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Abstract. The dilemma between stability and plasticity is crucial in machine learning, especially when non-stationary input
distributions are considered. This issue can be addressed by continual learning in order to alleviate catastrophic forgetting. This
strategy has been previously proposed for supervised and reinforcement learning models. However, little attention has been
devoted to unsupervised learning. This work presents a dynamic learning rate framework for unsupervised neural networks
that can handle non-stationary distributions. In order for the model to adapt to the input as it changes its characteristics, a
varying learning rate that does not merely depend on the training step but on the reconstruction error has been proposed. In the
experiments, different configurations for classical competitive neural networks, self-organizing maps and growing neural gas
with either per-neuron or per-network dynamic learning rate have been tested. Experimental results on document clustering tasks
demonstrate the suitability of the proposal for real-world problems.

Keywords: continual learning, unsupervised learning, competitive neural network, self-organizing map, growing neural gas,
document clustering

1. Introduction

Humans are able to adapt to the changing envi-
ronments around them in an efficient and robust way
through a sequence of experiences that allow them to
incrementally learn what they need from these non-
stationary environments and retain vital information
for the future. This feature has not been emulated by
machine learning models yet. They include a wide va-
riety of methods that have been successfully applied to
such diverse tasks as job scheduling [1], natural disas-
ter prediction [2], material production [3, 4], structure
inspection and defect detection [5–8], biomedical tasks
[9–11] and economic ones [12–14]. Furthermore, they
excel in tasks that are dependent on image processing
and analysis [15–17] due to the improvement of deep
learning models. However, machine learning training
is typically based on a data set that is assumed to main-
tain the same data distribution over time.
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In recent times, continuous learning has emerged
as one of the areas of study with the greatest poten-
tial for endowing learning systems with the ability to
work with non-stationary data distributions [18, 19]. It
is essential for the learning models to be sufficiently
plastic to incorporate more current knowledge while
avoiding forgetting information acquired at the begin-
ning of their training, which in its most extreme case
would lead to a situation known as catastrophic for-
getting [20, 21], in which the models would continu-
ally discard information learned in the past and would
only retain the latest data presented to them. However,
it is not easy to find a compromise between plasticity
and the stability necessary for the model to converge to
a steady state that maintains the meaningful informa-
tion extracted throughout the whole training [22]. Al-
though multiple continuous learning models based on
supervised and reinforcement learning have been pro-
posed [23–26], the development of unsupervised mod-
els that attempt to cluster input data whose distribution
changes over time is still a challenging field.
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Unsupervised learning methods do not need an in-
put data set labeled by a human expert. They usually
attempt to detect similar features or common patterns
that allow them to group the input data into differ-
ent clusters or categories [27]. Knowledge about the
data similarity within each cluster can be used to find
association rules between features [28]. Furthermore,
each cluster information may be useful for represent-
ing data that belongs to that cluster in a reduced form
[29]. For that purpose, only the most significant fea-
tures are retained. Those that provide little or no in-
formation are removed. The present work is focused
on a specific paradigm within unsupervised learning:
competitive learning. This paradigm is represented by
a family of classical neural networks where neurons
compete to represent data samples. The early stages of
the training process greatly influence the information
learned by the neural network. A change in the distri-
bution of data when the network is practically trained
does not greatly affect its final configuration. In order
to learn those new data properties, the neural networks
would have to be retrained. The aim of this work is to
propose a framework in which competitive networks
could learn continuously. Within this family, we ex-
periment with three network architectures: competitive
neural network, self-organizing map, and growing neu-
ral gas. Each new model has been applied to the prob-
lem of online document clustering and its performance
has been tested.

The remainder of the paper is structured as fol-
lows. Section 1.1 comprises works related to compet-
itive neural networks and online document clustering.
The competitive and self-organized continuous learn-
ing models are presented in Section 2, while Section 3
exposes our proposal to adapt them to continual learn-
ing, as well as the metrics used to evaluate the perfor-
mance. Section 4 aims to present the results of the ex-
periments. Subsequently, Section 5 is devoted to dis-
cussing the results. Finally, Section 6 presents some
conclusions.

1.1. Related works

A competitive neural network is designed to perform
vector quantization of the input space once it is trained
[30] Despite being relatively simple models, competi-
tive networks have achieved a good performance in ap-
plications with high-dimensional data such as images
or video sequences. Color image segmentation meth-
ods where competitive models are an essential com-
ponent are presented in [31, 32]. Regarding the anal-

ysis of video sequences, [33] proposes the use of ri-
val penalized competitive learning [34] to categorize
the body postures of human beings appearing in the
video frames, which allows the system to extract be-
havioral patterns. Finally, a probabilistic competitive
neural model to compress multispectral data by esti-
mating each cluster’s intrinsic dimension is presented
in [33].

Self-organizing maps can be considered a refine-
ment of competitive learning networks, organizing the
neurons into a graph representing a low-dimensional
grid . Specialized variants of self-organizing maps
have been adapted for many different engineering
tasks, such as foreground detection in video sequences
[35], brain-computer interfaces [36], intrusion detec-
tion in sensor networks [37], monitoring of industrial
processes [38], or object detection in controlled envi-
ronments [39].

A growing neural gas is another kind of competi-
tive learning model where neurons are organized into a
graph whose topology and size are dynamic. The num-
ber of neurons and the connections among them may
be increased or decreased as it is required to adapt the
number of clusters accordingly to the distribution of
the training data. This model and various variants have
also been applied to a range of engineering tasks, such
as temporal video segmentation [40], foreground de-
tection in video sequences [41], automatic recognition
of relevant landmarks in medical images [42], model-
ing of biodiversity data [43], 3D structure reconstruc-
tion [44], or vehicle classification [45].

The aim of this work is to provide a dynamic learn-
ing rate framework for unsupervised learning models
in order to adapt them for continual learning. This way,
these models can learn from non-stationary distribu-
tions in a continual way, as in many real-world prob-
lems, addressing the stability and plasticity dilemma.
This framework is tested with an array of experiments
to cluster CORA [46], a dataset of scientific articles.
While this dataset has been used to test supervised
continual learning for Graph Neural Networks using
the dataset’s citation network [47–49], our approach is
the first application to continual learning with unsuper-
vised competitive learning using the vocabulary meta-
data in the dataset. Other works for online clustering of
documents use probabilistic models [50], various on-
line variants of K-means clustering [51, 52], or fuzzy
clustering [53], but no competitive learning approaches
such as the self-organizing map o the growing neural
gas, whose update rules update neurons (clusters) not
in isolation but in neighborhoods, therefore providing a
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mechanism to avoid individual clusters to get stuck on
low local optima [54]. Besides online document clus-
tering, there are also works developing online cluster-
ing of images or image patches [55–58], online cluster-
ing of sound samples [59], or the more generic multi-
armed bandit problem [60].

