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Absolute-Type Shaft Encoding Using LFSR
Sequences With a Prescribed Length
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Abstract—Maximal-length binary sequences have existed for
a long time. They have many interesting properties, and one of
them is that, when taken in blocks of n consecutive positions, they
form 2n − 1 different codes in a closed circular sequence. This
property can be used to measure absolute angular positions as the
circle can be divided into as many parts as different codes can be
retrieved. This paper describes how a closed binary sequence with
an arbitrary length can be effectively designed with the minimal
possible block length using linear feedback shift registers. Such
sequences can be used to measure a specified exact number of
angular positions using the minimal possible number of sensors
that linear methods allow.

Index Terms—Absolute angular position sensor, closed circular
sequences, linear feedback shift register (LFSR), maximal-length
binary sequences, polynomials over finite fields.

I. INTRODUCTION

AN ANGULAR absolute position measurement system is
carried out by transducers that expand a different n-bit

code word for each of a finite number of angular positions. One
of the common components of such transducers is a marked
disk with as many sectors as different angular positions are to
be sensed.

Traditional disks use a radial bit sensing method that con-
sists of an arrangement of black and white (“1” and “0,”
respectively) distributed in concentric coronas. Most commer-
cial transducers use the Gray coding bit distribution to reduce
the different scanning errors. However, such coding has two
drawbacks: 1) As the resolution (and, thus, the number of bits)
increases, the disk diameter also increases, and 2) the number
of sectors has to be exactly a power of two.

For the first drawback, there is a method that uses only a one-
bit code track based on the window property of pseudorandom
binary sequences. This property states that in a pseudorandom
cyclic code expansion, all the n-bit elements that can be succes-
sively taken are different from each other. The result is that once
the pseudorandom binary sequence is expanded in the circular
corona, there are as many different measurements as the length
of the cyclic code expansion. In this case, the sensing elements
are not radially, but tangentially, distributed. There are several
papers stating such configuration (see [1] and [8]–[10]).
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The second drawback is about the number of sectors. We
need to produce a pseudorandom cyclic code expansion, all of
whose n-bit subwords are different from each other and have a
prescribed length e � 2. An apparent restriction is 2 � e � 2n.
In [4] and using the graph theory, Lempel proved that such
sequences always exist only under the hypothesis that 2 �
e � 2n. The problem is how to explicitly construct them with
a fast algorithm, which is not essentially based on a full search
among all exponentially many possibilities.

It is well known that with a window of n sensing bits and
using linear feedback shift registers (LFSRs) with a connection
polynomial of degree n, the maximal length can be obtained;
that is, one can produce cyclic binary sequences of length
2n − 1 such that all windows of n consecutive bits are different
from each other (see [2] and [6]). In [8], Petriu introduces
a truncation of these maximal-length sequences to obtain the
desired exact number of sectors, which are not necessarily a
power of two. To detect the truncation point, it was proposed to
include an additional corona, where an additional bit shows a
discontinuity and allows the correct recovery of the measure in
the area of such discontinuity.

Another approach to solve this problem is to try to gener-
ate (nonmaximal) feedback shift registers that expand circular
sequences of a previously given length e (from an appropriate
initial seed). Although less studied in the literature, this is also
possible, i.e., there always exist such (unnecessarily linear)
feedback shift registers (see [2] and [12] for the binary case
and [4] for a generalization to m-ary sequences).

In this paper, this problem is again considered, and another
solution is provided, which has the following two additional
advantages. Given a natural number e � 2, our algorithm pro-
duces an LFSR with a connection polynomial of the smallest
possible degree and a seed that expands a circular sequence of
length exactly equal to e. In general, the fact that it is linear
makes it easier to implement in hardware. Moreover, the fact
that the output is a circular sequence of length e expanded
by an LFSR of the smallest possible degree ensures that the
smallest possible number of sensors is to be used. Finally, the
algorithm is fast for the typical values of e, which can be useful
in particular applications. The techniques and arguments used
here are inspired by those contained in [11].

It should be pointed out that with the techniques in this
paper, the number of needed sensors is minimized among all
possible LFSRs that expand circular sequences of a prefixed
length. However, it is unclear how to systematically achieve
the absolute minimum among unnecessarily linear LFSRs. In
Section V, we will show an example where these two minima
do not agree.
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This paper is organized as follows: Section II contains the
preliminaries needed for LFSRs and for polynomials over finite
fields, stating the notation that will be used. Section III is
the central part of this paper, where the cyclic structure of
polynomials is discussed, and the algorithm is constructed and
justified. Then, in Section IV, the algorithm is made explicit
and particularized to the binary case. Finally, an example is
developed, and conclusions are exposed.

We point out that all the discussions are done in an arbitrary
finite field Fq (where q = pm and p is a prime number),
although most of its possible engineering applications will use
only the results here particularized to the binary case. The
reason for working with more generality than the one strictly
needed for the applications is that the given arguments are
general and work exactly in the same manner for the binary field
F2 than for an arbitrary field Fq. At any time, any result can be
particularized to the binary case by simply declaring p = q = 2
and m = 1 everywhere.

