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Abstract

The present thesis addresses several machine learning problems on generative and predictive models
on sequential data. All the models considered have in common that they can be defined in terms of
finite-state machines. On one line of work we study algorithms for learning the probabilistic analog of
Deterministic Finite Automata (DFA). This provides a fairly expressive generative model for sequences
with very interesting algorithmic properties. State-merging algorithms for learning these models can
be interpreted as a divisive clustering scheme where the “dependency graph” between clusters is not
necessarily a tree. We characterize these algorithms in terms of statistical queries and a use this charac-
terization for proving a lower bound with an explicit dependency on the distinguishability of the target
machine. In a more realistic setting, we give an adaptive state-merging algorithm satisfying the strin-
gent algorithmic constraints of the data streams computing paradigm. Our algorithms come with strict
PAC learning guarantees. At the heart of state-merging algorithms lies a statistical test for distribu-
tion similarity. In the streaming version this is replaced with a bootstrap-based test which yields faster
convergence in many situations. We also studied a wider class of models for which the state-merging
paradigm also yield PAC learning algorithms. Applications of this method are given to continuous-time
Markovian models and stochastic transducers on pairs of aligned sequences. The main tools used for
obtaining these results include a variety of concentration inequalities and sketching algorithms.

In another line of work we contribute to the rapidly growing body of spectral learning algorithms.
The main virtues of this type of algorithms include the possibility of proving finite-sample error bounds
in the realizable case and enormous savings on computing time over iterative methods like Expectation-
Maximization. In this thesis we give the first application of this method for learning conditional distri-
butions over pairs of aligned sequences defined by probabilistic finite-state transducers. We also prove
that the method can learn the whole class of probabilistic automata, thus extending the class of models
previously known to be learnable with this approach. In the last two chapters we present works com-
bining spectral learning with methods from convex optimization and matrix completion. Respectively,
these yield an alternative interpretation of spectral learning and an extension to cases with missing data.
In the latter case we used a novel joint stability analysis of matrix completion and spectral learning to
prove the first generalization bound for this type of algorithms that holds in the non-realizable case.
Work in this area has been motivated by connections between spectral learning, classic automata theory,
and statistical learning; tools from these three areas have been used.
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Preface

From Heisenberg’s uncertainty principle to the law of diminishing returns, essential trade-offs can be
found all around in science and engineering. The Merriam—Webster on-line dictionary defines trade-off
as a noun describing “a balancing of factors all of which are not attainable at the same time.” In many
cases where a human actor is involved in the balancing, such balancing is the result of some conscious
reasoning and acting plan, pursued with the intent of achieving a particular effect in a system of interest.
In general it is difficult to imagine that this reasoning and acting can take place without the existence
of some specific items of knowledge. In particular, no reasoning whatsoever is possible without the
knowledge of the factors involved in the trade-off and some measurement of the individual effect each of
those factors has on the ultimate goal of the balancing.

The knowledge required to reach a trade-off can be conceptually separated into two parts. First
there is a qualitative part, which involves the identification of the factors that need to be balanced.
Then, there is a quantitative one: the influence exerted by these factors on the system of interest needs
to be measured. These two pieces are clearly complementary, and each of them brings with it some
actionable information. The qualitative knowledge brings with it intuitions about the underlying works
of the system under study which can be useful in deriving analogies and generalizations. On the other
hand, quantitative measurements provide the material needed for principled mathematical reasoning and
fine-tuning of the trade-off.

In computer science there are plenty of trade-offs that perfectly exemplify this dichotomy. Take, for
example, the field of optimization algorithms. Let k denote the number of iterations executed by an
iterative optimization algorithm. Obviously, there exists a relation between k and the accuracy of the
solution found by the algorithm. This is a general intuition that holds along all optimization algorithms,
and one that can be further extended to other families of approximation algorithms. On the other hand,
it is well known that for some classes of optimization problems the distance to the optimal solution
decreases like O(1/k), while for some others the rate O(1/v/k) is not improvable. These particular bits
of knowledge exemplify two different quantitative realizations of the iterations/accuracy trade-off. But
even more importantly, this kind of quantitative information can be used to approach meta-trade-offs
like the following. Suppose you are given two models for the same problem, one that is closer to reality
but can only be solved at a rate of O(1/vk), and another that is less realistic but can be solved at a
rate of O(1/k). Then, given a fixed computational budget, should one compute a more accurate solution
to an imprecise model, or a less accurate solution in a more precise model? Being able to answer such
questions is what leads to informed decisions in science and engineering, which is, in some sense, the
ultimate goal for studying such trade-offs in the first place.

Learning theory is a field of computer science that abounds in trade-offs. Those arise not only
from the computational nature of the field, but also from a desire to encompass, in a principled way,
many aspects of the statistical process that takes data from some real world problem and produces a
meaningful model for it. The many aspects involved in such trade-offs can be broadly classified as either
computational (time and space complexity), statistical (sample complexity and identifiability), or of a
modeling nature (realizable vs non-realizable, proper vs improper modeling). This diversity induces a
rich variety of situations, most of which, unfortunately, turn out to be computationally intractable as
soon as the models of interest become moderately complex. The understanding and identification of all
these trade-offs has lead in recent years to important advances in the theory and practice of machine



learning, data mining, information retrieval, and other data-driven computational disciplines.

In this dissertation we address a particular problem in learning theory: the design and analysis
of algorithms for learning finite-state machines. In particular, we look into the problem of designing
efficient learning algorithms for several classes of finite-state machines under different sets of modelling
assumptions. Special attention is devoted to the computational and statistical complexity of the proposed
methods. The leitmotif of the thesis is to try answering the question: what is the larger class of finite-
state machines that is efficiently learnable from a computational and statistical perspective? Of course,
a short answer would be: there is a trade-off. The results presented in this thesis provide several longer
answers to this question, all of which illuminate some aspect of the trade-offs implied by the different
modelling assumptions.
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Introduction

Finite-state machines (FSM) are a well established computational abstraction dating back to the early
years of computer science. Roughly speaking, a FSM sequentially reads a string of symbols from some
input tape, writes, perhaps, another string on an output tape, and either accepts or rejects the compu-
tation. The main constraint is that at any intermediate step of this process the machine can only be in
one of finitely many states. From a theoretical perspective, the most appealing property of FSM is that
they provide a seamlessly easy way to define uniform computations, in the sense that the same machine
expresses the computation to be performed on input strings of all possible lengths. This is in sharp
contrast with other simple computational devices like boolean formulae (CNF and DNF) and circuits,
which can only represent computations over strings of some fixed length.

Formal language theory is a field where FSM have been extensively used, specially due to their ability
to represent uniform computations. Since a formal language is just a set of finite strings, being able to
compute membership in such a set with a simple and compact computational device is a great aid both
for theoretical reasoning and practical implementation. Already in the 1950’s the Chomsky hierarchy
identified several important classes of formal languages, with one of them, reqular languages, being defined
as all languages that can be recognized by the class of FSM known as acceptors. This class of machines
is characterized by the fact that it does not write on an input tape during the computation; its only
output is a binary decision — acceptance or rejection — that is observed after all the symbols from the
input tape have been read. Despite being equivalent from the point of view of the class of languages they
can recognize, finite acceptors are usually classified into either deterministic finite automata (DFA) or
non-deterministic finite automata (NFA). These two classes have different algorithmic properties which
are transferred, and even amplified, to some of their generalizations. Such differences will play a central
role in the development of this thesis.

Finite-state machines are also an appealing abstraction from the point of view of dynamical systems.
In particular, FSM are useful devices for representing the behavior of a system which takes a sequence of
inputs and produces a sequence of outputs by following a set of rules determined by the internal state of
the system. From this point of view the emphasis sometimes moves away from the input-output relation
defined by the machine and focuses more on the particular state transition rules that define the system.
The relation between input and output sequences can then be considered as observable evidence of the
inner workings of the systems, specially in the case where the internal state of the system cannot be
observed but the input and output sequences are.

A key ingredient in the modelling of many dynamical systems is stochasticity. Either because exact
modelling is beyond current understanding for a particular system or because the system is inherently
probabilistic, it is natural and useful to consider dynamical systems exhibiting a (partially) probabilistic
behavior. In the particular case of systems modelled by FSM, this leads to the natural definition of
probabilistic finite-state machines. The stochastic component of probabilistic FSM usually involves the
transitions between states and the generation of observed outputs, both potentially conditioned by the
given input stimulus. A special case with intrinsic interest is that of autonomous systems, where the
machine evolves following a set of probabilistic rules for transtitioning between states and producing
output symbols, without the need for an input control signal.

All these probabilistic formulations of FSM give rise to interesting generative models for finite strings
and transductions, i.e. pairs of strings. Taking them back to the world of computation, one can use them



as devices that assign probabilities to (pairs of) strings, yielding simple models for computing probability
distributions over (pairs of) strings. Furthermore, in the domain of language theory, probabilistic FSM
define natural probability distributions over regular languages which can be used in applications, e.g.
modelling stochastic phenomena in natural language processing. Besides the representation of compu-
tational devices, probabilistic FSM can also be used as probabilistic generators. That is, models that
specify how to randomly generate a finite string according to some particular distribution. Both as
generators and devices for computing probability distributions over strings, probabilistic FSM yield a
rich class of parametric statistical models over strings and transductions.

Synthesizing a finite-state machine with certain prescribed properties is, in most cases, a difficult
yet interesting problem. FKither for the sake of obtaining an interpretable model, or with the intent
of using it for predicting and planning future actions, algorithms for obtaining FSM that conform to
some behavior observed in a real-world system provide countless opportunities for applications in fields
like computational biology, natural language processing, and robotics. The complexity of the synthesis
problem varies a lot depending on several particular details, like: what class of FSM can the algorithm
produce as hypothesis, and in what form are the constraints given to the algorithm. Despite this variety,
most of these problems can be naturally cast into one of the frameworks considered in learning theory, a
field at the intersection of computer science and statistics that studies the computational and statistical
aspects of algorithms that learn models from data. Broadly speaking, the goal of the statistical side of
learning theory is to argue that the model resulting from a learning process will not only represent the
training data accurately, but that it will also be a good model for future data. The computational side
of learning theory deals with the algorithmic problem of choosing, given a very large, possibly infinite
set of hypotheses, a (quasi-)optimal model that agrees, in a certain sense, with the training data.

Designing and analyzing learning algorithm for several classes of FSM under different learning frame-
works is the object of this thesis. The probabilistic analogs of DFA and NFA — known as PDFA and
PNFA — are the central objects of study. The algorithmic principles used to learn those classes are also
generalized to other classes, including probabilistic transducers and generalized acceptors whose output
is real-valued instead of binary valued. Our focus is on efficient algorithms, both from the computational
and statistical point of view, and on proving formal guarantees of efficiency in the form of polynomial
bounds on the different complexity measures involved.

The first part of the dissertation discusses algorithms for learning Probabilistic Deterministic Finite
Automata (PDFA) and generalizations of those. These objects define probability distributions over
sets of strings by means of a Markovian process with finite state space and partial observability. The
statement of our learning tasks will generally assume that the training sample was actually generated
by some unknown PDFA. In this setting, usually referred to as the realizable case, the goal of a learning
algorithm is to recover a distribution close to the one that generated the sample using as few examples
and running time as possible. If we insist, and that will be the case here, that the learned distribution is
represented by a PDFA as well, then learning is said to be proper. In machine learning, the problem of
using randomly sampled examples to extract information about the probabilistic process that generates
them falls into the category of unsupervised learning problems. Here, the term unsupervised refers to
the fact that no extra information about the examples is provided to the learning process; specially, we
assume that the sequence of states that generated each string is not observed by the algorithm. Thus, we
will be focusing on the computational and statistical aspects of realizable unsupervised proper learning
of PDFA.

Despite the fact that PDFA are not among the best known models in machine learning, there are
several arguments in favor of choosing distributions generated by PDFA as a target and hypothesis class.
The main argument is that PDFA offer a nice compromise between expressiveness and learnability, which
will be seen in the chapters to come. The fact that the parameters characterizing learnability in PDFA
have been identified means that we also understand which of them are easy to learn, and which ones
are hard. Furthermore, PDFA offer two other advantages over other probabilistic models on sequences:
inference problems in PDFA are easy due to their deterministic transition structure, and they are much
easier to interpret by humans than non-deterministic models.

The most natural approach to learning a probability distribution from a sample is, perhaps, the
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(a) A PDFA over X = {a, b} (b) A PNFA over ¥ = {a, b}

Figure 1: Examples of probabilistic automata. In each case we have states with stopping probabilities and
transitions between them labeled with symbols from ¥ and transition probabilities. In the case of PDFA
there is only one initial state and for each state and symbol there is at most one outgoing transition. In
contrast, PNFA have a distribution over initial states, and states can have several outgoing transitions
labeled with the same symbol.

maximum likelihood principle. This principle states that among a set of possible models, one should
choose the one that maximizes the likelihood of the data. Grounded in the statistical literature, this
method is proved to be consistent in numerous situations, a very desirable property when learning
probability distributions. However, maximizing the likelihood over hypotheses classes of moderate size
can be computationally intractable. Two alternatives exist in such situations: one can resort to efficient
heuristics that try to maximize (an approximation of) the likelihood, or one can seek alternative learning
methods that do not rely on likelihood maximization. The Expectation-Maximization (EM) algorithm
is an heuristic that falls into the former class: it is an iterative algorithm for approximately maximizing
the likelihood. Though it is not guaranteed to converge to the true optimum, EM is widely used because
in practice it performs quite well and is easy to adapt to new probabilistic models. The second class
of alternatives are usually more model-specific, since in general they rely on particular properties of the
model class and formulate learning goals that do not involve the likelihood of the training data directly.
The algorithms we will give for learning PDFA fall into this second class. In particular, they heavily
rely on the fact that the target is defined by a DFA with transition and stopping probabilities. The
general principle will be to learn an approximation of this DFA and then estimate the corresponding
probabilities. Though this does no involve likelihood in any way, it is not a straightforward task either.
The general principle on which these algorithms are based is called state-merging, and though it resembles
an agglomerative clustering scheme, it has its own peculiarities.

An essential obstruction is that learning PDFA is known to be a computationally hard problem
in the worst case. Abe and Warmuth showed in [AW92] that learning probabilistic automata in time
polynomial in the size of the alphabet is not possible unless NP = RP. Nonetheless, they also showed
that learning with exponential time is possible given only a sample of size polynomial in the number of
states and the alphabet size — the barrier is computational, not information-theoretic. Later on, Kearns
et al. [KMRRSS94] gave evidence that even for alphabets of size two learning PDFA may be difficult:
it is shown there that noisy parities, a class supposed to be hard to PAC learn, can be represented as
PDFA.

With these restrictions in mind, the key for obtaining polynomial time bounds on PDFA learning is to
realize that the size of the alphabet and the number of states do not represent accurately the hardness of
learning a particular automaton. A third parameter called distinguishability was introduced in [RST9S§]
for obtaining polynomial bounds for learning acyclic PDFA. In the specific hard cases identified by
previous lower-bounds this distinguishability is exponential in the number of states. And in many other
cases it is just constant or polynomial on the number of states and alphabet size. Thus, introducing this
third parameter yields upper bounds that scale with the complexity of learning any particular PDFA
— and in the worst cases, this upper bounds usually match the previous lower bounds. It should be



noted here that this is neither a trick nor an artifact. In fact, it responds to a well established paradigm
in parametrized complexity that seeks to identify parametrizations of computationally hard problems
yielding insights into how the complexity scales between the different sub-classes of that problem.

A surprising fact about PNFA is that they can represent probability distributions that cannot be
represented by any PDFA. This is in sharp contrast with the acceptor point of view in which DFA and
NFA can represent exactly the same class of languages. Though the same lower bounds for learning PDFA
apply to learning PNFA as well, the panorama with the upper bounds is more complicated. In particular,
since PNFA are strictly more general and have an underlying non-deterministic transition system, state-
merging algorithms for learning PDFA do not provide a practical solution for learning PNFA. This is
because, although one can approximate every PNFA by a large enough PDFA, the obvious learning
algorithm based on this reduction ends up not being very efficient. Said differently, the clustering-like
approach which lies at the heart of state-merging algorithms is not useful for PNFA because clustering
states in the latter yields a number of cluster much larger than the number of states as a FSM. In fact,
almost all existing efficient algorithms for learning non-deterministic FSM rely on algebraic and spectral
principles very distant from the state-merging paradigm used in learning algorithms for PDFA.

This striking difference between the techniques employed for learning PDFA and PNFA will establish
a central division on the contributions of this thesis. While state-merging algorithms for learning PDFA
are in essence greedy and local, spectral methods for learning PNFA perform global operations to infer a
state-space all at once. Tough these two approaches share some intuitions at different levels, the content
and organization of this thesis will be mostly shaped by the differences between them. In particular,
the following three key factors will drive our explorations and determine their limits. The first factor
is the difference on the types of FSM that can learned with these two techniques. While state-merging
algorithms can be extended to any machine with an underlying deterministic structure that somehow
can be inferred from statistical evidence, spectral methods are able to construct a non-deterministic
state space defining a machine that matches a set of concrete observations with a particular algebraic
structure. The second factor arises from the first one by observing that both methods differ not only
on the type of machines they can learn, but also on the kind of information they require about the
target. The state-merging paradigm is based upon telling states apart using a sufficiently large amount
of information generated from each states. On the other hand, the spectral approach requires a particular
set of observations to be (approximately) known. This difference will set a distinction between the kinds
of learning frameworks where each of the methods can be applied. The last is a formal factor: different
learning algorithms require different analysis techniques. In this respect, the difference between the two
methods is abysmal. Statistical tests and inductive greedy arguments are the main tools used to reason
about state-merging algorithms. In contrast, the analysis of spectral methods and its variations relies
on perturbation results from linear algebra and convex optimization. There is, however, a common tool
used in both types of analyses: concentration inequalities of probability on product spaces. In essence,
these technical disparities can be summarized by saying that state-merging algorithms are combinatorial
in nature, while spectral methods are heavily based on linear algebra primitives. This is also reflected in
the way both methods are usually implemented: while state-merging tend to require specialized libraries
for graph data structures, spectral methods are easy to implement inside common mathematical software
packages for matrix computations. Using the problem of learning FSM as an underlying plot, we present
results along these two very different lines of work in a single thesis with the hope that it will help
researchers in each of these separate areas become acquainted with techniques used in the other area for
solving similar problems.

In the next two sections we provide a summary of the contributions presented in this thesis and a
detailed account of previous work directly related to the topics addressed here.

Overview of Contributions
In the first four chapters of this dissertation we study the problem of learning PDFA defining probability

distributions over some free monoid X* by using an algorithmic paradigm called state-merging. The
main idea behind state-merging algorithms is that, since the underlying transition graph of the target



is a DFA, one can recover such DFA by starting from the initial state, greedily conjecture new states
reached from previous states by a single transition, and test whether these are really new or correspond
to already discovered states — in which case a merge of states occurs.

Chapter [1] begins by describing how to implement a simple state-merging algorithm in a learning
framework based on statistical queries. In such framework, instead of a sample containing i.i.d. examples
from the target distribution, the learning algorithm is given access to an oracle that can give approximate
answers to simple queries about the target distribution. Among others, this has the advantage of sepa-
rating algorithmic and statistical issues in learning proofs. In particular, using this method we are able
to give a full proof of the learnability of PDFA which is much shorter than other existing proofs and can
actually be taught in a single session of a graduate course on learning theory or grammatical inference.
This simplicity comes at the price of our proof being slightly less general than previous PDFA learning
results, in that our learning guarantees are only in terms of total variation distances instead of relative
entropy, and that our algorithm requires one more input parameter than previous ones. Though these
two weaknesses can be suppressed by using much longer proofs, we chose to present a simple, short, and
self-contained proof instead. In the second part of Chapter [I] we take on the characterization of state-
merging algorithms in terms of statistical queries and use it to proof a lower bound on the total number
and accuracy of the queries required by an algorithm capable of learning the class of all PDFA. This
is the first lower bound on learning PDFA where the distinguishability of the target appears explicitly.
Furthermore, the fact that a key ingredient in constructing our lower bound are PDFA realizing distri-
butions over parities sheds light on an interesting fact: though previous lower bounds have suggested
that learning PDFA is hard because they can realize noisy parities, an obstruction to the efficiency of
state-merging methods is actually realized by noiseless parities. The main conclusion one can draw from
this result is that any general approach for learning the underlying structure of a PDFA will essentially
face these same limitations. Results presented in this chapter have been published in the conference
paper [BCG10a] and the journal paper [BCG13].

Besides estimating transition probabilities, the main role of statistical queries in the process of learn-
ing a PDFA via a state-merging approach is to test whether two states in the hypothesis correspond to
the same state in the target. Answering this question using examples drawn from the target distribution
involves testing whether two samples of strings were generated by the same distribution. Chapter [2] ad-
dresses the problem of designing statistically and computationally efficient statistical tests for answering
this type of question, and proving formal guarantees on the success of such tests. We derive different tests
for solving this task, all of them using a variant of the distinguishability called prefiz-distinguishability
which yields more statistically efficient distinction in most cases. The simplest versions of our tests are
based on the Vapnik—Chervonenkis (VC) theory of uniform convergence of empirical frequencies to their
expected values. These tests are not new but we give a simple and unified treatment. Motivated by a
weakness of VC-based tests on certifying equality, we propose to use tests based on Efron’s bootstrap to
improve the statistical efficiency on this task. We demonstrate the advantages of our approach with an
extensive set of experiments, and provide formal proofs showing that in the worst case bootstrapped-
based tests will perform similarly to VC-based tests. Our analyses provide the first finite-sample bounds
for confidence intervals of bootstrap estimators from distributions over strings. In the second part of this
chapter we address an essential algorithmic question of distribution similarity testing: namely, whether
the whole samples needs to be stored in memory in order to conduct statistically correct tests. We show
that accurate testing can be performed by just storing a summary of both samples which can be con-
structed on-line by observing each example only once, storing its relevant information in the summary,
and forgetting it. Data structures performing these operations are called sketches and have been exten-
sively studied in the data streams computing paradigm. Assuming the existence of such data structures,
we show how to achieve a reduction of a square root factor on the total memory needed to test distribu-
tion similarity. A by-product of this reduction in memory usage is also a reduction of the time needed
for testing due to a reduction of the number of comparisons in testing routines. We give similarity tests
with formal guarantees based on sample summaries using both VC bounds and the bootstrap principle.
Our bootstrap-based tests using summarized samples are the first of their kind and could be useful in
many other tasks as well. Some of these results have been published without proofs in a conference paper



[BCG12h).

Similarity tests that use information stored in sketches built from an on-line stream of examples are
the first step towards a full on-line implementation of the state-merging paradigm for learning PDFA
from data streams. Building such an implementation on top of the tests from Chapter [2]is the goal of
Chapter [3] The main result of that chapter is a learning algorithm for PDFA from examples arriving in
a data stream format. This requires the algorithm to process each new item in constant time and use an
amount of memory that is only allowed to grow slowly with the number of processed items. We show that
our algorithm satisfies these stringent requirements; one of the key contributions to achieve this result is
the design of new sketching data structures to find frequent prefixes in a stream of strings. In addition,
we show that if the stream was generated from a PDFA then our algorithm is a proper PAC learner.
Since in a real streaming environment the data-generating process might not be stationary, we also give
a change detector for discovering changes in the stream so that our learning algorithm can be adapted to
react whenever one of such changes occur. We also provide an algorithm for efficiently searching for the
correct parameters — number of states and distinguishability — required by the state-merging procedure.
A preliminary version of these results appeared in a conference paper [BCG12b|. An extended journal
version of this work is currently under review |[BCG12a].

Chapter [4 is the last one of the first part of the thesis. In it we extend the state-merging paradigm
to Generalized PDFA (GPDFA). Roughly speaking, these are defined as any probabilistic finite state-
machine defining a probability distribution over a free monoid of the form (X x X)*, where ¥ is a finite
alphabet and X is an arbitrary measure space, and whose state transition behavior is required to be
deterministic when projected on ¥*. Examples include: machines that model the time spent in each
transition with some real random variable, in which case X = R; or a sub-class of sequential transductions,
in which case X = A is a finite output alphabet. We begin by taking an axiomatic approach assuming
that we can test whether two states in a hypothesis GPDFA are equal and that we can estimate the
probability distributions associated with X in each transition. Under such assumptions, we show a full
PAC learning result for GPDFA in terms of relative entropy. Finally we give specific implementations of
this algorithm for the two examples discussed above. This chapter is based on some preliminary results
presented in [BCG10b].

In the second part of this dissertation we study learning algorithms based on spectral decompositions
of Hankel matrices. A Hankel matrix encodes a function f : ¥* — R in such a way that the algebraic
structure of the matrix is intimately related to the existence of automata computing f. Since this is true
for non-deterministic automata and even more general classes of machines, these methods can be used
to derive learning algorithms for problems where state-merging algorithms are not useful.

In total, this part comprises five chapters. In the first of those, Chapter[5] the notion of Hankel matrix
is introduced. We then use this concept to establish a duality principle between factorizations of Hankel
matrices and minimal Weighted Finite Automata (WFA), from which a derivation of the spectral method
follows immediately. The algorithmic key to spectral learning — and the key to its naming as well — is the
use of the singular vector decomposition (SVD) for factorizing Hankel matrices. Perturbation bounds
known for SVD can be used to obtain finite sample error analyses for this type of learning algorithms.
In the last part of Chapter [§] we give several technical tools that will be useful for obtaining such bounds
in subsequent chapters. The purpose of collecting these tools and their proofs here is twofold. The first
is to provide a comprehensive source of information on how these technical analyses work. This is useful
because all the published analyses so far are for very specific situations and it is difficult sometimes to
grasp the common underlying principles. The second reason for re-stating all these results here is to
give them in a general form that can be used for deriving all the bounds proved in subsequent chapters.
Some of this material have appeared in the conference papers [BQC12; BM12].

The first application of the spectral method is given in Chapter [f] In it we derive a PAC learning
algorithm for PNFA that can also be applied to other classes of stochastic weighted automata. A full
proof of the result is given. This involves obtaining concentration bounds on the estimation accuracy
of arbitrary Hankel matrices for probability distributions over ¥*, and applying bounds derived in the
previous chapter for analyzing the total approximation error on the output of the spectral method. Our
analysis gives a learning algorithm for the full class of PNFA and in this sense it is the most general



result to date on PAC learning of probabilistic automata. We also show how to obtain reductions for
learning distributions over prefixes and substrings using the same algorithm. Though the full analysis is
novel and unpublished, some technical results have been published in a conference paper |[LQBC12| and
some other are currently under review for publication in a journal [BCLQ13].

A less straightforward application of spectral learning to probabilistic transducers is given in Chap-
ter [7] There we show how to use the spectral method for learning a conditional distribution on input-
output pairs of strings of the same length over (X x A)*. Our main working assumption is that these
conditional probabilities can be computed by a probabilistic FSM with input and output tapes. We
use most of the tools from the two previous chapters while at the same time having to deal with a new
actor: the probability distribution Dx that generates the input sequences in the training sample. In a
traditional distribution-free PAC learning setting we would let Dx be an arbitrary distribution. We were
not able to prove such general results here; and in fact, the general problem can become insurmountably
difficult without making any assumptions on the input distribution. Therefore, our approach consists
on imposing some mild conditions on the input distribution in order to make the problem tractable.
In particular, we identify two non-parametric assumptions which guarantee that the spectral method
will succeed with a sample of polynomial size. A preliminary version of these results was published in
[BQC11| as a conference paper.

The algebraic formulation of the spectral method is in sharp contrast with the analytic formulation of
most machine learning algorithms where some optimization problem is solved. Despite its simplicity, the
algebraic formulation has one big drawback: it is not clear how to enforce any type of prior knowledge
into the algorithm besides the number of states in the hypothesis. On the other hand, a very intuitive
way to enforce prior knowledge in optimization-based learning algorithms is by adding regularization
terms to the objective function. This facts motivate Chapter [§ where we design an optimization-based
learning algorithm for WFA founded upon the same modeling principles of the spectral method. In
particular, we give a non-convex optimization algorithm that shares many statistical properties with the
spectral method, and then show how to obtain a convex relaxation of this problem. These results are
mostly based on those presented in [BQC12].

Chapter [9 explores the possibility of using the spectral method for learning non-stochastic WFA. We
formalize this approach in a regression-like setting where the training dataset contains pairs of strings
and real labels. The goal is to learn a WFA that approximates the process assigning real labels to strings.
Our main result along these lines is a family of learning algorithms that combine spectral learning with
a matrix completion technique based on convex optimization. We prove the first generalization bound
for an algorithm in this family. Furthermore, our bound holds in the agnostic setting in contrast with all
previous analyses of the spectral method. This chapter is entirely based on the conference paper [BM12].

Though the main concerns of this thesis are the theoretical aspects of learning finite-state machines,
most of the algorithms presented in this thesis have been implemented and tested on real and synthetic
data. The tests from Chapter 2]in the data streams context and the state-merging algorithm for learning
PDFA from data streams of Chapter [3] have all been implemented by myself and will be published as
open source shortly. The spectral learning algorithms from Chapters [6] [7] and [§] have been extensively
used in experiments reported in the papers [BQC11; LQBC12; BQC12; BCLQ13]. These experiments
have not been included in the present thesis because the implementations and analyses involved were
carried out almost entirely by my co-authors.

Related Work

Countless definitions and classes of finite-state machines have been identified, sometimes the differences
being of a very subtle nature. A general survey about different classes of probabilistic automata that
will be used in this thesis can be found in [VTHCCO05a; [VTHCCO05b; DDE05]. These papers also include
references to many formal and heuristic learning algorithms for these types of machines. Good references
on weighted automata and their algorithmic properties are |[BR88; Moh09]. Depending on the context,
weighted automata can also be found in the literature under other names; the most notable examples
are Observable Operator Models (OOM) [Jae00|, Predictive State Representations (PSR) [LSS01], and



rational series [BR88|. For definitions, examples, and properties of transducers one should consult the
standard book [Ber79|.

The problem of learning formal languages and automata under different algorithmic paradigms has
been extensively studied since Gold’s seminal paper |[Gol67]. Essentially, three different paradigms have
been considered. The query learning paradigm is used to model the situation where an algorithm learns
by asking questions to a teacher |[Ang87]. An algorithm learns in the limit if given access to an infinite
stream of examples converges to a correct hypothesis after making a finite amount of mistakes [Gol67];
this model makes no assumption on the computational cost of processing each element in the stream. In
the Probably Approzimately Correct (PAC) learning model an algorithm has access to a finite random
sample and has to produce a hypothesis which is correct on most of the inputs [Val84]. Since the literature
on these results if far too large to survey here, we will just give some pointers to the most relevant papers
from the point of view of the thesis; the interested reader can dwell upon this field starting with [Hig10]
and references therein. In addition, the synthesis of FSM with some prescribed properties was also
studied from a less algorithmic point of view even before the formalization of learning theory; see [TB73]
for a detailed account of results along these lines.

The state-merging approach — and its “dual” state-splitting — for learning automata have been around
the literature for a long time. They have been used in formal settings for learning sub-classes of regular
languages like k-reversible |[Ang82] and k-testable [GV90| languages. They are also the basis for several
successful heuristic algorithms for learning DFA like RPNI [OG92] and Blue-Fringe [LPP98]. In the case
of probabilistic automata, a key milestone is the state-merging ALERGIA algorithm |[CO94] for learning
PDFA in the limit. Further refinements of this approach lead to the PAC learning algorithms for PDFA
on which this thesis builds upon. The first result along these lines is the algorithm for learning acyclic
PDFA in terms of relative entropy from |[RST98|; this is where the distinguishability of a PDFA was
first formally defined. Latter on Clark and Thollard [CT04a] extended this result to the class of all
PDFA; in addition to the distinguishability, their PAC bounds included the maximum expected length
of strings generated from any state. By using the total variation instead of relative entropy as their error
measure, the authors of [PG07] showed that a similar result could be obtained without any dependence
on the expected length. Learning PDFA with a state-merging strategy based on alternative definitions of
distinguishability was the topic investigated in [GVWO05]. Despite working in polynomial time, these PAC
learning algorithms for PDFA were far from practical because they required a lot if input parameters
and access to a sampling routine to retrieve as many examples as needed. In [GKPPO0G6; [CG08] both of
this restrictions were relaxed while still providing algorithms with PAC guarantees. In particular, their
algorithms needed much less input parameters and could be executed with a sample of any size — their
results state that the resulting PDFA is a PAC hypothesis once the input sample is large enough; on the
quantitative side, the sample bounds in |[CGO08] are also much smaller than previous ones.

In general, learning finite automata from random examples is a hard problem. It was proved in [PW93]
that finding a DFA or NFA consistent with a sample of strings labeled according to their membership to a
regular language, and whose size approximates the size of the minimal automata satisfying such constrain,
is an NP-hard problem. In addition, the problem of PAC learning regular languages using an arbitrary
representation is as hard as some presumably hard cryptographic problems according to [KV94]. These
results deal with learning arbitrary regular languages in a distribution independent setting like the PAC
framework. On the other hand, [CT04b| showed that it is possible to learn a DFA under a probability
distribution generated by a PDFA whose structure is “compatible” with that of the target. Together
with the mentioned lower bounds this suggests that focusing on particular distributions may be the only
way to obtain positive learning results for DFA. It is not surprising that with some extra effort Clark and
Thollard were able to extend their result to an algorithm that actually learns PDFA |[CT04a]. Actually,
since state-merging algorithms for learning PDFA output a DFA together with transition probabilities,
one motivation for studying such algorithms is because they provide tools for learning DFA under certain
distributions.

Deciding whether to merge two states or not is the basic operation performed by state-merging algo-
rithms. ALERGIA and successive state-merging algorithms for PAC learning PDFA relied on statistical
tests based on samples of strings. The basic question is whether two samples were drawn from the same
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distribution; this is sometimes known as the two-sample problem in the literature. Although this prob-
lem has been extensively studied in the statistics literature, almost all existing approaches rely on very
restrictive modelling assumptions and provide asymptotic results which are not useful for obtaining PAC
bounds. Thus, all mentioned PAC learning algorithms relied on ad-hoc tests built around concentration
bounds like Hoeffding’s inequality. In this thesis we give a more systematic treatment of this problem.
A few similar studies have recently appeared in the machine learning literature, though none of them
have been directly applied to probability distributions over strings. From a computational perspective,
the paper |BFRSW13|] and references therein study the problem of distinguishing two distributions in
terms of total variation distance and mean square distance. In [GBRSS12] the authors provide three
different statistical tests for the two-sample problem with distributions over reproducing kernel Hilbert
spaces; two of them come with finite sample bounds derived from concentration inequalities. They also
show how to apply a sub-sampling strategy to reduce the running time of their testing algorithms, an
idea that could be applied to data streams as well. See references therein for previous results on kernel-
based approaches to the two-sample testing problem. Efron’s bootstrap [Efr79| is a generic technique for
statistical inference that, among many other things, can be used for constructing two-sample tests; we
refer to the excellent book [Hal92] for an in-depth statistical treatment of the many uses and theoretical
properties of the bootstrap. Learning algorithms have found uses of the bootstrap in many contexts. For
example, to define the bagging method for ensemble learning [Bre96], and to construct penalty terms for
model selection with guarantees [Fro07]. In the context of testing similarity distributions we have only
found the paper [FLLRB12|; in it the authors combine kernel-methods with the bootstrap for obtaining
two-sample tests with finite sample bounds.

The data streams computational model provides an interesting framework for algorithmic problems
dealing with huge amounts of data that cannot be stored for later processing |Agg07]. In this model each
data item in an infinite stream is presented to the algorithm once, which has to process it in almost
constant time and discard it; the total memory used by the algorithm is constrained to grow very slowly
with the number of processed items. In recent years the data mining community has embraced the model
to represent many big data applications related to industry, social networks, and bioinformatics. The list
of mining and learning algorithms that have been ported to this new algorithmic paradigm is too long
to be surveyed here; instead we refer to |Gaml10; [Bif10] for extensive treatments on this subject. Most
algorithmic advances on the efficiency of data streams algorithms have been driven forth by the design
of sketching data structures; see [Mut05| for a comprehensive list of examples. The problem of learning
PDFA has not been addressed before in the data streams framework. However, the problem of testing
whether two streams are generated from the same distribution, for which we give testing algorithms,
has been considered in |[AB12]. The test given by the authors of this manuscript comes without finite
sample guarantees, and is not based on the bootstrap like ours. The only usage of the bootstrap in a
big data scenario we have found in the literature is the recent paper [KTSJ12]; in it the authors derive
bootstrap-like resampling strategies for large amounts of data.

Deterministic classes of transducers and automata with timed transitions are all susceptible to state-
merging learning algorithms. A classical algorithm for learning subsequential transducers based on the
state-merging paradigm is OSTIA |[OGV93]; see [Higl0] for a detailed account of several variations of
this algorithm in different contexts. Several models of automata with timing information have been
considered in the literature, including: acceptors where transitions can specify clock guards imposing
restrictions on the time spent on each state [AD94], and stochastic generators modelling the time spent
on each state with an exponential random variable [Par87]. The thesis [Ver10] contains a comprehensive
list of learning results for these and other related models, most of which are based on state-merging
algorithms of some sort; though most are just heuristics, some of them come with learning in the limit
guarantees. We have not been able to find PAC learning results in the literature for any of these models.

Learning algorithms based on linear-algebraic principles like the spectral method have been around for
quite a long time. The most similar approach in the literature on learning theory of finite automata is the
algorithm in [BBBKVO00] for learning multiplicity automata using membership and equivalence queries.
In the field of control theory, subspace methods are a popular family of algorithms for identification of
linear dynamical systems [Nor09]. The basic problem in this setting is to identify a matrix governing
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the evolution of a discrete-time dynamical system from observations which are linearly related to the
state-vector of the system. From an automata point of view, this problem corresponds to learning a
FSM with a single output symbol and many states, from which at each step we can observe a linear
transformation of its state vector. A landmark on this topic that shares several ideas with our spectral
method is the N4SID algorithm [VODMY94] which is implemented in many software toolkits for system
identification. The literature on OOM has also produced some learning algorithms with features common
to SVD-based methods [ZJT09|. These models are almost identical to the weighted automata we will
consider in this thesis, thought the original motivation for studying them was to understand the possible
dynamics of linear systems with partial observability. Statisticians addressing the identifiability problem
of HMM and phylogenetic trees have been using linear algebra in a similar way for quite a while [Cha96|;
an algorithmic implementation of these ideas was presented in [MRO5|.

Taking on these results, the spectral method as we understand it in this thesis was described and
analyzed for the first time in [HKZ09] in the context of HMM and in [BDR0Y| in the context of stochas-
tic weighted automata. The derivation based on a duality principle that we give here is original but
essentially yields the same algorithm. A significant difference with [HKZ09] is that, in deriving their
algorithm, they make a set of assumptions on the target automata to be learned which we do not need.
With respect to [BDR09], our analysis yields much stronger learning guarantees.

Since these two seminal papers were published in 2009, the field of spectral learning algorithms for
probabilistic models has exploded. Variations on the original algorithm for learning probabilistic models
on sequences include: [SBG10] on learning Reduced Rank HMM where, though still assuming a factor-
ization between transition and emission, the rank restriction from [HKZ09] was relaxed; [SBSGS10| on
learning Kernel HMM that model FSM with continuous observations; in [BSG11| a consistent spectral
learning algorithm for PSR was given; in order to force the output of the learning algorithm to be a
proper probability distribution, |[Baillb| gave an algorithm for learning stochastic quadratic automata;
the authors of [FRU12| gave a new analysis of spectral learning for HMM with improved guarantees
by using a tensorized approach and making some extra assumptions on the target machine. Besides
variations of HMM, spectral learning algorithms for several classes of graphical models have been given
following a very similar approach. Notable examples include: [PSX11}|/ACHKSZ11] on learning the pa-
rameters and structure of tree-shaped latent variable models; algorithms for Latent Dirichlet Allocation
[AFHKL12b; /AFHKL12a] and other topic models [DRFU12|; and, several classes of mixture models
[AHK12a} [AHHK12; |JAHK12b]. A recent line of work tries to replace decompositions of matrices with
decompositions of tensors in spectral algorithms [AGHKT12]. From a computational linguistics point of
view, a natural idea is trying to generalize algorithms for learning automata to algorithms for learning
context-free formalisms. Works along these lines include: [BHD10] on learning stochastic tree-automata;
the results in [LQBC12] on learning split-head automata grammars; an application of spectral learning
to dependency parsing [DRCFU12|; and, a learning algorithm for probabilistic context-free grammars
|CSCFU12|. Models arising from spectral learning have been used in [CC12| for improving the compu-
tational efficiency of parsing.
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Part 1

State-merging Algorithms






Chapter 1

State-Merging with Statistical
Queries

In this first chapter we study the problem of learning PDFA in the Statistical Query model, where learning
algorithms are given access to oracles that provide answers to questions related to the target distribution.
Studying learning problems in this computational model has certain advantages over the usual PAC
model where the learner is presented with a random sample generated by the target distribution. The
most interesting of these advantages is, perhaps, the fact that learning proofs in this model are simpler
and much more conceptual than in the PAC model, where learning proofs usually contain a great deal
of probability concentration arguments that tend to blur the main ideas behind the why and how the
algorithm works. Learning results in the PAC model can be easily obtained from learning results in
query models once it is shown that those queries can be successfully simulated using randomly sampled
examples.

One contribution of this chapter is introducing a Statistical Query framework for learning probability
distributions and giving an algorithm for learning PDFA in this model. Despite the fact that the result
is already known in the literature, we believe that our learning proof — which is just three pages long —
illuminates the most important and subtle points in previous learning proofs in the PAC model, and at
the same time condenses the facts that make the class of PDFA learnable via state-merging algorithms.
Our proof may be taught in a single lecture in a graduate course on learning theory or grammatical
inference, a feature that will hopefully make the result more accessible to students and researchers in
the field. On the other hand, we give efficient simulations of the queries used in our model, which yield
yet another proof of the PAC-learnability of PDFA.

Query models are also useful for proving unconditional lower bounds on the complexity of learning
problems. The idea is that when calls to an oracle are the only source of information a learning algorithm
has about its target, it is possible to control how much information an algorithm is able to gather after
a fixed number of queries. In contrast, when learning from examples it is extremely difficult to control
how much information an algorithm can extract from a sample in a given amount of computational time.
Thus, another contribution of this chapter is proving a lower bound on the complexity of learning PDFA
in the statistical query model which confirms the intuition that the difficulty of the problem depends on
the distinguishability of the target distribution. Further consequences and interpretations of our lower
bound are discussed at the end of the chapter.

1.1 Strings, Free Monoids and Finite Automata

The set ¥* of all strings over a finite alphabet ¥ is a free monoid with the concatenation operation.
Elements of 3* will be called strings or words. Given x,y € ¥* we will write either z -y or simply xy to
denote the concatenation of both strings. Concatenation is an associative operation. We use A to denote
the empty string which satisfies A& = z- A = x for all x € ¥*. The length of a string x € ¥* is denoted
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by |x|. The empty string is the only string with [A\| = 0. For any k& > 0 we denote by ¥ and ©=* the sets
all strings of length k and all strings of length at most k, respectively. We use X7 to denote X* \ {A}.

A prefix of a string x € X* is a string u such that there exists another string v satisfying x = uv.
String v is a suffix of x. We will write u Cy = and v C, = to denote that u and v are respectively
prefixes and suffixes of z. A prefix (suffix) is called proper if |u| < |z| (Jv| < |z|). If £ = wv, the pair
(u,v) is a partition of x.

The concatenation operation is extended to sets of strings as follows: given Wi, Wy C ¥*, we define
their concatenation as WiWa = {wijws | w1 € W1 A wy € Wa}. In the case of a singleton {z} and a set
W, we write W instead of {z}W. A set W C ¥* is prefiz-free if for every x € W and any proper prefix
u Co & we have u ¢ ¥*. Another way to say the same is that for every x € W we have W NnazX* = {z}.
An important property is that if W is a prefix-free set of strings and W' is an arbitrary set of strings,
then for each w’ € W' there is at most one w € W such that w Ty w’.

A string w is a substring of x if there exist a prefix u Cg x and a suffix v C, = such that x = uwv.
Note that, contrary to other formulations, in our definition the symbols of w must be contiguous in
2. The notation |z, will be used to denote the number of times that w appears as a substring on x,
meaning

|z]w = {(u,v) | uEg 2 Av Eo ¢ A = uwv}| .

Given a string © = x; - - - x; we write x;.; to denote the substring z; - - - x;.

A Deterministic Finite Automaton (DFA) over ¥ is a tuple A = (X, Q, qo, 7, ¢), where Q is a finite
set of states, qo € @ is a distinguished initial state, 7 : Q x ¥ — @ is a partial transition function, and
¢ : Q — {0,1} is the termination function. The number of states |@Q| of A is sometimes denoted by |A| or
simply n. Note that for some pairs (¢q,0) the transition 7(g, o) might not be defined. When 7 is a total
function we say that A is complete. Giving ¢ is equivalent to giving the set F' = ¢~1(1) of accepting states.
The transition function can be inductively extended to a partial function 7 : Q x ¥* — @ by setting
7(q,02) = 7(7(q,0),x), where the value is undefined whenever 7(g, ) is not defined, and 7(q,\) = ¢
for all ¢ € Q. The characteristic function of Ais fa : ¥* — {0,1} with fa(z) = é(7(qo,x)), where we
assume that ¢ returns 0 on an undefined output of 7. The language of A is the set £(A) = f; (1) C T*.
It is easy to modify A into a complete DFA with the same language by adding a rejecting state, with
every transition going to itself, and all previous undefined transitions going to this new state.

Give g € @ we define the set of all strings that go from ¢ to ¢, and the set of all strings that go from
qo to g without using ¢ in any intermediate step:

Alq] = {=|7(q0,7) = q}
Alg] = {z|7(qo, ) = qA\Vy,z : 2 =yz — (|2| =0V 7(q0,¥) # @)}

Note that by definition A[q] is always a prefix-free set.

A Probabilistic Deterministic Finite Automaton (PDFA) over X is a tuple A = (X, Q, qo, 7,7, ¢), where
Q, qo, and 7 are defined as in a DFA. In addition we have the transition probability function v : Q x 3 —
[0,1] and the stopping probability function ¢ : @ — [0,1]. These functions must satisfy the following
constraints: if 7(q, o) is undefined, then (g, o) = 0; and for all ¢ € Q, we have ¢(q) +>_ 5 V(q,0) = 1.
In a similar way we did for a DFA, we can define an extension v : Q x X* — [0, 1] as follows: y(g, \) = 1,
and v(q,0x) = v(q,0)-v(7(q, o), x). We note that if 7(g, z) is undefined, then we will get v(q,2) = 0. The
function computed by A is f4 : ¥* — [0,1] defined as fa(z) = v(qo, ) ¢(7(qo, 7)), where ¢(7(qo,z)) =0
for an undefined 7(go,x). It is well known that if for all ¢ € @ there exists some = € ¥* such that
#(7(q,x)) > 0, then f4 is a probability distribution over ¥*; that is, >° .. fa(z) = 1. Given any
q € Q we write 4, = (3,Q,¢,7,7,¢) to denote the PDFA obtained from A by taking ¢ to be the
starting state. If D is a distribution over ¥* that can be realized by a PDFA — that is, there exists
A such that f4 = D — then we use Ap to denote any minimal PDFA for D. Here, minimal means a
PDFA with the smallest number of states. The smallest non-zero stopping probability of a PDFA A
will be denote by 74 = mingeqs-1((0,1)) ¢(¢)- The expected length of strings generated by a PDFA A is
La =3 cx |z|fa(x). If D is an arbitrary distribution over strings, we shall write Lp to denote its
expected length.

16



An important structural result about distributions generated by PDFA is that the length of strings
they generate always follows a sub-exponential distribution. See Appendix [A7]] for more information on
sub-exponential distributions.

Lemma 1.1.1. For any PDFA A there exists a cq such that Pyoallz] > t] < exp(—cat) holds for all
t>0.

Proof. Let n be the number of states of A and let g be any state. Starting from state ¢ and before
generating n new alphabet symbols, there is a probability = > 0 of stopping. Thus,

Poalle] > 1] < Ponallz] > [¢/n)n] < (1 - m)") < exp(—nlt/n])
O

When D is a distribution realized by a PDFA, we may write c¢p instead of ¢4, because being sub-
exponential is clearly a property that depends only on the distribution.

If D is any probability distribution over ¥* and W C ¥* is a set of strings, the probability of W is
defined as D(W) = > . D(z). The probability under D of generating a word with x € ¥* as a prefix
is D(zX*).

Given distributions D and D’ over X*, their supremum distance is defined as

Loe(D, D) = max |D() = D'(x)|

The total variation distance between D and D’ is given by

Li(D,D') = Y |D(x) - D'(x)|

reEX*

Another commonly used measure of discrepancy between probability distributions os the relative entropy,
also known as Kullback—Leibler divergence, which is not an actual distance because it is not symmetric
and does not satisfy the triangular inequality. It is given by the following expression:

KLDID) = 3 Dloions (515 )
TEX*

where the log, means logarithm with base two. Note that KL(D||D’) can be infinite if D'(z) = 0 for
some x such that D(z) > 0.

The Ly -distinguishability of a PDFA A is the minimum supremum distance between the distributions
generated from each of its states; that is,

HA = qg%ienQLOO(qua qu/) 9

where the minimum is taken over all pairs such that ¢ # ¢’. Without loss of generality we shall always
assume that g4 > 0, since otherwise there are two identical states in A which can be merged to obtain a
smaller PDFA defining the same distribution; iterating this process as many times as required we always
obtain a PDFA with positive Lo.-distinguishability. In most cases we shall just write 1 when A is clear
from the context. For the rest of this chapter we shall use the simpler term distinguishability to refer to
this quantity, since we will not consider other distances to compare states in a PDFA.

An important class of PDFA are those defining uniform distributions over parity concepts. Let us
fix ¥ = {0,1} and equip it with addition and multiplication via the identification ¥ ~ Z/(2Z). Given
h € X", the parity function Py : ¥" — % is defined as Py(u) = EBZ-E[”} h;u;, where @ denotes addition
modulo 2. Each h defines a distribution Dj, over ¥"t! whose support depends of P, as follows: for
uw e X" and c € ¥ let
27" if Pp(u) =c

0 otherwise .

Dy (uc) = {
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©.3) ©.50.3)

0,5)(1.3)

0,5)(1,3)

Figure 1.1: PDFA for the distribution D;, with h = 0101.

It was shown in [KMRRSS94] that for every h € ™ the distribution D), can be realized by a PDFA with
O(n) states. See Figure for an illustrative example where each state but the last one has stopping
probability 0. It is not hard to see that each of these PDFA has distinguishability ©(27").

We will need some notation to refer to subclasses of all the distributions that can be realized by
PDFA. To start with, we use PDFA to denote the whole of these distributions. Now we consider
several parameters: X, n, u, L, m, and ¢. Then we define a class of distributions PDFA(X, n, u, L, 7, ¢)
that can be realized by some PDFA satisfying the constraints given by these parameters. That is, any
D e PDFA(Z,n,u,L,m,c)is D = f4 for some A over ¥ such that: |A| <n, pa > pu, La < L, w4 > m,
and c4 > ¢. We may also consider superclasses where only some of the parameters are restricted. For
example, PDFA(X,n) is the class of distributions over ¥ that can be realized by PDFA with at most n
states.

1.2 Statistical Query Model for Learning Distributions

The original Statistical Query learning model was introduced in [Kea98]. Algorithms in this framework
are given access to an oracle that can provide reasonable approximations to the probabilities of certain
events. The model has been used to study trade-offs between computational and information-theoretic
limitations of learning algorithms. In particular, the model proved useful as a means of studying resistance
against classification noise in the training sample, as well as a means of proving unconditional lower
bounds for learning some concept classes.

In this section we introduce the statistical query model for learning probability distributions. Our
model corresponds to a natural extension of Kearns’ original SQ model. Furthermore, in the same way
Kearns’ model abstracts the behavior of many algorithms in Valiant’s well-known PAC framework for
learning from labeled examples, our model can be considered an abstraction of the PAC model learning
for probability distributions [KMRRSS94].

We begin with a brief recall of the classical SQ framework. In this learning model an algorithm that
wants to learn a concept over some set X' can ask queries of the form (x, «) where x is (an encoding
of) a predicate X x {0,1} — {0,1} and 0 < a < 1 is some tolerance. Given a distribution D over X
and a concept f : X — {0,1}, a query SQ? (x, @) to the oracle answers with an c-approximation p,, of
Py = Pa~plx(z, f(z)) = 1]; that is, |p, — py| < . Kearns interprets this oracle as a proxy to the usual
PAC oracle EX? that returns pairs (z, f(x)) where  ~ D is drawn independently in each successive
call. According to him, the oracle SQ}D abstracts the fact that learners usually use examples only to
measure statistical properties about f under D. The obvious adaptation of statistical queries for learning
distributions over X is to do precisely the same, but without labels.

Let D be a distribution over some set X. A statistical query for D is a pair (x, o) where xy : X — {0,1}
is (an encoding of) a predicate and 0 < a < 1 is some tolerance parameter. The query SQ” (x, ) returns
an a-approximation p, of p, = Pyp[x(z) = 1]. Since x is the characteristic function of some subset
of X, learners can in principle ask the oracle an approximation to the probability of any event; we
will usually identify y and its characteristic set. However, we will impose a restriction on the possible
characteristic sets that can be queried: we require that x(x) can be evaluated efficiently for all 2 € X.
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We will say that an SQ algorithm is y-bounded if all the queries it makes have tolerance Q(v). This
may be a function on the inputs of the algorithm or parameters of the target distribution.

The following result gives a simple simulation of statistical queries using examples drawn i.i.d. from
D.

Proposition 1.2.1. For any distribution D over X, a statistical query SQ?(X, a) can be simulated with
error probability smaller than § using O(a=2log(1/68)) examples drawn i.i.d. from D.

