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SUMMARY

The paper presents a robust fault estimation approach for a class of non-linear discrete-time systems. In
particular, two sources of uncertainty are present in the considered class of systems, i.e., an unknown
input and an exogenous external disturbance. Thus, apart from simultaneous state and fault estimation, the
objective is to decouple the effect of an unknown input while minimizing the influence of the exogenous
external disturbance within theH∞ framework. The resulting design procedure guarantees that a prescribed
disturbance attenuation level is achieved with respect to the state and fault estimation error while assuring
the convergence of the observer. The core advantage of the proposed approach is its simplicity by reducing
the fault estimation problem to matrix inequalities formulation. In addition, the design conditions ensure the
convergence of the observer with guaranteedH∞ performance. The effectiveness of the proposed approach
is demonstrated by its application to a Twin Rotor MIMO System.
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1. INTRODUCTION

Fault diagnosis aims at deciding if a fault has occurred (fault detection), finding in which
component the fault is located (fault isolation), and identifying the fault by estimating the size (fault
identification and estimation) [3]. Thus, fault diagnosis can be seen as a three-step procedure, which
includes fault detection, isolation and identification. In the literature, the problem of fault detection
and isolation (FDI) has been studied widely. For an overview of the main approaches the reader is
referred to several books, e.g. [12, 5, 18, 9, 23, 47].

However, the fault identification and estimation task has been studied less, until recent years
when it has been addressed due to its link with the active Fault-Tolerant Control (FTC) problem
[3]. In case that a fault accommodation strategy is needed, an active FTC requires on-line fault
diagnosis including not only FDI but also fault identification and estimation. Otherwise, without
this knowledge, an appropriate compensation of the fault effect is impossible.
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Many books have been published in the last decade on the emerging problem of FTC, which
deal with fault identification and estimation problems. In particular, [19], which is mainly devoted
to fault diagnosis and its applications, provides some general rules for hardware-redundancy-based
FTC. On the other hand, the concepts of achieving passive FTC are introduced in [26], where the
authors also investigate the problem of performance and stability of FTC under imperfect fault
diagnosis. In particular, they consider (under some assumptions) the effect of delayed fault detection
and imperfect fault identification. However, the fault diagnosis scheme is treated separately during
the design and no real integration of fault diagnosis and FTC is proposed. FTC is also treated in
[30], where a number of practical FTC case studies is presented, i.e., a winding machine, a three-
tank system, and an active suspension system.

The problem of fault estimation, which can also be perceived as the estimation of an unknown
input, has been addressed using different strategies. Some of these strategies deserve particular
attention, namely: augmenting the state vector by an unknown input, two-stage Kalman filter [21],
minimum variance input and state estimator [13, 22], adaptive estimation [52], sliding mode high-
gain observers [46] and finally, an H∞ approach [29]. The fault estimation can also be formulated
as a parameter estimation problem [39] leading to the application of any parameter estimation
algorithms such as least squares, generalized/extended least squares or instrumental variables.
Recently, a lot of effort has been devoted to extend the previous approaches to non-linear systems.
For example, [6] proposed a unified framework based on a model reference approach for non-linear
systems that can be represented by means of Takagi-Sugeno models. In [41], a fault estimation
scheme for non-linear systems that can be modeled in linear parameter varying (LPV) form is
presented. In [45], an observer scheme that estimates simultaneously the state and the fault is
presented. On the other hand, the robustness of the fault estimation algorithm can be stated as the
degree to which the sensitivity of the fault estimates is invariant in the presence of model parameter
variations, disturbances, uncertainty and noise.

For non-linear systems, the observer-based FDI approaches have gained a lot of interest [35, 2]
and FDI formulations for some classes of non-linear systems have been derived. In [16], state-affine
non-linear systems have been handled, and in [34, 14], the class of input-affine systems has been
considered, among others. The work [33] presents a detailed geometric description of how to tackle
the residual generation problem for non-linear systems. On the other hand, [25] presents a procedure
to design a bank of extendedH∞ observers for sensor FDI for a certain class of non-linear systems.
There are also approaches that employ soft computing techniques, e.g. neural networks [28].

In this paper, a robust fault estimation approach for discrete-time non-linear systems based on
the general idea of Unknown Input Observer (UIO) [11, 47] and theH∞ framework is proposed, in
order to address the issue of robustness in the presence of uncertainty and disturbances.