II. PRELIMINARIES

A. Focusing on the Problem

LFSRs are well-known electronic digital circuits that are
used to expand periodic sequences over finite fields (over F2 for
binary sequences). See [2] or [7] for generalities about them.

Throughout this paper, let p be a prime number, q = pm, and
Fq be the field with q elements (which has a characteristic p).
As pointed out in Section I, for the binary version, let p = q = 2
(and m = 1).

Let n � 1 be a natural number, and let a(x) = −(a0 +
a1x + · · · + an−1x

n−1) + xn ∈ Fq[X] be a monic polynomial
of degree n over Fq with a(0) = −a0 �= 0. Consider the n × n
invertible matrix

M =




0 0 · · · 0 a0

1 0 · · · 0 a1

0 1
. . .

...
...

...
...

. . . 0 an−2

0 0 · · · 1 an−1




∈ GLn(Fq)

which is usually called the companion matrix of a(x). It is
well known that the characteristic polynomial of M is a(x);
in particular, a(M) = 0. Now, take an arbitrary column vector
u = (u0, u1, . . . , un−1)T ∈ F

n
q , let uT be the same vector but

written as a row, and consider the sequences of vectors M iu
and uT M i, i = 0, 1, 2, . . .. First, since the set F

n
q is finite,

there must be eventual repetitions, e.g., M iu = M ju for i < j.
Moreover, since M is invertible, we have u = M j−iu, which
means that the first repetition is always against the very first
vector u. In other words, the sequence M iu (and, similarly,
uT M i), i = 0, 1, 2, . . ., is periodic.

Note that by the special shape of M , the vector uT M i+1 is
the same as the vector uT M i, with all the coordinates shifted
one position to the left (thus losing the first coordinate) and
with the last coordinate computed according to the last column
of M . Thus, out of M and u, one can produce a clockwise

Fig. 1. LFSR with the Fibonacci architecture.

Fig. 2. LFSR with the Galois architecture.

circular sequence of e elements of Fq in such a way that the
e consecutive n-tuples that are readable from it are pairwise
different, where e is the period of the sequence uT M i. The
generation of such a circular sequence is typically carried out
by the standard electronic device that is called LFSR, with
a connection polynomial a(x), a seed u, and the so-called
Fibonacci architecture (see Fig. 1). Note that “linear” stands for
the linearity of the computation of the last coordinate in terms
of the previous n values). As such, the following problem is
addressed in this paper.
Problem 2.1: Given a natural number e � 2, construct an

LFSR (i.e., a monic a(x) ∈ Fq[X]) with a connection polyno-
mial of the smallest possible degree, e.g., n, and a seed u ∈ F

n
q

such that the sequence uT M i has a period precisely equal to e.
Let us reinterpret the problem in terms of the sequence

M iu, which is typically the one expanded by the same LFSR
with the same seed but now with the Galois architecture
(see Fig. 2). Identifying u = (u0, u1, . . . , un−1)T with the
polynomial u(x) = u0 + u1x + · · · + un−1x

n−1 ∈ Fq[X], it is
straightforward to verify that Mu represents the polynomial
u(x)x mod a(x). Thus, the sequence M iu is the reduction
of the sequence of polynomials u(x)xi modulo a(x). Thus,
the period of M iu is the minimum j � 1 such that u(x)xj ≡
u(x) mod a(x). This number is called the cyclic length of
u(x) modulo a(x) and will be closely studied in the following
paragraphs.

The relation between Problem 2.1 and cyclic lengths modulo
polynomials is not immediately apparent since, in general, the
sequences uT M i and M iu do not always have the same period.
For example, in the binary case, consider a(x) = 1 + x + x2 +
x3 + x4 + x5 and u = (0, 1, 1, 0, 1)T ; uT M i has a period of
three, whereas M iu has a period of six. However, the following
lemma (applied to companion matrices) allows us to restate
Problem 2.1 in terms of cyclic lengths.
Lemma 2.2: Let M be an n × n matrix over Fq. Then, the

set of periods of uT M i coincides with that of M iu, whereas u
ranges over all column vectors in F

n
q . Furthermore, for every

P ∈ GLn(Fq) such that PMP−1 = MT , the map u �→ Pu
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is a bijection of F
n
q that preserves the period (i.e., M iu and

(Pu)T M i have the same period).
Proof: The first assertion is clearly a consequence of

the second one since it is well known that M and MT are
always similar matrices (i.e., there exists P ∈ GLn(Fq) such
that PMP−1 = MT ). For every matrix P and integer r, we
have PMr = (MT )rP . Now, for every column vector u, the
equation u = Mru is equivalent to Pu = PMru = (MT )rPu
and, thus, to (Pu)T = (Pu)T Mr. Hence, the periods of the
sequences M iu and (Pu)T M i coincide.

