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Abstract

In this paper we investigate the asymptotic spatial behavior of the solutions for several
models for the nerve fibers. First, our analysis deals with the coupling of two parabolic
equations. We prove that, under suitable assumptions on the coefficients and the nonlinear
function, the decay is similar to the one corresponding to the heat equation. A limit case
of this system corresponds to the coupling of a parabolic equation with an ordinary differ-
ential equation. In this situation, we see that for suitable boundary conditions the solution
ceases to exist for a finite value of the spatial variable. Next two sections correspond to
the coupling of a hyperbolic/parabolic and hyperbolic/ordinary differential problems. For
the first one we obtain that the decay is like an exponential of a second degree polyno-
mial in the spatial variable. In the second one, we prove a similar behaviour to the one
corresponding to the wave equation. In these two sections we use in a relevant way an
exponentially weighted Poincaré inequality which has been revealed very useful in several
thermal and mechanical problems. This kind of results have relevance to understand the
propagation of perturbations for nerve models.

1 Introduction

Hodgkin and Huxley [11] proposed a mathematical model to describe the propagation of elec-
trical impulses in nerve fibers. This is a system of an ordinary differential equation coupled
with a parabolic equation. A simpler model which describes the same qualitative behaviour is
constituted by the equations proposed by FitzHugh [5] and Nagumo, Arimoto and Yoshizawa
[19]. This system of equations is usually called FitzHugh-Nagumo equations and takes the form

v,t = v,ii + f(v)− u, (1.1)

u,t = σv − γu, (1.2)

where σ and γ are constants. In this system f(v) is a nonlinear function satisfying (2.5). A
paradigm for these functions are those of the form f(v) = −a|v|nv + b|v|n2 v + µ1v, where n, a
and µ1 are positive constants1. The system is defined in a cylinder R along a period of time.

1When n = 2, we get the nonlinear term usually appearing in FitzHugh-Nagumo equations.
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The spatial variable xxx belongs to the cylinder R and the time t ∈ (0,∞). The variable v(xxx, t)
describes the membrane voltage and u(xxx, t) is an auxiliar function (see [16]). Some people
have considered the generalization of the system of equations and now it is usual to study
the extension of the equations of FitzHugh-Nagumo constitute by the equation (1.1) and the
diffusion equation

u,t = δu,ii + σv − γu, (1.3)

where δ is a positive constant.
In 1967, Lieberstein [16] suggested to change the diffusion equation in the model of Hodgkin

and Huxley. He used some equations which are more general than the ones used by FitzHugh
and Nagumo. These arguments suggested to consider what it is known as the hyperbolic version
of the FitzHugh-Nagumo system of equations. In this case, it is usual to change the diffusion
equation (1.1) by the hyperbolic one

εv,tt + (1− εf ′(v))v,t = v,ii + f(v)− u, (1.4)

where ε is a positive constant and f(v) is a function that satisfies condition (4.2). It is worth
noting that if in this system we take ε = 0, we obtain the usual system of the FitzHugh-Nagumo
equations. These systems have deserved much attention in recent years (see [2, 10, 14, 17, 23,
26, 27], among others) from a mathematical point of view. In this paper we want to analyse
an aspect which has not been considered yet in the literature. We want to study the spatial
behavior of the solutions and in particular its asymptotic decay.

The systems of equations we propose describe the propagation of the excitation along
the nerve axon. The spatial decay estimates for these problems will play a relevant role to
understand the influence of the stimuli far away from the place where it is applied. Results on
asymptotic spatial decay of solutions have been obtained mainly in thermomechanical problems
[4, 6, 7, 12, 13, 20, 21, 24, 25]. The motivation is given in the context of the Saint-Venant
principle. We believe that this kind of studies are also a valuable objective in the context of the
propagation of the excitation in nerve models. Such studies give information concerning how
the signals propagate along the nerve and how the disturbances are damped far away where
they have been produced.

In this paper we denote by R the cylinder of the form (0,∞)×D, where D is a two dimen-
sional bounded domain such that the boundary ∂D is smooth enough to apply the divergence
theorem. By D(z) we denote the cross section of the points in R such that x1 = z, by R(z) we
mean the points of the cylinder such that x1 > z.

