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Abstract – Condition monitoring schemes are essential for 

increasing the reliability and ensuring the equipment efficiency 
in industrial processes. The feature extraction and dimensionality 
reduction are useful preprocessing steps to obtain high 
performance in condition monitoring schemes. To address this 
issue, this work presents a novel diagnosis methodology based on 
high-dimensional feature reduction applied to detect multiple 
faults in an induction motor linked to a kinematic chain. The 
proposed methodology involves a hybrid feature reduction that 
ensures a good processing of the acquired vibration signals. The 
method is performed sequentially; first, signal decomposition is 
carried out by means of Empirical Mode Decomposition. Second, 
statistical-time based features are estimated from the resulting 
decompositions. Third, a feature optimization is performed to 
preserve the data variance by a Genetic Algorithm in conjunction 
with the Principal Component Analysis. Fourth, a feature 
selection is done by means of Fisher score analysis. Fifth, a feature 
extraction is performed through Linear Discriminant Analysis. 
And, finally, sixth, the different considered faults are diagnosed 
by a Neural Network-based classifier. The performance and the 
effectiveness of the proposed diagnosis methodology is validated 
experimentally and compared with classical feature reduction 
strategies, making the proposed methodology suitable for 
industry applications. 
 

Index Terms— Induction Motor, Condition Monitoring; 
Multiple Faults; Feature Reduction; Vibrations. 

I.   INTRODUCTION 

Induction motors (IM) represent the most common rotating 
electrical machines used in industry due to its robustness and 
competitive cost [1]-[2]. However, unexpected faults may 
occur during the useful life of the IM, causing unscheduled 
downtimes of the whole components associated to the 
kinematic chain. Typical faults in IM may be due to 
mechanical and electrical stresses. Mechanical stresses caused 
by overloads can produce bearing defects, rotor bar breakage, 
rotor unbalance and misalignment in couplings, whereas 

electrical stresses associated to problems in the power supply 
cause stator faults like short circuits in the stator winding [3]. 
Thus, the related condition monitoring plays a key role in the 
reliability and safety strategies of several industry applications 
[4]-[6]. Although different physical magnitudes have been 
investigated for IM condition monitoring [3], [7]-[9]; vibration 
analysis remains as the most industrially accepted approach. 
The vibration analysis is a useful and reliable tool to assess the 
IM condition since the characteristic vibration modes of any 
rotating machine changes in presence of faults [10]-[13]. Yet, 
although several methodologies applied to diagnose faults in 
electric motors have been presented during the last decades, 
most of these methodologies are focused on the analysis of a 
specific fault mode [7], [10], [14]-[15]. Indeed, the application 
of such health monitoring schemes to industrial scenarios 
presents new challenges that must be addressed, where 
different faults may appear hiding or overlapping the expected 
characteristic fault patterns. 

Typically, it is estimated the root mean square (RMS) from 
the vibration signal as a numerical indicator to assess the 
general condition of the machine [16]-[18]. In order to 
consider improved characterization of the vibration signal, the 
numerical set of features is extended to additional statistical 
time-domain, frequency domain, and also time-frequency 
domain [19]-[21], [22]. Yet, although fast Fourier transform 
and Cohen's class time-frequency distributions have been 
successfully applied [22]-[23], the simplicity and low 
computational cost of the statistical time-domain features 
exhibit a high characterization potential dealing with regular 
stationary speed cycles in the industry [24]. 

Condition monitoring strategies that use a high-dimensional 
set of features to characterize the properties of faults inevitably 
contain redundant and non-significant information. Recently, 
approaches of signal decomposition are widely used in 
condition monitoring schemes. Different decomposition 
techniques can be used; and the signal decomposition approach 
by means of Empirical Mode Decomposition (EMD) has being 
applied due to its self-adaptive capabilities to extract a set of 
Intrinsic Mode Functions (IMF) from the raw signal. The 
estimation of numerical features from each IMF represents a 
good opportunity to obtain a potential high-dimensional set of 
features for diagnosis purposes [20]. Yet, dimensionality 
reduction procedures must be applied to avoid low fault 
diagnosis performances and overfitting responses of the 
classification algorithm [21], [25]. In this regard, classical 
techniques of dimensionality reduction have been integrated in 
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condition monitoring schemes; for instance, Principal 
Component Analysis (PCA) [20], [26], and Linear 
Discriminant Analysis (LDA) [27], are the main techniques 
used for reducing high-dimensional sets of features. However, 
each dimensionality reduction approach is based on a specific 
objective function; that is, PCA aims to identify orthogonal 
components aligned with the maximum data dispersion 
direction, whereas LDA aims to maximize the distance among 
different data sets [28]. Such difference of criteria leads to 
multiple works in which the selection of the dimensionality 
reduction approach is carried out by a performing ratio when 
combined with the classification algorithm [29]-[30]. 

Moreover, dealing with multiple faults, such classical 
dimensionality reduction approaches are usually combined 
with complex hierarchical classification structures in order to 
compensate the loss of performance. In this sense, in [23], a 
set of features, estimated by means of wavelet decomposition 
from vibration signals, is used in a hierarchical deep belief 
based network to classify different bearing defects. Although 
this methodology exhibits good results, the proposed multi-
stage network implies multiple trainings, one for each specific 
condition to be solved. In [22], a bi-spectrum set of features 
estimated from vibration measurements is reduced through 
PCA technique and then, used by a hierarchical classifier based 
on Support Vector Machine (SVM). Although this scheme 
assesses different bearing condition, the proposed approach 
involves the use of the same number of SVMs as the same 
number of considered faults. 