For later use, we remark that there always exists such a
matrix P with the upper left triangle full of zeros, with the
contradiagonal full of ones (and therefore invertible), and with
each of the consecutive subcontradiagonals having constant
values (thus, P is symmetric). Given M , i.e., the companion
matrix of a monic polynomial a(x) = −(a0 + a1x + · · · +
an−1x

n−1) + xn ∈ Fq[X], one can recursively fill the entries of
such a matrix P by imposing the additional condition that PM
is also symmetric (note that PM coincides with P by removing
its first column and adding a last column equal to Pa, where a
is the last column of M ). This way, an invertible matrix P , with
both P and PM being symmetric, is obtained. This P is valid
for our purposes since PM = (PM)T = MT PT = MT P . �

In view of Lemma 2.2, solving Problem 2.1 reduces to find-
ing a monic polynomial a(x) ∈ Fq[X] of the smallest possible
degree and a column vector u ∈ F

n
q with a prescribed cyclic

length for u(x) modulo a(x). In fact, Lemma 2.2 indicates that
the same a(x) and an easily computable vector v = Pu solve
Problem 2.1. This way, our main goal reduces to solving the
following problem, which is completely stated in the language
of polynomials over finite fields.
Problem 2.3: Given a natural number e � 2, construct a

monic polynomial a(x) ∈ Fq[X] of the smallest possible de-
gree, e.g., n, and a seed u(x) ∈ Fq[X], which is a polynomial
of degree smaller than n, such that the cyclic length of u(x)
modulo a(x) is precisely equal to e.

B. Polynomials Over Finite Fields

This section summarizes the elementary facts about polyno-
mials over finite fields that will be needed later in this paper.

Let a(x) ∈ Fq[X] be a polynomial of degree n satisfying
a(0) �= 0. The ring Fq[X]/a(x)Fq[X] contains qn − 1 nonzero
elements, and thus, there must be two integers 0 � s1 < s2 �
qn − 1 such that xs1 ≡ xs2 modulo a(x). That is, a(x) divides
xs2 − xs1 = xs1(xs2−s1 − 1). The fact that a(0) �= 0 implies
that a(x) also divides xs2−s1 − 1. It is standard to define the
order of a(x), which is denoted ord(a(x)), as the minimum
positive integer e such that a(x) divides xe − 1. In general,
ord(a(x)) � qn − 1. In other words, the order of a given poly-
nomial a(x) ∈ Fq[X] is the minimum positive integer e such
that 1 · xe ≡ 1 modulo a(x). This is precisely the cyclic length
of 1 modulo a(x).

The following are well-known facts concerning polynomials
over finite fields.
1) Fact 1: The order of an irreducible polynomial a(x) ∈

Fq[X] with a(0) �= 0 and degree n is always a divisor of qn − 1.
In particular, it is not a multiple of p [5, Th. 3.4].

2) Fact 2: gcd(xr − 1, xs − 1) = xgcd(r,s) − 1. Further-
more, an arbitrary polynomial a(x) ∈ Fq[X] with a(0) �= 0
divides xs − 1 if and only if ord(a(x)) divides s [5, Th. 3.6].

We also quote the following well-known results in a finite-
field theory. Recall that given two coprime integers a, b � 2,
one is invertible modulo the other, and thus, it makes sense to
define the order of a modulo b, denoted ordb(a), as the smallest
i � 1 such that ai ≡ 1 mod b.
Theorem 2.4 [5, Th. 3.5]: Let e � 2 be an integer. Then,

there exist irreducible polynomials in Fq[X] of order e. Fur-
thermore, all of them have the same degree, namely orde(q).

A possible method to find such a polynomial is given as
follows: It has to be a divisor of xe − 1, but not a divisor
of xd − 1, for every d|e, d �= e. Thus, computing (xe − 1)/
lcmd|e,d �=e{xd − 1} and finding an irreducible factor will be
sufficient (note that by Theorem 2.4, all such irreducible factors
have the same degree, i.e., orde(q)).

Now, Lemmas 2.5 and 2.6 are needed to better understand
the order of polynomials. The following notation will be con-
venient: Given the prime number p and a positive integer s, let
us define �s�p = �logp s�, i.e., the smallest positive integer h

such that ph is not less than s (we will use �s� if there is
no risk of confusion). That is, �1� = 0, and p�s�−1 < s � p�s�

for s � 2.
Lemma 2.5 [5, Lemma 3.8]: Let a(x) ∈ Fq[X] be an

irreducible polynomial with a(0) �= 0 and order e. Then,
ord(a(x)s) = ep�s�.

Lemma 2.6 [5, Lemma 3.9]: Let a1(x), . . . , ar(x) ∈ Fq[X]
be pairwise coprime polynomials such that ai(0) �= 0, and let
ei = ord(ai(x)), i = 1, . . . , r. Then, ord(a1(x) · · · ar(x)) =
lcm{e1, . . . , er}.

Finally, we will also use the following technical lemma.
Lemma 2.7: Let a, b, q � 2 be three integers such that a and

b are coprime with q. Then

ordlcm{a,b}(q) = lcm{orda(q), ordb(q)}.