In the next sections we will use the following fact (see the Appendix of [15] for a proof):
Exponentially weighted Poincaré inequality. Assume that g(s) is a differentiable

function in [0, t] such that g(0) = 0. Then the following inequality∫ t

0

exp(−2ωs)g2(s) ds ≤ 4t2

π2 + 4t2ω2

∫ t

0

exp(−2ωs) (ġ(s))2 ds (1.5)

holds, for every ω > 0. We note that ϕ(t) =
4t2

π2 + 4t2ω2
is a growing function and so

∫ t

0

exp(−2ωs)g2(s) ds ≤ 4t20
π2 + 4t20ω

2

∫ t

0

exp(−2ωs) (ġ(s))2 ds, 0 < t ≤ t0. (1.6)
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The content of this paper is as follows. In Section 2 we consider a problem for the system
determined by (1.1) and (1.3). As it is the coupling of two diffusion equations, we will prove
that an estimate similar to the one proposed for the Fourier heat equation can be applied in
this context. To overcome the difficulty proposed by the coupling and the nonlinear terms,
we use a weighted measure. We will see that the decay can be controlled by an exponential
of the square of the distance to the cylinder base (see (2.35)). In Section 3 we consider the
system determined by (1.1) and (1.2). A similar argument to the one considered in Section
2 can be obtained, but we here want to emphasize in a spatial nonexistence theorem when
the nonlinear term satisfies a certain condition (see (3.2)) which is usually related with the
conditions proposed in the literature. Section 4 is devoted to the coupled system (1.4) and
(1.3). That is the coupling of an hyperbolic equation with a parabolic equation. We will see
how the solutions decay as the exponential of a second order polynomial of the distance to the
base. It is worth noting that this fact is very usual in the context of mixtures of parabolic and
hyperbolic equations. However, the nonlinear part of this system proposes several difficulties to
obtain the estimates. In our case we need to use the exponentially weighted Poincaré inequality
and, in particular, the proposed bound (1.6) to overcome the difficulty. This inequality has
been revealed recently very useful to solve several difficulties in the study of the spatial decay
estimates (see [15]). In Section 5 we consider the coupling of equations (1.4) and (1.2). We prove
that the usual arguments for the hyperbolic problems can be applied to this situation. A domain
of influence result is a corollary. We also need to use the upper bound for the exponentially
weighted Poincaré inequality proposed at (1.6) and in particular a domain of influence theorem
is obtained. In the last section we summarize the main results of the paper. Finally, we add
an Appendix where we show some properties of the function f(v) appearing in the systems of
equations for the different sections.

In this paper we are not concerning about existence on solutions. The existence as well as
the regularity of several type for the solutions are assumed.

2 Parabolic problem

In this section we obtain bounds for the spatial decay of the solutions of the problem determined
by the system (1.1), (1.3), the initial conditions

v(xxx, 0) = u(xxx, 0) = 0, on R, (2.1)

the boundary conditions

v(0, x2, x3, t) = vD(x2, x3, t), u(0, x2, x3, t) = uD(x2, x3, t), on {0} ×D, (2.2)

v(x1, x2, x3, t) = u(x1, x2, x3, t) = 0, on (0,∞)× ∂D, (2.3)

and the asymptotic conditions

u, v → 0, uniformly as x1 →∞. (2.4)

We assume that the nonlinear function f(v) satisfies the condition

−f(v)v ≥ −µv2, µ > 0. (2.5)
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It is worth noting that the functions of the form f(v) = −a|v|nv+ b|v|n2 v+µ1v, where n, a and
µ1 are positive constants satisfy condition (2.5) (see the Appendix for a proof).

The arguments of this section follow the ideas used to work for decay estimates for diffusion
equations [12, 13, 18]. However, we need to use weight functions to save the mathematical diffi-
culties proposed by several terms of the system. In our case, the analysis starts by considering
the function

F (z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)(v2 + δu2)da ds, (2.6)

where, from now on, ω is a positive constant to be selected later. Direct differentiation gives

∂F (z, t)

∂z
= 2

∫ t

0

∫
D(z)

exp(−2ωs)(vv,1 + δuu,1)da ds, (2.7)

and
∂2F (z, t)

∂z2
= 2

∫ t

0

∫
D(z)

exp(−2ωs) [v,1v,1 + vv,11 + δ(u,1u,1 + uu,11)] da ds. (2.8)

The use of the evolution equations, boundary conditions and initial conditions and the diver-
gence theorem gives

∂2F (z, t)

∂z2
= 2

∫ t

0

∫
D(z)

exp(−2ωs)
[
v,iv,i + δu,iu,i − f(v)v + ωv2 + (γ + ω)u2

+(1− σ)uv
]
da ds+ exp(−2ωt)

∫
D(z)

[v2 + u2] da.

(2.9)

Poincaré’s inequality for the functions defined on the domain D, the arithmetic-geometric
inequality and condition (2.5) imply

∂2F (z, t)

∂z2
≥ 2

∫ t

0

∫
D(z)

exp(−2ωs)
[
v,1v,1 + δu,1u,1 + (ω + λ2 − µ)v2 + (ω − |γ|+ λ2δ)u2

−1

2
|1− σ|

(
u2 + v2

) ]
da ds+ exp(−2ωt)

∫
D(z)

[
v2 + u2

]
da.