2. Preliminaries

The three unsupervised learning algorithms used in
this paper are competitive learning, Kohonen’s Self-
Organizing Map (SOM), and Growing Neural Gas
(GNG). They are briefly reviewed in this section to
present the notation that will be used throughout the
paper.

2.1. Competitive neural networks

In a competitive learning network composed of 𝐾
neurons, the training phase can be understood as a se-
quence of steps during which the network learns to rep-
resent the distribution of the input data. Each neuron 𝑖
has a weight vector w𝑖 (𝑡), which estimates the centroid
of the cluster which the neuron represents. At each step
𝑡, a sample (data vector) x(𝑡) from the input data is pre-
sented to the network, and the selected neuron 𝑠 is the
one with the closest weight vector in the input space,
i.e., the neuron whose weight vector is most similar
to the input vector. The Euclidean distance ∥·∥ is cho-
sen as the measure to estimate the similarity between a
neuron weight vector w𝑖 (𝑡) and the input sample x(𝑡)
at training step 𝑡:

𝑠 = 𝑤𝑖𝑛𝑛𝑒𝑟 (x(𝑡)) = arg min
𝑖∈{1,...,𝐾 }

∥x(𝑡) − w𝑖 (𝑡)∥

(1)

Then, only the winning neuron 𝑠 is updated according
to the following rule:

w𝑠 (𝑡 + 1) = w𝑠 (𝑡) + 𝛼(𝑡) (x(𝑡) − w𝑠 (𝑡)) (2)

In that rule, 𝛼(𝑡) is a scalar factor called learning rate
that represents the size of the correction and is mono-
tonically decreasing with respect to the training step 𝑡:

𝛼(𝑡) = 𝛼(𝑡 − 1)
𝑑 (𝑡) (3)

where 𝑑 (𝑡) is a decay function. Typically, the training
phase is divided into two stages. In the first one, the
neurons are widely but roughly distributed to model
the distribution of the input data. For that purpose, the
learning rate usually decreases linearly with respect to
the time step 𝑡, i.e., 𝑑 (𝑡) = 1+ 𝑎𝑡, or exponentially, i.e.,
𝑑 (𝑡) = 𝑒𝑎𝑡 , with 𝑎 ∈ R+. After that, a second stage is
intended to fine-tune the positions of the weight vec-
tors, and the learning rate is held constant at a low
value.

Typically, the time steps in the training phase are
grouped into a number of epochs: in each epoch, all
samples from the training dataset are presented (in ran-
dom order) to the training network. After the training
phase, the weights are fixed, and each new input vector
is assigned to the cluster corresponding to the neuron
with the closest weight vector. If the training was suc-
cessful, the weights of the neurons are distributed so
that they represent the cluster centroids of a Voronoi
tesselation. Please note that other competitive learning
networks such as SOM and GNG share most of the ba-
sic setup described here for competitive networks.

2.2. The Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is an unsuper-
vised clustering technique designed to learn a low-
dimensional representation of higher-dimensional data.
This representation is frequently a 2D neuron grid
(but the dimensionality and size of the grid may be
changed), and it aims to preserve the topology of the
input data. Each neuron represents a cluster of input
samples. Formally, in a SOM with a 2D grid, 𝐾 is the
number of neurons, which are arranged in a lattice of
size 𝑎 × 𝑏, where 𝐾 = 𝑎𝑏. The topological distance
between neurons 𝑖 and 𝑗 at positions r𝑖 , r 𝑗 ∈ R2 in the
grid is defined as:

𝑑 (𝑖, 𝑗) =
r𝑖 − r 𝑗

 (4)

For each neuron 𝑖, its weight vector w𝑖 is a point in
the input space, and it represents the centroid of the
associated cluster. At each time step 𝑡 during training, a
sample x (𝑡) is presented to the network and the closest
neuron s is declared as the winner (Eq. 1).

Since the SOM is a self-organizing neural network,
not only is the winner updated as in the competitive
neural network, but also the rest of the neurons are ad-
justed, for 𝑖 ∈ {1, ..., 𝐾}:
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w𝑖 (𝑡 + 1) = w𝑖 (𝑡) + 𝛼 (𝑡) Λ (𝑖, 𝑠) (x (𝑡) − w𝑖 (𝑡))

(5)

where 𝛼 (𝑡) is a learning rate monotonically decreas-
ing with respect to the training step 𝑡 as shown in (3).
Λ is a neighborhood function depending on Δ (𝑡), a
monotonically decreasing neighborhood radius which
is also decreased as in (3):

Λ (𝑖, 𝑠)) = exp

(
−

(
𝑑 (𝑖, 𝑠))
Δ (𝑡)

)2
)

(6)

Δ (𝑡 + 1) ⩽ Δ (𝑡) (7)

According to these training dynamics, please note
that the neurons are not necessarily placed in the data’s
higher dimensional space as a smooth 2D grid. At the
beginning of the training, the neurons’ positions are
initialized by taking the mean of a random sample of
data points; the resulting initial embedding is typically
a random assemblage around the dataset’s centroid.
Each neuron will influence (and be influenced by) the
position of their topological neighbors, and for well-
behaved datasets, this will translate into the 2D grid
being embedded as a smooth sheet modeling the data’s
distribution, but this will not always be the case, gen-
erally speaking.

2.3. The Growing Neural Gas (GNG)

The Growing Neural Gas (GNG) is another self-
organizing neural network. The main difference with
the SOM is that it learns a dynamic graph with a
variable number of neurons and connections instead
of a two-dimensional fixed topology. This set of con-
nections will be noted 𝐴 ⊆ {1, ..., 𝐾} × {1, ..., 𝐾}.
Each connection has an associated age, which is a non-
negative integer. Every neuron 𝑖 has an error variable
𝑒𝑖 ∈ R, 𝑒𝑖 ⩾ 0, in addition to a weight vector w𝑖 which
represents a cluster of input samples. In this model,
when a new input sample x(𝑡) is presented to the net-
work, the nearest unit 𝑠1 and the second nearest unit 𝑠2
are computed:

𝑠1 = arg min
𝑖∈{1,...,𝐾 }

∥x(𝑡) − w𝑖 (𝑡)∥ (8)

𝑠2 = arg min
𝑖∈{1,...,𝐾 }−{𝑠1 }

∥x(𝑡) − w𝑖 (𝑡)∥ (9)

After incrementing the age of all connections em-
anating from 𝑠1, the squared Euclidean distance be-
tween the input sample x(𝑡) and the nearest neuron 𝑠1
is added to the error variable 𝑒𝑠1 :

𝑒𝑠1 (𝑡 + 1) = 𝑒𝑠1 (𝑡) +
x(𝑡) − w𝑠1 (𝑡)

2 (10)

Then the weights of the nearest unit 𝑠1 and its direct
topological neighbors 𝑗 in the graph are updated:

w𝑠1 (𝑡 + 1) = w𝑠1 (𝑡) + 𝜖𝑏 (x(𝑡) − w𝑠 (𝑡)) (11)

w 𝑗 (𝑡 + 1) = w 𝑗 (𝑡) + 𝜖𝑛 (x(𝑡) − w𝑠 (𝑡)) (12)

where every neuron 𝑗 is a direct topological neighbor
of the nearest neuron 𝑠1 (( 𝑗 , 𝑠1) ∈ 𝐴), 𝜖𝑏 is the learning
rate of 𝑠1, and 𝜖𝑛 is the learning rate of every neuron
𝑗 . Therefore, the GNG has two learning rates, 𝜖𝑏 for
the nearest neuron 𝑠1, and 𝜖𝑛 for the neurons directly
connected to the activated neuron (𝑠1) in each training
step.

