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Abstract— Web services paradigm is allowing applications
to electronically interact with one another over the Internet.
The business process execution language (BPEL) takes this
interaction to a higher level of abstraction by enabling
the development of aggregate Web services. However, the
autonomous and distributed nature of the partner services
in an aggregate Web service present unique challenges to
the reliability of the composite services. In this paper, we
present an approach where existing BPEL processes are
automatically instrumented, so that when one or more of
their partner services do not provide satisfactory service
(e.g., because of a service being overwhelmed, crashed, or
because of a network outage), the request for service is
redirected to a proxy Web service, where the failed or slow
services are replaced by substitute services.

Index Terms: Web service monitoring, BPEL, sepa-
ration of concerns, static proxies, dynamic proxies,
autonomic computing, self-healing, self-optimization,
dynamic service discovery.

I. INTRODUCTION

Web services are facilitating the uptake of service-
oriented architecture (SOA) [1], allowing organizations to
electronically interact with each another over the Internet.
In this architecture, reusable, self-contained and remotely
accessible application components, which are exposed as
Web services, can be integrated to create more course-
grained aggregate services. Figure 1 depicts an example
aggregate service, the Sales service, that involves four
functional units. In this example, the activity of processing
a purchase order from a customer involves the accounting,
production, inventory and delivery services. High-level
workflow languages such as business process execution
language (BPEL) [2], [3] can be used to define aggregate
services (business processes) that constitute a number of
related services [4]. Unfortunately, these types of busi-
ness processes are known to be very fragile. According
to [5], about 80 percent of the total amount of time used
in developing business processes is spent in exception
management.
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Fig. 1. An example Sales aggregate service.

The integration of multiple services, which potentially
can be developed and hosted on heterogeneous environ-
ments by third-party service providers, introduces new
levels of complexity in the management of composite
services. Moreover, services interacting with aggregate
services are often geographically scattered and commu-
nicate via the Internet. Given the unreliability of such
communication channels, the unbounded communication
delays, and the autonomy of the interacting services, it is
difficult for developers of business processes to anticipate
and account for all the dynamics of such interactions.
In addition, the high-availability and high-performance
nature of some composite services require them to con-
tinue working satisfactorily in the face of failure or low
performance of their constituent parts [6], [7]. It is then
important to make aggregate services more resilient to the
failure of their partner services.

Autonomic computing [8] promises to solve the man-
agement problem by embedding the management of
complex systems inside the systems themselves, freeing
the users from potentially overwhelming details. A Web
service is said to be autonomic if it encapsulates some au-
tonomic attributes [9]. Autonomic attributes include self-
configuration, self-optimization, self-healing, and self-
protection [8]. The focus of our ongoing research is
to transparently introduce autonomic behavior to BPEL
processes in order to make them more resilient to the
failure of their partner services (self-healing behavior),
as well as to optimize their performance based on, for
example, the response time of their partner services (self-
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optimization behavior).

In this paper, we present a framework, which we call
TRAP/BPEL, that enables us to systematically and auto-
matically instrument BPEL processes so that when one or
more of their partner services do not provide satisfactory
service (e.g., because of a service being overwhelmed,
crashed, or because of a network outage), the request for
service is redirected to a proxy Web service, where the
failed or slow services are substituted by some available
and more responsive “equivalent” services. To achieve
this, events such as faults and timeouts are monitored from
within the instrumented BPEL processes. When a fault or
a timeout occurs, the request for service is forwarded to
the associated proxy, which in its turns sends the request
to an available equivalent service.

Without compromising the general application of our
approach and for the sake of simplicity, in this paper we
assume that equivalent services are those that implement
the same interface (and consequently implement the same
business logic) as that of the monitored services. So,
when two Web services implement the same port type,
we assume that they provide the same functionality and
they may be different only in the quality of the service
they provide. We realize that this assumption may seem
too simplistic and unreal considering the proliferation
of semantically different Web services that are exposed
with the same interface and vice versa. However, relying
on the substantial ongoing research in this area, we
expect that in the near future, standard organizations will
specify standard service interface definitions for different
business domains that different service providers can use
to expose their semantically equivalent services through
the corresponding specified standard interfaces [10]. In
the case where the interfaces of semantically equivalent
services are not the same, all needs to be done is to go
through an extra step of mapping the interfaces of the
equivalent services to those of the monitored services. For
example, using the adapter design pattern [11], one can
expose the equivalent services with the same interface to
those of the monitored services.

TRAP/BPEL offers three proxy services: static [12],
where substitute services are known and fixed at devel-
opment time, dynamic [13], where substitute services are
discovered during runtime, or generic [14], where there
is no difference between the original partner services and
their substitutes. Each of these proxies have their own
applications. The static proxies are bound to a limited
number of alternative Web services; however, the static
binding avoids the unnecessary runtime overhead, making
it attractive for applications that do not need the flexibility
of the dynamic proxies. The dynamic proxies, on the other
hand, enable dynamic discovery and binding of substitute
partner Web services. Dynamic proxies while may add
more runtime overhead, but they provide more flexibility
for applications that would rather to delay discovery of
substitute services until runtime in the hope of taking ad-
vantage of a more updated (and potentially better) pool of
alternative services. Finally, the generic proxies intercept

all the invocations to the monitored partner Web services
and may choose to forward the invocations to substitute
services even before the original service fails. Unlike
static and dynamic proxies, generic proxies can optimize
the performance of composite services without wasting
any time on invoking slow and unavailable partner Web
services.

