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Abstract. State-of-the-art learning-based stability control methods
for nonlinear robotic systems suffer from the issue of reality gap,
which stems from discrepancy of the system dynamics between train-
ing and target (test) environments. To mitigate this gap, we propose
an adversarially robust neural Lyapunov control (ARNLC) method
to improve the robustness and generalization capabilities for Lya-
punov theory-based stability control. Specifically, inspired by adver-
sarial learning, we introduce an adversary to simulate the dynamics
discrepancy, which is learned through deep reinforcement learning to
generate the worst-case perturbations during the controller’s training.
By alternatively updating the controller to minimize the perturbed
Lyapunov risk and the adversary to deviate the controller from its
objective, the learned control policy enjoys a theoretical guarantee
of stability. Empirical evaluations on five stability control tasks with
the uniform and worst-case perturbations demonstrate that ARNLC
not only accelerates the convergence to asymptotic stability, but can
generalize better in the entire perturbation space.

1 Introduction

Designing a stable and robust controller to stabilize nonlinear dy-
namical systems has long been a challenge. Lyapunov stability the-
ory performs a fairly significant role in the controller design for sta-
bility control of robotic systems [38, 32, 18, 25, 26]. However, many
previous approaches are restricted to the polynomial approximation
of system dynamics [15, 28], and suffer from sensitivity issues when
searching for the Lyapunov functions [20]. Recently, by leveraging
deep learning-based methods, some works have successfully incor-
porated the Lyapunov stability theory with the powerful expressive-
ness of neural networks and convenience of gradient descent for net-
work learning [4, 1, 23, 6, 45, 41, 7]. One outstanding method among
them is the neural Lyapunov control (NLC) [4], where both the Lya-
punov function and controller policy are approximated by neural net-
works. In NLC, the networks are trained by minimizing a Lyapunov
risk stemmed from the Lyapunov stability theorem. Nevertheless,
most existing learning-based controllers are trained without any dis-
tinction between the training and test environments [5, 40]. Since the
training simulator cannot perfectly model the target environment for
testing, a reality gap will incur inevitably by such a modelling error
(i.e., discrepancy of system dynamics), which degrades the perfor-
mance of controller at the actual deployment. Hence, learning-based
controller needs to consider the uncertainty of physical parameters
(or external forces) that may cause the modelling error [17, 8, 11, 44].
Motivated by this, we focus in this paper on addressing the challeng-
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ing problem of learning a controller to stabilize the nonlinear dynam-
ical system in face of such a modelling error.

Over the years, several approaches have already been proposed to
alleviate the controller’s performance degradation incurred by mod-
elling errors. The majority of them are built upon another splen-
did learning-based control method: deep reinforcement learning
(RL) [34, 31]. These deep RL-based control methods treat the model-
ing error as an extra disturbance to the system [2], and have achieved
a great success in controlling [29, 36, 42, 43, 22, 13, 14]. For exam-
ple, in robust adversarial reinforcement learning (RARL), the policy
learning is formulated as a zero-sum game between the controller and
an adversary that generates disturbances to the system, where the
learned controller is proved to have improved capability of robust-
ness and generalization. Since RL methods train policies by maxi-
mizing the sum of expected rewards that the agent obtains during the
interaction with environment, its performance depends greatly on the
manually designed reward function while the learned policy is sensi-
tive to the preset control interval [35, 27]. Hence, RL is prone to fail
in the control tasks with a relatively small control interval, as will
later be verified in our experiments. While our aim is to find the con-
trol policy that can enable a stable control, which is also robust to the
choice of control intervals.

In this paper, we present a novel method that can automatically
learn robust control policies with a provable guarantee of stability.
Specifically, we formulate a perturbed Lyapunov risk for learning a
controller in the dynamical system, which is imposed with the adver-
sary’s perturbations in a certain range. To train the controller pol-
icy to resist to the worst-case perturbations within that range, we
formulate the learning of adversary as a Markov decision process
(MDP), and train the adversary policy by proximal policy optimiza-
tion (PPO). In the case of known system dynamics, the action space
in the MDP can be the range of external forces or space of physical
parameters, which causes the modelling error. More practically for
the unknown dynamics, the original NLC no longer works since up-
date of the networks is infeasible without prior knowledge of the sys-
tem dynamics. We therefore train an environment model by sampling
from the system, while the adversary’s action is set as the offset to
the output of this environment model. We further formulate an adver-
sarially robust controller learning problem, which is approximately
solved by alternatively updating the controller policy with Lyapunov
methods and the adversary policy by PPO. Our contributions can be
summarized as follows.