Proof. By Hoeffding, if p, = En[x(z)] with m > (1/2a2)1n(2/6), then one has Ipy — Px] < o with
probability at least 1 — 4. O

As in Kearns’ SQ model, our model can also be used to measure any statistical property of D that
can be approximated from random a sample. However, from an algorithmic perspective sometimes these
queries fall short on the side of simplicity, in the sense that learning algorithms may need to combine
the result of several of queries in order to approximate a relevant parameter or make a correct decision.
This has led in the past to the definition of more elaborate and informative queries that can themselves
be simulated using statistical queries. For example, the change of distribution queries used by |[AD9§]| in
their implementation of boosting in the SQ model. Next section introduces a new family of queries that
later on will prove useful for implementing state merging methods for learning PDFA.

1.3 The L, Query for Split/Merge Testing

This section introduces a new kind of statistical query called L, query. These queries are only defined
in the cases where the domain of the target distribution has a particular structure; that is, when the
support of D is contained in a free monoid X = X*. In next section it will be shown how state-merging
algorithms for learning PDFA can be described rather naturally using such queries. After introducing
Lo queries, we show how these queries can be simulated either using examples or standard statistical
queries.

Let D be a distribution over ¥* and A C £* a prefix-free subset. We use D to denote the distribution
over suffixes conditioned on having a prefix in A:

D(A
DA(y) =P,plz =2y |z € Al = D(E‘lZZJJ*)) )

An L, query is a tuple of the form (A4, B,a, 3), where A, B C X* are (encodings of) disjoint and
prefix-free sets, and 0 < «, 8 < 1 are, respectively, the tolerance and threshold parameters of the query.
Let i = Lo (D4, DB) denote the supremum distance between distributions D4 and DZ. The oracle
DIFFODO answers queries DIFFEO(A, B, «a, ) according to the following rules:

1. If either D(AX*) < 8 or D(BY*) < 3, it answers ‘7.
2. If both D(AX*) > 38 and D(BX*) > 34, it answers with some a-approximation g of p.
3. Otherwise, the oracle may either answer ‘7’ or give an a-approximation of u, arbitrarily.

To be precise, the algorithm asking a query will provide A and B in the form of oracles deciding the
membership problems for AY* and BY*. We will say that a Ly, query algorithm is («, 8)-bounded if all
the queries it makes have tolerance (a)) and threshold Q(3).

A couple of remarks regarding the definition of L., queries are necessary. The first one is about the
role of 8 that will also be clarified by the simulation given in Proposition The second observation
dispatches computational issues about the encoding of A and B.

Remark 1.1 (The role of 8). An algorithm asking an L., query may not know a priori the probability
under D of having a prefix in A. It could happen that the region A¥X* had very low probability, and this
might indicate that a good approximation of D in this region is not necessary in order to obtain a good
estimate of D. Furthermore, a large number of examples might be required to obtain a good absolute
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approximation to probabilities of the form D (z). Thus, 8 allows a query to fail - i.e. return ¢?’ — when
at least one of the regions being compared has low probability.

Remark 1.2 (Representation of A and B). From now on we will concentrate on the information-theoretic
aspects of Lo, queries. Our focus will be on the number of queries needed to learn certain classes of
distributions, as well as the required tolerances and thresholds. We are not concerned with how A and
B are encoded or how membership to them is tested from the code: the representation could be a finite
automaton, a Turing machine, a hash table, a logical formula, etc. In practice, the only requirement one
would impose is that membership testing can be done efficiently.

1.3.1 Simulation from Examples

Similar to what happens with standard Statistical Queries, any L., query can be easily simulated with
high probability using examples as shown by the following result.

Proposition 1.3.1. For any distribution D over ¥*, an Ly, query DIFFODO(A,B,a,ﬁ) can be simulated
with error probability smaller than & using O(a=28"2log(1/5)) examples drawn i.i.d. from D.

Proof. The simulation begins by taking a sample S of mg i.i.d. examples from D, where

B 48 528 1 8
mg —maX{QQﬁ nm,w né}
Sample S is then used to obtain a sample S4 from D as follows. For each word = € S, check whether
r = yz with y € A. If this is the case, add z to S*. The multiset obtained, S* = {z : yz € S and y € A},
is a sample from D“. Note that since A is prefix-free, each word in S contributes at most one word
to S4, and thus all examples in S4 are mutually independent. Similarly, a sample SZ from D?F is
obtained. We let m4 and mp denote the respective sizes of S4 and S® and write p4 = ma/mo and
pp = mp/mg. Note that since my > (1/282)In(8/6), by Chernoff p4 and pp are S-approximations of
D(AX*) and D(BX*) respectively with probability at least 1 — /2. Based on these approximations,
our simulation answers ‘?’ if either p4 < 206 or pp < 23. If this is not the case, then we must have
ma,mp > 2fmg. In this situation the simulation uses S and SZ to compute i = LOO(DA,DB) and
returns this approximation. The probability that /i is not an a-approximation of p is bounded as follows:

[Fz |DA(z) — DA(z)| > a/2V |DB(x) — DP(z)| > a/2)

[sup D (x) ~ D*(@)] > /2] + Bsup |D”(2) - DP(2)] > /2

Plla—pl > o] <

IA
g =

4(2ma + 1) exp(—maa?/32) + 4(2mp + 1) exp(—mpa?/32)
8(2mg + 1) exp(—moa?B/16) < §/2 ,

IN A

where the bounds follow respectively from: the triangle inequality, the union bound, Vapnik—Chervonenkis
inequality (see Appendix [A.1]), inequalities 28mg < ma,mp < mg, and mgy > (48/a?B) In(528/a?36)

together with Lemma O

1.3.2 Simulation from Statistical Queries

Now we show that L., queries can also be simulated using Statistical Queries. To bound the running
time of the simulation we will use the following simple isoperimetric inequality giving a geometric relation
between surface and volume of connected sets in trees, see e.g. [HLWO06]. Think of 3* as a tree and let
I’ C ¥* be a finite connected subset. We denote by JI" the boundary of T'; that is, the set of all vertices
in ¥* \ T that are adjacent to some vertex in T'.

Lemma 1.3.2. Any finite connected T' C ¥* satisfies |T'| < |0T|/(|X] — 1).
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Let D be a distribution over ©* and A, B C ¥* disjoint and prefix-free. Furthermore, let o, 8 € (0, 1).
The following theorem shows how to find an approximation of L., (D4, DB) using statistical queries. Its
strategy is similar to that of the algorithm used by |[KM93| to find the heavy Fourier coefficients of a
decision tree using membership queries.

Theorem 1.3.3. An Lo, query DIFFY (A, B, a, B) can be simulated using O(|Z|L/a?) calls to SQP with
tolerance Q(aB), where L is the maximum of the expected lengths of DA and D®.

Proof. The simulation begins by checking whether SQ” (AX*, 8) < 28 or SQP(BY*, 8) < 2. If this is
the case, then either having a prefix in A or in B has probability at most 38 under D and the simulation
returns ¢7°. Otherwise, the simulation will compute an approximation fi of p = Lo (D4, DB) such that
= pl < o

Note that if 4 < «, then fi = 0 is a safe approximation. In contrast, if ;4 > «, then it must be the
case that p = |D?(x) — DB (z)| for some z such that either D4(x) or DB () is larger than a. Therefore,
it is enough to find a set of strings 7" that contains every z such that either D4(z) > a or DB(z) > «
and return the maximum of |D“(x) — DB(z)| over T. Now we show how to implement this strategy
using statistical queries.

Note that hereafter we can assume D(AYX*) > 8 and D(BX*) > 8, and for any string x let us write

ZSQZ(AxE*,aﬁ/g) and gle) = SQDD(Ax,aﬁ’/Q) .
SQ7(A%*, a/9) SQ” (Ax*, a3/9)

Note that f and g are not deterministic functions but rather “derived” oracles. By Lemma we
know that f(x) and g(z) return a/3-approximations of D4(xX*) and D“(z) respectively. In the first
place, our simulation builds a set T4 as follows. Starting with an empty 7 and beginning with the root
A, recursively explore the tree X*, and at each node z do: stop exploring if f(z) < 2a/3; otherwise, add
x to the current T4 if g(z) > 2a/3, and recursively explore the nodes xo for each o € ¥. Now we prove
the following two claims about the output of this procedure: (i) for all x € T4 we have D4(x) > /3,
and (ii) if D4(z) > a, then 2 € T4. We will also bound the size of T4. For (i) observe that the inclusion
condition g(z) > 2a/3 implies D4(x) > «/3; this implies |T4| < 3/a. On the other hand, let x be
a string with D4(x) > a. For any prefix y of = we have DA4(y¥*) > a and f(y) > 2a/3. Thus, our
stopping condition guarantees that for each o € ¥ the nodes yo will be explored. In addition, D*(z) > «
implies g(z) > 2a/3. Hence, when z is reached it will be added to T*; this is claim (ii). Another set T2
for DB with similar guarantees is built in the same way.

The next step is to show how to use T = TAUTP to answer the Lo, query. Let us define a new query

hz) = SQ”(Az,aB/6)  SQ”(Bw,a5/6)
SQP(Ax+,a8/6)  SQP(BT*,aB/6)

f(x)

and note that h(x) returns an a-approximation of |D“(z) — DB (z)| by Lemma The simulation
returns fi = maxgzer h(z), where i = 0 if T is empty. This can be computed using at most O(1/«)
queries with tolerance at least Q(af).

Finally, we bound the number of statistical queries used by the simulation, and their tolerances. Let
R4 be the set of all vertices of ¥* explored when constructing 7; note that Rf is connected. The
number of statistical queries used to build 74 is obviously O(|R4|). Now let S denote the set of
stopping vertices of the process that builds 74:

54 ={zo | f(z) > 20/3 A f(zo) < 20/3} .

It is clear that S4 C RA. Furthermore, any vertex in OR4 is adjacent to some vertex in §A, and
each vertex in S* is adjacent to at most |3 vertices in ORA. Thus, by Lemma we have |R4| <
ISASI/(IZ] = 1) = O(]S4]). We claim that |S4| = O(|S|L/a?). To prove the claim, first note that by
definition S4 C S4, where

S4 = {zo | DA(xX*) > /3 A DA (z0X*) < a} .

21



Now consider the following set
Q" ={y| D*(y=*) > a/3 A Vo DA(yo¥*) < a} ,

and observe that it is prefix-free; this implies |Q“| < 3/a. Now we establish the following correspondence
between S4 and Q4: each z € S can be uniquely mapped to some y € @4, and via this mapping each
y € Q4 is assigned at most |X| + (|X| — 1)|y| elements of S#. Indeed, given zoc € S# one can see that
either x € Q4 or zw € Q4 for some suffix w; any ambiguity is resolved by taking the first such w
in lexicographical order. Furthermore, given y € Q4, any element of S# that is assigned to y by this
mapping is of the form yo or zo for some (possibly empty) proper prefix z of y = zo'w with o # ¢’. The
claim follows from the observation that Markov’s inequality implies |y| < 3L/« for all y € Q“. Therefore,
to build T' we explore at most O(|3|L/a?) nodes, making at most O(|X|L/a?) statistical queries with
tolerance Q(af). This concludes the proof. O

The following corollary gives a specialization of the previous simulation for the case when a bound
on the length of the words generated by D is known.

Corollary 1.3.4. Ifsupp(D) C =", then a call to DIFFY (A, B, v, B) can be simulated using O(|%|n/c)
calls to SQP with tolerance Q(af).

Proof. Just inspect the previous proof and use the fact that |x| > n implies DA (2%*) = 0 and DB (2X*) =
0. O

1.4 Learning PDFA with Statistical Queries

In this section we describe an algorithm for learning PDFA using statistical and L, queries. We provide a
full proof of this result, as well as bounds on the number of queries used by the algorithm and its respective
tolerance and threshold parameters. The accuracy between the target PDFA and the hypothesis PDFA
produced by the algorithm is measured in terms of L1, the total variation distance. Two key ideas in the
proof are: first, that states in the target which have very low probability of being visited while generating
a random string can be safely ignored by a learning algorithm; and second, that having a hypothesis
that has small relative error on all short string is enough because the probability assigned by any PDFA
to long strings decreases exponentially with their length.

Our learning algorithm falls into the well-known category of state-merging algorithms. The idea is
that at any given time the algorithm maintains a transition graph — which can be regarded as a DFA —
with two types of nodes: safes and candidates. The former and any transitions between them are assumed
to be correctly inferred. The latter are recursively explored to decide whether they represent new safes,
ways to reach already existing candidates, or are inexistent or infrequent enough to be safely ignored.
Information obtained from queries is used in order to make such decisions. Once the transition structure
is learned, the DFA is converted into a PDFA by estimating the transition and stopping probabilities
corresponding to each state. In this step, a sink state is introduced to represent all non-existing transitions
in the inferred DFA. As input the algorithm receives statistical query and L, query oracles, as well as
the desired learning accuracy ¢ and several parameters describing the target distribution: number of
states n, alphabet X, distinguishability u, smallest positive stopping probability w, and expected length
L. A discussion of why these parameters are needed is deferred to Section [I.6] Full pseudo-code for the
algorithm is provided in Algorithm

Theorem 1.4.1. If the oracles DIFFODO and SQP given to Algorithm |1| correspond to a distribution
D € PDFA(X,n,u, L, ), then the execution of the algorithm:

1. runs in time poly(n,|X|,log(1/cp)),

2. makes O(n?|S[*log(1/cp)) SQ queries with tolerance, Q(e*mep /n?|S[3L)

3. makes O(n?|X|) Lo queries with tolerance Q(u) and threshold Q(e/n|3|), and
4. returns a hypothesis PDFA H such that Ly (D, fg) < e.
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Algorithm 1: Algorithm for Learning PDFA

Input: n, u, 7, L, 3, , oracles DIFFODO and SQP
Output: A PDFA H
Find the smallest k£ such that SQD(]I|1.|>(2;C In(12/2)],€/24) < e/8;
Let o ¢ p1/2, B < ¢/24n|X|, and £ < [2¥In(12/¢)];
Let 0 « (7e8/72(|Z] + 1)(£+ 1)) - min{8/(L + 1), 7};
Initialize the graph of H with a safe ¢, and candidates ¢, for o € %;
while H contains candidates do
Choose a candidate ¢, maximizing SQ” (H[g.]=*, 8);
foreach safe ¢ do
Make a call to the oracle DIFFZ (H[q,]2*, H[g]Z*, o, B):
if the answer is ‘7’ then remove ¢, from the list of candidates and break;
if the answer [i < p/2 then merge ¢, and ¢ and break;

| if gy us still candidate then promote to safe and add candidates g, for each o € X;
Add a sink state g0 With 75 (¢oo, 0) ¢ goo and uniform probabilities;

foreach safe ¢ do
foreach o € ¥ do

| let §(g.0) < SQ”(H[qlox*,6)/SQ" (H[q]=*, 0)
Let ¢, + SQP(¢,0)/SQ” (¢=*,0) but if ¢, < 7 — 30/5 then let , + 0;
Let Nq < ‘ﬁq + Zo’ ;Y(q,a)a SDH(Q) < c»5q/]\/vq;
foreach o € ¥ do
L if (q,0) is defined then vy (q,0) < Y(q,0)/Ngs
else let 74 (q,0) < q. and v (q,0) < Y(q,0)/Ng;
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1.4.1 Analysis

The first step in our analysis is identifying sufficient conditions for learning a distribution in terms of
the total variation distance. A set of these are given in the following lemma, which basically states that
a relative approximation on a massive set is enough.

Lemma 1.4.2. Let D and D' be distributions over some set X. If there exists a set T C X such that
D(T)>1—¢1 and |D(x) — D'(x)| < eaD(x) for every x € T, then Ly (D, D’) < 2(e1 + &2).

Proof. First note that ) . [D(x) —D'(z)| <e2) , p D(x) < 2. Then, we have D'(T) > 1 — (1 +¢€2)
because
D(T) — D'(T) < |D(T) (T)| < |D(x) (z)] <ea .
€T

Finally we see that L1 (D, D’) < ey + (2¢1 + £2) since

Z\D (2)] < D(T) 4+ D'(T) < &1 + (61 + €2) .

O

Next step is to analyze the structure of the DFA H produced by Algorithm We begin with a
technical lemma that will be used in the analysis.

Lemma 1.4.3. Let D be a PDFA with expected length Lp. For any DFA A we have ) o, D(A[g]2*) <
Lp + 1. In particular, EQEQAD D(Ap[q]¥*) < Lp +1.

Proof. If we define the support of A as the set
supp(A) = {x € ¥* | 74(qo, z) is defined},

then we see that the collection of sets {A[g]}qcq, forms a partition of supp(A). Furthermore, since for
any x € X*\supp(Ap) we have D(x) = 0, then D(X* \ supp(Ap)) = D(supp(A) \ supp(Ap)) = 0, which

in turn implies that
ST D) < Y. D(Aplq)) -
qeEQ A q€Qap

Now note that for any x € supp(Ap) we have x € Ap[ra,(qo,u) JE* for any u Ty x. Therefore, any

such z will appear at most |z|+1 times in the sum > ., D(Ap[q]). Using the definition of expected
D

length we finally get

S DAplal) < 3 (e + D)D) = Lp +1 .

q€Qap rED*

O

Now let H' = H \ g be the transition graph of H where the sink state go, and all its incoming
transitions are removed; that is, H' is the graph obtained right after the while loop ends in Algorithm
We will show that this transition structure is identical to a substructure of the target PDFA that contains
all states that are traversed with at least some probability when generating a random string.

Lemma 1.4.4. Under the same hypotheses of Theorem 1|, if H' is the DFA defined above, then the
following hold:

1. H' is isomorphic to a subgraph of Ap,
2. D(supp(H')) > 1 —¢/6,

3. no transition from Ap with ya,(q,0) < 8/(Lp + 1) is present in H', and
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4. for all states q in H' we have D(H'[q]¥*) > S.

Proof. For convenience we write A = Ap. We will use Hy to denote the graph built by the algorithm
after the kth iteration in the while loop, where Hy denotes the initial graph. The notation Hj, will be
used to denote the subgraph of Hy obtained by removing all candidate nodes and all edges from safe to
candidate nodes.

Fact : We begin by proving that for all Hj, is a graph isomorphic to a subgraph of A for all k£ > 0;
we proceed by induction on the number of edges in this graph. Before the first iteration, the graph
H{, contains a single safe node and no edges, and is clearly isomorphic to the subgraph of A containing
only the initial state. At the beginning of the (k + 1)th iteration the graph Hj, contains at most k edges
between safe nodes which, by induction, are assumed to yield a graph isomorphic to a subgraph of A. Let
¢yo be the candidate chosen during the (k + 1)th iteration. We must consider three different situations:

1. If the candidate has been discarded, the graph remains unchanged: Hj, a=4H b

2. If candidate gy, is merged to some safe g, then a new transition TH)/C+1(qy,O') = ¢ is added to

the graph; since the [ returned by the oracle certifies LOO(DH’“[‘ZW],DH’“[‘?]) < p we conclude

that DHklavel = DHrldl thus the new edge must be present in A as well because gy and q have
representatives in A by the inductive hypothesis and v4(gy, o) > 0 because the Lo query did not
return ‘77,

3. If the candidate is promoted to be a new safe node, we known from the oracle’s answers that
D(Hy[gyo]2*) > B > 0 and Lo (DHrlavel DHeldl) > 0 for each safe ¢ already in the graph; thus
Qyo is a state present in A which is different from the rest of safes and by induction there must be
a transition in A from g, to the new safe labeled by yo.

Therefore, the graph of safes Hj_ , after the (k4 1)th iteration is isomorphic to a subgraph of A, and so
is H' because it is the graph obtained at the end of the iteration in the while loop that removes the last
candidate.

Fact[3: In order to show that D(supp(H’)) > 1 — /6, we consider two cases. If no candidate is
discarded during the while loop, then the graph H' is complete, and thus D(supp(H')) = D(X*) =1
Now we show that if some candidate is discarded in the while loop, then D(supp(H')) > 1 — /6. This
will follow from the following claim: for any k > 0, if D(supp(H})) < 1 — ¢/6 then the candidate
¢» chosen during the (k + 1)th iteration satisfies D(Hy[g;]X*) > 38 and will not be discarded. We
prove the claim by induction on k. For & = 0 we have D(supp(H})) = D(A) < 1 — ¢/6, and since
D(A) + >, D(¢x*) = 1, we must have D(cX*) > ¢/6|X| > 4 for some o. Therefore, the candidate
selection rule will select a candidate g, with D(Hplgs|X*) = D(0%*) > 35 during the first iteration,
which will not be discarded because D(Hy[gx]X*) = 1 > 38. For the general case, suppose the claim
is true for k' < k and D(supp(H},)) < 1 —¢/6. Since we have D(supp(Hj,)) < D(supp(Hj},)) because
supp(H,,) C supp(Hj,), by induction no candidate has been discarded so far and every safe ¢ in Hj,
satisfies D(H[q]X*) > 36. Then, taking into account that there will be at most n|X| candidates in the
graph, the same argument used in the base case shows that the candidate ¢, chosen in the (k + 1)th
iteration will satisfy D(Hp[q.]X*) > 36 and will not be discarded.

Fact @ Suppose that gy, is the candidate considered in the kth iteration of the while loop. We know
that safe g, must correspond to some state in A. Then we have that

D(Hgqyo|X*) = D(Hgqy] X*)va(qy, o) < D(Hg[qy|%*)valgy,0) ,

and note that Lemma implies D(H[q,]X*) < (Lp + 1). Therefore, if yp(gy,0) < 8/(Lp + 1),
then D(Hy|gyo])X*) < B, the candidate will be discarded, and transition (gy, o) will no be present in H'.

Fact |Z|: It is obvious that any g # ¢ in H' must have been a candidate which was considered at some
iteration k and was not discarded. Therefore, it must be the case that D(H'[g]¥*) > D(H[q|2*)5. O

From now on we will identify H’ with the corresponding subgraph of Ap. Next result gives some
information about the parameter ¢ computed by our algorithm. In particular, how many queries are
needed to compute it and what is the probability under D of strings longer than /.
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Lemma 1.4.5. ¢ is such that D(X>%) < /6, the number of queries needed to find ¢ is O(log(1/cp)),
and { is at most O(cp'In1/e).

Proof. By definition we have D(X>¢) < ¢/8 + /24 = £/6. Because D is a PDFA, Lemma implies
that for all ¢ we have

D(x>12'mA2/9)1y < exp(—cp[2¢In(12/€)]) < (¢/12)°P2" .

The number k of queries needed to compute ¢ is upper bounded by the largest ¢ such that D(x~> (2 In(1/2)] ) >
£/12, because for all such ¢ the oracle can return SQD(]1|:E|>(2;€ In(1/e)],€/24) = D(x>12"m/eT) y2/24 >
£/8. From equation above we deduce that k = O(log(1/cp)), which implies £ = O(cp' In1/¢). O

Next two lemmas show that the probability assigned to short strings under H has small relative error
with respect to D. This will allow us to apply Lemma to proof the desired approximation bound.

Lemma 1.4.6. Let A = Ap. For every transition (q,0) € H' we have |va(q,0) — vu(gq,0)| <
Teva(q,0)/8(¢ + 1). Furthermore, for all ¢ € H' we have |pa(q) — pu(q)| < Tewa(q)/8(¢ + 1), and
in particular if 04(q) = 0 then ¢ (q) = 0.

Proof. First note that for all ¢ € H" and all 0 € ¥ we have |y4(q,0) — Y(q,0)| < 30/ by Lemmas
and For stopping probabilities |pa(q) — ¢4 < 30/8 as well; note that ¢, is set to zero if and
only if p4(q) < m, which by definition of 7 implies v 4(q) = 0. The bounds derived so far imply that
[Ny — 1| < (|£]+1)36/8 holds for each ¢ € H'. Now suppose (¢,0) € H'. By Lemma [1.4.4 we know that
va(q,0) > B/(Lp +1). Therefore, Lemmayields valgq,0) —vu(g,0)] <9(|S|+1)(Lp+1)0/8% <
Teva(q, 0)/8(¢+1). In addition, if ¢, > 0 then p4(q) > 7 and we have |pa(q)—pu(q)] < Tepa(q)/8(4+1)
as well. O

Lemma 1.4.7. For any z € X=* Nsupp(H') one has |1 — fg(z)/D(x)| < /6

Proof. Let z € ¥<‘Nsupp(H’) and A = Ap. By Lemma|l.4.6|we have |In(fg(x)/fa(x))| < (£+1)In(1+
Te/8(¢ + 1)) < Te/8 since the computation of fr(z) uses only transitions in H' and In(1 + z) < z for
@ > 0. Therefore, Lemma[A.3.3| with ¢ = 1/3 implies |1 — fu(z)/fa(z)| < /6. O

Now we can finally combine all the results above in order to prove the main theorem of this section.

Proof of Theorem[1.4.1. Let S = supp(H') and ' = SN Y<f Note that T C S U X>’. By Lemmas

1.4.4{and [1.4.5| we have D(T) > 1 — D(S) — D(%>*) > 1 —¢/3. Thus, by Lemmas|1.4.7|and [1.4.2] we get
Li(D, fu) < 2(e/3+4¢/6) = €. The rest of the bounds follow trivially by inspection and Lemma/|1.4.5 [

1.5 A Lower Bound in Terms of Distinguishability

In this section we prove a lower bound on the number of L, queries that any («, 8)-bounded algorithm
learning the class of all PDFA must make. In order to do so, we show such a lower bound for a class
of distributions defined using parities that can be modeled by PDFA. Our lower bound is unconditional,
and applies to proper and improper learning algorithms that try to learn either with respect to relative
entropy (KL) or total variation distance (Li). From the main result we deduce another lower bound in
terms of the distinguishability that describes a trade-off between the number of queries and the tolerance
and threshold parameters.

In this section we fix ¥ = {0,1} and let D,, denote the class of all distributions D}, constructed
using parity codes h € ¥™ as defined in Section We already know that every distribution in D,, has
support in ¥"*1 and can be represented with a PDFA of ©(n) states.

Kearns [Kea98| proved that learning parity concepts is a difficult problem in the statistical query
model. More precisely, he showed the following.

Theorem 1.5.1 ([Kea98|). Any y-bounded statistical query algorithm that learns the class of all parity
concepts must make at least Q(2"7?) queries.
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It is not difficult to translate this result into a lower bound for algorithms that try to learn the class D,,
as distributions using our version of statistical queries. On the other hand, if one is interested in learning
the class D,, using a state-merging algorithm it is enough to learn the structure of the target parity, since
by definition all transition probabilities are uniform. In principle this can be done with an algorithm
using only L., queries, by a simple adaptation of Algorithm For this task, a reduction argument
combining Kearns’s lower bound with the simulation given by Corollary [I.3-4] yields the following lower
bound.

Corollary 1.5.2. Any (a, §)-bounded Lo query algorithm that learns the class D,, with accuracye < 1/9
must make at least Q(2"a3B2/n) queries.

In this section we will prove an improvement on this bound using a direct proof. In particular, we
are able to show the following lower bound, which improves the dependence on n and « in the previous
one.

Theorem 1.5.3. Any (o, 8)-bounded Lo, query algorithm that learns the class D,, with accuracye <1/9
must make at least Q(2"a?B?) queries.

An immediate consequence of this theorem is that the same lower bound applies to algorithms that
learn the class of all PDFA.

Corollary 1.5.4. Any (a, 8)-bounded Lo, query algorithm that learns the class PDF A(n) with accuracy
e < 1/9 must make at least Q(2"a%(%) queries.

Theorem is proved by devising an adversary that answers in a malicious way each query asked by
the learning algorithm. The argument is similar in nature to that used in [Kea98] to prove that parities
cannot be learned in the Statistical Query model. Basically, we use a probabilistic argument to show
that the number of distributions in D,, that are inconsistent with each answer given by the adversary
is at most O(1/(a?$?)). Since there are 2" distributions in D, any learning algorithm is unable to
distinguish the correct target with o(2"a?3%) queries. Since all distributions in D,, are far apart from
each other, the adversary can always find a distribution which is consistent with every answer given to
the learner but still has large error with respect to the hypothesis provided by the learner. The details
of the proof are deferred to the end of this section. Now we discuss some corollaries of Theorem [1.5.3

An interesting consequence of our lower bound in terms of a and § is that, by a simple padding
argument, it allows us to derive a lower bound in terms of the distinguishability. The dependence on ¢
in the statement is ignored.

Corollary 1.5.5. Suppose 2log(1/u) +3 < n < (1/p)°V. Let a,b,c > 0 be constants and take oo =
p® - PN and = pb - nOW . If an (a, B)-bounded Lo query algorithm learns the class PDFA(n, )
using at most no(l)/,uC queries, then necessarily 2a + 2b+c¢ > 1.

Proof. Recall the class of distributions Dy, from Theorem [I.5.3] For every positive integers m and k,
define the class of distributions C,, » as follows: for every distribution D in Dy, there is a distribution
in Cy, ;, that gives probability D(z) to each string of the form 0™z, and 0 to strings not of this form.
Every distribution in D is generated by a PDFA with at most 2k 4+ 2 states and distinguishability
21=F_ Tt follows that every distribution in C,, x is generated by a PDFA with at most m + 2k + 2 states
and distinguishability 27%. Assuming without loss of generality that k = log(1/u) is an integer, for
m =n — 2k — 2 we have C,,, ; C PDFA(n, p).

Now note that, by an immediate reduction, any (¢, §)-bounded Lo, query algorithm that learns Py ,
using at most n@® /p€ queries can learn the class Dy with the same number of queries. Therefore,

Theorem implies that necessarily n°®" /u® = Q(a?p?/u). Substituting for a and £, and using that

1/n = p°L, the bound yields
1 /’(‘2a+2b
—Q
Mc+o(1) </~L1+O(1) )

Therefore, since 1/ = w(1), we conclude that 2a + 20+ ¢ > 1. O
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Next corollary collects the extreme cases of previous one. These results illustrate the trade-off that
algorithms for learning PDFA must face: either ask a lot of queries with moderate tolerance and threshold,
or ask a few queries with very small values of tolerance and threshold.

Corollary 1.5.6. Suppose 2log(1/u) +3 <n < (1/p)°). Then the following hold:

1. If o, B = p°D - nOW then any (o, B)-bounded Loy query algorithm that learns PDF A(n, i) must
make at least Q(1/p'~") queries for any constant v > 0.

2. If an (o, B)-bounded Lo, query algorithm learns PDFA,, ,, with nPW) queries, then necessarily
a2ﬂ2 _ O(M . nO(l))‘

Proof. Both statements follow by inspection from the previous proof. O

1.5.1 Technical Lemmata

Before getting to the proof of Theorem we must go over a chain of lemmas. We begin with two
simple bounds which are stated without proof.

Lemma 1.5.7. Let X be a real random variable and 7,y € R. The following hold:
1oaf 7> ||, then P[|X| > 7] <P[X — 9[> 7 — ][],
2. PIX|<7]<PI|X—=7|>v—1].

The following technical lemma bounds the probability that the maximum of a finite set of random
variables deviates from some quantity in terms of the individual variances. Let {X;};cm) be a finite
collection of random variables with v; = E[X;] and 71 > ... > vp. Let Z = max;gpy) |X;| and v =
S

Lemma 1.5.8. If v =, then for allt >0

P|Z — 7| > 1 < V[gl] + ) VE;Q] :

1€[m]

Proof. On the first place, note that by in Lemma and the definition of v we have, for any
i € [m], P[|X;| > v+ t] <P[|X; — | > t]. Thus, by the union bound and Chebyshev’s inequality,

VIX;]

2 (1.1)

PlZ>vy+1< )

i€[m)]

On the other side, for any i € [m] we have P[Z < v —t] < P[|X;| < v —t] < P|X; — vl > v — v+ 1],
where the last inequality follows from (2)) in Lemma Choosing i = 1 we obtain

VX
2

The result follows from (|1.1)) and (1.2). O

For any A C ¥*, ¢ € ¥ and h € X", we write A, = ANX" and Af = {z € A, | Pp(z) =c}. Let
A, B C £t = ¥sn 0 5t be disjoint and prefix-free. Our next lemma shows that, for any Dy € D,,,
one can write Lo, (Di}, DP) as the maximum of 2n easily computable quantities. Let pa = Dj(A%*)
and pp = Dj,(BY*), and note that we have pa = >_;_, |Ax|/2" and pp = Y_}_, | Bk|/2"; that is, these
probabilities are independent of h. Now define the following quantities:

PlZ <v—t <

(1.2)

oo Ml 1B
pa PB

(1.3)

These quantities can be used to easily compute the supremum distance between D4 and D®.
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Lemma 1.5.9. With the above notation, the following holds:

Loo(Di,DP) = max [Xf|/2" .
k€[n],cex
Proof. First we write, for 1 <k < n, Y = max,exn+1-« |Di (y) — DP (y)], and note that Lo (Dj!, DP) =
maxj<k<n Yx. Now we show that, for k € [n], Y = max{|X?|,|X}|}/2". First observe that for y € X%
and z € ¥ we have D' (yz) = >, cansr Dn(zyz)/pa. Furthermore, Dj(zyz) = 27" if and only if
Py, (x) © Py, ., (y) = z. Thus, for fixed y and z, we have

A |/2 i D -
> Di(ayz) = | ’fm-|/ ) B P hin ()
r€ANTF |Ah1:k |/2 if Phk+1:n (y) 7é

This concludes the proof. O

)

INEEERN

Now we will consider the quantities Xj as random variables when h € X" is taken uniformly at
random. We are interested in the expectation and variance of these quantities.

Lemma 1.5.10. When h is taken uniformly at random, the following hold:
1. E[X{] = [Akl/(2pa) — [Bil/(2pB) + O(1), and

2. VIXE] = O(|Ax|/ph + Bkl /p% + (| Ak] + | B|)/ (paps))-

Proof. To begin note that taking ¢ € £* uniformly at random, the random variables |Aim| and \Ag\
follow the same distribution. Thus, we can use g instead of h;.; in the definition of X}.
We start by computing E[|AS]], E[|A[*] and E[|AS||B|]. Using indicator variables one has

Al A
B4l = 3 IRy (e) = = 25 4 g neo = 28 4 0() (1.4
TEA

where A = A\ {0}. The second term models the fact that Py(0) = 0 for all g. This implies (1
compute E[|AS|?] we will use that for different z,y € X\ {0} a standard linear algebra argument shows
P[P,(z) = ¢ A Py(y) = ¢] = 1/4. Furthermore, note that if either x = 0 or y = 0, but not both, then
P[Py(z) = c A Pg(y) =c]=1/2if ¢ =0, and it is zero if ¢ = 1. Hence, we have

S Y PPa)=cAPyy) =d = |A4| |1211|

€Ay yeAR\{=z}

Now, combining (|1.4) and ([1.5)) we obtain

El4;P =Y Y PP(x)=cAPy)=d+ Y PP(x) =

(Al =1 . (1)

rC€AL yeAp\{z} TEAL
Ay
- L o4 . (1.6)

Furthermore, since 1pc 4, Lgep, = 0 because A and B are disjoint, similar arguments as before yield

E[|Ag||Byl] = Z Z x) =cA Py(y) =

€A, yEBy
_ [AIBl | A | Be|
4 + le=o | Loen, —5— 9 + Loea, —— D)
Ar||B
= By oA + 1) - (1.7
Finally, (1.4)), (1.6) and (1.7) can be used to compute V[X¢]. The bound in (2) follows from the
observation that all terms having |Ay|?, | Bx|? or |Ax||By| are cancelled. O
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1.5.2 Proof of the Lower Bound

Finally, we combine the preceding lemmas to prove Theorem [1.5.3

Proof of Theorem[I1.5.3 Suppose L is an («, 8)-bounded Lo, query algorithm that learns the class D,,.
Now we describe and analyze an adversary answering any L., query asked by L.

Let DIFFEo (A, B, , 8) be a query asked by L where we assume without loss of generality that it uses
the smallest tolerance and threshold values allowed by the bounding restriction. Suppose that h € 3"
is taken uniformly at random and let pa = > 1_, |Ax|/2%, pp = > 1, |Bxl/2F, 75 = E[X[]/2", where
we use the quantities defined in . The adversary uses the expressions given by Lemma to
compute these quantities in terms of A and B. It then answers as follows: if either ps < 28 or pg < 28,
then answer ‘7’; otherwise, answer i = maxje[.cex |74 We claim that in each case the number of
distributions in D,, inconsistent with these answers is at most O(1/(a?3?)). If the adversary answers
€77, then every distribution in D,, is consistent with this answer because ps and pg are independent of
h. In the other case, we use a probabilistic argument to prove the bound.

Suppose the adversary answers i = maXje[n),cex |75], and note that, interchanging A and B if
necessary, we can assume ji = maXye[n,cex Vi 10 this case, the number of inconsistent distributions is

2" P[|Loo (D3}, DB) — 1| > a]. We can combine Lemmas and to get

X 1 c
P[[Loe(Dj, D) — i > o] < Sang? VXu]+ D> VIXE |,
k,c

where Xy € {X?,..., X}} is such that i = E[X]/2". Since A and B are disjoint and thus Y _,_, (|Ax|+
|Bi|) < 2™, using the bound (2) from Lemma[1.5.10 we obtain

V[XM]+ZV[X,§]=O<2:+2“+ 2 >:O<ZZ> 7

e PA  Pp  Paps

were last inequality uses that p4,pp > 28. Therefore, we can conclude that the number of distributions
inconsistent with the answer f is at most O(1/(a?3?)).

Let I denote the maximum number of distributions inconsistent with each query issued by L and @Q
the number of queries it makes. Now we show that if I - Q < 2™ — 2, the algorithm necessarily produces
a hypothesis with large error.

Note that the relative entropy between any two distributions in D, is infinite because they have
different supports. Since I -Q < 2™ — 2 implies that there are at least two distributions in D,, consistent
with every answer given by the adversary, if L outputs a hypothesis in D,,, the adversary can still choose
a consistent distribution with infinite error with respect to the hypothesis produced by L. Recalling that
for each pair of distributions in D,, we have Li(Dy, Dy) = 1, we also get a lower bound for learning D,
with respect to the total variation distance. Furthermore, the following argument shows that L still has
large error even if its output is not restricted to a distribution in D,,.

Assume L outputs some distribution D, not necessarily in D,,, such that KL(DhHﬁ) < ¢ for some
Dy, € D,,. Then it follows from Pinsker’s inequality [CBLO6| that KL(D,||D) > (1/2In2)(1 — v/21n 2¢)?
for any other distribution D, different from Dj,. Since ¢ < 1/9, we then have KL(D,|D) > 2/9.
Therefore, if I-Q < 2™ —2 the hypothesis produced by the learner will have large error. We can conclude
that if L learns D,, with Q queries, then necessarily Q > (2" — 2)/I = Q(2"a?3?). O

1.6 Comments

We devote this section to make some remarks about the meaning of the results presented in this chapter.
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1.6.1 Consequences of SQ Learnability

We begin by discussing the implications of showing that existing state-merging algorithms can be cast
in a statistical query framework. It is well known that statistical query algorithms for learning concepts
can be easily converted to PAC algorithms capable of learning from noisy examples. In the case where
the goal is to learn a probability distribution, noise takes the form of outliers. The following result shows
that state-merging algorithms can learn PDFA even in the presence of a small fraction of outliers.

Let D be a distribution over some set X'. For 0 < n < 1, an n-perturbation of D is a distribution over
X of the form D, = (1 —-n)D + nD, where D is some dlstrlbutlon of outliers over X. We say that D can
be learned under a proportion of outliers n if there exists an algorithm that can learn D when it is only
given access to some 7-perturbation of D.

Theorem 1.6.1. Suppose D can be learned by an algorithm that makes statistical queries with tolerance
at least v, and let n < v/2. Then D can be learned under a proportion of outliers n using a (y — 2n)-
bounded SQ algorithm.

Proof. In the algorithm that learns D we will replace every statistical query with another query with a
smaller tolerance to obtain an algorithm that learns D under a proportion of outliers . We can assume
without loss of generality that all queries in the original algorithm are of the form SQP (x,7). In the
new algorithm each of these queries is replaced by a query of the form SQP" (x,y — 27).
We only need to show that any answer p, to any of the new queries is a y-approximation to p, =
D(A,), where A, = x~*(1). Indeed, since by definition |[p, — D, (A, )| <~ — 27, we have
(A

[Px = Pxl < [Px = Dy(Ax)| + [Dy(Ay) — D(Ay)

< (v—=2n)+[(1 —n)D(Ay) +nD(Ay) — D(Ay)|
< (v —2n) +n(D(Ay) + ( ) <
O

Combining the learning result of Theorem with the simulation of Theorem we can show
that PDFA can be learned under some proportion of outliers.

Corollary 1.6.2. Let D € PDFA(Z,n,pu, L, 7) and v = min{u,e?wep/n|X|?>L} for some e > 0. Then
D can be learned with accuracy € with respect to total variation distance under a proportion of outliers
O(ey/n|X|) using statistical queries.

The same arguments we have just used above can be given a different, equally interesting interpre-
tation. Fix some 1 > 0. If D is some class of probability distributions, we let D,, denote the class of all
distributions that are at L; distance at most n of some distribution in D:

D, ={D | Li(D,D") <nfor some D' € D} .

Theorem 1.6.3. Suppose that every distribution in a class D can be learned with accuracy e with respect
to Ly distance using statistical queries of tolerance at least y. Then, for any n < vy, the class D,, can be
learned with accuracy € +n with respect to Ly distance using statistical queries of tolerance at least v —1).

Proof. Suppose we want to learn a distribution D € D,, given access to oracle SQP. We run the algorithm
for learning D up to accuracy € and replace every query SQ(x,y) by a query of the form SQD(X, v —n).
Denote by D the output of this algorithm. Then the same argument used above shows that L (ﬁ, D) <e
for some D’ € D such that Ly (D, D’) <1, and the result follows from the triangle inequality. O

Therefore, it turns out that our state-merging algorithm can learn distributions that are close to
being generated by PDFA.

Corollary 1.6.4. For any € > 0, the class of distributions PDFA,(E,n,pu, L, 7, ¢) for some n =
O(ev/n|X|) can be learned with accuracy O(e(1 + v/n|%|)) with respect to Ly distance using statisti-
cal queries, where v = min{u,e?mrc/n|S2L}.
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In conclusion, when a class of distributions can be learned using statistical queries, then distributions
in that class can also be learned in the presence of outliers, and distributions that are “almost” in the
class can be learned using the same learning algorithm. Of course, these results combined with the
simulation in Proposition [1.2.1] imply that similar results hold when learning algorithms are provided
with a large enough sample from the target distribution (plus maybe some outliers). It seems that in
the particular case of PDFA these results were not previously known.

1.6.2 Input Parameters to Algorithm

We will now devote a few lines to discuss the input parameters required by our algorithm for learning
PDFA using statistical queries. Recall that these are: desired accuracy ¢, alphabet ¥, number of states
n, distinguishability u, expected length L, and smallest non-zero stopping probability 7. Of these, €
can be arbitrarily chosen by the user. The rest are assumed to correctly represent the target distri-
bution. That is, the oracles SQ” and DIFFODO provided to the algorithm correspond to a distribution
D e PDFA(n, %, u, L, ).

Parameters n, 3, and p are usually required by most algorithms in the literature for PAC learning
PDFA, the only exception being [CGOS8|, where p appears in the sample bounds but is not an input to
their algorithm. Of course, ¥ can in principle be confidently estimated given a large enough sample;
in the case of SQ algorithms it needs to be given as input because the algorithm can not see examples
drawn from D. Our lower bounds show that p is indispensable, though it may be possible to devise a
cross-validation-like scheme to infer a lower bound on the true p. Something of this sort will be done
in Chapter |3| in a different context. Designing such strategy in the SQ framework is left as an open
problem. This same reasoning can, in principle, be applied to the number of states n.

Asking for the expected length L of D is very convenient for two reasons. First, estimating L using
only probabilities of events may be possible but not really practical. If the SQ framework is understood
as a proxy to information extracted from samples, then it is reasonable to ask as input something that
can be easily estimated from a sample but that can be cumbersome to estimate using only statistical
queries. Using that the length of strings generated by a PDFA is sub-exponential (Lemma and the
concentration inequality for sub-exponential random variables given in Lemma[A1.F] it is not difficult to
give a bound on the number of examples needed to obtain an accurate estimate of L. The second reason
is that using L in the learning proof greatly simplifies some of the bounds. Palmer and Goldberg in
[PGO7] show that PDFA can be learned in terms of total variation distance without the need to know L.
Theirs is a technically interesting result, but given that L can be easily estimated from a sample and its
use greatly simplifies the learning bounds, we have decided to use it for the sake of simplicity. It is worth
mentioning here that it was shown in [CT04a] that a bound on the expected length of strings generated
from any state in a PDFA is required for PAC learning PDFA in terms of relative entropy. Though
unfortunately they also call their parameter L, our L is just the expected length of strings generated
from the initial state.

The role of (a lower bound to) the smallest non-zero stopping probability 7 may appear less clear
at first sight. This parameter has not been used in any previous analysis, and may in principle be
difficult to estimate. However, it turns out that allows for a simpler analysis which stresses the thesis
of Lemma [1.4.2} a relative approximation in a large enough set is enough for learning in terms of total
variation distance. The need for 7 as an input can be relaxed at the expense of a slightly more complex
algorithm and an increase in the length of our learning proof. Since this results only in a technical
improvement bearing no new insights into the problem, we have opted for using 7 in our presentation.
If the algorithm is presented in the course of a lecture, the problem of removing 7 from the input can
be left as homework.

1.6.3 Meaning and Tightness of the Bounds

The main message of this chapter is that all state-merging algorithms in the literature for PAC learning
PDFA can be interpreted as SQ algorithms. Together with the lower bounds in Section [L.5| we see that,
despite the observation in [KMRRSS94| that PDFA contain the hard to learn class of noisy parities, it is
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parities themselves that are hard to learn with state-merging methods. That is, state-merging methods
have a great difficulty in learning PDFA that contain deep highly symmetric structures; precisely those
which yield exponentially small distinguishabilities.

On the other hand, the results are somewhat reassuring, in the sense that u provides a rather fine-
grained measure of complexity for the whole class of PDFA. Examples with very small y seem to be
pathological cases which are hard to learn — and remember that such cases must exist due to the lower
bounds — or simply cases where some other method different from state-merging might do better. In
contrast, using state-merging methods in cases where the distinguishability is large seems the best option,
and yields a fast, statistically efficient method, which has the advantage of producing as output a PDFA
guaranteed to contain the relevant substructures from the target. It will become clear in the second part
of this dissertation that proper learning of complex probability distributions is not always possible. This
means that sometimes it is easier to find a function f : ¥* — R that approximates the target distribution
when we do not impose that f is given by a probabilistic automata. However, whenever it is possible,
proper learning is always a desirable property.

Of course, it is not difficult to construct examples with exponentially small distinguishability which
are easy to learn using other methods based on statistical queries other than state-merging. For every
h € {~1,0,+1}" define the conjunction Cy : {0,1} — {0,1} as Cp(x) = \;gpn x| with the conventions
29 =1,0"1 =1 and 17! = 0. We construct the class of distributions C,, following the same schema used
for defining D,,, but using conjunctions instead of parities. Note that each D;, € C,, can be represented
with a PDFA of O(n) states and distinguishability ©(1/2™). However, it is well known that the class of
all conjunctions over n variables can be efficiently learned using statistical queries, and a trivial reduction
shows that C,, can also be learned using poly(n) statistical queries with tolerance poly(1/n). That is,
our lower bound of Q(1/u'~¢) for every ¢ > 0 applies when trying to learn the class PDFA(n,u) of
all PDFA with n states and distinguishability p, but not when trying to learn an arbitrary subclass of
PDFA(n, p).

The conclusion is that p is a measure of complexity well suited to measure hardness of learning with
state-merging methods, but it does not characterize hardness of learning in general. In this sense p
resembles the VC dimension used in statistical learning, though with some reserves. For example, VC
dimension characterizes the statistical complexity of learning with any algorithm, while 1 measures the
computational complexity of finding the underlying DFA of a PDFA by greedily distinguishing states.
We note here that this problem is known to be easy in statistical terms, since it was shown in [AW92]
that a sample of polynomial size suffices to determine the best transition structure with a fixed number
of states. Ideally, however, one would like a measure of complexity, say fi, that provably characterizes
the complexity of learning any subclass of PDF.A. Namely, if D C PDF A is any large enough subclass,
we would be interested in a result saying that any algorithm that learns D uses at least {2(fip) examples
(or queries), where fip measures the complexity of the class D. A possible line of work in this direction
would be adapt one of the several notions of dimension used in concept learning to distribution learning.
Furthermore, finding learning algorithms that provably match this hypothetical lower bound in terms
of i would be another interesting, practically relevant problem. A (small) step in this direction will be
described in the following chapter with the introduction of prefix-distinguishability.

At a more quantitative level, we want to remark that there is still a gap between our upper and
lower bounds on the complexity of learning PDFA with statistical queries. In particular, we can com-
pare Theorem with Corollary Note that our algorithm is (u,1/n)-bounded — we ignore the
dependence on [X| and ¢ here — and makes O(n?) Lo, queries. According to the lower bound it must
have a?$% = O(un®™M) but it turns out that our algorithm has a?$% = O(u?n°™M)) which is smaller by
a factor of u. It is an open question whether this gap is an artifact in our lower bound or whether more
efficient algorithms in terms of u can be designed for learning PDFA.
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Chapter 2

Implementations of Similarity
Oracles

One of the key observations from last chapter is that being able to compare two distributions over >*
and determine whether they are equal or not is the cornerstone of state-merging algorithms. Though we
showed how to simulate L., queries using samples in Proposition broadly speaking last chapter’s
approach was mostly axiomatic with respect to the testing procedure, in the sense that its existence was
assumed and given in the form of an oracle. In this chapter we dwell upon the particular problem of testing
similarity between two distributions D and D’ given i.i.d. samples S and S’ from both distributions.

We begin with a general description of the problem in the context of property testing. Instead of
making comparisons based on the L., distance we used in previous chapter, we introduce a less coarse
distance measure denoted LB, which in many cases will lead to more sample-efficient tests. The problem
of testing similarity between distributions is reduced in Section to that of constructing confidence
intervals for the true distance LE_(D, D’).

The rest of the chapter gives constructions of such confidence intervals and provides an experimen-
tal evaluation of the tests obtained using different constructions. In particular, we provide a simple
construction based on uniform convergence bounds. After observing an asymmetry in this construction
which makes decisions on equality harder to make, we propose a test based on bootstrapped confidence
intervals that improves on this particular aspect. We finish the chapter with constructions of tests that
work only with summaries of the samples S and S’ instead of the samples themselves. This yields tests
whose memory requirements drops from O(1/u?) to O(1/u) and that can process samples on-line. These
tests will be useful in next chapter when we design state-merging algorithms for the data stream scenario.

2.1 Testing Similarity with Confidence Intervals

The main problem that we face in this chapter is to decide whether two distributions D and D’ are equal
or not based on observing a sample drawn from each distribution. We will begin this first section by
fixing some notation that will be used throughout the rest of the chapter. Then we introduce a notion of
distance between probability distributions over >* which is less coarse than the L., used in the previous
chapter. In general this will allow us to design tests that in some cases can make accurate decisions with
smaller samples. Finally we will describe a general strategy for constructing the desired tests based on
confidence intervals. The rest of the chapter will then be devoted to different methods for obtaining such
confidence intervals.

Suppose D and D’ are two arbitrary distributions over ¥*. Let S be sample of m i.i.d. examples drawn
from D and S’ a sample of m’ i.i.d. examples drawn from D’. For any event A C ©* we will use S(A) to
denote the empirical probability of A under sample S, which should in principle be an approximation to
the probability D(A). More specifically, if for any 2 € ¥* we let S[x] denote the number of times that =
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appears in S = (z!,...,2™), then

S(A) = % S Sl = %anm .
=1

z€A

The sizes of S and S’ will come into play in the statement of several results. The two following related
quantities will be useful:

, mm’

/!
M=m+m', and M (\/%-F\/WV .

In order to make quantitative statements about the distinguishing power of a certain statistical test
we need a measure of distance between probability distributions. Instead of the supremum distance L,
used in Chapter (1} here we will use the so-called prefiz-Loo distance which we denote by LE_ . It is defined
as follows:

L2 (D,D’") = sup |D(zX*) — D'(z¥")| .
reEX*

It is shown in Appendix [A75 that LE_ is indeed a metric. Proposition in that same section shows
that in general one has L. (D, D) < (2|X| + 1)LE (D, D’). This shows that using LE_ instead of L., as
a measure of distinguishability one may, in the worst case, lose a constant factor in the sample bounds
that will be given in the rest of the chapter. Furthermore, we also provide in Appendix a class of
distributions generated by PDFA where Lo, is exponentially smaller that LB . Altogether, these two
bounds justify the use of LB as a metric for designing similarity tests on distributions over X*. This
particular measure was used in [RST98] for learning acyclic PDFA and then in |[CGO§| for learning
general PDFA.

The goal of our tests will be to decide whether S and S’ come from the same distribution — D = D’
— or from different distributions. This problem can be arbitrarily difficult if D and D’ are allowed to
be different but arbitrarily close to each other. In order to formalize this intuition, one can parametrize
the complexity of the problem in terms of the smallest distance between D and D’ that the test must
be able to distinguish. A natural framework for such formalization which is used frequently in property
testing is the notion of a promise problem [Gol06).

Let pu > 0 be a distinguishability parameter. Then given S and S’ a LE similarity test has to decide
whether D = D’ or D # D’ under the promise that if D # D’ then LB (D, D’) > p. Introducing the
promise on p makes the design and analysis of correct testing algorithms much easier. In practice one
assumes that the algorithm can answer arbitrarily when the promise is not satisfied. Sometimes it is also
useful to introduce a third possible output representing the fact that the test is unable to decide which
is the case given the current samples. This may happen, for example, when S or S’ are too small. Of
course, it may also happen sometimes that by chance the samples S and S’ are misleading. Thus, testing
algorithms usually accept a confidence parameter ¢ and certify that their answer (if any) is correct with
probability at least 1 — § over the sampling procedure and any internal randomization in the test.