(2.10)

Here, λ2 is the first eigenvalue of the problem

∆ϕ+ ζϕ = 0 on D, ϕ = 0 on ∂D. (2.11)

Then, we have

∂2F (z, t)

∂z2
≥2

(
ω + λ2 − µ− 1

2
|1− σ|

)∫ t

0

∫
D(z)

exp(−2ωs)v2 da ds

+
2

δ

(
ω − |γ|+ λ2δ − 1

2
|1− σ|

)∫ t

0

∫
D(z)

exp(−2ωs)δu2 da ds

+ 2

∫ t

0

∫
D(z)

exp(−2ωs)v2,1dads+ 2

∫ t

0

∫
D(z)

exp(−2ωs)δu2,1 da ds

+

∫
D(z)

exp(−2ωt)[v2 + u2]da.

(2.12)
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Now, we take ω sufficient large in order to guarantee that

ω + λ2 − µ− 1

2
|1− σ| and ω − |γ|+ λ2δ − 1

2
|1− σ|

are strictly positive.
Since F ≥ 0 and after the use of the Schwarz inequality, we deduce that

F
∂2F (z, t)

∂z2
− 1

2

(
∂F (z, t)

∂z

)2

≥ 2MωF
2 +NF

∂F

∂t
, (2.13)

where

Mω = min

{
ω + λ2 − µ− 1

2
|1− σ|, δ−1

(
ω − |γ|+ λ2δ − 1

2
|1− σ|

)}
, N = min

{
1, δ−1

}
.

(2.14)
If we define the function

J(z, t) = (F (z, t))1/2, (2.15)

inequality (2.13) implies that
∂2J(z, t)

∂z2
≥MωJ +N

∂J

∂t
. (2.16)

If we consider the change of variable

J(z, t) = exp

(
−Mωt

N

)
ρ(z, t), (2.17)

the function ρ satisfies the problem

ρzz −Nρt ≥ 0, z > 0, t > 0, (2.18)

ρ(z, 0) = 0, z ≥ 0, (2.19)

ρ(0, t) = exp

(
Mωt

N

)
P (t), t ≥ 0, (2.20)

ρ(z, t)→ 0 (uniformly in t) as z →∞. (2.21)

Here, the function P (t) is defined by

P (t) =

(∫ t

0

∫
D(0)

exp(−2ωs)
(
v2D + δu2D

)
da ds

)1/2

. (2.22)

An upper bound for ρ(z, t) in terms of the solution of an initial-boundary value problem
for the one-dimensional heat equation now follows from the maximum principle. Let y(z, t) be
the solution of the problem

yzz −Nyt = 0, z > 0, t > 0, (2.23)

y(z, 0) = 0, z ≥ 0, (2.24)

y(0, t) = exp

(
Mωt

N

)
P (t), t ≥ 0, (2.25)
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y(z, t)→ 0 (uniformly in t) as z →∞. (2.26)

The maximum principle yields
ρ ≤ y, z ≥ 0, t ≥ 0. (2.27)

So we conclude
J(z, t) ≤ P (t)G(z, t), (2.28)

where

2G(z, t) = exp
(
−
√
Mωz

)
erfc

[
N1/2z

2t1/2
−
(
Mωt

N

)1/2
]

+ exp
(√

Mωz
)

erfc

[
N1/2z

2t1/2
+

(
Mωt

N

)1/2
]
.

(2.29)

Here, erfc(x) is the complementary error function, which is defined by

erfc (x) = 2(π)−1/2
∫ ∞
x

exp(−s2)ds. (2.30)

In view of the definition of J and F , we obtain the estimate(∫ t

0

∫
D(z)

(
v2 + δu2

)
da ds

)1/2

≤ exp(ωt)

(∫ t

0

∫
D(0)

exp(−2ωs)
(
v2D + δu2D

)
da ds

)1/2

G(z, t)

(2.31)
for z ≥ 0, t ≥ 0. Estimate (2.31) provides a mean-square estimate for the solutions of the
problem (1.1), (1.3) with (2.1)–(2.5).

In order to obtain a sharper estimate for the decay, we recall the inequality (see [1], p. 298)

√
π erfc(x) <

1

x
exp(−x2), x > 0. (2.32)

Therefore, we get that

G(z, t) ≤
2N3/2z(t/π)1/2 exp

(
−Mωt

N

)
N2z2 − 4Mωt2

exp

(
−Nz

2

4t

)
. (2.33)

From (2.31) and (2.33) we obtain(∫ t

0

∫
D(z)

(
v2 + δu2

)
da ds

)1/2

≤ exp(ωt)P (t)

[
2N3/2z(t/π)1/2 exp

(
−Mωt

N

)
N2z2 − 4Mωt2

exp

(
−Nz

2

4t

)]
,

(2.34)
which is satisfied whenever z > 2

√
Mω t/N .

Inequality (2.34) shows that, for fixed t, the spatial decay is asymptotically controlled by
the factor

exp

(
−Nz

2

4t

)
. (2.35)

Thus, we have obtained the following theorem.

