonal complement of a pane is a line, as sketched in the first picture in Fig. 44.
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Remark: We can verify that the result is correct, since

[
1 2 3

]



1
−2

1


 = 1− 4 + 3 = 0,

[
3 2 1

]



1
−2

1


 = 3− 4 + 1 = 0.

C

As we mentioned above, the reason for the word “complement” in the name of an orthog-
onal complement is that the vector space can be split into the sum of two subspaces with
zero intersection. We summarize this below.

Theorem 6.4.5. If W is a subspace in a finite dimensional inner product space V , then

V = W ⊕W⊥.

Proof of Theorem 6.4.5: We first show that V = W + W⊥. In order to do that,
first choose an orthonormal basis W = {w1, · · · ,wp} for W , we here we have assumed
dimW = p 6 n = dimV . Then, for every vector x ∈ V holds that it can be decomposed as

x = xq + xp− , xq = 〈w1,x〉w1 + · · ·+ 〈wp,x〉wp, xp− = x− xq.

Theorem 6.4.2 says that xp− ⊥ wi for i = 1, · · · , p. This implies that xp− ∈ W⊥ and, since

x is an arbitrary vector in V , we have established that V = W + W⊥. We now show that
W ∩ W⊥ = {0}. Indeed, if u ∈ W⊥, then 〈u,w〉 = 0 for all w ∈ W . If u ∈ W , then
choosing w = u in the equation above we get 〈u,u〉 = 0, which implies u = 0. Therefore,
W ∩W⊥ = {0} and we conclude that V = W ⊕W⊥. This establishes the Theorem. ¤

Since the orthogonal complement W⊥ of a subspace W is itself a subspace, we can
compute (W⊥)⊥. The following statement says that the result is the original subspace W .

Theorem 6.4.6. If W is a subspace in an finite dimensional inner product space, then
(
W⊥

)⊥
= W.

Proof of Theorem 6.4.6: First notice that W ⊂
(
W⊥

)⊥
. Indeed, given any fixed vector

w ∈ W , the definition of W⊥ implies that every vector u ∈ W⊥ satisfies 〈w,u〉 = 0. This

condition says that w ∈
(
W⊥

)⊥
, hence we conclude W ⊂

(
W⊥

)⊥
. Second, Theorem 6.4.2

says that

V = W⊥ ⊕
(
W⊥

)⊥
.

In particular, this decomposition implies that dimV = dimW⊥ + dim
(
W⊥

)⊥
. Again The-

orem 6.4.2 also says that
V = W ⊕W⊥,

which in particular implies that dimV = dimW + dimW⊥. These last two results put

together imply dimW = dim
(
W⊥

)⊥
. It is from this last result together with our previous

result, W ⊂
(
W⊥

)⊥
, that we obtain W =

(
W⊥

)⊥
. This establishes the Theorem. ¤
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6.4.3. Exercises.

6.4.1.- Consider the inner product space`
R3, ·

´
and use Theorem 6.4.1 to find

the orthogonal decomposition of vector
x along vector u, where

x =

2
4

1
2
3

3
5 , u =

2
4

1
1
1

3
5 .

6.4.2.- Consider the subspace W given by

Span
“n

w1 =

2
4

1
2
1

3
5 ,w2 =

2
4

2
−1

3

3
5
o”

in the inner product space
`
R3, ·

´
.

(a) Find an orthogonal decomposition
of the vector w2 with respect to the
vector w1. Using this decomposi-
tion, find an orthogonal basis for
the space W .

(b) Find the decomposition of the vec-
tor x below in orthogonal compo-
nents with respect to the subspace
W , where

x =

2
4

4
3
0

3
5 .

6.4.3.- Consider the subspace W given by

Span
“n

w1 =

2
4

2
0
−2

3
5 , w2 =

2
4

2
−1

0

3
5 ,
o”

in the inner product space
`
R3, ·

´
. De-

compose the vector x below into orthog-
onal components with respect to W ,
where

x =

2
4

1
1
−1

3
5 .

(Notice that w1 6⊥ w2.)

6.4.4.- Given the matrix A below, find a ba-
sis for the space R(A)⊥, where

A =

2
4

1 2
1 1
2 0

3
5 .

6.4.5.- Consider the subspace

W = Span
n
2
4

1
−1

2

3
5
o

in the inner product space
`
R3, ·

´
.

(a) Find a basis for the space W⊥, that
is, find a basis for the orthogonal
complement of the space W .

(b) Use Theorem 6.4.1 to transform the
basis of W⊥ found in part (a) into
an orthogonal basis.

6.4.6.- Consider the inner product space`
R4, ·

´
, and find a basis for the orthog-

onal complement of the subspace W
given by

W = Span
“n
2
664

1
2
0
3

3
775 ,

2
664

2
4
1
6

3
775
o”
.

6.4.7.- Let X and Y be subspaces of a fi-
nite dimensional inner product space`
V, 〈 , 〉

´
. Prove the following:

(a) X ⊂ Y ⇒ Y ⊥ ⊂ X⊥;
(b) (X + Y )⊥ = X⊥ ∩ Y ⊥;
(c) Use part (b) to show that

(X ∩ Y )⊥ = X⊥ + Y ⊥.
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6.5. Gram-Schmidt method

We now describe the Gram-Schmidt orthogonalization method, which is a method to
transform a linearly independent set of vectors into an orthonormal set. The method is
based on projecting the i-th vector in the set onto the subspace spanned by the previous
(i− 1) vectors.

Theorem 6.5.1 (Gram-Schmidt). Let X = {x1, · · · ,xp} be a linearly independent set in
an inner product space

(
V, 〈 , 〉

)
. If the set Y = {y1, · · · ,yp} is defined as follows,

y1 = x1,

y2 = x2 −
〈y1,x2〉
‖y1‖2

y1,

...

yp = xp −
〈y1,xp〉
‖y1‖2

y1 − · · · −
〈y(p−1),xp〉
‖y(p−1)‖2

y(p−1),

then Y is an orthogonal set with Span(Y ) = Span(X). Furthermore, the set

Z =
{

z1 =
y1

‖y1‖
, · · · , zp =

yp
‖yp‖

}

is an orthonormal set with Span(Z) = Span(Y ).

Remark: Using the notation in Theorem 6.4.2 we can write y2 = x2 p− , where the projec-
tion is onto the subspace Span({y1}). Analogously, yi = xi p− , for i = 2, · · · , p, where the
projection is onto the subspace Span({y1, · · · ,yi−1}).
Proof of Theorem 6.5.1: We first show that Y is an orthogonal set. It is simple to see
that y2 ∈ Span({y1})⊥, since

〈y1,y2〉 = 〈y1,x2〉 −
〈y1,x2〉
‖y1‖2

〈y1,y1〉 = 0.

Assume that yi ∈ Span({y1, · · · ,yi−1})⊥, we then show that yi+1 ∈ Span({y1, · · · ,yi})⊥.
Indeed, for j = 1, · · · , i holds

〈yj ,yi+1〉 = 〈yj ,xi+1〉 −
〈yj ,xi+1〉
‖yj‖2

〈yj ,yj〉 = 0,

where we used that yj ∈ Span({y1, · · · ,yi−1})⊥, for all j = 1, · · · , i. Therefore, Y is an
orthogonal set (and so, a linearly independent set).

The proof that Span(X) = Span(Y ) has two steps: On the one hand, the elements in Y
are linear combinations of elements in X, hence Span(Y ) ⊂ Span(X); on the other hand
dim Span(X) = dim Span(Y ), since X and Y are both linearly independent sets with the
same number of elements We conclude that Span(X) = Span(Y ). It is straightforward to
see that Z is an orthonormal set, and since every element zi ∈ Z is proportional to every
yi ∈ Y , then Span(Y ) = Span(Z). This establishes the Theorem. ¤

Example 6.5.1: Use the Gram-Schmidt method to find an orthonormal basis for the inner
product space

(
R3, ·

)
from the ordered basis

X =
(

x1 =




1
1
0


 , x2 =




2
1
0


 , x3 =




1
1
1



)
.

Page = 63



G. NAGY – LINEAR ALGEBRA July 15, 2012 207

Solution: We first find an orthogonal basis. The first element is

y1 = x1 =




1
1
0


 ⇒ ‖y1‖2 = 2.

The second element is

y2 = x2 −
y1 · x2

‖y1‖2
y1,

where

y1 · x2 =
[
1 1 0

]



2
1
0


 = 3.

A simple calculation shows

y2 =




2
1
0


− 3

2




1
1
0


 =

1

2




4
2
0


− 1

2




3
3
0


 =

1

2




1
−1

0


 ,

therefore,

y2 =
1

2




1
−1

0


 ⇒ ‖y2‖2 =

1

2
.

Finally, the last element is

y3 = x3 −
y1 · x3

‖y1‖2
y1,−

y2 · x3

‖y2‖2
y2,

where

y1 · x3 =
[
1 1 0

]



1
1
1


 = 2, y2 · x3 =

1

2

[
1 −1 0

]



1
1
1


 = 0.

Another simple calculation shows

y3 =




1
1
1


− 2

2




1
1
0


 =




0
0
1


 ,

therefore,

y3 =




0
0
1


 ⇒ ‖y3‖2 = 1.

The set Y = {y1, y2, y3} is an orthogonal set, while an orthonormal set is given by

Z =
{

z1 =
1√
2




1
1
0


 , z2 =

1√
2




1
−1

0


 , z3 =




0
0
1



}
.

C

Example 6.5.2: Consider the vector space P3([−1, 1]) with the inner product

〈p, q 〉 =

∫ 1

−1

p(x)q(x) dx.

Given the basis {p0 = 1, p1 = x, p2 = x2, p3 = x3}, use the Gram-Schmidt method
starting with the vector p0 to find an orthogonal basis for P3([−1, 1]).
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Solution: The first element in the new basis is

q0 = p0 = 1 ⇒ ‖q0‖2 =

∫ 1

−1

dx = 2.

The second element is

q1 = p1 −
〈q0,p1〉
‖q0‖2

q0.

It is simple to see that

〈q0,p1〉 =

∫ 1

−1

x dx =
1

2
x2

∣∣∣
1

−1
= 0.

So we conclude that

q1 = p1 = x ⇒ ‖q1‖2 =

∫ 1

−1

x2 dx =
1

3
x3

∣∣∣
1

−1
⇒ ‖q1‖2 =

2

3
.

The third element in the basis is

q2 = p2 −
〈q0,p2〉
‖q0‖2

q0 −
〈q1,p2〉
‖q1‖2

q1.

It is simple to see that

〈q0,p2〉 =

∫ 1

−1

x2 dx =
1

3
x3

∣∣∣
1

−1
=

2

3
,

〈q1,p2〉 =

∫ 1

−1

x3 dx =
1

4
x4

∣∣∣
1

−1
= 0.

Hence we obtain

q2 = p2 −
2

3

1

2
q0 = x2 − 1

3
⇒ q2 =

1

3
(3x2 − 1).

The norm square of this vector is

‖q2‖2 =
1

9

∫ 1

−1

(3x2 − 1)(3x2 − 1) dx

=
1

9

∫ 1

−1

(9x4 − 6x2 + 1) dx

=
1

9

(9

5
x5 − 2x3 + x

)∣∣∣
1

−1

=
8

45
.