The major contributions of the work presented in this
paper are summarized as follows. First, our approach to
incorporating the autonomic behavior in BPEL processes
does not require the processes to be redeveloped from
scratch nor there is a need for any manual modification to
the code of the existing processes. Second, the adaptation
is done in a manner that the code for business logic is kept
separated from the code for robustness of the process to
avoid these different concern to result in entangled code
that is difficult to maintain and evolve. Third, depending
on the non-functional requirements1 of the application,
the proxy service incorporating the autonomic behavior
may be chosen to be static, dynamic, or generic. In
this paper, we describe the generative adaptation process,
the architecture of the automatically instrumented BPEL
processes, and their corresponding proxy services. We
use a number of case studies to demonstrate how the
automatically instrumented BPEL processes and their
corresponding static and dynamic proxy services interact
to support self-healing and self-optimization in existing
BPEL processes.

The rest of this paper is is structured as follows. In
Section II, we provide a background on some related
technologies. In Section III, we introduce reliability in
composite services and survey possible approaches to
providing reliability in composite services. We finish
this section by identifying where TRAP/BPEL fits in
the introduced taxonomy. In Section IV, we provide
an overview of our approach to instrumenting BPEL
processes. In Sections V, VI, and VII, we introduce
the static, dynamic, and generic proxies, respectively. In
section VIII, we use three case studies to demonstrate
the feasibility and usefulness of our approach. Section IX
contains some related work. Finally, some concluding
remarks and a discussion on further research directions
are provided in Section X.

II. BACKGROUND

In this section, we provide some background informa-
tion for Web services, BPEL and Transparent Shaping.
You can safely skip this section if you are familiar with
all the above technologies.

A. Web Services

A Web service is a software component that can be
accessed over the Internet. The goal of the Web service

1Functional requirements describe the interaction between the system
and its actors (e.g., end users and other external systems) independent of
its implementation while non-functional requirements are those aspects
of the system that are not directly related to the functional requirements
(e.g., QoS, security, scalability, performance, and fault-tolerance).
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architecture [1] is to simplify application-to-application
integration. The technologies in Web services are specifi-
cally designed to address the problems faced by traditional
middleware technologies in the flexible integration of het-
erogeneous applications over the Internet. Its lightweight
model has neither the object model nor programming
language restrictions imposed by other traditional mid-
dleware systems (e.g., DCOM and CORBA). To facilitate
flexibility and interoperability, Web services are described
using a standard, machine-readable, XML-based language
called Web Service Description Language (WSDL) [15].
This service description provides the details necessary
to interact with the service, including message formats
that detail the operations, transport protocols, and lo-
cation [16]. Finally, interaction with Web services is
achieved through SOAP [17] messaging.

B. BPEL

Applications that provide specific business functions
(e.g., price quotation) are increasingly being exposed
as Web services. These services then become reusable
components that can be the building blocks for more
complex aggregate services (business processes). Cur-
rently search engines like Google, Yahoo! and MSN are
being exposed as Web services and provide functions
that range from simple queries, to generation of maps
and driving directions. A business process that can be
derived from the aggregation of such services would
be one that, for instance, generates driving directions.
As illustrated by Figure 2, the process could work by
integrating two service: (1) a service that retrieves the
addresses of nearby businesses; and (2) a service that gets
the driving directions to a given address. This business
process can then be used from the on-board computer
of a car to generate driving directions to the nearest gas
station, hotel, etc.

Fig. 2. A Business Process that integrates remote components to create
a new application that gets driving directions.

To facilitate the creation of business processes, a high-
level workflow language, such as Business Process Execu-
tion Language (BPEL) [18], is often used. BPEL provides
many constructs for the management of a process includ-
ing loops, conditional branching, fault handling and event
handling (such as timeout). To make a BPEL process fault
tolerant, BPEL fault handling activities (e.g., catch and
catchAll constructs) can be used. We aim to separate
the task of making a BPEL process more robust from the
task of composing the business logic of the process.

C. Web Services Protocol Stack

As illustrated in Figure 3, the key to achieving interop-
erability in Web services is a layered architecture. The
dependency relation between each two adjacent layers
is top-down. While the process layer (BPEL) takes care
of the composition of Web services, the service layer
(WSDL) provides a standard for describing the service
interfaces. At the messaging layer (typically SOAP), the
operations defined in the service layer are realized as two
related output and input messages, which serialize the
operation and its parameters. At the bottom of the stack
is the transport layer (typically HTTP) that facilitates the
physical interaction between the Web Services. Although
Web services are independent of transport protocols,
HTTP is the most commonly used protocol for Web
service interaction. Except for the transport layer, all the
protocols in the other layers are typically based on XML.

Fig. 3. The Web services stack.

D. Transparent Shaping

Transparent Shaping is a new programming model that
provides dynamic adaptation in existing applications [19].
The goal is to respond to the dynamic changes in their
non-functional requirements (e.g., changes request by end
users) and/or environments (e.g., changes in the executing
environment). In transparent shaping, an application is
augmented with hooks that intercept and redirect inter-
action to adaptive code. The adaptation is transparent
because it preserves the original functional behavior and
does not tangle the code that provides the new behavior
(adaptive code) with the application code. By adapting
existing applications, transparent shaping aims to achieve
a separation of concerns [20]. That is, enabling the
separate development of the functional requirements (the
business logic) from the non-functional requirements of
an application.