In particular, we have the following.
i) If a divides b, then orda(q) divides ordb(q).

ii) If a and b are coprime to each other, then ordab(q) =
lcm{orda(q), ordb(q)}.
Proof: Let us denote by ea, eb, and ea,b the orders of

q modulo a, b, and lcm{a, b}, respectively. By definition, a
divides qea − 1, and b divides qeb − 1. Thus, lcm{a, b} di-
vides lcm{qea − 1, qeb − 1} = qlcm{ea,eb} − 1, and thus, ea,b

divides lcm{ea, eb} (here, use Fact 2). On the other hand, a
divides lcm{a, b}, which divides qea,b − 1. Thus, ea di-
vides ea,b. Similarly, eb divides ea,b, and hence, lcm{ea, eb}
also divides ea,b. This shows that ordlcm{a,b}(q) = ea,b =
lcm{ea, eb} = lcm{orda(q), ordb(q)}. Statements i) and ii) of
Lemma 2.7 are particular cases. �

III. CONSTRUCTION

As stated in the previous section, our main goal is to solve
Problem 2.3. For this purpose, given a polynomial a(x) ∈
Fq[X], the set of numbers that occurs as a cyclic length of
some seed u(x) modulo a(x) must be understood. The finite



918 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 5, MAY 2008

set of all those possible numbers is named cyclic structure of
a(x) and is denoted CS(a(x)). In other words, CS(a(x)) is the
finite set of positive integers whose members are precisely the
cyclic lengths of all polynomials u(x) (of degree less than that
of a(x)) modulo a(x). The following two propositions describe
this set.
Proposition 3.1: Let a(x) ∈ Fq[X], a(x) �= x, be a monic

irreducible polynomial of order e. Then, the cyclic structure of
a(x)s is CS(a(x)s) = {1, e, ep, . . . , ep�s�}.

Proof: Taking u(x) = 0, we can see that 1 ∈ CS(a(x)s).
Let 0 �= u(x) ∈ Fq[X] be a polynomial of degree less than that
of a(x)s, and denote by k � 1 its cyclic length modulo a(x)s.
That is, k is the smallest positive integer such that u(x)xk ≡
u(x) modulo a(x)s or, in other words, the smallest positive
integer such that a(x)s divides u(x)(xk − 1). Let u(x) =
u′(x)a(x)d for some 0 � d < s and some u′(x) ∈ Fq[X] co-
prime to a(x). Then, the previous assertion is now equivalent as
saying that k is the smallest positive integer such that a(x)s−d

divides xk − 1, i.e., k is the order of a(x)s−d. Lemma 2.5
proves that k = ord(a(x)i) = epj for some i = 1, . . . , s and
some j = 0, . . . , �s�. Furthermore, it is clear that every
number of the form epj for j = 0, . . . , �s� occurs in
CS(a(x)s), for example, as the cyclic length of u(x) =
a(x)s−(pj−1+1). This makes sense because j � �s� implies
that pj−1 + 1 � p�s�−1 + 1 � s (here, we understand that
p−1 = 0). �
Proposition 3.2: Let a(x) ∈ Fq[X] be a monic polynomial

with a(0) �= 0, and consider its decomposition into different
irreducible factors a(x) = a1(x)s1a2(x)s2 , . . . , ar(x)sr with
increasing exponents s1 � s2 � · · · � sr. Let ei = ord(ai(x))
for i ∈ I = {1, . . . , r}. Then, the cyclic structure of a(x) is
given by

CS (a(x)) = {1} ∪
{
(lcmi∈J{ei}) pt|∅ �= J ⊆ I

0 � t � �sj�, j = max J} .

Proof: Taking u(x) = 0, we can see that 1 ∈ CS(a(x)).
Let u(x) ∈ Fq[X] be a polynomial of degree less than that
of a(x) and cyclic length k � 2 modulo a(x). Denote by
ki the cyclic length of u(x) modulo ai(x)si , i ∈ I . That
is, k is the smallest positive integer such that a(x) divides
u(x)(xk − 1), and for every i ∈ I , ki is the smallest posi-
tive integer such that ai(x)si divides u(x)(xki − 1). In this
situation, it is straightforward to verify that k = lcmi∈I{ki}.
Note that by Proposition 3.1, either ki = 1 or ki = eip

j for
some j = 0, . . . , �si�, and observe that by assumption, J =
{i ∈ I|ki �= 1} �= ∅. Then, k = lcmi∈J{ki} = (lcmi∈J{ei})pt,
where 0 � t � �sj� and j = max J . Conversely, any positive
number of the form (lcmi∈J{ei})pt with ∅ �= J ⊆ I , 0 � t �
�sj�, and j = max J appears in CS(a(x)). In fact, it ap-
pears as the cyclic length of u(x) = (

∏
i∈J\{j} ai(x)si−1) ·

aj(x)sj−(pt−1+1) · (
∏

I/∈J ai(x)si) modulo a(x). This makes
sense because t � �sj� implies that pt−1 + 1 � p�sj�−1 + 1 �
sj (here, we understand that p−1 = 0). �

As an immediate corollary of Theorem 2.4, one can already
say that every positive integer e occurs as the cyclic length of
some polynomial (even of u(x) = 1) modulo some other a(x).
That is, given a certain length, there always exists an LFSR

that expands, with an appropriate seed, a circular sequence of
this length. The problem now is how to construct one of them
(LFSR and seed, i.e., a(x) and u(x)) with the minimal possible
degree for a(x).