Finally, the fourth vector of the orthogonal basis is given by

q3 = p3 −
〈q0,p3〉
‖q0‖2

q0 −
〈q1,p3〉
‖q1‖2

q1 −
〈q1,p3〉
‖q2‖2

q2.

It is simple to see that

〈q0,p3〉 =

∫ 1

−1

x3 dx =
1

4
x4

∣∣∣
1

−1
= 0,

〈q1,p3〉 =

∫ 1

−1

x4 dx =
1

5
x5

∣∣∣
1

−1
=

2

5
,

〈q2,p3〉 =
1

3

∫ 1

−1

(3x2 − 1)x3 dx =
1

3

(1

2
x6 − 1

4
x4

)∣∣∣
1

−1
= 0.
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Hence we obtain

q3 = p3 −
2

5

3

2
q1 = x3 − 3

5
x ⇒ q3 =

1

5
(5x3 − 3x).

The orthogonal basis is then given by
{

q0 = 1, q1 = x, q2 =
1

3
(3x2 − 1), q3 =

1

5
(5x3 − 3x)

}
.

These polynomials are proportional to the first three Legendre polynomials. The Legendre
polynomials form an orthogonal set in the space P∞([−1, 1]) of polynomials of all degrees.
They play an important role in physics, since Legendre polynomials are solution of a par-
ticular differential equation that often appears in physics. C
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6.5.1. Exercises.

6.5.1.- Find an orthonormal basis for the
subspace of R3 spanned by the vectors

n
u1 =

2
4
−2

2
−1

3
5 , u2 =

2
4

1
−3

1

3
5
o
,

using the Gram-Schmidt process start-
ing with the vector u1.

6.5.2.- Let W ⊂ R3 be the subspace

Span
n

u1 =

2
4

0
2
0

3
5 , u2 =

2
4

3
1
4

3
5
o
.

(a) Find an orthonormal basis for W
using the Gram-Schmidt method
starting with the vector u1.

(b) Decompose the vector x below as

x = xq + xp− ,

with xq ∈W and xp− ∈W⊥, where

x =

2
4

5
1
0

3
5 .

6.5.3.- Knowing that the column vectors in
matrix A below form a linearly indepen-
dent set, use the Gram-Schmidt method
to find an orthonormal basis for R(A),
where

A =

2
4

1 2 5
0 2 0
1 0 −1

3
5 .

6.5.4.- Use the Gram-Schmidt method to
find an orthonormal basis for R(A),
where

A =

2
4

1 2 1
0 2 −2
1 0 3

3
5 .

6.5.5.- Consider the vector space P2([0, 1])
with inner product

〈p, q 〉 =

Z 1

0

p(x)q(x) dx.

Use the Gram-Schmidt method on the
ordered basis`

p0 = 1, p1 = x, p2 = x2´,
starting with vector p0, to obtain an or-
thogonal basis for P2([0, 1]).
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6.6. The adjoint operator

6.6.1. The Riesz Representation Theorem. The Riesz Representation Theorem is a
statement concerning linear functionals on an inner product space. Recall that a linear
functional on a vector space V over a scalar field F is a linear function f : V → F, that is,
for all x, y ∈ V and all a, b ∈ F holds f(ax + by) = a f(x) + b f(y) ∈ F. An example of a
linear functional on R3 is the function

R3 3 x =



x1

x2

x3


 7→ f(x) = 3x1 + 2x2 + x3 ∈ R.

This function can be expressed in terms of the dot product in R3 as follows

f(x) = u · x, u =




3
2
1


 .

The Riesz Representation Theorem says that what we did in this example can be done in the
general case. In an inner product space

(
V, 〈 , 〉

)
every linear functional f can be expressed

in terms of the inner product.

Theorem 6.6.1. Consider a finite dimensional inner product space
(
V, 〈 , 〉

)
over the scalar

field F. For every linear functional f : V → F there exists a unique vector uf ∈ V such that
holds

f(v) = 〈uf , v〉 ∀v ∈ V.
Proof of Theorem 9.4.1: Introduce the set

N = {v ∈ V : f(v) = 0 } ⊂ V.
This set is the analogous to linear functionals of the null space of linear operators. Since f is
a linear function the set N is a subspace of V . (Proof: Given two elements v1, v2 ∈ N and
two scalars a, b ∈ F, holds that f(av1 +bv2) = a f(v1)+b f(v2) = 0+0, so (av1 +bv2) ∈ N .)
Introduce the orthogonal complement of N , that is,

N⊥ = {w ∈ V : 〈w, v〉 = 0 ∀v ∈ V },

which is also a subspace of V . If N⊥ = {0}, then N =
(
N⊥

)⊥
=

(
{0}

)⊥
= V . Since the

null space of f is the whole vector space, the functional f is identically zero, so only for the
choice uf = 0 holds f(v) = 〈0, v〉 for all v ∈ V .

In the case that N⊥ 6= {0} we now show that this space cannot be very big, in fact it
has dimension one, as the following argument shows. Choose ũ ∈ N⊥ such that f(ũ) = 1.
Then notice that for every w ∈ N⊥ the vector w− f(w)ũ is trivially in N⊥ but it is also in
N , since

f
(
w− f(w) ũ

)
= f(w)− f(w) f(ũ) = f(w)− f(w) = 0.

A vector both in N and N⊥ must vanish, so w = f(w) ũ. Then every vector in N⊥ is
proportional to ũ, so dimN⊥ = 1. This information is used to split any vector v ∈ V as
follows v = a ũ + x where x ∈ V and a ∈ F. It is clear that

f(v) = f(a ũ + x) = a f(ũ) + f(x) = a f(ũ) = a.

However, the function with values g(v) =
〈 ũ

‖ũ‖2 , v
〉

has precisely the same values as f ,

since for all v ∈ V holds

g(v) =
〈 ũ

‖ũ‖2 , v
〉

=
〈 ũ

‖ũ‖2 , (a ũ + x)
〉

=
a

‖ũ‖2 〈ũ, ũ〉+
1

‖ũ‖2 〈ũ,x〉 = a.
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Therefore, choosing uf = ũ/‖ũ‖2, holds that

f(v) = 〈uf , v〉 ∀v ∈ V.
Since dimN⊥ = 1, the choice of uf is unique. This establishes the Theorem. ¤

6.6.2. The adjoint operator. Given a linear operator defined on an inner product space,
a new linear operator can be defined through an equation involving the inner product.

Proposition 6.6.2. If T ∈ L(V ) is a linear operator on a finite-dimensional inner product
space

(
V, 〈 , 〉

)
, then there exists a unique linear operator T ∗ ∈ L(V ), called the adjoint of

T, such that for all vectors u, v ∈ V holds

〈v,T ∗(u)〉 = 〈T(v),u〉.
Proof of Proposition 9.4.2: We first establish the following statement: For every vector
u ∈ V there exists a unique vector w ∈ V such that

〈T(v),u〉 = 〈v,w〉 ∀v ∈ V. (6.18)

The proof starts noticing that for a fixed u ∈ V the scalar-valued function fu : V → F
given by fu(v) = 〈u,T(v)〉 is a linear functional. Therefore, the Riesz Representation
Theorem 6.6.1 implies that there exists a unique vector w ∈ V such that fu(v) = 〈w, v〉.
This establishes that for every vector u ∈ V there exists a unique vector w ∈ V such that
Eq. (6.18) holds. Now that this statement is proven we can define a map, that we choose
to denote as T ∗ : V → V , given by u 7→ T ∗(u) = w. We now show that this map T ∗ is
linear. Indeed, for all u1, u2 ∈ V and all a, b ∈ F holds

〈v,T ∗(au1 + bu2)〉 = 〈T(v), (au1 + bu2)〉 ∀v ∈ V,
= a 〈T(v),u1〉+ b 〈T(v),u2)〉
= a〈v,T ∗(u1)〉+ b〈v,T ∗(u2)〉
=

〈
v,
[
aT ∗(u1) + bT ∗(u2)

]〉
∀v ∈ V,

hence T ∗(au1 + bu2) = aT ∗(u1) + bT ∗(u2). This establishes the Proposition. ¤
The next result relates the adjoint of a linear operator with the concept of the adjoint

of a square matrix introduced in Sect. 2.2. Recall that given a basis in the vector space,
every linear operator has associated a unique square matrix. Let us use the notation [T ]
and [T ∗] for the matrices on a given basis of the operators T and T ∗, respectively.

Proposition 6.6.3. Let
(
V, 〈 , 〉

)
be a finite-dimensional vector space, let V be an orthonor-

mal basis of V , and let [T ] be the matrix of the linear operator T ∈ L(V ) in the basis V.
Then, the matrix of the adjoint operator T ∗ in the basis V is given by [T ∗] = [T ]∗.

Proposition 6.6.3 says that the matrix of the adjoint operator is the adjoint of the matrix
of the operator, however this is true only in the case that the basis used to compute the
respective matrices is orthonormal. If the basis is not orthonormal, the relation between
the matrices [T ] and [T ∗] is more involved.
Proof of Proposition 6.6.3: Let V = {e1, · · · , en} be an orthonormal basis of V , that is,

〈ei, ej〉 =

{
0 if i 6= j,

1 if i = j.

The components of two arbitrary vectors u, v ∈ V in the basis V is denoted as follows

u =
∑

i

uiei, v =
∑

i

viei.
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The action of the operator T can also be decomposed in the basis V as follows

T(ej) =
∑

i

[T ]ijei, [T ]ij = [T(ej)]i.

We use the same notation for the adjoint operator, that is,

T ∗(ej) =
∑

i

[T ∗]ijei, [T ∗]ij = [T ∗(ej)]i.

The adjoint operator is defined such that the equation 〈v,T ∗(u)〉 = 〈T(v),u〉 holds for all
u, v ∈ V . This equation can be expressed in terms of components in the basis V as follows

∑

ijk

〈
viei, uj [T

∗(ej)]kek
〉

=
∑

ijk

〈
vi[T(ei)]kek, ujej

〉
,

that is, ∑

ijk

viuj [T
∗]kj〈ei, ek〉 =

∑

ijk

vi[T ]kiuj〈ek, ej〉.

Since the basis V is orthonormal we obtain the equation
∑

ij

viuj [T
∗]ij =

∑

ijk

vi[T ]jiuj ,

which holds for all vectors u, v ∈ V , so we conclude

[T ∗]ij = [T ]ji ⇔ [T ∗] = [T ]
T ⇔ [T ∗] = [T ]∗.

This establishes the Proposition. ¤

Example 6.6.1: Consider the inner product space
(
C3, ·

)
. Find the adjoint of the linear

operator T with matrix in the standard basis of C3 given by

[T(x)] =



x1 + 2ix2 + ix3

ix1 − x3

x1 − x2 + ix3


 , [x] =



x1

x2

x3


 .

Solution: The matrix of this operator in the standard basis of C3 is given by

[T ] =




1 2i i
i 0 −1
1 −1 i


 .

Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 6.6.3 implies that

[T ∗] = [T ]∗ =




1 2i i
i 0 −1
1 −1 i



∗

=




1 −i 1
−2i 0 −1
−i −1 −i


 ⇒ [T ∗(x)] =



x1 − ix2 + x3

−2ix1 − x3

−ix1 − x2 − ix3


 .