However, this setup requires a bit of caution. Asking for an algorithm that does not fail very often
and that is allowed to answer “I don’t know” may result in a very conservative test that does not make
a decision until it is absolutely certain about the correct answer. Though perfectly correct, such a test
might not be very useful for practical purposes, where one is interested in deciding confidently as soon
as possible. In the literature on statistical hypothesis testing this leads to the notion of the power of
a test. Informally, we say that a test is more powerful than another if the first test is always able to
make a correct decision using less examples than the second test. In general, bounding the power of a
test may be very difficult, and even when it is possible the bounds may not be tight enough for practical
purposes. Since power comparisons are usually motivated by the need to choose a particular test for
practical applications, a set of experiments providing such comparisons in an empirical setting will be
presented in Section 2:6] In most cases these experiments are much more informative than theoretical
bounds. That is because in tasks where uniformly most powerful tests do not exist, some tests may be
better than others depending on the distributions D and D’. And this can be observed better through
experimentation.

36



The main tool we will use to build similarity tests are confidence intervals. Suppose p, = LE_ (D, D’)
and let 0 < § < 1 be a confidence parameter. An upper confidence limit for u, at confidence level
§ computed from S and S’ is a number iy = fiy(S,S’,§) which for any two distributions D and D’
satisfies py < iy with probability at least 1 — 4. Similarly, we define a lower confidence limit [,
satisfying fiy, < u, with the same guarantees. Using these two quantities one can define a confidence
interval [fir, ] which will contain u, with probability at least 1 — 2.

Given a confidence interval [fir, fiy] for p, and a distinguishability parameter u it is simple to con-
struct a similarity test as follows. If iy < p then decide that D = D’ since we know that (with high
probability) p. < g which, by the promise on p, implies p, = 0. If fiz, > 0 then decide that D # D’ since
we then know that (with high probability) p, > 0. If none of the conditions above hold, then answer “I
don’t know”.

The problem of similarity testing has thus been reduced to that of obtaining confidence intervals
for u, with a desired level of confidence. We will give several constructions of those in the rest of the
chapter.

2.2 Confidence Intervals from Uniform Convergence

In this section we give confidence limits for LE_(D, D') using Vapnik—Chervonenkis bound on the uniform
rate of convergence of empirical probabilities to their expectations over a fixed (possibly infinite) set of
events. From our perspective, VC bounds provide a combinatorial framework for applying a union bound
argument to bound the probability that none of an infinite family of events occur, provided that the
family of interest satisfies certain properties. See Appendix for more details and Appendix for
relevant calculations regarding shattering coefficients. VC theory has other numerous applications in
statistical learning theory, see [Vap99)] for example. Bounds in the same spirit as the ones given here, but
proved using different techniques, have appeared in the context of PDFA learning in the works [RST98}
CT04a; PGOT7: |CGOS|.

Let D and D’ be two distributions over ¥* with p, = LB (D, D’). Suppose we have access to two
ii.d. samples S and S’ drawn from D and D’ respectively, where m = |S| and m’ = |S’|. We will use the
empirical estimate i = LB (S,5’) to determine whether D and D’ are equal or different. In particular,
we will give a confidence interval for p, centered around fi. For any 0 < § < 1 define

A() = ]\iln<16;”> (2.1)

Then we can prove the following two propositions giving confidence limits for p, of the form i+ A(9).
Proposition 2.2.1. With probability at least 1 — § we have p, < i+ A(0).

Proof. Let us write A = A(d) for some fixed §. The result follows from a standard application of
the Vapnik—Chervonenkis inequality showing that P[g < p, — A] < 6. First note that by the triangle
inequality we have LP (S,S") > LB (D,D’) — LE (D, S) — LE (D', S"). Therefore, i < p, — A implies
Le (D,S)+1E (D', S") > A. Now for any 0 < v < 1 we have
Plji < 1. — A] < PILE,(D, S) + LE(D', §) > A]
< PILE(D,S) > 7A] + PILE (D', ') > (1 - 7))
S 16m67m'y2A2/8 + 16m/67m'(177)2A2/8

=16Me M2/ =5 |
where we choose 7 such that m~y? = m’(1 — v)2. O

Proposition 2.2.2. With probability at least 1 — § we have p, > i — A(0).
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Proof. The argument is very similar to the one used in Proposition [2.2.1] Write A = A(§) for some fixed
d as well. We need to see that Plu, < i—A] < 4. Since LB (S,S") < LB (D,D")+1E (D, S)+LE (D, D),
then p, < fi— A implies LB (D, S)+LE (D, D) > A. Thus, the conclusion follows from the same bound
we used before. O

The conclusion is that [i—A(d/2), i+A(S/2)] is a confidence interval for p, at level §. It is interesting
to note that { depends on the contents of S and S’, but the size of the interval 2A(§/2) only depends
on the sizes m and m’. When m = m/, the size of this interval behaves like O(y/In(m)/m), which is
known to be optimal up to the O(y/In(m)) factor. Bounds with optimal asymptotic behavior can be
obtained using different techniques, e.g. chaining and covering numbers [DLO01]. However such bounds
are rarely of practical use for testing algorithms because the asymptotic advantage is only observed on
astronomical sample sizes due to the constants involved.

Propositions [2.2.1] and can also be used to quantify how many examples are needed at most to
make a decision with a test based on these bounds. Let m = m’ again. Assume first that g, = 0. Then
with probability at least 1 — 6/2 we will have i < A(§/2). Therefore, iy = i+ A(6/2) < 2A(5/2).
Thus, with high probability a decision will be made when 2A(§/2) < u or sooner, which implies m =
0(1 /1?). On the other hand, assume that p, > p. Similar arguments show that with high probability
b =0 —A(6/2) > pe —2A(6/2). Therefore, a decision will be made at the latest when 2A(6/2) < piy,
which implies m = O(1/u2).

These bounds expose a particular feature of the test which is often encountered in practice. Namely,
that deciding similarity is usually harder than deciding dissimilarity. This is because in the former case
one is always playing against the worst case u, = p, while in the latter larger values for p, require
smaller sample sizes. In some sense, the test is adaptive to the true (unknown) value of p, when it comes
to deciding dissimilarity. This will motivate the alternative upper confidence limit presented in next
section. The key idea is to obtain an alternative to i + A with a greater dependence on the contents
of S and S’, with the hope that this will help us make similarity decisions with smaller samples when
enough evidence of similarity is available.

2.3 Bootstrapped Confidence Intervals

In this section we describe an alternative upper confidence bound for . This will be based on the use
of a common technique in computational statistics: the bootstrap. The basic idea is to take a sample S
from some distribution D and simulate the process of generating new examples from D by sampling with
replacement from S. Via this process new bootstrapped samples are obtained, and these are then used
to obtain statistical information about a certain empirical estimate. This technique was introduced by
Efron [Efr79| and is very popular in non-parametric statistics. The asymptotic theory of the bootstrap
has been well studied in the statistical literature, see e.g. Hall’s book [Hal92]. However, general finite
sample analysis of Efron’s bootstrap seem to be inexistent.

We begin by introducing some notation and describing Efron’s construction of bootstrapped upper
confidence limits. This is basically the approach one would use in practice. Here, however, we deviate
a little from the classic approach and propose a modification to the method for which we can given
strict formal justifications and finite sample analyses. Both methods are compared in the experiments
of Section [2.6]

In the bootstrap setting, given an i.i.d. sample S from D with m = |S|, the first step is to con-
struct several bootstrapped samples by resampling S uniformly with replacement. In particular, we let
By, ..., B, be independent resamples from S, each of size m. The same is done for a sample S’ of size m/
from D', yielding resamples Bj,..., B.. of size m’. From these resamples we construct r bootstrapped
estimates for p,: let fi; = LB (B;, B}) for 1 <i <.

For the purpose of testing it is useful to consider these estimates sorted increasingly. Thus we will
write w to denote a permutation of [r] satisfying fi,1) < -+ < fiyy. Efron’s idea is then to use
flus(r(1—s)r]) @s an upper confidence limit for u, at level §. This is based on the observation that if
B; and B were independent samples from D and D’ respectively, the estimates [i; would be a sample
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from the distribution of the estimator i = LB (S,S’). In which case, enough estimates [i; would yield
an accurate histogram of this particular distribution, from which confidence upper limits for u, can be
obtained because the estimator fi is asymptotically unbiased; that is, Eg g/[4] — s when m and m’
grow to infinity.

Of course, the justification we have just given for the bootstrap is an asymptotic one. But since
we are interested in provably correct tests that work with finite samples, we need to quantify the error
probability of such tests for given sample sizes. In the following we show that it is possible to conduct a
finite sample analysis of an alternative test which is also based on the bootstrap estimates fi;. The test
relies on upper confidence limit for p, constructed using bootstrap estimates. The main technical tool
is Theorem whose direct consequence is Corollary which gives the desired upper confidence
limit.

The setup is as we just described. Let 0 < § < 1 be a confidence parameter and 1 < k < r the index
of an estimate in the series fi,,(1) < -+ < fi,(r). Let us define the following two quantities:

k 1 1
5) = inda, =1
O (9) O<I<?1i)52kz/r R {x, r or ((5 - x)} ’

) - [ Zn (200

Theorem 2.3.1. Let \/(r/2)In(1/0) < k < r. With probability at least 1—3 we have piy < i) +Ax(5).

The proof is given in Section The following corollary follows from a simple union bound.
Corollary 2.3.2. With probability at least 1 — § it holds that
e < min { iy + Ae(6/K) | /(20 (r/8) < k <7}

This corollary provides an alternative to Efron’s upper bound g, < fig([(1—s)]) Which comes with
strict finite sample guarantees.

2.3.1 Proof of Theorem [2.3.1]

Write A = Ag(6) and for 1 < ¢ < r define an indicator random variable Y; = 1;,<,, —a. It is clear that
if/lw(k) <pe—A,then Z=Y1+---+Y, > k.
The key observation for analyzing the bootstrap test described in this section is that once the sample

S is given the resamples Bi, ..., B, are mutually independent and identically distributed. Therefore,
conditioned on S and S’, the estimates jii, ..., i, are independent and Z is a sum of i.i.d. random
variables.

The first step in the proof is to analyze the expectation of these random variables given samples
satisfying a particular property. We will say that an i.i.d. sample S from D is t-good if LE_ (D, S) < t.
Then we write &(¢,t) to denote the event “S is t-good and S’ is t'-good”.

Lemma 2.3.3. For any 1 <i <7 andt,t’ > 0 such that t +t' < A it holds that
E[Y;|&(t, )] < 16Me M (A=i=t)?/8

Proof. Since all Y; are i.i.d. given S and S’, we consider only the case i = 1. Let B = By, B’ = Bj,
and Y = Y;. First we observe that events &(¢,t') and fi; < py — A imply that necessarily L2 (S, B) +
LE (S',B") > A —t—t'. Considering the samples S and S’ fixed and applying the Vapnik—Chervonenkis
inequality to the resampling processes from which B and B’ are obtained we can see that, for any
0<y <1,

PILE(S, B) + L& (S, B') > A —t — ] <P[LE(S, B) 2 vA — ] + P[LL, (5", B') = (1 = 7)A — 1]

< 16me ™A /8 4 1gmem (1-MA=)/8

39



Thus, choosing 7 such that m(yA —t)%2 = m/((1 — v)A — t)? yields
EY; |6t t)] =Pl < pe — A|S(t,¢)] < 16Me~ M (A—t=17/8
O

Proof of Theorem [2.3.} For any t > 0 let ¢/ = t\/m/m’. We denote by &(t,t') the complementary event
of &(¢,t'): “S is not t-good or S’ is not t’-good”. Then, by the Vapnik—Chervonenkis inequality,

P[&(t,1)] < 16me=™t"/8 1 16m/e™ /8 = 16Me™/8 |

Now let 0 < x, < & — e~ 2¥"/" be the solution to equation z, = k/r — V/(1/2r)In(1/(5 — ,)), which
maximizes the expression in O (8). Taking t = \/(8/m) In(16M/z,) we get P[&(¢,t')] < z4.
On the other hand, writing k& = nr, Hoeffding’s inequality combined with Lemma [2:3.3] yields

—M(A—t—t/)2/8)2

P[Z > nr ‘ 6(t,t/)} < 672’1“(777167716

Now note that our choice for ¢’ implies ¢t + ' = ¢ty/m/M’. Together with our choice for ¢ this implies
that

1 1
n- §1n<5—$*>

Thus, we see that P[Z > nr | &(t,t')] < § — z,, which yields

P[Z > k] < P&t +P[Z >k |&(tt)) <5 .

2.4 Confidence Intervals from Sketched Samples

A common drawback to all tests described so far is their need to store the whole sample in memory in
order to compute some statistic. Since in the case D = D’ samples of size Q(1/u?) are needed before a
decision can be made confidently, this implies a lower bound of the same order on the amount of memory
used by such tests. This rises the question of whether using this much memory is absolutely necessary for
confidently testing similarity. And the answer is no. It turns out that tests using just O(1/u) memory
can be designed. The key to such constructions is using statistics that can be computed from sketches
of the sample instead of the sample itself.

Sketches are basically data structures that receive items in the sample one at a time and process
them sequentially. After processing the whole sample, a sketch keeps a summary that contains only its
most relevant features. This summary can hen be used to efficiently compute some statistics of interest.
Interestingly, the sketch can process every item in the sample in constant time and the memory used by
the sketch only depends on the accuracy required to compute the desired statistics, i.e. it is independent
of the sample size. Concrete implementations of sketches will be discussed in the next chapter. In the
present section we shall adopt an axiomatic approach by just assuming that sketches exist and satisfy
a certain property. Then we will concentrate on how to implement similarity testing using information
contained in a sketch.

Let D be some distribution over ¥* and S a sample of i.i.d. examples drawn from D. The empirical
distribution defined by S can be interpreted as a function S : 2% — [0,1], where for A C ¥* the value
S(A) is the empirical probability of event A under sample S. A sketch is basically an approximation of
this function over a particular family of subsets of ¥*. Let 0 < v < 1. A v-sketch for S with respect to
LY is a function S : 2% — [0,1] such that L2 (S, S) < v.
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In some cases, using v-sketches for testing similarity of probability distributions is rather trivial.
Suppose S and S’ are samples from distributions D and D’ respectively. If instead of S and S’ we
only have access to their v-sketches S and S', then we can compute a statistic f, = L&(S‘,S”). By
definition of v-sketch we have |, — L2 (5,S5")| < 2v. Therefore, trivial modifications of the proofs of
Propositions and yield the two following results for testing with sketches using this statistic.
The definition of A(4) is the same of Equation (2.1)).

Corollary 2.4.1. With probability at least 1 — § we have . < fi, + 2v + A(0).
Corollary 2.4.2. With probability at least 1 — § we have p, > i, — 2v — A(0).

Based on these results, it is easy to obtain a provably correct similarity test for p, using memory
O(1/u) by choosing, for example, v = p/4; that is because there exist v-sketches using O(v) memory.
Details will be given in Section Now we concentrate on the possibility of adapting the bootstrap
approach from Section to a sketching setting.

Deriving a test based on the bootstrap using sketches is much less straightforward than the case
based on uniform convergence bounds. The main obstruction is the need to sample with replacement
from a sample S to obtain bootstrapped samples By, ..., B,.. Obviously, the whole sample S needs to
be stored in order to perform (exact) resampling. The rest of this section describes a method to obtain
bootstrapped sketches Bh ..., B, and derives a similarity test based on those sketches. We also state a
theorem about confidence intervals built from bootstrapped sketches; full proofs are given in the next
section.

Let  be some fixed integer. Suppose that an i.i.d. sample S = (x1, ..., &, ) from some distribution D
is presented to an algorithm one example at a time. The algorithm will construct r sketch-bootstrapped
samples By, ... , B, as follows. For each element z; € S we drawn r indices i1, . .. ,ir € [r] independently
at random from the uniform distribution over [r]. Then a copy of z; is added to the sketch Bij for
1 < j < r — repetitions are allowed. Note that this sampling process matches several first order mo-
ments of the original bootstrap using sampling with replacement. In particular, the expected number
of elements introduced in each sketch is m, and the expected number of occurrences of each string z
in a particular sketch is S[z]. The same process is repeated with a sample S’ from distribution D’ and
sketch-bootstrapped samples BY, ..., B! are obtained.

Instead of r statistics like in the original bootstrap setting, in the sketched bootstrap we are going to
compute 72 statistics. Since the main motivation for considering the use of sketches is to save memory,
and it turns out that memory usage grows linearly with r, this approach allows us to obtain more
statistics with less memory, at the price of increasing the dependencies between them. Thus, for any
i,j € [r] we compute statistic fi; ; = Lgo(Bi, B;) As before, we will sort these statistics increasingly and
obtain fi,(1y < -+ < fiy(r2), where now w is a bijection between [r2] and [r] x [r].

In the same way we did before, an heuristic based on Efron’s bootstrap can be applied to this collection
of statistics to say that fi,(f(1—s)27) is an upper confidence limit for ju, at level 6. However, in order to
obtain formally justified bounds based on finite sample analyses, we proceed in a different direction. Let
1<k <72 0< <1, and define the following.

8 32M 192 80073 M?2
Then the following theorem gives an upper confidence limit for u, based on the sketch-bootstrapped
statistic fig(x)-

Theorem 2.4.3. Let 1 < k < min{r?,30r'%76=47M}. With probability at least 1 — § we have p, <
oy + 21 + Ag(9).

Using this result, a union bound argument automatically yields the following upper confidence limit
based on the whole set of statistics.

Corollary 2.4.4. With probability at least 1 — § it holds that
e < min {ﬂw(k) +2v + Ag(9) ’ 1<k< 7“2} .
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2.5 Proof of Theorem [2.4.3

Our goal is to prove that for any 1 < k < min{r?,30r%/76=%/7M} it holds that P[u, > fi,x) + A'] <6,
where A" = 2v 4+ A and A = Ag(0). For 1 <i,j < r we write Y ; = 13, . <y, —ar and Z = Z” Y ;.
Since fi,1) < ... < fiy(r2) are a reordering of fi1 1, ..., fi,,» we have that by definition fi,p) < pe — A’
implies Z > k.

Recall the definition ji; ; = L2 (B;, B;) and suppose t > LB (D, S) and ¢’ > LB (D', S5’). Then by the
triangle inequality and the definition of v-sketch we have, for any 1 <4,j <1r:

e < LE(S, Bi) + LB, (8", B)) +2v +t +1 .

Therefore, if fi; j < p, — A, then L2 (S, B;) + L5, (S’, Bj) > A — (t +t'), which in turns implies that at
least one of L, (S, B;) > yA —t or LB (', B}) > (1 — y)A — ¢’ holds, where 0 <y < 1 is arbitrary. For
fixed v, let us define indicator variables X; = 1y (g p,)>ya—¢ and Xj’- = HL&(S',B;.)z(l—w)A—t“ Then,
the chain of implication we just derived can be rewritten as Z; ; < X; + X]‘. Furthermore, we get
Z<r(>; X+ Zj X)) =r(X+X').

Like we did in the proof of Theorem|[2.3.1] for any ¢ and ¢’ we let &(¢,¢') denote the event “LE_ (D, S) <
tand LE_(D’,S") < t””. Note that this event depends only on the sampling from D and D’ used to obtain
samples S and S’ and is independent of the process generating the sketched bootstrapped samples once
S and S’ are given. Thus, we have shown that for any ¢,t', 0 <y < 1, and 0 < 8 < 1, we have

Plps > ﬂw(k) + 4 | ®(t7t/)] <PZ>k| ®(tvt/)]
<Pr(X+X')>k|6(,1)
<PX > Bk/r | &(t,1)] +PX" > (1 - B)k/r| &(t, )] (2.2)
In order to bound the terms in this last expression we will need the two following lemmas.
Suppose S is a fixed sample of size m over X* and that B = B; is a stream-bootstrapped sample.

Lemma 2.5.1. For any p > +/(481n2)/m one has P[LE (S, B) > p] < 12mexp(—mp?/48).

Proof. Note in the first place that since S contains at most m different strings, a shattering argument
shows that the function f(z) = |S(x¥*) — B(xX*)| can take at most 2m different values when x runs
over all possible strings in ¥*. Therefore by a union bound we have

P[LE (S, B) > p] < szcré%}i P[|S(zX*) — B(zX*)| > p] -
Next we bound the probability in the right hand side for an arbitrary string = such that S[z¥X*] > 0
— since otherwise the probability is zero. We begin by writing
P[|B(zX*) — S(zX*)| > p| = P[B(2X*) > S(xX*) + p] + P[B(zX*) < S(zX*) — p] . (2.3)
Let v > 0. We bound the first term as
P[B(xX*) > S(zX*) + p] < P[B(xX*) > S(xX*) +p | |B| > (1 —y)m] + P[|B| < (1 —~v)m] ,

where the second term is at most exp(—y?m/2) by the Chernoff bounds. The first term can be bounded
by
P[B(zX*) > S(aX*) +p | |B| > (1 —y)m] <
PIBIzS*] > (1= )8z + p(1 = y)m | [Bl > (1 - 7)m] <
P[BIo*] > (1= )S[e5*] + p(1 — )]
P[B] > (1 —~)m] '

By Chernoff the denominator is at least 1—exp(—+?m/2). Now, assuming that v < (1/2)(14+S[zX*]/pm) ™1,
we have y(1 + pm/S[zX*]) < pm/2S[x¥*]. Therefore, using S[z¥*] < m, Chernoff bounds yield

P[B[zX*] > (1 —)S[zX*] + p(1 —y)m] < e—mp?/12
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Thus, choosing v = p/4 we obtain that for p? > (32In2)/m it holds
P[B(zX*) > S(25*) + p] < 3¢ ™7°/32
A similar argument for the other term in shows that if p?> > (481n2)/m one has
P[B(2X*) < S(z%*) — p| < 3¢ ™" /48
O

Suppose once again that S is a fixed arbitrary sample of size m. For 1 < i < r let B; be stream-
bootstrapped samples of S. Pick § > 0 and write X; 9 = 11z (5 pB,)>¢- Then define Xy = > Xio-

Lemma 2.5.2. For any x> 0 and 0 > \/(48/m) In(12v/2m/k) one has

200m? mb?
IED[XQ > HT] S 5. exp <—192)

R=T

Proof. The proof proceeds by bounding the variance of Xy using the Efron—Stein inequality, and then
plugging the corresponding bound into the Chebyshev—Cantelli inequality.

For s € [r] and ¢t € [m] let Usy be ii.d. uniform random variables on [r]. Then we can think of
Xo = Xo(U11,-..,Uprm) as a function of these random variables representing the tosses of strings in S
into the bootstrapped sketches. Furthermore, for s € [r] and ¢ € [m] let U], denote an independent copy
of each Us ;. We write X(, ot = = Xo(Ur1,---,Ul s+, Urm) to denote the value of the function where Uy ;
has been replaced by U;t We will use the notation B/, to denote the stream-bootstrapped samples
obtained by these alternative tossings.

Note that Xj , , is the number of sketches such that LE (S, B) > 0, where only one of the tosses has
changed with respect to Xg. If we write Us; = i and U, = j, then only the values in X and X
may have changed. Therefore, by the Efron—Stein 1nequahty [BLB04] and symmetry with respect to the
choice of s and t, we have

1,8,t

vIXo) < S E((Xo ~ Xp,.,)]

mr
= 7]E[(Xi,0 + Xj0— X~ ;,9)2]
< 2mr(P[Xig # X gl + P[Xj0 # Xj6l) -

To bound the quantity above observe that if X; o # X;, then L5 (S, B;) must be close enough to
the threshold € in order to cross it by removing only one example. To see how close to the threshold
LE (S, B;) needs to be note that by the triangle inequality we have

ILE.(S, Bi) — LE (S, B))| < L%, (Bi, By)

where now B] denotes the ith stream-bootstrapped sample obtained by a tossing that differs only in
a coordinate that was originally assigned to B;. Thus, since B; is obtained from B; by removing a
copy of ¢, it is easy to see that LB (B;, B;) < 1/(|B;| — 1). Therefore, X; 9 # X; , necessarily implies
|L2 (S, B;) — 0| < 1/(]B;] — 1), and in particular

P[Xi9 # Xi o] <PLE(S,Bi) 20— 1/(|1Bi| - 1)] .
Let v >0 and 7 = ((1 —y)m — 1)~!. We can bound the probability above as

P[LE(S,Bi) = 6 — 7]

PILE(S, Bi) 2 0 = 1/(|Bil = D] < PlIBil < (1 =y)m] + =g m =
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Now, by Chernoff bounds the first term is at most exp(—m~?/2) and the denominator in the second
term is at least 1 — exp(—m~?/2). Furthermore, assuming v < (m — 1 —20~1)/m, we have 7 < 6/2 and

Lemma yields
PLE. (S, B) > 6 — 7] < 12me™™@/27/48

when 02/4 > (481n2)/m. Since this last restriction implies m > 4/6 + 2, we can choose v = 1/2 and
obtain

P[Xip # Xio] < 25 mem(0/2)?/48
Altogether, the same arguments yield an identical bound for P[X; g # X 5,0], from which it follows that
V[Xp] < 100m2re—m(0/2)7/48

for 6%/4 > (481n2)/m.
Now, by linearity of expectation and Lemma we have

E[Xy] = rP[LE,(S, B) > 0] < 12mre ™0 /%

when 62 > (481n2)/m. Furthermore, if §2 > (48/m)In(12v/2m/k), then E[X4] < kr/+/2. Thus, under
this condition, the Chebyshev—Cantelli inequality yields

VXl 200m? 002

PXo > nr] < (kr —E[Xp])2 — K2r

O

Note that the events considered in Lemmas and depend only on the process that samples
the stream-bootstrapped samples B; and B;. Thus, we can proceed to bound the terms in (2.2]) as
follows:

200m>r3 A p2
P[X > Bk/r | &(t, )] <P[X,a_t > (Bk/r?)r] < e (ya=t)7/192

Obviously, we also have

200m’2r3 ’ N2
]P[X/ > (1 N B)k/?’ | ®(t, t/)] < We—m (1=y)A—t")*/192 )

Now, by setting t' = t\/m/m/, v = vm//(y/m +vVm’), and f = m/(m + m’), we obtain

400301 e~ M'(A=7)%/192

Pls > flogry + A" 8(8:)] < — :

where 7 = ¢/v and we require that A > 7+ \/(48/M/)1n(12\@r2M/k). Finally, recalling Equation
(2.3.1) from the proof of Theorem and choosing 7 = 1/(8/M”)In(32M/5), the definition of A yields

Plie < fiogry +A'] <
P& (t, )] + Plus < fio) + A" | &(t,1')]

400r°M? oM (A=7)%/192 _

—M'7%/8
< 16Me + 2

0 .

The condition on k follows from the constraint /(192/M") In(800r3 M2 /5k2) > \/(48/M’) In(12v/2r2M /k).
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2.6 Experimental Results

In this section we report some experimental results showing that bootstrap-based tests for similarity
testing behave very well in practice. In particular we compare a test based on upper confidence bounds
obtained with Efron’s bootstrap with the tests derived from Propositions and

We begin by describing the experimental setup. First we fixed an alphabet ¥ with |2| = 4 and defined
four PDFA with two states realizing four different distributions over ¥*: Dg, Dg.05, Do.1, and Dy o5.
Those were designed in such a way that LE_(Dg, Dg.05) = 0.05, LB (Dg, Dg.1) = 0.1, and LE_(Dy, Dg.25) =
0.25. Using samples generated from these distributions we tested the power of bootstrap tests under
different distinguishability conditions. Specifically, for different values of m, we obtained samples Sy
from Dy and S, from D, with |So| = [S,| = m for all p € {0.25,0.1,0.05,0}. Then we computed
the empirical estimate i = L2 (Sp,S,). Furthermore, for some fixed  we also obtained bootstrapped
samples By,...,B, from Sy and Bf,...,B] from S,. Then we used those to obtain bootstrapped
estimates fi; = LB (B;, BY) for i € [r]; we assume without loss of generality that 1 < --- < fi,.. Using all
this information, we then picked some confidence parameter 0 < § < 1 and computed upper bounds for
L8, (Do, D,,) of the form fi+ A(d) and fif(1—s)1. We also computed the lower bound i — A(5). All these
was done for all values of r € {20, 50,100} and § € {0.25,0.1,0.05}. The values of m depended on each
choice of p. In particular, we picked m =t -m,, for t € {1,2,...,25}, where mg.25 = 800, mo.1 = 5600,
mo.05 = 10000, and mg = 4000. These m, where chosen to ensure that a test based on VC bounds
is able to make the correct decision for m = 25m,. For each of these experiments, we made K = 20
independent repetitions. Results are given in Table and Figure [2.1

For the case p > 0 we wanted to study the rate of false positives of the following test based on
bootstrap estimates: decide that two distributions are similar when fif;_s),) < p. That is, we are
interested in seeing how often do the bootstrap upper bound fall below the true p. In particular, this
test has to compete against the following test based on VC bounds: decides that two distributions are
different when g — A(0) > 0. In this scheme, we see a false positive whenever firq_s),1 < p happens
before i — A(6) > 0. In particular, for a sequence of estimates ji — A(d) with growing m, we found
Meut = teut - My such that the average of i — A(d) over the K experiments was positive. Then we
counted how many times, for 1 <t <ty and 1 < k < K, the upper bound fif;_s),7 fell below yu; we
denote this count of “fails” by F),. Furthermore, we wanted to know how smaller than p can fif_s),
become. Thus, we computed the minimum [i,,;;, of this quantity over the same range of ¢t and k. These
results are detailed in Table Also, Figure @ shows the evolution of the average of fif(1_s),] over
the K experiments for different values of m. Overall we observe that the behavior of the bootstrap tests
is very good, even for small values of . In particular, we observe in almost all cases a difference of one
order of magnitude between the confidence parameter and the estimated false positive rate. We also see,
as expected, that for smaller values of u the test tends do commit more errors. However, such errors
are never very significant for small values of §, since we see in the table that fi,;, is never much smaller
than g in those cases.

When p = 0 we were interested in comparing the upper bounds provided by bootstrapped estimates
with the ones obtained via VC bounds. We can see in Figure [2.I0] that bootstrap bounds are much
tighter and converge faster to zero by a factor of about 10. Thus, they provide a tool for deciding that
1 is below a certain threshold with less examples than required by VC bounds. In Figures and
we compare the effect of » and ¢ in the behavior of these upper bounds. We observe that all cases have
similar variances which decrease when the sample sizes grows. In terms of the mean we see that r = 20
yields slightly less stable estimates than r = 100.

Overall, we can conclude that tests based on Efron’s bootstrap are a promising tool for testing
distribution similarity in state-merging algorithms. We also note that such tests behave very well for
moderate parameter choices, which allows for efficient testing with moderate sample sizes.
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12 Meut ﬂmin F,u (Ktcut) F;L/Ktcut

0.25 | 6400 | 0.235 7 (160) 0.044

0=0.25|0.10 | 44800 | 0.097 13 (160) 0.081

0.05 | 210000 | 0.045 | 25 (420) 0.060

0.25 | 7200 | 0.242 4 (180) 0.022

r=20 | §=0.10 | 0.10 | 50400 | 0.098 5 (180) 0.028
0.05 | 220000 | 0.047 11 (440) 0.025

0.25 | 7200 | 0.243 | 4 (180) 0.022
§=0.05| 0.10 | 50400 | 0.098 | 3 (180) 0.017
0.05 | 230000 | 0.047 | 8 (460) 0.017
4 (
(

0.25 | 6400 | 0.239 160) 0.025
0=0.25|0.10 | 44800 | 0.097 8 (160) 0.050
0.05 | 210000 | 0.044 | 23 (420) 0.055

0.25 | 7200 | 0.246 5 (180) 0.028

r=>50 | §=0.10 | 0.10 | 50400 | 0.099 3 (180) 0.017
0.05 | 220000 | 0.047 6 (440) 0.014

0.25 | 7200 | 0.250 0 (180) 0.000

6 =20.05 | 0.10 | 50400 | 0.099 1 (180) 0.006

0.05 | 230000 | 0.048 3 (460) 0.007

0.25 | 6400 | 0.235 6 (160) 0.037

0=0.25 | 0.10 | 44800 | 0.096 11 (160) 0.069

0.05 | 210000 | 0.046 | 24 (420) 0.057

0.25 | 7200 | 0.247 5 (180) 0.028

r=100 | 6 =0.10 | 0.10 | 50400 | 0.099 3 (180) 0.017
0.05 | 220000 | 0.047 | 10 (440) 0.023

0.25 | 7200 | 0.250 1 (180) 0.006

6=0.05 | 0.10 | 50400 | 0.100 0 (180) 0.000

0.05 | 230000 | 0.049 5 (460) 0.011

Table 2.1: Experimental results comparing different parameter choices for bootstrapped upper bounds.
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Figure 2.1: Experimental results comparting VC and bootstrap bounds. Averages and standard devia-
tions over 20 repetitions. @ Lower bound with VC bounds and upper bounds with bootstrap r = 20, 100,
for 4 = 0.05 and § = 0.05. (]E[) Upper bounds with VC and bootstrap with » = 100, 4 = 0, and § = 0.05.
@ Bootstrap upper bounds with » = 20 and g = 0. @ Bootstrap upper bounds with » = 100 and
w=0.
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Chapter 3

Learning PDFA from Data Streams
Adaptively

In a data streams scenario, algorithms can only access data in the form of a sequence of examples
that must be processed on-line using very little time and memory per example. It turns out that this
computational model describes a rather natural framework in which several real-world problems related
to network traffic analysis, social web mining, and industrial monitoring can be cast.

Most algorithms in the streaming model fall into one of the following two classes: a class contain-
ing primitive building blocks, like change detectors and sketching algorithms for computing statistical
moments and finding frequent items; and a class containing full-featured data mining algorithms, like
frequent itemsets miners, decision tree learners, and clustering algorithms. A generally valid rule is that
primitives from the former class can be combined for building algorithms in the latter class.

In this chapter we design a new state-merging algorithm for learning PDFA in this demanding algo-
rithmic paradigm. In particular, we will describe algorithms in both of the categories mentioned above,
and use them to design a complete learning system that, in addition to learning PDFA using very little
memory and processing time per example, will be able to detect changes in the distribution that gen-
erates the stream and adapt the learning process accordingly. Regarding the state-merging component,
the two main contributions of this chapter are the design of an efficient and adaptive scheduling policy
to perform similarity tests as soon as enough information is available, and the use of sketching methods
to find frequent prefixes in streams of strings which yield a PAC learning algorithm for PDFA using
O(1/u) memory, in contrast with the usual O(1/u?) required by batch methods. Other novel contri-
butions include a parameter search strategy that discovers the number of states and distinguishability
of an unknown target PDFA, and a change detector module that can determine when the distribution
generating the stream has changed.

The chapter begins by recalling the basic facts about the data stream model, and then proceeds to
give a high-level description of our system for learning PDFA in this model. Details on the individual
building blocks of this system come next. In particular, we present a sketch for finding frequent prefixes
in a stream of strings, an adaptive state-merging algorithm, a parameter selection strategy fulfilling the
restrictions of the data stream paradigm, and a change detector with guarantees on the number of false
negatives and positives.

3.1 The Data Stream Framework

The data stream computation model has established itself in the last fifteen years for the design and
analysis of algorithms on high-speed sequential data [Agg07]. It is characterized by the following as-
sumptions:

1. The input is a potentially infinite sequence of items 1, zs,...,¢,... from some (large) universe
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X.

2. Item x; is available only at the ¢th time step and the algorithm has only that chance to process it,
probably by incorporating it to some summary or sketch; that is, only one pass over the data is
allowed.

3. Items arrive at high-speed, so the processing time per item must be very low — ideally, constant
time, but most likely, logarithmic in ¢ and | X]|.

4. The amount of memory used by algorithms (the size of the sketches alluded above) must be
sublinear in the data seen so far at every moment; ideally, at time ¢ memory must be polylogarithmic
in t — for many computations, this is impossible and memory of the form ¢¢ for constant ¢ < 1 may
be required. Logarithmic dependence on | X]| is also desirable.

5. Approximate, probabilistic answers are often acceptable.

A large fraction of the data stream literature discusses algorithms working under worst-case assump-
tions on the input stream, e.g. compute the required (approximate) answer at all times ¢ for every possible
values of z1,...,x; [LZ08; Mut05]. For example, several sketches exist to compute an e-approximation
to the number of distinct items in memory O(log(¢|X])/e). In machine learning and data mining, this
is often not the problem of interest: one is interested in modeling the current “state of the world” at all
times, so the current items matter much more than those from the far past [Bif10;|Gam10|. An approach
is to assume that each item x; is generated by some underlying distribution D; over X, that varies
over time, and the task is to track the distributions D; (or its relevant information) from the observed
items. Of course, this is only possible if these distributions do not change too wildly, e.g. if they remain
unchanged for fairly long periods of time (“distribution shifts”, “abrupt change”), or if they change only
very slightly from ¢ to ¢t + 1 (“distribution drift”). A common simplifying assumption (which, though
questionable, we adopt here) is that successive items are generated independently, i.e. that z; depends
only on D; and not on the outcomes x;_1, x;_s, etc.

In our case, the universe X will be the infinite set 3* of all string over a finite alphabet X. Intuitively,
the role of log(|X|) will be replaced by a quantity such as the expected length of strings under the current
distribution.

3.2 A System for Continuous Learning

Before getting into the technicalities of our algorithm for learning PDFA from data streams, we begin with
a general description of a complete learning system capable of adapting to changes and make predictions
about future observations. In the following sections we will describe the components involved in this
system in detail and prove rigorous time and memory bounds.

The goal of the system is to keep at all times a hypothesis —a PDFA in this case — that models as closely
as possible the distribution of the strings currently being observed in the stream. For convenience, the
hypothesis PDFA will be represented as two separate parts: the DFA containing the inferred transition
structure, and tables of estimations for transition and stopping probabilities. Using this representation,
the system is able to decouple the state-merging process that learns the transition structure of the
hypothesis from the estimation procedure that computes transition and stopping probabilities. This
decomposition is also useful in terms of change detection. Change in transition or stopping probabilities
can be easily tracked with a simple sliding window technique. On the other hand, changes in the
structure of a PDFA are much harder to detect, and modifying an existing structure to adapt to this
sort of changes is a very challenging problem. Therefore, our system contains a block that continually
estimates transition and stopping probabilities, and another block that detects changes in the underlying
structure and triggers a procedure that learns a new transition structure from scratch. A final block
that uses the current hypothesis to make predictions about the observations in the stream can also be
integrated into the system. Since this block will depend on the particular application, it will not be
discussed further here. The structure we just described is depicted in Figure 3.1
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Figure 3.1: System for Continuous Learning from Data Streams

The information flow in the system works as follows. The structure learning block — containing a
state-merging algorithm and a parameter search block in charge of finding the correct n and p for the
target — is started and the system waits until it produces a first hypothesis DFA. This DFA is fed to the
probability estimation block and the change detector. From now on, these two blocks run in parallel, as
well as the learning block, which keeps learning new structures with more refined parameters. If at some
point a change in the target structure is found, a signal is emitted and the learning block restarts the
learning process.! In parallel, the estimator block keeps updating transition and stopping probabilities all
the time. It may be the case that this adaptation procedure is enough to track the current distribution.
However, if the structure learning procedure produces a new DFA, transition probabilities are estimated
for this new structure, which then takes the place of the current hypothesis. Thus, the system will
recover much faster from a change that only affects transition probabilities than from a change in the
structure of the target.

3.3 Sketching Distributions over Strings

In this section we describe sketches that can be used by our state-merging algorithm in data streams.
The basic building block of these sketches is the Space-Saving algorithm |[MAAO05]. We will use this
sketch to keep information about frequent prefizes in a stream of strings over ¥*. This information will
then be used to compute the statistics required by the similarity tests described in Section [2.4

We begin by recalling the basic properties of the Space-Saving sketch introduced in [MAAOQ5|. Given
a number of counters K, the Space-Saving sketch SpSv(K) is a data structure that uses memory O(K)
at all times and has two basic operations. The first is an insertion operation that receives an element
and adds it to the sketch in time O(1). We use f; to denote the number of times an element 2 has been
added to the sketch. The number of elements added to the sketch up to some point is m =" f,. The
second is a retrieval operation that given some ¢ > 1/K takes time O(1/¢) and returns a set of at most
K pairs of the form (z, f$) such that 0 < fgC — fz < m/K, and which is guaranteed to contain every
x whose f, > me. Using these operations an algorithm can maintain a summary of the most frequent
elements seen in a stream together with an approximation to their current absolute or relative frequency.

In order to be able to retrieve frequent prefixes from a stream of strings, some modifications have
to be made to this sketch. A first observation is that whenever we observe a string z of length |z| in
the stream, we must insert |z| + 1 prefixes to the sketch. This is another way of saying that under a

1Here one has a choice of keeping the current parameters in or restarting them to some initial values; prior knowledge
about the changes the algorithm will be facing can help to make an informed decision in this point.
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distribution D over ¥* events of the form x¥* and yX* are not independent if x C y. In fact, it can
be shown that > D(zX*) = L+ 1, where L = ) |z|D(x) is the expected length of D [CT04a). In
practice, a good estimate for L can be easily obtained from an initial fraction of the stream. It is easy
to see that a Space-Saving sketch with O(K L) counters can be used to retrieve prefixes with relative
frequencies larger than some ¢ > 1/K and approximating these frequencies with error at most O(1/K).
When computing relative frequencies, the absolute frequency obtained via a retrieval operation needs to
be divided by the number of strings added to the sketch so far (instead of the number of prefixes).

We encapsulate all this behavior into a Prefiz-Space-Saving sketch SpSvP(K), which is basically a
Space-Saving sketch with K counters where when one string is inserted, each proper prefix of the string is
inserted into the sketch as well. A string « is processed in time O(|x|). Such a sketch can be used to keep
information about the frequent prefixes in a stream of strings, and the information in two Prefix-Space-
Saving sketches corresponding to streams generated by different distributions can be used to approximate
their L distance.

We now analyze the error introduced by the sketch on the empirical LE_ distance between the “exact”
empirical distribution corresponding to a sample S and its sketched version which we denote by S. Fix
K > 0. Given a sequence S = (z1,. .., T,,) of strings from ¥*, for each prefix z € ¥* we denote by S[zX*]
the absolute frequency returned for prefix « by a Prefix-Space-Saving sketch SpSvP(K) that received S
as input; that is, S’[azE*] = f, if the pair (amfx) was returned by a retrieval query with ¢ = 1/K,
and S[zX*] = 0 otherwise. Furthermore, S(2X*) denotes the relative frequency of the prefix 2 in S:

S(z¥*) = S[zX*]/m. The following result analyzes the maximum of the differences |S(zX*) — S(xX*)|.

Lemma 3.3.1. Let S = (21, ...,Zm,) be a sequence of i.i.d. examples from a PDFA D and S a SpSvP(K)
sketch where each element of S has been inserted. Then with probability at least 1 — 6 the following holds:

N L+1 32¢2 1
P < )
LP (S,95) < i + k2, In (5>

Proof. In the first place note that the number of elements inserted into the underlying space-saving
sketch is M = Y"  (|z;| + 1). This is a random variable whose expectation is E[M] = m(L + 1). We
claim that for any z € X* we have |S(z2*) — S(2X*%)] < M/Km. If S[zX*] = 0, that means that
S[xX*] < M/K, and therefore the bound holds. On the other hand, the guarantee on the sketch gives

us |S[zX*] = S[zX*]|/m < M/Km. Now, since Z = M —m is the sum of m i.i.d. subexponential random
variables by Lemma [1.1.1] we can apply Lemma and obtain

t2c% t
P[Z — E[Z] > mi] < exp <_8’”2min{ ZDCQD}>
€

The bound follows from choosing ¢t = 1/(32¢2/mc?%) In(1/6). O

Thus, with the notation of Section 2.4 a Prefix-Space-Saving sketch with K counters that receives
as input strings generated by a PDFA D is a v-sketch, where

L+1 n 32¢e2 1 1
v= nl=].
K mK?2c% )

Plugging this value into the results from Section one obtains confidence intervals for p, = LE_ (D, D’)
using Prefix-Space-Saving sketches.

In the state merging algorithm described in next section, a sketch will be associated with each state
in the hypothesis in order to keep an approximation to a sample of the distribution generated from that
state. The particular form of the sketch will depend on the similarity test used by the algorithm, but all
sketches will use the Prefix-Space-Saving sketch as a basic building block. In particular, if a tests based
on VC bounds is used (cf. Corollaries and , then to each state ¢ we will associate a sketch
Sq = SpSvP([1/«]) for some parameter « that will depend on the distinguishability and expected length
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ag = 128

a=2
Bo = (64n|2|/) In(2/0")
B = (64n|3|/e)In2

0 = (3¢)/(8n|X))

5 = 5/2[Sln(n +2)

§; = 66" /m?i?

Table 3.1: Definitions used in Algorithm

of the target PDFA. In this case, each state will use memory O(1/a) and each insertion operation will
take time O(|z|). Furthermore, given two sketches S and 5, the statistics LE_ (5, $’) can be computed in
time O(1/a) because it only requires two retrieval operations and computing a maximum among O(1/«)
items.

If a bootstrap similarity test is used, then each state will have a composite sketch of the form
S, = (SpSvP([1/a1]), By, ..., B,). Ttems will be assigned to each B; = SpSvP([1/az]) following the
bootstrapping scheme described in Section [2:4] The sketch with parameter oy will receive every item
from the multiset S; and will be used to test dissimilarity using Corollary The bootstrapped
sketches By, . .., B, will be used to test similarity according to Corollary w each state will use
memory O(1/a; + r/az) and each insertion operation will take time O(r|z|). Given two such sketches,
upper and lower confidence bounds will be computed in time O(1/a; + r?/asz).

3.4 State-merging in Data Streams

In this section we present an algorithm for learning distributions over strings from a data stream. The
algorithm learns a PDFA by adaptively performing statistical tests in order to discover new states in
the automata and merge similar states. We focus on the state-merging aspect of the algorithm, which
is in charge of obtaining the transition structure between states. This stage requires the use of sketches
to store samples of the distribution generated from each state in the PDFA, and a testing sub-routine
to determine whether two states are equal or distinct based on the information contained in these
sketches. Since both of these components have already been discussed in detail elsewhere, here we will
just assume that components satisfying certain assumptions are used in the algorithm, without giving
further implementation details. After finding the transition structure between states, a second stage in
which transition and stopping probabilities are estimate takes place. The implementation of this stage
is routine and will not be discussed here.

The algorithm will read successive strings over 3 from a data stream and, after some time, output a
PDFA. Assuming the distribution generating the stream is stationary and generated from a PDFA, we
will show that then the output will be accurate with high probability. The procedure requires as input
a guess on the number of states in the target.

We begin with an informal description of the algorithm, which is complemented by the pseudocode
in Algorithm The algorithm follows a structure similar to other state-merging algorithms, like the
one described in Section though here tests to determine similarity between states are performed
adaptively as examples arrive.

Our algorithm requires some parameters as input: the usual accuracy € and confidence ¢, a finite
alphabet X, and a number of states n. Some quantities defined in terms of these parameters that are
used in the algorithm are given in Table The algorithm, which is called StreamLearner, reads data
from a stream of strings over X. At all times it keeps a hypothesis represented by a DFA. States in the
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DFA are divided into three kinds: safes, candidates, and insignificants, with a distinguished initial safe
state denoted by ¢g,. Candidate and insignificant states have no out-going transitions. To each string
w € ¥* we may be able to associate a state by starting at g, and successively traversing the transitions
labeled by the symbols of w in order. If all transitions are defined, the last state reached is denoted by
Gw, otherwise ¢, is undefined — note that by this procedure different strings w and w’ may yield q,, = qy-.

For each state q,, StreamLearner keeps a multiset 5, of strings. These multisets grow with the
number of strings processed by the algorithm and are used to keep statistical information about a
distribution D, . In fact, since the algorithm only needs information from frequent prefixes in the
multiset, it does not need to keep the full multiset in memory. Instead, it uses sketches to keep the
relevant information for each state. We use S’w to denote the information contained in these sketches
associated with state g,,, and |5’w| to denote the number of strings inserted into the sketch associated
with state g, .

Execution starts from a DFA consisting of a single safe state ¢\ and several candidates ¢, one for
each o € X. All states start with an empty sketch. Each element z; in the stream is then processed in
turn: for each prefix w of x;y = wz that leads to a state ¢, in the DFA, the corresponding suffix z is
added to that state’s sketch S’qw. During this process, similarity and insignificance tests are performed
on candidate states following a certain schedule; the former are triggered by the sketch’s size reaching
a certain threshold, while the latter occur at fixed intervals after the state’s creation. In particular,
t0 denotes the time state g, was created, ¢3, is a threshold on the size |S,,| that will trigger the next
round of similarity tests for ¢,,, and ¢y, is the time the next insignificance test will occur. Parameter 4,,
keeps track of the number of similarity tests performed for state g,,; this is used to adjust the confidence
parameter in those tests.

Insignificance tests are used to check whether the probability that a string traverses the arc reaching
a particular candidate is below a certain threshold; it is known that these transitions can be safely
ignored when learning a PDFA [CT04a; [PG07]. Similarity tests use statistical information provided by
the candidate’s sketch to determine whether it equals some already existing safe or it is different from all
safes in the DFA. These tests can return three values: equal, distinct, and unknown. These answers
are used to decide what to do with the candidate currently being examined.

A candidate state will exist until it is promoted to safe state, merged to another safe, or declared
insignificant. When a candidate is merged to a safe, the sketches associated with that candidate are
discarded. The algorithm will end whenever there are no candidates left, or when the number of safe
states surpasses the limit n given by the user.

3.4.1 Analysis

Now we proceed to analyze the StreamLearner algorithm. We will consider memory and computing
time used by the algorithm, as well as accuracy of the hypothesis produced in the case when the stream
is generated by a PDFA. Our analysis will be independent of the particular sketching methodology and
similarity test used in the algorithm. In this respect, we will only require that the particular components
used in StreamLearner to that effect satisfy the following assumptions.

Assumption 1. Algorithms Sketch and Test algorithm used in StreamLearner satisfy the following:

1. each instance of Sketch uses memory at most Mg,

2. a Sketch.insert(x) operation takes time O(|z|Ts),

3. any call Test(S‘, s, 0) takes time at most T,

4. there exists a Ny such that if |§|, |5”| > N, then a call Test(g, s, ) will never return unknown,
5. there exists a No such that if a call Test(S’,S’ﬂ&) returns equal, then necessarily |S| > N or

S| > N,
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Algorithm 2: StreamLearner procedure

Input: Parameters n, Y, ¢, d, Sketch, Test
Data: A stream of strings x1,x2,... € 2*
Output: A hypothesis H

initialize H with safe ¢) and let S’A < Sketch;
foreach o € ¥ do

add a candidate ¢, to H and let S, Sketch;
|t 0,5 < ag, t¥ < Po, io + 1;

foreach string x; in the stream do
foreach decomposition x; = wz, with w,z € ¥* do

if q is defined then

S

.insert(z);

if ¢, is a candidate and |S,,| > t5, then

foreach safe q,, not marked as distinct from ¢, do

Call Test (S, Sur,di,);

if Test returned equal then merge g, to q;

else if Test returned distinct then mark g, as distinct from g,,;
else t§ < o -t iy < 1y + 1;

f qu is marked distinct from all safes then

promote q,, to safe;

foreach 0 € ¥ do

L add a candidate ¢, to H and let S’w,, < Sketch;

e

10yt t5y < ap, th — t+ B, Gwe + 1

foreach candidate q,, do
if t;) >t then

if [Sy| < 6 (t —t2) then declare g, insignificant;
else t¥ « tli + f3;

if H has more than n safes or there are no candidates left then return H;
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6. when a call Test(g7 5"7(5) returns either equal or distinct, then the answer is correct with prob-
ability at least 1 — 6.

Our first result is about memory and number of examples used by the algorithm.
Theorem 3.4.1. The following hold for any call to StreamLearner(n, X, e,d):

1. The algorithm uses memory O(n|Z| M)

2. The expected number of elements read from the stream is at most O(n?|L|2Ny)

3. Each item x; in the stream is processed in O(|x¢|*Ty) amortized time

4. If a merge occurred, then at least N, elements were read from the stream

Proof. The memory bound follows from the fact that at any time there will be at most n safe states
in the DFA, each with at most |X| candidates attached, yielding a total of n(|3| 4+ 1) states, each with
an associated sketch using memory M;. By assumption, a candidate will be either promoted or merged
after collecting NV, examples, provided that every safe in the DFA has also collected IV, examples. Since
this only matters for states with probability at least £/4n|X| because the rest of the will be marked as
insignificant (see Lemma, in expectation the algorithm will terminate after reading O(n2|%|2N, /¢)
examples from the stream. The time for processing each string depends only on its length: suffixes of
string z; will be inserted into at most |z:| 4+ 1 states, at a cost O(|z¢|Ts) per insertion, yielding a total
processing time of O(|z;|?Ty). It remains, though, to amortize the time used by the tests among all
the examples processed. Any call to Test will take time at most Ti. Furthermore, for any candidate,
time between successive tests grows exponentially; that is, if ¢ strings have been added to some S'w, at
most O(logt) tests on S, have taken place due to the scheduling used. Thus, taking into account that
each possible candidate may need to be compared to every safe during each testing round, we obtain an
expected amortized processing time per string of order O(|z:|?>T, + n?|3|T; log(t)/t). Finally, note that
for a merge to occur necessarily some call to Test must return equal, which means that at least N, have
been read from the stream. O

We want to remark here that Item [3| above is a direct consequence of the scheduling policy used
by StreamLearner in order to perform similarity tests adaptively. The relevant point is that the ratio
between executed tests and processed examples is O(log(t)/t) = o(1). In fact, by performing tests more
often while keeping the tests/examples ratio to o(1), one could obtain an algorithm that converges slightly
faster, but has a larger (though still constant with ¢) amortized processing time per item.