A large amount of knowledge on using these techniques for model-based fault diagnosis has been
acquired for the last three decades and can be accessed through the literature (see, e.g., [47] and the
references therein). As an example, the high gain observer for Lipschitz systems was applied for the
purpose of fault diagnosis in [17]. One of the standard methods for observer design, which can be
applied for fault diagnosis and FTC, consists in using the non-linear change of coordinates to bring
the original system into a linear one (a pseudo linear one) [16, 20]. It is worth noting that there are
efficient approaches for bilinear systems [15]. It should be also pointed out that, when the feasibility
condition of the above schemes are not matched, then the well known Extended Kalman Filter
(EKF) can be applied in both a stochastic and a deterministic context (see, e.g., [47]). However, its
main drawback is related to problems with its convergence. Concerning fault estimation schemes,
some interesting approaches were proposed for a multi-model description of non-linear systems.
In particular, in [40], the authors introduced a fault estimator that is based on the output error and
its derivative. The resulting derivative term of the fault is treated as a bounded disturbance and its
effect is suitably minimized, and finally the scheme is formed within the convenient augmented
structure (cf. [32, 31]). An interesting structure was proposed in [43]. Along with fault estimation,
it guarantees robust performance with respect to the output error. Apart from augmented structures,
there are methods that employ adaptive or sliding mode paradigms (see, e.g. [44, 46]).



AN LMI APPROACH TO ROBUST FAULT ESTIMATION FOR A CLASS OF NON-LINEAR SYSTEMS 3

The approach proposed in this work can be perceived as a combination of linear-system
strategies [13, 29] for a class of non-linear systems [42, 51]. It should also be pointed out that
the proposed description of non-linearity constitutes an alternative to other approaches presented in
the literature [1, 27, 37, 36, 33].

The main contribution of this paper is the novel robust state and fault estimator design procedure.
In particular, two sources of uncertainty are present in the system being considered, i.e., an
unknown input and an exogenous external disturbance. Thus, apart from simultaneous state and
fault estimation, the objective is to decouple the effect of an unknown input as well as to minimize
the influence of the exogenous external disturbance within theH∞ framework. The resulting design
procedure guarantees that a prescribed disturbance attenuation level is achieved with respect to the
state and fault estimation error while assuring the convergence of the observer. The core advantage
of the proposed approach is its simplicity by reducing the fault estimation problem to matrix
inequalities formulation. In addition, the design conditions ensure the convergence of the observer
with guaranteedH∞ performance. Furthermore, it is shown that a solution can be found by solving
a set of Linear Matrix Inequalities (LMIs), a problem for which efficient solvers are available
nowadays. The effectiveness of the proposed method is demonstrated through its application to
a two degree of freedom helicopter subject to actuator faults. It will be shown that these results
clearly recommend the proposed approach for the purpose of active FTC [7, 10, 49].

The paper is organised as follows. Section 2 presents preliminaries regarding the problem being
undertaken. In Section 3, the robust fault estimation approach is proposed while in Section 4, the
unknown input design procedure is described. Section 5 presents the application of the proposed
approach to a Twin Rotor MIMO System (TRMS), showing its effectiveness and performance.
Finally, the last section concludes the paper.

2. PRELIMINARIES

Let us consider a non-linear discrete-time system

xk+1 = Axk + Buk + Ddk + g (xk,uk) + Bfk + W 1wk, (1)
yk = Cxk + W 2wk, (2)

where xk ∈ X ⊂ Rn is the state, uk ∈ U ∈ Rr stands for the input, yk ∈ Rm denotes the output,
fk ∈ Rr stands for the fault, dk ∈ Rq is the unknown input disturbance, wk ∈ l2 is a an exogenous
disturbance vector satisfying

l2 = {w ∈ Rn| ‖w‖l2 < +∞} , ‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (3)

Finally, W 1 ∈ Rn×n and W 2 ∈ Rm×n stand for the exogenous disturbance distribution matrices.
For the purpose of this work, the following assumptions are considered:

Assumption 1: There exists a matrix M such that

(g (a,u)− g (b,u))
T

(a− b) ≤ (a− b)TM(a− b), ∀a, b ∈ X, u ∈ U. (4)

Assumption 2: There exists a matrix M such that

(g (a,u)− g (b,u))
T

(g (a,u)− g (b,u)) ≤ (a− b)TMTM(a− b), ∀a, b ∈ X, u ∈ U.
(5)

Assumption 3: The fault satisfies

εk = fk+1 − fk, εk ∈ l2. (6)
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Assumption 4: The following rank condition is satisfied

rank(D) = rank(CD) = q, q ≤ m. (7)

It is worth noting that, if MTM = γ2I then the relation underlying Assumption 2 (cf. [42, 51])
becomes a usual Lipschitz condition [1, 27, 37, 36] with γ being a Lipschitz constant. This appealing
property makes the employed strategy more general than those presented in the literature [1, 27, 37,
36]. Moreover, a significant progress was recently obtained in the observer design for non-linear
systems by introducing the so-called one-sided Lipschitz condition [53], which means that a wider
spectrum of systems can be tackled with the new approach. Indeed, if M = ζI , then the relation
underlying Assumption 1 becomes a usual one-sided Lipschitz condition, which is imposed along
with the usual Lipschitz condition (see [53] for further details and explanations). Thus, it is evident
that this appealing property makes again the employed strategy more general than those presented
in the literature (see, [53] and the references therein). Finally, Assumption 3 is required to attain a
suitable fault estimation quality while Assumption 4 is used to decouple the effect of an unknown
input (see, e.g., [13, 4] for further details).