III. RELIABILITY IN COMPOSITE SERVICES

The goal of fault-tolerance is to improve dependability
in a system by enabling it to perform its intended functions
in the presence of a given number of faults [21]. There
exists several definitions of dependability [22]. These
definitions often depend on the attributes (e.g., availabil-
ity, reliability, and safety) of the system that are being
defined as a criterion to decide whether or not a system
is dependable at a given time. The attributes defined may
depend on the intended use of the system [22].

In general, dependability is based on the notion of
reliance in the context of interacting components. It asso-
ciates to the relation depends upon, where a component
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A depends upon a component B, if the correctness of
B’s service delivery is necessary for the correctness of
A’s service delivery [22]. This relationship is typical of
composite services since they are entirely dependent on
their interactions with their partner services. An error
may propagate from a partner to the composite services;
thereby, creating new errors. As illustrated in Figure 4,
an error can propagate from component A to component
B, since B receives service from A. The error propagation
happens when an error reaches the service interface of
component A and service delivered by A to B becomes
incorrect. The failure of A becomes an external fault
to B and propagates the error into B through its use
interface [22].

Error
failure

fault

Component A

Error

Component B

Fig. 4. Error Propagation [23]

Our work focuses on the reliability attribute of de-
pendability with a specialization on robustness as a sec-
ondary attribute. Avizienis [22] defines reliability as the
continuity of correct service and defines robustness as
dependability with respect to external faults. Reliability
is a key requirement for building dependable systems.
The means to achieving dependability can be classified
into four groups: (1) fault avoidance, through rigorous
design and implementation to prevent the occurrence
or the introduction of faults; (2) fault removal, through
verification, validation and diagnosis to reduce the number
or the severity of faults; (3) fault forecasting, to estimate
the presence and consequences of faults; and (4) fault
tolerance, to provide correct service in spite the presence
of faults [24], [25]. These techniques that ere applied at
development time are not sufficient enough for ensuring
the reliability of composite Web services that are ex-
pected to dynamically discover and assemble components,
configure themselves, and operate securely and reliably
in a completely automated manner. This calls for the
development of new reliability techniques that introduce
autonomic functionality to address these challenges [6],
[25].

A. Reliability Techniques

New reliability techniques for service compositions can
be developed at four layers. Figure 5 shows the different
layers at which reliability techniques can be applied.

Service provider layer. At this level, reliability focuses
on the service hosting environment. Here, reliability can
be achieved by techniques that provide redundancy of
computation and data, load sharing to improve perfor-
mance and fault tolerance, and clustering which intercon-
nects multiple servers to avoid single point of failure [25].

Transport layer. At this level, the focus is on im-
plementing reliable messaging for Web services at the

Business Process
Layer

Program component Message flow

NetworkNetwork
Transport Layer

SOAP Messaging
Layer

SOAP Messaging
Layer

Service Provider
Layer

ConsumerConsumer

ProviderProvider

Fig. 5. Layers to apply reliability techniques.

transport layer. SOAP messaging can take different forms
of reliability depending on the underlying transport ser-
vice [26]. Therefore, techniques in this layer center on
using message-oriented middleware (MOM) [27] to en-
sure reliability and robustness of message traffic. Exam-
ple technologies are reliable transport protocols such as
HTTPR [28] and messaging infrastructures such as IBM
WebsphereMQ [29], which have built-in transactional
support for business processes [25].

SOAP messaging layer. Addressing reliability at this
layer focuses on extending SOAP messages to include
reliability properties that allow messages to be delivered
reliably between services in the presence of component,
system, or network failures. Using recently proposed
SOAP-based protocols such as WS-Reliability [30], ex-
tended SOAP messages can carry relevant reliability in-
formation. However, the extended SOAP messages must
be understood and supported by a messaging infrastruc-
ture [25], [26]

Business process layer. Reliability at this layer aims to
provide dependable composition of Web services through
advanced failure handling and compensation-based trans-
action protocols [25], [31]. Efforts in this layer can be
categorized into two groups; language-based and non
language-based approaches. Language-based techniques
provide advanced failure handling and adaptability by
augmenting the process logic with additional language
constructs, while non-language based approaches focus
specifically on the process supporting infrastructure such
as the execution engine.

Our work fits into this category by enabling adaptability
in BPEL process to address the concerns raised above.
One might argue that BPEL should be extended with con-
structs to handle those concerns. However, this would in-
crease the complexity of the language and it is also against
the principle of separation of concerns [32]. Constructs
for specifying exceptional behavior and recovery actions
should be modularized and externalized and not scattered
and tangled with the service implementation. Entangling
the logic for exceptional behavior and recovery actions
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with the business logic of the application negatively
impacts maintainability and adaptability. To address these
requirements for adaptable BPEL process execution, we
propose an approach that uses the transparent shaping
programming model to transparently adapt their behavior.
By transparent we mean that the adaptation preserves the
original behavior of the process and does not tangle the
code for autonomic behavior with that of the business
process and its original functionality. Adaptive code is
encapsulated in external components that use a set of
extensible recovery policies (e.g., retry, skip, and use
equivalent service) to declaratively specify how to handle
exceptional behavior and how to recover from typical
failures.

