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Abstract

We establish some rank and crank analogs for partitions into distinct colors and
give combinatorial interpretations for colored partitions such as partitions defined
by Toh, Zhang and Wang congruences modulo 5, 7.
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1 Introduction and Motivation

Let p(n) be the number of unrestricted partitions of n, where n is nonnegative integer.
In 1921, Ramanujan [20] discovered the following congruences

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7).

There exist many proofs in mathematical literature, for example [6, 7, 19].
In 1944, F. J. Dyson [10] defined the rank of a partition as the largest part minus the

number of parts. Let N(m,n) denote the number of partitions of n with rank m and let

∗The first author’s research was partially supported by the Fundamental Research Funds for the
Central Universities (N142303009), the Natural Science Foundation of Hebei Province (A2015501066)
and NSFC(11501090).
†The second author’s research was partially supported by the Fundamental Research Funds for the

Central Universities.

the electronic journal of combinatorics 22(4) (2015), #P4.17 1



N(m, t, n) denote the number of partitions of n with rank congruent to m modulo t. In
1953, A. O. L. Atkin and H. P. F. Swinnerton-Dyer [3] proved

N(0, 5, 5n+ 4) = N(1, 5, 5n+ 4) = · · · = N(4, 5, 5n+ 4) =
p(5n+ 4)

5

and

N(0, 7, 7n+ 5) = N(1, 7, 7n+ 5) = · · · = N(6, 7, 7n+ 5) =
p(7n+ 5)

7
.

Following from the fact that the operation of conjugation reverses the sign of the rank,
the trivial consequences are

N(m,n) = N(−m,n) and N(m, t, n) = N(t−m, t, n).

Hammond and Lewis [14] defined birank and explained that the residue of the birank
mod 5 divided 2-colored partitions of n into 5 equal classes provided n ≡ 2, 3 or 4 (mod 5).
F. G. Garvan [12] found two other analogs the Dyson-birank and the 5-core-birank.

In 2010, Chan [8] introduced the cubic partition a(n) as the number of 2-color parti-
tions of n with colors red and blue subjecting to the restriction that the color blue appears
only in even parts, and obtained the following congruence

a(3n+ 2) ≡ 0 (mod 3).

Another proof has been given by B. Kim [16]. He defined a crank analog M ′(m,N, n) for
a(n) and proved that

M ′(0, 3, 3n+ 2) ≡M ′(1, 3, 3n+ 2) ≡M ′(2, 3, 3n+ 2) (mod 3),

for all nonnegative integers n, where M ′(m,N, n) is the number of partition of n with
crank congruent to m modulo N . Later, B. Kim [17] gave two partition statistics which
explained the partition congruences about cubic partition pairs b(n). Here, b(n) is the
number of 4-color partitions of n with colors red, yellow, orange, and blue subjecting to
the restriction that the colors orange and blue appear only in even parts.

About further research of arithmetic properties of cubic partitions, overcubic partitions
and other colored partitions, some interesting results can be found in [18, 21, 23, 24].
The first author [25] of the present paper generalized Hammond-Lewis birank and gave
combinatorial interpretations for some colored partitions.

The paper is organized as follows. In Section 2, we introduce necessary notation and
some preliminary results. In Section 3, we aim to provide two partition statistics for two
colored partition congruences modulo 5. We establish six rank or crank analogs for six
colored partition with modulus 7 and give combinatorial interpretations in Section 4.

2 Preliminary results

For the two indeterminates q and z with |q| < 1, the q-shifted factorial of infinite order is
defined by

(z; q)∞ =
∞∏
n=0

(1− zqn)
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where the multi-parameter expression for the former will be abbreviated as

[α, β, · · · , γ; q]∞ = (α; q)∞(β; q)∞ · · · (γ; q)∞.

The main purpose of this paper is to define rank and crank analogs for partition into
colors and prove colored partition congruences applying the method of [11], which uses
roots of unity. Jacobi triple product identity, the modified Jacobi triple product identity
and Winquist product identity are given as follows:

• Jacobi triple product identity [1, 4, 5, 13, 15]:

+∞∑
n=−∞

(−1)n q(
n
2) xn = [q, x, q/x; q]∞ . (1)

• Modified Jacobi triple product identity [14]:

[q, zq, q/z; q]∞ =
∑
n>0

(−1)n(zn + zn−1 + · · ·+ z−n)q(
n+1
2 ). (2)

• Winquist product identity [9, 22]:

(q; q)4∞ [x, q/x; q]2∞
[
x2, q/x2; q

]
∞

=
+∞∑

i,j=−∞

(−1)i+jq3(
i
2)+3(j

2)+j(1− 3i+ 3j){x3i+3j − x4−3i−3j}. (3)