Subsequently, using the Differential Mean Value Theorem (DMVT) [50], it can be shown that

g (a,u)− g (b,u) = Mx,u(a− b), (8)

with

Mx,u =


∂g1
∂x

(c1,u)

...
∂gn
∂x

(cn,u)

 , (9)

where c1, . . . , cn ∈ Co(a, b), ci 6= a, ci 6= b, i = 1, . . . , n. Assuming that

āi,j ≥
∂gi(x)

∂xj
≥ ai,j , i = 1, . . . , n, j = 1, . . . , n, (10)

it is clear that there exists a matrix M ∈M such that

M =
{
M ∈ Rn×n|āi,j ≥ mi,j ≥ ai,j , i, j = 1, . . . , n,

}
, (11)

which means that conditions of Assumptions 1 and Assumptions 2 can be satisfied.
Given the above preliminaries and assumptions, the objective of the subsequent part of this paper

is to provide a novel state and fault estimation strategy for the class of non-linear discrete-time
systems (1)–(2). The main advantage of the proposed approach is the fact that apart from estimating
simultaneously the fault and the state, it is able to decouple the effect of unknown inputs and
minimize the influence of external disturbances within the H∞ framework.

3. FAULT ESTIMATION STRATEGY

Considering the system model (1)–(2), the problem is to design an observer that will be able to
estimate simultaneously the state xk and the fault fk, and decouple the effect of the unknown input
dk. For that purpose, the following structure is proposed

zk+1 = Nzk + Guk + Lyk + TBf̂k + Tg (x̂k,uk) , (12)
x̂k = zk −Eyk, (13)

f̂k+1 = f̂k + F (yk −Cx̂k). (14)

Using (12)–(14), the state estimation error can be formulated as follows

ek = xk − x̂k = xk − zk + ECxk + EW 2wk = Txk − zk + EW 2wk, (15)
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where
T = I + EC, (16)

and hence

zk = Txk + EW 2wk − ek. (17)

Following (15), the state estimation error obeys

ek+1 = Txk+1 − zk+1 + EW 2wk+1. (18)

Substituting (1) and (12) into (18) gives the state estimation error dynamics

ek+1 = Nek + [TA−NT −LC]xk + [TW 1 −NEW 2 −LW 2]wk

+ TB
[
fk − f̂k

]
+ T [g (xk,uk)− g (x̂k,uk)] (19)

+ [TB −G]uk + TDdk + EW 2wk+1.

From (19), it is evident that to attain the unknown input decoupling, it is necessary to set

TD = 0, (20)

which, considering (16), is equivalent to

[I + EC]D = 0, (21)

and under Assumption 4 leads to:

E = −D[(CD)T (CD)]−1(CD)T . (22)

Similarly, setting
TA = NT + LC, (23)

TB −G = 0, (24)

sk = g (xk,uk)− g (x̂k,uk) , (25)

with the fault estimation error defined as

ef,k = fk − f̂k, (26)

gives

ek+1 = Nek + Tsk + TBef,k + [TW 1 −NEW 2 −LW 2]wk + EW 2wk+1. (27)

Substituting T = I + EC into (23) yields

N = TA−NEC −LC = TA−KC, (28)

where

K = NE + L. (29)

From (29), it follows that:

ek+1 = Nek + Tsk + TBef,k + [TW 1 − [NE + L]W 2]wk + EW 2wk+1. (30)

Bearing in mind that NE + L = NE + K −NE = K, equation (30) can be written as follows

ek+1 = [TA−KC]ek + Tsk + TBef,k + [TW 1 −KW 2]wk + EW 2wk+1. (31)
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Considering the state estimation error description, a fault estimation error can be described in a
similar manner

ef,k+1 = fk+1 − f̂k+1

= fk+1 − f̂k − FCek − FW 2wk

= fk+1 − fk + fk − f̂k − FCek − FW 2wk (32)
= −FCek + ef,k + εk − FW 2wk.