C

6.6.3. Normal operators. Recall now that the commutator of two linear operators T,
S ∈ L(V ) is the linear operator [T,S] ∈ L(V ) given by

[T,S](u) = T(S(u))− S(T(u)) ∀u ∈ V.
Two operators T, S ∈ L(V ) are said to commute iff their commutator vanishes, that is,
[T,S] = 0. Examples of operators that commute are two rotations on the plane. Examples
of operators that do not commute are two arbitrary rotations in space.
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Definition 6.6.4. A linear operator T defined on a finite-dimensional inner product space(
V, 〈 , 〉

)
is called a normal operator iff holds [T,T ∗] = 0, that is, the operator commutes

with its adjoint.

An interesting characterization of normal operators is the following: A linear operator
T on an inner product space is normal iff ‖T(u)‖ = ‖T ∗(u)‖ holds for all u ∈ V . Normal
operators are particularly important because for these operators hold the Spectral Theorem,
which we study in Chapter 9.

Two particular cases of normal operators are often used in physics. A linear operator T
on an inner product space is called a unitary operator iff T ∗ = T−1, that is, the adjoint
is the inverse operator. Unitary operators are normal operators, since

T ∗ = T−1 ⇒
{

TT ∗ = I,

T ∗T = I,
⇒ [T,T ∗] = 0.

Unitary operators preserve the length of a vector, since

‖v‖2 = 〈v, v〉 = 〈v,T−1(T(v))〉 = 〈v,T ∗(T(v))〉 = 〈T(v),T(v)〉 = ‖T(v)‖2.
Unitary operators defined on a complex inner product space are particularly important in
quantum mechanics. The particular case of unitary operators on a real inner product space
are called orthogonal operators. So, orthogonal operators do not change the length of a
vector. Examples of orthogonal operators are rotations in R3.

A linear operator T on an inner product space is called an Hermitian operator iff
T ∗ = T, that is, the adjoint is the original operator. This definition agrees with the
definition of Hermitian matrices given in Chapter 2.

Example 6.6.2: Consider the inner product space
(
C3, ·

)
and the linear operator T with

matrix in the standard basis of C3 given by

[T(x)] =



x1 − ix2 + x3

ix1 − x3

x1 − x2 + x3


 , [x] =



x1

x2

x3


 .

Show that T is Hermitian.

Solution: We need to compute the adjoint of T. The matrix of this operator in the
standard basis of C3 is given by

[T ] =




1 −i 1
i 0 −1
1 −1 1


 .

Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 6.6.3 implies that

[T ∗] = [T ]∗ =




1 −i 1
i 0 −1
1 −1 1



∗

=




1 −i 1
i 0 −1
1 −1 1


 = [T ].

Therefore, T ∗ = T. C

6.6.4. Bilinear forms.

Definition 6.6.5. A bilinear form on a vector space V over F is a function a : V ×V → F
linear on both arguments, that is, for all u, v1, v2 ∈ V and all b1, b2 ∈ F holds

a
(
u, (b1v1 + b2v2)

)
= b1a(u, v1) + b2a(u, v2),

a
(
(b1v1 + b2v2),u

)
= b1a(v1,u) + b2a(v2,u).
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The bilinear form a : V × V → F is called symmetric iff for all u, v ∈ V holds

a(u, v) = a(v,u).

An example of a symmetric bilinear form is any the inner product on a real vector space.
Indeed, given a real inner product space

(
V, 〈 , 〉

)
, the function 〈 , 〉 : V × V → R is a

symmetric bilinear form, since it is symmetric and

〈u, (b1v1 + b2v2)〉 = b1〈u, v1〉+ b2〈u, v2〉.
We will shortly see that another example of a bilinear form appears on the weak formulation
of the boundary value problem in Eq. (7.30).

On the other hand, an inner product on a complex vector space is not a bilinear form,
since it is conjugate linear on the first argument instead of linear. Such functions are called
sesquilinear forms. That is, a sesquilinear form on a complex vector space V is a function
a : V × V → C that is conjugate linear on the first argument and linear on the second
argument. Sesquilinear forms are important in the case of studying differential equations
involving complex functions.

Definition 6.6.6. Consider a bilinear form a : V × V → F on an inner product space(
V, 〈 , 〉

)
over F. The bilinear form a is called positive iff there exists a real number k > 0

such that for all u ∈ V holds
a(u,u) > k ‖u‖2.

The bilinear form a is called bounded iff there exists a real number K > 0 such that for
all u, v ∈ V holds

a(u, v) 6 K ‖u‖ ‖v‖.
An example of a positive bilinear form is any inner product on a real vector space. The

Schwarz inequality implies that such inner product is also a bounded bilinear form. In fact,
an inner product on a real vector space is a symmetric, positive, bounded bilinear form. We
will shortly see that the bilinear form that appears on a weak formulation of the boundary
value problem in Eq. (7.30) is symmetric, positive and bounded. We will see that these
properties imply the existence and uniqueness of solutions to the weak formulation of the
boundary value problem.
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6.6.5. Exercises.

6.6.1.- . 6.6.2.- .
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Chapter 7. Approximation methods

7.1. Best approximation

The first half of this Section is dedicated to show that the Fourier series approximation of
a function is a particular case of the orthogonal decomposition of a vector onto a subspace
in an inner product space, studied in Section 6.4. Once we realize that it is not difficult to
see why such Fourier approximations are useful. We show that the orthogonal projection
xq of a vector x onto a subspace U is the vector in the subspace U closest to x. This is
the origin of the name “best approximation” for xq. What is intuitively clear in

(
R3, ·

)
is

true in every inner product space, hence it is true for the Fourier series approximation of
a function. In the second half of this Section we show a deep relation between the Null
space of a matrix and the Range space of the adjoint matrix. The former is the orthogonal
complement of the latter. A consequence of this relation is a simple proof to the property
that a matrix and its adjoint matrix have the same rank. Another consequence is given in
the next Section, where we obtain a simple equation, called the normal equation, to find a
least squares solution of an inconsistent linear system.

7.1.1. Fourier expansions. We have seen that orthonormal bases have a practical ad-
vantage over arbitrary basis. The components [x ]u of a vector x in an orthonormal basis
Un = {u1, · · · ,un} of the inner product space

(
V, 〈 , 〉

)
are given by the simple expression

[x ]u =



〈u1,x〉

...
〈un,x〉


 ⇔ x = 〈u1,x〉u1 + · · ·+ 〈un,x〉un.

In the case that an orthonormal set Up is not a basis of V , that is, p < dimV , one can always
introduce the orthogonal projection of a vector x ∈ V onto the subspace Up = Span(Up),

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up.
We have seen that in this case, xq 6= x. In fact we called the difference vector xp− = x− xq,
since this vector satisfies that xp− ⊥ xq. We now give the projection vector xq a new name.

Definition 7.1.1. The Fourier expansion of a vector x ∈ V with respect to an orthonor-
mal set Up = {u1, · · · ,up} ⊂

(
V, 〈 , 〉

)
is the unique vector xq ∈ Span(Up) given by

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up. (7.1)

The scalars 〈ui,x〉 are the Fourier coefficient of the vector x with respect to the set Up.

A reason to the name “Fourier expansion” to the orthogonal projection of a vector onto
a subspace is given in the following example.

Example 7.1.1: Given the vector space of continuous functions V = C
(
[−`, `],R

)
with

inner product given by 〈f , g〉 =

∫ `

−`
f (x)g(x) dx, find the Fourier expansion of an arbitrary

function f ∈ V with respect to the orthonormal set

UN =
{

u0 =
1√
2`
, un =

1√
`

cos
(nπx

`

)
, vn =

1√
`

sin
(nπx

`

)}N
n=1

.

Solution: Using Eq. (7.1) on a function f ∈ V we get

f q = 〈u0, f 〉u0 +

N∑

n=1

[
〈un, f 〉un + 〈vn, f 〉 vn

]
.

Page = 74



218 G. NAGY – LINEAR ALGEBRA july 15, 2012

Introduce the vectors in UN explicitly in the expression above,

f q =
1√
2`
〈u0, f 〉+

N∑

n=1

[ 1√
`
〈un, f 〉 cos

(nπx
`

)
+

1√
`
〈vn, f 〉 sin

(nπx
`

)]
.

Denoting by

a0 =
1√
2`
〈u0, f 〉 an =

1√
`
〈un, f 〉 bn =

1√
`
〈un, f 〉,

then we get that

f q(x) = a0 +

N∑

n=1

[
an cos

(nπx
`

)
+ bn sin

(nπx
`

)]
,

where the coefficients a0, an and bn, for n = 1, · · · , N are the usual Fourier coefficients,

a0 =
1

2`

∫ `

−`
f (x) dx, an =

1

`

∫ `

−`
f (x) cos

(nπx
`

)
dx, bn =

1

`

∫ `

−`
f (x) sin

(nπx
`

)
dx.

C

The example above is a good reason to name Fourier expansion the orthogonal projection
of a vector onto a subspace. We already know that the Fourier expansion xq of a vector x with
respect to a an orthonormal set Up has a particular property, that is, (x − xq) = xp− ∈ U⊥p .
This property means that xq is the best approximation of the vector x from within the
subspace Span(Up). See Fig. 45 for the case V = R3, with 〈 , 〉 = ·, and Span(U2) two-
dimensional. We highlight this property in the following result.

Theorem 7.1.2 (Best approximation). The Fourier expansion xq of a vector x with
respect to an orthonormal set Up in an inner product space, is the unique vector in the
subspace Span(Up) that is closest to x, in the sense that

‖x− xq‖ < ‖x− y‖ ∀ y ∈ Span(Up)− {xq}.

Proof of Theorem 7.1.2: Recall that xp− = x − xq is orthogonal to Span(U), that is
(x− xq) ⊥ (xq − y) for all y ∈ Span(U). Hence,

‖x− y‖2 = ‖(x− xq) + (xq − y)‖2 = ‖x− xq‖2 + ‖xq − y‖2, (7.2)

where the las equality comes from Pythagoras Theorem. Eq. (7.2) says that ‖x− y‖ is the
smallest iff y = xq and the smallest value is ‖x− xq‖. This establishes the Theorem. ¤

Span ( U )

x

y

(x−y)xR
3

Figure 45. The Fourier expansion xq of the vector x ∈ R3 is the best
approximation of x from within Span(U).
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Example 7.1.2: Given the vector space of continuous functions V = C
(
[−1, 1],R

)
with the

inner product given by 〈f , g〉 =

∫ 1

−1

f (x)g(x) dx, find the Fourier expansion of the function

f (x) = x with respect to the orthonormal set

UN =
{

u0 =
1√
2`
, un =

1√
`

cos
(nπx

`

)
, vn =

1√
`

sin
(nπx

`

)}N
n=1

.

Solution: We use the formulas in Example 7.1.1 above to the function f (x) = x on the
interval [−1, 1], since ` = 1. The coefficient a0 above is given by

a0 =
1

2

∫ 1

−1

x dx =
1

4

(
x2

∣∣1
−1

)
⇒ a0 = 0.

The coefficients an, bn, for n = 1, · · · , N computed with one integration by parts,
∫
x cos(nπx) dx =

x

nπ
sin(nπx) +

1

n2π2
cos(nπx),

∫
x sin(nπx) dx = − x

nπ
cos(nπx) +

1

n2π2
sin(nπx).

The coefficients an vanish, since

an =

∫ 1

−1

x cos(nπx) dx =
[ x
nπ

sin(nπx)
]∣∣∣

1

−1
+

1

n2π2
cos(nπx)

∣∣∣
1

−1
⇒ an = 0.