Corollary 3.3: For every integer e � 1, there exist two poly-
nomials a(x), u(x) ∈ Fq[X] such that the cyclic length of u(x)
modulo a(x) is precisely equal to e. �

To attack Problem 2.3, several reductions to simpler prob-
lems will be done. Let a(x) ∈ Fq[X] be a polynomial with
a(0) �= 0, and consider its factorization into different irre-
ducible factors a(x) = a1(x)s1a2(x)s2 , . . . , ar(x)sr with in-
creasing exponents s1 � s2 � · · · � sr. Let ei = ord(ai(x))
for i ∈ I = {1, . . . , r}, and consider the new polynomial a′(x)
being like a(x) but with the following changes: 1) Reduce all
the multiplicities s1, . . . , sr down to 1, and 2) put exponent
sr+1 = p�sr�−1 + 1 � sr to one of the linear factors if any, or
otherwise, 2’) add the new factor (x − 1)sr+1 .

Lemma 3.4: With the previous notation, and assuming
sr � 2, we have CS(a′(x)) ≤ CS(a(x)), and deg(a′(x)) �
deg(a(x)).

Proof: By Proposition 3.2, we have CS(a(x)) = {1} ∪
{(lcmi∈J{ei})pt|∅ �= J ⊆ I, 0 � t � �sj�, j =max J}. Also,
since the order of x − 1 is er+1 = 1 and �sj� � �sr� =
�sr+1�, we have CS(a′(x)) = {1} ∪ {(lcmi∈J{ei})pt|∅ �=
J ⊆ I, 0 � t � �sr+1�}. Hence, CS(a(x)) ⊆ CS(a′(x)). The
inequality between degrees follows straightforward from the
construction of a′(x) and the hypothesis sr � 2. �

Thus, to solve Problem 2.3, it is sufficient to consider poly-
nomials whose decomposition into irreducible factors has all
the exponents equal to 1, except maybe only one over a linear
factor.

Consider now such a polynomial a(x) = a∗(x)ai(x)sr+1−1

or a(x) = a∗(x)(x − 1)sr+1 , where sr+1 � 0, a∗(x)=
a1(x), . . . , ar(x), and a1(x), . . . , ar(x), (x − 1), x are pair-
wise different irreducible polynomials, and ai(x) is one of
the linear factors. Since a∗(x) has no multiplicities and, by
Fact 1 in Section II-B, ei = ord(ai(x)) is not divisible by
p, Proposition 3.2 states that the members of CS(a∗(x)) are
also not divisible by p. Again, by Proposition 3.2, the unique
contribution of the exponent sr+1 to the cyclic structure of
a(x) is to add some bounded powers of p as extra factors at
the numbers in CS(a∗(x)), which were coprime to p. Hence,
Problem 2.3 reduces to the case where e is not a multiple of p,
searching only among polynomials without multiplicities and
not being multiples of x − 1 (by then increasing to ps−1 + 1
the exponent of one of its linear factors if any, or otherwise
adding the factor (x − 1)ps−1+1, to gain a possible extra ps in
the factorization of e, s � 1).

With the following lemma, a further reduction can be done.
Lemma 3.5: Let a(x) = a1(x), . . . , ar(x), where a1(x),

. . . , ar(x), x − 1, x are pairwise different irreducible poly-
nomials. Let ei = ord(ai(x)), i ∈ I = {1, . . . , r}, and for
every subset ∅ �= J ⊆ I , consider a′(x) = Πi∈Jai(x). Then,
lcmi∈J{ei} ∈ CS(a′(x)), and deg(a′(x)) � deg(a(x)). �

Thus, according to the description given in Proposition 3.2,
the only relevant contribution of a polynomial a(x) =
a1(x) . . . ar(x) to the set CS(a(x)) is given by the maximal set
of indexes J = I (with the other elements in that set being also
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present in the cyclic structure of some polynomial of smaller
degree). In this case, since the ai(x)’s are coprime to each other,
Lemma 2.6 states that

lcmi∈I{ei} = lcmi∈I {ord (ai(x))} = ord (Πi∈Iai(x))

= ord (a(x)) .

In other words, to solve Problem 2.3, the unique relevant
entry in CS(a(x)) is the number ord(a(x)). Moreover, hav-
ing computed a polynomial a(x) ∈ Fq[X] with a given order
ord(a(x)) = e � 2, we have by definition that e is the smallest
exponent i � 1 such that xi ≡ 1 mod a(x). Hence, the seed
u(x) = 1 has a cyclic length modulo a(x) precisely equal to e
and a degree less than that of a(x). Thus, Problem 2.3 reduces
to Problem 3.6.
Problem 3.6: Given a natural number e � 2, which is not

a multiple of p, construct a polynomial a(x) ∈ Fq[X] with
a(0) �= 0 and of the smallest possible degree (and therefore
without multiplicities and not a multiple of x − 1) such that
ord(a(x)) = e.

This is now a problem that is completely formulated in the
area of finite fields. In general, given a natural number e � 2,
there are several polynomials of order e with several degrees.
Theorem 2.4 explicitly indicates the degree of the polyno-
mials that are irreducible. However, irreducible polynomials
are not always those that have the smallest possible degree
among those of a given order. (In the example worked out in
Section V, a binary polynomial of order 45 and degree 10 is
shown, whereas irreducible polynomials of order 45 all have a
degree of ord45(2) = 12.) Thus, a more detailed search among
polynomials of a given order is needed.