B. Failure handling techniques

There are several factors that can cause failure in the
execution of the workflows that define composite services
in distributed environments, they include network failure,
resource overload, or non-availability of required compo-
nents. It is therefore important for workflow management
systems to be able to identify and handle failures and
support reliable execution in the presence of concur-
rency and failures. Workflow failure handling techniques
are classified into two groups, task-level and workflow-
level [33], [34]. Figure 6 shows the different techniques
in each of these two groups.

Fault Tolerance

Task-level Workflow-level

Retrying Checkpointing Rescue
Workflow

User-defined
Exception
Handling

Replication Alternative
Resource/Task

Fig. 6. A workflow fault tolerance classification.

Task-level. Task-level techniques mask the effects of the
execution failure of individual tasks in the workflow.
Task-level techniques include retry, alternate resource,
alternate task, checkpoint/restart and replication. The
retry technique tries to execute the same task on the
same resource after failure. The alternate resource tech-
nique (also known as migration) submits failed task
to another resource while the alternate task technique
executes another implementation of a certain task if the
previous one failed. The checkpointing technique attempts
to continue workflow execution from the point of failure,
this may involve moving failed tasks transparently to other
resources. The replication technique runs the same task
simultaneously on different resources to ensure successful
task execution provided that at least one of the replicas
does not fail [33], [34].

Workflow-level. Workflow-level techniques manipulate
the workflow structure such as the execution flow to deal

with erroneous conditions. Workflow-level techniques in-
clude user-defined exception handling and rescue work-
flow. User-defined exception handling allows users to
specify a fault-handling behavior for a certain failure of a
task in the workflow; the fault-handling strategy may be
specified as part of the process logic. The rescue workflow
technique executes a rescue workflow, which performs a
set of recovery actions/tasks. The rescue workflow can be
used, for instance, where the failure was due to the lack
of disk space that can be reclaimed or in cases where
totally new resources need to be assigned for continued
execution [33], [34].

Our current framework uses task-level techniques to
support reliability in existing BPEL processes.

IV. INSTRUMENTING BPEL PROCESSES

Our approach to making an existing BPEL process ro-
bust involves monitoring the invocation of partner services
from within the BPEL process. Events such as timeouts
and faults are monitored and upon the occurrence of such
events, a proxy Web service is invoked to find and replace
the faulty services. By automatically modifying existing
BPEL processes, using a generator software that we
developed, our approach aims to achieve a separation of
concerns [20]. That is, enabling the separate development
of the process’s functional requirements (the business
logic) from the non-functional requirements (self-healing
and self-optimization, in this work). This allows the initial
developer of the BPEL process, which could be a business
analyst, to focus only on the functional requirements of
the process and compose it as such and leave the non-
functional concerns to our generative framework.

Following the Transparent Shaping programming
model [19], we first need to incorporate some generic
hooks at sensitive joinpoints in the original BPEL process.
These joinpoints are certain points in the execution path of
the program at which adaptive code can be introduced at
run time. Key to identifying joinpoints is knowing where
in the BPEL process sensing and actuating are required
and inserting appropriate code (hooks) to do so. Because
a BPEL process is an aggregation of services, the most
appropriate place to insert interception hooks is at the
interaction joinpoints (i.e., the invoke instructions) [35].
The monitoring code we insert is in the form of standard
BPEL constructs to ensure the portability of the modified
process. As part of the TRAP/BPEL framework, we
developed a Generator that automatically generates the
instrumented version of a given BPEL process.

V. STATIC PROXIES

The job of a proxy Web service is to discover and
bind equivalent Web services that can substitute for the
monitored services. Equivalent services can be discovered
either at design time (static discovery). During static
discovery, services that can substitute for the monitored
service are noted and tightly associated with the code for
the proxy.
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Figure 7 provides architectural diagrams showing the
differences between the sequence of interactions among
the components in a typical aggregate Web service and its
corresponding generated adapt-ready version. In a typical
aggregate Web service (Figure 7(a)), first a request is sent
by the client program, then the aggregate Web service
interacts with its partner Web services (i.e., WS1 to WSn)
and responds to the client. If one of the partner services
fails, then the whole process is subject to failure. To avoid
such situations, adapt-ready process monitors the behavior
of it partners and tries to tolerate their failure.

(a) Sequence of interactions in a typical aggregate Web service.

(b) Sequence of interactions in the adapt-ready aggregate Web
service.

Fig. 7. Architectural diagrams showing the difference between the
sequence of interactions among the components in a typical aggregate
Web service and its generated adapt-ready version.

As monitoring all the partner Web services might not
be necessary, the developer can select only a subset
of Web service partners to be monitored. For example,
in Figure 7(b) WSi and WSj have been selected for
monitoring. The adapt-ready process monitors these two
partner Web services and in the presence of faults it will
forward the corresponding request to the static proxy. The
static proxy is generated specifically for this adapt-ready
process and provides the same port types as those of the
monitored Web services (i.e., pti and ptj). The static
proxy in its turn forwards the request to an equivalent
Web service, which is “hardwired” into the code of this
proxy at the time it was generated. This means that the
number of choices for equivalent services are limited to
those known at the time the static proxy was generated.
Although the adapt-ready BPEL process remains a func-
tional Web service and the proxy is an autonomic Web
service (encapsulates autonomic attributes), functional

Web services can behave in an autonomic manner by
using autonomic Web services [9]. By replacing failed
and delayed services with substitutes, the proxy service
provides self-healing and self-optimization behavior to
the BPEL process, thereby making the BPEL process
autonomic.