Thereby, the contribution of this work lies on a novel multi-
fault diagnosis methodology, and the verification of the 
proposed hybrid high-dimensional feature reduction method to 
increase the diagnosis performance dealing with multiple 
faults in an induction motor linked to a kinematic chain. 

Originality of the work includes the empirical mode 
decomposition of the available vibration signals, the 
estimation of statistical-time-features, and the validation of the 
proposed hybrid high-dimensional feature reduction method. 
Indeed, the resulting high-dimensional set of features is 
analyzed by means of a novel multi-stage dimensionality 
reduction approach, in which, an optimization is performed by 
a Genetic Algorithm (GA) in conjunction with the PCA to seek 
an optimal set of IMFs that best preserve the data variance, 
afterwards, a selection of the best discriminative statistical 
features is carried out by means of the Fisher score, and then, 
the select features are compressed and transformed into a 2-
dimensional space through LDA based feature extraction. 
Such multi-stage dimensionality reduction, allows using a 
simple Neural Network (NN) -based classification algorithm 
as diagnosis estimator, including class identification and 
membership probability. 

The proposed diagnosis methodology is validated under a 
complete set of experimental vibrations acquired from an 
electromechanical system, where five different mechanical 
faults are considered. In this context, novelties of this work 

include the validation that the application of hybrid feature 
reduction strategies (selection and extraction), represents a 
high-performance information analysis procedure, which 
improves the classification capabilities compared with the use 
of classical approaches, such as PCA and LDA, as a unique 
technique to high-dimensional feature reduction. Notice that 
this proposed hybrid feature reduction methodology has not 
been study in multi-fault diagnosis so far and the results are 
promising. 

This paper is structured as follows. Section II describes the 
theoretical aspects of the proposed method and section III 
describes the diagnosis methodology. The experimental test 
bench used to assess and validate the method is presented and 
discussed in sections IV and V, respectively. Conclusions and 
future work are summarized in Section VI. 

II.   FEATURE REDUCTION 

The feature set is a critical aspect that compromises the 
performance of classification algorithms; thereby, a reduced 
number of features will not contain enough information to 
describe and to characterize the machine working conditions. 
Therefore, the addition of new features is an option to increase 
the capability of discrimination, and it is commonly believed 
that the classification performance will improve. Yet, an 
increase of the number of features may not offer additional 
information to the machine condition, and the performance of 
classification will be degraded instead of improved. Thus, 
misclassifications can be obtained because of the redundant 
and useless information contained in large sets of features. 
Working with a high-dimensional set of features complicates 
the fault identification task of the multi-class classification 
methods. Besides, it is required a high computational cost and 
the use of redundant and useless information could 
compromise the proper convergence of the algorithms [21]. 
For that reason, procedures of feature reduction are 
implemented in condition monitoring schemes [14]. Mainly, it 
is possible to remove redundant or non-discriminative features 
by means of two reduction strategies: feature selection and 
feature extraction. 

Regarding feature selection, it is a filtering strategy in 
which all the features are independently evaluated by 
considering only their individual descriptive capabilities; thus, 
the features are ranked in terms of their relevance, and even 
though a specific feature cannot be useful by itself, it can be 
very useful when it is combined with others. Filtering 
strategies do not require a particular learning algorithm, 
making, them effective and easy to compute. Most of these 
algorithms are based on general characteristics of the data such 
as distance, dependence, and consistency among others [17]. 
Consequently, the implementation of feature selection 
strategies in condition monitoring schemes is used to preserve 
the most discriminative features; in this sense, the filtered 
features are those that best described the machine working 
condition [20]. 



 

On the other hand, feature extraction differs in the question 
of whether a technique is supervised or unsupervised. The 
main difference between both techniques is the availability of 
labels to distinguish the different classes. 

PCA is a well-known and the most common used technique 
for unsupervised dimensionality reduction and feature 
extraction [15]. This technique projects a high-dimensional 
data set into a new uncorrelated set of features; therefore, no 
redundant information is present. These projections, named 
principal components, are linear combinations in which the 
variability of the data is better captured. PCA is based on 
statistical analysis and even though it does not concern in the 
separation of different classes, it has advantage in feature 
extraction due to preserving the variability of the data. 
Therefore, the consideration of PCA analysis is helpful in 
condition monitoring schemes to discard redundant 
information that is not required to detect faults in a system. 

LDA is one of the most well-known supervised techniques 
used in multi-class problems for linear dimensionality 
reduction and feature extraction [20]. LDA aims to find a 
projection into a low-dimensional representation in which it is 
contained the most discriminant information attempting to 
maximize the linear separation between data points belonging 
to different classes. LDA is a suitable feature extraction 
technique to be considered in condition monitoring schemes 
because it pays attention to differences of known classes; thus, 
through the proper application of this technique it is possible 
to obtain the parameters that correctly indicate the machine 
working condition. 

Feature selection and feature extraction approaches provide 
complementary feature reduction effects; therefore, there is not 
a clear criterion for choosing a specific technique: the 
reduction stage is typically implemented in order to fulfill with 
a required data processing. 