By replacing q by q2 in (3), splitting into two bilateral sums on right hand side of the
resulting equation, and replacing j → j − 1 in the first double sum, and i→ i+ 1 in the
second double sum, the resulting formula can be transformed as

• Modified Winquist product identity

(q2; q2)4∞
[
x, q2/x; q2

]2
∞

[
x2, q2/x2; q2

]
∞

=
+∞∑

i,j=−∞

(−1)i+jq6(
i
2)+6(j

2)+3i−j+1(2 + 3i− 3j){(x/q)3i+3j−3 − (x/q)1−3i−3j}. (4)

Dividing both sides by 1+x in (3) and applying L’Hôpital’s rule for the limit x→ −1,
we have

(q; q)2∞(q2; q2)4∞ =
+∞∑

i,j=−∞

q3(
i
2)+3(j

2)+j (1− 3i+ 3j)(2− 3i− 3j)

4
. (5)

Divide both sides by 1 − q2/x2 in (4) and utilize L’Hôpital’s rule for the limit x → q
to obtain

(q; q)4∞(q2; q2)2∞ =
+∞∑

i,j=−∞

(−1)i+jq6(
i
2)+6(j

2)+3i−j+1(2 + 3i− 3j)(3i+ 3j − 2). (6)
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After Andrews and Garvan [2], for a partition λ, we define #(λ) is the number of
parts in λ and σ(λ) is the sum of the parts of λ with the convention #(λ) = σ(λ) = 0 for
the empty partition λ. Let P be the set of all ordinary partitions, DO be the set of all
partitions into distinct odd parts.

For a given partition λ, the crank c(λ) of a partition is defined as

c(λ) :=

{
`(λ), if r = 0;

ω(λ)− r, if r > 1,

where r is the number of 1’s in λ, ω(λ) is the number of parts in λ that are strictly larger
than r and `(λ) is the largest part in λ. By extending the set of partitions P to a new
set P∗ by adding two additional copies of the partition 1, say 1∗ and 1∗∗, B. Kim [16, 17]
obtains

(q; q)∞
[zq, z−1q; q]∞

=
∑
λ∈P∗

wt(λ)zc
∗(λ)qσ

∗(λ),

where wt(λ), c∗(λ), and σ∗(λ) are defined as follows. Denote the weight wt(λ) for λ ∈ P∗
by

wt(λ) :=

{
1, if λ ∈ P , λ = 1∗, or λ = 1∗∗;

−1, if λ = 1,

and denote the extended crank c∗(λ) by

c∗(λ) :=


c(λ), if λ ∈ P ;

0, if λ = 1;

1, if λ = 1∗;

−1, if λ = 1∗∗.

Finally, denote the extended sum parts function σ∗(λ) in the following way:

σ∗(λ) :=

{
σ(λ), if λ ∈ P ;

1, otherwise.

3 Rank analogs for colored partitions congruences modulo 5

In this section, we establish two statistics that divide the relevant partitions into equinu-
merous classes and present the combinatorial interpretation for colored partition congru-
ences modulo 5.

We denote
C1232 = {(λ1, λ2, 3λ3, 3λ4) | λ1, λ2, λ3, λ4 ∈ P}.

For λ ∈ C1232 , we define the sum of parts s1232(λ), and rank analog r1232(λ) by

s1232(λ) = σ(λ1) + σ(λ2) + 3σ(λ3) + 3σ(λ4)

r1232(λ) = #(λ1)−#(λ2) + #(λ3)−#(λ4).
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The number of 4-colored partitions of n if s1232(λ) = n having r1232(λ) = m will be written
as NC1232

(m,n), and NC1232
(m, t, n) is the number of such 4-colored partitions of n having

rank analog r1232(λ) ≡ m (mod t). Now, summing over all 4-colored partitions λ ∈ C1232

gives

NC1232
(m,n) =

∑
λ∈C1232 ,s1232 (λ)=n,

r1232 (λ)=m

1.

Since
r1232(λ1, λ2, λ3, λ4) = −r1232(λ2, λ1, λ4, λ3),

hence

NC1232
(m,n) = NC1232

(−m,n) and NC1232
(m, t, n) = NC1232

(t−m, t, n).

Then we have∑
m∈Z

∞∑
n=0

NC1232
(m,n)zmqn =

1

(zq; q)∞(z−1q; q)∞(zq3; q3)∞(z−1q3; q3)∞
. (7)

By putting z = 1 in the identity (7), we find

∞∑
m=−∞

NC1232
(m,n) = c(n),

where c(n) is defined by
∑∞

n=0 c(n)qn = 1
(q;q)2∞(q3;q3)2∞

.