Our next theorem is a PAC-learning result. It says that if the stream is generated by a PDFA then
the resulting hypothesis will have small error with high probability when transition probabilities are
estimated with enough accuracy. Procedures to perform this estimation have been analyzed in detail
in the literature. Furthermore, the adaptation to the streaming setting is straightforward. We use an
analysis from [Pal08] in order to prove our theorem.

Theorem 3.4.2. Suppose we give to StreamLearner(n’,X,e,d) a stream generated from a PDFA D
with n < n' states. Let H denote the DFA returned by StreamLearner and Dy a PDFA obtained from
H by estimating its transition probabilities using O(n*|%|*/e®) ezamples. Then with probability at least
1 — 6 we have Ll(D,ﬁH) <e.

The proof of Theorem [3.4.2]is similar in spirit to that of Theorem [1.4.1] and to other learning proofs
in [CT04a; PGOT7; |CGO8; BCG13|. Therefore, we only discuss in detail those lemmas involved in the
proof which are significantly different from the batch and SQ setting. In particular, we focus on the
effect of the adaptive test scheduling policy. The rest of the proof is quite standard: first show that
the algorithm recovers a transition graph isomorphic to a subgraph of the target containing all relevant
states and transitions, and then bound the overall error in terms of the error in transition probabilities
(see Section . We note that by using a slightly different notion of insignificant state and applying a
smoothing operation after learning a PDFA, our algorithm could also learn PDFA under the more strict
KL divergence.
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The next two lemmas establish the correctness of the structure recovered: with high probability,
merges and promotions are correct, and no non-insignificant candidate state are marked as insignificant.

Lemma 3.4.3. With probability at least 1 —n(n+1)|X|d’, all transitions between safe states are correct.

Proof. We will inductively bound the error probability of a merge or promotion by assuming that all
the previous ones were correct. If all merges and promotions performed so far are correct, there is
a transition-preserving bijection between the safe states in H and a subset of states from target Ap;
therefore, for each safe state g,, the distribution of the strings added to S, is the same as the one in the
corresponding state in the target. Note that this also holds before the very first merge or promotion.

First we bound the probability that next merge is incorrect. Suppose StreamLearner is testing a
candidate ¢,, and a safe g, such that D,, # D, and decides to merge them. This will only happen if,
for some 7 > 1 a call Test(S’w, S‘UJ/,&) returns equal. For fixed ¢ this happens with probability at most
d;; hence, the probability of this happening for some ¢ is at most >, d; < ¢§’. Since there are at most n
safes, the probability of next merge being incorrect is at most nd’.

Next we bound the probability that next promotion is incorrect. Suppose that we promote a candidate
G to safe but there exists a safe g,,» with D,, = D,,s. In order to promote g, to a new safe the algorithms
needs to certify that ¢, is distinct from q,,. This will happen if a call Test(Sw, S’wf, d;) return distinct
for some . But again, this will happen with probability at most ). 6; < ¢’

Since a maximum of n|X| candidates will be processed by the algorithm, the probability of an error
in the structure is at most n(n + 1)|X|d’. O

Following Palmer and Goldberg [PG07|, we say a state in a PDFA is insignificant if a random string
passes through that state with probability less than £/2n|X|; the same applies to transitions. It can be
proved that a subgraph from a PDFA that contains all its non-insignificant states and transitions fails
to accept a set of strings accepted by the original PDFA of total probability at most e/4.

Lemma 3.4.4. With probability at least 1 — n|X|d" no significant candidate will be marked insignificant
and all insignificant candidates with probability less than e/4n|X| will be marked insignificant during its
first insignificance test.

Proof. First note that when insignificance test for q,, is performed, it means that 7; = (64n|X|/e) In(27/§")
examples have been processed since its creation, for some j > 1. Now suppose ¢q,, is a non-insignificant
candidate, i.e. it has probability more than £/2n|%|. Then, by the Chernoff bounds, we have |S,,|/T; <
3¢/8n|¥| with probability at most 6’/27. Thus, ¢, will be marked insignificant with probability at most
&'. On the other hand, if ¢, has probability less than e/4n|%|, then |S,|/T) > 3¢/8n|%| happens with
probability at most ¢’ /2. Since there will be at most n|X| candidates, the statement follows by a union
bound. O

Though the algorithm would be equally correct if only a single insignificance test was performed
for each candidate state, the scheme followed here ensures the algorithm will terminate even when the
distribution generating the stream changes during the execution and some candidate that was significant
w.r.t. the previous target is insignificant w.r.t. to the new one.

With the results proved so far we can see that, with probability at least 1—4§/2, the set of strings in the
support of D not accepted by H have probability at most €/4 w.r.t. Dy. Together with the guarantees
on the probability estimations of Dy provided by Palmer [Pal08|, we can see that with probability at
least 1 — ¢ we have Ll(D,ﬁH) <e.

Structure inference and probabilities estimation are presented here as two different phases of the
learning process for clarity and ease of exposition. However, probabilities could be incrementally esti-
mated during the structure inference phase by counting the number of times each arc is used by the
examples we observe in the stream, provided a final probability estimation phase is run to ensure that
probabilities estimated for the last added transitions are also correct.
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3.5 A Strategy for Searching Parameters

Besides other parameters, a full implementation of StreamLearner, Sketch, and Test as used in the
previous section require a user to guess the number of states n and distinguishability u of the target PDFA
in order to learn it properly. These parameters are a priori hard to estimate from a sample of strings.
And though in the batch setting a cross-validation-like strategy can be used to select these parameters
in a principled way, the panorama in a data streams setting is far more complicated. This is not only
because storing a sample to cross-validate the parameters clashes with the data streams paradigm, but
also because when the target changes over time the algorithm needs to detect these changes and react
accordingly. Here we focus on a fundamental part of this adaptive behavior: choosing the right n and pu
for the current target.

We will give an algorithm capable of finding these parameters by just examining the output of previous
calls to StreamLearner. The algorithm has to deal with a trade-off between memory growth and time
taken to find the correct number of states and distinguishability. This compromise is expressed by a pair
of parameters given to the algorithm: p > 1 and ¢ > 0. Here we assume that StreamLearner receives as
input just the current estimations for n and p. Furthermore, we assume that there exists an unknown
fixed PDFA with n, states and distinguishability u, which generates the strings in the stream. The
rest of input parameters to StreamLearner — X, €, and § — are considered fixed and ignored hereafter.
Our goal is to identify as fast as possible (satisfying some memory constraints) parameters n > n, and
1 < piy, which will allow StreamLearner to learn the target accurately with high probability. For the
sake of concreteness, and because they are satisfied by all the implementations of Sketch and Test we
have considered, in addition to Assumption [I, we make the following assumptions.

Assumption 2. Given a distinguishability parameter p for the target PDFA, algorithms Sketch and
Test satisfy Assumption with My = ©(1/u) and N, = ©(1/1?).

Our algorithm is called ParameterSearch and is described in Figure It consists of an infinite
loop where successive calls to StreamLearner are performed, each with different parameters n and pu.
ParameterSearch tries to find the correct target parameters using properties from successive hypothesis
produced by StreamLearner as a guide. Roughly, the algorithm increments the number of states n
if more than n states were discovered in the last run, and decreases distinguishability p otherwise.
However, in order to control the amount of memory used by ParameterSearch distinguishability needs
to be decreased sometimes even if the last hypothesis’ size exceeded n. This is done by imposing an
invariant that is maintained throughout the whole execution: n < (1/x)??. This invariant is key to
proving the following results.

Theorem 3.5.1. After each call to StreamLearner where at least one merge happened, the memory
used by ParameterSearch is O(t1/2+¢), where t denotes the number of examples read from the stream
so far.

Proof. First note that, by the choice of p/, the invariant n < (1/1)?? is maintained throughout the
execution of ParameterSearch. Therefore, at all times n/u < (1/u)'*2? < (1/u? + ¢)Y/?2*+¢ for any
¢ > 0. Suppose that a sequence of £k > 1 calls to StreamLearner are made with parameters n;, y; for
i € [k]. Write t; for the number of elements read from the stream during the ith call, and t = >, t;
for the total number of elements read from the stream after the kth call. Now assume a merge occurred
in the process of learning the kth hypothesis, thus t; = Q(1/ uz) by Theorem and Assumption
Therefore we have t1/27¢ = (3, _, t; +Q(1/43))"/**¢ = Q(ny,/px). Since by Theoremthe memory
in use after the kth call to StreamLearner is O(ngM;) = O(ng/ux), we are done. O

Note the memory bound does not apply when StreamLearner produces tree-shaped hypotheses
because in that case the algorithm makes no merges. However, if the target is a not a tree-like PDFA,
then merges will always occur. In particular, the bound holds even when the distribution generating the
stream does not correspond to a PDFA. On the other hand, if the target happens to be tree-like, our
algorithm will learn it quickly (because no merges are needed). A stopping condition for this situation
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could be easily implemented, thus restricting the amount of memory used by the algorithm in this
situation.

The next theorem quantifies the overhead ParameterSearch pays for not knowing a priori the pa-
rameters of the target. This overhead depends on p and ¢, and introduces a trade-off between memory
usage and time until learning.

Theorem 3.5.2. Assume ¢ < 1/2. When the stream is generated by a PDFA with n, states and
distinguishability p,, ParameterSearch will find a structurally correct hypothesis after making at most
O(logp(n*//ifd))) calls to StreamLearner and reading in expectation at most 5(ni/¢p2+1/¢//ﬁ) elements
from the stream.

Proof. For convenience we assume that all n, states in the target are important — the same argument
works with minor modifications when n, denotes the number of important states in the target. By
Theorem the hypothesis will be correct whenever the parameters supplied to StreamLearner sat-
isfy n > n, and p < py. If ngyq1 and ppy1 denote the parameters computed after the kth call to
StreamLearner we will show that ngy1 > n, and pgr1 < py for some k = O(logp(n*/uzd))).

Given a set of k calls to StreamLearner let us write k = k1 + ko + k3, where k1, ko and k3 respectively
count the number of times n, u, or n and p are modified after a call to StreamLearner. Now let
kn = ki + k3, k, = ko + k3. Considering the first k calls to StreamLearner in ParameterSearch one
observes that npy1 = p'* and 1/ppy = p(+F0)/2¢ Thus, from the invariant ngy < (1/pp41)>?
maintained by ParameterSearch (see the proof of Theorem , we see that k1 < ko must necessarily
hold.

Now assume k is the smallest integer such that ng11 > n, and pgy1 < py. Then write k = k' + k",
where k' > 0 is the first call to StreamLearner after which pp1 < py. By definition of ¥ we must
have pupi1 > pie/ps and 1/ppq = pFF0/2¢ hence k, < logp(l//ﬁd’). Therefore we see that k' =
K+ kb + Kl < 2k + kS < 2k, < 2log, (1/43°).

Next we observe that if u < p, and n are fed to StreamLearner then it will return a hypothesis
with |H| > n whenever n < n,. Thus we have kf = 0 and k" = k//; that is, after the first &’ calls, n
is incremented at each iteration. Therefore we must have k" < logp Ny, and together with the bound
above, we get k = O(logp(n*/uz¢)).

It remains to bound the number of examples used in these calls. Note that once the correct p
is found, it will only be further decreased in order to maintain the invariant; hence, 1/uk+1 < pt/2e .
max{1/ i, ni/ 2(JS}. Furthermore, if the correct p is found before the correct n, the latter will never surpass
n4 by more than p. However, it could happen that n grows more than than really needed when p > p4; in
this case the invariant will keep u decreasing. Therefore, in the end ng11 < p-max{n., 1/ ,uf¢}. Note that
since ¢ < 1/2 we have max{1/ i, ni/2¢}~max{n*, 1//,L,2(¢} = O(ni/%/,u*). Thus, by Theorem |3.4.1|we see
that in expectation ParameterSearch will read at most O(ni Ny 1ogp(n*/u3¢)) = O(ny/®p*1/9 /112)
elements from the stream. O

Note the trade-off in the choice of ¢: small values guarantee little memory usage while potentially
increasing the time until learning.

3.6 Detecting Changes in the Target

Now we describe a change detector ChangeDetector for the task of learning distributions from streams
of strings using PDFA. Our detector receives as input a DFA H, a change threshold «y, and a confidence
parameter 0. It then runs until a change relevant w.r.t. the structure of H is observed in the stream
distribution. This DFA is not required to model the structure of current distribution, though the more
accurate it is, the more sensitive to changes will the detector be. In the application we have in mind,
the DFA will be a hypothesis produced by StreamLearner.

We will use notation from Section [[LT] and define some new one. Given a DFA H and a distribution
D on ¥*, D(H|g]¥*) is the probability of all words visiting state ¢ at least once. Given a sample from D,
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Algorithm 3: ParameterSearch algorithm

Input: Parameters p, ¢
Data: A stream of strings xy,xs,... € ¥*
P %
n < p, g 1/p"
while true do
H < StreamLearner(n, u);
if |H| <n then u <+ p/p;
else

n<n-p;
if n> (1/p)%® then pu <+ u/p';

we denote by ﬁ(H [q)X*) the relative frequency of words passing through ¢ in the sample. Furthermore,
we denote by D the vector containing D(H [g]|X*) for all states ¢ in H, and by D the vector of empirical
estimations.

Our detector will make successive estimations ]jo, ]51, ...and decide that a change happened if some
of these estimations differ too much. The rationale behind this approach to change detection is justified
by next lemma, showing that a non-negligible difference between D(H [¢]X*) and D’(H[g]X*) implies a
non-negligible distance between D and D’. A converse to this lemma would mean that our detector can
detect all possible kinds of change, though in general we believe that to be false; that is, that one can
find distributions which are indistinguishable with respect to some DFA though they are far apart in the
total variation distance.

Lemma 3.6.1. If for some state ¢ € H we have |D(H[g|X*) — D'(H[q]X*)| > v, then Li(D,D’) > ~.

Proof. First note that Ly(D, D') > }°, c g yes+ [P(zy) — D'(zy)|. Then, by triangle inequality this is
at most |3, 1y D) — D'(ay)] = [D(H[E") - D' (H(gz*)] > 7. O

More precisely, our change detector ChangeDetector works as follows. It begins by reading the first
m = (8/72)In(4|H|/§) examples from the stream and uses them to estimate Do in H. Then, for i > 0, it
makes successive estimations D; using m; = (8/72) In(272i2|H|/38) examples, until [|[Do — D;[oe > /2,
at which point a change is detected.

We will bound the probability of false positives and false negatives in ChangeDetector. For simplicity,
we assume the elements on the stream are generated by a succession of distributions Dy, D1, ... with
changes taking place only between successive estimations D; of state probabilities. The first lemma is
about false positives.

Lemma 3.6.2. If D = D; for all i > 0, with probability at least 1 — § no change will be detected.

Proof. We will consider the case with a single state g; the general case follows from a simple union bound.
Let p = D(H[g]¥*). We denote by pp an estimation of p obtained with (8/7%)1n(4/8) examples, and by
Pi an estimation from (8/72)In(272i2/36) examples. Recall that p = E[py] = E[p;]. Now, change will be
detected if for some ¢ > 0 one gets |[pg — p;| > /2. If this happens, then necessarily either |py —p| > /4
or |p; — p| > «/4 for that particular . Thus, by Hoeflding’s inequality, the probability of a false positive
is at most P[|po — p| > /4] + 3,50 Pllpi —pl > 7/4] < 6. O

Next we consider the possibility that a change occurs but is not detected.

Lemma 3.6.3. If D = D; for all i < k and |Dy_1(H[q|X*) — Di(H[q]Z*)| > 7 for some q € H, then
with probability at least 1 —§ a change will be detected. Furthermore, if the change occurs at time t, then
it is detected after reading at most O(1/4?1n(yt/d)) examples more.
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Proof. As in Lemma [3.6.2] we prove it for the case with a single state. The same notation is also
used, with pr = Dy (H[g]X*). The statement will not be satisfied if a change is detected before the kth
estimation or no change is detected immediately after it. Let us assume that [pg—p| < /4. Then, a false
positive will occur if [pg — ;| > /2 for some i < k, which by our assumption implies |p; — p| > v/4. On
the other hand, a false negative will occur if |py — pi| < /2. Since |p — px| > 7, our assumption implies
that necessarily |pr, — pr| > /4. Therefore, the probability that the statement fails can be bounded by

Plipo — pl > v/41+ 3 Plpi — pl > 7/4] + Pl — pel > 7/4] ,
o<i<k

which by Hoeffding’s inequality is at most §.
Now assume the change happened at time ¢. By Stirling’s approximation we have

t = 0(Y(1/7*) n(k?/8)) = O(k/+* nk/5) .

i<k

Therefore k = O(y?t). If the change is detected at the end of the following window (which will happen
with probability at least 1 — d), then the response time is at most O(1/v%In(yt/9)). O
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Chapter 4

State-Merging on (Generalized
Alphabets

In this chapter we generalize previous state-merging algorithms for learning distributions over (X x X)*,
where ¥ is again a finite alphabet, but X is an arbitrary measure space. To model such distributions we
introduce a new type of automata which we call Generalized PDFA (GPDFA). In such an automaton, the
transition between states is deterministic in terms of ¥, but does not depend on the particular elements
from X generated alongside the elements of ¥. It is this particular restriction what helps us generalize
state-merging algorithms to this new model. For example, taking X = R, GPDFA can mode continuous-
time markov processes with discrete observations from ¥ which are observed for some random period of
time. Thus, we get a string of observations of the form (o,t), where ¢ is period of time during which
symbol o was observed.

Like in previous chapters, we analyze the sample and time complexity of state-merging algorithms
for learning GPDFA in the PAC learning model. In particular, we show what conditions are required on
X in order for such learning to be possible and efficient. Another difference with previous analyses given
in this thesis is that here we give learning results in terms of relative entropy instead of total variation
distance. These are much stronger that what we have considered before. Thus, the proofs follow a
slightly different approach, closer in some sense to the original PAC analysis in [CT04a].

An interesting feature of GPDFA is that they encompass seamlessly several useful models which may
seem a priori unrelated. In the last section of this chapter we shall give two important applications of
GDPFA: one to Markov models with timed transitions as mentioned above, and another to a particular
class of transducers from X* to A*. To the best of our knowledge, these are the first PAC results for
learning such models in terms of relative entropy.

4.1 PDFA over Generalized Alphabets

Our model for generalized PDFA is a FSM for defining probability distributions over the free monoid
(X x X)*, where ¥ is a finite alphabet and X is some arbitrary measure space. We will discuss the
learnability of such objects in a rather general setting. However, we will ignore most measure-theoretic
issues that may arise in our definitions. We do so in purpose, and for two reasons: first, because we do
not want such issues to blur the general ideas behind the model and the learning algorithm; and second,
because despite the general treatment we give here, the two particular examples we give in Section
do not suffer from these measure-theoretic complications. That said, we can proceed with our main
definition.

A Generalized PDFA (GPDFA) consists of a tuple A = (Q, X, 7,7, qo, £, D), where: @ is a finite set of
states; X is a finite alphabet; qo € @ is the initial state; £ is a symbol not in ¥ used to denote the end of
a string, and we will write ¥/ = X U {¢} for convenience; 7: Q x ¥ — QU {L} is the transition (partial)
function; v : @ x ¥ — [0,1] is a transition probability function such that ) . v(¢,0) = 1 for all
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q € Q, and satisfying: 7(¢,0) = L = v(¢,0) =0forall 0 € ; D: Q x X/ — M (X)U{L} is a partial
function that assigns a probability distribution D(¢,0) = D, , over X to every defined transition event.
Sometimes we shall abuse this notation and write D for the set D(Q x ') of all distributions over X
appearing in transitions from A. It is immediate to note that the tuple (Q, X, 7,7, go, £) actually defines a
PDFA, where instead of stopping probabilities like in Chapter [I} we have now an end-of-string symbol &
which is observed whenever a string is terminated. Extensions 7: Q x ¥* — @ and v : Q x (¥')* — [0, 1]
are defined in the usual way.

The process by which a GPDFA generates an observation is very similar to the corresponding process
for standard PDFA. Starting from state qg, at each step in the generation process the GPDFA is in some
state ¢ € Q). At every step, a symbol o € ¥/ is drawn according to the probability distribution (g, e)
and then an element from X is drawn from distribution Dy ,. Then, the process stops if o = £; otherwise
the next state is set to 7(g, o). The output of the process is a string z € (X x X)* x ({£} x X) which we
write as z = (z€,y) withz =212y € S and y = y1 - - - yy 1 € XTTL

Recall that PDFA define a probability distribution if and only if for any state ¢ € @ there is a
non-negative probability of reaching some state ¢’ such that y(¢’,£) > 0; we shall assume that this
always holds for the GPDFA we consider. For convenience we may sometimes say that GPDFA define
probability distributions over (3’ x X)*, though it will always be implicitly assumed that any string
outside (X x X)* x ({£} x X) has probability zero. This formulation contrasts a little bit with the
PDFA defined in Chapter [1| which did not use a symbol to denote the end of a string. In the present
formulation we allow the GPDFA to generate a last element from X during the “stop” event. As such, this
formulation is slightly more general than one which only defines probability distributions over (3 x X)*.
Furthermore, the introduction of an end-of-string maker will be convenient to bound the relative entropy
between a target and a hypothesis GPDFA as will become clear in the following sections. We shall write
fa to denote the probability distribution defined by GPDFA A. Like we did for PDFA, we let A, denote
the GPDFA obtained from A by taking g € @ as a starting state.

When a GPDFA generates a string starting from some state g, we can obtain a marginal distribution
over X' x X by just looking at the first symbol in the sequence. We call such a distribution a local
distribution. In particular, for ¢ € @ we use D, to denote the associated local distribution. Thus, if
E C ¥ x X is an event whose fibers on X’ with respect to ¥’ are denoted by E,, then we have

Dy(E) = Z Y(q,0)Dg,0(Es) -
oex!

We note here that we can think of D, as a function from ¥’ to the space M7 (X) of probability
distributions over X’; this object is sometimes called a stochastic kernel in measure-theoretic probability
[Pol03].

When the goal is to learn GPDFA it may be convenient to restrict the possible kernels that may
arise from in D. In general we may require that all distributions in D are absolutely continuous with
respect to some measure m on X’. Sometimes we may require more stringent constraints, like that all
distributions over X belong to a particular parametric family. For example, when X = R and m is
the Lebesgue measure, we may restrict the distributions in D to belong to the exponential family, or
even to be exponential or normal distributions. These and other examples will be examined in detail in

Section [4.5]

Any GPDFA has an underlying deterministic automaton the same way a PDFA does. Since this
deterministic component is the key to the state-merging paradigm for learning such objects, we want to
study to what extent can this paradigm be extended to learn families of GPDFA. Intuitions built up
through the study of state merging methods in previous chapters steadily point to two sub-problems that
need to be addressed by these hypothetical extensions: first, distinguishing distributions over (X x X)*;
and second, learning the local distributions of A accurately. In the following sections we will study these
two problems in detail. As before, our focus will be on provably correct solutions that require only
samples of polynomial size.
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4.2 Generic Learning Algorithm for GPDFA

In this section we describe a state-merging algorithm for learning GPDFA over an arbitrary X. The
algorithm will make use of two subroutines that depend on the particular choice of X’; these will be
described in detail later. For now it will suffice to assume that we have at our disposal the following two
procedures:

e A procedure Test that given two samples from (X' x X')* determines if they certainly come from
two distinct distributions — in which case returns distinct — or not — in which case returns not
clear.

e A procedure Estimate that given a sample from ¥’ x X’ returns an estimate D of its distribution.

Our main working assumption, which we shall formalize later, is that when given large enough samples,
Test and Estimate will return correct answers with high probability.

Now we describe the algorithm in detail. Pseudocode can be found in Algorithm As input
the algorithm takes a finite alphabet X, an upper bound on the number of states n, and a confidence
parameter 6. The algorithm also receives as input a sample S containing m strings from (X x X')* x ({£} x
X). Basically, the algorithm works in two stages: in the first stage it builds a DFA, where each state ¢
has an associated sample S; from (X x X)* x ({{} x X); in the second stage the information from samples
Sq is used to estimate local distributions for each state in the DFA and convert it into a GPDFA. While
building the DFA states are separated into two categories: safe and candidate. Safe states correspond
to states the algorithm confidently believes that belong to the target GPDFA. Candidates can become
new safes at some point or be merged to already existing safes. In addition, candidates have no outgoing
transitions. When a state is declared safe, its associated sample will be fixed and never modified again.
The process begins with a simple DFA with a single safe g\ with sample S,;, = S, and candidates ¢, for
each o € ¥; we also add transitions 7(gx, o) = ¢». Then the process executes a whileloop which for each
iteration is guaranteed to either promote one candidate to safe or merge one candidate to an existing
safe. This will go on until the DFA is complete or it contains more than n safes.

The first step in each iteration is to clear the samples associated with each candidate and refill them
again; this ensures the samples associated with each candidate adequately reflect the current structure
of the DFA. To do so we parse each string in the sample S until we hit a candidate, and then add the
remaining suffix to the sample of that candidate. More formally, if (z,y) is an example in S, we seek, if
it exists, a prefix u o = such that ¢, = 7(qx,u) is a candidate. In this case, we add (2|u|+1:|z|> Yju|+1:|y|)
to the sample Sy, ; otherwise the example is discarded. Once all examples from S have been parsed,
we select a candidate ¢ maximizing |S,|. For this candidate, we perform a series of tests to determine
if the sample S; comes from the same distribution as any of the samples associated to the existing
safes. If we find no matches, ¢ is promoted to be a safe and new candidates 7(¢, o) are added for each
o € 3. Otherwise, ¢ is merged to a matching safe ¢’; this means that ¢ is erased from the DFA, and the
incoming transition into ¢ is now incoming into ¢’. After the whileloop terminates, a postprocessing
stage is conducted in case the DFA is not complete. In this stage we add a new state g, with empty
multiset and make sure all missing transitions in the DFA are directed towards guo.

In the second part of the algorithm we use the sample S, for each state ¢ to estimate a local distri-
bution over ¥’ x X. We do so by applying procedure Estimate to local(S,) which returns a sample over
¥ x X from a sample over (X' x X)* by keeping only the first z; = (21,y1) symbol from every string
z = (x,y) € S4. This distribution is then used in the obvious way to define a GPDFA using the DFA
constructed by the previous part as its transition structure.

In the following section we will analyze the statistical aspects of Algorithm Its running time is
given in the next result, where the running times of Testand Estimate are considered variables. In
particular, we suppose a call Test(S,S’,0) takes time Ty = Ti(|S],]5’|,4), and a call to Estimate(S)
takes time T, = T,(|S|). Furthermore, given a sample S = (z!,...,2™) from (¥’ x X)*, we use ||S|| to
denote the sum of the length of the strings in S; that is, ||S]| = Y1, [2*], where 2* = (2, y").

Theorem 4.2.1. The running time of Algorithm[j] is bounded by O(n|S|||S| + n?|Z|T; + nT).
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Proof. As a first observation note that since a GPDFA with n states over ¥ can have at most n|3|
transitions between its states. Since each iteration of the whileloop adds one transition between two safe
states to the DFA, the algorithm will runs for at most O(n|X|) iterations. Each of these iterations parses
the full sample S, which takes time O(]|S||), and performs as many calls to Test as safes in the current
DFA, of which there are at most n. Thus, the first part of the algorithm takes time O(n|X|(||S|| + nTt)).
In the second part we make a call to Estimate for each state in the DFA which gives us an additional
running time of order O(nTy). O

Algorithm 4: Learn GPDFA

Input: parameters n, 3,0
Data: sample S = (z1,...,2™)
Output: hypothesis GPDFA H

initialize H with safe ¢y and let Sq, < S

foreach o € ¥ do add a candidate to H reached from ¢, with o;
while H is not complete and H has n or less safes do

clear multisets of all candidates in H;

foreach z = (z,y) € S do

L if there exists u Co x such that q, is a candidate of H then

L add (‘T‘"H'l T m|x\7y\u|+1 o y\y|) to Squ;

let ¢ be the candidate in H with largest |S,|;
foreach safe ¢’ in H do run Test(Sy, Sy, d);
if all calls to Test returned distinct then
promote ¢ to safe with multiset Sg;
L foreach o € ¥ do add a candidate to H reached from ¢ with o;

else
select a candidate ¢’ for which Test returned not clear;
merge q to ¢’ in H;

if H still contains candidate states then

create a ground state ¢, and let S, + &;

merge all candidates in H to goo;

foreach o € ¥ do add a transition from ¢ to itself labeled with o;

foreach state ¢ in H do
compute D, < Estimate(local(S,));
| let ﬁq be the local distribution of ¢ in H;

4.3 PAC Analysis

Now we proceed to analyze Algorithm [d] We will give PAC learning guarantees under some assumptions
on the Test and Estimate subroutines. Our analysis generalizes that of [CT04a] and follows a similar
approach. First we give an expression for the relative entropy between two GPDFA in terms of their
local distributions. Based on this formula, we show that identifying the frequent states and transitions
in a target GPDFA is enough to correctly approximate its probability distribution. Finally we show that
if the input sample is large enough, then Algorithm [4] will construct a hypothesis whose transition graph
contains these frequent states and transitions.
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4.3.1 Relative Entropy between GPDFA

We begin by defining some concepts related to the frequency with which states are visited in a GPDFA.
Most of these are analogous to those defined in [CT04a] for PDFA. Let A = (Q, %, 7,7, ¢0,&, D) be a
GPDFA over . Recall from Chapter [1| the notations

Alq] = {=|7(qo0, %) = ¢} ,
Alg] = {z|7(qo0, ) =qAVy,z: 2 =yz — (]2 =0V 7(q0,%) # @)} ,

for the sets of words that reach a state ¢ and reach a state ¢ for the first time, respectively. With this
notation we can define the weight of a state ¢ € @ as

Wig) = Y g2) ,

z€A[q]

which corresponds to the expected number of times state ¢ will be visited during the generation of a
string by A. We also defined the probability of a state ¢ € Q as

P(g)= > (@) ,

z€A[q]

which corresponds to the probability that A will be in state ¢ during the generation of a string. Recall
from |[CT04a] that for any ¢ € @, the expected length of strings generated from ¢ is given by

Lig) = Y lelv(g,28) = Y v(gx)—1 .

TeEX* reX*

The following relations between W (q), P(q), and L(q) were established in [CT04a] for PDFA. Since the
definitions of weight and probability of states rely only on the underlying PDFA of a GPDFA, they hold
as well for GPDFA.

Lemma 4.3.1. For any q € Q we have W(q) < (L(q) +1)P(q). Furthermore, > .o W(q) < L(qo) + 1.

Let A" =/(Q'", 2,77, ¢,,& D) be another GPDFA over ¥. We can define joint weights for pairs of
states ¢ € @Q and ¢’ € Q' by coupling the path taken by both automata:

W(gd)= > =) .

z€A[q]NA’[q']

This weight computes the expected number of times we will find A in state ¢ and A’ in state ¢’ in the
process where strings are generated by A and parsed by A’. This quantity will play a central role in
the expression for the relative entropy between A and A’. The intuition behind this fact is that if the
transition structure of A and A’ is very similar, for each state ¢ in A will exist a state ¢’ of A’ such that
Wi(q,q') is close to W(q) and W(q,q") is very small for any other ¢” # ¢'. In fact, it is immediate to see
that we have

S Wia,q) < Wia) | (4.1)

qlte

with equality whenever the transition structure of A’ is complete; i.e. the transition function 7’ is total.

Now we are ready to state the main result of this section. The following theorem gives an expression
for the relative entropy — also known as Kullback—Leibler divergence — between two GPDFA which
generalizes the one given in [Car97] for PDFA. The proof relies on several measure-theoretic observations
and is given in Section [4.7]
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Theorem 4.3.2. Let A and A’ be GPDFA over ¥.. The relative entropy between distributions fa and
far is given by the following expression:

KL(fallfa) =>_ > W(g,¢)KL(D,|Dy)

q€Q q'€Q’

= Z Z Z W(q,q')v(q,0) logJ,quU) + KL(Dy0|| DYy )

g
q€Q ¢'€Q’ gEY! 7,0)

We note that in this chapter we use the relative entropy defined in terms of the natural logarithm for
convenience. The same learning results can be obtained with bases by adjusting a constant term in our
bounds.

4.3.2 Frequent Core of a GPDFA

Now we prove the main technical result that we will use to show that Algorithm [ is a PAC learner for
GPDFA with respect to the Kullback—Leibler divergence. Roughly speaking, the result will say that if
we can produce a hypothesis that contains a subgraph isomorphic to that formed by all frequent states
and transitions of the target GPDFA, then the joint weights W(q, ¢’) in the formula from T heoremm
will be small whenever ¢ is not frequent or ¢ is frequent but ¢’ is not the image of ¢ in the hypothesis.
The particular form of our result yields a slight improvement over Lemma 13 from [CT04a]. Since the
proof published there is not correct and no erratum has been published so far [Cla09], we include a new
full proof for completeness.

Let A = (Q,%,7,7,q0,& D) be a GPDFA over ¥. Given some g5 > 0 we define the set of frequent
states in A as

Fs={qeQ|W(q) > s} .

Furthermore, given ¢y > 0 we define the set of frequent transitions in A as
F,={(qg,0) €eQ@xX|qe F,ANvy(q,0) >¢et} .

The frequent core of A is the subgraph of the underlying DFA of A containing all frequent states and
transitions. The set of frequent words of A is defined as

Fo={xe X" |VYyCox 7(q,y) € Fs A\Vyo Co = (7(qo,¥),0) € Fi} .

These are all the strings that can be recognized by the frequent core of A.

Now we consider Fy, the complementary of Fy,, formed by all strings x = 1 - - - x; such that the state
path qo,7(qo,x1),...,7(qo, 1 - - - x;) leaves the frequent core of A at some point. By definition, we can
write

Fs={ze¥" |y Cox 7(q0,y) & FxVIyo Coz (7(q0,y),0) ¢ Fi} .

If follows immediately from this definition that if 2 € F, then 2¥* C Fy; that is, if = leaves the frequent
core, any extension of z leaves the frequent core as well. Using this property, we can characterize the
structure of Fj as follows.

Lemma 4.3.3. There exists a prefiz-free set U such that Fy = UgepaX*.

Proof. Let Uy = @ and V = F,. For i > 0 we define inductively U; 1 = U; U {x;} and V;;1 = V; \ 2;5%,
where z; is the smallest word in V; in lexicographical order. Then we take U = U;>oU;. By construction
and our previous observation we have U C F, and UgcpazX* C Fy. To see that Fy C UgcpyaX* take any
y € F, and observe that F} contains at most k = ZLy:‘O |¥|¢ strings less or equal than y in lexicographical
order, which implies that y € Uyepy,xX*. Finally, observe that Uy is prefix-free and suppose U; too.

Then, since no word in V; has a prefix in U; by construction, then U;;; is also prefix-free, and so is
U. O
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Given set U from previous lemma, it is easy to see that for any = € U all of its proper prefixes belong

to Fy. Thus, for any = € U, it must be the case that either 7(qo,x) ¢ Fy or x = yo and (7(qo,y),0) ¢ F.
Accordingly, we define the following two sets:

Us={z€U|7(q0,2) ¢ F} , (4.2)

Uy={zeUlz=yoA(r(q.y),0) ¢ Fi} . (4.3)

Note that by construction we have U = Ug U Uy.

Now let A" = (Q', 2, 7",v/, ¢}, &, D) be another GPDFA over the same alphabet . We assume that
A’ has a subgraph isomorphic to a subgraph of A containing its frequent core. More formally, suppose
there exist Qr C @, Qf C @', and a bijection ® : Qf — @} satisfying the following:

L. qo € Qr, qp € Qf, and ®(qo) = g0,

2. if ¢ € Q} and 7'(¢', o) € Qf, then 7(®71(¢),0) = D~ (7'(¢, 7)),
3. Fs C Qr,

4. if (q,0) € Fi, then 7(q,0) € Q¢ and 7/(®(q),0) = ®(7(q,0)).

Note that the first two conditions enforce that ® is a proper isomorphism on the graph structure and
the other two that the isomorphism is defined over the frequent core of A. Whenever A’ satisfies these
conditions we will say that A’ captures the frequent core of A.

Theorem 4.3.4. Let A be a GPDFA with n states and L(q) < L for all g € Q. Suppose A’ captures the
frequent core of A for some €5 and ;. Then the following holds:

YD Wad) <n(l+ e+ (L+1)%

9€Fs ¢’ €Q\®(q)

Proof. We start by observing that if € Fy, then 7(qo,z) = ¢ € Fy and 7/(¢(,z) = ®(q), where the
second fact holds because A’ captures the frequent core of A. Considering the contrapositive one can
show the following inequality:

Z Z Wi(g,q") = Z Z Z ¥(go, ) < Z 7(q0, ) -

q€F;s ¢'€Q'\2(q) qEFs ¢'€Q'\®(q) z€A[q]NA'[¢'] z€Fy

Now, by Lemma and the definition of L(gq) we have

Z V(qo, © ZZ ¥(q0, 2)¥(7(q0, %), y)

zeFy zeU yeX*
_Z’y qo,T QO7 ))+1)
zeU
xzeU

Next we split the sum over U in two terms using U = Us U Uy and bound the resulting terms as follows.
First, using (4.2) and the definition of Fy we have

e = D )

zeUs q€Q zeUsNA[q]

= Z Z ’Y(QO,"E)

qEF, z€UsNA[q]

<> W(g)

qeF;

< neg .
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Then, using (4.3) we get

> a0, yo) = > a0, )(7(90,9), 0)

yo €Uy yoeUy

<e Y Y0 y)

yoeUs
S €t<L(q0) —|— 1) .

Applying L(qo) < L to this last bound yields the desired inequality. O

4.3.3 Identifying the Frequent Core

Now we will proof that when the sample S given to Algorithm [4 is large enough, with high probability
the hypothesis GPDFA H captures the frequent core of the target A. To prove this result we will need
to make the following assumption on the function Test.

Assumption 1. Function Test(Sq, Sy ,0) satisfies the following:

1. For any 0 > 0 and any q € @, if S, and S,’J are two i.i.d. samples from distribution fa_, then
Test (S, Sy, 0) returns not clear with probability at least 1 — .

2. There exists Ny = Ny(0) such that for any § > 0 and any different q,q' € Q, if Sq and Sy are i.i.d.
samples from fa, and fa_, and min{|Sy|, |Sq|} > Ny, then Test(Sy, Sy, 9) returns distinct with
probability at least 1 — 9.

In words, the first assumption implies that Test rarely returns distinct when given two samples
from the same distribution. The second assumption makes sure that Test can distinguish two distinct
distributions when large enough samples are available.

Now we proceed to analyze the graph constructed by the main whileloop in Algorithm [l We will
call each iteration of that loop a stage. We denote by Hj the hypothesis graph obtained after by the
algorithm at the end of the kth stage. To distinguish these Hj from the output of Algorithm [ we
shall call them intermediate hypotheses. A stage will be called good if the selected candidate ¢ satisfies
|Sql > Ni. The following result shows that an initial run of good stages will yield a subgraph of H
isomorphic to a subgraph of A.

Lemma 4.3.5. Suppose the first k stages are all good. Then, with probability at least 1 — knd, the
subgraph of Hy, formed by all its safe states is isomorphic to a subgraph of A.

Proof. We proceed by induction on k. The base case corresponds to & = 0 where no iteration of the
whileloop has taken place yet. In this case there is only the safe gy and the corresponding subgraph is
clearly isomorphic to the subgraph of A containing only qg. Now suppose that the statement is true for
some positive k and that stage k + 1 is good. Let ¢ be the candidate selected on the (k + 1)th stage and
S, the associated sample. Conditioned on the subgraph of candidates at the beginning of stage k£ + 1
being isomorphic to a subgraph of A — which happens with probability at least 1 — knd by hypothesis
— we have that S is an i.i.d. sample from some f4 , with q¢" € Q. And since the stage is good we have
|Sql > Ni. Furthermore, since all previous stages were good, the samples associate with all safes in the
current hypothesis also have size at least N; and each can be associated to some state in A because the
subgraph of safes is isomorphic to a subgraph of A. To bound the probability of an error at this stage we
consider two cases. First suppose that ¢ is promoted to be a new safe. In this case an error occurs if the
distribution of S, is the same as that of one of the safes and the corresponding test returned distinct.
By Assumption BLA this happens with probability at most §. Now suppose that ¢ is merged to some
already existing safe. In this case an error means that for some safe whose distribution is different from
that of S, the test returned not clear. By Assumption [I| and the hypothesis on the size of the sample
this happens with probability at most ¢ for any fixed safe. Since there are at most n safes in the graph,
the probability of an error in the (k + 1)th stage conditioned on that no previous error has occurred is at
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most nd. Thus, the probability that the subgraph of safes at the end of the (k+ 1)th stage is isomorphic
to a subgraph of A is at least 1 — (k + 1)nd. O

The next step is to ensure that as long as some frequent state or transition is not part of the hypothesis,
the next stage will be good. To define this formally let Hy be some intermediate hypothesis. We say
that a frequent state ¢ € Fy from A has no representative in Hy, if for all x € Alq] state ¢, in Hy is
either a candidate or undefined. Similarly, we say that a frequent transition (¢,c) € F; from A has no
representative in Hy, if for all z € Alg] state g, is either a candidate or undefined.

Lemma 4.3.6. Suppose there exists a frequent state in A that has no representative in Hy. For any
§ >0, if |S] > (8(L+1)/es)In(1/0) then the selected candidate q in the current stage will have a sample
of size |S4| > |Sles/(2(L + 1)n|X|) with probability at least 1 — 4.

Proof. Let ¢’ € Q denote the frequent state not represented in Hy so far. Note that the probability of
a string in S passing through ¢’ is at least e5/(L 4+ 1). Thus, by the Chernoff bound, with probability
at least 1 — § there will be at least |S|es/2(L + 1) strings in S passing through ¢’, each of which will
be parsed to a candidate in Hj. Therefore, since there are at most n|X| candidates, with probability at
least 1 — ¢ there will be some candidate ¢ with |S,| > [Sles/(2(L + 1)n|X]). O

Mimicking this last proof one can also establish the following result for frequent transitions.

Lemma 4.3.7. Suppose there exists a frequent transition in A that has no representative in Hy. For
any § > 0, if |S| > (8(L + 1)/eset) In(1/0) then the selected candidate q in the current stage will have a
sample of size |Sy| > |Sleser/(2(L + 1)n|X|) with probability at least 1 — 4.

Now we can combine previous lemmas with a union bound to show that if S is large enough, then
with high probability Algorithm [] will find a hypothesis H that captures the frequent core of A.

Theorem 4.3.8. For any § > 0, if |S| > (2(L+1)/esey) -max{N(0)n|X|,41n(1/5)}, then with probability
at least 1 —n(n|X]?/2+3|%|/2+1)6 the hypothesis H produced by Algom'thm captures the frequent core
of A.

Proof. Let k denote the number of good stages from the first one until the first non-good stage. By
Lemma the subgraph of safes of Hj, is isomorphic to a subgraph of A with probability at least
1 — k(k + 1)nd/2. Next, by Lemmas and and the assumption on |S| we see that each
stage in which a frequent state or transition is missing from H will be good with probability at least
1 — 6. Hence, a union bound shows that H will capture the frequent core of A with probability at least
1—(k(k+1)n/24|Fs|+|F;|)d. Now note that each stage of Algorithm 4| creates a new transition between
safe states in H. Since a GPDFA with n states over ¥ can have at most n|X| transitions, the algorithm
will run for at most n|X| stages. Thus, we have k£ < n|¥|. Combining this observation with the trivial
bounds |Fs| < n and |F;| < n|X| yields the desired result. O

4.3.4 Bounding the Error

So far we have seen how to compute the relative entropy between two GPDFA, the effect the frequent
core of the target GPDFA has on this quantity, and that Algorithm [4] can identify with high probability
a hypothesis that contains an isomorphic image of that frequent core. The next and last step is to see
how these pieces fit together in order to produce an accurate hypothesis. Doing so requires an analysis of
the local distributions produced by the Estimate function used in Algorithm [4] Like we did in the case
of the Test function, we will make an axiomatic assumption about Estimate here and defer the details
to later sections. In particular, we will see that the properties of the Estimate function will influence
the choice of parameters ¢ and ¢ defining the frequent core of A.

Assumption 2. Let S be a sample of examples from (X' x X), and D the local distribution returned by
Estimate(S). Then the following hold for every local distribution D, of A and everye,d € (0,1):
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1. There exists N, = N,(e,8) such that if S is drawn i.i.d. from D, and |S| > N, then KL(D,||D) < ¢
holds with probability at least 1 — §.

2. There exists some co = £0(|S]) > 0 such that KL(Dy|| D) < . holds for any S.

In words, the first assumption above says that any local distribution in A can be accurately estimated
in terms of relative entropy provided a large enough sample is available. The second assumptions guar-
antees that Estimate is somehow able to smooth D in a way that it will never be too far from any local
distribution in A. We note that this is important because the relative entropy between two distributions
is a priori unbounded. For this reason we call €, the smoothing coefficient of Estimate.

We begin our analysis with a simple consequence of Theorem [4.3.8] that follows by using the same

proof with a different sample bound.
Corollary 4.3.9. For any § > 0, if |S| > (2(L + 1)/eset) - max{Ne(e, 6)n|Z|, Ne(6)n|X|,41n(1/6)}, then
with probability at least 1 —n(n|X[?/2 + 3|X|/2+ 1)d the hypothesis H produced by Algorithm captures
the frequent core of A and every state q in H which corresponds to a frequent state in A has a sample of
size |Sq| > Ne(e, 0).

Now we are in a position to state a PAC learning result for GPDFA under Assumptions [ and[2]on the

behavior of Test and Estimate. The result follows from combining Theorem [4.3.2] and Corollary [4.3.9]
with an adequate choice of 5 and ;.
Theorem 4.3.10. Suppose A is a GPDFA over ¥ with at most n states and that Assumptions[1] and[3
hold. For any d >0 and e > 0, let &' = 6/(n(n|2|?/2+3|2]/2+2)), es = ¢/(3n(L+2)ee), e, = ¢/ (3(L +
1)%e.), and eg = ¢/(3(L +1)). If |S| > (2(L + 1) /eset) - max{Ne(eg, 8" )n|Z|, N:(0")n|X|, 41n(1/8")}, then
with probability at least 1 — & the hypothesis H returned by Algorithm[{] with input parameters 3, n, and
&, satisfies KL(fal fu) <e.

Proof. First note that by Corollary and Assumption [I] , with probability at least 1 — § we have
that H captures the frequent core of A, each frequent state ¢ in A has a representative ®(q) in H
with associated sample of size at least Ne(eg,d), and KL(DqH[)@(q)) < gg. Now take the formula from
Theorem [£.3:2) and decompose the sum into three terms as follows:

KL(fallfa) = > > W(g,¢)KL(D,|Dy)

q€EQA ¢'EQH

=) W(g, ®(q)KL(Dg]| Do (y))
qeFs

+ Z Z W((Iaq/)KL(DqHﬁq’)

4€Fs ¢'€Qu\®(q)

+ Z Z W(q,q')KL(Dquq/) .

q€EQa\Fs '€EQH

Using (4.1) and Lemma we can bound the first term as

€
Z Wi(q, ® KL(D ”D‘I’(q)) (L(qo) + 1)5g < 3 -
q€Fs
The second term can be bounded using Theorem and Assumption [2] yielding
. L+1
S Y W IKLD, D) < (L4 eyt (L4 1)eee = N
3(L+2) 3
q€Fs ¢'€Qu\®(q)
Finally, the third term is bounded by (4.1) and Assumption [2| as
€
7). W(g,d)KL(Dy||Dy) < s = v -
q€EQA\Fs ¢'€QH 3(L+2)
Combining the three bounds above yields KL(fa|lfr) < €. O
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4.4 Distinguishing Distributions over Generalized Alphabets

In this section we present a generic approach for implementing the TEST function used in Algorithm
together with some examples. Our approach generalizes the use of L, and LY distances for distinguishing
states in algorithms for learning PDFA (see Chapter [2] for details). Basically, we define a measure
of distinguishability by taking the supremum over some collection of events of the difference between
probabilities assigned by two distributions to these events. In particular, we will take the set of events
in such a way that lets us use VC bounds to obtain finite-sample guarantees like the ones required by
Assumption [T}

We begin by recalling the definition of L., and LE distances between distributions on ¥*. This will
easily hint to the correct generalization in the case of distributions over (X x X)*. Given distributions
D and D’ over ¥*, the supremum distance L, is defined as

Loo(D,D") = sup |D(z) — D'(x)| .
reEX*

The prefix supremum distance LE_ is defined as

L2 (D,D") = sup |D(zX*)— D'(zX*)| .
TEX*

Looking at these definitions it is immediate to see that both these distances are particular instances of
a general measure of discrepancy between distributions given by

LSO(DvDI) = Sup |D(E) _DI(E)| )
Ece¢

where € is a collection of events over ¥*. In particular, € = {{z} : x € £*} in the case of Lo, and
¢ = {zX* : 2 € ¥*} in the case of LE . Now, since there is nothing special about ¥* in the definition of
L& , we can easily use this general form to define discrepancy measures between distributions on (X x X)*.

Note that in general, L% is not necessarily a distance: if € is not large enough, there may exist
distributions D # D’ such that LE (D, D’) = 0. On the other hand, we will see that very large sets of
events € yield worse statistical performance when estimating LE (D, D’) from samples, in addition to
the larger computational effort required to compute such estimations. We will thus need to balance this
trade-off if we want to obtain efficient learning algorithms for large classes of distributions on (X x X)*
using tests based on this principle. In the most general case, when defining € one should also take into
account measurability issues that may arise if X' is a continuous space, for example X = R equipped
with a Lebesgue measure. We will however ignore such considerations because measurability problems
will not appear in the applications we have in mind.

An important and desirable condition for LE is that we can estimate its true value using random
samples. We will see that this is a statistical property that is independent of whether LE defines a
proper distance or not. Also note that the statistical possibility of estimating LE from a finite set of
random examples does not a priori imply that such estimation can be performed efficiently. Let D be a
distribution over (X x X)* and let S = (2!,...,2™) be a sample of m i.i.d. examples from D. Given an
event F € € we define the empirical probability of E with respect to sample S as

1 m
S(E) = %leieE .
i=1

If S’ is an i.i.d. sample with m’ examples from another distribution D’, we define the empirical discrepancy
between S and S’ as
LE,(S,8) = sup [S(E) - S'(E)| .
Ece¢
We note that even though S and S’ are finite, computing such quantity requires evaluating a maximum
over & This computation and the statistical accuracy with which we can estimate LE (D, D’) using
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L& (9, 8") will depend on the shattering function of € defined in Appendix and denoted by Ilg. Like
we did in Chapter [2| we use this function to define, for any 0 < § < 1, the following quantity:

A(6) = 8111(

M’ )

4(I1g(2m) + H@(Qm’))>

where M' = mm//(v/m++v/m/)%. Now let us write p, = LE (D, D’) and i = LE (S, S’). With these defi-
nitions, the following two results follow from the same proofs used in Chapter [2]. Note that probabilities
in these results are with respect to the sampling of S and S’.

Proposition 4.4.1. With probability at least 1 — § we have p, < i+ A(0).
Proposition 4.4.2. With probability at least 1 — § we have p, > i — A(0).

These confidence intervals can be used to build a procedure Test with finite-sample guarantees; see
Chapter [2] for details. In particular, one can show the following useful result which quantifies the number
of examples needed to make confident decisions using this Test in a particular case of interest.

Corollary 4.4.3. Let S and S’ be i.i.d. samples from distributions D and D' respectively, and write
m = |S| and m’ = |S’|. Suppose that LE is such that lg(m) = O(m). If u, = LE(D,D") > 0,
then with probability at least 1 — § Test certifies this fact when min{m,m’} > N = O((1/p2)1n(1/6)).
Furthermore, if u, = LE (D, D’) = 0, then with probability at least 1 — § Test certifies ., < j when
min{m,m’} > N’ = O((1/u?)In(1/6)).

Now we give a general construction for a set of events ¢ which guarantees that LE is a distance
under very mild conditions. Let X be a set of events on X, i.e. X C 2% such that LY is a distance
between distributions over X. Besides the usual L., this setting includes other well known distances.
For example, if X = R and X = {(—o0,z] : © € R}, then LY is the Kolmogorov—-Smirnov distance.
Another example is the total variation distance which corresponds to taking X to be the full o-algebra
of X as a measure space; in particular X = 2% if X is finite or countable. Given x € ¥* with |z| = ¢
and X € X we write E, x to denote the subset 2X* x X' 1 X X* of (X x X)* that contains all z = (w, y)
such that x Cp w and y; € X. With this notation we define the following set of events on (X x X')*:

¢={E,x:2€XT, XX} .

It is easy to see in this case that L% is in fact a distance. Since the proof involves the construction of a
GPDFA with an infinite number of states, we give it only in the case of distributions over (X x X)* x
({¢} x X) because it fits better into the model of GPDFA we use in this chapter.

Proposition 4.4.4. Let D and D' be distributions over (¥ x X)* x ({¢} x X). Suppose LX is a distance
between distribution on X. If D # D' then LE (D, D’) > 0.