Theorem 2.1 Let (u, v) be a solution of the problem determined by the system (1.1), (1.3),
initial conditions (2.1) and boundary and asymptotic conditions (2.2)–(2.4). We further as-
sume that the nonlinear function f(v) satisfies (2.5). Then the spatial decay is asymptotically
controlled by the factor given by (2.35).
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3 Parabolic problem: δ = 0

In this section we consider the parabolic problem of Section 2 in the limit case when δ = 0
under the extra condition σ > 0. It corresponds to the coupling of a parabolic equation with
an ordinary differential equation. First thing we can observe is that the arguments of Section
2 can be applied in this situation without difficulties. If we define F as in (2.6) with δ = 0, we
obtain

∂2F (z, t)

∂z2
= 2

∫ t

0

∫
D(z)

exp(−2ωs)
(
v,iv,i − f(v)v + ωv2 + (γ + ω)u2 + (1− σ)uv

)
da ds

+

∫
D(z)

exp(−2ωs)[v2 + u2]da.

(3.1)

We can adapt the arguments of Section 2 to obtain an inequality as (2.13), but in this case we
can take N = 1.

However, in this situation it is possible to prove a nonexistence result whenever we assume
that the nonlinear function f(v) satisfies a condition of the type

−f(v)v ≥ a|v|2α − µv2, (3.2)

where α > 1, µ > 0 and a > 0. Again the functions of the form f(v) = −a|v|nv + b|v|n2 v + µ1v,
where a, n and µ1 are positive constants satisfy our requirements (see the Appendix for a
proof). Our arguments in this section are inspired by the papers [8, 9, 22]. Another time the
use of weighted functions allows us to overcome the mathematical difficulties of the analysis.

If we consider the function

Φ(z, t) = −
∫ t

0

∫
D(z)

exp(−2ωs)vv,1da ds, (3.3)

we get

∂Φ(z, t)

∂z
= −

∫ t

0

∫
D(z)

exp(−2ωs)(v,iv,i − f(v)v + ωv2 +
γ + ω

σ
u2)da ds

−1

2

∫
D(z)

exp(−2ωt)

(
v2 +

1

σ
u2
)
da.

(3.4)

It is worth noting that if we take ω ≥ max{µ, |γ|} then

−∂Φ(z, t)

∂z
≥
∫ t

0

∫
D(z)

exp(−2ωs)(v,iv,i + a|v|2α)da ds. (3.5)

For arbitrary positive constant ν, we have

|Φ(z, t)| ≤
[ ∫ t

0

∫
D(z)

exp(−2ωs)v2da ds

∫ t

0

∫
D(z)

exp(−2ωs)v2,1da ds
]1/2

≤M1(t)

[(
να
∫ t

0

∫
D(z)

exp(−2ωs)|v|2αda ds
) 1

α
(
ν−1

∫ t

0

∫
D(z)

exp(−2ωs)v2,1da ds

)]1/2

≤M1(t)

[(
να
∫ t

0

∫
D(z)

exp(−2ωs)|v|2αda ds
) 1

α+1
(
ν−1

∫ t

0

∫
D(z)

exp(−2ωs)v2,1da ds

) α
α+1

]α+1
2α

,

(3.6)
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where

M1(t) =

[(∫ t

0

exp(−2ωs) ds

)α−1
α

|D|
α−1
α

]1/2
. (3.7)

Using Young’s inequality, we conclude that

|Φ(z, t)| ≤M2(t)

[
να
∫ t

0

∫
D(z)

exp(−2ωs)|v|2αda ds+ αν−1
∫ t

0

∫
D(z)

exp(−2ωs)v2,1da ds

]α+1
2α

,

(3.8)
where

M2(t) = M1(t)/(α + 1)(α+1)/2α. (3.9)

Setting ν = (αa)1/(α+1), we obtain

|Φ(z, t)| ≤M3(t)

[
−∂Φ(z, t)

∂z

](α+1)/2α

, (3.10)

where
M3(t) = M2(t)

[
α/a1/α

]1/2
. (3.11)

When we assume that Φ(0, t) < 0, we have that Φ(z, t) < 0 for all z ≥ 0. Hence, we conclude
that

−∂Φ(z, t)

∂z
≥
[
−Φ(z, t)

M3(t)

]2α/(α+1)

, (3.12)

which, by integration, yields

[−Φ(z, t)]−(α−1)/(1+α) ≤ [−Φ(0, t)]−(α−1)/(1+α) − α− 1

α + 1
M3(t)

−2α/(1+α)z. (3.13)

We note that the left hand side of (3.13) is positive, while for z large enough, the right hand
side is negative. So we have obtained the following result.

Theorem 3.1 Let (u, v) be a solution of the problem determined by the system (1.1), (1.2)
with initial conditions (2.1) and boundary conditions (2.2), (2.3). We further assume that the
function f(v) satisfies condition (3.2), where α > 1, µ > 0 and a > 0. Therefore, no solution in
the measure of Φ(z, t) can exist for all value of z, whenever Φ(0, t) < 0, where Φ(z, t) is defined
by (3.3).