Theorem 1. For n > 0,

NC1232
(0, 5, 5n+ 2) = NC1232

(1, 5, 5n+ 2) = NC1232
(2, 5, 5n+ 2) =

c(5n+ 2)

5
.

It can also prove the identity in Zhang and Wang [23]: c(5n+ 2) ≡ 0 (mod 5).

Proof. Suppose ζ is primitive 5th root of unity. By setting z = ζ in (7), we write

∑
m∈Z

∞∑
n=0

NC1232
(m,n)ζmqn =

1

[ζq, ζ−1q; q]∞ [ζq3, ζ−1q3; q3]∞

=
1

(q5; q5)∞(q15; q15)∞
×
[
q, ζ2q, ζ−2q; q

]
∞

[
q3, ζ2q3, ζ−2q3; q3

]
∞ .

Using modified Jacobi triple product identity (2), the last two infinite products have
the following series representation

∞∑
i,j=0

(−1)i+jq(
i+1
2 )+3(j+1

2 ){ζ2i + ζ2i−2 + · · ·+ ζ−2i}{ζ2j + ζ2j−2 + · · ·+ ζ−2j}.
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Observe the congruence relation(
i+ 1

2

)
+3

(
j + 1

2

)
+3 ≡ 8

{(i+ 1

2

)
+3

(
j + 1

2

)
+3
}
≡ (2i+1)2+3(2j+1)2 ≡ 0 (mod 5),

which can be reached only if i ≡ 2 (mod 5) and j ≡ 2 (mod 5) since the corresponding
residues modulo 5 read respectively as

(2i+ 1)2 ≡ 0, 1, 4 (mod 5), and 3(2j + 1)2 ≡ 0, 2, 3 (mod 5).

When i ≡ 2 (mod 5) and j ≡ 2 (mod 5), we have {ζ2i + ζ2i−2 + · · ·+ ζ−2i}{ζ2j + ζ2j−2 +
· · · + ζ−2j} = 0. We see that in the q-expansion on the right side of the last equation
the coefficient of qn is zero when n ≡ 2 (mod 5). The proof of Theorem 1 has been
finished.

Let
C2232 = {(2λ1, 2λ2, 3λ3, 3λ4) | λ1, λ2, λ3, λ4 ∈ P}.

For λ ∈ C2232 , we define the sum of parts s2232(λ), and rank analog r2232(λ) by

s2232(λ) = 2σ(λ1) + 2σ(λ2) + 3σ(λ3) + 3σ(λ4)

r2232(λ) = #(λ1)−#(λ2) + #(λ3)−#(λ4).

Define NC2232
(m,n) as the number of 4-colored partitions of n if s2232(λ) = n having

r2232(λ) = m, and NC2232
(m, t, n) as the number of such 4-colored partitions of n having

rank analog r2232(λ) ≡ m (mod t). Now, summing over all 4-colored partitions λ ∈ C2232

gives

NC2232
(m,n) =

∑
λ∈C2232 ,s2232 (λ)=n,

r2232 (λ)=m

1.

Since
r2232(λ1, λ2, λ3, λ4) = −r2232(λ2, λ1, λ4, λ3),

hence

NC2232
(m,n) = NC2232

(−m,n) and NC2232
(m, t, n) = NC2232

(t−m, t, n).

Then we have∑
m∈Z

∞∑
n=0

NC2232
(m,n)zmqn =

1

(zq2; q2)∞(z−1q2; q2)∞(zq3; q3)∞(z−1q3; q3)∞
. (8)

By putting z = 1 in the identity (8), we find

∞∑
m=−∞

NC2232
(m,n) = ρ(n),

where ρ(n) is defined by
∑∞

n=0 ρ(n)qn = 1
(q2;q2)2∞(q3;q3)2∞

.
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Theorem 2. For n > 0,

NC2232
(0, 5, 5n+ k) = NC2232

(1, 5, 5n+ k) = NC2232
(2, 5, 5n+ k) =

ρ(5n+ k)

5
; k = 1, 4.

It can also prove the identity in Zhang and Wang [23]: ρ(5n + 1) ≡ 0 (mod 5) and
ρ(5n+ 4) ≡ 0 (mod 5).

Proof. The proof of Theorem 2 is similar to Theorem 1. Replacing z by ζ in (8), we get

∑
m∈Z

∞∑
n=0

NC2232
(m,n)ζmqn =

1

[ζq2, ζ−1q2; q2]∞ [ζq3, ζ−1q3; q3]∞

=
1

(q10; q10)∞(q15; q15)∞
×
[
q2, ζ2q2, ζ−2q2; q2

]
∞

[
q3, ζ2q3, ζ−2q3; q3

]
∞ .