The coefficients bn are given by

bn =

∫ 1

−1

x sin(nπx) dx = −
[ x
nπ

cos(nπx)
]∣∣∣

1

−1
+

1

n2π2
sin(nπx)

∣∣∣
1

−1
⇒ bn =

2(−1)(n+1)

nπ
.

Therefore, the Fourier expansion of f (x) = x with respect to UN is given by

f q(x) =
2

π

N∑

n=1

(−1)(n+1)

n
sin(nπx).

Remark: First, a simpler proof that the coefficients a0 and an vanish is to realized that we
are integrating an odd function on the interval [−1, 1]. The odd function is the product of
an odd function times an even function. Second, Theorem 7.1.2 tells us that the function
f q above is only combination of the sine and cosine functions in UN that approximates best
the function f (x) = x on the interval [−1, 1]. C

7.1.2. Null and range spaces of a matrix. The null and range spaces associated with a
matrix A ∈ Fm,n and its adjoint matrix A∗ are deeply related.

Theorem 7.1.3. For every matrix A ∈ Fm,n holds N(A) = R(A∗)⊥ and N(A∗) = R(A)⊥.

Since for every subspace W on a finite dimensional inner product space holds (W⊥)⊥ = W ,
we also have the relations

N(A)⊥ = R(A∗), N(A∗)⊥ = R(A).

In the case of real-valued matrices, the Theorem above says that

N(A) = R(AT )⊥ and N(AT ) = R(A)⊥.
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Before we state the proof of this Theorem let us review the following notation: Given
an m × n matrix A ∈ Fm,n, we write it either in terms of column vectors A:j ∈ Fm for
j = 1, · · · , n, or in terms of row vectors Ai: ∈ Fn for i = 1, · · · ,m, as follows,

A =
[
A:1 · · · A:n

]
, A =




A1:

...
Am:


 .

Since the same type of definition holds for the n×m matrix A∗, that is,

A∗ =
[
(A∗):1 · · · (A∗):m

]
, A∗ =




(A∗)1:

...
(A∗)n:


 ,

then we have the relations

(A:j)
∗ = (A∗)j:, (Ai:)

∗ = (A∗):i.

For example, consider the 2× 3 matrix

A =

[
1 2 3
4 5 6

]
⇒ A:1 =

[
1
4

]
, A:2 =

[
2
5

]
, A:3 =

[
3
6

]
,

A1: =
[
1 2 3

]
,

A2: =
[
4 5 6

]
.
.

The transpose is a 3× 2 matrix that can be written as follows

AT =




1 4
2 5
3 6


 ⇒ (AT ):1 =




1
2
3


 , (AT ):2 =




4
5
6


 ,

(AT )1: =
[
1 4

]
,

(AT )2: =
[
2 5

]
,

(AT )3: =
[
3 6

]
.

.

So, for example we have the relation

(A:3)T =
[
3 6

]
= (AT )3:, (A2:)

T =




4
5
6


 = (AT ):2.

Proof of Theorem 7.1.3: We first show that the N(A) = R(A∗)⊥. A vector x ∈ Fn
belongs to N(A) iff holds

Ax = 0 ⇔




A1:

...
Am:


 x = 0 ⇔




[
(A∗):1

]∗
...[

(A∗):m

]∗


 x = 0 ⇔





(A∗):1 · x = 0,

...

(A∗):m · x = 0.

So, x ∈ N(A) iff x is orthogonal to every column vector in A∗, that is, x ∈ R(A∗)⊥.
The equation N(A∗) = R(A)⊥ comes from N(B) = R(B∗)⊥ taking B = A∗. Nevertheless,

we repeat the proof above, just to understand the previous argument. A vector y ∈ Fm
belongs to N(A∗) iff

A∗y = 0 ⇔




(A∗)1:

...
(A∗)n:


 y = 0 ⇔




(A:1)∗

...
(A:n)∗


 y = 0 ⇔





A:1 · y = 0,

...

A:n · y = 0.

So, y ∈ N(A∗) iff y is orthogonal to every column vector in A, that is, y ∈ R(A)⊥. This
establishes the Theorem. ¤
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Example 7.1.3: Verify Theorem 7.1.3 for the matrix A =

[
1 2 3
3 2 1

]
.

Solution: We first find the N(A), that is, all x ∈ R3 solutions of Ay = 0. Gauss operations
on matrix A imply

[
1 2 3
3 2 1

]
→

[
1 0 −1
0 1 2

]
⇒





x1 = x3,

x2 = −2x3,

x3 free,

⇒ N(A) = Span
({




1
−2

1



})
.

It is simple to find R(AT ), since

R(AT ) = Span
({




1
2
3


 ,




3
2
1



})
.

Theorem 7.1.3 is verified, since

[
1 2 3

]



1
−2

1


 = 1−4+3 = 0,

[
3 2 1

]



1
−2

1


 = 3−4+1 = 0 ⇒ N(A) = R(AT )⊥.

Let us verify the same Theorem for AT . We first find N(AT ), that is, all y ∈ R2 solutions of
AT y = 0. Gauss operations on matrix AT imply


1 3
2 2
3 1


→




1 0
0 1
0 0


 ⇒ y =

[
0
0

]
⇒ N(AT ) = {0}.

The space R(A) is given by

R(A) = Span
({[

1
3

]
,

[
2
2

]
,

[
3
1

]})
= Span

({[
1
3

]
,

[
2
2

]})
= R2.

Since (R2)⊥ = {0}, Theorem 7.1.3 is verified. C

Theorem 7.1.3 provides a simple proof for a result we used in Chapter 2.

Theorem 7.1.4. For every matrix A ∈ Fm,n holds that rank(A) = rank(A∗).

Proof of Theorem 7.1.4: Recall the Nullity-Rank result in Corollary 5.1.8, which says
that for all matrix A ∈ Fm,n holds dimN(A) + dimR(A) = n. Equivalently,

dimR(A) = n− dimN(A) = n− dimR(A∗)⊥,

since N(A) = R(A∗)⊥. From the orthogonal decomposition Fn = R(A∗)⊕R(A∗)⊥ we know
that dimR(A∗) = n− dimR(A∗)⊥. We then conclude that

dimR(A) = dimR(A∗).

This establishes the Theorem. ¤
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7.1.3. Exercises.

7.1.1.- Consider the inner product space`
R3, ·

´
and the orthonormal set U ,

n
u1 =

1√
2

2
4

1
−1

0

3
5 , u2 =

1√
3

2
4

1
1
1

3
5
o
.

Find the best approximation of x below
in the subspace Span(U), where

x =

2
4

1
0
−2

3
5 .

7.1.2.- Consider the inner product space`
R2,2, 〈 , 〉F

´
and the orthonormal set

U = {E1,E2}, where

E1 =
1√
2

»
0 1
1 0

–
, E2 =

1√
2

»
1 0
0 −1

–
.

Find the best approximation of matrix
A below in the subspace Span(U), where

A =

»
1 1
1 1

–
.

7.1.3.- Consider the inner product space

P2([0, 1]), with 〈p, q 〉 =
R 1

0
p(x)q(x) dx,

and the subspace U = Span(U), where
U = {q0 = 1, q1 = (x− 1

2
)}.

(a) Show that U is an orthogonal set.
(b) Find rq, the best approximation

with respect to U of the polynomial
r(x) = 2x+ 3x2.

(c) Verify whether (r−rq) ∈ U⊥ or not.

7.1.4.- Consider the space C∞([−`, `],R)
with inner product

〈f , g〉 =

Z `

−`
f (x)g(x) dx,

and the orthonormal set U given by

u0 =
1√
2`

u1 =
1√
`

cos
“πx
`

”

v1 =
1√
`

sin
“πx
`

”
.

Find the best approximation of

f (x) =


x 0 6x 6 `,

−x −` 6x < 0.

in the space Span(U)

7.1.5.- For the matrix A ∈ R3,3 below,
verify that N(A) = R(AT )⊥ and that
N(AT ) = R(A)⊥, where

A =

2
4

2 1 1
−1 −1 0
−2 −1 −1

3
5 .
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7.2. Least squares

7.2.1. The normal equation. We describe the least squares method to find approximate
solutions to inconsistent linear systems. The method is often used to find the best parameters
that fit experimental data. The parameters are the unknowns of the linear system, and the
experimental data determines the matrix of coefficients and the source vector of the system.
Such a linear system usually contains more equations than unknowns, and it is inconsistent,
since there are no parameters that fit all the data exactly. We start introducing the notion
of least squares solution of a possibly inconsistent linear system.

Definition 7.2.1. Given a matrix A ∈ Fm,n and a vector b ∈
(
Fm, ·

)
, the vector x̂ ∈ Fn is

called a least squares solution of the linear system Ax = b iff holds

‖Ax̂− b‖ 6 ‖y − b‖ ∀ y ∈ R(A).

The problem we study is to find the least squares solution to an m × n linear system
Ax = b. In the case that b ∈ R(A) the linear system Ax = b is consistent and the least
squares solution x̂ is the actual solution of the system, hence ‖Ax̂− b‖ = 0. In the case that
b does not belong to R(A), the linear system Ax = b is inconsistent. In such a case the least
squares solution x̂ is the vector in Rn with the property that Ax̂ is a vector in R(A) closest
to b in the inner product space

(
Rm, ·

)
. A sketch of this situation for a matrix A ∈ R3,2 is

given in Fig. 46.

3

x

b

Ax

Ax

A

R R

R ( A )

2

Figure 46. The meaning of the least squares solution x̂ ∈ R2 for the 3× 2
inconsistent linear system Ax = b is that the vector Ax̂ is the closest to b
in the inner product space

(
R3, ·

)
.

The solution to the problem of finding a least squares solution to a linear system is
summarized in the following result.

Theorem 7.2.2. Given a matrix A ∈ Fm,n and a vector b in the inner product space(
Fm, ·

)
, the vector x̂ ∈ Fn is a least squares solution of the m× n linear system Ax = b iff x̂

is solution to the n× n linear system, called normal equation,

A∗A x̂ = A∗b. (7.3)

Furthermore, the least squares solution x̂ is unique iff the column vectors of matrix A form
a linearly independent set.

Remark: In the case that F = R, the normal equation reduces to ATA x̂ = ATb.
Proof of Theorem 7.2.2: We are interested in finding a vector x̂ ∈ Fn such that Ax̂ is the
best approximation in R(A) of vector b ∈ Fm. That is, we want to find x̂ ∈ Fn such that

‖Ax̂− b‖ 6 ‖y − b‖ ∀ y ∈ R(A).
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Theorem 7.1.2 says that the best approximation of b is when Ax̂ = bq, where bq is the
orthogonal projection of b onto the subspace R(A). This means that

(Ax̂− b) ∈ R(A)⊥ = N(A∗) ⇔ A∗(Ax̂− b) = 0.

We then conclude that x̂ must be solution of the normal equation

A∗Ax̂ = A∗b.

The furthermore can be shown as follows. The column vectors of matrix A form a linearly
independent set iff N(A) = {0}. Lemma 7.2.3 stated below establishes that, for all matrix
A holds that N(A) = N(A∗A). This result in our case implies that N(A∗A) = {0}. Since
matrix A∗A is a square, n× n, matrix, we conclude that it is invertible. This is equivalent
to say that the solution x̂ to the normal equation is unique; moreover, it is given by x̂ =
(A∗A)−1A∗b. This establishes the Theorem. ¤

In the proof of Theorem 7.2.2 above we used the following result:

Lemma 7.2.3. If A ∈ Fm,n, then N(A) = N(A∗A).