III.   DIAGNOSIS METHODOLOGY 

The proposed multi-fault diagnosis methodology is 
composed by six steps as depicted in Fig. 1. First, the signal 
decomposition with the estimation of the IMFs from the 
vibration signal is done by the EMD. Second, the calculation 
of a set of statistical-time based features from each IMFs is 
done. The proposed hybrid high-dimensional feature reduction 
method follows. Thus, third, a feature optimization approach 
of the available set of features is done by selecting the most 
significant IMFs to maximize the data variance preservation. 
Fourth, a feature selection by filtering the set of statistical-time 
features trough the analysis of the Fisher score is done. Fifth, 
a feature reduction with the extraction of a reduced set of 
features to maximize the fault discrimination is performed. 
Finally, sixth, the classification stage based on NN is 
performed, where the different considered faults are 
diagnosed. 

In this work, six different conditions have been considered 
to be evaluated in terms of the induction motor: healthy (HLT), 

bearing defect (BD), half-broken rotor bar (1/2 BRB), one 
broken rotor bar (1 BRB), unbalance (UNB) and misalignment 
(MAL). For each considered condition, ninety axial vibration 
measurements have been acquired. Each measurement 
corresponds to one second of the machine operation. 

A. Signal decomposition and features calculation 

The decomposition of the acquired vibration signal is 
performed by means of EMD; such decomposition is applied 
to each considered condition and allows obtaining a set of 
IMFs which are automatically adapted to the corresponding 
vibrational pattern. 

Afterwards, each resulting set of IMFs is characterized by 
estimating 15 statistical time-based features: mean, maximum 
value, RMS, square root mean, standard deviation, variance, 
RMS shape factor, square root mean shape factor, crest factor, 
latitude factor, impulse factor, skewness, kurtosis, and 
normalized fifth and sixth moments. Therefore, a resulting 
number of 150 numerical features are estimated for each 
considered condition. The proposed set of statistical features is 
shown in Table I. These statistical-time features have been 
successfully used for fault detection in electrical motor due to 
their high-performance source of information and their 
capabilities to analyze general trends of the signal [19]. 
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Fig. 1. Proposed diagnosis methodology based on hybrid feature reduction for the detection of multiple faults in electromechanical systems. 

 

B. Multi-stage dimensionality reduction 

The estimated high-dimensional set of features contains a 
large portion of the information related to the working 
condition on the kinematic chain, but only some contain 
representative information. First, considering the obtained set 
of IMFs, an optimization process is performed by a GA in 
conjunction with the PCA technique in order to seek a subset 
of IMFs that provides a better representation of each one of the 
considered conditions. This optimization is carried out, 
individually, for each considered condition as follows: a 
logical vector with ten elements are the chromosomes of the 
GA, in which, every element represents each one of the 
obtained IMFs. Then, an initial population is randomly 
generated by considering that at least one of the elements 
contained in the logical vector has to be selected to be 
evaluated; also more than one element can be evaluated. Once 
defined the initial population, the fitness function is assessed, 
which is based on the accumulation of the data variance. Then, 
the IMFs to be evaluated are now represented by their 
corresponding statistical-time set of features. In this sense, the 
cumulative variance of the selected IMFs is computed through 
PCA, and the fitness function comprises the cumulative 
variance of the two and three first principal components. 
Afterwards, another population is generated using the Roulette 
wheel selection, moreover the GA applies a mutation and 
based on the Gaussian distribution the new population is 
chosen, then the process is iteratively repeated until finding the 
best set of IMFs that best accumulate the data variability; the 
stop criteria considered for the algorithm is controlled by 
different goals like achieving a maximization of the variance 
or reaching a maximum number of generations. In this process, 
each fault condition is faced to the healthy condition; as a 
result, the sets of IMFs are optimized by removing those 
redundant information, and just the discriminative information 
related to each condition is retained in the optimized IMFs. 

Second, in the feature selection, an analysis of the 
individual discriminative capabilities is applied to the 
statistical-time features with the objective to filter and preserve 
the most discriminative features. In this process the considered 
statistical time-features are those that belong to the optimized 
set of IMFs. The feature selection is performed by computing 
the Fisher score that is a relative measure in terms of the 
distances between data points in different classes, which 
means, statistical features with a large Fisher score represent 
largest distances while small Fisher score represent smallest 
distances. Consequently, the features are ranked in terms of 
their relevance, in other words, the best ranked features are 
considered the best discriminative features whereas the worst 
ranked are the non-discriminative features. The feature 
selection is a combinatorial problem; in this regard, the Fisher 
score is computed by combining all the statistical time-
features, where subsets of two and three features are 
considered. As in the optimization stage, in this process the 
faulty conditions are faced to the healthy condition. After 
computing the Fisher score for each feature, the three first 
ranked features in terms of Fisher score ranking are considered 
the most significant set of features that better describes the 
machine working condition. 

These two first stages correspond to a filtering process of 
the initial high-dimensional set of features. Thus, for each 
considered fault condition it is computed a set of features 
containing the most significant and discriminative information 
of the kinematic chain working condition. 