Applying modified Jacobi triple product identity (2), we transform the last two infinite
products as follows

∞∑
i,j=0

(−1)i+jq2(
i+1
2 )+3(j+1

2 ){ζ2i + ζ2i−2 + · · ·+ ζ−2i}{ζ2j + ζ2j−2 + · · ·+ ζ−2j}.

It is not hard to check that the residues of q-exponent in the formal power series just
displayed 2

(
i+1
2

)
+ 3
(
j+1
2

)
modulo 5 are given by the following table:

j\i 0 1 2 3 4
0 0 2 1 2 0
1 3 0 4 0 3
2 4 1 0 1 4
3 3 0 4 0 3
4 0 2 1 2 0

When i ≡ 2 (mod 5) or j ≡ 2 (mod 5), we have {ζ2i + ζ2i−2 + · · · + ζ−2i}{ζ2j +
ζ2j−2 + · · · + ζ−2j} = 0. We observe that in the q-expansion on the right side of the last
equation the coefficient of qn is zero when n ≡ 1 (mod 5) and n ≡ 4 (mod 5). The proof
of Theorem 2 has been completed.

4 Rank and crank analogs for colored partitions congruences
modulo 7

In this section, we define statistics that divide the relevant partitions into equinumerous
classes and provide the combinatorial interpretation according to [17] for colored partitions
congruences modulo 7 given in Toh [21], Zhang and Wang [23].

If we denote

C132−2 = {(2λ1, 2λ2, λ3, λ4, λ5) | λ1, λ2 ∈ P , λ3, λ4, λ5 ∈ P∗},
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then we can call them as partitions into 5-colors.
For the set of the colored partitions, we define the sum of parts s132−2(λ), a weight

wt132−2(λ) and a crank analog c132−2(λ) by

s132−2(λ) = 2σ(λ1) + 2σ(λ2) + σ∗(λ3) + σ∗(λ4) + σ∗(λ5)

wt132−2(λ) = (−1)#(λ1)+#(λ2)wt(λ3)wt(λ4)wt(λ5)

c132−2(λ) = c∗(λ3) + 2c∗(λ4) + 3c∗(λ5),

where the definitions of P∗, σ∗(λ), wt(λ) and c∗(λ) are presented in section 2. Let
MC132−2 (m,n) denote the number of 5-colored partitions of n if s132−2(λ) = n (counted ac-
cording to the weight wt132−2(λ)) with analog of crank c132−2(λ) = m, and MC132−2 (m, t, n)
denote the number of 5-colored partitions of n with analog of crank c132−2(λ) congruent
to m (mod t), so that

MC132−2 (m,n) =
∑

λ∈C132−2 ,s132−2 (λ)=n,

c132−2 (λ)=m

wt132−2(λ).

Then we have∑
m∈Z

∞∑
n=0

MC132−2 (m,n)zmqn =
(q2; q2)2∞(q; q)3∞

[zq, z−1q, z2q, z−2q, z3q, z−3q; q]∞
. (9)

By putting z = 1 in the identity (9), we find

∞∑
m=−∞

MC132−2 (m,n) = Q(po,p)(n),

where Q(po,p)(n) is defined by
∑∞

n=0Q(po,p)(n)qn := (−q;q)∞
(q;q2)∞(q;q)∞

= (q2;q2)2∞
(q;q)3∞

.

Suppose $ is primitive seventh root of unity. By letting z = $ in (9), we have

∑
m∈Z

∞∑
n=0

MC132−2 (m,n)$mqn =
(q2; q2)2∞(q; q)3∞

[$q,$−1q,$2q,$−2q,$3q,$−3q; q]∞
=

(q2; q2)2∞(q; q)4∞
(q7; q7)∞

.

Utilizing product identity (6), we compute the numerator of the right hand side of last
identity as follows

+∞∑
i,j=−∞

(−1)i+jq6(
i
2)+6(j

2)+3i−j+1(2 + 3i− 3j)(3i+ 3j − 2). (10)

We illustrate that the residues of q-exponent in the formal power series just displayed
6
(
i
2

)
+ 6
(
j
2

)
+ 3i− j + 1 modulo 7 are given by the following table:
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j\i 0 1 2 3 4 5 6
0 1 4 6 0 0 6 4
1 0 3 5 6 6 5 3
2 5 1 3 4 4 3 1
3 2 5 0 1 1 0 5
4 5 1 3 4 4 3 1
5 0 3 5 6 6 5 3
6 1 4 6 0 0 6 4

The power of q is congruent to 2 modulo 7 only when i ≡7 0 and j ≡7 3. Since the
coefficient of qn on the right side of the last identity is a multiple of 7 when n ≡ 2
(mod 7), and 1 +$+$2 +$3 +$4 +$5 +$6 is a minimal polynomial in Z[$], we must
have the result following as

Theorem 3. For n > 0 and 0 6 i < j 6 6, we have

MC132−2 (i, 7, 7n+ 2) ≡MC132−2 (j, 7, 7n+ 2) (mod 7).