Let e � 2 be a natural number, which is not a multi-
ple of p, and consider the irreducible factorization a(x) =
a1(x), . . . , ar(x) of a possible solution a(x) ∈ Fq[X] to
Problem 3.6, ai(x) �= x. Denoting ei = ord(ai(x)) and ni =
deg(ai(x)), i ∈ I = {1, . . . , r}, and using Lemma 2.6 and
Theorem 2.4, we have

e = ord (a(x))=ord (a1(x) · · · ar(x))= lcm{e1, . . . , er}
n= deg (a(x))=n1 + · · · + nr =orde1(q) + · · · + order

(q).

Thus, a(x) can be found by listing all the expressions of
the form e = lcm{e1, . . . , er}, ei � 2 and, for each of them,
by computing orde1(q) + · · · + order

(q). When the minimal
possible value of this sum is obtained, use the constructive
comment after Theorem 2.4 to obtain irreducible polynomials
a1(x), . . . , ar(x) of orders e1, . . . , er, respectively. Finally,
take a(x) = a1(x), . . . , ar(x). Clearly, this is already an algo-
rithm, but we could still simplify and shorten it.

Let e = pα1
1 · · · pαt

t be the prime decomposition of e (pi’s
are primes that are all different from each other and are dif-
ferent from p). Note that generically, there are infinitely many
expressions of the form e = lcm{e1, . . . , er}, where r � 1 and
ei � 2. However, the minimality of the sum of orders will be
achieved over an irredundant expression, i.e., an expression
such that lcm{e1, . . . , ei−1, ei+1, . . . , er} < e for every i ∈ I .

It is clear that for every such expression and every j = 1, . . . , t,
p

αj+1
j divides no ei, but p

αj

j divides at least one ei. Choose one
ei for every j. The irredundancy of the expression implies that
we are exhausting all ei’s. Thus, r � t. In particular, there are
finitely many irredundant expressions for e.

Now, using Lemma 2.7, a further simplification can be done.
Let e = lcm{e1, . . . , er} be an irredundant expression for e
corresponding to a solution of Problem 3.6. As previously
noted, p

αj

j divides, e.g., ei. Suppose that pα
j also divides ei′

for some i′ �= i and 0 < α � αj . Then, we can replace ei′

by ei′/pα
j in the aforementioned irredundant expression for e

and still have an irredundant expression for e. However, by
Lemma 2.7(i), the new expression has sum of degrees less than
or equal to the original one. Repeating this operation several
times, it has been proven that there always exists a solution
to Problem 3.6 corresponding to an irredundant expression
e = lcm{e1, . . . , er}, where each pj (and, hence, p

αj

j ) divides
exactly one ei.

Thus, we only need to consider all expressions of the form
e = lcm{e1, . . . , er}, where each ei is a product of some of
the p

αj

j , in such a way that every p
αj

j appears exactly once.
In other words, {e1, . . . , er} represents a partition of the set
{pα1

1 , . . . , pαt
t }. We have to visit all these possible partitions

and choose one that has the smallest possible value for n =
orde1(q) + · · · + order

(q), e.g., {e1, . . . , er}. Then, compute
irreducible polynomials a1(x), . . . , ar(x) ∈ Fq[X] with orders
e1, . . . , er, respectively (following, for example, the comment
after Theorem 2.4). Finally, a(x) = a1(x), . . . , ar(x) is a poly-
nomial of the smallest possible degree (namely n) among those
of order e. This completely solves Problem 3.6, thus achieving
our goal.
Theorem 3.7: There exists an algorithm such that given an

integer e � 2, it constructs a connection polynomial a(x) ∈
Fq[X] of the smallest possible degree (e.g., n) and a seed
v ∈ F

n
q for an LFSR that expands a circular sequence of length

precisely equal to e.
Proof: According to the previous discussion, let us first

factorize e=pα0e∗, where e∗=pα1
1 , . . . , pαt

t and α0 � 0, t � 0,
and αi > 0 for i = 1, . . . , t, and p, p1, . . . , pt are pairwise
different primes. If e∗ � 2 (or, equivalently, t �= 0) follow
the aforementioned solution to Problem 3.6 for computing a
polynomial, e.g., a∗(x) ∈ Fq[X], with order e∗, a∗(0) �= 0, and
the smallest possible degree; otherwise, put a∗(x) = 1. Now,
take a(x) = a∗(x) if α0 = 0, and if α0 > 0, take a(x) to be
ai(x)pα0−1

a∗(x), where ai(x) is one of the linear factors of
a∗(x), or a(x) = (x − 1)pα0−1+1a∗(x) if there are no such
linear factors. By Lemmas 2.5 and 2.6, a(x) has order e. Thus,
the cyclic length of the seed u(x) = 1 modulo a(x) is precisely
equal to e. Moreover, by construction, a(x) has the smallest
possible degree among all such polynomials.

