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N-channel MOS capacitor: (a) no charge, (b) charged.
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N-channel MOSFET (enhancement type): (a) 0 V gate bias, (b) positive gate bias.
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Simple Transistor Model (1)

Cutoff, subthreshold, or weak-inversion mode
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Triode mode or linear region (the ohmic mode)

When VGS > Vt and VDS < ( VGS — Vt ) Source TGate Drain
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Saturation or active mode
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Simple Transistor Model (2)
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Simple Transistor Model (3)
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Resistance (1)

’/ RV Ohm's law V x I
I
I V I
= — R:_., G:_
“=v I V
A

electrical contacts on both ends.

dV

the derivative E may be most useful; this is called the "differential resistance".
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Resistance (2)

Larges rés.es Lanc e Small ressiance Dy Battery
’ [ I I
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The current-voltage characteristics of four devices: Two o
resistors, a diode, and a battery. The horizontal axis is
voltage drop, the vertical axis is current. Ohm's law is
satisfied when the graph is a straight line through the
origin. Therefore, the two resistors are "ohmic”, but the
diode and battery are not.

Slope
dV

the derivative — may be most useful: this is called the "differential resistance".

dl
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Resistance (3)

The IV curve of a non-ohmic
device (purple). Point A
represents the current and
voltage values right now. The
static resistance is the inverse

slope of line B through the origin.

The differential resistance is

the inverse slope of tangent line
C.

Transistor R, C (2E)

+ Static resistance (also called chordal or DC

resistance) - This corresponds to the usual
definition of resistance; the voltage divided by the

current
U

Rstﬂ.ﬁr_' - =

Differential resistance (also called dynamic,
incremental or small signal resistance) -
Differential resistance is the derivative of the
voltage with respect to the current; the slope of
the IV curve at a point

dv

Rdiﬁ — E
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Resistance (4)
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Resistance (5)

Vdd Vdd
Ips +

_‘”: L —Cl i Vbs
H A— A —Q

_l i Vs _l—

Ips _
Vss Vss

R

Transistor R, C (2E) 12 Young Won Lim

3/27/13



Resistance (6)
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Resistance (7)
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Capacitance
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£ .;—1 f d. £: Permittivity
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RC Circuit

VH
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Series RC circuit

By viewing the circuit as a voltage divider, the voltage across the

capacitor is:
1/Cs 1
Ve(s) = g51765 ) = T7Res
and the voltage across the resistor is:
R RC's
Va(s) = 5———Vin(s) = ———
R(8) = 176 ) = T Res

Vin(5)

Vin(5).

Ve(t) =V (1 - e7"5€)
Vi(t)= Ve €.
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Time Constant

dier ' ' — s
ti.s‘u
63.2%¢
-
Thus, the voltage across the capacitor tends towards V as time passes, while S T Em '
the voltage across the resistor tends towards 0, as shown in the figures. This Capacitor voltage step-response. &
is in keeping with the intuitive point that the capacitor will be charging from
the supply voltage as time passes, and will eventually be fully charged. oo

These eqguations show that a series RC circuit has a time constant, usually
denoted + = [ (' being the time it takes the voltage across the
component to either rise (across C) or fall (across R) to within I/E of its final

value. That is, 7 is the time it takes |/~ to reach V(l —_ I/E) and Vg to =
J6A%E
reach V(I/E).
1 13.5%
The rate of change is a fractionaf(] - —) per T. Thus, in going from 1%k
e
Resistor voltage step-response. &

t= Nttt = (_N + 1)1". the voltage will have moved about 63.2% of

the way from its level at f = [\ 7 toward its final value. So C will be charged to about 63.2% after 7, and essentially
fully charged (99.3%) after about 7. When the voltage source is replaced with a short-circuit, with C fully charged,
the voltage across C drops exponentially with t from |/ towards 0. C will be discharged to about 36.8% after T, and
essentially fully discharged (0.7%) after about 51. Note that the current, [, in the circuit behaves as the voltage
across R does, via Ohm's Law.
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Simple Model

Ygs W 1
Id = k'— (vgs - vt)vds _VZS
Vv 2
ds
1.,
L, L= 2k Ly, v
Vt
k } measured
!
W } determined by the layout tool used
L
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Transistor Parasitics

C g gate capacitance

C gs C ds source/drain overlap capacitance
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Wire Parasitics

wires
vias
transistors
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Spice Model
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Design Rule

wires
vias
transistors
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