Proof. We begin by noting that D and D’ can be easily realized by two GPDFA with an infinite number
of states. Indeed, let A = (Q, X, 7,7,q0,&, D) be defined as follows: Q = X*; g9 = \; 7(z,0) = zo
for all z € Q; for all z € Q with |z| = ¢t and 0 € ¥ let y(x,0) = D((x1,X) -+ (2, X) (0, X) (' x
X)*)/D((z1,X) -+ (24, X) (X x X)*);t and for € Q with |2| = t and any measurable X C X, define
Dy o (X) = D((x1,X) -+ (2, X) (0, X)(X x X)*)/D((x1, X) - (w, X)(Z x X)*). It is immediate to
check that A realizes D. Similarly we define an infinite GPFDA A’ realizing D’. Now, if D # D’, then
A and A’ are not equal and this means there exists some string x € ¥* for which the corresponding local
distributions on A and A’ are different: D, # D!. If there are many such x, we take the shortest one,
resolving ties using a lexicographical order on X', For such x we must either have v(x, o) # v/(x, o) for
some 0 € X' or Dy ,(X) # D, ,(X) for some o € ¥’ and X € X, where this last claim follows from L%
being a distance. This certifies the existence of an event E, x € € such that |D(E, x) — D'(Ey x)| >
0. O

We adopt the convention 0/0 = 0 in all these definitions.
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Observe that even if LE is a distance, the set of events ¢ does not necessarily have slowly growing
shattering functions. In particular, it is not hard to see that if we allow samples with arbitrarily long
strings then IIe(m) = (2™) for any non-trivial X. Fortunately, since the distributions we will need
to distinguish are not arbitrary, there is a workaround to this problem. In particular, if D and D’ are
distinct distributions over (¥’ x X')* realized by GPDFA Ap and Aps with at most n states, then we
must have |D(E, x) — D'(E; x)| > 0 for some x € =" and X € X. Indeed, note that since Ap has at
most n states, any transition in Ap can be accessed with a string of length at most n; thus, if D and
D’ assign the same probability to all events E, x with |z| < n, then Ap and Ap, must define the same
probability distribution. Hence, given n and X we define

¢, ={E;x:z¢€ X eXx) .
Now we can bound Ilg, (m) as a function of n and Ix(m).
Lemma 4.4.5. The following holds: Ilg, (m) < 2mnllx(m).

Proof. The bound follows from well-known properties of shattering coefficients; see Appendix for
details. Let us define for any k& > 1 the following collection of events on X™*:

x0) = (XXX X e X} .

Writing ¢ = {X* : 2 € ¥*} it is immediate to see that we have &, C P @ X where X" =
u;;:lx(k). Thus, the following holds for any m:

H@n (m) S Hgn®x(1:n) (m) S Hm(m)ﬂx(lm) (m) S 2mnH3€(m) 5
where we used Lemma and Iy (m) = Ix(m). O

Now we turn our attention to the issue of how to actually compute the empirical LY distance between
two samples drawn from distributions D and D’ over (X x X')*. First we introduce some notation. Recall
that if Sy, is a multiset of strings from X* we use Sy (2X*) to denote the empirical frequency of prefix x
in Sy. We use pref(Sy;) to denote the set of all prefixes of strings in Sy;. Furthermore, recall that if Sy is
a multiset of elements from X we use Sx(X) to denote the empirical frequency of X in Sy. Let x € ¥*
with © = 21 --- ;. For any n > 1 we write x1., to denote x; - - -z, if n <t and z; - - - x; otherwise. Next,
let S = (z',...,2™) be a multiset from (X x X)* with z* = (2°,¢"), 2' € ¥*, and y* € X*'l. We define
Sy = (2t,...,2™) and Sy<n = (21,,...,27%)) for any n > 1. Furthermore, given z € ¥* with |z| = ¢
we write S, x to denote the multiset from X' containing all the y; for which i is such that  C¢ 2.

Now suppose we are given two samples S and S’ from distributions over (X x X)* and let U =
pref(Sy<n U Sg<,). Then we can write LE (S,5”) as the following maximum:

L& (S,8") = max ma S (57) S0, (X) = S (#3785, (X)] -

It is obvious that the maximum over U can be computed in time O(|U]) if we know

ax S (#57) S0, x(X) — S (257)5), 1(X)]

for each € U. In particular, it is easy to see that we have |U| = O(n(m+m’)) by bounding the number

of prefixes in Sy<n U Sy, Thus, we are left with the problem of computing

Xl
max |pSx (X) — p'Sx(X)| ,
where p,p’ € [0,1] are arbitrary and Sy and S% are multisets over X. Note that by definition of
shattering coefficients the quantity inside the maximum cannot take more than Iz (|Sx|+|S%|) different
values. However, how the actual computation of this maximum can be done in each case depends on
the particular structure of X and X. We now give three illustrative examples on how to perform such
computation.
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4.4.1 Examples with X' = A

We begin by taking X = A a finite alphabet and LY to be the usual L, distance; that is, X = {{} :
d € A}. Hence, if S and S’ is a sample from A, then we can compute

A
max [pS(8) — p'S"(9)|

by reading each sample once, storing the frequencies of each symbol in a table, and then taking the
maximum over the |A| possible differences. Assuming constant time read-write data structures, this
computation takes time O(]S| + |S’| + |A[). Note also that in this case we have IIx(m) < |A| + 1.

In our second example we take X = A again but now let LY be the total variation distance; that is,
X ={X : X C2%}. We note that in this particular example we have Ix(m) < 2!2|. In this case, given
samples S and S’ the naive approach to compute

/! !
max [pS(X) — p'S" (X))

would take time @(2|A|). However, we can take advantage of a property that this maximum shares with
the usual total variation distance. In particular, using the following result we see that this computation

can also be done in time O(|S| + |S’| + |Al).

Lemma 4.4.6. For any p,p’ € [0,1] and any samples S and S’ on A the following holds:

1 g _lp=r] 1 g
max [pS(X) = p'S'(X)| = +25§|p5(5) p'S'(8)] -

Proof. Let us assume without loss of generality that p > p’. Then it is easy to see using a standard
argument that the maximum over X C A is achieved on

X = {5:pS(8) > p'S'(9)} -

On the other hand, using p = 5pS(6) and p’ = >";p'S'(), we have

D pS©O) = p'S' () =Y (pS(8) —p'S'(8)) + > (0'S'(5) — pS(6))

SEA seX seX
=Y pSE) = (=Y _pSO) =Y PTG+ =D pS5©)
jeX feX eX jeX

=p —p+2(pS(X) —p'S'(X)) .

4.4.2 Example with X =R

In the last example we let X = R and LY be the Kolmogorov—Smirnov distance; that is, X = {(—o0, 7] :
x € R}. Now note that if S is a sample from R, in order to compute S((—oc, z]) we only need to count
how many points in S are less or equal to x. Furthermore, it is obvious that while x can range over R,
S((—o00,x]) can only take values of the form k/|S| for 0 < k < |S|. Thus, given two samples S and S’,
we can compute

max [pS((—oo, z]) — p'S" (=00, 2])]

by sorting the values in S and S’ and then taking the maximum over the points z € S U S’. Overall,
this computation takes time O(|S|log|S| + |S’|log|S’|). Furthermore, it is easy to see that we have
IMx(m)=m+1.
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4.5 Learning Local Distributions

In this section we show how to obtain procedures for estimating distributions over ¥ x X that satisfy
the requirements of Assumption 2} We write ¥ x X instead of ¥/ x X, though there is now difference
from the point of view of the results in this section. We begin by showing how to estimate multinomial
distributions with smoothing. We will use this estimate for transition and stopping probabilities. Using
this multinomial estimation we show how to estimate the entire local distribution provided we have
a procedure for smoothed estimation of distributions over X'. Finally we give two examples of such
estimations for different choices of X.

4.5.1 Smoothed Estimation of Multinomial Distributions

Let ¥ be a finite set and D a probability distribution over ¥. Suppose S = (x!,...,2™) is a sample of
m ii.d. examples from D. Given a smoothing parameter 0 < a < 1/[X| we define a smoothed empirical
distribution D obtained from S as follows:

D(o) = S(o)(1 = alX]) +a ,

where S(o) = Slo]/m = (1/m)Y ", 1,i—, is the empirical frequency of ¢ in S. In this smoothing
scheme we shall take o = \E|_1m_1/ 3. Now, given accuracy and confidence parameters €,6 € (0,1), we

define
1832232/ IZ\*? 8(1+¢)3
Nde(€76)maX{€3(1_|_6)3/2 (hl 5 > ,T

With this notation, the following result shows that when m is large enough, then D is close to D in
terms of relative entropy. We also show that KL(D||D) is always bounded and grows very slowly with
m.

Theorem 4.5.1. For any m we have KL(D||D) < In(|%|m!/3). Furthermore, for any €,0 € (0,1), if
m > Nq(e,d), then with probability at least 1 — § we have KL(D||D) < e.

Proof. Note in the first place that D(¢) <1 and D(o) > o imply

L(D||D) < > D(o) ln— In(||m'/?) .
oEY

Now, assuming m > Nq, we analyze the quotient D(o)/ ﬁ(a) in two different situations. First suppose
that D(0) < a(l +¢). Since by definition we have D(o) > a, we get D(0)/D(0) < 1+¢. Now note that
by Chernoff and a union bound, with probability at least 1 — § the following holds for all o € :

S(c) > D(o) (1 - D(c2r)m In ?')

Thus, if D(0) > a(1 + €), our assumption on m implies S(c) > D(c)(1 — &/3). On the other hand, our
assumption on m also implies (1 — «|X|) > (1 +¢/2)/(1 + &). Therefore, we get

D(0) > D(o)(1 - ¢/3)(1 — a[X))
)(1 —¢/3)(1+¢/2)
)

@

(o 1+e¢
(

—_
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Combining the bounds obtained in the two situations we see that, with probability at least 1 — §, we
have

L(D |D) =" D(o) (o)

ocEY )
<> D(o)In(1+¢)
oEX
< Z eD(o) =
oEX

4.5.2 Estimating Local Distributions in Terms of Relative Entropy

The estimate described in last section can be used to approximate the transition and stopping proba-
bilities in a local distribution. Now we introduce a requirement on a procedure to estimate a class of
distributions over X that will help us build an estimator for local distributions. In particular, let D
denote an arbitrary family of probability distributions over X. Given a sample S of examples from X,
we denote by Estimatey an algorithm that on input S returns a distribution D . We shall assume that
this algorithm satisfies the following.

Assumption 3. Suppose S is a sample from X and let Dy = Estimatex(S). Then, the following hold
for any e, € (0,1):

1. There exists Ny = Nx(g,9) such that if S is i.i.d. from some Dx € D with |S| > Ny, then with
probability at least 1 — 6 we have KL(Dx||Dy) < ¢,

2. There exists some ex > 0 such that for any S and any Dy € D we have KL(DX”DX) < 4.

Now we show how to approximate a local distribution D over ¥ x X using Estimatey. First note that
D can be written as D = Dy, ® Dy, where Dy is a stochastic kernel on ¥. We will use D, x to denote the
distribution given by Dx (o, ). Thus, we can estimate Dy, and the D, x separately. In particular, given
asample S = ((x!,y!),..., (z™,y™)) from ¥ x X we define the following sub-samples: Sy = (z!,...,2™)
is the corresponding sample from ¥, and for each o € ¥ we let S, x be the sample containing all y°
such that 2’ = ¢. With this notation, our estimate for the local distribution D is defined by taking
Ds(0) = Sx(0)(1 — a|%]) + a as per the previous section, and Dy x = Estimatex (S, x) for each o € .
Our next results bounds the error on D. Given accuracy and confidence parameters £,0 € (0,1) let use
define

i = i(e,8) = ma { Na(e/2,0/2), 2% 25, AR RERELOTEED L

5’ €
Theorem 4.5.2. Suppose D is a family of distributions over X satisfying Assumption [3 Let D be
distribution on ©x X such that Dy x € D for every o € . For any S we have KL(D|| D) < In(|S|m!/3)+

ex. Furthermore, for any €,6 € (0,1), if m > Ni(e,d), then with probability at least 1 — & we have
KL(D|D) <e.

Proof. First observe that, by the product rule of relative entropy, for any pair of distribution D and D
on X X X we have:

L(D||D) = > Ds(o) Dslo )+KL( Do.x||Do.x)
=, Ds(0)

=KL(Ds|Ds) + > Ds(0)KL(Dy x| Dy x)
ogeY

< In(|Zm!/3) + e,
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On the other hand, using our assumption on m we can use Theorem to show that KL(Dyx||Dx) < ¢/2
holds with probability at least 1 — 6/2. To bound the second term containing a sum over ¥ we consider
two cases. If Dy (o) < €/2|X|ex, then Assumption 3| yields

~ 3
< — .
DE(O')KL(DQ/'VHDU,X) ~ 2|E|

On the other hand, let us write m, = |S,,x|. By Chernoff, with probability at least 1 —§/4 the following
holds for all o € 3:
2 4|%]
e >mD 11—/ ———In——
Me > m 2(0’)( Do) n— >

In this case, by our assumption on m, we get m, > Ny(¢/2|X|,5/4]|X]) for each ¢ € ¥ such that
Dy, (0) > €/2|X|ex. Which means that, for all those o, we get

~ g
K < —
Dx(0)KL(Dg x| Dy x) < 3

with probability at least 1 — d/4. Overall, these bounds imply that with probability at least 1 — §/2 we
get

A €
> Ds(0)KL(Dg x| Do) < 5 -
oey
Hence, KL(D||D) < ¢ with probability at least 1 — 4. O

4.5.3 Example with X = A

In this example we assume that X = A is another finite alphabet different from X. In this case we can
readily use the multinomial estimation from Theorem to estimate the distributions D, A for each
o € 3. We use D the following distribution obtained from a sample S of size m from ¥ x A:

D(0,6) = (Sx(0)(1 = ax[Z)) + ax) - (S5,a(8)(1 = agalA]) + aga)

1/

where ax = [S|"m /3 and ap.a = |A|"'m, . Now, a simple calculation yields the following result.

Corollary 4.5.3. Let D be a distribution over ¥ x A and S a sample from ¥ x A of size m.
For any S we have KL(D||D) < In(|X| |A|lm?/3).  Furthermore, for any €, € (0,1), if m > N =
O((|1ZP|A]3/2 Je*) In(1/6)3/?), then with probability at least 1 — § we have KL(D||D) < «.

4.5.4 Example with X =R,

Now we give an example of estimation of local distributions with & = R>(. In particular, we show how to
estimate the distribution of exponential random variables in terms of relative entropy when given upper
and lower bounds on the possible rate parameters. Then we combine this result with Theorem to
obtain an estimation procedure for local distributions over ¥ x R> when the marginal distributions over
R>q follow an exponential law.
We begin with some definitions. Given any two real numbers a < b we define the following piecewise-

linear function:

a ifz<a

tap(x) =qx fa<z<b
b ifxz>0b

Now let S = (z!,...,2™) be a sample containing m non-negative examples z° € R>o. Furthermore
assume we are given 0 < Apin < Amax. Using these quantities we define the following estimate:

N m
A= Exmin A (m>
min;Amax Z i
1=1
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Our goal is to show that under some conditions A is a good estimate of the rate parameter A of an
exponential distribution.

To begin, let us assume that S is a sample of i.i.d. examples drawn from some exponential distribution
D = Exp()\) with A € [Amin, Amax). Using A we define the smoothed estimation of D as D = Exp(}).
The next result will show that D satisfies the conditions required by Assumption |3} Given accuracy and
confidence parameters ¢,d € (0,1) we define Ng = Ng(¢,d) = (32/2)In(2/9).

Theorem 4.5.4. For any S we have KL(DHD) < Amax/Amin — 1. Furthermore, for any €,6 € (0,1), if
m > Ng(e,0), then with probability at least 1 — § we have KL(D||D) < e.

Proof. We begin by recalling that for D = Exp(\) and D= Exp(j\)7 one has

> >

. A
KL(D|D) = §+Ins —1 .

Then, since by construction we have A, e [Amin; Amax], we see that

min )\min )\min

KL(DHD) < max{/;\max —1,In /\max} _ Amax 1

Now recall that if X;,...,X,, is are i.i.d. random variables with distribution Exp(\), then Y = X; +
-+ 4 X, follows a distribution Gamma(m, 1/X). Hence, using Theorem we see that the following
holds with probability at least 1 — §:

A . A
<A<
1+\/%ln%+%ln§ %ln%—%ln%

In particular, for m > (1/2)1n(2/6) we get:

IA

3| oo] 3l ™ .
E | E |
| DO >l

> >
—
-
=

1—
A
S<1+ (4.5)
A

So, assuming that S is i.i.d. from Exp(A) and m > Ng, we consider two separate cases: A>Xand A < A
In the first case, using (4.4) and our assumption on m we get

3
IN]

In
1< — <.

= <
L—y/;mIng

> >
>

73
oo

KL(D||D) <
In the second case, since In(1 + ) < z for all > 0, from (4.5 we get

/ 2
Sln(l—i— 81n>§5.
m 0

Finally, plugging the estimation procedure Estimateg.,(S) = Exp(}) for a given sample over R>o
into Theorem [£.5.2] we can show the following result.

KL(D||D) < In

>0 >

O

Corollary 4.5.5. Let D be a distribution over ¥ x R>q such that every marginal D, g = Exp(A,) with
Amin < Ao < Amax, and write A = (Amax — Amin)/Amin- Let S be a sample from ¥ x R>q of size m,
and denote by D the distribution obtained from it using the procedure described in Theorem . For
any sample S we have KL(D|| D) < In(|S|m/3) + X.  Furthermore, for any ¢,6 € (0,1), if m > N =
O((|Z3X\/€3)In(1/6)3/2), then with probability at least 1 — § we have KL(D ||D) < e.
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4.6 Applications of Generalized PDFA

In this section we collect all results we have proved so far about the learnability of GPDFA, the problem
of distinguishing their states, and the estimation of local distributions. We do so by providing two
PAC learning results for families of FSM which can be defined in terms of GPDFA. In particular, we
choose these two examples because they represent (sub-)classes of distributions which have been used in
practical applications and for which no PAC learning results were known.

We begin with an application to Continuous Time Markov Chains (CTMC) and Continuous Time
Hidden Markovian Models (CTHMM). These type of models have been used in the model-checking
community to represent machines that need to be tested for a set of specifications [BHHKO03|. When one
wants to conduct a large number of tests on a given machine, it is sometimes more efficient to learn a
model of that machine and then run the tests on the model instead of the real machine. In this case it is
important to ensure that the model accurately represents the machine being checked. This is why PAC
learning algorithms for this type of models may be useful.

A usual modelling assumption used in CTMC and CTHMM is that time between observations follow
exponential distributions. This is due to the memoryless property of exponential distributions, which is
well-known for combining analytic simplicity with some degree of realism |[GH9§|. In our case, by taking
X =R>o and GPDFA with exponential distributions over R>¢ in their transitions, we obtain a class of
models related to CTMC and CTHMM. In particular, we can model every CTMC and some sub-classes
of CTHMM. Hence, the following result gives a learning algorithm for these classes of distributions over
(X xR)*.

Let ¥ be a finite alphabet and n a number of states. Let L& denote the discrepancy in (%' x
R>) built from the Kolmogorov—Smirnov distance L% on R as described in Section m We define
the class of all GPDFA A = (Q, X, 7,7, qo,&, D) satisfying the following conditions, and denote it by
GPDF Agsp (2,1, L, 11, Amins Amax):

L Q[ <n,
2. L(q) < L for every q € Q,

3. Dyo = Exp(A) with Apin < A < Apax for every ¢ € Q and 0 € ¥/,
4. mingq L&y (qu»qu,) > [

The following PAC learning result holds for this class of GPDFA, where we use the notation A =
(Amax—Amin)/Amin- The proof is a straightforward calculation combining Theorem |4.3.10} Corollary|4.4.3
and Corollary

Corollary 4.6.1. There exists an algorithm such that, for every e, € (0,1), on input ¥, n, § and an
i.i.d. sample S of size m from some distribution fa with A € GPDF Agsxp(X,n, L, tt, Amins Amax ), With
probability at least 1 — 9, if

~ 27432 3/2 3733
Y (5 S EA R (> A
€ ) g3 w2

then the algorithms returns a GPDFA A with KL(fallf3) <e.

Our second application is to the problem of learning (stochastic) transductions. That is, functions
of type ¥* — A* and (conditional) probability distributions on ¥* x A*  where ¥ is an input alphabet
and A an output alphabet. In particular, our results on learning GPDFA can be used to prove the PAC
learnability of some classes of distributions over (X x A)* which define aligned transductions. That is,
transductions where input and output strings must have the same length. We note that our transductions
are incomparable to most of the standard classes of transductions considered in the literature. For exam-
ple, sequential transductions allow input and output strings of different lengths but constrain transitions
inside the transducer to be deterministic in terms of both input and output [Higl0]. Our transducers,
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however, are only required to be deterministic with respect to the input symbols. In particular, the
marginal distribution over A* defined by a GPDFA with X = A cannot, in general, be realized by any
PDFA.

Let ¥ and A be finite alphabets and let n be a number of states. Let LE» denote the discrepancy
in (X x A) built from either the Ly, or L; distance on A as described in Section m We write
GPDFAA(Z,n, L, 1) to denote the class of all GPDFA A = (Q, %, 7,7, qo, &, D) such that the following
hold:

L 1Ql<n,
2. L(q) < L for every q € Q,
3. D, is a distribution over A for every ¢ € Q and 0 € ¥/,

4. mingyq LS (fa,, fa,) >

With this notation, we have the following PAC learning result for GPDFAa (X, n, L, 1). The proof is a
straightforward calculation combining Theorem [4.3.10, Corollary and Corollary

Corollary 4.6.2. There exists an algorithm such that, for every e, € (0,1), on input X, n, § and an
i.i.d. sample S of size m from some distribution fa with A € GPDFAA(Z,n, L, p), with probability at

least 1 =9, if
(1St 1\ SPL3AF2 1
m>N=0 | |n3 In () max{w,Q} ,
€ 0 € I

then the algorithms returns a GPDFA A with KL(fallfz) <e.

4.7 Proof of Theorem [4.3.2

We will make extensive use of notation from measure theory in this section; see [Pol03| for details. Let
(X,2) and (Y, *B) be two measure spaces. We assume that all the measures we consider are sigma-finite.
A family of measures A = {A;|z € X} is a kernel from (X,2) to (V,B) if the map = — A\ (B) is A-
measurable for each B in B and A\, ()) < oo for each x in X. If 11 is a measure on 2, then the functional
on MT(X x Y, A®B) given by

£ [ faritdnutis)

defines a measure on 2 ® B which we denote by p ® A.

Let v be a measure in 2 such that y < v and A a measure in 8 such that A\, < A for each x. Then,
by the Radon—Nikodym Theorem, the following densities are well-defined: du/dv = f and dA,/d\ = g,.
In this setting one can proof the following.

Lemma 4.7.1. If g.(y) is A @ B-measurable, then p @ A <€ v ® \. Furthermore, u ® A has density
(z,y) = f(x)g=(y) with respect to v ® A.

Proof. Let C be a v® A-negligible set and denote by x¢ its characteristic function, which, by assumption,
is zero v ® A-almost everywhere. We want to see that

(198 (€)= [ [ xelw.prutdy)ntdz) 0
By the measurability of g.(y), we can use Tonelli’s theorem to show that
o) (©) = [ [ xel.nr@e M) |

which is equal to zero because x¢(z,y) f(2)g.(y) is zero v ® A-almost everywhere. A similar computation
with y¢ replaced by an arbitrary non-negative product measurable function shows that the density is

f(@)ga(y)- O
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Finally, recall that given three measures puq,uo,v on a measure space (X, %), if p1,pue < v and
duy /dv = p1 and dus/dv = pa, the relative entropy or Kullback-Leibler divergence between py and pso is
given by

KL ) = [ pr(o) 1o 25 ()

4.7.1 Measures Defined by GPDFA

Recall that a GPDFA A = (Q, %, 7,7, ¢0,&, D) induces a probability distribution over the space Q =
(X x X)* x ({&} x X). Now we will describe the sigma-field, the measure, and the density associated
with this distribution. To compute the density we will need to assume that every distribution D € D
over X is absolutely continuous with respect to some fixed measure m. In particular, for any D, , € D
we will denote its density with respect to m by dDg ,/dm = g, ..

We start by decomposing ) into the disjoint union of an infinite number of subspaces, each of
them having its own sigma-field and measure. Let Qy = {A\} x ({¢{} x X), and for n > 1, Q, =
(2 x X)™ x ({&} x X). All these spaces are product spaces that can be endowed with a product sigma-
field generated by the sigma-fields in each component. In this case, we will take the sigma-field associated
with m in X', and the power set sigma-field 2¥ for each finite set Y. We will use ¢ to denote the counting
measure on any discrete set. With these notation we can equip each (), with a standard measure
vp = (c®@m)" T for n > 0.

Now, for each ,, we will define a measure u, coming from the GPDFA. These u,, will be defined
in terms of measures and kernels from three families that will now be described. From now on, we will
identify (X x X)™ with 3™ x X" for convenience, and use the notation (z,y) to denote an element from
the former set.

The family ©", where 0 is a kernel from ¥’ to X, and ©", for n > 0, is a kernel from (X x X)" x 3’
to X. The measures contained in these kernels are defined by their densities with respect to m as follows:

4o de?r
o (z,y),0 _
dm Y9q0,0 > dm = 97(qo,x),0 -

The family I'™, where I'? is a measure on X, and I'", for n > 0, is a kernel from (¥ x X)" to ¥. Their
densities with respect to the counting measure are:

T0 ary,
ddT = ’7((10; .) y ((icvy) =7 (T(q07 x)7 .)

The family =", where =° is a measure on {¢}, and ", for n > 0, is a kernel from (X x X)" to {¢}. Their
densities with respect to the counting measure are:

d=" d={,

_ “(zy) _
de =7(a,¢) de

Y(7(q0, ), ®) .

Note that the only difference between the densities from the family I and the family =" is the
domain where they are defined. Furthermore, the measures in these families may not be probability
measures — although they are all finite. However, measures in the family ©" are, indeed, probability
measures.

Taking products of these measures and kernels we define the following new measures. On 2y we
define 1o = Z° ® ©°, and on ,, for n > 0 we define

n—1
Lin :1—\0®®0®,_.®1—m—1®@n—1 RE"®O" = <®Fz®®z> ®(En®®n)
=0

It is easy to check that all the densities defined above for the families ©™, A™ and =" satisfy the
measurability conditions required by Lemma Therefore, we have p, < v, for n > 0 and the
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respective densities can be computed. For n = 0 one has

(dm) (A& y) =7(90:€) a0 (V) -

dy
And for n > 0,
dpy, i
(dz/) (z,y) = HV(Qi,SCi)gqi,xi (yi)
n i=0
where © = xg -z, with 2, =&, vy = (yo,...,yn) and ¢; = 7(qo, o - - - x;—1) for 1 <i < mn.

4.8 Relative Entropy Between GPDFA

Suppose we are given two GPDFA, A and A, over the same alphabet ¥ with the same terminal symbol
&. These automata induce measures p and [ over the same space §2, both dominated by the standard
measure v on §). Therefore we can compute the Kullback—Leibler divergence between these two measures.
By definition of the divergence and remembering that €2 is the disjoint union of the €2,, one obtains:

A dp | o G
KL = log KL (4t || i
(ulli) = | 3,108 4273, Z (bt i)

Now we will proceed to evaluate the terms in the sum,

. A,  dpyn/duy,
KL n||Mn) = —1 Aid n
(alle) = G 10g e

Substituting the densities computed in previous section and, recalling that integral over finite spaces
with respect to the counting measure is equivalent to summation, one obtains

Z/ Z/H7 (45> i) 9q; 2. () log H =0 2o 20 80) g, gy

0 V(s> i) Gg; 2. (Yi)

where the sums for x; run over ¥ for 0 <i<n—1 and z, =¢£.
Now we can permute the integral and sum signs, reorder the products, turn the logarithm of products
into sums of logarithms and use the recursive definition of v : @ x (¥')* — [0, 1]. This yields

Z/ / v(qo, @ ng (i) [lgA(qAO’ )+Zloggigg dyy, -+ dyo

7(q07 ) i—0

where x = xg - - - 25, runs over all the words in X"¢ and ¢g; = g4, 4, -
Recall that the g, , are densities of probability measures over X’ and therefore [ g, (y)dy = 1. Hence,

/"'/Hgi(yi)dyn"'dyozl ;
i=0

and, for 0 <i <mn,

[ [Tt g’jg%;dyn---dyo ~ [ aitwiog ;Ezfgdyi — KL(gi]:) -
_7:0 1 K3 1 1

This allows us to write
qu
L(pnllfn) = Zv 0, llog - ZKL 9ill9:)
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And we finally obtain

|z|—1
- Y\4do, T N
KLl = 3 (a0.2) |log 227 o ™ Ki(glg) |
wENFE g0, 2) =

where & = 2 -+ T|g|—1, gi = gg;,z; for 0 < i < |z| — 1 and ¢; = 7(qo, To - w4-1) for 1 <7 <[z — 1.

Now, using the procedure described in |Car97], one can manipulate this expression to obtain a new
expression for KL(p||ft) in terms of the divergences between the local distributions in each pair of states
from A and A. This yields

KL(li) = 3 S Wig.d) 3 1(a.0) [1og ML) | K1 (gelldne)
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Part 11

Spectral Methods






Chapter 5

A Spectral Learning Algorithm for
Weighted Automata

This chapter begins the second part of the present dissertation. In it we introduce weighted automata
and discuss their learnability in a very abstract setting. Weighted automata are a natural generalization
of the classes of automata we have seen so far. In particular, they can realize probability distributions
generated by HMM and PNFA, as well as other types of distributions which do not admit probabilistic
parametrizations (see [DEO§| for examples). The learnability results that we present in this chapter
require the knowledge of the output produced by the target automaton on a particular set strings. In
this respect, the results resemble those on the query learning framework.

The starting point for our derivations is to study Hankel matrices of functions from strings to real
numbers and their relation to weighted automata computing such functions. Using tools from linear
algebra, we uncover a duality principle between minimal weighted automata and factorization of their
Hankel matrices. This duality will yield a derivation of the so-called spectral learning method, which
will be the basis for all the learning algorithms presented in subsequent chapters.

Although the spectral learning algorithm is derived assuming exact knowledge of some Hankel ma-
trices, it turns out to be quite robust against approximation noise. Thus, we end the chapter by proving
a series of technical results that will be used later for bounding the error of learning algorithms which
apply the spectral principle to empirical Hankel matrices estimated from a sample. Here we present the
analytical and algebraic machinery needed to obtain such bounds, and defer the statistical aspects of
such analyses to next chapters. Some notation and linear algebra results used in our proofs can be found

in Appendix

5.1 Weighted Automata and Hankel Matrices

Let f:X* — R be a function over strings. The Hankel matriz of f is a bi-infinite matrix Hy € R>" x>
whose entries are defined as Hy(u,v) = f(uv) for any u,v € ¥*. That is, rows are indexed by prefixes and
columns by suffixes. Note that the Hankel matrix of a function f is a very redundant way to represent f.
In particular, the value f(z) appears |z| + 1 times in Hy, and we have f(z) = Hy(z,\) = Hy(\,z). An
obvious observation is that a matrix M € R *>" satisfying M(uy,v1) = M(ug,ve) for any ujvy = ugve
is the Hankel matrix of some function f : ¥* — R.

We will be considering (finite) sub-blocks of a bi-infinite Hankel matrix Hy. An easy way to define
such sub-blocks is using a basis B = (P,S), where P C ¥* is a set of prefixes and S C X* a set of
suffixes. We shall write p = [P| and s = |S|. The sub-block of H; defined by B is the p x s matrix
Hp € RP*S with Hg(u,v) = Hy(u,v) = f(uv) for any u € P and v € S. We may just write H if the
basis B is arbitrary or obvious from the context.

Not all bases will be equally useful for our purposes. In particular, we will be interested in two
properties of bases: closure and completeness. Let B = (P,S) be a basis and write ¥ = ¥ U {\}
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for convenience. The p-closurelof B is the basis B = (P’,S), where P’ = PY'. Equivalently, a basis
B = (P,S) is said to be p-closed if P = P’'Y’ for some P’ called the root of P. It turns out that a Hankel
matrix over a p-closed basis can be partitioned into |X| 4+ 1 blocks of the same size. This partition will
be useful in many of our results. Let Hy be a Hankel matrix and B = (P,S) a basis. For any o € ¥/
we write H, to denote the sub-block of Hy over the basis (Po,S). That is, the sub-block H, € RP7*S
of Hy is the p x s matrix defined by H,(u,v) = Hy(uo,v). Thus, if B’ = (P’,S) is the p-closure of 5,
then for a particular ordering of the strings in P’, we have

95|

H), = [HI ‘ H]

The rank of a function f : £* — R is defined as the rank of its Hankel matrix: rank(f) = rank(Hy).
The rank of a sub-block of Hy cannot exceed rank(f), and we will be specially interested on sub-blocks
with full rank. We say that a basis B = (P,S) is complete for f if the sub-block Hp has full rank:
rank(Hp) = rank(H/). In this case we say that Hp is a complete sub-block of H. It turns out that the
rank of f is related to the number of states needed to compute f with a weighted automata, and that the
p-closure of a complete sub-block of Hy contains enough information to compute this automata. These
two results provide the foundations for the learning algorithm presented in Section [5.3

A widely used class of functions mapping strings to real numbers is that of functions defined by
weighted finite automata (WFA) or in short weighted automata [Moh09]. These functions are also known
as rational power series |SS78; IBR88]. A WFA over ¥ with n states can be defined as a tuple A =
(g, Oooy {As}), where ag, o € R™ are the initial and final weight vectors, and A, € R™ ™ the
transition matrix associated to each alphabet symbol o € . The function fa realized by a WFA A is
defined by

fa@) =ag Ay, - Ay, 000 = o) Aoty

for any string x = x; - -2y € ¥* with ¢t = |2 and z; € X for all 1 < i <¢. We will write |A| to denote the
number of states of a WFA. Since ag will mostly be used as a row vector, we shall omit the transpose sign
whenever there is no risk of confusion. The following characterization of the set of functions f : ¥* — R
realized by WFA in terms of the rank of their Hankel matrix was given by Carlyle and Paz |[CP71] and
Fliess [F1i74]. We also note that the construction of an equivalent WFA with the minimal number of
states from a given WFA was first given by Schiitzenberger [Sch61].

Theorem 5.1.1 (|CP71} [Fli74]). A function f : ¥* — R can be realized by a WFA if and only if
rank(Hy) is finite, and in that case rank(Hy) is the minimal number of states of any WFA A such that

f=rfa.

In view of this result, we will say that A is minimal for f if f4 = f and |A| = rank(f). Another
useful fact about WFA is their invariance under change of basis. It follows from the definition of f4
that if M € R"*™ is an invertible matrix, then the WFA B = (ag M, M~ oo, {M 1A, M}) satisfies
fB = fa. Sometimes B is denoted by M~'AM. This fact will prove very useful when we consider the
problem of learning a WFA realizing a certain function.

Weighted automata are related to other finite state computational models. In particular, WFA can
also be defined more generally over an arbitrary semi-ring instead of the field of real numbers, in which
case they are sometimes called multiplicity automata (MA) [BBBKVO00]. It is well known that using
weights over an arbitrary semi-ring yields more computational power. However, in this thesis we will
only consider WFA with real weights. It is easy to see that several models considered so far (DFA,
PDFA, PNFA) can easily be cast as special cases of WFA.

Example

Figure [5.1] shows an example of a weighted automaton A = (e, @, {A,}) with two states defined over
the alphabet ¥ = {a, b}, with both its algebraic representation (Figure [5.1{b)) in terms of vectors and
matrices and the equivalent graph representation (Figure a)) useful for a variety of WFA algorithms

1The notation p-closure stands for prefix-closure. A similar notion can be defined for suffixes as well.
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a,3/4 a,1/3 ag =[1/2 1/2] al =[1 -1]
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b,3/4

(a) (b)

Figure 5.1: Example of a weighted automaton over ¥ = {a, b} with 2 states: (a) graph representation;
(b) algebraic representation.

[Moh09]. Letting W = {¢,a,b}, then B = (WX, W) is a p-closed basis. The following is the Hankel
matrix of A on this basis shown with three-digit precision entries:

€ a b aa ab ba bb
€ 0.00 0.20 0.14 0.22 0.15 045 0.31
0.20 0.22 045 0.19 0.29 0.45 0.85

H = a
B
b 0.14 0.15 0.31 0.13 0.20 0.32 0.58

5.2 Duality and Minimal Weighted Automata

Let f be a real function on strings with rank r and Hy its Hankel matrix. In this section we consider
factorizations of H; and minimal WFA for f. We will show that there exists an interesting relation
between these two concepts. This relation will motivate the algorithm presented on next section that
factorizes a (sub-block of a) Hankel matrix in order to learn a WFA for some unknown function.

Our initial observation is that a WFA A = (o, @teo, {As }) for f with n states induces a factorization
of Hy. Let P ¢ R>"*" be a matrix whose uth row equals ag A, for any v € ¥*. Furthermore, let
S € R™*" be a matrix whose columns are of the form A,a., for all v € ¥*. Tt is trivial to check
that one has Hy = PS. The same happens for sub-blocks: if Hg is a sub-block of Hf defined over an
arbitrary basis B = (P,S), then the corresponding sub-matrices P € RF*™ and S € R"*S of P and S
induce the factorization Hz = PgSg. Furthermore, if H,, is a sub-block of the matrix Hp' corresponding
to the p-closure of Hp, then we have the factorization H, = PgA,Sp.

An interesting consequence of this construction is that if A is minimal for f, that is n = r, then
the factorization Hy = PS is in fact a rank factorization: rank(P) = rank(S) = rank(H/). Since in
general rank(Hg) < r, in this case the factorization Hg = PgSp is a rank factorization if and only if
Hp is a complete sub-block. Thus, we see that a minimal WFA that realizes a function f induces a
rank factorization on any complete sub-block of Hy. The converse is even more interesting: give a rank
factorization of a complete sub-block of Hy, one can compute a minimal WFA for f.

Let H be a complete sub-block of Hy defined by the basis B = (P,S) and let H, denote the sub-
block of the p-closure of H corresponding to the basis (Pa,S). Let hp , € R” denote the p-dimensional
vector with coordinates hp x(u) = f(u), and hys € R® the s-dimensional vector with coordinates
h) s(v) = f(v). Now we can state our result.

Lemma 5.2.1. If H = PS is a rank factorization, then the WFA A = (ag, oo, {As}) with o =
h;SS"’, Qoo =PThp ), and A, = PTH,S™, is minimal for f. Furthermore, A induces the factoriza-
tions H =PS and H, = PA,S.

Proof. Let A’ = (o), o, {AL}) be a minimal WFA for f that induces a rank factorization H = P’'S’.
It suffices to show that there exists an invertible M such that M~'A’M = A. Define M = S’S* and
note that PTP’/S’ST = PTHS™T = I implies that M is invertible with M~! = P*P’. Now we check
that the operators of A correspond to the operators of A’ under this change of basis. First we see that
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A, =PtH,ST =PTP'A/S'ST = M~'A/ M. Now observe that by the construction of S’ and P’ we
have afy' 8’ = hy s, and P’a,, = hp . Thus, it follows that a] = ' M and a,e = ML,

Now let H = PS4 be the factorization induced by A. Observe that for any v € P the uth row of
P 4 satisfies:

aj A, =a) AM=P,S'S* =h] ;S* =P,SST =P, ,

where P/, and P, represent to the uth rows of P’ and P respectively, and hl s is the uth row of H.
Thus we get P4 = P, and a symmetric argument shows S4 = S. The factorization of H, follows
immediately. O

This result shows that there exists a duality between rank factorizations of complete sub-blocks of
H; and minimal WFA for f. A consequence of this duality is that all minimal WFA for a function f are
related via some change of basis. In other words, modulo change of basis, there exists a unique minimal
WFA for any function f of finite rank.

Corollary 5.2.2. Let A = (o, 0o, {As}) and A" = (e, al,, {AL}) be minimal WFA for some [ of
rank r. Then there exists an invertible matriz M € R™ " such that A = M~ A’M.

Proof. Let B be any complete basis for f a let Hg = PS = P’S’ be the rank factorizations induced by
A and A’ respectively. Then, by the same arguments used in Lemma the matrix M = S’'ST is
invertible and satisfies the equation A = M~1A'M. O

The following technical lemma is a duality-like result for models with different numbers of states. It
will be useful in later chapters for proving some of our results.

Lemma 5.2.3. Let A = (g, @0, {As}) be a WEA with n states. Suppose that (P,S) is a complete
basis for fa and write H = PS for the factorization induced by A on this Hankel sub-block. For any
k and any pair of matrices N € R¥*™ and M € R™* such that PMN = P, the WFEA B = NAM =
<a(—]'—M,Naoo7{NAJM}> satisfies fg = fa.
Proof. Write B = (B, 8+, {Bs}). It is enough to show that for any x € £* one has ,B(TBI = ﬁ;— =
a]M = aj A, M, for then fp(z) =B} 8., = ol MNa,, = fa(z), where this last equality follows from
PMN = P and the observation that the rows of P span the set {a] },ex-.

Note that ,@I = BOT = ag M by definition. And thus, by induction on the length of z, we have
Bl =B.B, =a] MNA,M = o] M. O

5.3 The Spectral Method

The spectral method is basically an efficient algorithm that implements the ideas in the proof of
Lemma @ to find a rank factorization of a complete sub-block H of H; and obtain from it a minimal
WFA for f. A particularly interesting feature of the method is its robustness to noise. Since it uses a
factorization based on the singular value decomposition (SVD) of H, one can show that if only an ap-
proximate sub-block H is available, then the resulting WFA will be close the one one would obtain using
the exact matrix. The term spectral comes from the fact that SVD is a type of spectral decomposition.
We give the basic algorithm in this section. The techniques needed to prove error bounds will be outlined
in next section. Specific applications and variations of this algorithm will be the subject of subsequent
chapters.

Suppose f : ¥* — R is an unknown function of finite rank r and we want to compute a minimal
WFA for it. Let us assume that we know that B = (P,S) is a complete basis for f. Our algorithm
receives as input: the basis B and the values of f on a set of strings W. In particular, we assume that
PYX'SUPUS C W. Tt is clear that using these values of f the algorithm can compute sub-blocks H,, for
o € ¥/ of Hy. Furthermore, it can compute the vectors hy s and hp ». Thus, the algorithm only needs
a rank factorization of Hy to be able to apply the formulas given in Lemma [5.2.1

Recall that the compact SVD of a p x s matrix Hy of rank r is given by the expression H) =
UAVT, where U € RP*" and V € R**" are orthogonal matrices, and A € R"*" is a diagonal matrix
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containing the singular values of Hy. The most interesting property of thin SVD for our purposes is
that Hy = (UA)V" is a rank factorization. We will use this factorization in the algorithm, but write
it in a different way. Note that since V is orthogonal we have V'V =1, and in particular V* = VT,
Thus, the factorization above is equivalent to Hy = (H,V)V . With this factorization, equations from
Lemma [5.2.7] are written as follows:

ag =hy sV,
o = (HyV)Thp , |
A, = (H\V)*H,V .

These equations are in essence the spectral learning algorithm for WFA. The underlying algebraic
ideas of the algorithm are not much different from the ones used in the algorithm given in [BBBKV00] for
learning multiplicity automata from membership and equivalence queries. However, there are substantial
differences between both algorithms in terms of learning frameworks and capabilities. The first is that
in their case the basis is initially unknown and is constructed along the way by trial-and-error via
equivalence queries. In contrast, our algorithm requires the basis to be known, but in contrast the use
of SVD makes the algorithm robust to noise. This is what will permit us to learn classes of WFA for
which approximations of their Hankel matrices can be computed from a random sample.

5.4 Recipes for Error Bounds

Being able to bound the error incurred by using an approximate Hankel matrix instead of an exact one
in the spectral learning algorithm is one of its major feats. In this section we present the main technical
tools needed to prove such bounds. Generally, this involves two steps. The first one analyzes the error
in the individual operators, and the second one analyzes how these errors aggregate when evaluating the
automata on a particular string. We will give several variants of each of these steps that will prove useful
in later chapters.

5.4.1 Pointwise Difference Between WFA

Let A = (g, 0o, {As}) and A’ = (o), @, {AL}) be two WFA over ¥ with the same number of states
n. In this section we are interested in bounding the difference |f4(x) — fas(z)| for an arbitrary string
z € ¥*. The bounds we give will be in terms of the differences between the operators of A and A’, and
of the norms of these operators. We begin with a simple lemma.

Lemma 5.4.1. Let || - || be an arbitrary submultiplicative matriz norm such that for any o € ¥ we have
|AG ], [JAL]| <~ for some v > 0. Then, for any x € X we have

||
1Az — ALl <A AL — AL
i=1
Proof. By induction on the length of x. For |z| = 1 the result is trivial. Now suppose = yo. Then, by
the triangle inequality, submultiplicativity of the norm, and ~-boundness hypothesis, we have

[Ayo — Ayl < Ay — ALllIIAG ]l + ALl A; — AG]l

lyl

<y [T IA = AL A, - AL
i=1

|

=N AL - AL
i=1
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Using this lemma we will be able to prove the desired bound. The bound will be parametrized by
two Holder conjugate real numbers: that is, p,q € [1,00] such that 1/p + 1/¢ = 1. We will be using
¢, and ¢, vector norms and the corresponding induced norms for matrices. In particular, we define the
following quantities:

po = [lao — O‘BHP
Poo = [[Ctes _aéqu

po = [|As — A;f”q
With these definitions we have the following result.

Lemma 5.4.2. Let v > 0 be such that ||ow|lp, |@sollg; |Acllg < v- Then the following holds for any
xEeX*:

||

[fa(@) = far(@)| <A po+ poo + D
=1

Proof. Applying the triangle inequality, Holder’s inequality, a property of induced norms, norm submul-
tiplicativity, and the v-boundness assumption, we have

Ao — agAlal | < |ag(Azaa — Afal)| + [(ao — ap)Aj ol |
< lewollpll Avroc = Abalsllg + lleo — apllp ALl ]l
< lewollplAzllglloce = el + lleollp|Az — A% llqlladlly
+lleo — g llpl| A% llqllerce g

< 'Y‘x‘-H”O‘oo - aé)ollq + ’leH_l”aO - a6||p + ’YQHAI - A/xHq .

The desired results follows now from Lemma [5.4.1] O

5.4.2 Total Variation Between WFA

If one needs to control the error between A and A’ over a whole “slice” of X* the previous bound turns
out to be quite loose in many cases. Indeed, using Lemma [5.4.2| we easily get

D Ifal@) = far@)] <A (Eltpo + 130 poe + B Po)

reXt oEX

In this case, there are only two ways to avoid an exponential blowup with ¢ on the error: either have the
error terms po, Poo, Po exponentially small with ¢, or have a bound v = O(1/|%|). Both of these are quite
restrictive. Thus, in this section we seek a finer control on the accumulation of the error when summing
over Xt

This may not be possible in all cases, but here we will concentrate only on the case p = 1 and ¢ = cc.
Besides the notation used in previous section, here we also define

Yoo = || @oolloo
pE =Y po
oceYD
=Y lewoAsl:
zeXk

Furthermore, if |M]| denotes the matrix obtained by taking the absolute value in all the entries of M,
we assume that there exists a vz > 0 such that )y |A;|1 < g1, where we mean that the inequality
must be satisfied by each entry in the vectors.

The following technical lemma will be the key to prove the main result of this section.
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Lemma 5.4.3. The following inequality holds for any t > 0:
t—1
D llewAs — ahALllL < po(vs +p2) o5 Y (= +pu) Vo1 -

zeXt =0

Proof. In the first place, note that for any ¢ > 0 the following holds:

DD MewAy —agADALL < DD fewA, —apAll|AqL (5.1)

yeEXt oEX yeEXt ceX
! Z oAy — apAy |1
yeX?t
=75 Y oAy, —apAl |
yeX?t

Now we proceed by induction on ¢. Let us define ¢; = > v [[aogAs — agAll[1. For t = 0 we have
©o = po = |lag — afll1 which satisfies the desired inequality. Now suppose that

t—1

pi < (ps +7%)'po + px Z(ﬁz +95) Ye—1-i -
i=0

Recall the duality between induced norms || - ||; and || - ||eoc which implies that for any vector v and
matrix M one has [|[v ' M|; = [MTv|; < [MT|i][vlli = [M|/so|lv|li. Then, using this property, the
triangle inequality, submultiplicativity of the norm, and the induction hypothesis we have:

Pi41 = Z oA, — apAlllL (5.2)

zENtHI

<D0 oAy (As — AL+ [[(coAy — apAL)Ag |l + [[(aoAy — apAL) (A — AL
yESt gES

<3 ooyl Y 1A~ Al 75 3 llaoA, — abAL
yext cEX yext
+ 3 llaoAy —apALll Y (1A, — Al

yext oED

= p=ve + pe(ps +7s)
t

< (ps +72)"" oo+ ps Z(Pz +y2) i -
=0

The following results gives the bound we will be using when bounding the errors between two WFA
A and A’ over the set X¢.

Lemma 5.4.4. For any t > 0 the following holds:

D fa@) = far@)] < (Yoo + poo) ((Vz +ps)ipo+ ps - Z_:(“Yz +px)’ 7t—i—1> + ViPoo

reXt =0
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Proof. Using triangle and Holder’s inequality we obtain the following:

Z |fa(z) — far(z)] = Z lap Ao, — AL al |

zeX? et
< Z | Ay (oo — afx:)‘ + [(oAsz — aéA;)am\
rext
+ (oA — a()A;)(aoo - O‘éo)l (5.3)
< Z e Ag[1]letcs — alglloo + oAz — g AL [l1 ]|t [loo
reXt

+ a0 As — oAl [l [lase — ol [loo

= VtPoo + ('YOO + pOO) Z HaUAI - aE)A;"l .
rzeXt

Applying Lemma we get the desired inequality. O

To see that this is tighter that what we obtained from Lemma [5.4.2] suppose we have vy, = 75 =
vt = 1. Then the bound from previous lemma yields

Y 1fa(@) = far@)] < (L4 po)(1+ p2) (14 poc) — 1

reXt

In this case we can avoid an exponential blowup in ¢ by just having py, = O(1/t), which is a clear
improvement.

5.4.3 Difference in Operators

From previous sections we know that we can compare the values assigned to strings by two WFA in
terms of the differences between their individual operators. Since our main tool for obtaining a WFA
from a Hankel matrix will be the spectral method, in this section we study the difference between two
WFA obtained from two different sets of Hankel matrices via the equations from Section We begin
by introducing some notation.

Let B = (P,S) be a fixed basis with p = |P| and s = |S|. Suppose that Hy, H,, H},H, € RP”*S
are arbitrary Hankel matrices over B. Also, let hg,h) € R” and h.,,h’ € RS be arbitrary vectors.
Furthermore, assume that we are given two matrices V, V/ € RP*" such that VTV =V’ "V’ = 1. Here
n is some fixed integer such that n < min{p, s}.

In this section we will be using || - || to denote the euclidean norm for vectors and the operator norm
for matrices, which is the corresponding induced norm. Let us define the following quantities in terms
of the above vectors and matrices:

ex = [[Hy - H[ ,
£r = |Hy —H || ,
ev=[V-V,
eo = |lho — hgl| ,

€00 = [hoo —hL ]| .
We also use the notation s, (M) to denote the nth largest singular value of a matrix M. With these

definitions we can now state the main result of this section, which is a purely algebraic result about the
difference of matrices and vectors computed in a particular form.
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Lemma 5.4.5. The following three bounds hold:

o H/ 1 5 H H)

5, (H\V) 2 min{s,(H\V)2,s,(H,V')2}
IV ho = V' g | < 20+ evholl .
1+v5  |[hill(ex +ev|HS)
H,\ V) he, — (HA V) h || < —== o0 A ,
I(HV) (HWV) °°||*5,L(H,\V) 2 min{s,(H\V)2,5,(H,V')2}

Proof. Using the triangle inequality, the submultiplicativity of the operator norm, and the properties of
the pseudo-inverse, we can write

I(FLAV) TH,V — (HAV) TH VY| = [[(HAV) T (H,V - H V') + (HL V)T — (HV) ) H, V||
< [HEAV) T H V = Ho V|| + [[(HAV) T — (V)T [[H, V|
IH,V — H V||

H.||[|((HA V)T — (H,\ V)T
<N )T Y

where we used that |[(H\V)T|| = 1/s,(H\V) by the properties of pseudo-inverse and operator norm,
and ||H, V'|| < ||H.|| by submultiplactivity and ||V’|| = 1. Now note that we also have

[HoV —H V|| < [|V][[Hy — Hy || + [HG [V = V' < &0 +ev|H||
Furthermore, using Lemma we obtain

1++5
2
o L4 V5 [Hy — Hy[[[[ V]| + [H IV — V'|
-2 min{s, (H\V)?,s,(H,V’)?}
1++5 ex +ev|H),|
5 min{s, (HAV)2, s, (H,V')2}

(V)™ = (HAV) |

IN

LAV — B V|| max{ ]| (HAV) 7|2, || (A V) 712}

Thus we get the first of the bounds. The second bound follows straightforwardly from
IVTho = V' | < [VT = V" [ho| + (V" [[1o — | = 0 + e[l .

which uses that |[M || = || M]|| because the operator norm is self-dual.
Finally, the last bound follows from the following inequalities, where we use Lemma [A22.3] again:

I(FAV) Thee — (HAV') "h || < [|(FLV) F][[hoe — hi || + [ [[[| (V) — (HAV)T|

[boe — b 1+V5 R J[[H\V - HAV|
s,(HAV) 2 min{s,(H\V)?s,(H\V’)?}
< _ Eoo 1+v5  |hil(ex +ev]HAD)
~ 5,(HA\V) 2 min{s,(H)\V)2,s,(H,V")2} ~

O

In the following chapters we will see several use cases for the bounds from Lemma In some
cases we will have V = V' and £y = 0, which greatly simplifies the bounds. In some other cases V will
contain singular vectors from Hy, in which case s,(H V) = s,(H,). However, the common factor in
all cases where the Hankel matrices come from some sampling process will be that €),e,,v,€0,600 — 0
with growing sample size. Combining this behavior with the bounds from Sections [5.4.1] and [5.4:2] we
will get point-wise or total variation convergence to the target WFA.