• We propose a perturbed Lyapunov risk for learning the control
policy under perturbations.

• We formulate an optimization problem for adversarially robust
controller learning, to learn a policy in face of the worst-case
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perturbations that are imposed by the RL-trained adversary.
• We propose an adversarially robust neural Lyapunov control

(ARNLC) approach to approximately solve this problem, and
demonstrate its performance on several stability control tasks.

2 Related Work

Adversarial training. The idea of viewing the gap between training
and test scenarios as an extra disturbance of the system in reinforce-
ment learning was first proposed in [24], with the problem formu-
lated as finding a min-max solution of the value function that takes
the perturbations into account. Inspired by [24], [29] proposes the ro-
bust adversarial reinforcement learning (RARL), where an adversary
is learned simultaneously to prevent the agent from accomplishing its
goal, while the agent’s policy and the adversary policy are trained al-
ternately. [42] proposes robust reinforcement learning based on per-
turbations on state observations, introducing an adversary to apply
disturbances on the state observations of the agent. [36] focuses on
a scenario where the agent attempts to perform an action, which be-
haves differently from expected due to disturbances. All of the above
literature mainly studies training the adversary for RL settings, while
our focus in this work is on introducing adversarial training to the
Lyapunov stability control.
Neural Lyapunov stability control. [4] proposes the neural Lya-
punov control, which uses neural networks to learn both the control
and Lyapunov functions for nonlinear dynamical systems based on
the Lyapunov stability theory. [30] learns a control law that stabilizes
an unknown nonlinear dynamic system. However, it needs to design
a Lyapunov function manually. [6] also proposes an approach for
learning the robust nonlinear controller based on the robust convex
optimization and Lyapunov theory, achieving generalization beyond
system parameters seen during the training process. However, this
approach only considers the control-affine dynamical systems, not
the more general nonlinear ones. In this work, we focus on improv-
ing the robustness and generalization for control policies of nonlinear
dynamical systems.
Robust model predictive control (Robust MPC). Robust MPC is
another research branch to deal with the uncertainty in physical pa-
rameters [33, 10, 12]. It looks for the optimal feedback law among all
the feasible feedback laws within a given finite horizon, in terms of
a given control performance criterion at every sampling instant [9].
However, it is usually restricted to the additive disturbances [19] and
is computationally expensive [3].

3 Preliminaries and Background

We consider a continuous-time, time-invariant nonlinear dynamical
system of the form:

ẋ = f(x, a), (1)

where x(t) ∈ X ⊆ R
n is the state and a ∈ A ⊆ R

m is the control
input, respectively, and ẋ denotes the first-order time derivative of x.
The system is feedback controlled by a policy function: a = π(x).
We aim to stabilize this system at an equilibrium point x = 0 ∈
X , by finding a policy to build a closed-loop controlled dynamical
system ẋ = fπ(x) with fπ(0) = 0, such that the equilibrium point
x = 0 achieves asymptotic stability as defined below.

Definition 1 (Asymptotic stability in the sense of Lyapunov [16]).
The equilibrium point x = 0 of fπ is stable in the sense of Lyapunov
if ∀ε > 0, ∀t0 > 0, there exists δ(ε) > 0 such that if ‖x(t0)‖ ≤ δ(ε)

then ‖x(t)‖ ≤ ε for all t ≥ t0. The equilibrium point x = 0 of fπ is
asymptotically stable if it is stable and there exists a positive constant
c = c(t0) such that x(t) → 0 as t → ∞, for all ‖x(t0)‖ ≤ c.

We assume the system is locally Lipschitz continuous in x.

Assumption 1 (continuity). The dynamics f(·) in Equ. (1) is Lf Lip-
schitz continuous with respect to the 1-norm, whereby f(·) satisfies
the inequality:

‖fπμ(x)(x)− fπμ(x)(y)‖1 ≤ Lf‖x− y‖1, (2)

for all x(t), y(t) ⊆ R
n, with a finite constant Lf > 0.

3.1 Stability Guarantee with Lyapunov Functions

Lyapunov stability theory provides an elegant way to guarantee the
stability, as follows.

Theorem 1 (Lyapunov stability theorem [16]). Suppose fπ : X →
R

n is locally Lipschitz in X ⊆ R
n. For a continuous-time controlled

dynamical system fπ , if there exists a continuous function V : X →
R such that

V (0) = 0; and V (x) > 0, ∀x ∈ X − {0}; and V̇ (x) < 0; (3)

then the system is asymptotically stable at x = 0, where V is called
a Lyapunov function.