It can also prove the identity in Toh [21]: Q(po,p)(7n+ 2) ≡ 0 (mod 7).
Next we define

C14442−7 = {(λ1, λ2, λ3, λ4, 2λ5, 2λ6, 2λ7, 2λ8, 2λ9) |λ1, λ2, λ3, λ4 ∈ DO,
λ5, λ6 ∈ P , λ7, λ8, λ9 ∈ P∗}.

For λ = (λ1, λ2, λ3, λ4, 2λ5, 2λ6, 2λ7, 2λ8, 2λ9), we denote the sum of parts s14442−7(λ), a
weight wt14442−7(λ) and a crank analog c14442−7(λ) by

s14442−7(λ) =σ(λ1) + σ(λ2) + σ(λ3) + σ(λ4)

+ 2σ(λ5) + 2σ(λ6) + 2σ∗(λ7) + 2σ∗(λ8) + 2σ∗(λ9)

wt14442−7(λ) =(−1)#(λ5)+#(λ6)wt(λ7)wt(λ8)wt(λ9)

c14442−7(λ) =c∗(λ7) + 2c∗(λ8) + 3c∗(λ9).

Finally define MC14442−7 (m,n) as the number of 9-colored partitions of n if s14442−7(λ) = n
with crank analog c14442−7(λ) = m counted according to the weight wt14442−7(λ) as follows:,

MC14442−7 (m,n) =
∑

λ∈C14442−7 ,s14442−7 (λ)=n,

c14442−7 (λ)=m

wt14442−7(λ).

Let MC14442−7 (m, t, n) denote the number of 9-colored partitions of n with crank analog
c14442−7(λ) congruent to m (mod t).

Then we have∑
m∈Z

∞∑
n=0

MC14442−7 (m,n)zmqn =
(−q; q2)4∞(q2; q2)5∞

[zq2, z−1q2, z2q2, z−2q2, z3q2, z−3q2; q2]∞
. (11)
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By replacing z by 1 in the identity (11), we discover

∞∑
m=−∞

MC14442−7 (m,n) = γ(n),

where γ(n) is defined by
∑∞

n=0 γ(n)qn = (−q;q2)4∞
(q2;q2)∞

. (see [23]).

Theorem 4. For n > 0,

MC14442−7 (0, 7, 7n+ 2) ≡MC14442−7 (1, 7, 7n+ 2) ≡ · · · ≡MC14442−7 (6, 7, 7n+ 2) (mod 7).

It can also prove the identity γ(7n+ 2) ≡ 0 (mod 7).

Proof. Put z = $ in (11) and apply product identity (6) substituting q → −q to obtain∑
m∈Z

∞∑
n=0

MC14442−7 (m,n)$mqn =
(−q; q2)4∞(q2; q2)5∞

[$q2, $−1q2, $2q2, $−2q2, $3q2, $−3q2; q2]∞

=
(−q; q2)4∞(q2; q2)6∞

(q14; q14)∞
=

−1

(q14; q14)∞

+∞∑
i,j=−∞

q6(
i
2)+6(j

2)+3i−j+1(2 + 3i− 3j)(3i+ 3j − 2).

We discover that the double sum of the last identity is similar as (10). Then we can use
the same congruence relations. Since the coefficient of qn on the right side of the last
identity is a multiple of 7 when n ≡ 2 (mod 7), and 1 +$ +$2 +$3 +$4 +$5 +$6 is
a minimal polynomial in Z[$], we deduce the theorem.

If we denote

C122 = {(λ1, λ2, 2λ3, 2λ4, 2λ5) | λ1, λ2, λ3, λ4, λ5 ∈ P}.

It can be said as partitions into 5-colors. For λ = (λ1, λ2, 2λ3, 2λ4, 2λ5) ∈ C122, we define
the sum of parts s122(λ), a weight w122(λ) and a rank analog r122(λ) by

s122(λ) = σ(λ1) + σ(λ2) + 2σ(λ3) + 2σ(λ4) + 2σ(λ5)

w122(λ) = (−1)#(λ5)

r122(λ) = #(λ1)−#(λ2) + 3#(λ3)− 3#(λ4).