Finally, in a feature extraction stage, all the filtered sets of 
statistical features are subjected to a compression process and 
a base transformation by means of LDA. Through this 
compression process a new set of features are extracted, and 
these extracted features are a combination of different weights 
from the selected set of features. Consequently, the extracted 
features are projected in a 2-dimensional space allowing a 
visual interpretation of the considered conditions. Moreover, 



 

this resulting 2-dimensional representation facilitates the 
classification task, since just two inputs must be managed. 
With this approach the most discriminative features are 
projected in a reduced dimensional space in which their 
discriminative capabilities between all the considered 
conditions are retained. 

C. Classification 

The proposed diagnosis methodology is based on a 
consecutive processing of the original set of features, and 
during this process those features that are significantly 
important to represent the characteristic failure patterns are 
preserved. Therefore, high performance is obtained by 
applying the proposed hybrid feature reduction to the high-
dimensional set of features. It must be noted that the proposed 
hybrid feature reduction allows a simpler configuration of the 
classification stage since the input vectors are reduced to two 
dimensions. 

In this sense, a simple structure of a NN-based classifier is 
used to obtain the diagnosis estimation of all the considered 
conditions. Indeed, the classifier has a classical three-layer 
structure. The input layer is composed by two neurons 
corresponding to the two dimensional features vectors 
resulting of the proposed hybrid feature reduction 
methodology. The hidden layer has ten neurons following 
classical recommendations [31]. The output layer is composed 
by six neurons, one for each considered condition. This simple 
and classical NN structure has been successfully implemented 
in different condition monitoring schemes [32]-[33]. In 
addition to the resulting classification, the proposed NN also 
offers the diagnosis probability due to the sigmoid function is 
used as activation function in the output layer, thus, the 
classification result in the NN is related with a probability 
value. The training uses the back-propagation rule for the 
gradient estimation and the scaled conjugate gradient as 
minimization technique. 

IV.   EXPERIMENTAL TEST BENCH 

The experimental test bench used to validate the proposed 
diagnosis methodology and the data acquisition system used to 
capture the vibration signals are shown in Fig. 2. The test 
bench consists on a kinematic chain and it is composed by a 
1492-W, three-phase IM (WEG00236ET3E145T-W22), with 
its rotational speed controlled through a variable frequency 
drive (VFD) (WEGCFW08). It also consists of a 4:1 ratio 
gearbox (BALDOR GCF4X01AA) that is used for coupling 
the motor drive to a DC generator (BALDOR CDP3604). The 
DC generator is used as a non-controlled mechanical load 
comprising around 20% of the nominal load. The vibration 
signals from the perpendicular plane of the IM axis are 
acquired using a triaxial accelerometer (LIS3L02AS4), 
mounted on a board with the signal conditioning and anti-alias 
filtering. A 12-bit 4-channel serial-output sampling analog-to-
digital converters (ADS7841) is used on board of the data 

acquisition system (DAS). The DAS is a proprietary low-cost 
design based on field programmable gate array technology 
(FPGA). The sampling frequency is set to 3 kHz for vibration 
signals acquisition, obtaining 270 kS during 90 seconds of 
continuous sampling in the IM from start-up to steady state. 

Regarding the six different conditions considered, the 
artificial damage on the bearing is produced by drilling a hole 
with 1.191 mm of diameter on the bearing outer race using a 
tungsten drill bit. The artificially damaged bearing, model 
6205-2ZNR, used in this experimentation is shown in Fig. 3a. 
The artificial damage in both rotor bar elements are produced 
by drilling a hole with 6 mm of diameter. For the ½ BRB fault, 
the hole has a depth of 3mm that corresponds mostly to the 
22% of the section of the rotor bar. For the BRB fault, a 
through-hole is produced with 14 mm of depth, which 
corresponds to the complete section of the rotor bar. These 
faults are shown in Fig. 3b and Fig. 3c respectively. The 
presence of the UNB condition is related to the mechanical 
load distribution in the IM; thus, a non-uniform load 
distribution takes the center of mass out of the motor shaft. To 
do this, the UNB condition is produced by attaching a bolt in 
one of the IM coupling, as Fig. 3d shows. Finally, the MAL 
condition is present when the centerlines of coupled shafts do 
not coincide with each other; consequently, the dynamic load 
on bearings and couplings increases. Therefore, an angular 
misalignment is carried out by moving the free end of the IM, 
so that a misalignment of 5 mm on horizontal plane is produced 
only from the free end, Fig. 3e shows the misalignment shaft 
coupling. 

In most of the considered fault conditions, the experiments 
are carried out by replacing the healthy elements with each one 
of the damaged elements alternatively. Only the MAL 
condition is induced by moving the free end of the IM as 
explained above. The operational frequency of driving IM 
controlled by the VFD is set to 60 Hz, which causes an average 
rotating speed of 3585 rpm in the IM. 
 

 
Fig. 2. Experimental test bench used to validate the proposed diagnosis 

methodology. 



 

 
Fig. 3. Arrangement of the different faults produced in the experimental test 
bench.  (a)  Bearing defect.  (b)  ½ Broken rotor bar.  (c) 1 Broken rotor bar.  

(d)  Unbalance.  (e)  Misalignment. 