The time derivative of V (x) can be derived as V̇ (x) =∑n
i=1

∂V
∂xi

ẋi =
∑n

i=1
∂V
∂xi

[fπ]i(x), which depends on both V (x)
and the controlled dynamics fπ . Theorem 1 then states that the tra-
jectories of the system’s state will eventually reach the equilibrium
x = 0, if we can design a control policy π such that the Lyapunov
function V (x) exists and satisfies the conditions in Eq. (3).

3.2 Neural Lyapunov Control

Neural Lyapunov control (NLC) [4] leverages neural networks to ap-
proximate both the control policy π and Lyapunov function Vθ(x),
which are parameterized by θπ and θ, respectively. The network pa-
rameters θπ and θ are learned by minimizing the following Lyapunov
risk:

Lρ (θ, θ
π) = Ex∼ρ(X )

(
max(0,−Vθ(x))

+ max(0, V̇θ(x)) + V 2
θ (0)

)
,

(4)

where x is a random variable following a uniformly random distribu-
tion ρ over the state space X . In its physical meaning, this Lyapunov
risk quantifies the degree of violation of the Lyapunov conditions in
Eq. (3) over the state space X , given a certain policy and Lyapunov
function.

4 Adversarially Robust Neural Lyapunov Control

In this paper, we aim to narrow down the reality gap incurred by the
modelling discrepancy in the system dynamics f between training
and test environments, by learning a policy of controller μ that is
better stabilizing the system (i.e., achieving the asymptotic stability
faster) and more robust (i.e., resisting to variations of the system dy-
namics). Specifically, we consider modeling such a discrepancy by
an adversary, with the system function given by:

ẋ = f(x, aμ, aν), (5)
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where aμ ∈ A and aν ∈ Aadv are the controller’s action and ad-
versary’s action at time t following their policies πμ and πν , respec-
tively, while the rest notations follow the definition in Eq. (1). In the
view of the controller, aν imposes a variation to the dynamics f ,
which can be rewritten as ẋ = fπν(x)(x, a

μ). Hence, introducing
the adversary ν imposes a modelling error to Eq. (1) during train-
ing of the controller. A practical example is where the controller is
applied to manipulate locomotion of a robot outdoor, while the adver-
sary may be the weather that produces unpredictable wind or rain to
disturb this controller. Note that the system dynamics in view of the
controller reduces to Eq. (1) when aν = πν(x) = 0 for any time t.
In this section, we propose the adversarially robust neural Lyapunov
control (ARNLC) method to train a policy πμ for the controller μ,
such that the system governed by Eq. (5) is stabilized in face of the
adversary ν.

4.1 Perturbed Controller Learning

In our adversarial control setting, both the controller μ and adver-
sary ν observe the system state x, and then take actions aμ ∼ πμ(x)
and aν ∼ πν(x). After that, the system evolves according to Eq. (5).
Here, we utilize neural networks to learn the controller policy πμ(x),
adversary policy πν(x) and candidate Lyapunov function Vθ(x), as
parameterized by θμ, θν and θ, respectively. Our objective is to lever-
age the Lyapunov stability theory to find a controller policy πμ that
can achieve the stability of system in the presence of a certain adver-
sary. Namely, the resulting closed-loop controlled dynamical system
ẋ = fπμ(x),πν(x)(x) is asymptotically stable at the equilibrium point
x = 0. Motivated by this, our proposed ARNLC seeks to minimize
the following perturbed Lyapunov risk w.r.t. θ and θμ, to update the
controller policy together with the candidate Lyapunov function.

Definition 2 (Perturbed Lyapunov risk for controller). We con-
sider a candidate Lyapunov function Vθ for a continuous-time dy-
namical system in Eq. (5). In the presence of an adversary policy πν

parameterized by θν , the perturbed Lyapunov risk for the controller
μ is defined by:

Lρ (θ, θ
μ, θν) = Ex∼ρ(X )

(
max(−Vθ(x), 0)

+ max(0, V̇θ(x)) + V 2
θ (0)

)
,

(6)

where ρ(X ) is the state distribution, and V̇θ(x) =∑n
i=1

∂Vθ
∂xi

[fπμ,πν ]i(x).

The learning of πμ and Vθ can then be formulated as the following
optimization problem:

min
θ,θμ

Lρ(θ, θ
μ, θν),

s.t. ẋ = f(x, aμ, aν), aμ ∼ πμ, a
ν ∼ πν .