The state (31) and fault (32) estimation errors can be described in a condensed form by defining
some new variables

ēk+1 =
[
eTk+1, e

T
f,k+1

]T
, (33)

vk =
[
wT

k , ε
T
k ,w

T
k+1

]T
, (34)

which leads to the following relation

ēk+1 =

[
TA−KC TB
−FC I

]
ēk +

[
T
0

]
sk +

[
TW 1 −KW 2 0 EW 2

−FW 2 I 0

]
vk. (35)

For the purpose of further analysis, equation (35) can be described in a more compact form

ēk+1 = Xēk + Y sk + Zvk, (36)

where

X = Ā− K̄C̄ =

[
TA TB
0 I

]
−
[
K
F

] [
C 0

]
, (37)

Y =

[
T
0

]
, (38)

Z = W̄ − K̄V̄ =

[
TW 1 0 EW 2

0 I 0

]
−
[
K
F

] [
W 2 0 0

]
. (39)

Taking into account the evolution of both state and fault estimation errors (36), it is possible to
provide a new observer design procedure, which is comprehensively detailed in the subsequent
section.

4. OBSERVER DESIGN

The following theorem provides the procedure for designing the observer for the system (1)–(2)
using the approach proposed in the previous section:

Theorem 1
For a prescribed vk attenuation level µ, the observer design problem for the system (1)–(2) is
solvable if there exist N , U , P � 0, α > 0, β > 0 such that for all M ∈M the following condition
is satisfied:

I − P + αV T (M + MT )V T −αV T 0 Ā
T
P − C̄

T
NT V TMTUT

−αV −βI 0 Y TP 0

0 0 −µ2I W̄
T
P − V̄

T
NT 0

PĀ−NC̄ PY PW̄ −NV̄ −P 0

UMV 0 0 0 βI −U −UT

 ≺ 0,

(40)

with N = PK̄.
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Proof
The problem of H∞ observer design [24] is to determine the matrices N , U , P such that

lim
k→∞

ēk = 0 for vk = 0, (41)

‖ēk‖l2 ≤ µ‖vk‖l2 , for vk 6= 0, ē0 = 0. (42)

In order to solve the above problem, it is sufficient to find a Lyapunov function Vk such that (see,
e.g., [48] for further details):

∆Vk + ēTk ēk − µ2vT
k vk < 0, k = 0, . . .∞, (43)

where

∆Vk = Vk+1 − Vk, (44)

Vk = ēTkP ēk, P � 0, (45)

∆Vk = ēTk+1P ēk+1 − ēTkP ēk. (46)

Consequently, using (36)

∆Vk + ēTk ēk − µ2vT
k vk =

ēTk
(
XTPX + I − P

)
ēk+

ēTk
(
XTPY

)
sk+

ēTk
(
XTPZ

)
vk+

sTk
(
Y TPX

)
ēk+

sTk
(
Y TPY

)
sk+

sTk
(
Y TPZ

)
vk+

vT
k

(
ZTPX

)
ēk+

vT
k

(
ZTPY

)
sk+

vT
k

(
ZTPZ − µ2I

)
vk < 0.

(47)

and by defining

v̄k = [ēTk , s
T
k , v

T
k ]T , (48)

it can be shown that (47) is equivalent to

v̄T
k

 XTPX + I − P XTPY XTPZ

Y TPX Y TPY Y TPZ

ZTPX ZTPY ZTPZ − µ2I

 v̄k ≺ 0. (49)

Following Assumption 1, it is evident that

sTk ek ≤ eTkMek =
1

2
eTk (M + MT )ek. (50)

By defining

V =
[
I 0

]
, (51)

the state estimation error is reflected by

ek = V ēk =
[
I 0

] [ ek
ef,k

]
. (52)
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Using (52), inequality (50) can be written as

sTk V ēk ≤
1

2
ēTk V

T (M + MT )V ēk,

which is equivalent to

1

2
ēTk V

T (M + MT )V ēk −
1

2
sTk V ēk −

1

2
ēTk V

Tsk ≥ 0. (53)

Thus, for any α > 0

αv̄T
k

V T (M + MT )V −V T 0
−V 0 0
0 0 0

 v̄k ≥ 0. (54)

Similarly, from Assumption 2 it can be shown that

sTk sk ≤ eTkM
TMek, (55)

which is equivalent to

ēTk V
TMTMV ēk − sTk sk ≥ 0. (56)

Thus, for any β > 0

βv̄T
k

V TMTMV 0 0
0 −I 0
0 0 0

 v̄k ≥ 0. (57)

Now, using the S-procedure for (49), (54) and (57) it can be concluded that

v̄T
k

XTPX + I − P + αV T (M + MT )V + βV TMTMV XTPY − αV T XTPZ
Y TPX − αV Y TPY − βI Y TPZ

ZTPX ZTPY ZTPZ − µ2I

 v̄k ≺ 0.