The GNG can create or remove neurons and connec-
tions. Therefore, the connection between 𝑠1 and 𝑠2 is
set to zero if this connection already exists. If such a
connection does not exist, then it is created. Also, con-
nections with an age larger than a parameter 𝑎𝑚𝑎𝑥 are
removed, and neurons without connections are also re-
moved. Then if the number of steps is multiple of a
parameter _, a new neuron 𝑟 is added to the network
between the neuron 𝑞 with the largest accumulated er-
ror and its neighbor 𝑓 with the largest error value. The
weight vector of the new neuron 𝑟 (𝑤𝑟 ) is given as fol-
lows:

w𝑟 = 0.5(w𝑞 + w 𝑓 ) (13)

where 𝑤𝑞 is the weight vector of the neuron 𝑞 with the
largest accumulated error, and 𝑤 𝑓 is the weight vector
of its neighbor 𝑓 with the largest error value. Connec-
tions between the new neuron 𝑟 and neurons 𝑞 and 𝑓

must be inserted, and the original connection between
𝑞 and 𝑓 is removed. Finally, the error variables of all
neurons are updated.
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3. Methodology

Our goal is to adapt the models presented in Sec-
tion 2 to make them able to learn continuously: instead
of training ahead of time to learn a specific cluster-
ing and then performing inference, the neural network
should be able to adapt and change the configuration
of its weight vectors to represent a different input dis-
tribution if it is required, in order to be able to learn
continuously. Accordingly, the training regime should
be changed so that it can be run in parallel to infer-
ence. Therefore, we propose to make the learning rate
a function based on the reconstruction error.

Regarding our methodology, first, we present the
modifications performed to adapt the unsupervised
learning algorithms shown in Section 2 to continual
learning. Second, the multi-learning rate approach is
introduced, as a further adaptation to continual learn-
ing. Finally, the clustering metrics used to measure the
performance are given.

3.1. Adaptation to continual learning

To achieve the goal of adapting competitive mod-
els to train indefinitely, we propose a different scal-
ing strategy during training: instead of using a learn-
ing rate 𝛼 purely dependent on 𝑡 as shown in (3),
a function that relies on the Euclidean distances be-
tween samples and the corresponding winning neuron
weights ∥x(𝑡) − w𝑠 (𝑡)∥ in the last 𝑁 time steps, from
𝑡 to 𝑡 − 𝑁 + 1, is defined. We will note the Euclidean
distance as 𝑒(𝑡) because it can be seen as the error at
each time step 𝑡.

The core idea is that if the input distribution changes,
the 𝑒(𝑡) distances are expected to increase, thus in-
creasing the scaling factor 𝛼, which allows the neural
model neurons to update their internal structures to a
greater extent. As a consequence, the neurons will be
redistributed in the input space, and the neural model
will adapt to the new input distribution effectively. To
reduce the effect of noise and outliers, which could
hinder the learning process of the network, due to an
excess of change in neurons in a sudden way, the me-
dian of these reconstruction errors 𝑒(𝑡) (from the last
𝑁 time steps in the training process) is proposed as a
consensus measure, noted as 𝐶 (𝑡). Then, that value is
used as input for a monotonically increasing function
𝑓 :

𝐶 (𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑡−𝑁+1⩽ 𝑗⩽𝑡 (𝑒( 𝑗)) (14)

𝛼(𝑡) = 𝑓 (𝐶 (𝑡)) (15)

This new way to update the learning rate is intended
to be used from the beginning of the training, with
no warm-up period using the standard way described
in the previous section. Different monotonic function
types are considered in the experiments:

• Linear: 𝛼(𝑡) = 𝑎𝐶 (𝑡)
• Quadratic: 𝛼(𝑡) = 𝑎 (𝐶 (𝑡))2

• Inverse: 𝛼(𝑡) = 𝑎 (𝐶 (𝑡))−1

• Constant: 𝛼(𝑡) = 𝑎

While a constant learning rate is not adaptive, it is in-
cluded for comparison with the other ones. In the con-
text of the updating rule, it only makes sense for 𝛼(𝑡) to
take values in the [0 . . . 1] range. Therefore, the results
of the first three functions are clamped to that interval.
All the functions have been modeled with just a single
parameter 𝑎 to limit the parameter space to search, as
well as to avoid non-monotonic function shapes. Note
that the number of parameters remains the same since
parameter 𝑎 replaces the parameter of the same name
from Eq. (3).

3.2. Multi-learning rate

Note that, as described above, the 𝑒(𝑡) distances
from all winning neurons in the last 𝑁 steps contribute
to a single learning rate applied to the winning neuron
in step 𝑡. It is possible, however, that the input distri-
bution changes only in limited ways. We define a vari-
ant of the model with multiple learning rates (noted as
multi in Section 4), one per neuron, so that the learning
rate of each neuron 𝑖 can change independently and is
determined as a monotonic function of the median of
the previous 𝑁 errors 𝑒(𝑡). Note, however, that in this
approach the considered distances are from the previ-
ous 𝑁 times that neuron 𝑖 was the winner, not (neces-
sarily) from the last 𝑁 time steps in the training pro-
cess. Although a different type of monotonic function
could be employed for each neuron, for the sake of
model simplicity, we decided to use the same type of
function for all neurons of the neural network. As the
learning rate can be fine-tuned for each neuron , those
ones representing relatively infrequent parts of the in-
put distribution can keep a learning rate commensurate
to the error distances within its receptive field without
being affected by error distances from other neurons.
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3.3. Clustering Performance Measures

Next, we review the clustering performance mea-
sures that will be used in this work.

The first one is the Mean Squared Error (MSE),
which measures the average of the squares of the er-
rors, that is, the average squared difference between the
estimated values (weight vectors) and the actual values
(input samples), lower is better:

𝑀𝑆𝐸 =
1
𝑀

𝑀∑︁
𝑘=1

∥w𝑖 − x𝑘 ∥2 , 𝑖 = 1, · · · , 𝐾 (16)

where 𝑀 is the number of samples in the distribution,
𝐾 is the number of clusters, x𝑘 is the 𝑘-th input sam-
ple, and w𝑖 the prototype of the winning neuron 𝑖 cor-
responding to x𝑘 .