In this paper, we make the following assumptions: (1)
two services are equivalent, if they implement the same
port type; (2) Web service partners are stateless and idem-
potent. A port type is similar to an interface in the Java
programming language. It is possible for two applications
to be functionally equivalent without necessarily having
the exact same interface. When this occurs, a wrapper
interface/service can be used to harmonize the differences
in their interfaces. Given the rapid uptake of the service
oriented programming model, we expect the emergence
of numerous services that are functionally equivalent and
thus can be substituted.

VI. DYNAMIC PROXIES

Figure 8 illustrates the architectural diagram of an ap-
plication using an adapt-ready BPEL process augmented
with its corresponding dynamic proxy. This figures shows
the steps of interactions among the components of a
typical adapt-ready BPEL process. Similar to a static
proxy, the interface for the generated dynamic proxy is
exactly the same as that of the monitored Web service.
The main difference between the dynamic and static
proxies is that the dynamic proxy is augmented a mecha-
nism for discovering substitute services at runtime, rather
that being statically bound to a limited set of substitute
services.

Fig. 8. Architectural diagram showing the sequence of interactions
among the components in an adapt-ready BPEL process augmented with
its corresponding dynamic proxy.

When the dynamic proxy is invoked upon failure of a
monitored service, the proxy makes queries against the
registry service to find equivalent services. At runtime,
any service provider can publish new equivalent services
with the registry, which can potentially substitute a failed
service in the future.

The registry technology used in the TRAP/BPEL
framework is the Universal Description, Discovery and
Integration protocol (UDDI), which is a specification for

JOURNAL OF NETWORKS, VOL. 3, NO. 5, MAY 2008 47

© 2008 ACADEMY PUBLISHER



the publication and discovery of Web services. UDDI
specifies a set of data structures, messages and API for
creating and maintaining information about Web services
in distributed registries. The registry allows for three
categories of information to be published: (1) white pages
that contain contact information such as the name, address
and telephone number of a given business; (2) yellow
pages that contain information that categorizes businesses
based on some existing taxonomies; and (3) green pages
that contain technical information about the Web services
provided by the published businesses (this can include the
URL of the service and its WSDL).

There are four key components in the UDDI data
model: businessEntity, businessService, bindingTemplate
and tModel. The information published in the white,
yellow and green pages are captured under businessEntity,
businessService and bindingTemplate, respectively. The
tModel (or technical model) is used to represent service
taxonomies as well as store metadata about a service, such
as the location of its WSDL [36].

Fig. 9. Mapping WSDL to UDDI.

In order to adequately categorize services in a UDDI
registry, certain conventions have to be adhered to. The
method of classification we use focuses on registering
services based on the information in their WSDL de-
scriptions, in other words, mapping WSDL to UDDI.
Information about the WSDL service and port are
stored under components of the UDDI data model. Data
registered from the WSDL includes the URL for each
service port. The dynamic proxy makes queries to the
UDDI registry via the API provided by JUDDI, which
is an open source Java implementation of the UDDI
specification. The query term is fixed since with the
port types of the monitored services is known during
adaptation. At this stage of our work, no selection criteria
is used when multiple services are discovered, although
some selection policies can be easily incorporated into the
proxy to introduce some added quality-of-service.

VII. GENERIC PROXIES

A generic proxy can interact with one or more adapt-
ready BPEL processes [14]. Some behavioral policy is
used in the proxy to guide the adaptive behavior for each
monitored service. Figure 10 illustrates several adapt-
ready BPEL processes that are assigned to one generic
proxy, which augments the BPEL processes with self-
management behavior. The generic proxy uses a look-
up mechanism to query a registry service at runtime to
find out about available services. But unlike the static
and dynamic proxies , the generic proxy has a standard
interface which bears no relation to the interfaces of the
monitored services. The generic proxy has as interface
ptg that is able to receive requests for any monitored Web
service (e.g., WS11 and WSkn).

UDDI

~WS11

ptj

~WSkn

ptj

UDDI registry

services

Dynamically

identified equivalent 
Web services for 

WS11 and WSkn

2

WSk1

ptk1

WSkn

ptkn
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1

3

Adapt-Ready

Aggregate
Web Service 1

Client Program

1

3
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Web Service K

Client Program

…

2
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WS1m

pt1m

m original partner 

Web services of 
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Web service 1
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behavior.n original partner 

Web services of 
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Web service K

...
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Fig. 10. Architectural diagram showing the sequence of interactions
among the components in TRAP/BPEL

The generic proxy can provide self-management behav-
ior either common to all adapt-ready BPEL processes or
specific to each monitored invocation using some high-
level policies. These high-level policies are specified in a
configuration file that is loaded at startup time into the
generic proxy. We plan to allow runtime modification
to these high-level policies in future versions of our
TRAP/BPEL framework. Figure 11 shows an example
policy file where each unique monitored invocation can
have a policy specified under a service element. The
InvokeName element (line 4) has a value that uniquely
identifies a monitored invocation in an adapt-ready BPEL
process. The generic proxy checks all intercepted invo-
cations and tries to match these invocations with the
specified policies. If it finds a policy for that invocation,
the proxy behaves accordingly, otherwise it follows its
default behavior.