V.   VALIDATION OF THE METHOD 

The proposed diagnosis methodology is implemented under 
MATLAB, which is used for processing the acquired signals 
and to provide the fault diagnosis. As some researchers report, 
the related information to the working condition of rotational 
machines is reflected in the appearance of perpendicular 
vibrations on the rotating axis [3], [17], [28]. Thus, the 
acquired and stored vibration measurements belong to the 
perpendicular plane to the IM rotating axis. As 
aforementioned, the stored information consist of ninety 
seconds of kinematic chain working condition under the 
considered conditions; then, each acquisition is segmented in 
ninety parts of one second with the aim to generate a set of 
consecutive samples. 

Afterwards, the signal decomposition is carried out by 
means of EMD. That is, the decomposition is iteratively 
obtained from each segmented part; as a result, an adaptive 
characteristic set of IMFs is computed for each considerer 
condition. Thus, each vibrational pattern is represented by a set 
of 90 samples with 10 IMFs. After performing the signal 
decomposition, each function of the resulting sets of IMFs are 
then characterized by the estimation of a number of 15 
statistical-time based features. Consequently, a high-
dimensional set of features is estimated for each considered 
condition. Thus, all of the high-dimensional sets are composed 
by 90 samples with 150 statistical-time features. 

Although the estimated high-dimensional set of features 
contains a large portion of the information related to the 
kinematic chain working condition, only some will have 
representative information. In this sense, the estimated high-
dimensional set of features is then analyzed through the 
proposed hybrid feature reduction methodology in order to 
retain the most discriminative features. 

First, as previously described, the optimization process is 
performed by means of a GA in conjunction with the PCA. The 
main setting parameters of the GA are defined as: a population 
of 10 for the number of individuals, the maximum number of 

generations is fixed to 50 and the algorithm uses the Roulette 
wheel selection scheme with mutation and based on the 
Gaussian distribution as the selection operator. Meanwhile, in 
the PCA two and three principal components are considered to 
compute the cumulative variance. The optimization process is 
applied individually to the considered conditions; it should be 
noticed that the faulty conditions are faced to the healthy 
condition. Thus, the optimized set of IMFs contains those 
functions with greater variability and relevant information 
related to the considered fault condition. 

During the optimization process of the GA, the cumulative 
variance of the two and three principal components is used to 
compare the optimized results. Through this comparison it is 
obtained the same set of optimized IMFs. Although the results 
are similar, there is a clear difference in the computational 
resources. That is, when three principal components are 
considered, the computational load increases, and as a 
consequence the convergence time increases approximately 
twice compared with the convergence time when only two 
principal components are considered. Regarding the 
cumulative variance, by considering three components the 
percentage of cumulative variance is around 3% greater than 
the computed cumulative variance when considering only two 
components. Thereby, good results with low computational 
resources are obtained when two principal components are 
considered in the PCA, as expected. Table II lists the optimized 
set of IMFs for all the considered conditions. In all the 
optimized set of features the cumulative variance is in the 
upper 75%, which reflects a good concentration of the data. 
Also, Table II summarizes the percentages of the cumulative 
variance and the detail of the statistical features with greater 
attribution considered by the two first principal components. 
Regarding to the optimization process it was stopped because 
the maximum number of generations was reached, in all the 
optimization processes it was obtained a good performance; in 
Fig. 4 are shown the graphics related to the performance 
achieved in terms of the cumulative variance for the 
optimization of the IMFs, for all the considered conditions and 
it is possible to notice that in all the cases after the 20 
generations the best individual shows the best result. 

In this optimization stage, redundant information is 
discarded. In order to show the difference between the data 
variance, the PCA is applied to an optimized set of IMFs and 
a random set of IMFs of the MAL condition. In this regard, the 
optimized set of IMFs for the MAL condition is composed by 
the two first modes (IMF1 and IMF2); thus, their 
corresponding statistical-time features are used by the PCA to 
compute the cumulative variance (91.1%). A representation of 
the scattered data points obtained by the optimized set of IMFs 
is shown in Fig. 5. It could be believed that a better 
characterization of the machine working condition can be 
obtained if there is as much information as possible. In this 
sense, for the same MAL condition, a random set of the IMFs 
composed by the last three modes (IMF8, IMF9 and IMF10) is 



 

 
TABLE II 

DETAIL OF THE OBTAINED OPTIMIZED SET OF IMFS BY CONSIDERING TWO 

PRINCIPAL COMPONENTS IN THE OPTIMIZATION PROCESS 

Condition 
Optimized 
set of IMFs 

%σ 
Statistical-time features with 
grater attribution in the two 

principal components  

Bearing 
defect 

IMF1, 
IMF2 

82.9% 

Maximum value, root mean 
square, square root mean, 

standard deviation, variance, 
RMS shape factor, SRM shape 

factor, crest factor, latitude 
factor, kurtosis. 

½ Broken 
rotor bar 

IMF1 84.2% 

Maximum value, root mean 
square, square root mean, 

standard deviation, variance, 
RMS shape factor, SRM shape 

factor, crest factor, latitude 
factor, impulse factor. 

1 Broken 
rotor bar 

IMF1 92.3% 

Maximum value, root mean 
square, square root mean, 

standard deviation, variance, 
RMS shape factor, SRM shape 

factor, crest factor, latitude 
factor, impulse factor, kurtosis, 

sixth moment. 

Unbalance IMF1 92.4% 

Mean, maximum value, root 
mean square, square root 
mean, standard deviation, 

variance, RMS shape factor, 
SRM shape factor, crest factor, 
latitude factor, impulse factor, 

skewness, kurtosis, fifth 
moment, sixth moment. 