4 Hyperbolic/parabolic problem

In this section we study the asymptotic spatial behaviour of the solutions of the problem
determined by the system (1.3)–(1.4) with conditions (2.1)–(2.4) and

vt(xxx, 0) = 0, on R. (4.1)

It is worth noting that it corresponds to the coupling of a hyperbolic with a parabolic equation.
Moreover, we do not impose the condition (2.5), but we assume some conditions that can be
considered related. Thus, we suppose that

−F (v) = −
∫ v

0

f(s)ds ≥ −µ∗v2, −f ′(v) ≥ −ν, µ∗ > 0, ν > 0. (4.2)
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We will obtain a fast spatial decay estimate. Another time, the functions f(v) = −a|v|nv +
b|v|n2 v+µ1v, (a, n and µ1 are positive constants) satisfy our requirements (see the Appendix for a
proof). In fact, we will prove that the decay is very similar to the one proposed for the parabolic
problem. However, here we have a very different kind of coupling. The arguments of this section
are inspired by the paper [20] and correspond to the use of the maximum principle argument
proposed in the context of a coupling of parabolic and hyperbolic equations. It is worth noting
that for the analysis proposed in this section (also the next one) the exponentially weighted
Poincaré inequality plays a relevant role. When we analyze our problem, some terms of u and
v in L2-norm appear. We will control these terms with the help of inequality (1.5). That is,
by means of the integral of the square of the time derivative. This will be an essential point
in our analysis. It will be a fundamental ingredient to overcome the proposed mathematical
difficulties. From now on we consider estimates for 0 < t ≤ t0, where t0 is a fixed time.

In this situation the analysis starts by considering the function

Γ(z, t) = −
∫ t

0

∫
D(z)

exp(−2ωs) (δu,1u+ v,1v,s) da ds. (4.3)

If we use the divergence theorem, the evolution equations, the boundary conditions, the asymp-
totic behaviour and the initial conditions, we have

Γ(z, t) =

∫ t

0

∫ ∞
z

∫
D(η)

exp(−2ωs)
[
uu,s + δu,iu,i − σvu+ γu2

+εv,sv,ss + (1− εf ′(v))v2,s + v,iv,is − f(v)v,s + uv,s
]
dV ds

=
1

2

∫
R(z)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2F (v)

)
dV

+

∫ t

0

∫
R(z)

exp(−2ωs)
[
ω(u2 + εv2,s + v,iv,i − 2F (v)) + δu,iu,i − σvu

+γu2 + (1− εf ′(v))v2,s + uv,s
]
dV ds.

(4.4)

In view of the conditions (4.2), we can see that

Γ(z, t) ≥1

2

∫
R(z)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2µ∗v2

)
dV

+

∫ t

0

∫
R(z)

exp(−2ωs)
[
ω
(
u2 + εv2,s + v,iv,i − 2µ∗v2

)
+ δu,iu,i − σvu+ γu2 + (1− εf ′(v))v2,s + uv,s

]
dV ds.

(4.5)

In order to control some summands of Γ(z, t) we will consider the following estimates. We
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have

1

2

∫
R(z)

exp(−2ωs)(−2µ∗v2)dV = −µ∗
∫ t

0

∫
R(z)

d

ds

[
exp(−2ωs)v2

]
dV ds

=2ωµ∗
∫ t

0

∫
R(z)

exp(−2ωs)v2 dV ds− 2µ∗
∫ t

0

∫
R(z)

exp(−2ωs)vv,s dV ds

≥2ωµ∗
∫ t

0

∫
R(z)

exp(−2ωs)v2 dV ds

− 2µ∗
(∫ t

0

∫
R(z)

exp(−2ωs)v2 dV ds

)1/2(∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds

)1/2

(4.6)

From the exponentially weighted Poincaré inequality, we get

1

2

∫
R(z)

exp(−2ωs)(−2µ∗v2)dV ≥ 2ωµ∗
∫ t

0

∫
R(z)

exp(−2ωs)v2 dV ds

− 2µ∗
(

4t2

π2 + 4t2ω2

)1/2(∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds

)1/2(∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds

)1/2

= 2ωµ∗
∫ t

0

∫
R(z)

exp(−2ωs)v2 dV ds− 4µ∗t0

(π2 + 4t20ω
2)

1/2

∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds.

(4.7)

On the other hand,

− σ
∫ t

0

∫
R(z)

exp(−2ωs)uv dV ds

≥ −σ
2

∫ t

0

∫
R(z)

exp(−2ωs)u2dV ds− σ

2

4t20
π2 + 4t20ω

2

∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds.