If a policy exists, the generic proxy may take one of the
following actions according to the policy: (1) invoke the
service being recommended in the policy (line 6); (2) find
and invoke another service to substitute for the monitored
service; and (3) retry the invocation of the monitored
service in the event of its failure (line 10). The policy also
specifies the time interval between retries (line 12). The
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1. <Policy>
2. <Service>
3. <!--a unique name for monitored invocation-->
4. <InvokeName value="WS-Invoke"/>
5. <!--WSDL for a default Web service substitute-->
6. <WsdlUrl preferred="true"value="http://./WS.wsdl"/>
7. <!--timeout value for the monitored invocation-->
8. <Timeout seconds="2"/>
9. <!--the number of times to retry failed invoc.-->
10 <MaxRetry value="2"/>
11 <!--time to wait between retries-->
12 <RetryInterval seconds="5"/>
13 </Service>
14. <Service>
15. ...
16. </Service>
17.</Policy>

Fig. 11. A portion of a policy file for the generic proxy.

default behavior of the proxy is to consult the registry to
find and invoke an appropriate a service that implements
the same inteface as the monitored invocation.

Figure 12 provides a section of the WSDL of the
generic proxy. As can be seen from its description, the in-
terface for the proxy has two operations: genericInvoc
and extract (lines 22-25 and 26-29 respectively). The
former is used to receive an intercepted request and the
latter is used to provide the information about the reply,
respectively. The input message to the genericInvoc

operation (lines 1-6) has four parts: (1) invokename,
which is used to identify the monitored service; (2)
porttype, which identifies the port type of the monitored
invocation (this variable is the unique key used to query
the UDDI registry for services that implement the same
interface); (3) operation, which identifies the exact op-
eration of the port type being called; and (4) variables,
which contains the serialized input message for the mon-
itored service. When the proxy genericInvocation

operation is called with the genericInputMessage, the
proxy can identify which service is being intercepted and
can discover the necessary details about the invocation.
The proxy can then take one of the several actions,
specified in the policy file, to monitor and adapt the
intercepted call.

For dynamic service invocation, the generic proxy uses
the Web Service Invocation Framework (WSIF). Once
the reply is ready, the proxy serializes the reply, puts
the serialized message into the genericOutputMessage
(lines 8-10), and sends the message back to the adapted
BPEL process. When the genericOutputMessage ar-
rives at the adapted BPEL process, it needs to be deseri-
alized. Since BPEL is not a general-purpose programming
language, it lacks the necessary constructs to deserialize
the (genericOutputMessage) message. So, the adapt-
ready BPEL process uses the extract operation of the
generic proxy to accomplish this task. We note that the
serialized output message can be comprised of one or
more parts [15]; therefore, a series of calls to the extract
operation might be required to extract the value for each
message part. The extractInputMessage (lines 12-
14) for the extract operation has two parts: values

and param. The values part contains the serialized

1. <message name="genericInputMessage">
2. <part name="invokename" type="xsd:string"/>
3. <part name="porttype" type="xsd:string"/>
4. <part name="operation" type="xsd:string"/>
5. <part name="variables" type="xsd:string"/>
6. </message>
7.
8. <message name="genericOutputMessage">
9. <part name="reply" type="xsd:string"/>
10. </message>
11.
12. <message name="extractInputMessage">
13. <part name="values" type="xsd:string"/>
14. <part name="param" type="xsd:string"/>
15. </message>
16.
17. <message name="extractReply">
18. <part name="value" type="xsd:string"/>
19. </message>
20.
21. <portType name="proxyPT">
22. <operation name="genericInvoc">
23. <input message="tns:genericInputMessage"/>
24. <output message="tns:genericOutputMessage"/>
25. </operation>
26. <operation name="extract">
27. <intput message="tns:extractInputMessage"/>
28. <output message="tns:extractReply"/>
29. </operation>
30. </portType>

Fig. 12. A section of the WSDL description of the interface of the
generic proxy.

genericOutputMessage and the param part specifies
which parameter value to extract from the generic-

OutputMessage. The proxy then sends this value back
to the BPEL process.

VIII. CASE STUDIES

In this section, we use three case studies to demonstrate
the self-healing and self-optimization behavior of the
generated BPEL processes and their respective dynamic
proxies. To better demonstrate the applicability of our
approach to any BPEL process, we tried to use existing
BPEL processes that are not originated by us. For each
case study, we start by describing the application, then we
present the configuration of the experiment environment.
Finally, we show the results of the experiment.

A. The Google-Amazon Process

The Google-Amazon business process integrates the
Google Web service for spelling suggestions with the
Amazon E-Commerce Web service for querying its store
catalog. The business process takes as input a phrase
(keywords) which is sent to the Google spell-checker for
corrections. If any word in the input phrase is misspelled,
the Google spell-checker sends back as reply the phrase
with the misspelled words corrected (the phrase is un-
changed if the spellings are correct). The reply from the
Google service is used to create keyword search of the
Amazon bookstore via the Amazon Web service.