(58)

Rewriting (58) asXT

Y T

ZT

P
[
X Y Z

]
+

I − P + αV T (M + MT )V + βV TMTMV −αV T 0
−αV −βI 0

0 0 −µ2I

 ≺ 0,

(59)
and applying Schur complements to (59) yields

I − P + αV T (M + MT )V + βV TMTMV −αV T 0 XTP

−αV −βI 0 Y TP

0 0 −µ2I ZTP
PX PY PZ −P

 ≺ 0. (60)

Next, let us remind the following lemma [8]:

Lemma 1
The following statements are equivalent

1. There exists X � 0 such that
V TXV −W ≺ 0, (61)

2. There exists X � 0 such that [
−W V TUT

UV X −U −UT

]
≺ 0. (62)
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Applying Lemma 1 to (60) and then substituting

PX = PĀ− PK̄C̄ = PĀ−NC̄, (63)

PZ = PW̄ − PK̄V̄ = PW̄ −NV̄ , (64)

where N = PK̄, lead to (40), which completes the proof.

Finally, the design procedure boils down to solving (40) for M ∈M with respect to N , U , P , α,
β and then calculating

K̄ = P−1N . (65)

Note that M, defined by (11), can be equivalently described by

M =

{
M(α) : M(α) =

N∑
i=1

αiM i,

N∑
i=1

αi = 1, αi ≥ 0

}
, (66)

where N = 2n
2

. Note that this is a general description, which does not take into account that some
elements of M may be constant. In such cases, N is given by N = 2(n−c)

2

, where c stands for the
number of constant elements of M .

Thus, solving (40) with respect to N , U , P , α, β is equivalent to solving (for i = 1, . . . , N )
I − P + αV T (M i + MT

i )V T −αV T 0 Ā
T
P − C̄

T
NT V TMT

i U
T

−αV −βI 0 Y TP 0

0 0 −µ2I W̄
T
P − V̄

T
NT 0

PĀ−NC̄ PY PW̄ −NV̄ −P 0

UM iV 0 0 0 βI −U −UT

 ≺ 0,

(67)

and then determining

K̄ = P−1N . (68)

Finally, it should be underlined that when (67) is feasible (for i = 1, . . . , N ), then all its diagonal
elements should be negative definite. In particular,

I − P + αV T (M i + MT
i )V T ≺ 0. (69)

Thus, when V T (M i + MT
i )V T 4 0, then it is evident that the feasibility of (67) can be

obtained more easily than in the opposite case. However, when V T (M i + MT
i )V T 3 0, then the

optimization procedure will select α sufficiently close to zero in order to tackle this unappealing
effect. A similar property underlines the one-sided Lipschitz condition-based design procedure
proposed in [53]. However, as it was already mentioned, the proposed approach is perceived as
a generalisation of the former one.

5. ILLUSTRATIVE EXAMPLE

Given a complete design procedure, the objective of this section is to provide a comprehensive
performance study regarding the proposed approach along with a comparative study with respect to
the Takagi-Sugeno (TS) based approach proposed by [4], shortly recalled in the Appendix.
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5.1. Case study description

Let us consider a twin rotor multiple-input multiple-output system (TRMS), portrayed in Fig. 1.
This system is considered a challenging control problem because it includes high nonlinearities
and couplings between axes, as can be seen in its model, described by the following differential
equations

dωh

dt
=

kak1
JtrRa

uh −
(
Btr

Jtr
+

k2a
JtrRa

)
ωh −

f1(ωh)

Jtr
, (70)

dΩh

dt
=
ltf2(ωh) cos θv − kohΩh − f3(θh) + f6(θv)

KD cos2 θv +KE sin2 θv +KF

+
kmωv sin θvΩv(KD cos2 θv −KE sin2 θv −KF − 2KE cos2 θv)

(KD cos2 θv +KE sin2 θv +KF )2

+
km cos θv

(
kak2

Ra
uv −

(
Bmr +

k2
a

Ra

)
ωv − f4(ωv)

)
Jmr(KD cos2 θv +KE sin2 θv +KF )

, (71)

dθh
dt

= Ωh, (72)

dωv

dt
=

kak2
JmrRa

uv −
(
Bmr

Jmr
+

k2a
JmrRa

)
ωv −

f2(ωv)

Jmr
, (73)

dΩv

dt
=
lmf5(ωv) + kgΩhf5(ωv)cosθv − kovΩv

Jv

+
g((KA −KB)cosθv −KC sin θv)− Ω2

hKH sin θv cos θv
Jv

+
kt

(
kak1

Ra
uh −

(
Btr +

k2
a

Ra

)
ωh − f1(ωh)

)
JvJtr

, (74)

dθv
dt

= Ωv, (75)

where ωh is the rotational velocity of the tail rotor, Ωh is the angular velocity of the TRMS
around the vertical axis, θh is the yaw angle of the beam, ωv is the rotational velocity of the
main rotor, Ωv is the angular velocity of the TRMS around the horizontal axis, and θv is the
pitch angle of the beam. The system input vector is u = [uh, uv]T while the system state vector
is x = [ωh,Ωh, θh, ωv,Ωv, θv]T . The rest of the parameters are inherited from [38].