(4.8)

Moreover,∫ t

0

∫
R(z)

exp(−2ωs)uv,s dV ds ≥ −
1

2

∫ t

0

∫
R(z)

exp(−2ωs)u2dV ds− 1

2

∫ t

0

∫
R(z)

exp(−2ωs)v2,s dV ds.

(4.9)

We can select ω so large to guarantee that[
ω + γ − σ + 1

2

]
u2+

[
ωε− 1

2
− 4µ∗t0

(π2 + 4t20ω
2)

1/2
− 2σt20
π2 + 4t20ω

2
+ (1− εf ′(v))

]
v2,s ≥ ε∗

(
u2 + v2,s

)
,

(4.10)
for some ε∗ > 0, for all u, v,t and so Γ(z, t) ≥ 0, for all u, v, v,t, v,i, u,i. In view of the estimates
we see that

Γ(z, t) ≥ C

∫ t

0

∫
R(z)

(
u2 + v2s + u,iu,i + v2 + v,iv,i

)
dV ds, (4.11)

for some C > 0.
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Now, we define the function which is assumed to exist

E(z, t) =

∫ ∞
z

Γ(ξ, t)dξ. (4.12)

To guarantee the existence of the function E(z, t), from the definition of Γ(z, t) by (4.3), it is
sufficient to assume that u, u,1, v,1, v,s → 0 as x−1 uniformly on t, x2, x3. We have

∂E(z, t)

∂z
= −Γ(z, t), (4.13)

and

∂2E(z, t)

∂z2
=

1

2

∫
D(z)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2F (v)

)
da

+

∫ t

0

∫
D(z)

exp(−2ωs)
[
ω(u2 + εv2,s + v,iv,i − 2F (v)) + δu,iu,i − σvu

+γu2 + (1− εf ′(v))v2,s + uv,s
]
da ds.

(4.14)

From the definition of E and Γ, we also have that

∂E(z, t)

∂t
= − exp(−2ωt)

∫
R(z)

(
δu,1u+v,1v,t

)
dV = exp(−2ωt)

(
−
∫
R(z)

v,1v,tdV +
δ

2

∫
D(z)

u2da

)
.

(4.15)
From the A-G inequality, we can obtain a positive constant β, which can depend on time t0,
such that ∣∣∣∣exp(−2ωt)

∫
R(z)

v,1v,tdV

∣∣∣∣ ≤ 1

2
exp(2ωt0)

∫
R(z)

(
v2,1 + v2,t

)
dV ≤ −β ∂E

∂z
. (4.16)

We note that previous estimates (4.7)–(4.10) are also valid on D(z) instead of R(z). In fact, we
can obtain them by a similar analysis in D(z). However, we do not include it here. Therefore
we get

exp(−2ωt)
δ

2

∫
D(z)

u2da ≤ δ
∂2E

∂z2
. (4.17)

Estimates (4.16) and (4.17) imply that

∂E(z, t)

∂t
≤ −β ∂E

∂z
+ δ

∂2E

∂z2
. (4.18)

A direct consequence of the previous estimates (see [20]) is that

E(z, t) ≤ exp(Kz −Qt) sup
0≤s≤t

[
exp(Qs)E(0, s)

] z

(4πδ)1/2

∫ t

0

(t− s)−3/2 exp
(
− z2

4δ(t− s)

)
ds,

(4.19)
where

K =
β

2δ
, Q = K2δ. (4.20)
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Let us denote

M(z, t) =
z

(4πδ)1/2

∫ t

0

s−3/2 exp

(
− z2

4δs

)
ds. (4.21)

Then, we obtain

E(z, t) ≤ exp(Kz −Qt) sup
0≤s≤t

[
exp(Qs)E(0, s)

]
M(z, t). (4.22)

If we make the change of variable τ 2 = z2/4δs, we see that

M(z, t) = erfc
z

(4δt)1/2
. (4.23)

If we recall the estimate (2.32), we get

E(z, t) ≤ A(t)

z
exp

(
Kz − z2

4δt

)
, (4.24)

where
A(t) = (4δt)1/2 exp(−Qt) sup

0≤s≤t

[
exp(Qs)E(0, s)

]
. (4.25)

Estimate (4.24) is very similar to the one obtained in the study of the parabolic version of the
system. The main difference is the multiplication by the function exp(Kz). But for large values
of z the behaviour is very similar. We have proved the following theorem.

Theorem 4.1 Let (u, v) be a solution of the problem determined by the system (1.3), (1.4)
with conditions (2.1)–(2.4) and (4.1). We further assume that the function f(v) satisfies (4.2).

Then the spatial decay is asymptotically controlled by the factor exp
(
Kz − z2

4δt

)
.