97



98



Chapter 6

Sample Bounds for Learning
Stochastic Automata

The spectral method described in previous chapter can serve as the basis for deriving learning algorithms
in any setting where the Hankel matrix of the target function f : ¥* — R can be efficiently estimated.
This chapter analyzes one such setting in detail: the case where f is a probability distribution over
>* and an i.i.d. sample drawn from f is given to the learning algorithm. Using similar ideas to the
ones we present here, spectral learning algorithms for several classes of probabilistic FSM have been
obtained recently. Examples include Hidden Markov Models (HMM) [HKZ09], rational stochastic lan-
guages [BDRO9], reduced rank HMM [SBG10], Predictive State Representations (PSR) [BSG11], and
stochastic Quadratic Weighted Automata (QWA) [Baillb].

This chapter gives a result along these lines for the class of all Probabilistic Non-deterministic Finite
Automata (PNFA) with strong PAC-style learning guarantees. Our result extends the powerful tech-
niques of [HKZ09| to a wider class of distributions and provides much stronger bounds to those proved
in [BDRO9] for a slightly more general class. Furthermore, we show how learning algorithms based on
different statistics over strings — namely, complete strings, prefixes, and substrings — are all reducible to
each other.

Like in previous results, our learning algorithm assumes that a complete basis for f is given as input.
In practice this is a rather strong assumption which is hard to verify. The last section of this chapter
gives a randomized algorithm for finding a complete basis for f under very mild conditions. Though not
strictly practical, our approach justifies some of the heuristics used in empirical studies that take the
most frequent prefixes and suffixes to build a basis [LQBC12; BQC12|.

6.1 Stochastic and Probabilistic Automata

We say that a WFA A is stochastic if the function f = f4 is a probability distribution over >*. That
is, if f(x) > 0 for all z € ¥* and ) _y.. f(z) = 1. To make it clear that f represents a probability
distribution we may sometimes write it as f(z) = P[z]. An interesting fact about distributions over ¥*
is that given an i.i.d. sample generated from that distribution one can compute an estimation H s of its
Hankel matrix, or of any finite sub-block Hi. When the sample is large enough, these estimates will
converge to the true Hankel matrices and the spectral method will yield a WFA A computing a function

f=fi~"f.

Wﬁen f realizes a distribution over >*, one can think of computing other probabilistic quantities
besides probabilities of strings P[z]. For example, one can define the function f;, that computes proba-
bilities of prefixes; that is, f,(x) = P[zX*]. Another probabilistic function that can be computed give
a distribution over X* is the expected number of times a particular string appears as a substring of
random strings. We use fs to denote this function, which in probabilistic notation can be written as
fs(x) = E[|wl|,], where the expectation is with respect to w sampled from f: E[|w|,] = >, cs [w|oP[w].
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In general the class of stochastic WFA may include some pathological examples with states that
are not connected to any terminating state. In order to avoid such cases we introduce the following
technical condition. Given a stochastic WFA A = (g, oo, {As}) let A =3 o A,. We say that A is
irredundant if ||A|| < 1 for some submultiplicative matrix norm || - ||. Note that a necessary condition for
this to happen is that the spectral radius of A is less than one: p(A) < 1. In particular, irredundancy
implies that the sum ), -, AF converges to (I—A)~!. An interesting property of irredundant stochastic
WFA is that both f;, and fs can also be computed by WFA as shown by the following result.

Lemma 6.1.1. Let (o, oo, {As}) be an irredundant stochastic WFA and write: A = ) . A,,
ag =aj(I-A)"!, and &eo = (I—A) . Suppose f: ¥* — R is a probability distribution such that
f(z) =P[z] and define functions fp(x) = PlaX*] and fs(z) = El|w|s]. Then, the following are equivalent:

1. A= {ag,0,{A,}) realizes f,
2. Ap = (o, Qoo, {Ag}) realizes fp,
3. As = (&, 0o, {As}) realizes fs.

Proof. In the first place we note that because A is irredundant we have

&y = o ZAk ZagAx,

k>0 TEX*

where the second equality follows from a term reordering. Similarly, we have & = A, ay. The

rest of the proof follows from checking several implications.

TeEX*

= Using f(z) = oza—Azaoo and the definition of &, we have:

= Z Pley] = Z onggcAyozoo = agAxdoo .
yes+ yeS*

= [I) It follows from Plz¥X"] =3 PlzoX*] that
Plz] = PlzX*] — PlaX1] = 0§ Apltoc — 0 ApAbioe = o) Ap(I— A
=) Since we can write ) 5. Plw]|w|, = P[X*2X*], it follows that

Elwl] = Y Pulwle= Y Pluro]= Y of AuArA,as =) Arbs -

weD* u,veEL* u,vEXL*

= 1) Using similar arguments as before we observe that

Plz] = P[L*zX*] + P[Z 122 t] — P[Z 1] — P 2]
= &g Apioo + 6y AALAG — g AA LG — G ApAdis,
=, (I —AA,I-A)a -

O

A direct consequence of this constructive result is that given a WFA realizing a probability distribution
P[z] we can easily compute WFA realizing the functions f, and f;; and the converse holds as well.
Lemma also implies the following result, which characterizes the rank of f;, and f;.

Corollary 6.1.2. Suppose f : ¥* — R is stochastic and admits a minimal irredundant WFA. Then
rank(f) = rank(f,) = rank(fs).
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Proof. Since all the constructions of Lemma preserve the number of states, the result follows from
considering minimal WFA for f, f,, and f;. O

From the point of view of learning, Lemma provides us with tools for proving two-sided re-
ductions between the problems of learning f, fy,, and fs. Thus, in the following sections we will give
a PAC learning algorithm for stochastic WFA which, modulo translations in accuracy parameters, will
yield learning algorithms for probabilities over prefixes and expected counts of substrings. We will not
state the resulting theorems, but note that this turns out to be a simple exercise in view of the following
lemma and the tools from Section [5.41

Lemma 6.1.3. Let A = (o, @0, {As}) be an irredundant stochastic WFA and A" = (o), o', {AL})
an arbitrary WFA, both with n states. Write pg = ||lag — aj||, poo = |0 — @]l and Py = ||A A’||
Suppose that py, < 5n(I — A) and define: &g = ag(I—A)™!, @ = (I—A)~ 10&00, a,=aL(I-A)H!
and &, = (I— A’)~tal_. Then the two following inequalities hold:

OO

~ 1 pxllool Po
R N[N S Ny BN Y
o ple | e
oo = ool < R eu T &) ) on1— A)
Proof. Both bounds follow from the triangle inequality and Lemma [A22.2] O

The family of stochastic WFA contains a particular sub-family with intrinsic interest. We say that a
WFA A = (o, oo, {As}) with n states is probabilistic if the following are satisfied:

1. all parameters are non-negative. That is, for all o € ¥ and all i, € [n]: A,(i,5) > 0, ao(i) > 0,
and o (i) > 0,

2. initial weights add up to one: 3, (i) = 1,

3. transition and final weights from each state add up to one. That is, for all i € [n]: as(i) +

ZO’GE Zje[n] Aa(iaj) =1

This model is also called in the literature a probabilistic finite automata (PFA) or a probabilistic non-
deterministic finite automata (PNFA). It is obvious that probabilistic WFA are also stochastic, since
fa(x) is the probability of generating x using the given automata.

It turns out that when a probabilistic WFA A = (&g, aeo, {As}) is considered, the factorization
induced on H has a nice probabilistic interpretation. Analyzing the spectral algorithm from this per-
spective yields additional insights which are useful to keep in mind.

Let Hy = PS be the factorization induced by a probabilistic WFA with n states on the Hankel
matrix of f4(x) = f(x) = Plz]. Then, for any prefix u € ¥*, the uth row of P is given by the following
n-dimensional vector:

pu(i) = Plu¥”, s, =1], ien],

where s; denotes the current state of the automaton after ¢ steps. That is, the probability that the
probabilistic transition system given by A generates the prefix v and ends up in state . The coordinates
of these vectors are usually called forward probabilities. Similarly, the column of S given by suffix v € ¥*
is the n-dimensional vector given by:

sy(i) =Plv|s=1], i€n] .

This is the probability of generating a suffix s when A is started from state i. These are usually called
backward probabilities.

The same interpretation applies to the factorization induced on a sub-block Hg = PgSp. Therefore,
assuming there exists a minimal WFA for f(z) = P[z] which is probabilistic, Lemma says that a
WFA for f can be learned from information about the forward and backward probabilities over a small
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set of prefixes and suffixes. Teaming this basic observation with the spectral method and invariance
under change of basis one can show an interesting fact: forward and backward (empirical) probabilities
for a probabilistic WFA can be recovered (modulo a change of basis) by computing an SVD on (empirical)
string probabilities. In other words, though state probabilities are non-observable, they can be recovered
(modulo a linear transformation) from observable quantities. In the following sections we will prove
bounds for learning probability distributions generated by (possibly non-minimal) probabilistic automata.
This turns out to require a bit more work than previous results in [HKZ09| for learning a sub-family of
HMM.

6.2 Sample Bounds for Hankel Matrix Estimation

Let f(x) = P[z] be a probability distribution over ¥*. Let B = (P,S) be a basis and denote by H the
Hankel sub-block over this basis of Hy; that is, the entries in H correspond to probabilities of certain
events. Suppose S = (x!,...,2™) is a sample of m i.i.d. strings sampled from the distribution computed
by f. Let H be the empirical estimation of H computed from S. Our goal is to give a bound for the
error ||[H — H| z that holds with high probability over the sampling of S.

An important observation about H is that it can be written as the sum of independent random
Hankel matrices. First, observe that for any w € P and v € S the entry H(u,v) corresponds to the
empirical frequency in S of the string uw: ﬂ(u,v) = # S Lyicyy. Thus, letting H,: € RP*S be a
Hankel matrix with entries Hyi(u, v) = 1gi—y,, we get H-= % > H,i. Now, since for any fixed (u,v)
we have E[1,—,,] = Pluv)], it is clear that E[H,] = H and E[H] = H. Furthermore, because H(u, v) is
the sum of m i.i.d. Bernoulli random variables we have for any (u,v) € P x S:

V[ﬂ(u, v)] = E[(H(u,v) — H(u, 11))2] = %H(u,v)(l —H(u,v)) . (6.1)

The next result will prove the desired bound on |H — ﬂ|| r by using McDiarmid’s inequality. The
following quantity, called redundancy coefficient cg of the basis B, will appear in the bound: ¢ =
max,ex- |Hz|%. Note that cg is precisely the maximum number of pairs (u,v) that can be simultane-
ously “hit” by any =z € ¥*.

Theorem 6.2.1. With probability at least 1—4, the following holds: |H—H||p < \/cg/m(1++/In(1/5)).

Proof. We apply McDiarmid’s inequality (A.1) to the random variable |H — ﬂ|| . The first step is to
bound the expectation of this random variable as follows:

E[|H - Hl|r] = > (H(u,v) - H(u,v))?
(u,v)EPXS
> E[(H(u,v) - H(u,0))?
(uv)GPXS

\/ w, 0)(1 — H(u, v)
(u,0)EPXS

T\/ B — ||H||

B

)

IN
3

where we used Jensen’s inequality, Equation (6.1), and that }=,  cpysH(u,v) < cs because it is a
sum of the probabilities of a set of strings with at most cp repetitions. Now we bound the stability
coefficients. Let S’ be a sample that differs from S only on one string and denote by H' the estimation
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of H computed from sample S’. Since all examples in S are identically distributed, we can assume the
difference is in the last string: /™ # ™. Then we have

L= L — [~ B | < B F

F

% Z H,m (u,v)? + Z H,m(u,v)?

(u,v)EPXS (u,v)EPXS

1
:Ewmw

V2
— max |H,||F
m ze¥l*

vV QCB

m

1
| Hy — Hym
m

IN

B+ [ Haem |15

IA

Applying McDiarmid’s inequality we now get
~ - mt?
P [IJH — H| > BJH —Hl ] + 1] <exp (-7 )

which implies that with probability at least 1 — § one has

ﬁ
S| =

N A C
|H-H|r <E[H-H|z] +/ 2

g,/C—B+ C—Blnl .
m m 0

6.3 PAC Learning PNFA

In this section we present and analyze a PAC learning algorithm for stochastic WFA. We will not analyze
the algorithm in general, but only for those probability distributions over ¥* that can be parametrized
by a PNFA. A similar analysis could be performed in the general case using techniques similar to those
from [Baillb|. However, in that case the sample bound one obtains is of type exp(log(|X]) log(1/¢)) ¢
poly(1/e,|X|). On the other hand, by refining the techniques from |[HKZ09] — in particular Lemmaf
we are able to give here PAC-style bounds for all PNFA which are polynomial in all of their parameters.
We now start by introducing some notation and describing the algorithm.

Let f : ¥* — R compute a probability distribution f(z) = P[z] with rank(f) = r. We also suppose
that B = (P,S) is a complete basis for f. Finally, given a sample size m, suppose S = (z!,...,z™)
are i.i.d. strings sampled from the distribution computed by f. In this setup, given r, ¥, B, and S, the
algorithm from Figure [5| implements the spectral method described in Section [5.3| and returns a WFA
A such that f = f, approximates f. Noting that the approximate Hankel matrices can be computed
from S in linear time O(m), that the cost of computing the truncated SVD and the pseudo-inverse is
O(|P| |S|r), and the cost of computing the operators is O(|Z| |P|r?), we get a total running time for
this spectral algorithm of O(m + r|P||S| + r?|P| |X]).

We will now proceed to make this statement formal by proving a PAC learning bound whose sample
size will depend polynomially on some parameters of the target f. Let V denote the top r right singular
vectors of Hy. For further reference we shall define the WFA A = (o, oo, {As}) as

ag — h;SV 5
Aoy = (H/\V)+h77,)\ )
A, = (H\V)"H,V .
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Algorithm 5: Algorithm for Learning Stochastic WFA
Input: 7, ¥, B=(P,S), S = (z,...,2™)
Output: A WFA A = <&0, Qoo {A(,}>

Using S, compute estimations I:IU for all o € Y/, ﬂ,\73, and ﬂp,\;
Compute the r top right singular vectors V of H £

Let aa— — HI,SV and aoo < (I:I)\V)+i’\l7>7)\;

foreach o € ¥ do let A, + (I:IAV)+I:IJ\A7;

Note that A depends only on f and the basis B used to define Hy. To begin with, we prove that if
H, is close enough to the true Hankel matrix Hy, then the approximate singular vectors \Y% satisfy an

interesting property. That is, that the WFA A= <a0, Qoo {AU}> given by

O‘0 = h, sv )

oo = (HAV)Thp y |

A, =(H,V)TH,V ,
satisfies f; = f. This will prove useful when bounding the error between f and f because it will enable
us to compare f; with f; in our error bounds and thus use Lemma [5.4.5]
Lemma 6.3.1. Suppose that |[Hy — Hy|ls < ¢/(1 + €)s,.(Hy) for some € < 1. Then the following
inequality holds:

5, (HAV) > s,.(Hy)V/1— €2 .

Furthermore, this implies f; = f.

Proof. Let us write Hy = UAVT for the compact SVD decomposition of Hy. If we denote by u, the
rth left singular vector of matrix VTV, then using Lemma we get

5 (VIV) = [[u[ VTV
H), - H,|2
Z ||ur||2 1 o || A >\||2A
(sr(Hx) — [[Hx — Hxl|2)?

_ % -3
(50 (FLL) — [Hy — H )2

>/1—€2 .

Thus, using Lemma we get

ET(H)\V)

5. (UAV'V)
> 5,(UA)s, (VTV)

s,,»(HA)\/ 1—¢2 .

To prove the last claim we show that A = MAM™! with M = (H\V)TH,V and M~ = VTV.
The first step is to check that these two matrices are actually inverses:

v

(H\V)TH\,VVTV = (H,V)TH,V =1, ,

where the last equality uses that s, (H AV) > 0. Now, since Lemma implies that A induces the
factorization H, = Hy VA,V T, by substitution we get A, =MA, M~ F‘urthermore7 since the basis B
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is complete and V'V acts as an identity on the span of the rows of H, we have a M™! = h{ ;VV TV =
hA sV = ao Finally, using H\V = UA we see that

Mo = (HyV)THAV(H, V) Thp y = (HyV)TUU "hp , = (H\V) " hp )y = e -
O

Now suppose that B = (8, 8., {Bo}) is a probabilistic WFA with n states such that f = fp. That
is, f admits a probabilistic realization. Note that in general this may not be possible (see [DEOS| for
examples). In addition, we note that even when such a realization exists it is not necessarily minimal:
it may happen that n > r. Now, assuming the existence of such B, we can define some more bits of
notation.

Let Hf = PpSp be the factorization induced by B. Note that if n > r this is not a rank factorization,
but Pp € RP*™ and Sp € R"*S with rank(Pp) = rank(Sg) = r. Let us write V5 € R™" for the
right singular vectors of the forward matrix Pg. Since P sVpV] 5 = PpB, then by Lemma - we have
f = fp where B’ = VL BVp. It is immediate to note that now B’ is a minimal WFA for f. Thus,
under the conditions of Lemma we can apply Corollary |5 - 2| to find a matrix M € R"™" such that
B’ = M~1AM. Using the change of basis M and the projection Vg we define the following two WFA
with n stateb.

B=VgM'AMV}, |
B=VgM'AMV]} .
Since VL Vg =1, one can immediately check that f = fg and f: Iz
Note that by the definition of A matrix M depends on V. We can make analogous definitions which

only depend on f, B and B by using a matrix M such that B’ = M~!AM. The next result characterizes
a useful relation between such an M and our M.

Lemma 6.3.2. Suppose that |Hy — H, |2 < ¢/(1 + €)s,.(Hy) for some € < 1. Then for any 1 <i <r

we have 5;(M)v1 — €2 < 5;(M) < 5;(M).

Proof. Note that by Lemma we have f = fa = f;. Thus using Corollary it is easy to see
that A = (VIV)"!A(VTV). A simple composition then yields M = VTVM. Hence, by applying
Lemma and the same bound used in the proof of Lemma [6.3.1] we get

5;(M) = 5,(V VM)
> 5 (M)s,(VTV)
> Sz(M)m .
The second inequality follows from Lemma as well, since:
51‘(1\71) = Si(VTVM)
< 5;(M)s(VTV)
= 5(M)[VTV]
5i(M) .

I /\

Z

O

Before we state the main lemma in this section, we will define yet another piece of notation which will
greatly simplify our calculations. We let B be the basis obtained as the p-closure of (P U {\},SU{A}).
If H denotes the sub-block of H corresponding to B, it is immediate to see that Hy, H, for all o € X,
hp , hy s are all contained as sub-blocks in H. In this case we get the following bounds, which follow
from a simple property of Frobenius norm:

[H\ — Hy|lp, |[Hy — Ho || p, [hp s — hp a2, [has — hyslls < [H-H||p .
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Lemma 6.3.3. There exists a universal constant C' such that for any t > 0 and € > 0, if

esr(M)s, (Hy)®
(£ + 1)2[E]s1 (M) /ncg

|IH-H|r<C

then Y ,exe |f(2) = f(2)| < e/(t+1).

Proof. The main idea of the proof is to use the representation f = fz and f = fp and apply Lemmas

and The first step is to see that we can take 75 =y = Yoo = 1 in Lemma[5.4.4]
We begin with 7;. Note that we have by construction B = VEVLBVEV]. Since VgV ] acts as

an identity on the rows of Pg, we have BOBQJ = B,B.VEV} = B,B, for any z € =*. For probabilistic
B it is easy to see that [|3,B,||1 = ByB,1 = P[zX*]. Thus, for any k we have v, = >__ s [|BoBall1 =
P[|X| > k] < 1. Next we turn our attention to vx. Since VLV5V ] = V] by definition, and for any
v € R" we have VTVEBUVBVE = VTVEBU because VTVEBU is in the span of the rows of Py, we
get

(B,B. — B,B.)B, = (6pA, MV}, — 6yA,MV})V5VLB,V5V}
= (&pA, MV} — agA,MV})B, .

Using this in (5.1) from the proof of Lemmal5.4.3| we see that we can take v to be such that s |B,[1 <
~vx1, which is satisfied by vz = 1 because B is probabilistic. Using similar arguments, we can see that

Plugging this into (5.3) from the proof of Lemma we see that we can take Yoo = |8 oo < 1.
The next step will be to bound pg, pso, and py using Lemma [5.4.5] This is done in the following
series of inequalities, which follow from properties of vector norms:

po =118y — Bollr

= |[(& — a0)MV |1

< Vn||(&o — @)MV ]|z

< \/ﬁHMHszo — a2

< v/ns1 (M)|[hys — hyslz |
poo = 1Bos — Buollos

= [VEM ! (Goe — @oo)lloc

< VM (@oe — @oc)l2

< IV ]| étoe — B2

L <|h7>,A “hpall  14V5 [BpafalHy — Ha )

~ 5.(M) 5, (H\V) 2 min{s,(H\V)2,5,.(H\V)2} )
ps = By — Bolloo

= [VsM (A, — Ay)MVE ||

< V/nl|NE |2V | A — A2

Vi1 (M) <|Ha “Holp 145 [[Hy[]Hy — Hy )

5, (M) 5, (H\V) 2 min{s,(H\V)2,s5,(H\V)2}

We now simplify this expressions as follows. First write p = |[H — HJ|z and note that by the
observation in equation (6.3) and Lemmas and choosing € = v/3/2 we have that p < v/3/(2+
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V3)min{s, (Hy),s,(M)} implies s,(H V) > s,.(H,)/2 and s,.(M) > s,.(M)/2. Furthermore, using

Lemmas [6.3.7] and [A-2.T] we get

5, (HAV) > 5,.(H\V) — [H\V — Hy V|2

> 57~(H)\) _

- 2

> 5T(H>\) _ \/gsr(HA)
-2 2+V3
= WST(HA) .

Now observe that since fl'p, A is a vector of empirical probabilities of different strings we have \|1A17>7,\ 2 <

|\}A17>7)\||1 < 1. In addition, we have |H, |2 < |[H,||r < [|H||r <, /¢ by the same argument used in the
proof of Theorem [6.2.1] Using all these observations, we see that the following hold for some constants
007 0007 and CEZ

po < Cov/ns1(M)p

p
Poo < COOE—T(M)ET(HA)2 )
Vn,/egsi (M)|Z]p .

< C
P = T (M)s, (H)?

Finally note that if for some suitable constants C{j, C., and C§ we have
p < e/(t+1)? min{Cy/v/ns1 (M), s, (M)s, (Hx)?, Cgs, (M)s, (Hy)?/v/n\/c5|S]s1 (M)}

then by Lemma [5.4:4] we get the following bound:

Do 1f@) = f@)] < (14 po) (1 +ps) (14 poc) — 1

et
t+2
E
= (1+ 2(t+1)(t+2)) -1
<eg/(t+1),

where we used that (1 + z/t)! <14 2z for < 1/2 and any ¢ > 0. The result follows by choosing an
adequate C. O

Combining the above lemma with the result from Section [6.2] about the estimation error in an em-
pirical Hankel matrix H, we immediately get the following result.

Theorem 6.3.4. There exists a universal constant C' such that for anyt > 0, e > 0, § > 0, if Algorithm[5]
is given a sample of size

t4ncf§|§]|251(M)2 1

m > og|—=1| ,
T e%5.(M)%s,.(Hy)* <§)

then with probability at least 1 — § it returns an hypothesis A such that ngt |f(x) — f(x)| <e.

At this point, we must make three remarks about the above theorem. The first is that since f is
computed by a probabilistic automata, then there exists a constant c¢¢ such that P[|z| > ¢] < exp(—cyt)

for all £. Thus, in order to cover all but an 7 fraction of the mass of f with a good approximation f, one
can choose t = (1/c¢)log(1/n) in Theorem [6.3.4]
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The second observation is that the quantity ns;(M)?2/s,.(M)? in the bound depends on our choice of
a probabilistic automata B realizing f. Since this is only used in the analysis, we can restate the bounds
in terms of an intrinsic quantity that depends only on f, defined as follows:
_ . |Blsi(Mp)®

67 = min*———
f mén 5,.(1\/[3)2

where the minimum is over all probabilistic automata B such that fp = f. With this intrinsic definition,

we get a sample bound of the form
t49f62~|2|2 1
>0—1 B -
"2 Ot s ()

Note that the quantity 6 fc% /s-(H,)* in this bound still depends on the user’s choice for B. The problem
of choosing a basis given a sample will be addressed in the next section.

The last remark is that unfortunately the bound on the error given in Theorem [6.3.4] does not specify
what happens in the tail of the distribution. A lack of control on the behavior of >, -, |f(x)] is the

main obstruction to obtaining a bound on } . [f(z) — f(x)|. We know that ) . f(x) will converge
to ao(I — A)'@q, if |Allz < 1. And since ||A|s < 1 because f is a probability distribution, it is easy
to see that f will be convergent if py, < (1 — ||Al|2)/2. However, to use a trick like the one used in
Lemma we need to control the absolute converge of this series, which turns out to be a difficult
problem. In particular, if we could guarantee that f (x) > 0 for all z, then we would immediately have
absolute convergence at an exponential rate. However, it turns out that given a WFA | deciding whether
fa(z) > 0 for all x is in general an undecidable problem [SS78; [DE0S|, and it is only semi-decidable
whether f4 is absolutely convergent [BD11]. An alternative approach relying on the notion of joint
spectral radius |[Jun09] was used in [Bailla) to control the asymptotic convergence rate of the tail in
a similar analysis; this technique, however, does not provide control over the constants involved in the
bounds.

6.4 Finding a Complete Basis

So far our results have assumed that we know a complete basis for the target WFA to be learned. In
practice the user needs to specify a basis to the algorithm, either based on domain knowledge, some
indications in the available data, or trial-and-error heuristics. A common approach taken in some works
is to use basis that contains all possible strings up to a certain length. However, unless this length equals
the rank of the target one cannot guarantee that the basis will be complete in general. This brute-force
approach yields basis of size O(\E|rank(f )), which may be very large. In contrast, it is not difficult to
show that basis of size rank(f) always exist, though it may be difficult to find without exact knowledge
of f.

In this section we give a procedure to find a data-dependent basis which is guaranteed to succeed
under some assumptions. In particular, we show that a simple randomized strategy for choosing a basis
succeeds with high probability. Furthermore, our result gives bounds on the number of examples required
for finding a basis that depend polynomially on some parameters of the target function f : ¥* — R and
the sampling distribution D, which may in general be different.

We begin with a well-known folklore result about the existence of minimal basis. This implies that
in principle all methods for learning WFA from sub-blocks of the Hankel matrix can work with a block
whose size is only quadratic in the number of states of the target.

Proposition 6.4.1. For any f : ¥* — R of rank r there exists a basis (P,S) of f with |P| =|S|=r.

Proof. Take any rank factorization of Hy = PS¢. Since rank(P ;) = r, there exist r linearly independent
rows in Py. Let P € R"™" be the sub-matrix of P; containing these rows and P the prefixes defining
them. Similarly, build a matrix S € R"*" with r linearly independent columns of S; indexed by a set

of suffixes S. Then (P,S) form a basis since H = PS and rank(H) = rank(S) = r because P has full
row-rank. O
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Algorithm 6: Random Basis

Input: strings S = (z!,...,2™)
Output: basis candidate (P, S)

Initialize P <+ @, S + @;

for i =1 to m do
Choose 0 < t < |z?| uniformly at random;
Split 2 = v with |uf| =t and |[v*] = |2t — ¢;
Add u® to P and v* to S;

A WFA A = (af , ., {As}) is called strongly bounded if ||A,| <1 for all 0 € £*. Note that this
implies the boundness of f4 since |fa(z)| = |af Az@oo| < |laoll||aso |- A function over strings f of finite
rank is called strongly bounded if there exists a strongly bounded minimal WFA for f. Note that, in
particular, all models of probabilistic automata are strongly bounded.

The following result states that, under some simple hypothesis, with high probability Algorithm [6]
will return a correct basis. Our proof identifies a parameter depending on f and D that quantifies the
sample size required to get a complete basis. The proof relies on a result on random matrix theory that
can be found in Appendix It basically gives conditions for the empirical covariance matrix of a
multidimensional real random variable to be full-rank.

Theorem 6.4.2. Let f : ¥X* — R be a strongly bounded function of rank r and D a distribution over
¥* with full support. Suppose that m strings sampled i.i.d. from D are given to Algorithm @ Then, if
m > Cnlog(1/0) for some universal constant C' and a parameter 1 that depends on f and D, the output
(P,S) is a basis for f with probability at least 1 — 4.

Proof. We begin with some notation. Consider the prefixes produced by Algorithm [f] on input an i.i.d.
random sample S = (z!,...,2™) drawn from D. We write P = (u!,...,u™) for the tuple of prefixes
produced by the algorithm and use P’ to denote the set defined by these prefixes. We define S and S’
similarly. Let p/ = |P| and s’ = |S’|. Our goal is to show that the random sub-block H' € RF'*s" of
H/ defined by the output of Algorithm @ has rank r with high probability with respect to the choices of
input sample and splitting points. Our strategy will be to show that one always has H = P’S’, where
P’ € RP*" and 8’ € R™*" are such that with high probability rank(P’) = rank(S’) = r. The arguments
are identical for P’ and S'.

Fix a strongly bounded minimal WFA A = (o, 0teo, {As}) for f, and let Hy = P;S; denote the
rank factorization induced by A. We write p, for the uth row of P;. Note that since A is strongly
bounded we have ||p,. || = [laJ Aull < |lg ||. The desired P’ will be the sub-block of P corresponding
to the prefixes in P’. In the following we bound the probability that this matrix is rank deficient.

The first step is to characterize the distribution of the elements of P. Since the prefixes u’ are all
ii.d., we write D, to denote the distribution from which these prefixes are drawn, and observe that for
any v € ¥* and any 1 <4 < m we have D,(u) = Plu’ = u] =P[Fv: 2" = uww At = |ul], where 2’ is drawn
from D and ¢ is uniform in [0, |#|]. Thus we see that D (u) = Y o5 (1 + |uv]) ™' D(uv).

Now we overload our notation and let D, also denote the following distribution over R" supported
on the set of all rows of Py: D,(q") = Zu:pI:qT D,(u). It follows from this definition that the

covariance matrix of D, satisfies C, = E[qq'] = Y, Dp(u)p.p, . Observe that this expression can be
written in matrix form as C, = P}'—DpP f, where D,, is a bi-infinite diagonal matrix whose with entries
D,(u,u) = Dy(u). We say that the distribution D is pref-adversarial for A if rank(C,) < r. Note
that if D(z) > 0 for all x € ¥*, then D,, has full-rank and consequently rank(C,) = r. This shows that
distributions with full support are never pref-adversarial, and thus we can assume that C,, has full rank.?

1The theorem also holds under a weaker assumption on D, see the proof for details.

2This justifies the assumption in the statement of Theorem Note however that our arguments also work under
the weaker assumption that there exists a minimal strongly bounded WFA A for f such that D is neither pref-adversarial
nor suff-adversarial for A (with the obvious definitions).

109



Next we use the prefixes in P to build a matrix P € R™*" whose ith row corresponds to the u’th row
p; of Py. It is immediate to see that P’ can be obtained from P by possibly removing some repeated rows
and reordering the remaining ones. Thus we have rank(P) = rank(P’). Furthermore, by construction we
have that C, = P P is the sample covariance matrix of m vectors in R” drawn i.i.d. from D,. Therefore,
a straightforward application of Theoremshows that if m > C(k(C,)/5,(Cp))|led ||? log(1/5), then
rank(P’) = r with probability at least 1 — 0. Here C' is a universal constant, x(C,) is the condition
number of C,, and 5,(C,) is the smallest singular value of C,, where these last two terms depend on A
and D.

The result follows by symmetry from a union bound. Furthermore, we can take n = n(f,D) =
inf 4 max{(x(Cp)/s-(Cp)) |l I, (k(Cs)/5-(Cs))|lass ||}, where the infimum is taken over all minimal
strongly bounded WFA for f. O

Now we show how to compute the n(f, D) appearing in the bound in a particular case. Suppose
f is stochastic and let D = f so that the sample comes from the distribution we are trying to learn.
Furthermore, suppose A = (g, @0, {As}) is a minimal WFA for f which is also irredundant. We begin
by computing the probability D,(u) that a particular prefix u € £* with |u| = ¢ will appear in P.

1
Dy(u) = Z mD(uv)

veEX*
:271 D(uxk)
k201+t+k
=aj A, ZﬁA’“ Qoo
k>0

= a(—)rAuQFl(lal +t72+tv‘A)‘loo )

where o F1(1,1+ ;24 t; A) is a Gaussian hypergeometric function evaluated on A, which is guaranteed
to converge because ||A|| < 1 for some submultiplicative norm. Then, writing p, = ag A, we have

Cp(ivj) = Z pu(l)pu(J)Dp(u) :

ueEL*

Now note that p,(i)pu(j) is the (4,7) coordinate of matrix C, ., = pup, = A apag A,,.. Hence, we get
the following identity:

Cp= > Cpuag AuFi(L, 1+ [u;2+ |u[; Ao -
ueEN*

Similarly for suffixes, we obtain the expression

C,= Y Covog2Fi(L1+ 02+ vf; A)Ayos |
vEX*

where C;, = Ayasal A]. Therefore, given a WFA A for f we can compute the following upper
bound for n(f, f):

IC ol 1IC. oo
n(f7f)§max{ e }

We note here that the proof of Theorem shows that a sufficient condition for s,(C,),s,(Cs) > 0
is that f has full support. Identifying further sufficient conditions and other bounds on 7 is an open
problem.
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Chapter 7

Learning Transductions under
Benign Input Distributions

Besides the straightforward application of the spectral method to PNFA given in previous chapter,
learning algorithms for more complex models over sequences can be derived using the same principles.
In this chapter we give a spectral learning algorithm for probabilistic transductions defining conditional
distributions over pairs of strings. The focus will be on obtaining finite-sample bounds making as little
assumptions as possible on the probability distribution that generates the input strings in the training
sample. We will show that a spectral technique can be used to learn a class of probabilistic finite state
transducers defining such conditional distributions.

The most general PAC learning result would be in a distribution-independent setting where the
distribution on inputs is not constrained in any way. That would mean that we can learn transducers
under any input distribution, which in general is a hard problem. In order to overcome this difficulty we
will be forced to make some assumptions on the distribution of inputs. If for example we assume that it
can be realized by a stochastic WFA, then the whole transducer would become a stochastic WFA and we
could apply the results from previous chapter. However, since we want to be as distribution-independent
as possible, we will not take this path. However, we will identify a couple of non-parametric assumptions
on the input distribution which make it feasible to learn with a spectral algorithm.

7.1 Probabilistic Finite State Transducers

We begin by introducing a model for probabilistic transductions over strings of the same length. This will
correspond to a function f: (¥ x A)* — R whose values f(x,y) represent the conditional probability of
generating output y given z as input; that is, f(z,y) > 0 for all (z,y) € (ExA)*, and 37 ajer f(2,y) =1
for all z € ¥*. Note that by definition f(x,y) is not defined when |z| # |y|. Our main working hypothesis
here will be that f can be computed by a weighted transducer, which is nothing else than a weighted
automata where transition operators are indexed over two finite alphabets ¥ and A.! This means that
we can write

— Al AVL Yt — T AY
f(-ray)_ao AxlAwiaOO_QO Axaoo s

where g, a € R" and A‘f, € R™ " n being the number of states in the transducer. We will thus
write f = fa, where A = (o, 0o, {AS}). Like we did in Section we shall assume throughout
this chapter that the target transduction f admits a probabilistic realization. From the point of view
of a probabilistic model, this formulation implies that the conditional probability of the output random
sequence Y given as input the random sequence X can be defined through a sequence of hidden states

ISometimes in the literature the term weighted transducer is used to denote a more general machine where transitions
between states may occur without consuming an input symbol or emitting an output; this is not the case here.
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H as follows:

f@,y) =PY =y|X = 2]
= > PY=yH=h|X=2a
hen]t

t—1
> PHy = ha) [ PIV: = s, Hor = hayr | He = by Xo = 2|PY; = g | Hy = hy, Xy = ]
he[n]t s=1

In particular, we have (i) = P[H; = i], oo = 1, and AS(i,§) = P[Y, =0, Hyy1 = j | Hy = i, X, = 0]
for all s. Note that writing v = A%1, it is easy to check that v(i) = P[Y; = §| Hs = i, X = o).

In general this model may be very complicated to learn, specially when no assumptions on the
distribution of input examples X are made. Thus, to simplify our analysis we will need to make further
assumptions on our model. In particular, we will assume that given the current state, the current output
is independent of the current input, and that given the current state and input symbol the next state is
independent of the current output. In terms of the model, this means that the following factorization
holds:

PlYs, Hsy1 | Hs, Xs] = P[Ys | Hs| - P[Hgyq | Hs, X5 -

Thus, the computation performed by the model reduces P[Y =y | X = z] to

t—1
> PH = Iy (H PIY, = ys | Hy = ho]P[Ho1 = hop1 | Hy = hg, Xy = u]) PIY, = yi | Hy = ha]
he[n]t s=1

Observe that this implies the output sequence depends only on the first £ — 1 symbols of z.

In addition to simplifying the learning task, these independence assumptions have a neat interpre-
tation in terms of the model parametrization as a weighted transducer. To see this, note first that the
entries in the transition operators now satisfy

Al(i,j) =P[Yy = 6| Hy = i|P[Hoyy = j| Hy = i, Xs = 0] .

When written in matrix form, this factorization yields A‘; = 05T, where T, € R**™ and Os € R™"*™
is a diagonal matrix, with entries defined by

To'(ivj> :P[Hs+1 :]‘Hs :i;Xs :U] 5
O5(i,i) = P[Y, = 6| Hy — i .

This means that each operator in the model is a product of two matrices, and that operators that share
either the input or the output symbols share a piece of this decomposition as well. In this case, the
vector A21 takes an interesting form. Let o5 € R™ be a vector given by o5(i) = Os(i,i). Also, note
that 23‘1:1 P[H,,1 = j|Hy = i,Xs = 0] = 1 implies T,1 = 1. Therefore, we have A%1 = O;T,1 =
Os1 = os. This is just another way of seeing that under our independence assumptions the value of
f(z,y) depends only on the first ¢ — 1 symbols of z. This fact will play a crucial role in the definition of
the Hankel matrices that we give in Section For convenience we shall define an observation matrix
O € R"*4 containing all the columns os; that is, O(i,d) = P[Y; = & | H, = i].

The model of probabilistic transducer with independence between transition and emission will hence-
forth be called Factorized Probabilistic Weighted Transducer (FPWT). For these models, the following
fact will prove useful.

Lemma 7.1.1. Given k >0, for any x € ¥ one has dyear Al =1.

Proof. First note that for any 1 < i < n one has ) ;. 05(i) = > 5ca P[Ys = 0| Hy = i] = 1. Thus,
Y osen Al1=% sea 05 = 1. Hence, the claim follows from a simple induction argument on k. O

112



7.2 A Learning Model for Conditional Distributions

If we are to learn a transducer we will need a sample of input-output example pairs. Modeling how those
will be sampled and how the error incurred by the learned transducer will be assessed is the subject of this
section. Note that here the standard PAC learning model for probability distributions cannot be used
because the goal is to learn a conditional distribution when input instances are being generated by an
unknown distribution which we do not want to learn; we are only interested in the conditional behavior.
The standard PAC model for learning deterministic functions does not fit in here either because given
an input we are interested in modelling a distribution over outputs instead of choosing a single fixed
output. That said, we will be using a learning model resembling the one used in [ATWO1] for learning
stochastic rules, but with a different loss function.

Let D be a distribution over (¥ x A)* and suppose that (x,y) is a pair of strings drawn from this
distribution. We will write D = Dx ® Dy|x, where Dx represents the marginal distribution over ¥*
and Dy |x the conditional distribution of y given some x € ¥*. With the notation from previous section
we can write Dx(z) = P[X = z], and Dy|x(z,y) = P[Y = y|X = z]. Thinking the conditional
distribution as a kernel, for any € ¥* we will denote the function y +— Dy |x(z,y) by Dy,. It will
also be useful to define the marginal distribution over A* which we denote by Dy, and which satisfies
Dy (y) = P[Y = y] = Exnpy [Dy|2(y)]. With this notation we are ready to introduce the error measure
used to determine the accuracy of a learned transducer.

Suppose we are given m input-output example pairs (x?,y*) generated according to D which are used
for learning a transducer ﬁy| x- We define the error between Dy |x and l/jy| x to be the L; distance

between D and Dx ® ﬁy|X:

Li(Dx ® Dy|x,Dx ® Dy|x) = Z Z Dy 12(y) = Dy 2 ()| Dx (x)
TEX* yeA*

—Epony | 3 IDyia(y) = Dypp()]
yEA*

=EzDy {Ll(Dyu’ ﬁym)}

This deserves some comments. The first is to observe that this error measure has the dependence on
Dx that one expects: it ponders errors on Dy, according to the likelihood of observing = as input.
The second interesting feature is that when the conditional distributions are computed by weighted
transducers, then the L; distance in the last expression can be bounded using the tools introduced in
Section Like we did for the bounds in Section we will need to consider the error incurred by
a hypothesis lA)y‘ x only on input strings whose length is bounded by some ¢. Since input and output
strings are constrained to have the same length by the model, this means that we will be bounding the
following:

Z Z |DY|w(y)_l§Y\z(y)|DX(x) .

€Lt yeAlwl

The most general PAC learning results are in a distribution-independent setting, in the sense that
they provide algorithms that can learn under any input distribution. In our case that would amount to
being able to learn weighted transducers under any possible distribution Dx, which turns out to be an
extremely hard problem. In contrast, if for example Dx could be realized by a stochastic WFA, then D
would itself be realized by a WFA. Then, by a simple reduction we could learn Dy |x by using results
from Section [6.3] to learn D and Dx. Our goal in this chapter will be to move as closer as possible to
the distribution-independent setting, and thus we will not be willing to assume that Dx has a particular
form. We will, however, need to make some non-parametric assumptions on Dx as will be seen in the
following sections.
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7.3 A Spectral Learning Algorithm

In this section we will derive a spectral algorithm for learning conditional distributions which can be
realized by weighted transducers satisfying certain assumptions. As in previous spectral algorithms, the
key will be to define adequate Hankel matrices from whose factorizations one can recover operators for
a weighted transducer realizing (an approximation to) the same conditional distribution as the original
transducer. The fact that the observations are sampled according to an input distribution over which
we have no control will make the derivation slightly more involved than in previous methods. This
complication will be the main reason why we must make assumptions about the weighted transducers
we will be learning.

Let A = (a0, 1,{A%}(s5)exxa) be a FPWT with n states. This means that fa : (¥ x A)* - R
computes a conditional distribution: fa(z,y) = Dy|.(y) = P[Y = y|X = z] over pairs of aligned
sequences. It also means that operators of A can be obtained from a set of probabilities given by an
observation matrix O € R™*4 and a set of transition matrices T, € R”*". The goal is then to learn a
weighted transducer that approximates f4 under the metric defined in the previous section for a given
input distribution Dx over X*.

We begin by defining a set of quantities derived from Dx and A and stating some assumptions which
we need in order to derive our algorithm. For any symbols o,0’ € ¥ we define

PX € 0'0t]

PX1 =0'| Xp =0] = P[X € Yo% t]

Now, for any input symbol o € ¥ we define an averaged transition matrix

T, = Z T,P[X, =0 | Xo=0] .
ol'ex

Averaging over ¢ we also define T = Y s, ToP[X € XoXT]. We will use Dg, to denote a diagonal
n X n matrix that contains oy on its diagonal and zero in every off-diagonal entry. Finally, we will make
the following assumptions.

Assumption 3. Transducer A and distribution Dx satisfy the following:
<Al
2. rank(O) = rank(O 'D4,T,) = rank(O "D, T) = n,
3. PIX|<2]=0,
4. P[IX € ZoX*] >0 for allo € X.

A first observation about these assumptions is that without (1) the rank assumptions in (2) would
not be possible due to dimensional restrictions. Assumptions (3) and (4) are what we will require on
our input distribution, which turns out not to be very restrictive. It is also worth noting that the last
two rank assumptions in (2) also depend on the input distribution through the definition of T, and T.
One can interpret these two assumptions as saying that the behavior of the input distribution is such
that it will not act “maliciously” to hide some of the transitions in the target transducer. Also note that
(3) and T,s1 = 1 imply that T,1 = 1 for any o, and T1 = 1. We note here that these assumptions
resemble those made in [HKZ09] to prove the learnability of HMM with a spectral method.

Several Hankel matrices can be defined in this setting. We now introduce the ones that we will be
using in our algorithm. It is important to note that unlike in previous cases, here we will work with a
fixed basis P = S = A. This will work because of the assumptions we just introduced, and is necessary
because we are interested on marginalizing as much as possible the effect of Dx. We begin by defining
a matrix H, € R®*4 for each o € ¥ with entries given by

HU((Si,(Sj) = P[Y € 5i5jA+ |X € ZUE+] .
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Averaging these matrices we get H=>"__ H,P[X € Yo% ], whose entries correspond to

o€X
H((Sz,éj) = P[Y € (51'6J‘A+] .
For each pair of symbols (0,8) € ¥ x A we define a matrix H} € RA*4 with entries
Hg(&;,@) = P[Y € 51(5(5]‘A* | X e EO’EJF] .

We also define a vector h € R® with entries h(5) = P[Y € §A*].

It is clear from these definitions that given a sample of pairs of strings one can easily compute
empirical estimates of all these matrices and vectors. The learning algorithm is based on applying the
following result to these estimates.

Theorem 7.3.1. Suppose Assumption |3 holds and let H =UAV " be a compact SVD with V € RA*™,
Define the weighted transducer A’ = ag,ago,{A’i}> given by oy’ = h'V, o/, = (HV)*h, and
A’ = (H, V) HIV. Then we have fa = far.

Like for other spectral methods we have presented, the key to proving this theorem lies on the existence
of certain factorizations for the Hankel matrices we just defined. We now establish the existence of these
decompositions.

Lemma 7.3.2. The following decompositions hold:
1. H, =0"D,T,O0,
2. H=0"D,TO,
3. H=0"D,T,A%0,
4. h=(ajO)T =0"D,,T1.

Proof. Applying the definitions and the fact that the conditional distribution only has positive probability
for strings of the same length we get

H,(5;,0,)P[X € SoxT]= > Y > PIY =8y, X = 0'oa]

o'eXzext yeAt

= Z Z Z PY =6,0;y| X = o'ox]P[X = o'01]

o'eXzert yeAt

=3 > > oA AYAYIPX =o'oa] .

0'€X zESt yeAlel

We now sum first over y and apply Lemma Then, using that Aij 1=0;,1and )
o' | Xy = 0] = 054, T, we obtain
H,(0;,8;) = Y ag A% AY1PX) = 0’| X5 = 0]
o’eX
— Al T
= Qq OgiTJO(;jl

T _
= 05,D¢,Ts505; ,

04
o’'ex AU’P[Xl =

where the last equation follows from simple matrix algebra. Thus, since the columns of O are the vectors
05, we get H, = OTDQOTUO. The decomposition of H follows now immediately from the definition of
T. Now we proceed to the third decomposition, for which we have
H)(0;,6;)PX € ZoXT]= Y > > PIY =660y, X =0'00"x]
o, 0" EX X ye A*

= Z Z Z PY = 6;60;y| X = 0’0" z|P[X = 000" 1]

o/, ol'eX xeX* yeA*
) o
= > > > o ALAJAYAUIPX =o'00"a] .

ol,o’eX xeX* yeAlwl
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From here we use the same arguments as in the previous case to get

5 _ T Ad: a5 A% 1 PIX € 0'00"57]
Ha-((s’méj) = Z (8 %) AO"AO'AUJ”]‘W
ol o!"eX
=Y af A% AJOs 1PX, =o' | Xy = 0]
o’'ex
= o 05, T,A}0s,1
= ogDaOTUAgo(;j .

Thus, we get H = O"D,,T,A%0. Similar arguments now yield the following derivation:

h(5) = > P[Y = dy]

yEA*

=Y > > PIY =4y, X =oa]

cEX xeEX* yeA*

:Z Z Z PlY =y | X = 0z]P[X = oz

oceX zeX* ycAlxl

= Z Z Z ag AJAYIP[X = ox]
ocEX zEX ycAlxl

=) a ASIP[X = o]
oeY

= o O51P[|X| > 1]

::a505

=04 Dg,1

=04 D, T1

where last inequality follows from T1 = 1. Thus, the desired decompositions for h follow from h(d) =
ag o; and h(§) = 0] D, T1. O

Based on these factorizations and Assumptions [3] we are ready to prove the main theorem of this
section.

Proof of Theorem [7.3.1, We will show that A’ = M~'AM for some invertible M € R"*" and the result
will follow from the invariance under change of basis of the function computed by a weighted automata.

Let P = OTDQOT and P, = OTDQOTU. Note that by Assumption [3| matrices P,P, € RA*"
have rank n. Since O also has rank n, this means that the factorizations H = PO and H, = P,O
are in fact rank factorizations. Thus, since H has rank n, using the compact SVD we get the rank
factorization H = (HV)V . Therefore, the matrix M = OV € R™*" is invertible by Corollary
Now we check that M satisfies the equation. In the first place we have, by Lemma and properties
of Moore—Penrose pseudo-inverse:

A = (H,V)THIV
= (P,M)"P,A’M
=M 'P}P,A’M
=M ASM .
Using the first decomposition for h we get

a) =h"V=a]M .
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Algorithm 7: Algorithm for Learning FPWT
Input: n, X, A, S = (2%,...,2™)
Output: A WFT A = <6¢0, O, {A‘;}>

Using S, compute estimations fl, I:I, H, for all o € Y/, and I:Ig for all (0,0) € ¥ x A;
Compute the n top right singular vectors V of H;

Let &g < hTV and ao « (HV)Th;

foreach (0,6) € ¥ x A do let AS «+ (H,V)THIV;

Finally, by the second decomposition we get
o, =HV)"Th=PM)"P1=M""1.
O

In view of this result, we can now give a spectral learning algorithm for FPWT which follows the
same principles used in Algorithm [5] This new algorithm receives as input the number of states n of
the target FPWT, alphabets ¥ and A, and a sample S = (z!,...,2™) of pairs 2! = (¢, y") drawn from
Dx @ Dy|x, where Dx is an arbitrary distribution over ¥* and Dy |x is a conditional distribution over
aligned sequences realized by a FPWT. The details can be found in Algorithm [7}

7.4 Sample Complexity Bounds

In this section we give sample complexity bounds for Algorithm [7} We will assume throughout all the
analysis that the target distribution Dx and FPWT Dy|x = f satisfy Assumptions The overall
structure of the analysis will be the same as in Section [6.3

We begin by defining a transducer A obtained from the singular vectors V of H and the true
Hankel matrices. We will show that f; = fa when some conditions are met. Begin by defining

A= <do,doo, {Ag}> as follows:
aj =h'V
G = (HV)h
Al = (H,V)"HIV

The following result is analogous to Lemma and gives conditions under which f; = f.

Lemma 7.4.1. Suppose that ||[H—H||y < ¢/(14¢€)s,(H) for some e < 1. Then the following inequalities
hold for all o € X

5, (HV) > 5, (H)\/1 — €2
5,(H,V) > 5,(H, V)1 — €2 .

Furthermore, we have f; = f.

Proof. The same argument used in the proof of Lemma shows that |[H — Hl|y < /(1 + €)s,, (H)
implies 5,(VTV) > /1 — €2. Thus, since H=UAV ', by Lemma we get

5,(HV) > 5, (UA)s, (V' V) > s, (H)V/1 — €2 .
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In addition, since Lemma[7.3.2|gives us the rank factorizations H = PO and H, = P, 0, we immediately
have H,VVT = H,. Thus, the following holds:

5,(H,V) = 5,(H,VV'V)
> 5,(H,V)s,(VTV)

>s5,(H,V)V1—€2 .

The claim on f; follows from the same argument used in Lemma [6.3.T} O

Note that by Theorem [7.3.1] we have A = MA'M~! with M = OV. Furthermore, if the conditions
of Lemma are met, then we also have A = MAM ! for some M. In this case it is easy to see, using
that (HV)VT is a rank factorization and Corollary that one has M = OV = OVV V. Thus,
using the same proof as in Lemma we get the following.

Lemma 7.4.2. Suppose that |H — Hly < ¢/(1 + €)s,(H) for some € < 1. Then for any 1 <i <n we

have s;(M)V1 — €2 < 5;(M) < 5;(M).

We can use the change of basis M to define A’ = MAM~! = <A' a. {A"5}> using the transducer

A returned by Algorithm |7, It is obvious by construction that f;, = f . Using this representation for f
we can prove the following variant of Lemma[5.4.4] which will be used to bound the error of our algorithm.

Lemma 7.4.3. Let py = [|og — &[1, poc = [0t — Qlllocs o = Dogen AL — A" s. Then for any
t >0 and x € Xt the following holds:

t
> 1@ y) = fa,y)l < (1+ po)( +pooH + pa.)

yEA?t

Proof. The proof follows along the lines of those given for Lemmas and [5.4.4} here we only the key
differences. To begin with, note that since f = f4 and A is a FPWT, then we have 7o = |[|@oollco =
1]l = 1. Furthermore, 72 = Y osea |A2|1 =1 and ~, = ZyeAt [lapAY]l; = 1 by Lemma

Writing ¢, = 32, ca a0 AY — agA’||; and using the same bounding scheme from (5.2) one gets

Yoo < Po+ Pa+ Vapo = (1+po)(1+ ) —1 .

Thus, writing pg = ¢ one can show by induction on the length of x that

t
< (1 + po) H (1+ pz,) —
x=1

Finally, the argument used in (5.3) yields

t
D@ y) = F@,y)] < poo + (14 poo) e < (14 po)(1+ poo) [T (1 + p2.)
yEA?L s=1

O

Before stating the next result we shall define several quantities related to the accuracy with which
the Hankel matrices used in Algorithm |ﬂ are approximated. In particular, we write &g = ||h — h||2,
ex=|H-Hls, 5 = [Hy — Ho ||z and ) = |[H} — HJ[|2.
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Lemma 7.4.4. Lete >0 and t > 0, and suppose that the following hold for all o € 3:

5,(M)s,,(H)?
(t+1)2y/ns1 (M) ’
s, (H)?