5.2. Application of the proposed approach

The non-linear model (70)–(75) has been discretized using Euler method with sampling time
Ts = 0.01s, such that it can be expressed as (1)–(2) around an equilibrium point xeq, as follows

xk+1 = A(xeq)xk + B(xeq)uk + Ddk + g (xeq,xk,uk) + B(xeq)fk + W 1wk,
yk = Cxk + W 2wk,

(76)

where A(xeq) and B(xeq) are the frozen system matrices at the equilibrium point, while the non-
linear function g (xeq,xk,uk) is defined as

g (xeq,xk,uk) = (A(xk)−A(xeq))xk, (77)
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Figure 1. Components of the twin rotor MIMO system

In particular, for xeq = 0, the matrices A(xeq) and B(xeq) are as follows:

A =


0.8534 0 0 0 0 0

0 0.9588 −0.0352 −0.0003 0 0.0014
0 0.1000 1.0000 0 0 0
0 0 0 0.9896 0 0
0 0 0 0 0.8404 −0.4116
0 0 0 0 0.1000 1.0000

 ,B =


0.2782 0

0 0.0026
0 0
0 0.0845
0 0
0 0

 .

In a first step, it will be assumed that the whole state vector is directly measured, such that the
remaining of the system matrices are as follows

D = [0.01, 0.03, 0.02, 0.05, 0.01, 0.04]
T

C = I6

W 1 = 0.01I6

W 2 = 0.01I6

. (78)

It is worth remarking that in this work the matrix D is used to show the relevant property of
disturbance decoupling that characterizes the proposed strategy. In a real application to a TRMS, this
matrix should be identified from available real data, in order to describe the possible disturbances
affecting the system.

By varying each component of xk within its possible domain, defined by the physical constraints
of the TRMS, it is possible to obtain the matrices:

Mmax =


−0.0047 0 0 0 0 0
0.1937 0.0682 0.0687 −0.0002 0 0

0 0 0 0 0 0
0 0 0 −0.0064 0 0
0 0.0820 0 0.4531 0 0
0 0 0 0 0 0

 ,

Mmin =


−0.2705 0 0 0 0 0
0.0032 0.0682 0.0583 −0.0063 0 0

0 0 0 0 0 0
0 0 0 −0.2050 0 0
0 −0.0820 0 0.0115 0 0
0 0 0 0 0 0

 .
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which contain all elements āi,j and ai,j , i, j = 1, . . . , n defining (11), respectively. Afterwards,
taking into account all the possible combinations of elements in Mmax and Mmin, 128 matrices
M i are obtained (see (67)).

Using the design procedure described in Section 4, the following observer matrices are obtained
with µ = 10:

N =


−1.4791 −3.0394 −1.0018 −3.0841 −0.5609 −2.0607
0.5946 2.9670 0.8084 3.0998 0.4621 1.6678
−0.2378 −1.4955 −0.3327 −1.3313 −0.2603 −0.9612
−0.1301 −1.0594 −0.2551 −1.5081 −0.1532 0.5293
−0.1279 −0.7973 −0.2482 −0.7148 −0.0020 −0.5117
−0.1756 −1.3950 −0.4622 −1.0480 −0.2533 0.8113

 ,

G =


0.2732 −0.0077
−0.0149 −0.0205
−0.0099 −0.0154
−0.0248 0.0461
−0.0050 −0.0077
−0.0199 −0.0307

 F =


5.7716 0.0994
10.3356 −1.9445
3.3834 −1.9873
10.8163 10.1743
1.9016 −0.8907
6.9611 −3.9894



T

,

L =


1.6596 1.0117 −0.3472 −0.2922 −0.1188 −0.6338
−0.0377 −0.3653 0.2601 −0.3522 0.0741 0.5515
−0.0811 0.6204 0.6882 −0.2874 −0.0724 −0.3208
−0.1894 0.0546 −0.4008 0.8391 −0.2009 −0.7650
−0.0416 0.2796 −0.0942 −0.1449 0.6660 −0.5812
−0.1358 0.4240 −0.1740 −0.5575 0.0143 0.5530

 ,

T =


0.9821 −0.0536 −0.0357 −0.0893 −0.0179 −0.0714
−0.0536 0.8393 −0.1071 −0.2679 −0.0536 −0.2143
−0.0357 −0.1071 0.9286 −0.1786 −0.0357 −0.1429
−0.0893 −0.2679 −0.1786 0.5536 −0.0893 −0.3571
−0.0179 −0.0536 −0.0357 −0.0893 0.9821 −0.0714
−0.0714 −0.2143 −0.1429 0.3571 −0.0714 0.7143

 ,

E =


−0.0179 −0.0536 −0.0357 −0.0893 −0.0179 −0.0714
−0.0536 −0.1607 −0.1071 −0.2679 −0.0536 −0.2143
−0.0357 −0.1071 −0.0714 −0.1786 −0.0357 −0.1429
−0.0893 −0.2679 −0.1786 −0.4464 −0.0893 −0.3571
−0.0179 −0.0536 −0.0357 −0.0893 −0.0179 −0.0714
−0.0714 −0.2143 −0.1429 −0.3571 −0.0714 −0.2857

 .