Let NC122
(m,n) denote the number of 5-colored partitions of n if s122(λ) = n (counted

according to the weight w122(λ)) with rank analog r122(λ) = m, and NC122
(m, t, n) denote

the number of 5-colored partitions of n with rank analog r122(λ) congruent to m (mod t),
hence

NC122
(m,n) =

∑
λ∈C122,s(λ)=n,

r122(λ)=m

w122(λ).

By considering the transformation that interchanges λ1 and λ2, λ3 and λ4, we get

NC122
(m,n) = NC122

(−m,n), NC122
(m, t, n) = NC122

(t−m, t, n).
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Then we have∑
m∈Z

∞∑
n=0

NC122
(m,n)zmqn =

(q2; q2)∞
(zq; q)∞(z−1q; q)∞(z3q2; q2)∞(z−3q2; q2)∞

. (12)

By putting z = 1 in the identity (12), we check

∞∑
m=−∞

NC122
(m,n) = α(n),

where α(n) is defined by
∑∞

n=0 α(n)qn = 1
(q;q)2∞(q2;q2)∞

. (see [23]).

Suppose $ is primitive 7th root of unity. Substituting z = $ into (12), we have

∑
m∈Z

∞∑
n=0

NC122
(m,n)$mqn =

(q2; q2)∞
[$q, q/$; q]∞ [$3q2, q2/$3; q2]∞

=
[q,$2q, q/$2; q]∞ [q2, $3q, q/$3; q2]∞

(q7; q7)∞

=

∑
i>0(−1)i($2i +$2i−2 + · · ·+$−2i)q(

i+1
2 )∑∞

j=−∞(−1)j$3jq2(
j
2)+j

(q7; q7)∞
.

The last line depends only on modified Jacobi identity (2) and classical Jacobi identity (1).
If and only if i ≡7 3, we have $2i +$2i−2 + · · ·+$−2i = 0. Obviously

(
i+ 1

2

)
≡7


0, i ≡7 0, 6;

1, i ≡7 1, 5;

3, i ≡7 2, 4;

6, i ≡7 3;

and 2

(
j

2

)
+ j ≡7


0, j ≡7 0;

1, j ≡7 1, 6;

4, j ≡7 2, 5;

2, m ≡7 3, 4.

(13)

The power of q is congruent to 6 modulo 7 only when
(
i+1
2

)
≡7 6 and 2

(
j
2

)
+ j ≡7 0 in

which case i ≡7 3 and j ≡7 0 and the coefficient of q7n+6 in the last identity is zero. Since
1 +$ +$2 +$3 +$4 +$5 +$6 is a minimal polynomial in Z[$], our main result is as
follows.

Theorem 5. For n > 0,

NC122
(0, 7, 7n+ 6) =NC122

(1, 7, 7n+ 6) = NC126
(2, 7, 7n+ 6) = · · · = NC126

(6, 7, 7n+ 6)

=
α(7n+ 6)

7
.

It can also prove the identity α(7n+ 6) ≡ 0 (mod 7).
Denote

C15452−7 = {(λ1, λ2, λ3, λ4, λ5, 2λ6, 2λ7, 2λ8) | λ1, λ2, λ3, λ4, λ5 ∈ DO, λ6, λ7, λ8 ∈ P∗}.
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We call the elements of C15452−7 8-colored partitions. For λ ∈ C15452−7 , we define the sum
of parts s15452−7(λ), a weight wt15452−7(λ) and a crank analog c15452−7(λ) by

s15452−7(λ) = σ(λ1) + σ(λ2) + σ(λ3) + σ(λ4) + σ(λ5) + 2σ∗(λ6) + 2σ∗(λ7) + 2σ∗(λ8)

wt15452−7(λ) = wt(λ6)wt(λ7)wt(λ8)

c15452−7(λ) = c∗(λ6) + 2c∗(λ7) + 3c∗(λ8).

Let MC15452−7 (m,n) denote the number of 8-colored partitions of n if s15452−7(λ) = n
(counted according to the weight wt15452−7(λ)) with crank analog c15452−7(λ) = m, and
MC15452−7 (m, t, n) denote the number of 8-colored partitions of n with crank analog
c15452−7(λ) ≡ t (mod m), so that

MC15452−7 (m,n) =
∑

λ∈C15452−7 ,s15452−7 (λ)=n,

c15452−7 (λ)=m

wt15452−7(λ).