Misalignment 
IMF1, 
IMF2 

91.1% 

Maximum value, root mean 
square, square root mean, 

standard deviation, variance, 
RMS shape factor, SRM shape 

factor, crest factor, latitude 
factor, impulse factor, kurtosis, 

sixth moment. 

 
used to compute its cumulative variance. Thereby, a set of 45 
statistical-time features estimated from the random set on 
IMFs is evaluated through the PCA obtaining the cumulative 
variance of 36.9%. Fig. 6 shows the scattered data points 
obtained by the random set of IMFs. From Fig. 5 and Fig. 6 it 
is possible to notice the difference between the data scatter. 
Thereby, in both figures it is used the same scale, and the data 
points from Fig. 5 are widely spread while in Fig. 6 they are 
concentrated within a smaller area. Moreover, this comparison 
proves that not all the information related to the machine 
working condition is useful in condition monitoring schemes, 
and the performance of such schemes will be degraded instead 
of improved. 

Feature selection is the next process considered in the 
proposed hybrid feature reduction; in this process, an analysis 
of the discriminative capabilities of the statistical-time features 
is carried out by computing the Fisher score. The statistical-
time features considered in this selection process are those 
computed from the optimized sets of IMFs. Fisher score is 
based on a combinatorial problem; thus, all the statistical-time 
features are analyzed by considering subsets of two and three 
statistical features. Moreover, in this process the faulty  

 
Fig. 4. Performance of the GA-based procedure applied during the 

optimization of the number of IMFs to represent each considered fault. 
Evolution and maximum percentage the cumulative variance obtained: (a) 

Bearing defect. (b) ½ broken rotor bar. (c) 1 broken rotor bar. (d) Unbalance. 
(e) Misalignment. 

 
conditions are faced to the healthy condition in order to 
highlight the best discriminative statistical features. 

As aforementioned, different subsets are used to compute 
the Fisher score; thus, the computational resources could be 
compromised by the number of statistical features used due to 
this strategy is a combinatorial problem. In this way, all the 
combinations are performed and the statistical-features are 
ranked in terms of their relevance; which means that features 
with largest values are considered the best discriminative 
feature. Then, the three first ranked subsets of features are 
considered the best to describe the machine working condition. 

Through this feature selection approach, the best subsets of 
statistical features with a better class separation are obtained, 
besides of the reduction of the optimized sets of statistical-time 
features. For all the considered conditions, Table III shows the 
details of the selected subsets of statistical features obtained by 
the combinations of two features, their corresponding IMF and 
the computed Fisher score for each statistical feature. The 
obtained Fisher scores reveal that there exists a good 
separability between the conditions of BD, 1 BRB, MAL and 
HLT. On the other hand, an overlapping could appear between 
the ½ BRB, UNB and the HLT condition. Thus, to obtain a 
good separability between classes the expected Fisher score 
should be higher than one; however, the combination of all the 
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Fig. 5. Scatterplot of the optimized set of IMFs (IMF2 and IMF2) for the 

misalignment condition using two principal components in the PCA. 

 

 
Fig. 6. Scatterplot of the random set of IMFs (IMF8, IMF9 and IMF10) for 

the misalignment condition using two principal components in the PCA. 

 
selected sets of statistical features will be useful in a feature 
extraction technique such as LDA. Regarding the use of 
different subset of features, the results are not significantly 
different and, when three statistical features are considered the 
execution time of the technique is at least twice compared 
when considering two features only. 

In the last stage, a feature extraction is carried out by the 
LDA, in which all the selected sets of statistical features are 
subjected to the compression procedure. The LDA strategy 
aims to find a projection by attempting to maximize the linear 
separation between different classes. Through this approach a 
new set of extracted features are obtained, and those extracted 
features are composed by a combination of different weights 
of the selected set of features. Besides that, the dimensionality 
of all the selected sets of statistical features is reduced. 

Consequently, the extracted set of features is projected in a 
2-dimensional space where it is possible to obtain a visual  

TABLE III 
DETAIL OF THE OBTAINED SELECTED SET OF STATISTICAL-TIME FEATURES BY 

CONSIDERING COMBINATIONS OF TWO FEATURES IN THE FISHER SCORE 

CALCULATION 

Condition 
Statistical-time 

feature 
Optimized 

IMF  
Fisher score 

rank 

Bearing defect 

Root mean square IMF1 76.9 
Standard deviation IMF1 76.9 
RMS Shape factor IMF2 62.7 

Kurtosis IMF2 37.8 

½ Broken rotor 
bar 

Square root mean IMF2 0.13 
Standard deviation IMF2 0.13 

Kurtosis IMF2 0.13 
Sixth moment IMF2 0.11 

1 Broken rotor 
bar 

RMS Shape factor IMF1 12.4 
Kurtosis IMF1 6.7 
Kurtosis IMF2 4.8 

Sixth moment IMF2 2.1 

Unbalance 

SMR Shape factor IMF1 0.29 
Maximum value IMF2 0.16 

Root mean square IMF2 0.16 
Standard deviation IMF2 0.15 

Misalignment 

Root mean square IMF1 89.0 
Square root mean IMF1 88.9 
Standard deviation IMF1 80.0 
SMR Shape factor IMF2 67.5 

 
interpretation of all the considered conditions. Fig. 7 shows the 
projection of the extracted set of features resulting from the 
application of the proposed hybrid feature reduction. Although 
it is expected an overlapping between the ½ BRB, UNB and 
the HLT condition by means of the LDA, a separation is 
obtained. This projection is obtained through a transformation 
matrix composed by a set of values with different weights. 
Table IV shows the details of the transformation matrix. The 
values that compose the transformation matrix prove that the 
extracted features projected are not specifically concentrated 
in one or two statistical features, and even though some 
statistical features have a low weight, these are essential to 
improve the separability between classes. 