5.3. Results

In all the results presented in the following, the tail rotor and main rotor inputs uh(k) and uv(k)
have been chosen as follows

uh(k) = 0.5 sin

(
k

100

)
, uv(k) = 0.2 sin

(
k

70

)
.

Moreover, a constant input disturbance dk = 1 has been considered, and wk has been chosen as a
uniformly distributed random vector, where each element takes values in the interval [−0.1, 0.1].
Finally, the following initial state is considered for the system (70)–(75): x0 = [0, 0.1, 0, 0, 0, 0.1]T ,
while the unknown input observer is initialized with z0 = 0 and f̂0 = 0.

The observer is tested against selected actuator fault scenarios, i.e., additive faults in the tail motor
fh(k) and additive faults in the main motor fv(k), described as follows:
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Fault scenario S1:

fh(k) =

{
−0.4 50 ≤ k ≤ 400,

0 otherwise

fv(k) = 0.

Fault scenario S2:

fh(k) = 0

fv(k) =

{
−0.6 50 ≤ k ≤ 400,

0 otherwise

Fault scenario S3:

fh(k) =

{
−0.5 50 ≤ k ≤ 400,

0 otherwise

fv(k) =

{
−0.5 50 ≤ k ≤ 400,

0 otherwise

Fault scenario S4:

fh(k) =

{
−0.02(k − 400) 50 ≤ k ≤ 400,

0 otherwise

fv(k) =

{
0.01(k − 400) 50 ≤ k ≤ 400,

0 otherwise

Figs. 2-5 present the results obtained with both the proposed approach (red dash-dot line) and the
one based on a TS representation of the TRMS (blue dash line), recalled in the Appendix. Due
to the disturbance dk, the TS approach proposed by [4] fails in correctly estimating the state, as
demonstrated by Fig. 2 and Fig. 3, where the state variables Ωv and θv, and their estimates, are
depicted and compared. Despite [4] does not consider the problem of fault estimation, it could be
demonstrated that (cf. [7] for further details)

f̂k =

(
M∑
i=1

hi(sk−1)Bi

)† [
x̂k −

M∑
i=1

hi(sk−1)
(
Aix̂k−1 + Biuk−1

)]
,

where (·)† is a pseudoinverse of its argument, is a valid solution to this problem, that would work
properly for dk = 0, but fails in presence of the disturbance dk because of the state estimation error,
as shown in Fig. 4 and Fig. 5 for f̂h(k) and f̂v(k), respectively. On the other hand, the proposed
unknown input observer (12)-(14) estimates the faults correctly.

Finally, to conclude the analysis of the proposed method, let us test its performance when some
state variables are not directly measured. To this aim, let us consider the following output equation
matrices:

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 , W 2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,
such that the design procedure provides

N =


−0.9611 −0.0954 −0.5940 −0.1823 −0.0073 −0.0560
0.0115 −0.0637 −0.4941 −0.0128 −0.0218 −0.2201
0.0095 −0.0843 −0.2652 0.0196 −0.0145 −0.1537
−0.0522 −0.0475 −0.7950 −1.1639 −0.0364 −0.1168
−0.1151 −0.1935 −1.1699 −0.6323 0.8331 −1.1843
0.2917 0.1709 1.6361 1.4959 0.0709 0.4034

 ,
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Figure 2. State variable Ωv (black line) and its estimate (red/blue lines).
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Figure 3. State variable θv (black line) and its estimate (red/blue lines).

G =


0.2731 −0.0078
−0.0152 −0.0209
−0.0101 −0.0156
−0.0253 0.0454
−0.0051 −0.0078
−0.0202 −0.0313

 , F =


3.6861 0.8946
0.1892 −1.9583
1.5411 −0.3188
0.6863 15.0053
−0.0727 −3.1447


T

,
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Figure 4. Fault in the tail motor fh (black line) and its estimate (red/blue lines).