The Davies-Bouldin index [61] is a well-known
measure which favors compact and well-separated
clusters [62, 63]. It is given by (lower is better):

𝐷𝐵 =
1
𝐾

𝐾∑︁
𝑖=1

max
𝑗:𝑖≠ 𝑗

𝜎2
𝑖
+ 𝜎2

𝑗w𝑖 − w 𝑗

2 (17)

where 𝜎2
𝑖

measures the spread of cluster 𝐶𝑖 ,

𝜎2
𝑖 =

1
|𝐶𝑖 |

∑︁
x𝑘 ∈𝐶𝑖

∥w𝑖 − x𝑘 ∥2 (18)

and |𝐶𝑖 | stands for the cardinality of cluster 𝐶𝑖 .
The original Dunn index [64] tries to identify sets

of clusters that are compact, with a small variance
between members of the cluster, and well separated,
where the means of different clusters are sufficiently
far apart, as compared to the within-cluster variance.
This index has been improved in several ways to make
it more robust and computationally efficient. The par-
ticular version that we will consider here is one of
those advocated in [65] (higher is better):

𝐷𝑢𝑛𝑛 = min
𝑖∈{1,...,𝐾 }

{
min
𝑗:𝑖≠ 𝑗

𝒘𝑖 − 𝒘 𝑗


Δ

}
(19)

Δ = max
𝑖∈{1,...,𝐾 }

1
|𝐶𝑖 | ( |𝐶𝑖 | − 1)

∑︁
x𝑘 ∈𝐶𝑖

∑︁
x𝑙∈𝐶𝑖−{x𝑘 }

∥x𝑙 − x𝑘 ∥

Table 1

Configuration values used in the experiments for the competitive
learning networks modified for online learning. The first one is the
type of competitive learning network. All other ones are specific to
our proposal for online learning in these networks. See Section 4.2
for details.

Parameter description Values

Network model competitive, SOM, GNG

history size 𝑁 10, 50, 100

learning rate mode single, multi

function type 𝛼(𝑡 ) 𝑎 · 𝐶 (𝑡 ) , 𝑎 · 𝐶 (𝑡 )2, 𝑎 · 𝐶 (𝑡 )−1, 𝑎

function parameter 𝑎
40 logarithmically spaced values in [0.001, 5]
(30 log. spaced v. in [0.001, 1] for 𝛼(𝑡 ) = 𝑎)

(20)

The Calinski-Harabasz criterion [66] measures the
similarity of a sample with respect to its own cluster as
compared to the separation between clusters. The dis-
tances from the cluster’s centroid w𝑖 to each one of its
samples x𝑘 are used to estimate the similarity. Separa-
tion is estimated using the distance of the cluster cen-
troids w𝑖 to the global centroid w̄. The criterion is de-
fined as (higher is better):

𝐶𝐻 =

[∑𝐾
𝑖=1 |𝐶𝑖 | ∥w𝑖 − w̄∥2

𝐾 − 1

]
/
[∑𝐾

𝑖=1
∑ |𝐶𝑖 |
𝑘=1 ∥w𝑖 − x𝑘 ∥2

𝑁 − 𝐾

]
(21)

Silhouette values are often used to assess the quality
of a clustering [67, 68]. They are a measure of how
similar an input sample is to its own cluster (cohesion)
compared to other clusters (separation). Let 𝜎 (x𝑘) be
the mean distance from sample x𝑘 to the other points
in its own cluster, and 𝜎𝑗 (x𝑘) the mean distance from
x𝑘 to points in another cluster 𝑗 . The silhouette value
for a sample 𝑆𝑉 (x𝑘) ∈ [−1, 1] (higher is better) and
the mean silhouette value 𝑀𝑆𝑉 are defined as:

𝑆𝑉 (x𝑘) =
−𝜎 (x𝑘) + min 𝑗 𝜎𝑗 (x𝑘)

max
{
𝜎 (x𝑘) ,min 𝑗 𝜎𝑗 (x𝑘)

} (22)

𝑀𝑆𝑉 =
1
𝑀

𝑀∑︁
𝑘=1

𝑆𝑉 (x𝑘) (23)
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Fig. 1. Results for Competitive learning network, window size 𝑁 = 10, regular training (no batches). X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes:
mean value of the corresponding performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

4. Experimental Results

In this section, the computational experiments that
we have carried out are described, and their results are
reported.

4.1. Dataset

The proposed model has been tested to compute
clusterings of the CORA dataset [46]. This dataset has
2708 samples, each consisting of metadata about a sci-
entific article on machine learning: its citation network,
its sub-field, and the presence of words within the ar-
ticle from a standardized vocabulary of 1433 words,
obtained by stemming the text corpus, removing stop
words and filtering out words appearing less than ten
times [46] with absolute frequency less than 10. From
this metadata, only the vocabulary data is used to com-
pute clusterings of the dataset, considering each sam-
ple (each article) as a Boolean vector of length 1433,
each value signifying the presence or absence of each
word in the vocabulary. While not directly used in
the training processes (since competitive learning net-
works are unsupervised), the dataset also assigns one
of seven possible sub-fields to each paper. The sub-
fields are genetic algorithms, reinforcement learning,

theory of machine learning, rule learning, case-based
learning, probabilistic methods, and neural networks.
Sub-fields are used to compute accuracy (see next sec-
tion). The dataset also includes the paper’s citation net-
work, but citation information is not used at all in this
work.

4.2. Setup

All experiments were done using the Matlab pro-
gramming environment in a computer with an Intel i7
processor; because of the nature of competitive learn-
ing networks, memory requirements are modest and
mostly dependent on the size of the training dataset.
An array of experiments with different configurations
has been run to test the proposed model. In this subsec-
tion, all the tested parameters and training modes are
described.

As described in Section 3, a variety of performance
metrics are used to measure the goodness of the clus-
terings: accuracy, Calinski-Harabasz criterion, Silhou-
ette coefficient, Dunn’s index, mean squared error,
Davies-Bouldin index, and (for self-organizing maps
and growing neural gas) topographic error. Accuracy
is computed with respect to the sub-fields of the sam-
ples in each cluster’s receptive field. Please note that
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Fig. 2. Results for self-organizing map, 𝑁 = 10, regular training (no batches). X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes: mean value of the
corresponding performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

all models are unsupervised: the sub-field of each sam-
ple is not part of the training data, and the model does
not directly predict the sub-field. Instead, each cluster’s
sub-field is considered to be the mode (i.e., the sub-
field with the highest frequency) among the samples in
its receptive field, and the cluster accuracy is the ratio
of the mode (the most frequent value) to the size of
the receptive field. Then, clustering accuracy in each
experiment is computed as the mean of the accuracy
values for each cluster.

In each experiment, a network is trained to cluster
the data, with networks of three types: simple competi-
tive learning, self-organizing map, and growing neural
gas. All networks have 25 neurons (the self-organizing
map is configured as a 5× 5 grid) to make results more
directly comparable.