5 Hyperbolic problem: δ = 0

In this section we study the problem of Section 4 in the particular case δ = 0. That is, we
consider the system (1.2), (1.4) with conditions (2.1)–(2.4) and (4.1). We do not impose the
condition (2.5), but the conditions (4.2). Our system corresponds to a couple of a hyperbolic
equation with an ordinary differential equation. The arguments of this section are inspired by
the papers [3, 4, 7]. Again the exponentially weighted Poincaré inequality plays a relevant role
to overcome the new difficulties proposed by the system. In fact the use of this inequality allows
us to recover classical arguments to this new situation. If we define the function

Γ(z, t) = −
∫ t

0

∫
D(z)

exp(−2ωs)v,1v,sdads, (5.1)

we obtain

Γ(z + h, t)− Γ(z, t) = −1

2

∫ z+h

z

∫
D(z)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2F (v)

)
dV

−
∫ t

0

∫ z+h

z

∫
D(z)

exp(−2ωs)
(
ω(u2 + εv2,s + v,iv,i − 2F (v))− σvu+ γu2 + (1− εf ′(v))v2,s + uv,s

)
dV ds.

(5.2)

12



Hence,

∂Γ(z, t)

∂z
= −1

2

∫
D(z)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2F (v)

)
da

−
∫ t

0

∫
D(z)

exp(−2ωs)
(
ω(u2 + εv2,s + v,iv,i − 2F (v))− σvu+ γu2 + (1− εf ′(v))v2,s + uv,s

)
da ds.

(5.3)

From (5.1) we find that
∂Γ(z, t)

∂t
= − exp(−2ωt)

∫
D(z)

v,1v,t da. (5.4)

It is clear that we can obtain a similar analysis in D(z) to the one proposed in the previous
section for R(z). However, we do not include it here to write a shorter paper. In a similar way
to (4.16), we can obtain the following inequality∣∣∣∣∂Γ(z, t)

∂t

∣∣∣∣+ τ
∂Γ(z, t)

∂z
≤ 0, (5.5)

where τ is a calculable positive constant which also depends on time t0. From (5.5) we get

∂Γ(z, t)

∂t
+ τ

∂Γ(z, t)

∂z
≤ 0 (5.6)

and
∂Γ(z, t)

∂t
− τ ∂Γ(z, t)

∂z
≥ 0. (5.7)

Integrating (5.6) we obtain

Γ(z, τ−1(z − z∗)) ≤ 0, z ≥ z∗. (5.8)

Similarly, integrating (5.7) it follows

Γ(z, τ−1(z∗∗ − z)) ≥ 0, z∗∗ ≥ z. (5.9)

Inequalities (5.8) and (5.9) imply that, for each finite time t, the asymptotic condition

lim
z→∞

Γ(z, t) = 0 (5.10)

holds.
Now we consider

Eω(z, t) =
1

2

∫ ∞
z

∫
D(η)

exp(−2ωt)
(
u2 + εv2,t + v,iv,i − 2F (v)

)
dV

+

∫ t

0

∫ ∞
z

∫
D(η)

exp(−2ωs)
(
ω(u2 + εv2,s + v,iv,i − 2F (v))− σvu+ γu2

+ (1− εf ′(v))v2,s + uv,s

)
dV ds.

(5.11)

Therefore, (5.6) implies that
Eω(z, t) ≤ Eω(z∗, 0), (5.12)
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where z, z∗ and t are related by t = τ−1(z − z∗). In a similar way, we get

Eω(z, t) ≥ Eω(z∗∗, 0), (5.13)

for t = τ−1(z∗∗ − z). From (5.12) and (5.13) we conclude that

Eω(z, t) ≤ Eω(z∗, t∗), (5.14)

for |t− t∗| ≤ τ−1(z − z∗). Hence, we have proved the following result.

Theorem 5.1 Let (u, v) be a solution of the initial-boundary-value problem (1.2), (1.4) satis-
fying (2.1)–(2.4) and (4.1)–(4.2). Then, the energy function Eω(z, t) defined in (5.11) satisfies
inequality (5.14) whenever |t− t∗| ≤ τ−1(z−z∗), where τ is a positive constant satisfying (5.5).

If we define the measure

E∗ω(z, t) =

∫ t

0

Eω(z, s) ds, (5.15)

the following inequalities can be obtained as in [3]:

E∗ω(z, t) ≤ 0, τ t ≤ z, (5.16)

E∗ω(z, t) ≤ exp(2ωt)
(

1− z

τt

)
E∗ω(0, t), τ t ≥ z. (5.17)

It is worth noting that (5.16) implies that the solutions of our problem vanish whenever τt ≤ z.
That is u = v = 0, for τt ≤ z. This is a domain of influence type result. Hence, we have proved:

Corollary 5.1 Let (u, v) be a solution of the system (1.2), (1.4) satisfying (2.1)–(2.4) and
(4.1)–(4.2). Then u = v = 0, when τt ≤ z.

6 Further comments and conclusions

The arguments proposed in the above sections also can be applied to the one-dimensional case.
We mean the case that R corresponds to a semi-infinite line. Therefore, the condition (2.3) has
no meaning and the condition (2.2) becomes v(0, t) = vD(t), u(0, t) = uD(t).