Proof of Lemma 7.2.3: We first show that N(A) ⊂ N(A∗A). Indeed,

x ∈ N(A) ⇒ Ax = 0 ⇒ A∗Ax = 0 ⇒ x ∈ N(A∗A).

Now, suppose that there exists x ∈ N(A∗A) such that x /∈ N(A). Therefore, x 6= 0 and
Ax 6= 0, which imply that

0 6= ‖Ax‖2 = x∗A∗Ax ⇒ A∗Ax 6= 0.

However, this last equation contradicts the assumption that x ∈ N(A∗A). Therefore, we
conclude that N(A) = N(A∗A). This establishes the Lemma. ¤
Example 7.2.1: Show that the 3× 2 linear system Ax = b is inconsistent; then find a least

squares solutions x̂ =

[
x̂1

x̂2

]
to that system, where

A =




1 3
2 2
3 1


 , b =



−1

1
−1


 .

Solution: We first show that the linear system above is inconsistent, since Gauss operation
on the augmented matrix [A|b] imply




1 3
∣∣ −1

2 2
∣∣ 1

3 1
∣∣ −1


→




1 3
∣∣ −1

0 −4
∣∣ 3

0 −8
∣∣ 2


→




1 3
∣∣ −1

0 −4
∣∣ 3

0 0
∣∣ 1


 .

In order to find the least squares solution to the system above we first construct the normal
equation. We need to compute

ATA =

[
1 2 3
3 2 1

] 


1 3
2 2
3 1


 =

[
14 10
10 14

]
, ATb =

[
1 2 3
3 2 1

] 

−1

1
−1


 =

[
−2
−2

]
.

Therefore, the normal equation is given by
[
14 10
10 14

] [
x̂1

x̂2

]
=

[
−2
−2

]
.

Since the column vectors of A form a linearly independent set, matrix ATA is invertible,

(
ATA

)−1
=

1

96

[
14 −10
−10 14

]
=

1

48

[
7 −5
−5 7

]
.
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The least squares solution is unique and given by

x̂ =
1

24

[
7 −5
−5 7

] [
−1
−1

]
⇒ x̂ =

1

12

[
−1
−1

]
.

Remark: We now verify that (Ax̂− b) ∈ R(A)⊥. Indeed,

Ax̂− b =




1 3
2 2
3 1


 1

12

[
−1
−1

]
−



−1

1
−1


 = −1

3




1
1
1


−



−1

1
−1


 ⇒ Ax̂− b =

2

3




1
−2

1


 .

Since

[
1 −2 1

]



1
2
3


 = 1− 4 + 3 = 0,

[
1 −2 1

]



3
2
1


 = 3− 4 + 1 = 0,

we have verified that (Ax̂− b) ∈ R(A)⊥. C

We finish this Subsection with an alternative proof of Theorem 7.2.2 in the particular
case that involves real-valued matrices, that is, F = R. The proof is interesting in its own,
since it is based in solving a constrained minimization problem.
Alternative proof of Theorem 7.2.2 for F = R: The vector x̂ ∈ Rn is a least squares
solution of the system Ax = b iff the function f : Rn → R given by f(x) = ‖Ax̂− b‖2 has a
minimum at x = x̂. We then find all minima of function f . We first express f as follows,

f(x) = (Ax− b) · (Ax− b)

= (Ax) · (Ax)− 2b · (Ax) + b · b
= xTATAx− 2bTAx + bTb.

We now need to find all solutions to the equation ∇xf(x) = 0. Recalling the definition of a
gradient vector

∇xf =




∂f

∂x1
...
∂f

∂xn



,

it is simple to see that, for any vector a ∈ Rn, holds,

∇x(aT x) = a, ∇x(xT a) = a.

Therefore, the gradient of f is given by

∇xf = 2ATAx− 2ATb.

We are interested in the stationary points, the x̂ solutions of

∇xf(x̂) = 0 ⇔ AT Â x = ATb.

We conclude that all stationary points x̂ are solutions of the normal equation, Eq. (7.3).
These stationary points must be a minimum of f , since f is quadratic on the vector compo-
nents xi having the degree two terms all positive coefficients. This establishes the first part
of Theorem 7.2.2 in the case that F = R. ¤
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7.2.2. Least squares fit. It is often desirable to construct a mathematical model to de-
scribe the results of an experiment. This may involve fitting an algebraic curve to the given
experimental data. The least squares method can be used to find the best parameters that
fit the data.

Example 7.2.2: (Linear fit) The simplest situation is the case where the best curve fitting
the data is a straight line. More precisely, suppose that the result of an experiment is the
following collection of ordered numbers

{
(t1, b1), · · · , (tm, bm)

}
, m > 2,

and suppose that a plot on a plane of the result of this experiment is given in Fig. 47.
(For example, from measuring the vertical displacement bi in a spring when a weight ti is
attached to it.) Find the best line y(t) = x̂2 t + x̂1 that approximate these points in least
squares sense. The latter means to find the numbers x̂2, x̂1 ∈ R such that

∑m
i=1 |∆bi|2 is

the smallest possible, where

∆bi = bi − y(ti) ⇔ ∆bi = bi − (x̂2 ti + x̂1), i = 1, · · · ,m.

i t

b

b i

i i( t  , b  ) 2
y ( t ) = x   t +  x1

b
i

t

Figure 47. Sketch of the best line y(t) = x̂2t+ x̂1 fitting the set of points
(ti, bi), for i = 1, · · · , 10.

Solution: Let us rewrite this problem as the least squares solution of an m × 2 linear
system, which in general is inconsistent. We are interested to find x̂2, x̂1 solution of the
linear system

y(t1) = b1

...

y(tm) = bm

⇔

x̂1 + t1x̂2 = b1

...

x̂1 + tmx̂2 = bm

⇔




1 t1
...

...
1 tm



[
x̂1

x̂2

]
=



b1
...
bm


 .

Introducing the notation

A =




1 t1
...

...
1 tm


 , x̂ =

[
x̂1

x̂2

]
, b =



b1
...
bm


 ,
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we are then interested in finding the solution x̂ of the m×2 linear system Ax̂ = b. Introducing
also the vector

∆b =




∆b1
...

∆bm


 ,

it is clear that Ax̂− b = ∆b, and so we obtain the important relation

‖Ax̂− b‖2 = ‖∆b‖2 =

m∑

i=1

(
∆bi

)2
.

Therefore, the vector x̂ that minimizes the square of the deviation from the line,
∑m
i=1(∆bi)

2,
is precisely the same vector x̂ ∈ R2 that minimizes the number ‖Ax̂ − b‖2. We studied the
latter problem at the begining of this Section. We called it a least squares problem, and the
solution x̂ is the solution of the normal equation

ATA x̂ = ATb.

It is simple to see that

ATA =

[
1 · · · 1
t1 · · · tm

]



1 t1
...

...
1 tm


 =

[
m

∑
ti∑

ti
∑
t2i

]
,

ATb =

[
1 · · · 1
t1 · · · tm

]


b1
...
bm


 =

[ ∑
bi∑
tibi

]
.

Therefore, we are interested in finding the solution to the 2× 2 linear system[
m

∑
ti∑

ti
∑
t2i

] [
x̂1

x̂2

]
=

[ ∑
bi∑
tibi

]
.

Suppose that at least one of the ti is different from 1, then matrix ATA is invertible and the
inverse is (

ATA
)−1

=
1

m
∑
t2i −

(∑
ti
)2

[ ∑
t2i −∑

ti
−∑

ti m

]
.

We conclude that the solution to the normal equation is[
x̂1

x̂2

]
=

1

m
∑
t2i −

(∑
ti
)2

[ ∑
t2i −∑

ti
−∑

ti m

] [ ∑
bi∑
tibi

]
.

So, the slope x̂2 and vertical intercept x̂1 of the best fitting line are given by

x̂2 =
m

∑
tibi − (

∑
ti)(

∑
bi)

m
∑
t2i −

(∑
ti
)2 , x̂1 =

(
∑
t2i )(

∑
bi)− (

∑
ti)(

∑
tibi)

m
∑
t2i −

(∑
ti
)2 .

C

Example 7.2.3: (Polynomial fit) Find the best polynomial of degree (n − 1) > 0, say
p(t) = x̂n t

(n−1) + · · ·+ x̂1, that approximates in least squares sense the set of points
{

(t1, b1), · · · , (tm, bm)
}
, m > n.

(See Fig. 48 for an example in the case that the fitting curve is a parabola, n = 3.) Following
Example 7.2.2, the least squares approximation means to find the numbers x̂n, · · · , x̂1 ∈ R
such that

∑m
i=1 |∆bi|2 is the smallest possible, where

∆bi = bi − p(ti) ⇔ ∆bi = bi − (x̂n t
(n−1)
i + · · ·+ x̂1), i = 1, · · · ,m.
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2

t

b

t
i

b i

( t  , b  )
i ib i

p ( t ) = x   t  + x   t +  x3 2 1

Figure 48. Sketch of the best parabola p(t) = x̂3t
2 + x̂2t+ x̂1 fitting the

set of points (ti, bi), for i = 1, · · · , 10.

Solution: We rewrite this problem as the least squares solution of an m×n linear system,
which in general is inconsistent. We are interested to find x̂n, · · · , x̂1 solution of the linear
system

p(t1) = b1

...

p(tm) = bm

⇔

x̂1 + · · ·+ t
(n−1)
1 x̂n = b1

...

x̂1 + · · ·+ t(n−1)
m x̂n = bm

⇔




1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m






x̂1

...
x̂n


 =



b1
...
bm


 .

Introducing the notation

A =




1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m


 , x̂ =



x̂1

...
x̂n


 , b =



b1
...
bm


 ,

we are then interested in finding the solution x̂ of the m×n linear system Ax̂ = b. Introducing
also the vector

∆b =




∆b1
...

∆bm


 ,

it is clear that Ax̂− b = ∆b, and so we obtain the important relation

‖Ax̂− b‖2 = ‖∆b‖2 =

m∑

i=1

(
∆bi

)2
.

Therefore, the vector x̂ that minimizes the square of the deviation from the line,
∑m
i=1(∆bi)

2,
is precisely the same vector x̂ ∈ R2 that minimizes the number ‖Ax̂ − b‖2. We studied the
latter problem at the begining of this Section. We called it a least squares problem, and the
solution x̂ is the solution of the normal equation

ATA x̂ = ATb. (7.4)
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It is simple to see that Eq. (7.4) is an n× n linear system, since

ATA =




1 · · · 1
...

...

t
(n−1)
1 · · · t

(n−1)
m







1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m


 ,

ATb =




1 · · · 1
...

...

t
(n−1)
1 · · · t

(n−1)
m






b1
...
bm


 .

We do not compute these expressions explicitly here. In the case that the columns of A
form a linearly independent set, the solution x̂ to the normal equation is

x̂ =
(
ATA

)−1
ATb.

The components of x̂ provide the parameters for the best polynomial fitting the data in least
squares sense. C

7.2.3. Linear correlation. In statistics a correlation coefficient measures the departure of
two random variables from independence. For centered data, that is, for data with zero
average, the correlation coefficient can be viewed as the cosine of the angle in an abstract
Rn space between two vectors constructed with the random variables data. We now define
and find the correlation coefficient for two variables as given in Example 7.2.2.