As described in Section 3, four different functions
(linear, quadratic, inverse, constant) are used to deter-
mine the learning rate, all with one parameter, 𝑎. As a
form of sensibility analysis, experiments are performed

for each one of these functions, and in each case, with
various values for 𝑎:

• For the first three functions, 40 values, logarith-
mically spaced between 0.001 and 5.

• For the constant function, 30 values, logarithmi-
cally spaced between 0.001 and 1.

For the first three functions, experiments are also per-
formed for three different sizes for the time window
used to compute 𝐶 (𝑡): 𝑁 = 10, 𝑁 = 50, and 𝑁 = 100.
As described in Section 2, the Growing Neural Gas is
a special case since it has two learning rates, 𝜖𝑏, and
𝜖𝑛. In the seminal GNG article [69], the default val-
ues were 𝜖𝑏 = 0.2 and 𝜖𝑛 = 0.06. To keep a feasible
computational cost and a consistent framework (using
a single parameter 𝑎 for all network architectures), the
secondary learning rate 𝜖𝑛 is fixed to 3% of the primary
learning rate 𝜖𝑏, keeping the ratio between both learn-
ing rates the same as when default values are used.
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Fig. 3. Results for growing neural gas, 𝑁 = 10, regular training (no batches). X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes: mean value of the
corresponding performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

Two different regimes are tested for the learning
rate:

• A single learning rate for all neurons: the 𝑒(𝑡) dis-
tances are included in a single time window for
determining 𝐶 (𝑡).

• A different learning rate for each neuron: each
neuron has its own time window, and conse-
quently its own 𝐶 (𝑡) and learning rate 𝛼(𝑡). Each
𝑒(𝑡) distance goes to the time window of the neu-
ron selected at training step 𝑡.

Finally, two different training regimes are tested:

• A classical (regular) training regime, with the net-
work training on the whole dataset during four
epochs, each epoch corresponding to. Clustering
performance metrics are computed after training,
considering the whole dataset to compute the met-
rics.

• A continual learning regime, with the dataset
randomly divided into ten separate batches of

approximately 208 samples each, training the
network in sequence with each batch during
four mini-epochs. After each of the four mini-
epochs, clustering performance metrics are com-
puted considering just the samples for the current
batch (not the whole dataset), and the training for
the next batch starts without resetting the neurons.
This setup simulates an environment with contin-
ual learning, where the network is concurrently
trained and used to predict the clustering of in-
coming samples.

All combinations of the previously described op-
tions and parameter values are tested (see Table 1 for
a summary of these parameters) to make sure we carry
out an unbiased search over the parameter space. In
particular, three different types of competitive learning
networks are tested, with three well-known unsuper-
vised learning models, in order to cover a wide range
of architectural concepts in the underlying competi-
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Fig. 4. Results for Competitive learning network, 𝑁 = 10, batch training. X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes: mean value of the
corresponding performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

tive models: competitive networks as an example of a
model with no topology and a fixed number of neurons,
SOMs as an example of a model with a fixed topology
and a fixed number of neurons, and GNGs as an exam-
ple of a model with dynamic topology and a variable
number of neurons. A total of 100 runs are performed
for every possible configuration, resulting in a total of
100 · 2 · 2 · 3 · (40 · 3 + 30) = 180000 different ex-
periments for each possible network type (competitive,
SOM, GNG). For each configuration, the results are
obtained by averaging the values for each performance
metric across the 100 runs with that configuration, in
order to minimize the possibility that results represent
a statistical fluke.

4.3. Results

Figures from 1 to 6 show the curves for the mean
values of each performance metric as a function of the
parameter 𝑎. For each specific value of 𝑎, the value of
each performance metric is computed as the mean of
the corresponding values across each set of 100 runs
with that precise configuration. Each plot shows results
for a specific metric for window size 𝑁 = 10, a specific
network architecture (competitive, self-organizing map
or growing neural gas), and a specific training mode

Table 2

Summarized performance results by learning rate configuration for
regular training experiments (without batches). Each row summa-
rizes results across all performance metrics for a specific configura-
tion of the learning rate function and learning rate mode. Within each
row, each column labeled from A. to T.E. represents results for each
performance metric: how many times (for all possible window sizes
and network architectures) that specific learning rate configuration
beats other learning rate configurations for that performance metric.
The last column (all) is the sum of the previous columns. Please see
the text for a more detailed description.

regular training (no batches)

mode function A. C.-H. S. D. MSE D.-B. T.E. all

single
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 ) 0 0 2 1 1 1 1 6
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )2 1 1 0 1 3 0 0 6
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )−1 0 0 1 2 0 2 3 8

multi
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 ) 3 1 0 3 3 1 0 11
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )2 5 0 6 1 2 2 2 18
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )−1 0 6 0 1 0 3 0 10

𝛼(𝑡 ) = 𝑎 0 1 0 0 0 0 0 1

(regular training or batch training) for the three func-
tions (linear, quadratic and inverse), both with a single
learning rate (S) and a different learning rate for each
neuron (M), as well as the results for the constant func-
tion baseline. Please note that results for regular train-
ing and batch training are not directly comparable for
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Fig. 5. Results for self-organizing map, 𝑁 = 10, batch training. X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes: mean value of the corresponding
performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

Table 3

Summarized performance results by learning rate configuration for
batch training experiments. Please compare with Table 2.

batch training

mode function A. C.-H. S. D. MSE D.-B. T.E. all

single
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 ) 1 1 0 0 0 0 0 2
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )2 1 0 0 0 3 0 0 4
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )−1 0 0 3 2 0 1 3 9

multi
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 ) 4 3 0 0 0 0 0 7
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )2 0 2 5 3 0 5 0 15
𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )−1 3 3 1 4 6 3 3 23

𝛼(𝑡 ) = 𝑎 0 0 0 0 0 0 0 0

all metrics since, in the first case, metrics are computed
for the whole dataset (2708 samples), while in the sec-
ond case, they are computed for each batch (approx.
208 samples).

Note also that the figures do not represent all ex-
periments, only those with window size 𝑁 = 10. No

figures are shown for experiments with window sizes
𝑁 = 50 and 𝑁 = 100, but the curves are broadly sim-
ilar to the 𝑁 = 10 case. In each figure, the first two
rows show metrics where larger values are better: ac-
curacy, Calinski-Harabasz criterion, Silhouette coeffi-
cient, and Dunn’s index. The other rows show met-
rics where lower values are better: mean squared error,
Davies-Bouldin index, and topographic error.