Previous to the fault classification, a comparison between 
the proposed hybrid feature reduction and classical approaches 
such as LDA and PCA is carried out. That is, the proposed 15 
statistical-time features are directly estimated from segmented 
parts of the acquired vibration signals. Then, for all the 
considered conditions, a feature extraction is carried out by the 
classical approaches, and these extracted features are also 
projected in a 2-dimensional space to have the same basis of 
comparison. Fig. 8 and Fig. 9 show the projection of the 
extracted features computed by the PCA and LDA, 
respectively. 

Through the application of both classical approaches some 
disadvantage are present. There is a clear difference between 
the extracted features computed through the proposed hybrid 
feature reduction and the extracted features obtained by the 
classical approaches. That is, in Fig. 8 and Fig. 9 an overlap is 
presented between the conditions of ½ BRB, 1 BRB, UNB and 
HLT, while in Fig. 7 these classes show a better separation. 
Although the conditions of BD and MAL are not overlapped 
the use of classical approaches of feature extraction such as 
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Fig. 7. Projection of the extracted set of features resulting from the 

application of the proposed hybrid feature reduction strategy. 

 
TABLE IV 

DETAIL OF THE TRANSFORMATION MATRIX COMPUTED BY THE LDA TO 

OBTAIN A 2-DIMENSIONAL PROJECTION OF THE EXTRACTED FEATURES 
Statistical-time feature Optimized IMF  Column 1 Column 2 

Root mean square IMF1 0.570 0.505 
Root mean square IMF1 0.021 0.026 
Standard deviation IMF1 0.551 0.481 
RMS Shape factor IMF1 0.095 0.055 

Kurtosis IMF1 0.088 0.031 
Maximum value IMF2 0.014 0.001 

Root mean square IMF2 0.297 0.476 
Root mean square IMF2 0.075 0.037 
Standard deviation IMF2 0.376 0.528 
RMS Shape factor IMF2 0.180 0.025 
SMR Shape factor IMF2 0.012 0.010 

Kurtosis IMF2 0.258 0.014 
Sixth moment IMF2 0.131 0.009 

 
PCA and LDA would not be capable to characterize all the 
considered faults. 

Regarding the fault classification, a multilayer NN-based 
classifier is used to obtain the output classes. Because it is 
obtained a better performance by the proposed hybrid feature 
reduction, a simple structure considered in the classifier allows 
obtaining good results without excessive use of resources. 
Thus, the classifier has 10 neurons in its hidden layer, in the 
output layer a probabilistic sigmoid function is used as 
activation function and 70 epochs are considered for training 
using the back-propagation rule. These parameters are selected 
by trial and error tests. 

In order to obtain statistically significant results and to 
prove the performance of the proposed diagnosis 
methodology, the classifier is trained and tested under a 5-fold 
cross-validation scheme. Thus, considering all the conditions, 
the original database is composed by 540 samples, 90 samples 
of each condition. This database is divided in two different 
parts, one of them composed by 432 samples for training 
purposes, 72 samples per condition, and the other one 
composed by 108 samples for testing purposes, 18 samples per 
condition. In order to analyze the performance of the 

 
Fig. 8. Projection of the extracted set of features resulting from the classical 

approach PCA. 

 

 
Fig. 9. Projection of the extracted set of features resulting from the classical 

approach LDA. 

 
classification using all the variance available in the original 
database, a 5-fold cross validation scheme has been applied, in 
which five classification ratios are obtained as result of five 
iterations with complementary partitions of the original 
database in training and test sets. An averaged classification 
ratios of 91% for the training, and 92% for the test have been 
obtained. 

It should be also clarified that the classification ratios 
obtained during the 5-fold cross validation exhibit a stable 
behavior, that is, within the range of 89.8% to 91.7% in the 
training stage, and within the range of 90.7% to 92.8% in the 
test stage. Besides to provide the classification rates, the 
decision regions are computed by means of the NN classifier. 
A visual representation of the resulting classification 
performance reach during the training and test of the NN 
classifier is provided next. The resulting decision regions and 
samples projections, using the first fold partition as reference, 
are projected and shown in Fig. 10, training, and Fig. 11, test. 
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Fig. 10. Projection of the decision regions resulting from the NN-based 

classification algorithm. Projection of the training data set corresponding to 
the first cross validation. 

 

Fig. 11. Projection of the decision regions for the multiple fault classification 
corresponding to the test of the first cross validation computed by the 

proposed NN-based classifier. 