Once again, suppose that the result of an experiment is the following collection of ordered
numbers {

(t1, b1), · · · , (tm, bm)
}
, m > 2. (7.5)

Introduce the vectors e, t, b ∈ Rm as follows,

e =




1
...
1


 , t =



t1
...
tm


 , b =



b1
...
bm


 .

Before introducing the correlation coefficient, let us use these vectors above to write down
the least squares coefficients x found in Example 7.2.2. The matrix of coefficients can be
written as A = [e, t], therefore,

ATA =

[
eT

tT

] [
e, t

]
=

[
e · e t · e
e · t t · t

]
, ATb =

[
eT

tT

]
b =

[
e · b
t · b

]
.

The least squares solution can be written as follows,
[
x̂1

x̂2

]
=

1

(e · e)(t · t)− (t · e)2

[
t · t −e · t
−e · t e · e

] [
e · b
t · b

]
,

that is,

x̂2 =
(e · e)(t · b)− (e · t)(e · b)

(e · e)(t · t)− (t · e)2
, x̂1 =

(e · b)(t · t)− (e · t)(t · b)

(e · e)(t · t)− (t · e)2
.

Introduce the average values

t =
e · t
e · e , b =

e · b
e · e .

These are indeed the average values of ti and bi, since

e · e = m, e · t =

m∑

i=1

ti, e · b =

m∑

i=1

bi.

Page = 86



230 G. NAGY – LINEAR ALGEBRA july 15, 2012

Introduce the zero-average vectors t̂ = (t− t e) and b̂ = (b− b e). The correlation coefficient
of the data given in (7.5) is given by

cor(t, b) =
t̂ · b̂
‖t̂‖ ‖b̂‖

.

Therefore, the correlation coefficient between the data vectors t and b is the angle between

the zero-average vectors t̂ and b̂ in Rm.
In order to understand what measures this angle, let us consider the case where all the

ordered pairs in (7.5) lies on a line, that is, there exists a solution x̂ of the linear system
Ax̂ = b (a solution, not only a least squares solution). In that case we have

x̂1e + x̂2t = b ⇒ x̂1 + x̂2t = b,

and this implies that

x̂2 (t− t e) = (b− b e) ⇔ x̂2 t̂ = b̂ ⇔ cor(t, b) = 1.

That is, in the case that t is linearly related to b we obtain that the zero-average vectors t̂
and b̂ are parallel, so the correlation coefficient is equal one.

7.2.4. QR-factorization. The Gram-Schmidt method can be used to factor any m × n
matrix A into a product of an m × n matrix Q with orthonormal column vectors and an
upper triangular n × n matrix R. We will see that the QR-factorization is useful to solve
the normal equation associated to a least squares problem.

Theorem 7.2.4. If the column vectors of matrix A ∈ Fm,n form a linearly independent set,
then there exist matrices Q ∈ Fm,n and R ∈ Fn,n satisfying that Q∗Q = In, matrix R is upper
triangular with positive diagonal elements, and the following equation holds

A = QR.

Proof of Theorem 7.2.4: Use the Gram-Schmidt method to obtain an orthonormal set
{q1, · · · , qn} from the column vectors of the m× n matrix A = [A:1, · · · ,A:n], that is,

p1 = A:1 q1 =
p1

‖p1‖
,

p2 = A:2 −
(
A:2 · q1

)
q1 q2 =

p2

‖p2‖
,

...
...

pn = A:n −
(
A:n · q1

)
q1 − · · · −

(
A:n · qn−1

)
qn−1 qn =

pn
‖pn‖

.

Define matrix Q = [q1, · · · , qn], which then satisfies the equation Q∗Q = In. Notice that the
equations above can be expressed as follows,

A:1 = ‖p1‖ q1,

A:2 = ‖p2‖ q2 +
(
q1 · A:2

)
q1

...

A:n = ‖pn‖ qn +
(
q1 · A:n

)
q1 +

(
q2 · A:n

)
q2 + · · ·+

(
qn−1 · A:n

)
qn−1.
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After some time staring at the equations above, one can rewrite it as a matrix product

[
A:1, · · · ,A:n

]
=

[
q1, · · · , qn

]




‖p1‖ (q1 · A:2) · · · (q1 · A:n)
0 ‖p2‖ · · · (q2 · A:n)
...

...
...

0 0 · · · (qn−1 · A:n)
0 0 · · · ‖pn‖




(7.6)

Define matrix R by equation above as the matrix satisfying A = QR. Then, Eq. (7.6) says
that matrix R is n× n, upper triangular, with positive diagonal elements. This establishes
the Theorem. ¤

Example 7.2.4: Find the QR-factorization of matrix A =




1 2 1
1 1 1
0 0 1


.

Solution: First use the Gram-Schmidt method to transform the column vectors of matrix
A into an orthonormal set. This was done in Example 6.5.1. The result defines the matrix
Q as follows

Q =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1


 .

Having matrix A and Q, and knowing that Theorem 7.2.4 is true, then we can compute
matrix R by the equation R = QTA. Since the column vectors of Q form an orthonormal
set, we have that QT = Q−1, and in this particular case Q−1 = Q, so matrix R is given by

R = QA =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1






1 2 1
1 1 1
0 0 1


 ⇒ R =




√
2 3√

2

√
2

0 1√
2

0

0 0 1


 .

The QR-factorization of matrix A is then given by

A =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1







√
2 3√

2

√
2

0 1√
2

0

0 0 1


 .

C

The QR-factorization is useful to solve the normal equation in a least squares problem.

Theorem 7.2.5. Assume that the matrix A ∈ Fm,n admits the QR-factorization A = QR.
The vector x̂ ∈ Fn is solution of the normal equation A∗A x̂ = A∗b iff it is solution of

Rx̂ = Q∗b.

Proof of Theorem 7.2.5: Just introduce the QR-factorization into the normal equation
A∗A x̂ = A∗b as follows,

(
R∗Q∗

)(
QR

)
x̂ = R∗Q∗b ⇔ R∗R x̂ = R∗Q∗b ⇔ R∗

(
R x̂− Q∗b

)
= 0.

Since R is a square, upper triangular matrix with non-zero coefficients, we conclude that R
is invertible. Therefore, from the last equation above we conclude that x̂ is solution of the
normal equation iff holds

Rx̂ = Q∗b.

This establishes the Theorem. ¤
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7.2.5. Exercises.

7.2.1.- Consider the matrix A and the vec-
tor b given by

A =

2
4

1 0
0 1
1 1

3
5 , b =

2
4

1
1
0

3
5 .

(a) Find the least-squares solution x̂ to
the linear system Ax = b.

(b) Verify that the solution x̂ satisfies

(Ax̂− b) ∈ R(A)⊥.

7.2.2.- Consider the matrix A and the vec-
tor b given by

A =

2
4

2 2
0 −1
−2 0

3
5 , b =

2
4

1
1
−1

3
5 .

(a) Find the least-squares solution x̂ to
the linear system Ax = b.

(b) Find the orthogonal projection of
the source vector b onto the sub-
space R(A).

7.2.3.- Find all the least-squares solutions
x̂ to the linear system Ax = b, where

A =

2
4

1 2
2 4
3 6

3
5 , b =

2
4

1
1
1

3
5 .

7.2.4.- Find the best line in least-squares
sense that fits the measurements, where
t1 is the independent variable and bi is
the dependent variable,

t1 = −2, b1 = 4,

t2 = −1, b2 = 3,

t3 = 0, b3 = 1,

t4 = 2, b4 = 0.

7.2.5.- Find the correlation coefficient cor-
responding to the measurements given
in Exercise 7.2.4 above.

7.2.6.- Use Gram-Schmidt method on the
columns of matrix A below to find its
QR factorization, where

A =

2
4

1 1
2 3
2 1

3
5 .

7.2.7.- Find the QR factorization of matrix

A =

2
4

1 1 0
1 0 1
0 1 1

3
5 .
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7.3. Finite difference method

A differential equation is an equation where the unknown is a function and both the
function itself and its derivatives appear in the equation. The differential equation is called
linear iff the unknown function and its derivatives appear linearly in the equation. Solutions
of linear differential equations can be approximated by solutions of appropriate n× n alge-
braic linear systems in the limit that n approaches infinity. The finite difference method is
a way to obtain an n× n linear system from the original differential equation. Derivatives
are approximated by difference quotients, thus reducing a differential equation to an alge-
braic linear system. Since a derivative can be approximated by infinitely many difference
quotients, there are infinitely many n × n linear systems that approximate a differential
equation. One tries to choose the linear system whose solution is the best approximation of
the solution of the original differential equation. Computers are used to find the vector in Rn
solution of the n× n linear system. Many approximations of the solution to the differential
equation are obtained from this array of n numbers. One way to obtain a function from a
vector in Rn is to find a degree n polynomial that contains all these n points. This is called
a polynomial interpolation of the algebraic solution. In this Section we only show how to
obtain n× n algebraic linear systems that approximate a simple differential equation.

7.3.1. Differential equations. A differential equation is an equation where the unknown
is a function and both the function and its derivatives appear in the equation. A simple
example is the following: Given a continuously differentiable function f : [0, 1]→ R, find a
function u : [0, 1]→ R solution of the differential equation

du

dx
(x) = f(x),

To find a solution to a differential equation requires to perform appropriate integrations,
thus integration constants are introduced in the solution. This suggests that the solution of
a differential equation is not unique, and extra conditions must be added to the problem to
select only one solution. In the differential equation above the solutions u are given by

u(x) =

∫ x

0

f(t) dt+ c,

with c ∈ R. An extra condition is needed to obtain a unique solution, for example the
condition u(0) = 1. Then, the unique solution u is computed as follows

1 = u(0) =

∫ 0

0

f(t) dt+ c ⇒ c = 1 ⇒ u(x) =

∫ x

0

f(t) dt+ 1.

The example above is simple enough that no approximation is needed to obtain the solution.
An ordinary differential equation is a differential equation where the unknown function

u depends on one variable, as in the example above. A partial differential equation is a
differential equation where the unknown function depends on more than one variable and
the equation contains derivatives of more than one variable. In this Section we use the finite
difference method to find a solution to two different problems. The first one involves an
ordinary differential equation while the second one involves a partial differential equation,
called the heat equation.

The first problem is to find an approximate solution to a boundary value problem for an
ordinary differential equation: Given a continuously differentiable function f : [0, 1] → R,
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find a function u : [0, 1]→ R solution of the boundary value problem

d2u

dx2
(x) +

du

dx
(x) = f(x), (7.7)

u(0) = u(1) = 0. (7.8)

Finding the function u involves doing two integrations that introduce two integration con-
stants. These constants are determined by the two conditions on x = 0 and x = 1 above,
called boundary conditions, since they are conditions on the boundaries of the interval [0, 1].
Because of this extra condition on the ordinary differential equation this problem is called
a boundary value problem.