For experiments without batches (Figures 1-3), best
𝑎 values tend to roughly coincide for accuracy and
Calinski-Harabasz criterion, while for mean squared
error, best 𝑎 values are consistently shifted to lower
values with respect the first two. For example, in Fig-
ure 1, the best accuracy value for 𝛼(𝑡) = 𝑎𝑥2 with a
single learning rate is at 𝑎 = 0.0057, and for Calinski-
Harabasz is at 𝑎 = 0.03, while the best value for
mean squared error is at 𝑎 = 0.001. These three met-
rics present relatively smooth and consistent curves for
all network types (each figure presents results for a
network type), but Silhouette, Dunn’s index, Davies-
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Fig. 6. Results for growing neural gas, 𝑁 = 10, batch training. X axes: parameter 𝑎 in each 𝛼(𝑡 ) . Y axes: mean value of the corresponding
performance metric. (S) stands for single learning rate, (M) for multiple learning rates. See text for details.

Boudin and topographic error present curves that are
noisier and also have different shapes depending on
the type of network, so that no general rules can be
drawn like for the other three ones, except for Silhou-
ette, with best 𝑎 values larger in general than for accu-
racy and Calinski-Harabasz. In the case of competitive
networks (Figure 1) and SOM (Figure 2), Dunn’s index
and Davies-Bouldin have similar profiles, with best 𝑎
values larger in general than for accuracy and Calinski-
Harabasz. However, for GNG (Figure 3), these two
metrics present very different profiles, with best 𝑎 val-
ues in general at 𝑎 = 0.001 (except for linear func-
tions), and inverse functions (dashed lines) signifi-
cantly outperforming the others. In general, for all net-
work types, the best values attained in each metric
by the constant function (black line) are either signif-
icantly worse than for the other functions (dependent
on error rate) or roughly similar.

For experiments with batch training (Figures 4-
6), in contrast, it is best 𝑎 values for accuracy and

mean squared error those tending to coincide, while
Calinski-Harabasz’s are consistently shifted towards
larger 𝑎 values. For example, in Figure 4, the best ac-
curacy value for 𝛼(𝑡) = 𝑎𝑥2 with a single learning
rate is at 𝑎 = 0.0015, and for mean squared error is at
𝑎 = 0.0019, while the best value for Calinski-Harabasz
is at 𝑎 = 0.0057. The shapes of the curves for all met-
rics are, in general, either as smooth or smoother (i.e.,
less noisy) than for experiments with regular training
(without batches, Figures 1-3), but shapes and tenden-
cies for the curves are in general similar to experi-
ments without batches). Particularly, for GNG, inverse
functions are also significantly better than others for
Dunn’s index and Davies-Bouldin, with best 𝑎 values
at 𝑎 = 0.001.

Tables 2 and 3 distill the information in the plots
of the previously discussed figures, summarized to
highlight the relative performance of each learning
rate function (linear, quadratic, inverse) with different
learning rate modes (either a single learning rate or
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multiple ones) with respect to using a constant learning
rate. Please note that each metric’s mean value for each
configuration (with a specific value for parameter 𝑎) is
computed by averaging the results over the 100 runs
with that specific configuration. The best mean value
for each metric is found searching along all configura-
tions with different values of the parameter 𝑎 for each
possible combination of:

• Learning rate mode (either single or multi).
• Learning rate function (either linear, quadratic, in-

verse, or constant, but note that constant is inde-
pendent of learning rate mode).

• Window size (𝑁 ∈ {10, 50, 100}).
• Network architecture (either competitive, self-

organizing map, or growing neural gas).

To contextualize the significance of these best mean
values: in the plots in Figures 1 to 6, the best mean val-
ues correspond to the top of each curve’s range along
the Y axis for the first four metrics, and the bottom of
the range for the other metrics (but the plots are only
for 𝑁 = 10, while we are considering best values also
for configurations with 𝑁 = 50 and 𝑁 = 100).

To build tables 2 and 3, we add up all the times
a configuration with a specific combination of learn-
ing rate mode and function wins over configurations
with other combinations. Please note that 100 experi-
ments are run for each configuration, and we use the
mean value across the 100 runs to measure the number
of times each combination wins over others. Table 2
summarizes results for regular training mode (without
batches), and Table 3 does the same for batch training
mode. There are nine different combinations of win-
dow size and network architecture, so for each metric,
there are nine possible "wins" to be distributed among
the seven possible combinations of learning rate mode
and function (rows in Tables 2 and 3). Consequently,
each column in these tables adds up to 9, except in the
case of the topographic error: it only applies to the self-
organizing map and growing neural gas, so each col-
umn adds up to 6.

Two conclusions can be gleaned from these tables:

• Varying the learning rate 𝛼(𝑡) as a function of the
training error 𝐶 (𝑡) is better than using a constant
learning rate in almost all cases. While none of the
different functions dominates clearly above others
for all performance metrics, quadratic and inverse
functions seem to win more times.

• Using a different learning rate for each neuron
seems to be better than using a single learn-
ing rate for all neurons, as measured by accu-

racy, Calinski-Harabasz criterion, Silhouette co-
efficient, Dunn’s index, mean squared error, and
Davies-Bouldin index. For all these metrics, con-
figurations with multiple learning rates win (hav-
ing the best mean value) more times than config-
urations with a single learning rate. In the case of
topographic error, there is a draw in the number
of wins.

Additionally, Table 4 presents a comparison be-
tween the results of one of the configurations tested
in the experiments and various other clustering tech-
niques, always with 25 clusters, since the number of
clusters is 25 for the experiments with competitive net-
works and SOM, and at most 25 with GNG: three clas-
sical clustering techniques (K-means, K-medoids, DB-
SCAN) and the three competitive learning networks
tested in the experiments, but with classical learning
rate decay. The learning rate decays linearly from an
initial value of 0.4 for the first half of the training;
then, it is set at a low value (0.01) for the second half.
A total of 100 experiments are run for each cluster-
ing technique: the values in the table are the mean and
standard deviation over these 100 runs for each met-
ric. Please note that for the first four performance re-
sults, larger values are better, and vice versa for the
last three. While many configurations of our method
perform better than the other six techniques in some
metric (in isolation), we compare them against just one
configuration. To select this configuration, we first fil-
ter the ones that are better than the other techniques
in accuracy and MSE (since we consider these to be
the most relevant metrics). This results in a still size-
able number of configurations. From these, we select
the configurations with a minimal sum of ranks, where
the configuration’s rank for each metric is its ordinal
when all competing values in the same value are sorted
from better to worse, considering directly the configu-
rations with globally minimal rank results in configu-
rations that do not prioritize accuracy and MSE. From
these, we select for the table the one with the best ac-
curacy: GNG network, with history size 𝑁 = 10, and
quadratic function with scaling parameter 𝑎 = 0.0019.
This configuration is better than the other six clus-
tering techniques not only for accuracy and MSE but
also Calinski-Harabasz and topographic error, but it is
not well ranked in the other three metrics (Silhouette,
Dunn’s index and Davies-Bouldin).