= A+ 1)%8, (M)

s, (M)s,, (H, V)2
(t+1)2y/n]Als; (M)

€5, (M)s,(H,V)?

2% = O G  (V)

€0<C0

3

>

& SCE

q

dEA

for some universal constants Cy, Cx, Cx, and C&. Then for any v € %' we have ZyeAt |f(z,y) —

flzy)] <e/(t+1).
Proof. We begin by applying Lemma to obtain the following bounds:

po = lleo — @ llx

Vi M ™ 2]l — Gol|2
n ~

Vb &, ,

5,(M)
~/

Poo = ”aoo - aoo”OO

< M2l — Qo2
(VD) |h — hll n 1+V5 |||z || H — H|»

5, (HV) 2 min{s,(HV)2,s,(HV)?} | ’

Pl =A% — ALl

< VM2 M72]|AS — A

< Vs (M) (|[HS — H n 1+v6  |HS |2 H, — Ho |

T s, (M) s, (H, V) 2 min{s,(H,V)2,s,(H,V)2}

IN

IN

IA
n

Now note that we have ||hfs < 1 and |[[HZ |2 < 1. Furthermore, using Lemmas and with
€ = v/3/2 we can see that s,(HV) > s,(H)/2, 5,(H,V) > 5, (H,V)/2 and s,(M) > s,(M)/2 hold
when |H — I:I||2 < s,(H)v1— €2 If in addition |H, — I:I[,H < 5,(H,V)v1 — €2, then combining the
above with Lemma we get s, (Hy V) > ((2—v/3)2/2)s,(H, V). Thus, for some choice of constants
we have

n
po < 067:(FM)80 :
M
Poo < C(’)o 51((H))2 (€0 +e€n)




Now we can finally apply Lemma [7.4.3] to see that if for some suitable constants the following hold:

e
LV < T ﬁ52<|1;4()M) ’
1
P 5n(I;ZV)2 <08y T e \/555(11\(41\)/1) !

then for any = € X! we get

; 5 2 €
Z|f($>y)_f($»y)|<<1+2(t_|_1)(t+2)) _1§t—|—1'

yEAT?
O

Now is time to bound the estimation error on the approximate Hankel matrices used in Algorithm [7}
In this case this turns out to be a bit more cumbersome than in the analysis of Section [6.3| because some
of the probabilities are conditioned on the input distribution Dx. This will make it necessary that our
bounds depend on p, = P[X € YoX*] for each o € 3.

Lemma 7.4.5. Suppose Algorithm [7 receives a sample of size m as input. Then, for any 6 > 0, the
following hold simultaneously with probability at least 1 — §:

||h—ﬁ2<\/g<1+ 1n<§>) ,
||H_I:IF§\/E<1+ ln<§>> :

VoeX: |H,-H,|p< \/
mps —

L 14 [21 (5'2')
V/2mp, (5]%]/9) W !

Vo ey ZHHg_ﬂiHFS [AY m ln<52|)
sea mpe — +/2mp, In(5/X1/9) ]

Proof. Each of the first two bounds hold with probability at least 1—¢/5 by Theorem where cg = 1
by definition. For each input symbol o € ¥ we define m, as the number of examples (2*,y*) € S such
that 2 = 0. Note that since P[|X| < 2] = 0 by Assumption [3| we have m = . m,. Furthermore we
have E[m,] = mp,. Thus, by the Chernoff bound we have that for each o € ¥

D)
me Z mps — 2mpa In <5|6|)

holds with probability at least 1 — §/5|%|. Since ¢g = 1 for each H,, to obtain the third bound we
combine this lower bound for m, with the following direct consequence of Theorem [6.2.1}

[, —H, < [ ( ln(aEI)) |
My 1)
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which holds with probability at least 1 — §/5|%| for each o € ¥. Now consider the matrix HY =
[HS ...Hi‘A'] € RAXAXA whose entries are Hx(0;,0;,0;) = P[Y € 6;0;0,A% | X € SoXt]. It is easy
to check that this is a Hankel matrix with ¢g = 1. Then, by the Cauchy—Schwarz inequality and
Theorem [6.2.] we have

> IH —H | < VIA[ [ IH) - HS 3

dEA dEA

= VIA[|HZ —H2 |

< MI(H ln(W)) |
My )

with probability at least 1 — ¢§/5|%| for each o € 3. The result now follows from a union bound. O

We are finally in position to state the main result of this section that gives a sample bound for
Algorithm [7] To simplify the notation of the bound we will define quantities 7x = min,ex p, and
sy = minyex 5, (H, V), which depend on both f and Dx. The proof of the theorem is a simple calculation

in view of Lemmas and In particular, we only need to recall that, since the rows of O all add
up to 1, we have

51(M) = 51(OV) = |[OV]}2 < [|O]|2 < v/n[|Of|oc = V1 .

Theorem 7.4.6. Suppose Algorithm [7 receives as input a sample of size m generated from some dis-
tribution Dx ® Dy |x satisfying Assumptions @ There exists a universal constant C such that for any

£>0,e>0,6>0, if
(t+ )AL (]3]
o=
x5, (H)1s,(OV)?2 )

then with probability at least 1 — & the hypothesis A returned by the algorithm satisfies

SN @y - flay)PX =2 <e .

zeXSt yc Alxl
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Chapter 8

The Spectral Method from an
Optimization Viewpoint

The algebraic formulation of the spectral method is in sharp contrast with the analytic formulation of
most machine learning problems using some form of optimization problem. Despite its simplicity, the
algebraic formulation has one big drawback: it is not clear how to enforce any type of prior knowledge
into the algorithm besides the number of states in the hypothesis. On the other hand, a very intuitive way
to enforce prior knowledge in optimization-based learning algorithms is by adding regularization terms to
the objective function. This and some other facts motivate our study of an optimization-based learning
algorithm for WFA founded upon the same principles of the spectral method. In particular, we give a
non-convex optimization algorithm that shares some statistical properties with the spectral method, and
then show how to obtain a convex relaxation of this problem. The last section of the chapter discusses
some issues that need to be taken into account when implementing our optimization-based algorithms
in practice.

8.1 Maximum Likelihood and Moment Matching

We start by describing two well-known statistical principles for model estimation which provide inspira-
tions for the spectral method and its optimization counterpart.

8.1.1 Maximum Likelihood Estimation

In statistics, the maximum likelihood principle is a general method for fitting a statistical model to a
given set of examples. The rationale behind the method is that for given a sample and a fixed class of
hypotheses, the best model in the class is the one that assigns maximum probability to the observed
sample; that is, the model that makes it more likely to observe the given data. Two interesting properties
of this method are that it is motivated by a simple intuition, and that it is easy to formulate for any
given class of models. In general, if p is the density function of some probability distribution and
S = (x!,...,2™) is a sample of i.i.d. examples drawn from some distribution p*, the likelihood of S with

respect to p is defined as
m

L(S;p) = [[p(=") -

i=1

Sometimes it is also convenient to work with the log-likelihood, which is the logarithm of L:

LL(S;p) = logL(S; p) = Y logp(a') .
=1
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With these definitions, if D is a family of statistical models, then the mazimum likelihood (ML) estimate
of p* in D given S is
pmr = argmax L(S; p) = argmax LL(S;p) . (ML)
peD peD
A very appealing statistical property of ML estimation is that in most cases, under mild assumptions
on the hypothesis class D, one can show that if p* € D, then for m — oo one has py, — p* under a
suitable notion of convergence. In those cases it is said that ML estimation is consistent.

The maximum likelihood principle is known to be consistent in the case of learning probabilistic
automata with a fixed number of states. It was already shown in [BP66; [Pet69] that ML estimation is
consistent for HMM with discrete state and observation spaces. Furthermore, generalizations to more
general state and observation spaces where given in [Ler92|. These results imply the consistency of PFA
learning via ML because the class of distributions generated by HMM is the same as the one generated
by PFA [DDEO5].

Abe and Warmuth proved in [AW92] that something stronger than consistency holds for the ML
principle applied to learning the structure and transition probabilities of probabilistic automata without
stopping probabilities. In particular, they showed that given a sample S of strings of length ¢ with size
m > O((t*n?|%]/e2) log(1/6)) sampled from some PFA p* with n states over ¥, then with probability at
least 1 — ¢ the hypothesis pyr, obtained via ML estimation with .S on the class of PFA with n states over
Y satisfies KL(p*||pm1) < €, where the models are compared over ©.¢. Note that this implies that for any
fixed ¢ one has KL(p*|pyw) — 0 with m — oo, with convergence occurring at a rate of type O(1/y/m).
This is much stronger that simple consistency, whose definition does not require any particular rate of
convergence and can, in general, converge much slowly.

Unfortunately, despite the intrinsic statistical attractiveness of ML estimation, solving the optimiza-
tion problem is in general a difficult problem from the algorithmic point of view. Thus, obtaining
efficient learning algorithms by solving ML estimation is a challenging problem. The main reason for
this is that optimization is rarely a convex problem. For example, in the case of PNFA with n
states we see that the problem one needs to solve is:

m
Ay = argmax Zlog(aoAmiaoo) .

ap,Xoo -,{Ao} i=1

The objective function of this optimization depends on the parameters of the target PNFA in a highly
non-convex way. In fact, it turns out that even approximating the optimal solution of this optimization
problem is hard [AW92].

In spite of not being able to solve optimization exactly in a reasonable time, the ML principle
is commonly used by practitioners. Most of the times, this involves the use of heuristic methods to find
a good local optimum of . Among such heuristics, the most well-know is perhaps the Expectation-
Maximization (EM) method, which in the case of HMM is sometimes also referred as the Baum—Welch
algorithm [BPSW70]. This is an iterative heuristic algorithm for approximating ML parameter estimation
on probabilistic models with latent variables. There are at least three good reasons why an iterative
method like EM with no convergence guarantees is so widely used in practice.

1. Given enough running time, this type of heuristics do find good models in most applications. This
suggests that either the applications are not big enough to reach the regime where the asymptotic
complexity becomes impractical, or that the worst case lower bounds do not apply to the type of
models one encounters in practice.

2. Heuristics based on ML estimation are usually as flexible as the ML method itself, making them
easier to adapt to newly defined models. This allows practitioners to try different models easily in
applications, and quickly design learning algorithm for newly defined models.

3. Incorporating prior knowledge on optimization problems via regularization terms is a standard
practice in machine learning. Since ML estimation is defined in terms of an optimization problem
it is susceptible to such practices. In particular, it is usual to combine ML estimation with model
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selection criteria like BIC or AIC [Sch78} |Aka77] to express the prior knowledge conveyed by
Occam’s razor; namely, that at similar levels of fitness simpler models are to be preferred.

We have already seen that the spectral method for learning stochastic WFA comes with polynomial
guarantees on its running time, is consistent, and it is guaranteed to find solutions close to the optimum
when given a finite sample. Thus, in terms of (1) above, the spectral method is superior to ML estimation,
at least from a theoretical point of view. However, though the spectral method has been adapted to a
large number of probabilistic models, there seems to be no general recipe so far for applying the spectral
method to generic probabilistic models. In this respect, according to (2), the ML principle is still more
appealing to practitioners. Point (3) above is the main concern of the present chapter. As we will see
below, the spectral method for probabilistic models is based on the method of moments. This basically
means that it is based on solving a set of equations relating moments and parameters in the target
distribution. Since it is not clear how to enforce some prior knowledge in the solution of these equations,
this makes ML estimation more appealing from the point of view of the flexibility provided by a wide
choice of regularization methods. In the following sections we will describe optimization problems that
behave like the spectral method and allow for several variations in regularization strategies.

8.1.2 The Method of Moments

Roughly speaking, the methods of moments is a statistical inference technique that estimates the param-
eters of a probability distribution by relating them to a set of moments defined in terms of the outcomes
of the distribution. A paradigmatic example is the normal distribution, where its parameters, the mean
1 and variance o2, are in fact moments of the distribution. In this case the method of moments yields
the estimate N (i, 62), where i and 62 are the empirical estimations of the mean and variance from a
given sample. Its conception dates back to Pearson [Pea94| and is, thus, older than the ML principle.
Furthermore, the fact that it is based on estimation of moments yields immediate consistence by the law
of large numbers. However, for complex distributions (e.g. mixtures) deriving equations that relate mo-
ments and methods parameters can be a painful exercise. Furthermore, such equations may not always
be easy to solve algebraically. Therefore, despite being attractive from a theoretical point of view, the
method of moments is not often used as the basis for deriving unsupervised learning algorithms.

Nonetheless, it has been recently observed in [AHK12a] that the spectral method for learning HMM
is in fact an instance of the method of moments. The nice computational and statistical properties
of the spectral method, interpreted under this light, come from the fact that — at least for all HMM
where the basis (X,X) is complete — the algorithm is an instance of the moment method where only
moments of order at most three are used. This contrasts with previous moment algorithms that relied on
the estimation of high-order moments, which are usually hard to estimate accurately due to their large
variances. Furthermore, since the equations relating parameters and moments can be solved via SVD
decomposition and other linear algebra operations, the error incurred by using moment estimations in
such equations can be bounded with standard perturbation tools.

Thus, we see that the spectral method for probabilistic models is an instance of a well-known method
in statistics. Furthermore, since the particularities of the models to which the method is applied make
it possible to learn the parameters using robust linear algebra techniques applied to low-order moments,
it turns out to be a computationally and statistically appealing method. The main problem with the
method, which is not shared with ML estimation, is the difficulty on generalizing it to new models
and deriving variations that incorporate previous knowledge. Our goal in this chapter is to tackle this
problem by taking the particular method of moments described by the spectral method and framing it
as an optimization problem.

8.2 Consistent Learning via Local Loss Optimization
In this section we present a learning algorithm for WFA based on solving an optimization problem. In

particular, the algorithm will minimize a certain loss function defined in terms of observed data about
the target WFA. Casting learning algorithms as optimization problems is a common approach in machine
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learning, which has led to very successful classes of algorithms based on principles like empirical and
structural risk minimization. In a sense that will soon become clear, our algorithm can be thought as
a reinterpretation of the spectral method in terms of loss minimization. Though not entirely practical
due to the quadratic nature of the loss and constraints present in the optimization problem, this point
of view on the spectral method yields interesting insights which are valuable for designing new classes of
algorithms. This will be the subject of the following sections.

In spirit, our algorithm is similar to the spectral method in the sense that in order to learn a function
f: X* — R of finite rank, the algorithm infers a WFA using (approximate) information from a sub-block
of Hy. The sub-block used by the algorithm is defined in terms of a set of prefixes P and suflixes S.
Throughout this section we assume that f is fixed and has rank r, and that a basis (P, S) of f is given.

We will describe our algorithm under the hypothesis that sub-blocks H and {H,},ex of Hy are
known exactly. It is trivial to modify the algorithm to work in the case when only approzimations H
and {H, },cx of the Hankel sub-blocks are known.

Given 1 < n < s = |S| we define the local loss function £, (X, B, {Bs}) on variables X € R¥*™
Bs € R™ and B, € R"*" for 0 € ¥ as:

t, = |HXB,, —hp,[3+ > |HXB, - H,X|% (8.1)
ocED

Our learning algorithm is a constrained minimization of this local loss, which we call spectral optimization
(SO):
min £, (X B,}) st. XX =1 SO
L (X, B (B, (50)
Intuitively, this optimization tries to jointly solve the optimizations solved by SVD and pseudo-inverse
in the spectral method based on Lemma[5.2.1] In particular, likewise for the SVD-based method, it can
be shown that (SO is consistent whenever n > r and B = (P,S) is complete. This shows that the
algorithms are in some sense equivalent, and thus provides a novel interpretation of spectral learning
algorithms as minimizing a loss function on local data — when contrasted to any algorithm based on
maximum likelihood — in the sense that only examples contained in the basis are considered in the loss
function.

Theorem 8.2.1. Supposen > r and B is a complete basis. Then, for any optimal solution (X*, 85, {B%})
to problem (SO)), the weighted automata B* = <h;5X*,,6:;o, {B(*,}> satisfies f = fp~

The proof of this theorem is given in Section Though the proof is relatively simple in the case
n = r, it turns out that the case n > r is much more delicate — unlike in the SVD-based method, where
the same proof applies to all n > r. R R

Of course, if H and {H,} are not fully known, but approximations H and {H,} are given to the
algorithm, we can still minimize the empirical local loss Zn and build a WFA from the solution using the
same method of Theorem

Despite its consistency, in general the optimization is not algorithmically tractable because
its objective function is quadratic non-positive semidefinite and the constraint on X is not convex.
Nonetheless, the proof of Theorem shows that when H and {H,} are known exactly, the SVD
method can be used to efficiently compute an optimal solution of . Furthermore, the SVD method
can be regarded as an approximate solver for with an empirical loss function ?n as follows. Find
first an X satisfying the constraints using the SVD of fI, and then compute Boo and {f’)g} by minimizing
the loss with fixed X — note that in this case, the optimization turns out to be convex. This is
just one iteration of a general heuristic method known as alternate minimization that can be applied
to quadratic objective functions on two variables where the objective is convex when one of the two
variables is considered fixed. In this case the SVD provides a clever, though costly, initialization to the
variable that will be fixed during the first iteration.

From the perspective of an optimization algorithm, the bounds for the distance between operators
recovered with full and approximate data given in Section [5.4] for the spectral method, can be restated as
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a sensitivity analysis of the optimization solved by the algorithm given here. In fact, a similar analysis
can be carried out for (SO, though we shall not pursue this direction here.

8.2.1 Proof of Theorem [8.2.1]

The following technical result will be used in the proof.

Lemma 8.2.2. Let f: 5* — R be a function of finite rank r and suppose that (P,S) is a complete basis
for f. Then the matriz Hy = [H,, ... H, ] has rank r.

bl

Proof. Let A = (g, @0, {As}) be a minimal automata for f and denote by H = PS the rank fac-
torization induced by A. Note that we have Hy = P [A,,S,... ,AUWS]. Thus, it is enough to show
that rank([A,,S...A; . S]) = r. Since each column of S is of the form s, = A, for some suf-
fix v € S, and rank(S) = r, we have R" = span({s,}ves) C Usexrange(A,). Now, since for all
o € X one has span({A,s,}yes) = range(A,), we see that the columns of [Ay,S, ..., Ay S| span
Uges range(A,) = R™. From which it follows that rank(Hg) = r. O

The proof of Theorem is divided into the following four claims.
Claim 8.1. The optimal value of problem (SO) is zero.

Let H = UAVT be a full SVD of H and write V,, € R**™ for the n right singular vectors cor-
responding to the n largest singular values (some of which might be zero since n > r). Note that we
have V]V, =T and HV, V] = H. Now we check that £,(V,,, (HV,) hp x, {(HV,)*H,V,}) = 0.
Recall that HV,,(HV,,)™ acts as an identity in the space spanned by the columns of HV,,. Thus, writ-
ing hp y» = HV, Ve, we see that (HV,,)(HV,,)*hp , = hp \. Furthermore, since rank([H, H,]) =
rank(H), we have HV,,(HV,)*H,V,, = H,V,,. This verifies the claim.

Claim 8.2. For any n > r, A, = <h;SVn, (HV,)*hp.», {(an)+Hgvn}> satisfies fa. = f.

We will show that for any n > r one has fa, = fa,. Then the claim will follow from Lemma
since A, is the WFA corresponding to the rank factorization H = (HV,.)(V,). Write IL,, = [I,,0] €
R"™™. Since any singular vector in V,, which is not in V. is orthogonal to the rowspace of H and H,, by
construction we have HnAnH;Lr = A,. Now we consider the factorization H = P,,S,, induced by A,,. If
we show that the rows of P,, lie in the span of the rows of HV,,, then PHHZHn = P,, and Lemma
tells us that fa, = fa,. Write A, = (@, @0, {A,}). We prove by induction on |u| that o] = oy A,
lie in the span of the rows of HV,,, which we denote by H. This will imply the claim about the rows of
P,,. For |u| = 0 we trivially have ag = h; s Vn € H. Furthermore, by the induction hypothesis we have
al =~/HV, for some v, € R?. Thus we get o] = a] A, =~ HV,(HV,)"H,V, =~v/H,V, €
H.

Claim 8.3. Let (X*, 3% ,{B%}) be an optimal solution to 1l and define B’ = <h:\r7SX*,,8go, {B] >,
where B!, = (HX*)*H,X* and 8, = (HX*)*hp.. Then f5- = fp.

Since the optimal value of the objective is zero, we must have HX*B? = H,X* and HX*3. = hp ,.
Thus, by a property of the Moore—Penrose pseudo-inverse we must have that BX = B/ + C/ and
B, = B+, where C = (I — (HX*)THX*)C, and v’ = (I — (HX*)*HX*)~ for some arbitrary
C, € R"*"™ and v € R™. Now the claim follows from similar arguments as the ones used above, showing
by induction on the length of u that (3)" = hI’SX*BZ lies in the span of the rows of HX*.

Claim 8.4. With notation from previous claims, we have fpr = fa,,
In the first place, note that Lemma(8.2.2|and the equation HX*[B/ ..., B/ | =[H, X", ..., H, X*]

o b
necessarily imply HX*(X*)T = H. Using this property, we can show that B’ = NA,M with N =
(X*)TV,, and M = V! X*. Thus, the claim follows from Lemma where the condition P,, MN = P,,
can be verified via an induction argument on the length of prefixes.
Summarizing, the consistency of the algorithm given by follows from the chain of equalities

fB» = fpr = fa, = fa, = f proved in the previous claims.
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8.3 A Convex Relaxation of the Local Loss

We shall now present a convex relaxation of the optimization on . Besides the obvious advantage
represented by having a convex problem, our relaxation addresses another practical issue: that the only
parameter a user can adjust in in order to trade accuracy and model complexity is the number of
states n. Though the discreteness of this parameter allows for a fast model selection scheme through a
full exploration of the parameter space, in some applications one may be willing to invest some time in
exploring a larger, more fine-grained space of parameters, with the hope of reaching a better trade-off
between accuracy and model complexity. The algorithm presented here does this by incorporating a
continuous regularization parameter.

The main idea in order to obtain a convex optimization problem similar to will be to remove the
projection X, since we have already seen that it is the only source of non-convexity in the optimization.
However, the new convex objective will need to incorporate a term that enforces the optimization to
behave in a similar way as . In particular we need to enforce that the operators of the model we
learn have their dynamics inside the space spanned by the rows of H and H,,.

First note that the choice of n effectively restricts the maximum rank of the operators B,. Once this
maximal rank is set, X can be interpreted as enforcing a common “semantic space” between the different
operators B, by making sure each of them works on a state space defined by the same projection of H.
Furthermore, the constraint on X tightly controls its norm and thus ensures that the operators B, will
also have its norm tightly controlled to be in the order of |H,||/||H| — at least when n = r, see the proof
of Theorem R.2.11

Thus, in order to obtain a convex optimization similar to we do the following. First, take n = s
and fix X = I, thus unrestricting the model class and removing the source of non-convexity. Then
penalize the resulting objective with a convex relaxation of the term rank([B,,, ..., Bgy,]), which makes
sure the operators have low rank individually, and enforces them to work on a common low-dimensional
state space. As a relaxation of rank(M) we us the nuclear norm ||M||, (also known as trace norm),
which is known to provide a good convex proxy for the rank function in rank minimization problems
[Faz02]. The intuition behind this fact in the expression |[M| = >, s;(M) showing the nuclear norm is
in fact a Schatten norm which corresponds to the L; norm of the singular values of M.

More formally, for any regularization parameter 7 > 0, the relazed local loss ET(BE) on a matrix
variable By, € R**I%I5 is defined as:

lr = |Bs]. + 7| HBs — Hx[|%

where By, = [B,, , ..., B, ;] is a block-concatenation of the operators, and Hy = [H,,, ..., H, ; ]. Since

lis clearly convex on By, we can learn a set of operators by solving the convex optimization problem

min /(By) . (CO)

Bs

Given an optimal solution B3, of (CO)), we define a WFA B* = <h;5,e>\7B*2>, where ey € R? is the

coordinate vector with ey (A) = 1. Some useful facts about this optimization are collected in the following
proposition.

Proposition 8.3.1. The following hold:
1. If H has full column rank, then (CO)) has a unique solution

2. Forn = s and 7 > 1, the optimum value £ of (SO|) and the optimum value gj of (CO) satisfy
o<

3. Suppose rank(H) = rank([Hs, H]) and let [Hy, H] = UA[V{ V] be a compact SVD. Then, By =
(V)*VY is a closed form solution for (CO) when 7 — oo
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Proof. Fact (1) follows from the observation that when H has full rank the loss 0, is strictly convex. To
see this note that ||Byx||, is strictly convex by definition and let g(B) = ||[HB — H'||% for some fixed H
and H'. Then, for any B and B’, and any 0 < ¢ < 1 we have

g(tB+(t—1)B') = |tHB + (1 — ) HB' — H'||%
= [[t(HB - H') + (1 - )(HB' — H')||%
=?|HB - H'||% + (1 — t)?|HB' — H'||% + 2t(1 — t)(HB - H,HB' - H')

< t%g(B) + (1 —1)%g(B') + 2t(1 — t)/g(B)\/g(B') (8:2)
<tg(B) + (1 - t)g(B’) , (8:3)

where we have used the Cauchy—Schwarz inequality and that for any x,y > 0 the following holds
0> —t(t—1)(x —y)? =222 + (1 — t)%* + 2t(1 — t)wy — ta® — (1 — t)y? .

Note that is an equality if and only if either HB — H' = o(HB’ — H') for some a > 0, or one of
HB — H' = 0 or HB’ — H' = 0 holds. Furthermore is an equality if and only if ¢(B) = g(B’).
Thus, we see that we have an overall equality if and only if HB = HB’, which implies B = B’ when
H has full column rank. For fact (2), suppose B, achieves the optimal value in and check that
0r < 0,(I,ey,By) = |HB% — Hyl|2 < 5. Fact (3) follows from Theorem 2.1 in [LSY10] and the
observation that when 7 — co optimization is equivalent to ming,, |Bx||, s.t. HBy = Hy. O

Note that in general approximations Hof H computed from samples will have full rank with high
probability. Thus, fact (1) tells us that either in this case, or when p = n, optimization has a
unique optimum. Furthermore, by fact (2) we see that minimizing the convex loss is also, in a relaxed
sense, minimizing the non-convex loss which is known to be consistent. In addition, fact (3) implies that
when H has full rank and 7 is very large, we recover the spectral method with n = s.

8.4 Practical Considerations

Convex optimization problems can in general be (approximately) solved in polynomial time by generic
algorithms, like the ellipsoid method. However, these general approach rarely yields practically efficient
algorithms. For problems with specific forms, different optimizations algorithms that explicitly exploit
the structure in the problem have been designed. In this section we provide two approaches for solving
optimization in practice.

Framing the problem of WFA learning as a convex optimization problem has a very interesting conse-
quence: now we can enforce different forms of prior knowledge on the hypothesis of our learning algorithm
by adding convex constraints and regularizers to . We will mention two particular examples here,
but note that there are many other possibilities.

8.4.1 A Semidefinite Programming Approach

Optimization can be restated in several ways. In particular, by standard techniques, it can be
shown that it is equivalent to a Conic Program on the intersection of a semi-definite cone (given by the
nuclear norm), and a quadratic cone (given by the Frobenius norm). Similarly, the problem can also be
fully expressed as a semi-definite program. Though in general this conversion is believed to be inefficient
for algorithmic purposes, it has the advantage of giving the problem in a form that can be solved by
many general-purpose optimization packages for semidefinite programming.

In this section we show how to obtain a semidefinite program for the following variant of where
we have removed the square on the Frobenius norm:

min By, + [HBy — Hy|r . (O
P
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We begin by introducing some notation. For any matrix M € R%*% we use tr(M) to denote its
trace and vec(M) to denote a column vector in R%192 containing all the elements of M. Recall that a
symmetric matrix M € R%*? is positive semidefinite if all its eigenvalues are non-negative, a fact we
denote by M > 0. Now we state without proof two well-known facts about semidefinite programming
that provide representations for the Frobenius and nuclear norm.

Lemma 8.4.1 ([BV04]). For any M € R%*42 gnd t > 0 one has |M||r <t if and only if

t-1I vec(M)
[Vec(M)T t

B

Lemma 8.4.2 ([Faz02]). For any M € R%*% and t > 0 one has |M||, <t if and only if there exist
symmetric matrices X; € RAX4A gnd Xy € R%2%42 sych that tr(Xy) + tr(X2) < 2t and

Xy M
M’ X,

B

Combining these two results with a standard reduction one can prove the following.

Theorem 8.4.3. Optimization problem (CO') is equivalent to the following semidefinite program:

min %(tr(Xl) +tr(Xa)) + 7t

Bx,t,X1,Xo
X, By 0 0
‘ BL X, 0 "
=0 .
subject to 0 0 | vec(HBy — Hy)| — 0
0 0 vec(HBy-Hgy)' ¢

The above problem has O(ps|X| + p? + s%|X|?) variables and a constraint space of dimension (p +
s|S] + ps|X| + 1)2. Though general solvers may not be able to deal with this problem for large basis
and alphabets, perhaps a special-purpose interior-point method could be obtained to solve this problem
efficiently (e.g. see [ADLV]).

8.4.2 A Proximal Gradient Optimization Algorithm

Besides reducing an optimization problem to a standard form like in previous section, another way to
obtain efficient algorithms for solving this type of problems is to exploit their particular structure. In our
case it turns out that the objective function in falls into the category of so-called separable convex
objectives. These can be basically decomposed as the sum of a convex smooth term — the Frobenius
norm in our case — and a convex non-smooth term — the nuclear norm. In this section we briefly discuss
how to fit into the setting of proxzimal gradient optimization; for more details, convergence proofs,
and stopping conditions we direct the reader to [Nes07; BT09].
Let us assume that one needs to solve the following optimization problem of the form

min f(x) +g(x) , (8.4)

where the loss function ¢(x) = f(x) + g(x) is expressed as the sum of a smooth convex function f(x)
and a convex and possibly non-smooth g(x). We also assume that the first derivative of f is Lipschitz
continuous; that is, there exists a constant L > 0 such that for all x,y € R? we have

Vi) =Vl < Lix=yl

The prozimal operator for g parametrized by a positive number 7 is the non-linear map Py, : R¢ — R4
defined as .
Po(y) = angain (59 + - x— yI?)
xeR4 277
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Assuming the gradient V f and the proximal operator P, , can be computed exactly, and (a bound for) L
is known, the following proximal-gradient iterative descent scheme provides a fast converging algorithm
for solving (8.4). Choose x¢ € R?, let yo = X¢, and take 9 = 1. Then for k > 0 iterate the following:

\Y
Xk+1 = Pg,l/L (Yk - fEJYk)> )

9 )

V41
-1

k+1

k
Y41 = X1+ 7 (Xk+1 — X) -
This particular scheme is called FISTA and was introduced in [BT09]. It was shown there that x; — x*
for some optimal x* point of (8.4), and that this convergence occurs at a rate such that |¢(xy) —€(x*)| <
O(1/k?).
Note that in the particular case of (CO)) we have f(Byx) = 7|HBy — Hx||% and g(Bx) = |Bs|l+. In
order to apply the proximal-gradient optimization to problem (COJ) we first observe that

Vf(Bg) =2rH' (HBy — Hy) ,

which is Lipschitz continuous with L = 27||H"H||r. Now, the proximal operator associated to g has a
closed-form expression in terms of a singular value shrinkage operator. Let M € R4 %92 be a matrix of
rank r with SVD given by M = UAV T where A € R"¥" is a diagonal matrix with entries (si,...,s,).
The shrinkage operator with parameter n > 0 applied to matrix M is defined as

shr, (M) = UShrn(A)VT ,

where shr, (A) € R"*" is a diagonal matrix with entries (max{s; — 7,0}, ..., max{s, —n,0}). With these
definitions, it was shown in [CCS10] that for any M and 7 on has

Py, (M) = shr, (M) .

Thus we can easily implement to solve using these expressions for Vf and P, ,

Note that the naive implementation of this scheme requires an SVD computation at each iteration.
Clearly, this yields a method which is computationally worse than the standard spectral method which
only requires the computation of a single SVD. However, schemes like are known to converge even
if only an approximate computation of Py, is available [SLRBI11]. Thus, using fast approximations of
SVD to compute the proximal operator of the nuclear norm in a proximal-gradient descent method can
yield efficient alternatives to the spectral method with the advantages of being stated as an optimization
problem; a good survey paper on approximate matrix factorization is [HMT11].

8.4.3 Convex Constraints for Learning Probabilistic Automaton

We already mentioned in Chapter[6]that in general the output of spectral algorithms for learning stochas-
tic WFA is a WFA that does not necessarily realize a probability distribution. We know it will approxi-
mate a probability distribution by our PAC results, but in general it can assign negative “probabilities”
to some strings. This is not only a theoretical problem, but it has been reported in several experimen-
tal studies [JZKOPKO05; BQC12; (CSCFU13|. Sometimes this makes it impossible to directly evaluate
models learned with spectral methods using entropy-based measures like the perplexity. Besides the use
of several heuristics in the experimental studies we just mentioned, some alternative spectral methods
have been derived to address this problem |ZJ10; Baillb]. These solutions are based on restricting the
class of models used as a hypothesis class by imposing a particular structure on the possible hypothesis
which ensures that they assign non-negative outputs to every string. Here we present another solution
along these lines based on our convex optimization problem . The hypothesis class of our algorithm
is that of all PNFA. Thus, we believe that our solution to this problem is much more general than all
previous ones.
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The main idea behind our approach is to take optimization and impose a set of convex con-
straints on the operator matrix Ay that ensures the output represents a probabilistic automaton. In
order to do that, it is convenient to re-derive our optimization algorithm starting from a different variant
of the spectral method than the one we gave in Section[5.3] In particular, we note that taking the rank
factorization Hy = U(AVT) of a Hankel matrix of rank 7 given by a compact SVD decomposition,
Lemma yields the following spectral method:

a; =h{s(UTHN)T ,
Ao = UThP,)\ ;
A, =U"H,(UH,)" .

Now, if one goes through all the derivations in Sections and using this spectral method as a
starting point, one ends up with the following optimization problem:

min | Bz, + 7|BsH — Hs | | (CO-U)
P}
where now By, € RPI¥IX? is matrix of operators given by By = [B;1 yenn ,B;E‘}, and Hy, = [HI1 ey H;Zl].

We note that the term inside the Frobenius norm is not the transpose of the term inside the Frobenius
norm in . In this case, if By, is a solution to , then the WFA computed by the method is
given by B* = <e1—, hp », B*2> The interesting point here is that now 3, = e, can be regarded — with-
out the need to perform any normalization — as a probability distribution over initial states that assigns
probability 1 to a single state. In addition, B,, = hp ) can be regarded as a vector of stopping proba-
bilities. That is, the method automatically yields initial and final weights that meet the requirements of
a probabilistic automata; see Section [6.1

Now we can modify optimization problem to impose that the operators By, also satisfy the
restrictions of a probabilistic automata. In particular, recall that this entails the following:

1. B,(i,5) > 0 for all 0 € ¥ and 4, j € [p],

2. Boo(i) + X pes 2 jepp Boli,j) =1 for all i € [p].

It is immediate to see that these two conditions define a set of convex constraints on the operator matrix
Bs. Soif f: ¥* — R is a probability distribution and B = (P, S) is a basis, given Hankel sub-blocks
H € R7*S and Hy € RP**S from H, we can try to find a probabilistic automata for f by solving the
following convex optimization problem:

min Byl +7|BsH — Hy|%
=

By >0, (CO-P)
subject to hp,A(U) + Z Bz(umv) =1 YueP.
ceEXWES

We have already seen that trying to use generic convex optimization methods for solving large scale
problems is not always a good idea. Thus, in the rest of this section we will give a specialization of
the alternating direction method of multipliers (ADMM) for solving optimization . This method
is described at large in [BPCPE11|, which also gives indications on how to parallelize it for large scale
computations. For a given convex set C let I¢ denote the convex indicator function for which I¢(z) =0
when x € C and I¢(x) = oo when x ¢ C. The key observation is that we can write problem as

néizn fiBsg) + f2(Bx) + Ic,(Bx) + Ic,(Bsx)
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where f1(Bx) = |Bs||+ and f2(Byx) = 7||BsH — Hy||% are convex functions, and

clz{MeRPIEIXP:Mzo} ,

Co={MeRI?:vuecP hp,(u)+ Y Muowv)=1p ,
e VvES

are convex sets. Using this formulation, ADMM’s insight is that one can separate this problem into four
parts and then impose a consensus on the solutions of each part. Writing fs = I¢, and f4 = I¢,, this
translates into the following:

I'g}ilzl f1(B1) + f2(B2) + f35(B3) + f4(By)
subject to Bi,—-7Z=0,B,—-7Z=0,B3—Z=0,B;—Z=0.

Introducing dual variables Y; for i € {1,2,3,4}, this problem can be solved by an iterative scheme as

follows. First, choose starting points BY?, Y, Z° for i € {1,2,3,4} and a rate parameter p > 0. Then,

for k > 0 iterate the following:

B! = argmin (fi(Bi)JrgHB,;kaJrYfH%) . ie{1,2,3,4) ,
4
1 ADMM)
ZH = = NOBH 4 yk (
4 ; 7 + 10
YF = yE B ZEHL i€{1,2,3,4} .

We note that the B-updates in this scheme are in fact proximal operators. Indeed, we have
: P
argmin (f'i(Bi) +51Bi — z" + Yfll%) = Py, 1/,(Z° = Y7) .

i

We have already seen that for ¢ = 1 this operator can be computed via an SVD decomposition. In
addition, since f is smooth, operator Py, 1/, can be computed analytically. Furthermore, since f3 and
f4 are indicator functions, in this case the proximal operator reduces to an orthogonal projection onto the
corresponding convex set. Hence, we get an easy to implement iterative method for solving and
obtaining a proper PNFA via a spectral-like method. Convergence results for this optimization scheme
and guidelines on how to choose p can be found in [BPCPE11].
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Chapter 9

Learning Weighted Automata via
Matrix Completion

In this chapter we use the spectral method to tackle the problem of learning general WFA from labeled
examples. This means that we are given a sample of string-label pairs z = (z,y), where z € ¥* is a
string and y € R is a real label, and are asked to produce a WFA A that is a good model of this sample,
in the sense that f4(x) & y for all the examples in the sample. This is a typical problem in supervised
learning known as regression. The special difficulty here is that strings are a type of data for which it
is not obvious how to find a finite-dimensional vector representation. Thus, typical regression methods
for real vectors spaces cannot be applied directly. Though a kernel method could be used in this case,
we choose to take an alternative approach by giving an algorithm for finding a hypothesis in the class
of WFA directly. Our algorithm is based on combining the spectral method with a matrix completion
algorithm applied to Hankel matrices.

Since the assumptions in the learning framework used in this chapter are different from previous PAC
analyses, we begin in Section by describing in detail the learning framework we will be using. We
also give an idea of the type of results we will be able to prove for our algorithm. Then, in Section
we describe a family of algorithms for learning WFA from labeled samples. We analyze one particular
algorithm from this family in Section [9.3] and give a generalization bound based on algorithmic stability.

9.1 Agnostic Learning of Weighted Automata

The main assumption in all PAC learning results we have given so far is that the data given to the learning
algorithm was generated by a model from some class which is known a priori. We then asked the algorithm
to choose a hypothesis from a class containing this unknown model. Though very convenient from a
theoretical point of view, this learning framework might sound a bit unrealistic from the perspective of
a practitioner who needs an accurate model for her data but is not willing to assume that such data was
generated from some particular model. In this chapter we shall take a shift of paradigm by moving away
from the realizability assumption of PAC learning and into the agnostic setting that characterizes most
of the literature in statistical learning. We now introduce the learning framework that we will be using
in this chapter. Then we will discuss what kind of guarantees one might ask of a learning algorithm in
this framework.

Let D be a probability distribution over ¥* x R. That is, if we draw an example from D we get a
pair z = (z,y), where z is a finite string over ¥* and y is a real label assigned to z. The case where
x is generated from some distribution D’ over X* and y = f(z) for some real function f : ¥* — R is
included in this setting as a particular case. Note however that the above setting also includes more
general distributions. For example, the agnostic framework can also model the noisy labeling setting
where y = f(x) + N for some real random variable N that models the presence of random noise in the
labelling function.
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Learning a WFA in this setting means the following. Suppose we are given a sample S = (z1,...,2z™)
of i.i.d. examples drawn from some distribution D over ¥* x R. Then, given some number of states n,
we want to take S as input and produce a WFA A = (o, @0, {As}) with at most n states such that
fa is, hopefully, a “good model for D.” The generalization error (or risk) of fa is the usual way of
assessing how good the model A is. In particular, let £: R x R — R, be a loss function that quantifies
the error £(y,y’) of predicting label y when ¢ is the correct one. Then, the generalization error of a
function f : ¥* — R with respect to D is defined as

Rp(f) = Eqy~plt(f(z),y)] -

That is, Rp(f) is the expected error, measured by ¢, of using f to predicting the labels generated by
D. When D is clear from the context we might just write R(f). Another tightly related quantity is the
empirical error (or empirical risk) incurred by f on the sample S, defined as:

That is, the empirical estimate of R(f) based on the sample S from D.

The most natural thing to ask from an algorithm in this setting is, perhaps, that it returns a hypothesis
that performs almost as well as the best one in a given class. In particular, let WFA,, be the class of
all WFA our algorithm can produce as output, e.g. WFA with n or less states. Define Agpt to be the
best hypothesis in WF A, in terms of generalization error:

AOPT = argmin R(fA) .
AEWF A,
Now, denote by Ag the output of a learning algorithm on input a sample S of size m from D. Suppose
there exists some € = ¢(m) = o(1) such that with high probability over the choice of S it holds that

R(fAs) < R(fAOpT) +e€ .

This means that as the number of examples given to the algorithm grows, its output converges to the
best hypothesis in the class. In the particular case where € = O(1/m¢) for some ¢ > 0 and Ag can be
computed in time poly(m), one says that the algorithm is an efficient agnostic PAC learner for D [Hau92}
KSS94]. It is well known that the statistical requirements of agnostic PAC learning can be achieved for
many hypothesis classes via empirical risk minimization [Vap99]. However, in general this involves non-
tractable optimization problems, and there are very few classes of functions known to be efficiently
agnostic PAC learnable; see [Maa94; LBW96; |(GKS01; KKMS05; KMVO08| and references therein. In the
particular case of WFA, the hardness results in [PW93| stating that it is NP-hard to approximate the
minimal DFA consistent with a given sample stand in the way of any efficient algorithm for performing
empirical risk minimization for this class of hypothesis.

Nonetheless, there is a simpler and more basic property that one can ask for in algorithms in the
agnostic setting. This is that the hypothesis it produces has good generalization performance, or in other
words, that the algorithm does not suffer from overfitting. In cases where the hypothesis class is very
large, overfitting means that an algorithm produces a hypothesis that models the available data very
accurately but fails to capture the behavior of future examples drawn from the same distribution as the
training sample. In particular, if f is a hypothesis learned from some sample S, its generalization error
with respect to D is defined as the difference R(f) — Rg(f). Note that this quantity is large whenever
f has small empirical error on S but large expected error on examples freshly drawn from D. Thus, we
can say that an algorithm avoids overfitting if there exists some ¢ = £(m) = o(1) such that with high
probability over the choice of S one has

R(fs) < Rs(fs) +¢ ,

where fg is the hypothesis produced by the algorithm on input S. A bound of this form is known as a
generalization bound, and it states that, for large samples, the predictive behavior of fg on S is a good
approximation to the predictive behavior of fg on future examples.
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Some standard ways of proving generalization bounds rely on measuring the complexity of the hypoth-
esis class used by the learning algorithm. Such measures include the Vapnik—Chervonenkis dimension,
or the Rademacher complexity [VC71} [KolO1]. Interestingly, such methods yield generalization bounds
that hold uniformly over the whole class of hypothesis and hold independently of the particular learning
algorithm being used. Unfortunately, there are hypothesis classes for which these bounds become vacu-
ous, or where simply we do not know how to compute the complexity of the hypothesis class. In these
cases — WFA being one of them — generalization bounds can still be obtained by alternative methods. In
particular, we will use here the stability method [KR99|, which can be used to analyze the generalization
error of hypotheses produced by a fixed learning algorithm.

In summary, in the following sections we will present and analyze an algorithm for learning general
WPFA from labeled examples in the agnostic setting. The analysis that we give proves a generalization
bound for the hypotheses produced by our algorithm. This means the algorithm does not overfit the
training data.

9.2 Completing Hankel Matrices via Convex Optimization

The main obstruction in leveraging the spectral method for learning general weighted automata from
labeled examples is that of the missing entries in the Hankel matrix. When learning stochastic WFA the
statistics used by the spectral method are essentially the probabilities assigned by the target distribution
to each string in PS. As we have already seen, increasingly large samples yield uniformly convergent
estimates for these probabilities. Thus, it can be safely assumed that the probability of any string from
PS not present in the sample is zero. When learning arbitrary WFA, however, the value assigned by
the target to an unseen string is unknown. Furthermore, one cannot expect that a sample will contain
the values of the target function for all the strings in PS. This simple observation raises the question of
whether it is possible at all to apply the spectral method in a setting with missing data, or, alternatively,
whether there is a principled way to “estimate” this missing information and then apply the spectral
method.

It turns out that the second of these approaches can be naturally formulated as a constrained matrix
completion problem. When applying the spectral method, the (approximate) values of the target on
B = (P,S) are arranged in the matrix H € R”*S. Thus, the main difference between the stochastic and
non-stochastic setting can be restated as follows: when learning stochastic WFA, unknown entries of H
can be filled in with zeros, while in the general setting there is a priori no straightforward method to
fill in the missing values. In this section we describe a matrix completion algorithm for solving this last
problem. In particular, since H is a Hankel matrix whose entries must satisfy some equality constraints,
it turns out that the problem of learning general WFA from labeled examples leads to what we call the
Hankel matriz completion problem. This is essentially a matrix completion problem where entries of valid
hypotheses need to satisfy the set of equalities imposed by the basis B. We will show how the problem
of Hankel matrix completion can be solved with a convex optimization algorithm. In fact, many existing
approaches to matrix completion are also based on convex optimization algorithms [CT10; |(CP10; [Rec11}
FSSS11]. Furthermore, since the set of valid hypotheses for our constrained matrix completion problem is
convex, many of these algorithms could also be modified to solve the Hankel matrix completion problem.
We choose to propose our own algorithm here because it is the one we will use on the analysis given in
Section

We begin by introducing some notation. Throughout this chapter we shall assume that B = (P, S)
is a p-closed basis with A € P US. For any basis B, we denote by Hj the vector space of functions RPS
whose dimension is the dimension of B, defined as |PS|. We will simply write H instead of Hpz when the
basis B is clear from the context. The Hankel matrix H € RP*¢ associated to a function h € H is the
matrix whose entries are defined by H(u,v) = h(uv) for all u € P and v € S. Note that the mapping
h +— H is linear. In fact, H is isomorphic to the vector space formed by all |P| x |S| real Hankel matrices
and we can thus write by identification

H= {H e RP*S: Vuy,us € P, Yor,v3 €S, ujvg = ugvy = H(uy,v) = H(ug,vg)}
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It is clear from this characterization that H is a conver set because it is a subset of a convex space defined
by equality constraints. In particular, a matrix in H contains |P||S| coefficients with |PS| degrees of
freedom, and the dependencies can be specified as a set of equalities of the form H(uq,v1) = H(us, v2)
when uyv; = ugve. We will use both characterizations of H indistinctly from now on. Also, note that
different orderings of P and S may result in different sets of matrices. For convenience, we will assume
for all that follows an arbitrary fixed ordering, since the choice of that order has no effect on our results.

Matrix norms extend naturally to norms in H. For any 1 < p < oo, the Hankel-Schatten p-norm
on H is defined as ||h|, = ||H]|,. It is straightforward to verify that ||h||, is a norm by the linearity of
h +— H. In particular, this implies that the function || - ||,: H — R is convex. In the case p = 2, it can
be seen that ||h||3 = (h, h)y, with the inner product on H defined by

(h,h)y = > cah(x)h () |

z€PS

where ¢; = [{(u,v) € P x §: & = uv}| is the number of possible decompositions of = into a prefix in P
and a suffix in S.

We now outline our algorithm HMC+SM for learning general WFA from labeled examples based
on combining matrix completion with the spectral method. As input, the algorithm takes a sample
S = (z,...,2™) containing m examples 2° = (2%,y%) € ¥* x R, 1 < i < m, drawn i.i.d. from some
distribution D over ¥* x R. There are three parameters a user can specify to control the behavior of
the algorithm: a basis B = (P,S) of ¥*, a regularization parameter 7 > 0, and the desired number of
states n in the hypothesis. The output returned by HMC+SM is a WFA Ag with n states that computes
a function fa,: 3* — R. The algorithm works in two stages. In the first stage, a constrained matrix
completion algorithm with input S and regularization parameter 7 is used to compute a Hankel matrix
Hg € Hg. In the second stage, the spectral method is applied to Hg to compute a WFA Ag with n
states. The spectral method is just a direct application of the equations given in Section[5.3] by observing
that we can write H = [H], H:,'—17 .. ’H:’rm\]’ with hy s and hp ) contained in H) because we assumed
A€ PUS. In the rest of this section we describe the Hankel matrix completion algorithm in detail.

It is easy to see that in fact HMC+SM defines a whole family of algorithms. In particular, by
combining the spectral method with any algorithm for solving the Hankel matrix completion problem,
one can derive a new algorithm for learning WFA. We shall now describe a particular family of Hankel
matrix completion algorithms. This family will be parametrized by a number 1 < p < oo and a convex
loss £: R xR — Ry.

Given a basis B = (P, S) of ©* and a sample S over ©* xR, our algorithm solves a convex optimization
problem and returns a matrix Hg € Hpg. We give two equivalent descriptions of this optimization, one in
terms of functions h: PS — R, and another in terms of Hankel matrices H € R”*S. While the former is
perhaps conceptually simpler, the latter is easier to implement within the existing frameworks of convex
optimization. _

We will denote by S the subsample of S containing all the examples z = (z,y) € S such that € PS.
We write m to denote the size of S. For any 1 < p < oo and any convex loss function £: R x R — R,
we define the objective function Fg over H as follows:

Fs(h) =N () + Rs(h) = rlhl3 + = 3" tlh(a).) |
(z,y)eS

where 7 > 0 is a regularization parameter. Fy is clearly a convex function by the convexity of || - ||,
and ¢. Our algorithm seeks to minimize this loss function over the finite-dimensional vector space H and
returns a function hg satisfying

hs € argmin Fg(h) . (HMC-h)

heH

To define an equivalent optimization over the matrix version of H, we introduce the following notation.
For each string = € PS, fix a pair of coordinate vectors (u,,v,) € R” x RS such that u] Hv, = H(z)
for any H € H. That is, u, and v, are coordinate vectors corresponding respectively to a prefix u € P
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and a suffix v € §, and such that uv = x. Now, abusing our previous notation, we define the following
loss function over matrices:

~ 1
Fs(H) = 7N(H) + Rg(H) = 7|[H||? + = > l(u)Hv,,y) .
(z,y)eS

This is a convex function defined over the space of all |P| x |S| matrices. Optimizing Fs over the convex
set of Hankel matrices H leads to an algorithm equivalent to (HMC-h)):

Hg € argmin Fs(H) . (HMC-H)
HeH

We note here that our approach shares some common aspects with some previous work in matrix com-
pletion. The fact that there may not be a true underlying Hankel matrix makes it somewhat close to
the agnostic setting in [FSSS11|, where matrix completion is also applied under arbitrary distributions.
Nonetheless, it is also possible to consider other learning frameworks for WFA where algorithms for exact
matrix completion |[CT10} |[Recll| or noisy matrix completion [CP10] may be useful. Furthermore, since
most algorithms in the literature of matrix completion are based on convex optimization problems, it is
likely that most of them can be adapted to solve constrained matrix completions problems such as the
one we discuss here.

9.3 Generalization Bound

In this section, we study the generalization properties of HMC, ,+SM. We give a stability analysis for a
special instance of this family of algorithms and use it to derive a generalization bound. We study the
specific case where p = 2 and £(y,y') = |y —¢/| for all (y,y’). We note that in this case the term N(h) in
the loss function Fs(h) is differentiable and can be expressed as an inner product. Though this property
is important in an early step of our analysis, we believe that similar approaches can be used to prove
generalization bounds for other algorithms in this class.

We first introduce some notation needed for the presentation of our main result. For any v > 0, let ¢,
be the function defined by ¢, (z) = x for |z| < v and t,(x) = vsign(x) for |z| > v. For any distribution D
over ¥* X R, we denote by Dy its marginal distribution over ¥*. The probability that a string x ~ Dy,
belongs to PS is denoted by m = Dx(PS).

We assume that the parameters B, n, and 7 are fixed. Two parameters that depend on D will appear
in our bound. In order to define these parameters, we need to consider the output Hg of as

a random variable that depends on the sample S. Writing H§ = [H{, H7 ,..., H; ] we define:
s = Egpm [, (H))] p=Egupm [5n(H))? — spp1(HN)?]

where s, (M) denotes the nth singular value of matrix M. Note that these parameters may vary with
m, n, 7 and B.

In contrast to previous learning results based on the spectral method, our bound holds in an agnostic
setting. That is, we do not require that the data was generated from some (probabilistic) unknown
WFA. However, in order to prove our results we do need to make two assumptions about the tails of
the distribution. First, we need to assume that there exists a bound on the magnitude of the labels
generated by the distribution.

Assumption 4. There exists a constant v > 0 such that if (x,y) ~ D, then |y| < v almost surely.

Second, we assume that the strings generated by the distribution will not be too long. In particular,
that the length of the strings generated by Dy follows a distribution whose tail is slightly lighter than
sub-exponential.