Then the generating function is

∑
m∈Z

∞∑
n=0

MC15452−7 (m,n)zmqn =
(−q; q2)5∞(q2; q2)3∞

[zq2, z−1q2, z2q2, z−2q2, z3q2, z−3q2; q2]∞
. (14)

By putting z = 1 in the identity (14), we discover

∞∑
m=−∞

MC15452−7 (m,n) = ν(n),

where ν(n) is defined by
∑∞

n=0 ν(n)qn = (−q,q2)5∞
(q2;q2)3∞

.

Theorem 6. For n > 0,

MC15452−7 (0, 7, 7n+ 6) ≡MC15452−7 (1, 7, 7n+ 6) ≡ · · · ≡MC15452−7 (6, 7, 7n+ 6) (mod 7).

It can also prove the identity ν(7n+ 6) ≡ 0 (mod 7).

Proof. By replacing z by $ in (14), we write

∑
m∈Z

∞∑
n=0

NC13412−3 (m,n)$mqn =
(−q; q2)5∞(q2; q2)3∞

[$q2, $−1q2, $2q2, $−2q2, $3q2, $−3q2; q2]∞

=
(−q; q2)5∞(q2; q2)4∞

(q14; q14)∞
.

Consider

(q; q)3∞
[
q2, q, q; q2

]
∞ =

∞∑
i=0

∞∑
j=−∞

(−1)i+j(2i+ 1)q(
i+1
2 )+j2 ,
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which can be deduced by Jacobi identity (1) and (2).
Replacing q by −q in the last identity, we have the following series representation

(−q; q2)5∞(q2; q2)4∞ =
∞∑
i=0

∞∑
j=−∞

(−1)(
i
2)(2i+ 1)q(

i+1
2 )+j2 .

If and only if i ≡7 3, we have 2i+1 ≡7 0. We see that in the q-expansion on the right side
of the last equation the coefficient of qn is a multiple of 7 when n ≡ 6 (mod 7) referring
to (13). The proof of Theorem 6 has been finished.

Let

C1523 = {(λ1, λ2, λ3, λ4, λ5, 2λ6, 2λ7, 2λ8) | λ1, λ2, λ3, λ4 ∈ P , λ5, λ6, λ7, λ8 ∈ P∗}.

We can say them as partitions into 8-colors. For λ ∈ C1523 , we denote the sum of parts
s1523(λ), a weight wt1523(λ) and a crank analog c1523(λ) by

s1523(λ) = σ(λ1) + σ(λ2) + σ(λ3) + σ(λ4) + σ∗(λ5) + 2σ∗(λ6) + 2σ∗(λ7) + 2σ∗(λ8)

wt1523(λ) = wt(λ5)wt(λ6)wt(λ7)wt(λ8)

c1523(λ) = #(λ1)−#(λ2) + 2#(λ3)− 2#(λ4) + 3c∗(λ5) + c∗(λ6) + 2c∗(λ7) + 3c∗(λ8).

The number of 8-colored partitions of n if s1523(λ) = n with crank analog c1523(λ) = m
counted according to the weight wt1523(λ) is denoted by MC1523

(m,n), so that

MC1523
(m,n) =

∑
λ∈C1523 ,s1523 (λ)=n,

c1523 (λ)=m

wt1523(λ).

The number of 8-colored partitions of n with crank analog c1523(λ) congruent tom (mod t)
is denoted by MC1523

(m, t, n). The following generating function for MC1523
(m,n) is

∑
m∈Z

∞∑
n=0

MC1523
(m,n)zmqn

=
(q; q)∞(q2; q2)3∞

[zq, z−1q, z2q, z−2q, z3q, z−3q; q]∞ [zq2, z−1q2, z2q2, z−2q2, z3q2, z−3q2; q2]∞
. (15)

By setting z = 1 in the identity (15), we find

∞∑
m=−∞

MC1523
(m,n) = µ(n),

where µ(n) is defined by
∑∞

n=0 µ(n)qn = 1
(q;q)5∞(q2;q2)3∞

.

Theorem 7. For n > 0,

MC1523
(0, 7, 7n+ 6) ≡MC1523

(1, 7, 7n+ 6) ≡ · · · ≡MC1523
(6, 7, 7n+ 6) (mod 7).
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It can also prove the identity µ(7n+ 6) ≡ 0 (mod 7).

Proof. By letting z = $ in (15), we get∑
m∈Z

∞∑
n=0

MC1523
(m,n)$mqn

=
(q; q)∞(q2; q2)3∞

[$q,$−1q,$2q,$−2q,$3q,$−3q; q]∞ [$q2, $−1q2, $2q2, $−2q2, $3q2, $−3q2; q2]∞

=
(q; q)2∞(q2; q2)4∞

(q7; q7)∞(q14; q14)∞
.