As a graphical example of the accuracy of the clus-
tering for experiments, we also show in Figure 7 spe-
cific examples of two experiments, one with a self-
organizing map and the other with a growing neural
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Fig. 7. Representation of two specific experiments, one with a self-
-organizing map (up) and the other with growing neural gas (down).
In both cases, the topology of the network is depicted, with each
neuron showing the mode of the sample sub-field for all samples
in each neuron’s receptive field. If the neural network has learned
a good clustering of the dataset, adjacent neurons will tend to have
similar modes. Sub-field acronyms are GA (Genetic Algorithms),
ReL (Reinforcement Learning), T (Theory), RuL (Rule Learning),
CB (Case-Based), PM (Probabilistic Methods), and NN (Neural Net-
works).

gas. They are plotted to show how well the topology
of the network maps to sample classes (defining the
class of each sample as the sub-field of the underlying
article). For each experiment, the resulting neural net-
work is represented, showing for each neuron the mode
of the sample class for the samples in the neuron’s re-
ceptive field. As can be seen, there are clear clusters
of sample class modes, for example, with the growing
neural gas.

5. Discussion

To adapt competitive learning models to continual
learning, we have defined the learning rate as a func-
tion of the error rate during training. In this way, if the
model has converged for a particular probability distri-
bution, but the incoming samples drift to another one,
then the learning rate can change dynamically to ad-
dress this situation.

Thus, adapting the learning rate to the amount of
training error has been shown to produce better clus-

terings. Furthermore, in the context of continual learn-
ing, for many of the metrics used to measure clustering
performance, Table 3 shows that using multiple learn-
ing rates (i.e., a different learning rate adapted to the
particular history of training errors for each neuron)
can produce better results than using a single learning
rate for the whole model. Table 2 shows that multiple
learning rates are also better in the context of regular
training regimes, even if the effect seems less intense.
However, these results should be put into context: as
it can be seen from Figures 1-6, it is apparent that, for
most metrics, the differences in average peak perfor-
mance between different learning rates and different
functions 𝛼(𝑡) are relatively small, so the best configu-
rations are winning, in most cases, by relatively small
margins, with one instance (in Table 2) of the constant
function winning once over the others for the Calinski-
Harabasz metric. It should also be noted that, while
we can find configurations whose average peak per-
formance beats other clustering methods for any given
metric, there is no configuration that dominates for all
metrics over other clustering methods, and the example
we provide in Table 4 is noticeably worse than other
clustering methods for the Silhouette, Davies-Bouldin
and Dunn’s indexes.

Looking at Figures 1-6 for instances of configura-
tions with multiple learning rates outperforming their
counterparts with a single learning rate, this happens
more frequently for the metrics Silhouette, Dunn’s in-
dex and Davies-Bouldin, but not for Calinski-Harabasz.
All these four metrics measure intra-cluster compact-
ness and inter-cluster separation, but in different ways.
In particular, the first three compute the values find-
ing maxima and minima of various terms (the fourth
doesn’t), so their values depend more on samples be-
ing extreme in some respect. For example, Dunn’s in-
dex just measures the ratio between the smallest inter-
cluster distance and the largest intra-cluster distances.
This is evidence that using multiple learning rates can
lead to clusterings with better-behaving clusters at the
extreme range of various ways to measure intra- and
inter-cluster distances.

It is also remarkable that the inverse function (i.e.,
defining the learning rate as an inverse function of
training errors) can be better for some performance
metrics, most notably the Calinski-Harabasz criterion
when using multiple learning rates in Table 2, and
more broadly for multiple metrics in Table 3. This
seemingly counterintuitive result can be explained by
outliers. In the presence of outliers in the input dis-
tribution, an inverse correspondence keeps the units
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Table 4

For each performance metric, the mean and standard deviation values from 100 different runs of several clustering strategies. Three classical
clustering techniques (K-means clustering, K-medoids clustering, and DBSCAN), three competitive learning techniques with linearly decreasing
learning rate (competitive network, SOM, GNG), and one configuration of our online method (GNG with 𝑁 = 50, multi learning rate, and
quadratic function) outperforming other competitors on four metrics: accuracy, Calinski-Harabasz, MSE and topographic error. Please note that
larger values are better for the first four performance metrics, and vice versa for the last three ones.

performance metric

other clustering methods competitive learning
regular (not online) Ours (online): GNG,

𝑁 = 10, multi L.R.,
K-means K-medoids DBSCAN comp. SOM GNG 𝛼(𝑡 ) = 𝑎 · 𝐶 (𝑡 )2, 𝑎 = 0.0019
` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎

accuracy 0.352 0.056 0.425 0.001 0.307 0.001 0.478 0.035 0.517 0.023 0.471 0.021 0.533 0.017
Calinski-Harabasz 4.121 1.894 8.109 0.008 1.002 0.045 7.516 0.491 9.089 0.287 7.513 0.248 10.509 0.183

Silhouette -0.0724 0.045 -0.032 0.001 -0.225 0.060 0.0084 0.012 -0.030 0.014 -0.085 0.030 -0.060 0.017
Dunn’s Index 0.206 0.093 0.136 0 0.097 0.099 0.160 0.039 0.162 0.041 0.148 0.023 0.136 0.001

Mean Squared Error 431.4 3.363 440.2 0 438.9 0.084 427.9 1.009 425.4 0.606 439.3 0.745 424.308 0.312
Davies-Bouldin 2.107 0.813 4.959 0.005 2.996 0.051 3.886 0.237 5.664 0.159 6.985 0.167 6.127 0.164

topographic error - - - - - - - - 0.716 0.056 0.122 0.025 0.057 0.011

(neurons) that represent the outliers relatively static
because such units have large training errors, as the
outliers are far away from the other samples. Conse-
quently, these units do not migrate to the large central
clusters of the distribution, thereby keeping the outliers
well-represented. As demonstrated in the experiments,
this mechanism can greatly enhance the overall perfor-
mance of the studied clustering algorithms.

6. Conclusions

In this work, a novel framework for continual learn-
ing has been proposed. It is aimed at dealing with non-
stationary inputs for unsupervised learning models. A
dynamic learning rate is designed, which depends on
the current reconstruction error. It can be applied either
per neuron or per network. This method can be em-
ployed for any application of unsupervised neural net-
works. In particular, we have chosen a scientific arti-
cle unsupervised clustering problem. For this real-life
problem, our approach with multiple learning rates de-
pendent on individual neuron error rates has demon-
strated that it outperforms the classic constant learning
rate scheme according to a wide range of unsupervised
clustering performance measures. Moreover, the num-
ber of recent samples taken into account for comput-
ing the error rates seem not to be too relevant. In fact,
the best configuration found in our experiments was a
GNG network with a small history size 𝑁 = 10 and
quadratic function learning rate, which outperformed
other configurations of the proposed model, as well as
six non-competitive clustering techniques.