L =


1.7340 −0.1558 0.4295 −0.2329 −0.2770
−0.0968 0.7383 0.2779 −0.4513 −0.1521
−0.0643 0.0012 1.1489 −0.3181 −0.0868
−0.1727 −0.6744 0.3279 0.9667 −0.8369
−0.0840 −0.4134 0.7682 −0.3760 −0.0347
−0.1130 0.3276 −1.2924 −0.6520 1.2684

 ,

T =


0.9818 −0.0545 −0.0364 −0.0909 0 −0.0727
−0.0545 0.8364 −0.1091 −0.2727 0 −0.2182
−0.0364 −0.1091 0.9273 −0.1818 0 −0.1455
−0.0909 −0.2727 −0.1818 0.5455 0 −0.3636
−0.0182 −0.0545 −0.0364 −0.0909 1.0000 −0.0727
−0.0727 −0.2182 −0.1455 −0.3636 0 0.7091

 ,

E =


−0.0182 −0.0545 −0.0364 −0.0909 −0.0727
−0.0545 −0.1636 −0.1091 −0.2727 −0.2182
−0.0364 −0.1091 −0.0727 −0.1818 −0.1455
−0.0909 −0.2727 −0.1818 −0.4545 −0.3636
−0.0182 −0.0545 −0.0364 −0.0909 −0.0727
−0.0727 −0.2182 −0.1455 −0.3636 −0.2909

 .

Fig. 6 presents the state variables and their estimates in the case of fault scenario S2. It can be
seen that the state is correctly estimated. The same is true for the actuator faults, as shown in Fig.
7. Finally, for completeness of the presentation, the fault estimates in the cases of fault scenarios
S3 and S4 are shown in Figs. 8 and 9, respectively, confirming the effectiveness of the proposed
approach to cope with different fault behaviors.
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Figure 5. Fault in the main motor fv (black line) and its estimate (red/blue lines).

6. CONCLUSIONS

The main objective of this paper was to propose a novel approach which can be used for the
estimation of an unknown fault signal for non-linear discrete-time stochastic systems. In particular,
the fault and state estimation is achieved through the novel approach while robustness is attained
with the H∞ method and unknown input decoupling. Moreover, the description of non-linearity
selected in this paper constitutes an interesting alternative to those presented in the literature. The
proposed design procedure is relatively simple and boils down to solving a set of linear matrix
inequalities. The presented results clearly exhibit the performance of the proposed approach when
compared with competitive existing approaches in the application to a case study based on the
TRMS. The main objective of further investigations is twofold: to design a robust adaptive threshold
for the fault obtained with the proposed approach and to develop a robust FTC scheme which
takes into account the fault estimates along with their uncertainties. Moreover, the proposed fault
diagnosis and fault-tolerant approaches will be extended in such a way that the non-linear system
will be described by the so-called state-space neural network. Taking into account the bounded
nonlinearities of the neurons forming a neural network, the approach proposed in this paper seems
to be well fitted to settle the above-mentioned task.

APPENDIX

The approach proposed in this work is compared with the one recently developed in [4]. The authors
of [4] have proposed observers for TS models subject to unknown inputs which influence states and
outputs simultaneously. Since the problem considered in the present paper is to estimate the state
and the actuator faults, the term in the output equation of [4], which may represent a sensor fault,
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Figure 6. State variables (black lines) and their estimates using the proposed approach (red lines) in S2.
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Figure 7. Faults (black lines) and their estimates using the proposed approach (red lines) in S2.

will be skipped in the following. Hence, the TS models considered in [4] are:

xk+1 =

M∑
i=1

hi(sk)[Aixk + Biuk + Bifk + W i
1wk], (79)

yk = Cxk + W 2wk, (80)
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Figure 8. Faults (black lines) and their estimates using the proposed approach (red lines) in S3.
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Figure 9. Faults (black lines) and their estimation using the proposed approach (red lines) in S4.

where hi(sk) are normalized rule firing strengths defined as

hi(sk) =
T p
j=1µF i

j
(sjk)∑M

i=1(T p
j=1µF i

j
(sjk))

(81)

and T denotes a t-norm (e.g., product). The term µF i
j
(sjk) is the grade of membership of the

premise variable sjk. Moreover, the rule firing strengths hi(sk) (i = 1, . . . ,M ) satisfy the following
constraints { ∑M

i=1 hi(sk) = 1,
0 6 hi(sk) 6 1, ∀i = 1, . . . ,M.

(82)

while the associated unknown input observer is

zk+1 =

M∑
i=1

hi(sk)[N izk + Giuk + Liyk], (83)

x̂k = zk + Eyk. (84)

The overall design procedure, which guarantees that the state estimation error ek converges
asymptotically to zero, can be reduced to solving a relatively simple set of LMIs.
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For the sake of comparison, let us notice that the TS models (79) do not contain the disturbance
term dk, such that [4] does not achieve a decoupling with respect to this term, contrarily to the
approach proposed in the present paper.
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