Thus, we have algorithmically constructed a monic poly-
nomial a(x) ∈ Fq[X] (and its companion matrix M ) of the
smallest possible degree such that the sequence M iu has a
period exactly equal to e, where u is the column vector u =
(1, 0, . . . , 0)T ∈ F

n
q . Finally, use Lemma 2.2 to realize the same

period on the left side of M . We note here that to do this, the
actual matrix P referred to in Lemma 2.2 is unnecessary since
Pu is its first column, which is always v = (0, . . . , 0, 1)T . By
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that result, vT M i has a period exactly equal to e. Hence, the
LFSR with the Fibonacci architecture, a connection polynomial
a(x), and a seed v expands a circular sequence of length
precisely equal to e and has the minimal possible size. �

No detailed analysis of the complexity of this algorithm has
been done, but it seems to be polynomial on e. The relevant part
is the computation of a∗(x) from e∗ (apart from the factoriza-
tion of e itself, which we assume is easy or given as an input).
To do this, one has to run over all possible partitions of a set of
t elements. Roughly speaking, there are double exponentially
many on t, but t is of the order of log(log e). Thus, in terms of
e, the amount of work to do seems polynomial.

IV. ALGORITHM

In this section, we make the given algorithm explicit. As seen
in the previous section, it works over an arbitrary finite field
Fq . However, since most of the engineering applications involve
the binary case, we shall give a particularization to this case
by taking p = q = 2 everywhere (interested readers can easily
follow the algorithm in any other finite field Fq). Note that, in
this case, the unique valid linear factor is x − 1, and so, all the
possible powers of 2 involved in e will be obtained by adding a
certain power of x − 1.

The input of the algorithm is an integer e � 2. The output
will be a connection polynomial a(x) ∈ F2[X] and a seed v ∈
F

n
2 for the desired LFSR.

Input: an integer e � 2.
Outputs: a polynomial a(x) ∈ F2[X] of degree n, and a
vector v ∈ F

n
2 .

Begin
1) Factorize e. Decompose e as a product of prime numbers

e = 2α0pα1
1 , . . . , pαt

t , with α0 � 0, t � 0, αi > 0 for
i = 1, . . . , t, and 2, p1, . . . , pt pairwise different primes.

2) If t = 0, put a∗(x) = 1 and go to step 8).
3) Set e∗ := pα1

1 , . . . , pαt
t � 3 and nmin := ∞.

4) Enumerate the set of all partitions P1, . . . ,Pl of the
set of integers {pα1

1 , . . . , pαt
t }. Let Pj ={Pj,1, . . . , Pj,rj

}
be the pairwise disjoint classes of the jth partition, Pj,1 �
· · · � Pj,rj

= {pα1
1 , . . . , pαt

t }.
5) For j from 1 to l do

5.1) For i from 1 to rj compute ni :=
lcmd∈Pj,i

{ordd(2)} (which equals ord∏
d∈Pj,i

d(2)
by Lemma 2.7).

5.2) Compute n := n1 + · · · + nrj
.

5.3) If n < nmin then let nmin := n, r := rj , and ei =
lcmPj,i =

∏
d∈Pj,i

d for every i = 1, . . . , r. We then
have e = lcm{e1, . . . , er} = e1 · · · er.

6) Compute irreducible polynomials a1(x), . . . , ar(x) ∈
F2[X] of orders e1, . . . , er, respectively (follow the
comment after Theorem 2.4).

7) Set a∗(x) := a1(x) · · · ar(x).
8) Set a(x) := (x − 1)sa∗(x) for the connection polyno-

mial, where s = 2α0−1 + 1 if α0 > 0, and s = 0
otherwise.

9) Set v = (0, . . . , 0, 1)T ∈ F
n
2 .

End.

For step 4), a possible way of enumerating all partitions of
the set {pα1

1 , . . . , pαt
t } is doing it recursively on t. Once we have

all partitions of {pα1
1 , . . . , p

αt−1
t−1 }, it only remains to determine

the position of pαt
t , which can join one of the already existing

classes or form a new class alone. The advantage of this method
is that we can simultaneously and easily calculate the ni’s of
the new partition in terms of the old ni’s: they are all the same,
except for that corresponding to the class where pαt

t belongs.
Moreover, computing the latter is as easy as doing the least
common multiple between the existing ni and ordp

αt
t

(2).

V. EXAMPLE: BINARY SEQUENCE OF LENGTH 360

Let us find a 360-bit binary sequence expanded by an LFSR
with a connection polynomial of the minimum possible degree.
This sequence can then be used to build an angular position en-
coder with a resolution of exactly 1◦, minimizing the number of
sensors in use. We will follow the previously given algorithm.
The desired order is e = 360 = 23325; thus, α0 = 3, t = 2, and
e∗ = 325 = 45.

In step 4), we find that the set of integers {32, 51}
has only two partitions, namely P1 = {{32, 51}} and P2 =
{{32}, {51}}.

When running step 5) for P1 (r1 = 1), we have n = n1 =
lcm{ord9(2), ord5(2)} = lcm{6, 4} = 12. For P2 (r2 = 2), we
have n1 = ord9(2) = 6 and n2 = ord5(2) = 4, and thus, n =
6 + 4 = 10. Therefore, the second partition is the best one, and
we end up with nmin = 10, r = 2, e1 = 9, and e2 = 5 (of
course, 45 = 9 · 5).