From this original Google-Amazon process, we used
the generator to generate the adapt-ready process. For
this adaptation we have selected to have the generator
only adapt the invocation of the Google spell-checker.
We then found another publicly available Spell-checker
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Web service from Cydne to act a substitute for the Google
service. There is a slight difference between the interfaces
of the Google and Cydne spell-checkers. We used a
wrapper Web service for the Cydne service in order to
harmonize the interfaces.

1) The Experiment: As illustrated in Figure 13, client
requests are made to the BPEL process (labeled 1), which
results in the invocations to the Google Web services
(labeled 2). To simulate the unavailability of the Google
service, we changed the URL of the service from within
the Google-Amazon process, to point to a non-existent
address. Thus upon the imminent failure of the invocation
for the Google service, the adapt-ready BPEL process in-
vokes the dynamic proxy (labeled 3). The dynamic proxy
first queries the JUDDI registry for substitute services
(labeled 4). As a result of the query, it finds the wrapper
Web service for the Cydne spell-checker. The proxy then
binds to the wrapper service, which in turn binds to the
Cydne spell-checker with the input keywords (labeled
5 and 6, respectively). The result of this invocation is
sent back to the adapt-ready Google-Amazon process and
then used as input to query the Amazon store service.
For example, we used “Computer Algorthms” as input
keyword to the process, Google (or the wrapper) corrected
it to “Computer Algorithms”, and Amazon found this
book: “Bruce Schneier, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edition”.2

Fig. 13. The sequence of interactions among the components in the
Google-Amazon case study.

B. The Loan Approval Process

The Loan-Approval process is a commonly used sam-
ple BPEL process. The Loan-Approval BPEL process is
an aggregate Web service composed of two other Web
services: a low-risk assessor service (LoanAssessor) and
a high-risk assessor service (LoanApprover). The Loan-
Approval process implements a business process that
uses its two partner services to decide whether a given
individual qualifies for a given loan amount. Both the
business process and the risk assessor (simulated) service
are deployed locally.

1) The Experiment: As illustrated in Figure 14, client
requests are made to the BPEL process (labeled 1), which
results in the invocations to the partner Web services
(labeled 2). Upon failure of these partner services or an
invocation timeout, the adapt-ready BPEL process invokes

2The Amazon store service actually returned a list of books but we
only show the first one.

the dynamic proxy (labeled 3). The dynamic proxy first
queries the JUDDI registry for substitute services (labeled
4). The result of the query is used to bind the substitute
service and forward the requests to this service (labeled
5).

Fig. 14. The sequence of interactions among the components in the
Loan Approval case study.

2) Self-Healing and Self-Optimization.: In order to
demonstrate the autonomic behavior of the generated
BPEL process and its corresponding dynamic proxy, we
have programmatically altered the Loan Approver Web
service to generate faults and a delay of two seconds
after a certain number of successive invocations. The
successive invocations to the Loan Approver Web service
are the results of requests to the BPEL process made by
the client application. These requests are mapped on the
X axis of the chart shown in Figure 15. As the plot for the
original BPEL shows, for the successive invocations 11
to 20, the Loan Approver Web service generates a fault
for those invocations, and for the invocations 31 to 40,
the Loan Approver Web service is made to delay for 2
seconds before sending back a reply to the BPEL process.
The fault generation is meant to simulate a problematic
Web service, a server crash, or a network outage and the
delay is meant to simulate an overly loaded Web service
or its corresponding host. We set the timeout duration for
the Loan Approval BPEL process to 1 second.

Fig. 15. This chart shows the comparison between the request
completion time for the original and the robust BPEL processes.

Figure 15 plots the request completion time for the
two sets of experiments (one with the original BPEL
process and the other with the generated BPEL process)
for the 50 successive requests from the client program
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to the Loan Approval BPEL process. One plot reflects
the behavior of the original BPEL process and the other
one reflects the behavior of the generated robust BPEL
process and its corresponding dynamic proxy. According
to the experiment setup, the first 10 request are completed
normally as there are no fault generated or no delay is
added on the execution path of these request. As expected,
the average completion time for both the original and the
robust sets of experiments are almost the same (about
47 milliseconds). This result indicates that in normal
operation, the overhead added by the robust BPEL process
is negligible.

Right after the completion of the first 10 requests, the
Loan Approver Web service starts throwing exceptions for
the next 10 requests. Although Figure 15 shows that the
completion time for the original BPEL stays as before, but
all the requests are returned with exception and the results
are of no use. In other words, the original BPEL pro-
cess fails its clients. The robust BPEL process, however,
catches all such exceptions and uses the dynamic proxy
to find an equivalent service. In its turn, the dynamic
proxy uses the UDDI server and finds the substituent
service. The plot for robust BPEL in Figure 15 shows
an increase in the completion time, which is about 127
milliseconds. We believe that for many applications, the
extra 80 milliseconds overhead is much more desirable
than receiving a faulty response.