While this work has focused on applying our pro-
posed approach to online competitive learning to doc-

ument classification, there are other active research ar-
eas where our proposal can also work, such as on-
line clustering of images or image patches [55–58],
online clustering of sound samples [59], or the more
generic multi-armed bandit problem [60]. Regarding
future work on the model itself, there are a number
of lines of future work amenable to our results. Tak-
ing advantage of the relatively inexpensive computa-
tional cost of competitive learning, negative correla-
tion learning in dynamic ensembles [70] can provide a
performance boost by tuning a clustering model with
multiple sub-networks whose results are combined us-
ing a negative correlation learning rule. Also, incom-
ing samples can be mapped into another multidimen-
sional space where they are easier to classify, with a
suitable procedure such as Neural Dynamic Classifica-
tion [71]. Another possibility is to keep our proposed
approach to online competitive learning as an initial
unsupervised step used to feed a supervised learning
approach in order to model the resulting partitions of
the input space in a more effective way using a Finite
Element Machine [72] or to avoid catastrophic forget-
ting in the latter supervised step [73].
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[37] Banković, Z., Moya, J.M., Araujo, Á., Fraga, D., Vallejo, J.C.
& de Goyeneche, J.-M. (2010). Distributed intrusion detec-
tion system for wireless sensor networks based on a reputation
system coupled with kernel self-organizing maps. Integrated
Computer-Aided Engineering, 17(2), 87–102.

[38] Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. (1999).
Process monitoring and modeling using the self-organizing
map. Integrated Computer-Aided Engineering, 6(1), 3–14.

[39] Allen, M.J., Marin, F., García-Lagos, F., Gough, N.E. &
Mehdi, Q. (2003). Fuzzy processing for active vision. Inte-
grated Computer-Aided Engineering, 10(3), 267–285.

[40] Cao, X. & Suganthan, P.N. (2002). Neural network based tem-
poral video segmentation. International Journal of Neural Sys-
tems, 12(03n04), 263–269.

[41] Palomo, E.J. & López-Rubio, E. (2016). Learning topologies
with the growing neural forest. International journal of neural
systems, 26(04), 1650019.

[42] Angelopoulou, A., Psarrou, A., Rodríguez, J.G. & Revett, K.
(2005). Automatic landmarking of 2D medical shapes using
the growing neural gas network. In International Workshop on
Computer Vision for Biomedical Image Applications (pp. 210–
219). Springer.

[43] Benito-Picazo, J., Palomo, E.J., Domínguez, E. & Ramos, A.D.
(2020). Image clustering using a growing neural gas with for-
bidden regions. In 2020 International Joint Conference on
Neural Networks (IJCNN) (pp. 1–7). IEEE.

[44] Toda, Y., Wada, A., Miyase, H., Ozasa, K., Matsuno, T. & Mi-
nami, M. (2022). Growing Neural Gas with Different Topolo-
gies for 3D Space Perception. Applied Sciences, 12(3), 1705.

[45] Molina-Cabello, M.A., Luque-Baena, R.M., López-Rubio, E.,
Ortiz-de-Lazcano-Lobato, J.M., Domínguez, E. & Pérez, J.M.
(2017). Vehicle classification in traffic environments using the
growing neural gas. In International Work-Conference on Ar-
tificial Neural Networks (pp. 225–234). Springer.

[46] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.
& Eliassi-Rad, T. (2008). Collective classification in network
data. AI magazine, 29(3), 93–93.

[47] Rakaraddi, A., Siew Kei, L., Pratama, M. & De Carvalho, M.
(2022). Reinforced Continual Learning for Graphs. In Pro-
ceedings of the 31st ACM International Conference on Infor-
mation & Knowledge Management (pp. 1666–1674).

[48] Zhang, X., Song, D. & Tao, D. (2022). Hierarchical prototype
networks for continual graph representation learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[49] Wang, J., Song, G., Wu, Y. & Wang, L. (2020). Streaming
graph neural networks via continual learning. In Proceedings
of the 29th ACM International Conference on Information &
Knowledge Management (pp. 1515–1524).

[50] Zhang, J., Ghahramani, Z. & Yang, Y. (2004). A probabilis-
tic model for online document clustering with application to
novelty detection. Advances in neural information processing
systems, 17.

[51] Khy, S., Ishikawa, Y. & Kitagawa, H. (2008). A novelty-based
clustering method for on-line documents. World Wide Web,
11(1), 1–37.

[52] Zhong, S. (2005). Efficient online spherical k-means cluster-
ing. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005. (Vol. 5, pp. 3180–3185). IEEE.



18 J.D. Fernández-Rodríguez et al. / Multi-learning rates for Continual Unsupervised Learning

[53] Borgelt, C. & Nürnberger, A. (2004). Fast fuzzy clustering of
web page collections. In Proc. of PKDD Workshop on Statisti-
cal Approaches for Web Mining (SAWM).

[54] Cottrell, M., Hammer, B., Hasenfuß, A. & Villmann, T. (2006).
Batch and median neural gas. Neural Networks, 19(6-7), 762–
771.

[55] Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y.W. & Hadsell,
R. (2019). Continual unsupervised representation learning. Ad-
vances in Neural Information Processing Systems, 32.

[56] Zheng, K., Liu, W., He, L., Mei, T., Luo, J. & Zha, Z.-J.
(2021). Group-aware label transfer for domain adaptive person
re-identification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 5310–5319).

[57] He, J. & Zhu, F. (2022). Unsupervised continual learning via
pseudo labels. In International Workshop on Continual Semi-
Supervised Learning (pp. 15–32). Springer.

[58] Taufique, A.M.N., Jahan, C.S. & Savakis, A. (2022). Unsuper-
vised Continual Learning for Gradually Varying Domains. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 3740–3750).

[59] Marxer, R. & Purwins, H. (2016). Unsupervised incremen-
tal online learning and prediction of musical audio signals.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(5), 863–874.

[60] Lin, B., Bouneffouf, D., Cecchi, G.A. & Rish, I. (2018).
Contextual bandit with adaptive feature extraction. In 2018
IEEE International Conference on Data Mining Workshops
(ICDMW) (pp. 937–944). IEEE.

[61] Davies, D.L. & Bouldin, D.W. (1979). A cluster separation
measure. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1(2), 224–227.

[62] Farsadnia, F., Kamrood, M.R., Nia, A.M., Modarres, R., Bray,
M.T., Han, D. & Sadatinejad, J. (2014). Identification of homo-
geneous regions for regionalization of watersheds by two-level
self-organizing feature maps. Journal of Hydrology, 509, 387
–397.

[63] Higuera, C., Pajares, G., Tamames, J. & Morán, F. (2013).
Expert system for clustering prokaryotic species by their
metabolic features. Expert Systems with Applications, 40(15),
6185–6194.

[64] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process
and its use in detecting compact well-separated clusters. Jour-
nal of Cybernetics, 3(3), 32–57.

[65] Bezdek, J.C. & Pal, N.R. (1998). Some new indexes of cluster
validity. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 28(3), 301–315.
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