The second problem we study in this Section is to find an approximate solution to an
initial-boundary value problem for the heat equation: Given the set D = [0, π]× [0, T ], the
positive constant κ, and infinitely differentiable functions f : D → R and g : [0, π] → R,
find the function u : D → R solution of the problem

∂u

∂t
(x, t)− κ ∂

2u

∂x2
(x, t) = f(x, t) (x, t) ∈ D, (7.9)

u(0, t) = u(π, t) = 0 t ∈ [0, T ], (7.10)

u(x, 0) = g(x) x ∈ [0, π]. (7.11)

The partial differential equation in Eq. (7.9) is called the one-dimensional heat equation,
since in the case that function u is the temperature of a material that depends on time t
and one spatial direction x, the equation describes how the material temperature changes
in time due to heat propagation. The positive constant κ is called the thermal diffusivity of
the material. The condition given in Eq. (7.10) is called a boundary condition, since they
are conditions on x = 0 and x = π that hold for all t ∈ [0, T ], see Fig. 49. The condition
given in Eq. (7.11) is called an initial condition, since it is a condition on the initial time
t = 0 for all x ∈ [0, π], see Fig. 49. Because of these two extra conditions on the partial
differential equation this problem is called an initial-boundary value problem for the heat
equation.

u( 0 , t ) = 0

T

D

g( x )

t

0 x

u(    , t ) = 0

Figure 49. The domain D = [0, π] × [0, T ] where the initial-boundary
value problem for the heat equation is set up. We indicate the boundary
data conditions u(0, t) = 0 and u(π, t) = 0, and the initial data function g.

7.3.2. Difference quotients. Finite difference methods transform a linear differential equa-
tion into an n × n algebraic linear system by replacing derivatives by difference quotients.
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Derivatives can be approximated by difference quotients in many different ways. For exam-
ple, a derivative of a function u can be expressed in the following equivalent ways,

du

dx
(x) = lim

∆x→0

u(x+ ∆x)− u(x)

∆x
,

= lim
∆x→0

u(x)− u(x−∆x)

∆x
,

= lim
∆x→0

u(x+ ∆x)− u(x−∆x)

2∆x
.

However, for a fixed nonzero value of ∆x, the expressions below are, in general, different.

Definition 7.3.1. The forward difference quotient d+ and the backward difference
quotient d- of a continuous function u : R→ R at x ∈ R are given by

d+u(x) =
u(x+ ∆x)− u(x)

∆x
, d-u(x) =

u(x)− u(x−∆x)

∆x
.

The centered difference quotient dc of a continuous function u at x ∈ R is given by

dcu(x) =
u(x+ ∆x)− u(x−∆x)

2∆x
. (7.12)

In the case that the function u has second continuous derivative, the Taylor Expansion
Theorem implies that the forward and backward differences differ from the actual derivative
by terms order ∆x. The proof is not difficult, since

u(x+ ∆x) = u(x) +
du

dx
(x) ∆x+O

(
(∆x)2

)
⇒ d+u(x) =

du

dx
(x) +O

(
∆x

)
,

u(x−∆x) = u(x)− du

dx
(x) ∆x+O

(
(∆x)2

)
⇒ d-u(x) =

du

dx
(x) +O

(
∆x

)
,

where O
(
(∆x)n

)
denotes a function satisfying

[
O
(
(∆x)n

)]
/(∆x)n approaches a constant

as ∆x → 0. In the case that the function u has third continuous derivative, the Taylor
Expansion Theorem implies that the centered difference quotient differs from the actual
derivative by terms of order (∆x)2. Again, the proof is not difficult, and it is based on the
Taylor expansion of the function u. Compute this expansion in two different ways,

u(x+ ∆x) = u(x) +
du

dx
(x) ∆x+

1

2

d2u

dx2
(x) (∆x)2 +O

(
(∆x)3

)
, (7.13)

u(x−∆x) = u(x)− du

dx
(x) ∆x+

1

2

d2u

dx2
(x) (∆x)2 +O

(
(∆x)3

)
, (7.14)

Subtracting the two expressions above we obtain that

u(x+ ∆x)− u(x−∆x) = 2
du

dx
(x) ∆x+O

(
(∆x)3

)
⇒ dcu(x) =

du

dx
(x) +O

(
(∆x)2

)
,

which establishes that centered difference quotients differ from the derivative by order (∆x)2.
If a function is infinitely continuously differentiable, centered difference quotients are more
accurate than forward or backward differences.

Second and higher derivatives of a function can also be approximated by difference quo-
tients. Again, there are infinitely many ways to approximate second derivatives by difference
quotients. The freedom to choose difference quotients is higher for second derivatives than
for first derivatives. We now present two difference quotients to give an idea of this freedom.
On the one hand, one possible approximation is to use the centered difference quotient twice,
since a second derivative is the derivative of the derivative function. Using the more precise
notation

dc∆xu(x) =
u(x+ ∆x)− u(x−∆x)

2∆x
,
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it is not difficult to check that
(
dc∆x

)2
= dc∆x(dc∆x) is given by

(
dc∆x

)2
u(x) =

1

(2∆x)2

[
u(x+ 2∆x) + u(x− 2∆x)− 2u(x)

]
. (7.15)

On the other hand, another approximation for the second derivative of a function can be ob-
tained directly from the Taylor expansion formulas in (7.13)-(7.14). Indeed, add Eqs. (7.13)-
(7.14), that is,

u(x+ ∆x) + u(x−∆x) = 2u(x) +
d2u

dx2
(x) (∆x)2 +O

(
(∆x)3

)
.

This equation can be rewritten as

d2u

dx2
(x) =

u(x+ ∆x) + u(x−∆x)− 2u(x)

(∆x)2
+O

(
∆x

)
.

This equation suggests to introduce a second-order centered difference quotient (d2)c∆x as

(d2)c∆xu(x) =
1

(∆x)2

[
u(x+ ∆x) + u(x−∆x)− 2u(x)

]
. (7.16)

Using this notation, the equation above is given by

d2u

dx2
(x) = (d2)c∆xu(x) +O

(
∆x

)
.

Therefore, both
(
dc∆x

)2
and (d2)c∆x are approximations of the second derivative of a func-

tion. However, they are not the same approximation, since comparing Eqs. (7.15) and (7.16)
it is not difficult to see that (

dc(∆x)/2

)2
= (d2)c∆x.

We conclude that there are many different ways to approximate second derivatives by dif-
ference quotients, many more ways than those to approximate first order derivatives. In
this Section we use the difference quotient in Eq. (7.16), and we use the simplified notation
given by d2

c = (d2)c∆x.

7.3.3. Method of finite differences. We now describe the finite difference method using
two examples. In the first example we find an approximate solution for the boundary value
problem in Eqs. (7.7)-(7.8). In the second example we find an approximate solution for the
initial-boundary value problem in Eqs. (7.9)-(7.11).

Example 7.3.1: Consider the boundary value problem for the ordinary differential equation
given in Eqs. (7.7)-(7.8).

(a) Divide the interval [0, 1] into n > 1 equal intervals and use the finite difference method
to find a vector u = [ui] ∈ Rn+1 that approximates the function u : [0, 1] → R solution
of that boundary value problem. Use centered difference quotients to approximate the
first and second derivatives of the unknown function u.

(b) Find the explicit form of the linear system in the case n = 6.
(c) Find the degree n polynomial pn that interpolates the approximate solution vector

u = [ui] ∈ Rn+1, which includes the boundary points.

Solution:
Part (a): Fix a positive integer n ∈ N, define the grid step size h = 1/n, and introduce

the uniform grid

{xi}, xi = ih, i = 0, 1, · · · , n, on [0, 1].

(See Fig. 50.) Introduce the numbers fi = f(xi). Finally, denote ui = u(xi). The numbers
xi and fi are known from the problem, and so are the u0 = u(0) = 0 and un = u(1) = 0,
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while the ui for i = 1, · · · , n − 1 are the unknowns. We now use the original differential
equation to construct an (n− 1)× (n− 1) linear system for these unknowns ui.

]
0 = 0 / 6 1 / 6 2 / 6 3 / 6 4 / 6 5 / 6 6 / 6 = 1

n = 6 x = 1 / 6 h = 1 / 6 =      x

[

Figure 50. A uniform grid for n = 6 on the domain [0, 1].

We use centered difference quotient given in Eqs. (7.12) and (7.16) to approximate the first
and second derivatives of the function u, respectively. We choose ∆x = h, and we denote
the difference quotients evaluated at grid points xi as follows,

dcu(xi) = dcui, d2
cu(xi) = d2

cui.

Therefore, we obtain the following formulas for the difference quotients,

dcui =
ui+1 − ui−1

2h
, d2

cui =
ui+1 + ui−1 − 2ui

h2
. (7.17)

Now we state the approximate problem we will solve: Given the constants {fi}n−1
i=1 , find

the vector u = [ui] ∈ Rn+1 solution of the (n − 1) × (n − 1) linear system and boundary
conditions, respectively,

d2
cui + dcui = fi, i = 1, · · · , n− 1, (7.18)

u0 = un = 0. (7.19)

Eq. (7.18) is indeed a linear system for u = [ui], since it is equivalent to the system

(2 + h)ui+1 − 4ui + (2− h)ui−1 = 2h2fi, i = 1, · · · , n− 1.

When the boundary conditions in Eq. (7.19) are introduced in the equation above, we obtain
an (n− 1)× (n− 1) linear system for the unknowns ui, where i = 1, · · · , (n− 1).

Part (b): In the case n = 6, we have h = 1/6, so we denote a = 2− 1/6, b = 2 + 1/6 and
c = 2/36. Also recall the boundary conditions u0 = u6 = 0. Then, the system above and
its augmented matrix are given by, respectively,

−4u1 + bu2 = c f1,

au1 − 4u2 + bu3 = c f2,

au2 − 4u3 + bu4 = c f3,

au3 − 4u4 + bu5 = c f4,

au4 − 4u5 = c f5,

⇔




−4 b 0 0 0
∣∣ c f1

a −4 b 0 0
∣∣ c f2

0 a −4 b 0
∣∣ c f3

0 0 a −4 b
∣∣ c f4

0 0 0 a −4
∣∣ c f5



.

We then conclude that the solution u of the boundary value problem in Eq. (7.7) can be
approximated by the solution u = [ui] ∈ R7 of the 5 × 5 linear system above plus the two
boundary conditions. The same type of approximate solution can be found for all n ∈ N.

Part (c): The output of the finite difference method is a vector u = [ui] ∈ R(n+1). An
approximate solution to the ordinary differential equation in Eqs. (7.7) can be constructed
from the vector u in many different ways. One way is polynomial interpolation, that is,
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to construct a polynomial of degree n whose graph contains all the points (xi, ui). Such
polynomial is given by

pn(x) =

n∑

i=0

ui qi(x), qi(x) =
∏

j 6=i

(x− xj)
(xi − xj)

.

It can be verified that the degree n polynomials qi when evaluated at grid points satisfies

qi(xj) =

{
0 if i 6= j,

1 if i = j.

Therefore, the polynomial pn has degree n and satisfies that pn(xi) = ui. This polynomial
function pn approximates the solution u of the boundary value problem in Eqs. (7.7)-(7.8).

C

Example 7.3.2: Consider the boundary value problem for the partial differential equation
given in Eqs. (7.9)-(7.11). Use the finite difference method to find an approximate solution
of the function u : D → R solution of that initial-boundary value problem.

(a) Use centered difference quotients to approximate the spatial derivatives and forward
difference quotients to approximate time derivatives of the unknown function u.

(b) Repeat the calculations in part (a) now using backward difference quotients for the time
derivatives of the unknown function u.