Investigating product identity (5), splitting the bilateral sum with respect to i into
two unilateral sums, the numerator infinite products on the last line of the last formula
have the following series expression

(q; q)2∞(q2; q2)4∞ =
∞∑
i=0

+∞∑
j=−∞

q3(
i+1
2 )+3(j

2)+j (1 + 3i+ 3j)(2 + 3i− 3j)

2
. (16)

We check that the residues of q-exponent in the formal power series displayed 3
(
i+1
2

)
+

3
(
j
2

)
+ j modulo 7 are presented by the following table:

j\i 0 1 2 3 4 5 6
0 0 3 2 4 2 3 0
1 1 4 3 5 3 4 1
2 5 1 0 2 0 1 5
3 5 1 0 2 0 1 5
4 1 4 3 5 3 4 1
5 0 3 2 4 2 3 0
6 2 5 4 6 4 5 2

If and only if 3
(
i+1
2

)
+ 3
(
j
2

)
+ j ≡ 6 (mod 7), we have i ≡7 3 and j ≡7 6. Since the

coefficient of qn on the right side of the last identity is a multiple of 7 when n ≡ 6
(mod 7), and 1 +$+$2 +$3 +$4 +$5 +$6 is a minimal polynomial in Z[$], we finish
the proof of Theorem 7.

Consider

C12422−3 = {(λ1, λ2, 2λ3, 2λ4, 2λ5, 2λ6, 2λ7) | λ1, λ2 ∈ DO, λ3, λ4 ∈ P , λ5, λ6, λ7 ∈ P∗}.

We call them as partitions into 7-colors. For λ ∈ C12422−3 , we define the sum of parts
s12422−3(λ), a weight wt12422−3(λ) and a crank analog c12422−3(λ) by

s12422−3(λ) = σ(λ1) + σ(λ2) + 2σ(λ3) + 2σ(λ4) + 2σ∗(λ5) + 2σ∗(λ6) + 2σ∗(λ7)

wt12422−3(λ) = (−1)#(λ3)+#(λ4)wt(λ5)wt(λ6)wt(λ7)

c12422−3(λ) = c∗(λ5) + 2c∗(λ6) + 3c∗(λ7).
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Let MC12422−3 (m,n) denote the number of 7-colored partitions of n if s12422−3(λ) = n
(counted according to the weight wt12422−3(λ)) with crank analog c12422−3(λ) = m, so that

MC12422−3 (m,n) =
∑

λ∈C12422−3 ,s12422−3 (λ)=n,

c12422−3 (λ)=m

wt12422−3(λ).

The number of 7-colored partitions of n with crank analog c12422−3(λ) ≡ m (mod t) is de-
noted by MC12422−3 (m, t, n). Then the two variable generating function for MC12422−3 (m,n)
is ∑

m∈Z

∞∑
n=0

MC12422−3 (m,n)zmqn =
(−q; q2)2∞(q2; q2)5∞

[zq2, z−1q2, z2q2, z−2q2, z3q2, z−3q2; q2]∞
. (17)

If we simply put z = 1 in the identity (17), and read off the coefficients of like powers of
q, we find

∞∑
m=−∞

MC12422−3 (m,n) = β(n),

where β(n) is defined by
∑∞

n=0 β(n)qn = (−q;q2)2∞
(q2;q2)∞

.

Putting z = $ in (17) gives

∑
m∈Z

∞∑
n=0

MC12422−3 (m,n)$mqn =
(−q; q2)2∞(q2; q2)5∞

[$q2, $−1q2, $2q2, $−2q2, $3q2, $−3q2; q2]∞

=
(−q; q2)2∞(q2; q2)6∞

(q14; q14)∞
.

Substituting q → −q into identity (16), the numerator infinite products have the
following series expression

(−q; q2)2∞(q2; q2)6∞ =
∞∑
i=0

+∞∑
j=−∞

(−1)(
i+1
2 )+(j+1

2 )q3(
i+1
2 )+3(j

2)+j (1 + 3i+ 3j)(2 + 3i− 3j)

2
.

It is easy to find that the power of q is congruent to 6 modulo 7 if and only if i ≡7 3
and j ≡7 6 considering the congruence relations in the proof of Theorem 7. Since the
coefficient of qn on the right side of the last identity is a multiple of 7 when n ≡7 6, and
1 +$ +$2 +$3 +$4 +$5 +$6 is a minimal polynomial in Z[$], our main result is as
follows:

Theorem 8. For n > 0 and 0 6 i < j 6 6, we obtain

MC12422−3 (i, 7, 7n+ 6) ≡MC12422−3 (j, 7, 7n+ 6) (mod 7).

It can also prove the identity β(7n+ 6) ≡ 0 (mod 7).
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