For the next 10 requests (21 to 30), the Loan Ap-
prover Web service goes back to its normal behavior
and responds to the requests without throwing exceptions.
As can be seen from Figure 15, the robust BPEL uses
the original Web service and in essence optimizes the
completion time for these 10 requests. As illustrated in the
original BPEL plot, for the next 10 requests (31 to 40),
the Loan Approver Web service responds to the requests
after 2 seconds of delay. As the time out in the robust
BPEL process is set to 1 second, the robust BPEL process
withdraws its invocations to the original Loan Approver
Web services after 1 second and uses the substitute Web
service. In this way, the robust BPEL process completes
the request in almost half the time as that of the original
BPEL process.

C. The Google-Amazon and Loan Approval Processes

In this part, we evaluate the performance of generic
proxies using the two examples previously introduced. As
illustrated in Figure 16, for the Google-Amazon process,
we have selected the Google spell checker service and
for the Loan Approver process, we have selected the
Loan Approver service to become adaptable. As can be
followed in the figure, a sample policy can be used to
forward the intercepted calls to their original services
(labels 1, 2, and 3) and use a substitute service in case an
original service fails (labels 4 and 5 for the Loan Approval
process).

To evaluate the performance hit of the generic proxies,
we configured the client applications to sequentially make
calls on their corresponding processes. As the X-axis
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Fig. 16. The interaction between the processes and the generic proxy.

of both charts in Figure 17 shows, the number of total
consequent calls are 50. The initial runs were made
against the original BPEL process. The results are plotted
in the charts in Figure 17 under the original curves.
Similarly, the results of the observed completion times of
the adapt-ready versions are plotted in Figure 17 under
the adapted curves.

For the Loan-Approval process, the average completion
time for the original process is approximately 0.06 sec-
onds and for its adapt-ready version is 0.11 seconds. For
the Google-Amazon process, the average completion time
for the original process is approximately 0.82 seconds and
for its adapt-ready version is 0.86 seconds. This experi-
ment shows that the performance overhead introduced by
the generic proxies (approximately 0.05 and 0.04 seconds)
is negligible for most BPEL processes.

Figure 18 show a comparison of the average comple-
tions times for the static, dynamic and generic proxies on
running the adapt-ready Loan-Approval process. The av-
erage completion time for the static proxy is 0.078, while
that of the dynamic proxy is 0.1, as compared to 0.11
for the generic proxy. We attribute to noticeably lower
time for the static proxy to the fact that the substitute
service is statically bound to the proxy, which eliminates
the overhead incurred through service discovery.

IX. RELATED WORK

Birman et al. [6] propose extensions to the Web ser-
vices architecture to support mission-critical applications.
They propose the following five extensions; Component
Health Monitoring (CHM), Consistent and Reliable Mes-
saging(CRM), Data dissemination (DDS), Monitoring and
Distributed Control (MDC) and Event notification (EVN).
Similar to ours, this work aims to improve the reliability
of Web services, but it proposes extensions to the Web
services architecture.

Baresi’s approach [37] to monitoring involves the use
of annotations that are stated as comments in the source
BPEL program and then translated to generate a tar-
get monitored BPEL program. This approach achieves
the desired separation of concern; however, it requires
modifying the original BPEL processes manually and the
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Fig. 17. The response time of the original and adapt-ready processes
(in seconds). Top: Loan-Approval Process; Bottom: Google-Amazon
Process.

annotated code is scattered all over the original code. The
manual modification of BPEL code is not only difficult
and error prone, but also hinders maintainability.

Charfi et al [32] use an aspect-based container to
provide middleware support for BPEL. The two inputs to
the framework are the BPEL process and a deployment
descriptor. The descriptor specifies the non-functional
requirements (e.g., security, persistence and transactions).
The process container is the runtime environment for the
BPEL process. All interactions go through the container
which plugs in support for non-functional requirements.
Aspects can be generated using the deployment descriptor
to specify the pointcuts. Aspects specify what and how
SOAP messages can be modified to add, for instance,
security information to the header. This framework is
different form our because it requires a purpose built
BPEL engine. Also, the adaptation is done at a much
lower level (the messaging layer).

Finally, Erradi et al. [38] provide reliability through
a policy driven middleware named Web Services Mes-
sage Bus (wsBus), which is used to transparently enact
recovery actions. The wsBus intercepts the execution of
composite services and transparently provides recovery
services based on an extensible set of recovery policies
(e.g., retry, skip, and use equivalent service). The wsBus
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Fig. 18. This charts the average completion times for the static, dynamic
and generic proxies.

provides exception-handling and recovers from failures
such as service unavailability and timeout. It also en-
forces SLA agreements. This approach is modular and
separates the business logic of the process from the QoS
requirements, however, adaptation is done at a much lower
messaging layer. The works mentioned above, although
are able to provide some means of monitoring for singular
or aggregate Web services, they do not dynamically
replace the delinquent services once failure or extensive
delay has been detected.

X. CONCLUSION AND FUTURE WORK

We presented an approach to transparently adapting
BPEL processes to tolerate run-time and unexpected faults
and to improve the performance of overly loaded Web
services. We have introduced the static, dynamic, and
generic proxies and discussed how they are different and
depending on the application which one may perform
better than the others. With the use of case studies, we
demonstrated how our TRAP/BPEL framework enables
us to incorporated self-healing and self-optimization be-
havior into existing composite Web services developed
in BPEL. We use a generative approach to incorporating
the autonomic behavior in existing BPEL processes. The
adaptation is done in a manner that the code for business
logic is kept separated from the code for robustness of
the process.
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