Solution:
Part (a): Introduce a grid in the domain D = [0, π] × [0, T ] as follows: Fix the positive

integers nx, nt ∈ N, define the step sizes hx = π/nx and ht = T/nt, and then introduce the
uniform grids

{xi}, xi = ihx, i = 0, 1, · · · , nx, on [0, π]

{tj}, tj = jht, j = 0, 1, · · · , nt, on [0, T ].

A point of the form (xi, tj) ∈ D is called a grid point. (See Fig. 51.)

j

�
�
�
�

t

x0

T

n   = 9

tn   = 5

h   = T / 5t

h   =        / 9xx

( x  , t  )i

Figure 51. A rectangular grid with nx = 9 and nt = 5 on the domain
D = [0, π]× [0, T ].

We will compute the approximate solution values at grid points, and we use the notation
ui,j = u(xi, tj) and fi,j = f(xi, tj) to denote unknown and source function values at grid
points. We also denote gi = g(xi) for the initial data function values at grid points. In this
notation the boundary conditions in Eq. (7.10) have the form u0,j = 0 and unx,j = 0. We
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finally introduce the forward difference quotient in time d+t and the second order centered
difference quotient in space d2

cx as follows,

d+tui,j =
ui,(j+1) − ui,j

ht
, d2

cxui,j =
u(i+1),j + u(i−1),j − 2ui,j

h2
x

.

Now we state the approximate problem we will solve: Given the constants fi,j and gi, for
i = 0, 1, · · · , nx and j = 0, 1, · · · , ny, find the constants ui,j solution of the linear equations
and boundary conditions, respectively,

d+tui,j − κd2
cxui,j = fi,j , (7.20)

u0,j = unx,j = 0, (7.21)

ui,0 = gi. (7.22)

This system is simpler to solve than it looks at first sight. Let us rewrite it in as follows,

1

ht

(
ui,(j+1) − ui,j

)
− κ

h2
x

(
u(i+1),j + u(i−1),j − 2ui,j

)
= fij ,

which is equivalent to the equation

ui,(j+1) = r
(
u(i+1),j + u(i−1),j

)
+ (1− 2r)ui,j + htfi,j , (7.23)

where r = κht/h
2
cx. This last equation says that the solution at the time tj+1 can be

computed if the solution at the previous time tj is known. Since the solution at the initial
time t0 = 0 is known an equal to gi, and since solution at the boundary of the domain u0,j

and unx,j is known from the boundary conditions, then the solution ui,j can be computed
from Eq. (7.23) time step after time step. For this reason the linear system in Eqs. (7.20)-
(7.22) above is an example of an explicit method.

Part (b): We now repeat the calculations in part (a) using a backward difference quotient
in time. We introduce the notation d-t for the backward difference quotient in time, and we
keep the notation d2

cx for the second order centered difference quotient in space,

d-tui,j =
ui,j − ui,(j−1)

ht
, d2

cxui,j =
u(i+1),j + u(i−1),j − 2ui,j

h2
x

.

Now we state the approximate problem we will solve: Given the constants fi,j and gi, for
i = 0, 1, · · · , nx and j = 0, 1, · · · , ny, find the constants ui,j solution of the linear equations
and boundary conditions, respectively,

d-tui,j − κd2
cxui,j = fi,j , (7.24)

u0,j = unx,j = 0, (7.25)

ui,0 = gi. (7.26)

This system is simpler to solve than it looks at first sight. Let us rewrite it in as follows,

1

ht

(
ui,j − ui,(j−1)

)
− κ

h2
x

(
u(i+1),j + u(i−1),j − 2ui,j

)
= fij ,

which is equivalent to the equation

(+2r)ui,j − r
(
u(i+1),j + u(i−1),j

)
= ui,(j−1) + htfi,j , (7.27)

where r = κht/h
2
cx, as above. This last equation says that the solution at the time tj+1 can

be computed if the solution at the previous time tj is known. However, in this case we need
to solve an (nx−1)× (nx−1) linear system at each time step. Such system is similar to the
one that appeared in Example 7.3.1. Since the solution at the initial time t0 = 0 is known an
equal to gi, and since solution at the boundary of the domain u0,j and unx,j is known from
the boundary conditions, then the solution ui,j can be computed from Eq. (7.27) time step
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after time step. We emphasize that the solution is computed by solving an (nx−1)×(nx−1)
system at every time step. For this reason the linear system in Eqs. (7.24)-(7.26) above is
an example of an implicit method. C

What we have seen in this Section is just the first part of the story. We have seen
how we can use linear algebra to obtain approximate solutions of few problems involving
differential equations. The second part is to study how the solutions of the approximate
problems approaches the solution of the original problem as the grid step size approaches
zero. Consider the approximate solution u ∈ Rn+1 found in Example 7.3.1. Does the
interpolation polynomial pn constructed with the components of u approximate the function
u : [0, 1] → R solution to the boundary value problem in Eq. (7.7) in the limit n → ∞?
A similar question can be asked for the solutions {ui,j} obtained in parts (b) and (c) in
Example 7.3.2. We will study the answers to these questions in the following Chapters.

One last remark is the following. Comparing parts (a) and (b) in Example 7.3.2 we see
that explicit methods are simpler to solve than implicit methods. A matrix must be inverted
to solve an implicit method, while this is not needed to solve an explicit method. So, why
are implicit methods studied at all? The reason is that in the limit n→∞ the approximate
solutions of explicit methods do not approximate the solution of the original differential
equation as good as a solution of an implicit method. Moreover, the solution of an explicit
method may not converge at all, while the solutions of implicit methods always converges.

Further reading. See Section 1.4 in Meyer’s book [3] for a detailed discussion on dis-
cretizations of two-point boundary values problems.
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7.3.4. Exercises.

7.3.1.- Consider the boundary value prob-
lem for the function u given by

d2u

dx2
(x) = 25x,

u(0) = 0, u(1) = 0,

x ∈ [0, 1].

Divide the interval [0, 1] into five equal
subintervals and use the finite difference
method to find an approximate solution
vector u = [ui] to the boundary value
problem above, where i = 0, · · · , 5. Use
centered difference quotients given in
Eq. (7.17) to approximate the deriva-
tives of function u.

7.3.2.- Given an infinite differentiable func-
tion u : R→ R. apply twice the forward
difference quotient d+ to show that the
second order forward difference quotient
has the form

d2
+u(x) =

u(x+ 2∆x)− 2u(x+ ∆x) + u(x)

(∆x)2
.

7.3.3.- Given an infinite differentiable func-
tion u : R → R. apply twice the back-
ward difference quotient d+ to show that
the second order backward difference
quotient has the form

d2
-u(x) =

u(x)− 2u(x−∆x) + u(x− 2∆x)

(∆x)2
.

7.3.4.- Consider the boundary value prob-
lem given in the Exercise 7.3.1. Di-
vide again the interval [0, 1] into five
equal subintervals and find the 4×4 lin-
ear system that approximates the orig-
inal problem using forward difference
quotients to approximate derivatives of
function u. You do not need to solve
the linear system.

7.3.5.- Consider the boundary value prob-
lem given Problem 7.3.1. Divide again
the interval [0, 1] into five equal subin-
tervals and find the 4× 4 linear system
that approximates the original problem
using backward difference quotients to
approximate derivatives of function u.
You do not need to solve the linear sys-
tem.

7.3.6.- Consider the boundary value prob-
lem for the function u given by

d2u

dx2
(x) + 2

du

dx
(x) = 25x,

u(0) = 0, u(1) = 0,

x ∈ [0, 1].

Divide the interval [0, 1] into five equal
subintervals and use the finite differ-
ence method to find an algebraic lin-
ear system that approximates the origi-
nal boundary value problem above. Use
centered difference quotients given in
Eq. (7.17) to approximate derivatives of
function u. You do not need to solve the
linear system.
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7.4. Finite element method

The finite element method permits the computation of approximate solutions to dif-
ferential equations. Boundary value problems involving a differential equations are first
transformed into integral equations. The boundary conditions are included into the inte-
gral equation by performing integration by parts. The original problem is transformed into
inverting a bilinear form on a vector space. The approximate problem is obtained when
the integral equation is solved not on the whole vector space but on a finite dimensional
subspace. By a careful choice of the subspace, the calculations needed to obtain the approx-
imate solution can be simplified. In this Section we study the same differential equations
we have seen in Sect. 7.3 when we described the finite difference methods. Finite differ-
ence methods are different form finite element methods. The former method approximates
derivatives by difference quotients in order to obtain the approximate problem involving an
algebraic linear system. The latter method produces an algebraic linear system by restrict-
ing an integral version of the original differential equation onto a finite dimensional subspace
of the original vector space where the integral equation is defined.

7.4.1. Differential equations. We now recall the boundary value problem we are inter-
ested to study. This is the first problem we studied in Sect. 7.3, that is, to find an approxi-
mate solution to a boundary value problem for an ordinary differential equation: Given an
infinitely differentiable function f : [0, 1]→ R, find a function u : [0, 1]→ R solution of the
boundary value problem

d2u

dx2
(x) +

du

dx
(x) = f(x), (7.28)

u(0) = u(1) = 0. (7.29)

Recall that finding the function u involves doing two integrations that introduce two in-
tegration constants. These constants are determined by the two conditions on x = 0 and
x = 1 above, called boundary conditions, since they are conditions on the boundaries of
the interval [0, 1]. Because of this extra condition on the ordinary differential equation this
problem is called a boundary value problem.

This problem can be expressed using linear transformations on vector spaces. Consider
the inner product spaces

(
V, 〈 , 〉

)
and

(
W, 〈 , 〉

)
, where V = C∞0 ([0, 1],R) is the space of

infinitely many differentiable functions that vanish at x = 0 and x = 1, W = C∞([0, 1],R)
is the space of infinitely many differentiable functions, while the inner product is defined as

〈f , g〉 =

∫ 1

0

f (x)g(x) dx.

Introduce the linear transformation L : V →W defined by

L(v) =
d2v

dx2
+
dv

dx

Then, the boundary value problem in Eqs. (7.28)-(7.29) can be expressed in the following
way: Given a vector f ∈W , find a vector u ∈ V solution of the equation

L(u) = f . (7.30)

Notice that the boundary conditions in Eq. (7.29) have been included into the definition of
the vector space V . The problem defined by Eqs. (7.28)-(7.29), which is equivalently defined
by Eq. (7.30), is called the strong formulation of the problem.

So, we have expressed a boundary value problem for a differential equation in terms of
linear transformations between appropriate infinite dimensional vector spaces. The next
step is to use the inner product defined on V and W to transform the differential equation
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in (7.30) into an integro-differential equation, which will be called the weak formulation of
the problem. This idea is summarized below.

7.4.2. The Galerkin method. The Galerkin method refers to a collection of ideas to
transform a problem involving a linear transformation between infinite dimensional inner
product spaces into a problem involving a matrix as a function between finite dimensional
subspaces. We describe in this Section the original idea, introduced by Boris Galerkin
around 1915. Galerkin worked only with partial differential equations, but we now know
that his idea works in the more general context of a linear transformation between infinite
dimensional inner product spaces. For this reason we describe Galerkin’s idea in this more
general context. The Galerkin method is to transform the strong formulation of the problem
in (7.30) into what is called the weak formulation of the problem. This transformation is
done using the inner product defined on the infinite dimensional vector spaces. Before we
describe this transformation we need few definitions.

7.4.3. Finite element method.
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7.4.4. Exercises.

7.4.1.- . 7.4.2.- .
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