In this paper we have proved the following results:

(1) For the parabolic problem determined by (1.1), (1.3), (2.1)–(2.5), the solutions satisfy the

decay (2.35), for fixed t. That is the decay is asymptotically controlled by exp
(
−Nz2

4t

)
,

where N is given by (2.14).

(2) For the parabolic problem determined by (1.1), (1.2) with σ > 0 and conditions (2.1)–
(2.4) and (3.2), we obtain a nonexistence result. That is, no solution in the measure of
Φ(z, t) can exist for all value of z, whenever Φ(0, t) < 0, where Φ(z, t) is defined by (3.3).

(3) For the hyperbolic/parabolic problem determined by (1.3)–(1.4), (2.1)–(2.4), satisfying
(4.1) and (4.2), the spatial decay of solutions is asymptotically controlled by the factor
exp(Kz − z2

4δt
), where K is given in (4.20).
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(4) For the hyperbolic problem determined by (1.2)–(1.4) with (2.1)–(2.4), satisfying (4.1)–
(4.2), the energy function Eω(z, t) defined by (5.11) satisfies Eω(z, t) ≤ Eω(z∗, t∗), whenever
|t−t∗| ≤ τ−1(z−z∗), where τ is a positive constant satisfying (5.5). Moreover, the solutions
of our problem vanish, i.e., u = v = 0, whenever τt ≤ z. This is a “domain of influence”
result.
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7 Appendix

Here, we shall prove some properties of the function f(v) appearing in the systems of equations
for the different sections.

(A) The functions f(v) = −a|v|nv + b|v|n2 v + µ1v, where a, µ1, n > 0 satisfy the condition
(2.5).

In fact, we have that

f(v)v = −a|v|n+2 + b|v|
n
2 v2 + µ1v

2 = −a|v|n+2 + b|v|
n
2
+1|v|+ µ1v

2. (7.1)

From the A-G inequality, for ε > 0, it follows

f(v)v ≤ −a|v|n+2 +
bε

2
|v|n+2 +

b

2ε
v2 + µ1v

2 ≤
(
−a+

|b|ε
2

)
|v|n+2 +

|b|
2ε
v2 + µ1v

2. (7.2)

We can take ε > 0 such that −a+
|b|ε
2

= 0, that is ε =
2a

|b|
> 0. Therefore,

f(v)v ≤ b2

4a
v2 + µ1v

2 ≤ µv2, (7.3)

for µ ≥ b2

4a
+ µ1, and the result follows.

(B) The functions f(v) = −a|v|nv + b|v|n2 v + µ1v, where a, µ1, n > 0 satisfy the condition
(3.2).

Now we prove the claim. We consider α = 1 +
n

2
> 1. Then,

f(v)v = −a|v|n+2 + b|v|
n
2
+1|v|+ µ1v

2. (7.4)

Again, from the A-G inequality, it follows

f(v)v ≤
(
−a+

|b|ε
2

)
|v|n+2 +

|b|
2ε
v2 + µ1v

2. (7.5)

We can take ε > 0 such that −a+
|b|ε
2

=
a

2
, that is ε =

a

|b|
> 0. Hence,

f(v)v ≤ −a
2
|v|n+2 +

b2

2a
v2 + µ1v

2 ≤ −a
2
|v|2α +

(
b2

2a
+ µ1

)
v2 ≤ µv2, (7.6)

for µ ≥ b2

2a
+ µ1.

(C) The functions f(v) = −a|v|nv + b|v|n2 v + µ1v, where a, µ1, n > 0 satisfy (4.2).

We prove the first inequality.

F (v) =

∫ v

0

f(s)ds =

∫ v

0

[
−a|s|ns+ b|s|

n
2 s+ µ1s

]
ds

= v2
[
−a
n+ 2

|v|n +
2b

n+ 4
|v|n/2 +

µ1

2

]
.

(7.7)
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Since −a/(n+ 2) < 0, there exist two constants M1 < M2 such that

−a
n+ 2

|v|n +
2b

n+ 4
|v|n/2 +

µ1

2
< 0, (7.8)

if v < M1 or v > M2. Let us consider > 0, µ∗ ≥ max
v∈[M1,M2]

[
−a
n+ 2

|v|n +
2b

n+ 4
|v|n/2 +

µ1

2

]
.

So, F (v) ≤ µ∗v2 and the result follows.

Now, we prove the second inequality. An easily computation gives us that

f ′(v) = −a(n+ 1)|v|n + b
(n

2
+ 1
)
|v|n/2 + µ1. (7.9)

Since −a(n + 1) < 0, there exist two constants K1 < K2 such that f ′(v) < 0 whenever
v < K1 or v > K2. Let us consider ν > 0, ν ≥ max

v∈[K1,K2]
[f ′(v)]. Therefore, −f ′(v) ≥ −ν.
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