In step 6), we have to compute irreducible polynomials
a1(x), a2(x) ∈ F2[X] of orders 9 and 5, respectively. Follow-
ing the comment in the first paragraph after Theorem 2.4, a1(x)
must be an irreducible factor of

x9 − 1
lcm{x3 − 1, x − 1} =

x9 − 1
x3 − 1

= x6 + x3 + 1

which is itself irreducible. Hence, a1(x) = x6 + x3 + 1.
Similarly

a2(x) =
x5 − 1
x − 1

= x4 + x3 + x2 + x + 1.

Thus, in step 7), we have a∗(x) = x10 + x9 + x8 + x5 + x2 +
x + 1, which is a polynomial of the minimal possible degree
among those of order 45. It should be pointed out here that in
this particular example, a1(x) and a2(x) are unique because
there exists only one irreducible polynomial of order 9 and only
one of order 5; in general, there are several polynomials, and
any choice will give rise to different connection polynomials
a(x), which are all valid for our purposes.

In step 8), we let s = 23−1 + 1 = 5 and compute the desired
connection polynomial a(x) = (x − 1)sa∗(x) = x15 + x12 +
x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1. Finally,
in step 9), we take v = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T .

This means that the LFSR with connection polynomial a(x)
and seed v expands the following circular sequence of length
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e = 360, as desired:

00000000000000100111010011110010010111100111001110

11101110101000000111000010100101001000001001100110

01101111101101011010111100011111101010001000100011

00011000010110110000110100011011111111111111011000

10110000110110100001100011000100010001010111111000

11110101101011011111011001100110010000010010100101

00001110000001010111011101110011100111101001001111

0010111001.

That is, the given list of bits, considered circularly, has
a length of 360 and the property that all subwords of 15
consecutive bits are different from each other. Of course, there
are 360 such 15-tuples; hence, this sequence can be used to
measure positions of a circular device with precision exactly
equal to 1◦ and using 15 sensors. Furthermore, 15 is the smallest
possible degree realizing this, i.e., no connection polynomial of
degree less than 15 has any possible seed that expands a circular
sequence of length 360. Thus, 15 is the minimum number of
sensors needed among all LFSRs that expand such sequences.

A totally different question (and out of the scope of this
paper) is how to achieve better results using nonlinear methods.
Evidently, the first thing to do is to check if the obtained
sequence works with fewer sensors. As it was constructed, all
360 consecutive 15-tuples are different from each other, but it
turns out that the same is true with the 360 consecutive 14-
tuples (and fails for 13-tuples). This way, the same sequence
can be used, thus saving one sensor. However, this phenomenon
depends, in a strongly combinatorial way, on the particular
sequence analyzed.

An absolute lower bound for the number of sensors needed in
this example is 9 (since 28 < 360 < 29). In addition, according
to Lempel [4], there exists a circular sequence of length 360
such that all 9-tuples of consecutive bits are pairwise different.
However, the method given in [4] to find such a sequence is not
effective (it is comparable to brute force searching among all
possible 2360 sequences), whereas the method presented here is
fast. For completeness, this brute force search was carried out,
and the following sequence of 360 bits was found:

11111010000000010000001010000010010000011000000011

01000010001000010101000011001000011100000011101000

10010100010100100010110000010110100011000100011010

10001110010001111000001111010010010011000010011010

01010101001011001001011100001011101001100101001101

10000110110100111000100111010100111100100111110000

11111010101011000101011010101110010101111000101111

0101100111

allowing one to measure exact degrees in a rotating disk by
using only nine sensors, which is the absolute minimum.

VI. CONCLUSION

This paper presents an extension to the previous works on
absolute angular position measurement systems. It starts by
focusing on the problem of searching for LFSRs that are able
to expand closed binary sequences of a prescribed length. The
first problem was to demonstrate the existence of solutions for
any arbitrary cyclic length. The second problem was to find the
smallest size of an LFSR that expands such a sequence. These
two problems were already solved in [4] for arbitrary sequences
(not only those linearly generated), but [4] did not give any
insights in any way of constructing such cycles (apart from
brute force). In this paper, we demonstrated that all lengths
are also realizable using LFSRs, and an efficient construction
algorithm for the smallest possible size is provided.

Going through the solution, this paper starts by address-
ing well-known facts about finite fields and polynomials over
them, which are closely related to cyclic code expansion us-
ing linear methods. Then, the technical part comes (results
from Propositions 3.1 and 3.2, Corollary 3.3, and Lemmas 3.4
and 3.5), where the lengths obtainable by a given LFSR when
moving the seed are analyzed. Out of this analysis, we produce
an algorithm for constructing an LFSR of the smallest possible
size and a seed that expands a sequence of the prescribed
length (Theorem 3.7). The algorithm is explicitly written in
Section IV, which is particularized to the binary case. Finally,
this paper develops a classical example, namely the design of
a connection polynomial and a seed for an LFSR expanding a
cyclic sequence of exactly 360 positions in length and using
the minimum possible number of reading sensors. This is also
compared with the result of a brute-force search among non-
LFSRs. The implementation of this method in a real sensor is
out of the scope of this paper and will be carried out in a future
contribution.
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