Assumption 5. There exist constants c,n > 0 such that P,pg[|z| > t] < exp(—ct!*) holds for all
t>0.
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We note that in the present context both assumptions are quite reasonable. Assumption[d]is equivalent
to assumptions made in other contexts where a stability analysis is pursued, e.g., in the analysis of support
vector regression in [BE02]. Furthermore, in our context, this assumption can be relaxed to require only
that the distribution over labels be sub-Gaussian, at the expense of a more complex proof.

Assumption [p| is required by the fact already pointed out in [HKZ09] that errors in the estimation of
operator models accumulate exponentially with the length of the string; this can be readily observed in
the bounds given in Section [5.4] Moreover, it is well known that the tail of any probability distribution
generated by a WFA is sub-exponential, see [DEO08|]. Thus, though we do not require Dy, to be generated
by a WFA, we do need its distribution over lengths to have a tail behavior similar to that of a distribution
generated by a WFA.

We can now state our main result, which is a bound on the risk R(f) = E..p[f(f(x),y)] in terms of

the empirical risk Rg(f) = > s l(f(x),y)/m.

Theorem 9.3.1. Let S be a sample of m i.i.d. examples drawn from some distribution D satisfying
Assumptions 4] and @ Let Ag be the WFA returned by algorithm HMCp (+SM with p = 2 and loss
function £(y,y') = |y — '|. There exist universal constants C,C" such that for any § > 0, if

1+1
max{v?, v~ 1}P]S] <6c)1/" <ln 2y~/7>||3|> "

>C
M= AN T min{72, 771} min{1, p?} min{s2, 52}’ P 5 5

then the following holds with probability at least 1 — § for fs =1, 0 fag:

R 41D12(.Q(3/2
R(fs) SRs(fS)+CIV [PEISP nm lnl :

Ts3pm ml/3 5

The proof of this theorem is based on an algorithmic stability analysis. Thus, we will consider two
samples of size m: S ~ D™ consisting of i.i.d. examples drawn from D, and S’ differing from S by just

one point. Thus, we shall write S = (z1,...,2™) and S’ = (2%,...,2™ 71, 2’™), where the new example

2'™ is an arbitrary point the support of D. Throughout the analysis we use the shorter notation H = Hg

and H = Hg: for the Hankel matrices obtained from based on samples S and S’ respectively.

The first step in the analysis is to bound the stability of the matrix completion algorithm. This is
done in the following lemmas, that give a sample-dependent and a sample-independent bound for the
stability of H. We begin with a technical lemma that is useful for studying the algorithmic stability of
Hankel matrix completion. Symbols h = hg and A’ = hg: will denote the functions in H obtained by
solving with training samples S and S’ respectively. The proof uses an argument similar to
the one in [MRT12] for bounding the stability of kernel ridge regression. See Appendix for a brief
review of Bregman divergences.

Lemma 9.3.2. The following inequality holds for all samples S and S’ differing by only one point:
2rl|h — |3 < Rg(W) — Rg(h) + Rg, (k) — Rg, (1) .
Proof. Recall that the Bregman divergence is non-negative, and that by an adequate choice of subgradi-
ents for Rg and Rg we have Bp, = 7By + Bﬁg and Br, = 7By + Bﬁgl' Thus, we have the following
inequality:
BN (R'||h) + 7By (h||h') < Bpg(h'||h) + Br,, (h||h) .

Furthermore, note that by the optimality of A and h’ with respect to Fs and Fs: we can choose sub-
gradients in Bpg and Bp,, such that §Fs(h) = 0Fs/(h') = 0. Hence, from the definition of Bregman
divergence with these choices we get

~

Bp, (I ||h) + Br,, (h|[h) = Fs(I) — Fs(h) + Fs/(h) — Fs/(h') = Rg(h') — Rg(h) + Rz (h) — Rz (i) .

Now, if we write h. for the function x — c,h(z), then it is immediate to see that VN(h) = V(h, h)g =
2h.. Thus, we have the following:

BN<h/||h) + BN(hHh/) = —<h/ — h, 2hc>]H1 — <h — h/, 2h1c>H = 2<h — h/, he — hlc>]1-]1 .
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Finally, since ¢, > 1 for all x € PS, we have that
[h=h'[l3 = (h=h';h = ')
=Y (@) =1 (x))

zePS

< ) () - K (x))?
zePS

= Z cx(h(z) = B (2))(he(x) — hl(x))
z€PS

(h—"h he—hl)y .

Now we bound the stability of the optimization algorithm (HMC-H]) using Lemma [0.3.2]
Lemma 9.3.3. Assume that D satisfies Assumption[f} Then, the following holds:

1
H — H'|[p < min {21/\/ IPIIS], mm{fh,ﬁ%’}} :

Proof. Note that by Assumption |4} for all (z,y) in §, or §’, we have |y| < v. Therefore, we must have
|H(u,v)| < v for all u € P and v € S, otherwise the value of Fs(H) is not minimal because decreasing
the absolute value of an entry |H(u,v)| > v decreases the value of Fs(H). The same holds for H'. Thus,
the first bound follows from |H — H'||r < |H||r + [|H'||F < 2v+/|P||S].

Now we proceed to show the second bound. Since by definition |H—H'||p = ||h — h'||2, it is sufficient
to bound this second quantity. By Lemma [9.3.2] we have

2r|h — 1|} < Rg(h') — Rg(h) + Rz (h) — Rg, (W) . (9.1)

We can consider four different situations for the right-hand side of this expression, depending on the

~ ~

membership of ™ and 2/™ in the set PS. If 2™, 2’ ¢ PS, then S = S'. Therefore, Rgz(h) = Rg (h),

ﬁg(h') = Eg/(h’), and ||h — /|2 = 0. If 2™, 2’™ € PS, then m = m/, and the following equalities hold:

_ [PE™) =y = @) — y™
m

_ W @™ —ym = ) -y
= )

)

Rg(h') — Rg (h)
Thus, in view of (9.1)), we can write

(™) = W (@™)| + [A(="™) = K (&™)

2r||h = W|I3 <
m

2
< =[h=H|2,
m

where the first inequality follows from ||h(z) — y| — |W'(z) — y|| < |h(x) — B'(x)|, and the second from
[h(z) = W ()| < [|h = |2
If 2™ € PS and '™ ¢ PS, the right-hand side of (9.1)) equals

h(x) — h(x) — h(z) — h(z) — R (x™) — y™ h(x™) —y™
Z( () —yl  [W(z) y|+|() yl (=) y|>+( ) —y" _ |hE@T) —y™|

m m

~ m m’ m’ m
z€S’

Now, since m = m’ + 1 we can write

|h(z) = W' ()| | |h(z™) =W (™) _ 2
arlh = W5 <Y e = < =h=H] -

zeS’

By symmetry, a similar bound holds in the case where 2™ ¢ PS and z/™ € PS. Combining these four
bounds yields the desired inequality. O
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The standard method for deriving generalization bounds from algorithmic stability results could be
applied here to obtain a generalization bound for our Hankel matrix completion algorithm. However,
our goal is to give a generalization bound for the full HMC+SM algorithm. To bound the stability of
HMC+SM we will need to study the point-wise stability |fas(z) — fag, ()| in our agnostic setting. The
next lemmas give the main technical tools we will need to bound this difference by using results from

Section [(.4.11

Lemma 9.3.4. Let v = v+\/|P||S|/sn,(Hx). The weighted automaton Ag satisfies: ||ap]|, ||asolls || Asll
7.

Proof. Since |H,| < |Hy|r < v+/|P] S|, simple calculations show that [ag || < v+/[S], [lae| <

v/[Pl/sn(Hy), and A, || < v\/[P[S]/sn(H). =

Now we give an application of Lemma to our stability problem. Using the bound on the
Frobenius norm ||H — H'||, we can analyze the stability of s,,(Hy), 5, (Hx)? — 5,41 (H))?, and V,, using
well-known results on the stability of singular values and singular vectors. These results are used to
bound the difference between the operators of WFA Ag and Ag/.

IN

Lemma 9.3.5. Letc = |H—H'||p, s = min{s,(H,),s,(H))}, and p = 5,(H))? — 5,41 (H,)%. Suppose
e < \/,?7/4 There exists a universal constant c1 > 0 such that the following inequalities hold for all
oex:
61/3"P|3/2|S|1/2

P52
ev?[P['/2]S|

1As — Agl <

o — apll < 1

31p(3/2].5|1/2

/ e’ |PI2|S|
_ <o 12t &l

[ —aell < 5
Proof. We begin with a few observations that will help us apply Lemma First note that |H, —
H || < |H, —H.||r < ¢ for all 0 € ¥', as well as ||hp )\ — hp | < € and |hys —h) sl < e
Furthermore, ||Hy| < |Hy||r < v+/|P||S] and |HL || < v+/|P||S]| for all o € ¥'. In addition, we have
[hysll < v/[S] and ||h% || < v/[P|. Finally, by construction we also have s, (HAV) = s,(H,) and
s,(H\ V') =5, (H)). Therefore, it only remains to bound ||V — V’||, which by Corollary is

4 16 S
|wvw§;@uww&+@<wvm”

= —~ 9

where the last inequality follows from Lemma [9.3.3]
Plugging all the bounds above in Lemma [5.4.5] yields the following inequalities:

16 1/2 S 1/2 1 5 1/2 S 1/2 16 2 S
(14 PRI | B S (| 1017
p 2 5 p
16u2|73|1/28|>

HAJ - A;” <

W) ™

b

H%—%W%O+

1+ /5 ev|P|V/? 16v%|P| |S
||aoo_afoo||§f+w€’/t2(1+w> .
5 2 5

The result now follows from an adequate choice of ¢;. O

The other half of the proof results from combining Lemmas [0.3.3] and [0.3.5] with Lemma [5.4.2] to
obtain a bound for |fs(z) — fs/(x)|. This is a delicate step, because some of the bounds given above
involve quantities that are defined in terms of S. Therefore, all these parameters need to be controlled
in order to ensure that the bounds do not grow too large. This will be done by using a variant of
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McDiarmid’s inequality that accounts for the occurrence of rare bad events. In particular, we define the
properties that make S a good sample and show that for large enough m they are satisfied with high
probability.

Definition 9.3.6. We say that a sample S of m i.i.d. examples from D is good if the following conditions
are satisfied for any 2’ = (2'™,y'™) € supp(D):

o |27 < ((1/¢)In(4m*)Y O+ for all 1 < i < m,
e |[H-H'|p <4/(rmm),

e min{s, (H),s,(H))} > s/2,

e 5,(H))? — 5,41(H)? > p/2.

Lemma 9.3.7. Suppose D satisfies Assumptz’ons and@ There exists a quantity M = poly(v, w, s, p, 7,|P|, |S|)
such that if m > M, then S is good with probability at least 1 — 1/m3>.

Proof. First note that by Assumption |5, writing L = ((1/¢)In(4m*))*/ (" a union bound yields

P[\7|xi|>L

i=1

1
< mexp(—cL*t) = 3
m

Now let m denote the length of (z!,...,2™ 1) N (PS). Note that we have min{m,m’'} > m and
Eg[m] = m(m — 1). Thus, for any A € (0,1) the Chernoff bound gives

Pim < m(m — 1)(1 — A)] < exp <(7”21)”A2) < exp <m7rA2) ,

where we have used that (m — 1)/m > 1/2 for m > 2.

Taking A = /(4/mmn)In(4m?3) above we see that min{m,m'} > (m — 1)w(1 — A) > mn(1 — A)/2
holds with probability at least 1 — 1/(4m3). Now note that m > (16/7)In(4m3) implies A < 1/2.
Therefore, by Lemma we have that m > max{2, (16/7)In(4m?),2/(r7v+/|P||S|)} implies that
|H — H'||r < 4/(77m) holds with probability at least 1 — 1/(4m3).

For the third claim note that by Lemma we have |s,(Hy) — s,(H))| < |[H)y — Hy||[r <
|[H—H'||F. Thus, from the argument we just used in the previous bound we can see that when m > 2 the
function ®(S) = s, (H)) is strongly difference-bounded by (b, 05 /m, exp(—Ksm)) with by = 2v4/|P||S]|,
0s = 2/(rm(1 — A)), and K, = 7A?/4 for any A € (0,1). Now note that by Lemma and the
previous goodness condition on ||H — H'||p we have min{s, (H,),s,(H})} > s,(H)) — |H—-H'|p >
5,(Hy) — 4/(vmm). Furthermore, taking A = 1/2 and assuming that

mzmax{m W,(MM)IH(M%)@IH(MB)} |
v v T

2

we can apply Corollary with § = 1/(4m?) to see that

4 128
s5,(Hy) — >5— | 55— In(8m3) —
vrm 272m vrm
holds with probability at least 1 — 1/(4m?3). Hence, we get
128 5§ 5§ S
in{s,(H)),s,(H)\)} >6— 1/ 55—1 3) — >5—-—- ==
min{, (Hy), sn(HY)} > 5| g op—Infsmd) — ———>5 -2 22

for any sample size such that m > max{16/(v7s), (2048 /727%52) In(8m3)},
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To prove the fourth bound we shall study the stability of ®(S) = s,,(H,)? — 5,11 (H))2. We begin
with the following chain of inequalities, which follows from Lemma and s, (Hy) > 5,41 (Hy):

|D(S) — @(S/)| = |(5n(H>\)2 _5n+1(H>\)2) - (5n(H/>\)2 — Sn+1 (H/A)Q)’
< |5, (H)? — 50 (HY)?[ + [841(HA)? — 5041 (H))?|
= |80 (Hx) + 5 (H} ) |80 () — 0 (F)| + |s041(H) + 8n41 (HY ) [[5041 (H) — 8011 (HY) |
< (250 (Hy) + [[Hx — Hy|[) [Hx — Hy[| + (2841 () + [[Hx — Hy[]) [[Hy — H ||
< ds, (H))[H - H'[|» +2|H - H'||%
Now we can use this last bound to show that ®(.5) is strongly difference-bounded by (b,, 0,/m, exp(—K,m))
with the definitions: b, = 16%|P||S], 6, = 64s/(77) and K, = min{s*r%7?/256,7/64}. For b, just ob-
serve that from Lemma and s, (Hs) < |[Hs|lr < v/|P]|S] we get

4s,, (HL)||H — H'||p + 2||H - H'|[% < 160%|P||S] .

By the same arguments used above, if m is large enough we have |[H—H'||r < 4/(77m) with probability
at least 1 — exp(—mm/16). Furthermore, by taking A = 1/2 in the stability argument given above for
5,(H)y), and invoking Corollary with § = 2exp(—Km) for some 0 < K < K,/2 = 7/32, we get

[128 K
5n(H>\) <s+ — 3
T

with probability at least 1—2exp(—Km). Thus, taking K = min{r/32, 527272 /128} we get 5,,(H,) < 2s.
If we now combine the bounds for |H — H'||r and s,,(H),), we get
323 32 645 0,

_ ! _ A < < — _F
o (HL)[H — B 2B - B[ < oy B2 O B

where have assumed that m > 1/(77s). To get K, note that the above bound holds with probability at
least
1— e—mﬂ'/lﬁ — 9~ Km >1-— e Km >1— e—Km/Q —1_ e Kom

)

where we have used that K < 7/16 and assumed that m > 21n(3)/K. Finally, applying Corollary
to ®(S) we see that with probability at least 1 — 1/(4m?) one has

5n(H))? = 841 (HA)? > p— =

In(8m3) >

)

[\
=
ot

34
)

(NN

m2m

whenever m > max{(2'7s? /7272 p?) In(8m?), v277|P||S|/(4s), (9+18/K,) In(3+6/K,,), (2/K,) In(8m?)}.
O

Now we can give two upper bounds for | fs(x)— fs/(z)|: a tighter bound that holds for “good” samples
S and S’, and a another one that holds for all samples. These bounds can be combined by using the
variant of McDiarmid’s inequality for dealing with functions that do not satisfy the bounded differences
assumption almost surely given in [Kut02]. The rest of the proof then follows the same scheme as the
standard one for deriving generalization bounds for stable algorithms [BE02; MRT12].

Lemma 9.3.8. Let 1 = 640*|P|?|S|3/2 /(7% pr) and vo = 2v|P|Y/2|S|Y/2/s. For any sample size

162
> M, V= (61 1.2¢In72) /7
m_max{ ’TW\/ﬁ,eXP n7y2(1.2¢In9) )} ;

the function ®(S) = R(fs) —]/%s(fs) is strongly difference-bounded by (4v+2v/m, coyym=5/%Inm, 1/m?)
for some constant co > 0.
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Proof. We will write for short f = fs and f' = fs. Let f1 = Epupg[lf(z) — f/(z)]] and B2 =
maxi<i<m—1 |f(z") — f'(x")]. We first show that |®(S) — ®(S")| < B1 + B2 + 2v/m. By definition
of ® we can write

12(S) — ®(S')| < |R(f) — R(f')| + |Rs(f) — Rs:(f)] -

By Jensen’s inequality, the first term can be upper bounded by E, ,y.pl[||f(z) —y| — [ f'(z) — y||] < 1.
Now, using the triangle inequality and |f(z™) — y™|,|f'(z'™) — ¥'™| < 2v, the second term can be
bounded as follows:

m—1
Y ) - fa) < 2

=1

m—1

=~ ~ , 2v 1
[Bs(f) = Rs(f)l = — + —
Observe that for any samples S and S” we have (1, 82 < 2v. This provides an almost-sure upper bound
needed in the definition of strongly difference-boundedness. We use this bound when the sample S is not
good. By Lemma m when m is large enough this event will occur with probability at most 1/m?3.
It remains to bound S; and f3 assuming that S is good. In the first place note that by Lemma[9.3.7]
m > max{M,16v2/(rm\/p)} implies |[H — H'||p < \/p/4. Thus, by combining Lemmas |5.4.2|, 9.3.4
and we see that the following holds for any = € X*:

2y|7>|1/2|51/2> Y 320, (2] + 2003128
]

|ﬂ@f@ns(

- C;Zl exp(|z|In s + In(jz| + 2)) .

mrrs2p

In particular, for |z| < L = ((1/c)In(4m*))"/0+7 and m > exp(61nv2(1.2cIn~,)'/"), a simple calcula-
tion shows that |f(z) — f/(x)| < Cy1m~>/%Inm for some constant C. Thus, we can write

Br < Eonpy [|f(2) = f'(@)] | 2] < L)+ 20Psnpy [|2] = L] < Cyim™>C Inm +v/2m?

and By < Cy1m~%/%Inm, where the last bound follows from the goodness of S. Combining these bounds
yields the desired result. ]

The following is the proof of our main result.

Proof of Theorem[9.3.1l The result follows from an application of Theorem to ®(S), defined as in
Lemma In particular, for large enough m, the following holds with probability at least 1 — é:

~ In? 1
R(fs) < Rs(fs) +Esupm[®(S)] + | CF ::LQ/TZ In (5 v 1 ) )

T C'y1 m7/Clnm

for some constants C,C” and v, = v*|P|?|S|>/?/7s°pr. Thus, it remains to bound Eg.pm [®(S)].
First note that we have Eg.pm[R(fs)] = Eg .~pm+1[|fs(z) —y|]. On the other hand, we can also

write Espm [Rg(fs)] = Eg .wpm+1[| fs:(x) — y[], where S’ is a sample of size m containing z and m — 1
other points in S chosen at random. Thus, by Jensen’s inequality we can write

[Es~pm[®(9)]] < Esznpme[lfs(@) — for ()] -

Now an argument similar to the one used in Lemma for bounding 8, can be used to show that, for
large enough m, the following inequality holds:

Inm 2u
Es~pm [(D(S)]‘ < C%W + 3

which completes the proof. O
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Conclusion and Open Problems

The previous chapters have covered a large part of what was known about learning automata with state-
merging and spectral methods. They also provide new results and describe novel points of view on results
that were already known. Now it is time to dwell a little bit into the unknown. To conclude this thesis
we look back into the material described in previous chapters to point out possible extensions and pose
interesting open questions that can give rise to further research. What follows is an account that mixes
concrete open problems with broad speculations, all centered around the areas covered by this thesis.
For the sake of organitzation, the discussion has been split into three parts. We would like to note that
this account is by no means exhaustive; it is just a sample biased by the personal interests of the author.

Generalized and Alternative Algorithms

We begin by discussing several more or less obvious extensions and generalizations of the learning algo-
rithms given in this thesis.

We have seen in Chapter [2] that statistical tests based on Efron’s bootstrap provide a very powerful
method for similarity testing between distributions over ¥*. In practice these tests behave much better
than tests based on VC bounds. However, lower confidence intervals based on bootstrap estimates
cannot be used to certify dissimilarity between probability distributions. Thus, we used VC bounds to
implement this side of the test. Trying to derive dissimilarity tests based on bootstrap estimates with
similarly good behavior would be very interesting. In particular, they can yield practical state-merging
algorithms that can learn confidently from smaller samples. One possible direction is to observe that
the histograms of the bootstrap estimates fi; tend to be symmetric when p, > 0 and asymmetric when
1 = 0. Designing, implementing, and analyzing tests based on this idea is a promising line of work.

A useful modification to the adaptive on-line state-merging algorithm given in Chapter [3] would be
to be able to recycle parts of the current hypothesis when a change in the target distribution is detected.
That entails keeping track of the merge history, being able to detect whether the change affects a
particular state or transition, and backtrace the state-merging process exactly to the point where this
transition or state was added to the hypothesis. In practice this would yield a great advantage when
trying to track targets that change often but very locally. There are two main challenges here: how
to implement the backtracking efficiently, and how to decide when making local changes to the current
hypothesis will be enough to learn the new target.

An interesting follow-up on the results from Chapter 4] would be to implement those methods and
see how they behave in practice. In particular, we would like to compare our algorithm for learning
sequential transductions with other state-merging algorithms that have been proposed for this problem.
Of course, it would also be intersting to identify more FSM models that can be represented using GPDFA
and give PAC learning results for them using these techniques.

We mentioned in Chapter [§| that one of the reasons for introducing an optimization-based method for
learning WFA is that it makes it possible to add different regularizing penalities to the spectral learning
algorithm. We showed how this approach can be used to learn proper PNFA by imposing that the output
must be a probabilistic automata. Another interesting regularization term that one may want to add is
a group matrix norm that promotes sparsity in the transition structure of hypothesis automata. This
is interesting because in practice one observes that good solutions found via Expectation-Maximization
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tend to have sparse transition structures. We also note that many other regularization techniques for
learning with matrices exist — some of them may also interesting interpretations when applied to the
operators of a WFA; see [KSST12] for details.

In Chapter [9] we were able to prove a generalization bound for an algorithm combining matrix
completion with spectral learning. The particular matrix completion algorithm we analyzed was based
on a Frobenius norm regularization. However, it is well known in matrix completion theory that, if
one intends to minimize the rank of the completed matrix, it is best to use a regularizer based on the
nuclear norm |[CT10j; |CP10; Rec11; [FSSS11|. In fact, in some preliminary experiments we observed that
in practice the algorithm does behave better when nuclear norm regularization is used. Thus, an open
problem is to see whether our techniques can be extended to this other algorithm. However, we note
that this may not be possible to achieve using stability analyses. It was recently proved in [XCM12]
that some sparsity-inducing algorithms can never be stable. Since the nuclear norm is tries to induce
sparsity on the spectrum of hypothesis matrices, we may regard matrix completion with nuclear norm
regularization as a sparsity-inducing algorithm. An alternative approach would to be compute some
measure of complexity of WFA like VC dimension or Rademacher complexity.

Choice or Reduction of Input Parameters

All learning algorithms discussed in this thesis take some parameters as input: number of states n,
distinguishability u, basis B = (P, S), etc. How to choose these parameters in practice is usually a matter
of trial-and-error mixed with cross-validation and domain knowledge. This is not very satisfactory, and
although some fine-tuning will always be necessary, one would like to have some theory to guide the
choice of parameters. Or even better, one could hope to design learning algorithms that do not need any
input parameters at all.

In the case of state-merging algorithms, the data stream implementation given in Chapter [3includes a
search strategy to find n and p when they are not known. On the other hand, the batch implementation
from Chapter [4] for learning GPDFA — and its immediate predecessor [CGO8] — do not need p as an
input parameter. Instead, the algorithm makes confident merges in view of the available sample, and
guarantees that these will be correct whenever the sample is large enough, were the bound does depend
on the true distinguishability. This is not possible in the data stream setting because a potentially
infinite sample is available there; thus we need a u to bound the time the algorithm is allowed to wait
until it makes a decision about a candidate state. However, requiring the number of states in these two
algorithms does feel a little artificial. Indeed, if the sample is large enough — in the batch case — or the
input g is correct — in the on-line setting — then with high probability all tests will be correct and a
DFA with finitely many states will be identified. But what happens if some incorrect merge decision
is made by the algorithm? Then, after that point we cannot guarantee that distributions of examples
in the remaining candidate states correspond to distributions generated by states in the target. Thus,
the rest of the process could go wrong, and in principle the number of states in the hypothesis could
grow like the number of prefixes in the sample, yielding a very large automaton. Using the input n as a
stopping condition for the algorithm precludes this from happening. Analyzing whether this happens in
practice, or designing a different split/merge policy for which this does not happen is necessary in order
to remove n from the input in state-merging algorithms.

In the case of spectral methods, the number of states seems less critical. For one thing, using
concentration properties about the singular values of empirical Hankel matrices H one can easily compute
a lower bound on the number of states for any given sample size. Furthermore, with large enough samples
this bound converges to the true value; see |Bailla] for details. A more challenging problem in this case
is how to choose a good basis for a given sample. We showed in Chapter [6] that a random selection
strategy will succeed with high probability. A heuristic based on this approach is to choose the most
frequent prefixes and suffixes in a sample because they are more likely to appear in a randomly selected
basis. However, one could arguably do a better job trying to find a basis by looking at the spectrum of
the resulting Hankel matrix. For example, a greedy algorithm that adds prefixes (and suffixes) one at a
time while trying to maximize the smallest singular value of the correspoding Hankel matrix is a good
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candidate for finding a basis which captures all states and minimizes the noise in the tail of the singular
values. How to analyze and efficiently implement this type of approach is an interesting open problem
that could potentially improve the performance of spectral methods in practice.

Another similar question is to study the effect of parameter mismatch in algorithms for learning
FSM. For example, what happens if we give a number of states too small to the spectral method: can
we quantify the error in terms of, say, the singular values that will be missing from our hypothesis?
Note that this is close to analyzing how state-merging and spectral algorithms behave in non-realizable
settings. This is the subject of the next section.

Learning Distributions in Non-Realizable Settings

A corollary from the results in Chapter [I] states that state-merging algorithms can accurately learn
distributions on ¥* which are close to being realized by PDFA. We saw that this is a consequence of
formulating state-merging algorithms using statistical queries. In fact, a similar conclusion can be drawn
for the spectral algorithm that learns PNFA. Indeed, noting that any finite sub-block of the Hankel matrix
Hp of a probability distribution D over ¥* can be estimated with statistical queries, the reasoning used
in Chapter 1| can be applied here as well; such a possibility was already sketched in [HKZ09]. Thus, we
see that both state-merging and spectral algorithms for learning distributions over X* are resilient to
outliers and can learn distributions “close” to their original target class.

These observations yield timid yet encouraging indications that these methods can learn some dis-
tributions beyond the classes they use for representing hypotheses. That is, we get mild learning results
in some non-realizable settings. This raises the natural question of whether these hypothesis classes and
algorithmic paradigms can be used for learning good models under more relaxed conditions. Such results
would be interesting for two reasons. First, because these algorithms can already be run on any sample
from Y*. Hence, we could use the same algorithms that learn in the realizable case for learning these
wider classes of distributions. And second, because these algorithms find hypotheses from classes which
are well understood (PDFA and WFA) in terms of how they are used for inference and prediction. So,
what kind of results can one hope to prove along these lines?

One possibility is to seek structural results stating that distributions over ¥* that satisfy this and
that condition can be well approximated by, say, PDFA or stochastic WFA. We are not aware of many
results of this type. One example is the proof in [GKPP06| that every PNFA can be approximated by
a large enough PDFA; the bound however, seems too large for any practical purpose. Thus, besides
their immediate applications to learning theory, these results would have intrinsic mathematical value
in themselves; i.e. they would shed some light into what classes of distributions can be approximated by
probabilistic automata. Speculatively speaking, it seems reasonable to try to generalize parameters that
mesure the complexity of learning PDFA and WFA — the distinguishability @ and the smallest singular
value s,.(H) — to distributions not realizable by FSM, and then see what is the effect of these parameters
on the approximability of general distributions by probabilistic FSM.

An alternative path would be, instead of analyzing how known algorithms perform in non-realizable
settings, to use these algorithms as building blocks for deriving new learning algorithms for more general
problems using the same hypothesis classes. A promising idea in this direction is to use the output
of state-merging or spectral algorithms as the initial point for some type of local maximum likelihood
optimization. For example, these can be based on heuristics like Expectation-Maximization or standard
gradient ascent on the log-likelihood. Promising experimental results with this type of methods have
been recently reported in [Baillb; KNW13; |CL13|. These experiments suggest that an algorithm based
on this principle is in general faster than standard EM and statistically better than spectral methods by
themselves, both in realizable and non-realizable settings. Developing new theory to explain this findings
is an interesting opne problem. In particular, combined with other recent spectral learning methods for
many classes of probabilistic models, it could lead to truly practical learning algorithms with formal
guarantees for these classes.

Of course, it could be that probabilistic FSM can only provide very coarse approximations for general
classes of distributions over ¥*. In this case, one could try to design a boosting-like approach [SF12]
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that uses a state-merging or spectral algorithm as a weak learner to obtain a hypothesis which is a
mixture of automata. Though it is less clear how to apply the boosting paradigm to a learning problem
on probability distributions, some attemps have been made to derive algorithms of this type [Pav04].
In fact, we tried to apply these ideas directly to boost the spectral method and entered the Pautomac
competition on learning PFA and HMM [VEH12|. However, we found out that our algorithm always
ended up getting stuck on trying to model the longest strings in the sample. Clearly, more work is
needed on this approach, specially on designing a reweighting scheme for the boosting iterations that
avoids putting too much weight on long strings. It would also be interesting to characterize for which
distributions over ¥* can state-merging and spectral methods be regarded as provable weak learners.

A question related to both, non-realizable learning and input parameters, is how one should choose
the parameters given to state-merging or spectral algorithms when an arbitrary sample from a non-
realizable target is available. That is: how can one make the most of these algorithms in a practical
problem without making any assumption on the target distribution? This is basically a statistical model
selection problem. In particular, given a large enough number of states, these algorithms will learn the
empirical distribution defined by the sample, thus yielding a grossly overfitted model. On the other
hand, if we choose a model with too few states we may be losing generalization power. In classification
problems this can be solved by providing generalization bounds on the predictive performance of a
classifier and then minimizing those; sometimes this is refered as structural risk minimization [Vap99|.
When the problem is to learn a probability distribution, one approach is to give generalization bounds
for the relative entropy between the target and a hypothesis in terms of the empirical relative entropy —
which is directly related to the sample likelihood — and a penalty term that depends on the complexity of
the model. For example, bounds of this sort exist for density estimation with mazimum entropy models
[DPS04; MMMSWO09]. This makes it possible to select a model that minimizes the sum of the empirical
relative entropy plus a penalty term that, in the case of stochastic FSM, would depend on the number of
states and possibly other quantities. To prove this type of bounds one can resort to stability arguments
like the ones in Chapter[9] or to VC-like quantities. Computing the latter in the case of PDFA and WFA
is an open problem that could also yield improvements on the analysis of other learning algorithms based
on these hypothesis classes, as we have already mentioned above.
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Appendix A

Mathematical Preliminaries

A.1 Probability

Concentration of measure is a well-known phenomena in high-dimensional probability spaces that has
many applications in learning theory and the analysis of randomized algorithms. In this section we recall
several concentration inequalities that are extensively used in this dissertation. Most of these results
appear on or can be easily derived from the excellent books [DP12; |BLM13].

The most basic concentration bound is Markov’s inequality which states that given a random variable

X and any t > 0, then
E[|X
Plx| > < XL

If information about the variance V[X] is available, one can use the so-called Chebyshev’s inequality: for
any t >0

VIX]

12
Sometimes the following one-sided version known as Chebyshev—Cantelli inequality is also useful: for any
t>0

PIX —E[X]| > ] <

VIX]
PX -EX]| >t <= .
[ [ ]*]*V[X]+t2
When the variable of interest X can be expressed as the sum of independent variables, then one can
show that concentration around the mean happens exponentially fast. For i € [m] let X; be independent
random variables with 0 < X; < 1. Define X = Zie[m] X;. Then, for any 0 < v < 1 the following
Chernoff bounds hold:

P[X > (1+7)E[X]] < exp <_72T‘?))m> 7
P[X < (1 - 7)E[X]] < exp <_V2E2[X]>

Suppose now that for each i € [m] we have a; < X; < b;. Then we can use the Hoeffding bounds for any
t>0:

P[X > E[X]+¢],P[X <E[X]—t <exp (—M)

The following is another useful form of these bounds:

P[|X —E[X]| > t] <2exp (—M)
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See [DP12] for proofs and further results along these lines.

Chernoff and Hoeffding bounds are useful to bound the deviation of a sum of scalar independent
random variables from its expectation. Often we find ourselves with the need to deal with more general
functions of more general random variables. In particular, let X; be Q-valued independent random
variables for 1 < i < m and write Y = (X1,...,X,,) € Q™. Suppose that ® : Q™ — R is an arbitrary
measurable function. Then we want to see how the random variable ®(Y)) concentrates around its
expectation E[®(Y)].

One way is to use the Efron—Stein inequality to bound the variance V[®(Y')] as follows, and then
apply Chebyshev’s inequality. For each ¢ € [m] let X! be an independent copy of X;. Let us write
Y, = (X1,...,Xi—1, X}, X441, ..., X3p) for the random vector in Q™ obtained by replacing X; with its
copy X/. Then we have the following:

vie()] < 3 STE[@) - 2(¥)?]

If the change of the value of ® can be deterministically controlled for any change in one of the coordinates,
then exponential concentration can be proved. So suppose that there exist constants ¢; such that for
each i € [m],

sup [D(z1,. e Ty ooy Tn) — P21,y Ty zm)| < i

R A Y)

Such a function ® is said to satisfy the bounded differences assumption. In this case, McDiarmid’s
inequality says that for any ¢ > 0 the following holds:

P[®(Y) > E[@(Y)] +1],P[®(Y) <E[®(Y)] —t] < exp (-ZZFZ]CZ) ) . (A.1)

The next results give useful variations on McDiarmid’s inequality for dealing with functions that do
not satisfy the bounded differences assumption almost surely. These and other similar results can be
found in |[Kut02]. This kind of inequalities have proved useful in many stability analyses.

Definition A.1.1. Let Y = (X1,..., X,,) be a random variable on a probability space Q™. We say that
a function @ : Q™ — R is strongly difference-bounded by (b, ¢, d) if the following holds:

1. there exists a subset E C Q™ with P[E] < §, such that
2. if YY" differ only on one coordinate and Y ¢ E, then |®(Y) — ®(Y")| < ¢, and
3. for all Y)Y’ that differ only on one coordinate |®(Y) — ®(Y")| < b.

Theorem A.1.2. Let ¢ be function over a probability space QU™ that is strongly difference-bounded by
(b,¢,0) with b > ¢ > 0. Then, for anyt > 0,

P@av—mwynzﬂSwp(*Q) mby

8mc? c
Furthermore, the same bound holds for P[E[®(Y)] — ®(Y) > ¢].

Corollary A.1.3. Let ® be function over a probability space Q" that is strongly difference-bounded by
(b,0/m,exp(—Km)). Then, for any 0 <t < 20v/K and m > max{b/6, (9 + 18/K)In(3 + 6/K)},

P@ov—mmynzﬂsawp(grﬁ

Furthermore, the same bound holds for P[E[®(Y)] — ®(Y) > ¢].

The following is another useful form of the previous corollary.
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Corollary A.1.4. Let ® be a function over a probability space Q™ that is strongly difference-bounded by
(b,0/m,exp(—Km)). Then, for any§ > 0 and any m > max{b/0,(9+18/K)In(3+6/K), (2/K)1In(2/4)},
each of the following holds with probability at least 1 — 0

o(Y) > E[@(Y)] — /8mi2 In (?) ,

B(Y) < E[B(V)] + 8mi21n (;) .

A real random variable X is sub-exponential if there exists a constant ¢ > 0 such that P[|X]| > ] <
exp(—ct) holds for all ¢ > 0. The following theorem gives an exponential concentration bound for the
sum of sub-exponential random variables.

Theorem A.1.5 (|Verl2|). Let Xi,..., X, be i.i.d. sub-exponential random variables and write Z =
Z?ll X;. Then, for every t > 0, we have

m [t 0t
P[Z — E[Z] > mt] < exp (8@ mm{élcg’ 20}) ,

where ¢ is the sub-exponential constant of variables X;.

A centered real random variable X is sub-gamma if there exist constants v and ¢ such that the
following inequality holds for every 0 < s < 1/¢:

log max {E[e**], E[e~*¥]} < s

’ ~2(1—cs)
Then v is called the variance factor of X and c is called the scale parameter of X. A usual example is
that of gamma random variables. In particular, if Y ~ Gamma(k, §), then X =Y — E[Y] is sub-gamma

with v = k62 and ¢ = 6. The following result gives a two-sided concentration bounds for sub-gamma
random variables. See [BLM13] for further details.

Theorem A.1.6 ([BLM13]). Let X be a centered sub-gamma random variable with variance factor v
and scale parameter c. Then the two following inequalities hold for every t > 0:

PIX > V2ut + ct] < exp(—t) ,
P[—X > V2vut + ct] < exp(—t) .

Concentration bounds can also be obtained for sums of i.i.d. random matrices. In particular, the
following result on the rank of empirical covariance matrices will prove useful.

Theorem A.1.7 ([Ver12|). Consider a probability distribution in R? with full-rank covariance matriz C
and supported in a centered Euclidean ball of radius R. Take m i.i.d. examples from the distribution and
let C denote its sample covariance matriz. Then, if m > C(s1(C)/s54(C)?)R?log(1/8) the matriz C has
full rank with probability at least 1 — §. Here C is a universal constant.

A well-known application of concentration bounds is to prove uniform convergence bounds for large
classes of functions [BBL04]. This is basically a “trick” to obtain non-vacuous union bounds over infinite
classes of events by exploiting certain combinatorial dependences between the possible events. This is
also related to research in probability theory about the supremum of empirical processes. To formalize
these bounds, we need the following definitions.

Let § be a class of zero-one valued functions over some domain 2. That is, f € § is a function
f:9Q — {0,1} that can be interpreted as the indicator function of some event over 2. Given a vector
z=(21,...,2m) € Q™ for any f € § we define the vector f(z) = (f(#1),...,f(zm)) € {0,1}™. Then,
the set

§. ={f(2)| f €3}
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represents all the different possible ways in which the points of z can be classified by the functions in
§. In particular, it is immediate to see that |§F.| < 2™, and that if for example z; = z;, then the
inequality is strict because we will always get f(z;) = f(z;). The growth function of § is defined as
IIz(m) = sup,com |§-|. Sometimes the values IIg(m) are also called the shattering coefficients of §. The
idea is that if § is not too complicated, then for some m large enough the function Ig(m) will grow
slower that exponentially. This is formalized by Sauer’s lemma, see [BBL04] for example.

The following results collects some useful properties of shattering coefficients. Recall that if & and §
are two collections of events, their tensor product is defined as

CRF={ExXF:Ec¢Fecj}.
Theorem A.1.8. Let € and § be two collections of events. The following hold for all m > 1:
1. Meuz(m) < e(m) + Hg(m),
2. Hegg(m) < Ilg(m) - g (m),
3. if € CF, then Ilg(m) < IIz(m).

Using these definitions we can now state the Vapnik—Chervonenkis (VC) inequality. Let D be a
probability distribution over Q. Given f € §F we write Ep[f] = Ez~p[f(x)]. Furthermore, given a

sample S of m iid. examples from D, S ~ D™, we write Eg[f] = > ¢ f(x)/m for the empirical
estimation of Ep[f] based on S. Then the following holds for any ¢ > 0:

Pgpm §u2|ﬁ5[f}—ED[f]\>t < AT17(2m) exp(—mt?/8)
S

Note that if § is finite, a similar bound can be obtained by combining Hoeffding inequality with the
union bound. However, the VC inequality works for infinite classes § as well.

A.2 Linear Algebra

This appendix collects a set of perturbation results on linear algebra that are useful in the analysis of
spectral learning algorithms. Bold letters will be used for vectors v and matrices M. For vectors, ||v||
denotes the standard euclidean norm. For matrices, || M| denotes the operator norm. For p € [1,+o0],
M|, denotes the Schatten p-norm: ||M|, = (3, s%(M))¥/?, where 5,(M) is the nth singular value
of M. The special case p = 2 coincides with the Frobenius norm which will be sometimes also written
as |[M||z. The Moore-Penrose pseudo-inverse of a matrix M is denoted by M.

Lemma A.2.1 (|SS90]). Let A,B € R4*. Then, for any 1 < n < min{d;,ds}, one has |s,(A) —
sn(B)] < [[A —BJ.

Lemma A.2.2 (|[EG02]). Let A € R4 be an invertible matriz and suppose B = A + E with |E|| <
54(A). Then B is invertible and one has

IE]
sa(A)(sa(A) — [[E]) -

A" =B <

Lemma A.2.3 ([SS90]). Let A,B € R4z The following holds:

1
|AT —BT| < 15 v5 ~max {|AT%,[B¥|*} | A - B
2
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Lemma A.2.4 ([ZB06|). Let A € RY? be symmetric positive semidefinite matriz and E € R>? ¢
symmetric matriz such that B = A + E is positive semidefinite. Fix n < rank(A) and suppose that
IElr < (A(A) — A\ny1(A)) /4. Then, writing V,, for the top n eigenvectors of A and W, for the top
n eigenvectors of B, we have

4)|E|[r
V,-W, < .
| I7 An(A) = Anya(A)

Corollary A.2.5. Let A,E € R%*% gnd write B = A + E. Suppose n < rank A and ||E||r <
V5 (A)2 —s,41(A)2/4. If V,,, W, contain the first n right singular vectors of A and B respectively,
then

8| AllFIE|r +4E[Z
5n(A)? —sn41(A)?
Proof. Using that |[ATA — B'B|r < 2||A||r|E|r + [|[E|% and A\, (ATA) = 5,(A)?, we can apply

Lemma to get the bound on ||V,, — W,, ||z under the condition that |ATA —~B"B|r < (s,(A)? -
sn+1(A)?)/4. To see that this last condition is satisfied, observe that using Lemma we have

||Vn - Wn”F S

2 _ 2
HA_B”F < \/EH(A) 45n+1(A)

< V5 (A)? — 5,01 (A)? + VAA]Z - 2|Allp
- 2vV1+ V2

< VAA[Z + 5, (A)? — 5,11 (A)?2 = 2]A| p
= 2 9

and this last inequality implies 2||A||¢||E||r + [|E[|% < (5,(A)? — 5,41(A)?)/4. O
Lemma A.2.6 (Corollary 2.4 in [LM99]). Let A € RH*% N e RU>d  gnd M € R9%92. Then, for
any 1 <14 <rank(A) one has

5;(NAM)
N M) < 22 <5(N)s; (M) .
5d1( )5d2( ) = 5i<A) —51( )51( )
The following lemma was implicitly used in [HKZ09|. A full proof can be found in [SBG10].

Lemma A.2.7. Let A € R"*% pe o rank r matriz and write V.€ R2X" for its top r right singular
vectors. Let A = A+ E with |[E|| < s,.(A), and write V for the top r right singular vectors of A. Then,

for any x € R™ we have
||E||2
Ix"VTV] > x| 1—
— E[)?

A.3 Calculus

This appendix contains a few technical lemmas based on basic calculus. We begin by stating a simple
lemma which is commonly used when approximating conditional probabilities using statistical queries
(see e.g. [ADYS]).

Lemma A.3.1. Let 0 < a,b,y < 1. If |a — al,|b—b| < by/3, then |a/b— a/b| < .

Note that, in order to obtain an absolute approximation of a quotient, a relative approximation of the
denominator is needed. Though the lemma will be used when estimating fractions where the denominator
is unknown, in general a lower bound on b is enough to obtain the desired approximation.

Lemma A.3.2. For any x,y,z > 0, if x > 3yln(yz) and yz > 2.48 then x > yln(xz).
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Proof. By the concavity of logarithm it is enough to show that > yIn(xz) holds for x = 2y = 3y In(yz);
that is: 3yIn(yz) > yIn(3yzIn(yz)). This is equivalent to 2In(yz) > In(3In(yz)). Since we have
yz > 2.48 > e°/3 the result follows by using again the concavity of logarithm. O

Lemma A.3.3. Forany0<e<c<1andz >0, if |In(x)| < c 'In(l +c)e then |1 — x| <e.
Proof. First note that for any 0 < € < ¢ < 1 we have

min {ln(l +e),In (11)} —In(l+¢)> ME

by the concavity of the logarithm. Now suppose > 1 and note that by hypothesis we have |In(z)| =
In(x) < In(1+ ¢) which implies

[1—z|=2z—1=exp(ln(z)) —1 <exp(In(l+¢))—1=c¢ .

On the other hand, for z < 1 we have —In(z) = |In(z)| < In(1/(1—¢)) = —In(1—¢), i.e. In(z) > In(1—¢).
Therefore we get
[l—z|=1—2=1—exp(ln(z)) <1—exp(In(l—¢)) =¢ .

Lemma A.3.4. For any xz,y > 0 we have /14 V2T ¥y > /x + VY-

Proof. By taking squares on each side of the inequality twice we see that the inequality holds if and only
if 0 < 2(2% + y?). O

A.4 Convex Analysis

Recall that a set Q@ C X of some vector space X is conver if for any x,y € Q and any 0 < ¢t < 1
one has tz + (t — 1)y € Q. That is, every point in the segment between x and y also lies in Q. A
function f : Q — R defined over a convex set is convex if for any =,y €  and a any 0 < ¢ < 1 one has
flz+ (t—1y) <tf(x)+ (t—1)f(y). That is, if the set of all points that lie above the graph of f is
convex. The function f is said to be strictly convex if the inequality is always strict for any 0 < ¢t < 1
and x # y. From the point of view of optimization, the most appealing property of convex functions is
that a local minimum for f is always a global minimum. Furthermore, if f is strictly convex, then it has
at most one global minimum.

If a convex function f is smooth, then the regular characterization of local minima based on the
gradient of f works: z is a local minima if and only if Vf(x) = 0. When f is not smooth, one needs
to resort the subdifferential of f. If X is equipped with an inner product, then v € X is a subgradient
of fat x € Qif for any y € Q one has f(y) — f(z) > (v,y — ). An arbitrary subgradient of f at x
is sometimes denoted by df(z). The set of all such subgradients is the subdifferential 0f(x) of f at x.
With these definitions we can see that x is a local minima of f if and only if 0 € 9f(x).

Let H be a vector of real functions defined over some convex domain 2, and let (-,---) be an inner
product in H. Suppose that F : H — R is a convex functional over H. The Bregman divergence Bp of
F on f,g € His defined as

Br(fllg) = F(f) = F(g) = (f — 9,6F(9)) ,

for some arbitrary subgradient §F(g). Note that Br(f|g) is basically the difference between F(f) and
the first-order Taylor expansion of F' on g evaluated at f. A useful property of the Bregman divergence
is that if FF = Fy + 7F3 is the sum of two convex functionals with 7 > 0, then by the “linearity” of
subdifferentials one can always choose subgradients such that B = Bp, + 7Bp,.
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A.5 Properties of L, and LY

This appendix proves technical results about the Lo, and LB distances used for testing distinguishability
between states in a PDFA. If D and D’ are probability distributions over a free monoid X*, these distances
are defined as follows:

I%m(l)7ly):: sup U)(x)“l)%x)| )
reX*

L2 (D,D’) = sup |D(zX*) — D'(z¥")| .
TeX*

In what follows we derive bounds between L., and LB that justify our preference for LP as a distin-
guishability measure between states in PDFA. Furthermore, we show how to compute the shattering
coefficients needed to bound the accuracy of empirical estimates of Lo, and LB distances using VC
bounds.

A.5.1 Bounds

It is obvious from the definition that LE, is non-negative, symmetric, and satisfies the triangle inequality.
Furthermore, D = D’ clearly implies L2 (D, D’) = 0. To verify that LE_ is indeed a metric one needs to
establish the converse to this last fact; we do so using the following result which gives a lower bound for
LE (D, D') in terms of Lo (D, D’). Since Ly is a metric, the bound implies that LE (D, D’) is a metric
too.

Proposition A.5.1. For any two distributions D and D' over ¥* we have Lo (D,D’) < (22| 4+
1)Le (D, D").

Proof. The inequality is obvious if D = D’. Thus, suppose D # D’ and let x € X* be such that
0 < Loo(D,D’) = |D(z)—D'(z)|. Note that for any partition z = u-v we can write D(z) = D"(v)D(uX*).
In particular, taking v = ), the triangle inequality and D’*()\) < 1 yield the following:

Loo(D, D) = |D(2) — D'(2)| < [D(2¥*) — D'(a¥")| + D(«Z%)|D"(A) — D" (N)] -

Note that |D(zX*) — D'(2X*)| < LB (D,D’). It remains to show that D(xX*)|D*(\) — D'"(\)] <
2|X|LE (D, D).

Observe the following, which is just a consequence of D(X) + Y D(cX*) = 1 for any distribution
over X*:

D*(\)+ Y D(0S) =D"(\)+ Y D (en) =1 .
From these equations it is easy to show that there must exist a ¢ € ¥ such that
ID*(3) = D"(V)]| < [S)|D*(0%) — D" (6] .
Therefore, using D(x¥*)D*(0X*) = D(xoX*) we obtain
D(¥*)|D*(A) = D" (N <
SID@E")| D (037) - D (0X7)]| <
1B||D(xa¥*) — D' (zoX*)| + |X| D" (¢%%)|D(zX*) — D' (zX%)| <
2|3 LB, (D,D') .
O
Recall that given a PDFA A we denote by fa the probability distribution it defines. Furthermore, if

q € Q is a state of A, then A, represents the PDFA A where now ¢ is the new starting state. Then the
Loo-distinguishability of A is given by

ML, = qglliEnQ LOO(qua qu/) B
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where the minimum is taken over all pairs of distinct states in Q. A LE_-distinguishability prr_ is defined
similarly. The bound given above implies that in general one has

B o
OS] £1 =

Since the distinguishability of a PDFA quantifies how hard it is to learn its distributions by a state-
merging method — with smaller distinguishability meaning harder to learn — this implies that using
LP  as a distinguishability measure one may in some cases slightly increase the hardness of learning a
particular PDFA. However, this is not the case in general. And it turns out that LP_-distinguishabilities
yield exponential advantages in some cases like the following example.

Recall the class D,, of PDFA that define probability distributions with support defined by parities of
n bits as defined in Section Let T' € D,/ be an acyclic PDFA of n+2 states @ = {qo, ..., qn41} over
% = {0, 1} with a single stopping state ¢,+1. Note that for 0 < i < n we have y7(¢;,0) = yr(g;, 1) = 1/2.
Now let T” be the following perturbation of T for 0 < ¢ < n let v'(¢;,0) = 1/2 —i/(2n) and +'(¢},1) =
1/2 +i/(2n). Then it is easy to check that 7" has pur,_. = (1/2)®™ and pe = ©(1/n).

A.5.2 Shattering Coefficients

Since we will be using uniform convergence bounds to estimate Lo, and LE_ distances from samples, we
will need to compute the corresponding growth functions. Suppose Q@ = ¥* and let & = {1, |z € *}.
Then it is obvious by construction that one has IIg(m) = m + 1, which is the growth function needed
for applying VC bounds to Lo, estimation. The case of LB is slightly more complicated as can be seen
in the following lemma.

Lemma A.5.2. Let P = {15+ |z € £*}. Then Ilp(m) = 2m.

Proof. In the first place note that for any z € (X*)™ the quantity |,| is invariant under a permutation

of the strings in z. Thus, without loss of generality we assume that the strings z = (2!,...,2™) are

all different and are given in lexicographical order: z! < ... < 2™. Now let us define the prefixes
w® = lep(zt, 2%) for 2 < i < m. By the ordering assumption on the 2° it is easy to see that w/ Co w®
for any i < j. Furthermore, we have w’/ Cg 2’ for any i < j. Furthermore, let w be any string such
that 1,,(2") = 0 for all i € [m]. We define the set of string Z = {z1,..., 2™ w?, ..., w™, w}. We assume
without loss of generality that |Z] = 2m. We also define the set of functions 3 = {1, |« € Z}. Now we
will show that P, = 3. and |3.| = 2m, from which it will follow that Iy (m) = 2m.

For any u,v € ¥* such that u Ty v we define the following set of strings
(u,v] = {u'[u' Eo v A ful < |u/[}

containing all the prefixes of v longer that u. The closed analog [u, v] is defined likewise. Now we consider
the following partition of X*:

m—1 m
DI |_| (w™ w U A w™ U Ll(wl,z’] U (w?, 2 Juw
i=2 i=2

where W is defined to be the complement of the rest. See Figure[Ad]for an example of how this partition
covers the subtree of X* containing Z. To see that 98, = 3, holds, one just needs to verify that Z contains
exactly one string in each set in the partition, and that:

vz € (wth w’] 1.8 (1) nz={z'...,2"}

]
Vo e [Aw™ 14 (1)Nnz={z'... 2"}
Vr € (w', 2] 1 4. (1)Nz = {z* }
Vo € (w?2'] 1p. (1) Nz ={z"}
VeeW 18 (1)Nz=0
From these assertions also follows that |3.| = 2m. O
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Figure A.l: Setup in the proof of Lemma with m = 4. Subtree of X* containing
{4, .. 24 w2, wt)
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