 
To analyze the performance of each class individually, the 

same structure of the NN-based classifier is trained and tested 
with the extracted features provided by the classical 
approaches. Table V and Table VI summarize the confusion 
matrices computed by the classical approaches, PCA and 
LDA, respectively. As the results show in the confusion 
matrices of the classical approaches, the misclassification 
problems are present between the classes of ½ BRB, 1 BRB, 
UNB and HLT. It should be noticed that the most critical 
misclassification cases are related to the HLT condition that 
represents a disadvantage. The classification ratio achieved by 
the classical approaches PCA and LDA are approximately 
80% and 72%, respectively. 

 

Regarding the proposed diagnosis methodology, the 
resulting classification ratio achieved from the training and test 
of the NN classifier is 91% and 92% respectively. In Table VII 
and Table VIII are summarized its respective confusion 
matrices corresponding to the evaluation of all the considered 
conditions by using the proposed hybrid feature reduction. 
Although some misclassifications are obtaining in both 
training and test of the NN classifier, the results are promising. 
Considering the results generated during the test of the NN 
classifier, the global ratio of classification is improved by 12% 
and 20% in comparison with the classical approaches PCA and 
LDA, respectively. Respecting the right classification of the 
healthy condition, which is the most important condition, the 
proposed approach improved its correct classification by 39% 
compared to the classical approach PCA, and 11% for the 
LDA. These results represent a high-performance feature 
reduction in the development of diagnosis schemes for 
electromechanical systems. 

 
 

TABLE V 
CONFUSION MATRIX RESULTING FROM THE EVALUATION OF ALL CONSIDERED 

CONDITIONS USING THE CLASSICAL PCA 
Assigned 

Class 
True Class 

HLT BD ½ BRB 1 BRB UNB MAL 
HLT 8 0 2 0 2 0 
BD 0 18 0 0 0 0 

½ BRB 1 0 14 1 0 0 
1 BRB 3 0 2 17 4 0 
UNB 6 0 0 0 12 0 
MAL 0 0 0 0 0 18 

 
 

TABLE VI 
CONFUSION MATRIX RESULTING FROM THE EVALUATION OF ALL CONSIDERED 

CONDITIONS USING THE CLASSICAL LDA 
Assigned 

Class 
True Class 

HLT BD ½ BRB 1 BRB UNB MAL 
HLT 13 0 1 3 1 0 
BD 0 18 0 0 0 0 

½ BRB 1 0 13 13 1 0 
1 BRB 2 0 4 2 2 0 
UNB 2 0 0 0 14 0 
MAL 0 0 0 0 0 18 

 
 

TABLE VII 
CONFUSION MATRIX RESULTING FROM THE EVALUATION OF ALL CONSIDERED 

CONDITIONS COMPUTED DURING THE TRAINING OF THE NN-BASED 

CLASSIFIER CONSIDERED IN THE PROPOSED HYBRID FEATURE REDUCTION 
Assigned 

Class 
True Class 

HLT BD ½ BRB 1 BRB UNB MAL 
HLT 58 0 2 0 3 0 
BD 0 70 0 0 0 0 

½ BRB 5 0 70 0 0 0 
1 BRB 4 0 0 71 14 0 
UNB 5 0 0 1 55 0 
MAL 0 2 0 0 0 72 

 
 
 
 



 

TABLE VIII 
CONFUSION MATRIX RESULTING FROM THE EVALUATION OF ALL CONSIDERED 

CONDITIONS COMPUTED DURING THE TRAINING OF THE NN-BASED 

CLASSIFIER CONSIDERED IN THE PROPOSED HYBRID FEATURE REDUCTION 
Assigned 

Class 
True Class 

HLT BD ½ BRB 1 BRB UNB MAL 
HLT 15 0 1 0 1 0 
BD 0 18 0 0 0 0 

½ BRB 1 0 17 0 0 0 
1 BRB 1 0 0 18 3 0 
UNB 1 0 0 0 14 0 
MAL 0 0 0 0 0 18 

VI.   CONCLUSIONS 

This paper presents a novel methodology to diagnose an 
IM-based electromechanical system under multiple fault 
conditions. There are three important aspects in this new 
method. The first one is the vibration signal decomposition in 
multiple IMFs. The adaptive capability of the EMD allows the 
identification of the main vibration modes under the different 
fault conditions; thus, enhancing the characteristic fault 
patterns of each fault. The second is the application of a hybrid 
strategy as feature reduction processing stage. The application 
of a sequential set of feature reduction procedures over the 
high-dimensional set of features, allows the consideration of 
different approximations to the optimum data set, from the 
elimination of the less contributive features to the compression 
of the most significant set. The third is the use of a simple 
classification algorithm based on a unique NN structure able 
to recognize all the considered conditions. Six different 
experimental conditions have been considered, which 
represent an important range of system conditions, including 
healthy and faulty states. Under all of these experimental 
conditions, the proposed methodology shows reliable fault 
diagnosis results. Moreover, the diagnosis outcome is 
complemented by the probability value, which allows an 
additional degree of interpretation of the diagnosis outcome. 
The proposed methodology shows almost 12% and 20% of 
diagnosis improvement compared with classical approaches 
PCA and LDA respectively, till 92% of total diagnosis ratio. 
Note that this is the first time that this methodology and the 
corresponding analysis with classical approaches is made in 
electromechanical system diagnosis. The results obtained in 
this work suggest that this methodology may be also useful for 
any other rotating mechanical component faults. Future work 
will focus in the analysis of the multi-fault diagnosis 
methodology considering different operating conditions of 
speed and load. 
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