(7)

This perturbed Lyapunov risk Lρ differs from the conventional Lya-
punov risk in that the time derivative V̇θ(x) now depends on fπμ,πν

instead of fπ , which makes the closed-loop dynamical system vari-
able for the controller. In practice, we use the following empirically
perturbed Lyapunov risk, which is an unbiased estimator of Eq. (6):

LN,ρ (θ, θ
μ, θν) =

1

N

N∑
i=1

(
max(−Vθ(xi), 0)

+ max(0, V̇θ(xi)) + V 2
θ (0)

)
.

(8)

However, this practical estimator cannot guarantee satisfaction of
the conditions in Theorem 1 on the entire state space X . We thus
apply additionally a falsifier to constantly find the counter-examples
that violate these conditions during the training process, which is a
common strategy also used in NLC. Specifically, the falsifier finds
counter-example states according to the following criterion:

Vθ(x) ≤ 0 ∨ V̇θ(x) ≥ 0, ∀x ∈ X − {0}, (9)

which specifies the negation of conditions in Eq. (3). During the
training of πμ and Vθ , the falsifier constantly finds counter-examples
and adds them into the training dataset.

4.2 Adversary Learning

Compared with the conventional Lyapunov risk in Eq. (4), the per-
turbed counterpart Lρ in Eq.(6) presents some new challenges to the
learning of controller policy. Due to the perturbation from adversary,
the dynamical system in view of the controller becomes variable,
which prevents the learning of its policy πμ from reaching the stabil-
ity as will be shortly shown in experiments. Inspired by the idea of
adversarial training, the proposed ARNLC leverages reinforcement
learning method to train the adversary policy. The intuition behind
this is that if we can train a controller under the worst-case perturba-
tion (which degrades the performance of its policy to the most) in a
certain range, the controller then obtains a conservative policy that is
robust to any perturbation within that same range.

We formulate training of the adversary as a discrete-time Markov
decision process (MDP) with a fixed control interval, defined as the
tuple (X ,Aadv,A,P, r, γ), where γ is the discount factor. The ad-
versary agent observes the system state x ∈ X at each time step
and takes action aν ∈ Aadv , while the controller acts aμ ∈ A. The
system then evolves to the next state x′ according to transition prob-
ability P(·|x, aμ, aν) between time steps, and the adversary agent
receives reward r(x, aμ, aν).

Adversary’s action design. Depending on whether or not the sys-
tem dynamics f can be accessed, ARNLC applies different action
design for the adversary agent. i) For known dynamics f , the ac-
tion space Aadv of adversary can be range of the external disturb-
ing force or space of the environment parameters, which changes the
system dynamics in view of the controller. The adversary action can
then be directly imposed on the system, which simulates the exter-
nal force (e.g., strong wind) and change of environment parameters
(e.g., friction coefficient) that the controller may encounter in the test
environment. ii) For unknown dynamics f , NLC is unable to back
propagate the gradients to update πμ and Vθ , since f is required to
compute Lρ. Alternatively, we use supervised learning to train an en-
vironment model Mη that is approximated by the neural network for
the unknown dynamical system. Then, πμ and Vθ can be updated by
the gradients of Mη . Since coefficients of Mη do not have a clear
physical meaning of the environment (which are weights and biases
of the network), we define actions of the adversary as the additive
error to the output of Mη . However, perturbations imposed by the
adversary’s action may lead to an unstable training, or even the non-
existence of an asymptotically stable equilibrium. Hence, we limit
the adversary’s action to a certain range, which can be tuned practi-
cally to balance the stable training and adversary learning.

Adversary’s reward design. Adversary should be assigned a
higher reward if it leads the system to an unstable state at each time
step, which is contrary to the controller’s goal. For example, in the
task where we aim to design a controller to swing the pendulum into
an upright position, the reward of the adversary can be set as the
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Table 1. Types of perturbations for each task

Task Perturbation Type

Pendulum Mass of Ball, Length of Pole, Friction Coefficient, Gravity
Cart Pole Mass of Cart, Length of Pole, Mass of Pole, Gravity

Car Trajectory Tracking Velocity of Car, Radius of Path
2-link Pendulum Pole1 Length, Pole1 Position of the Center of Mass

square of the normalized angle between the pendulum and the verti-
cal direction. The reward functions for training the adversary in all
the tasks used in the paper are shown in Table A-3 in Appendix [39].
In general, the controller’s action that tends to stabilize the system
will decrease the reward for the adversary, while the adversary pol-
icy that achieves a higher reward will prevent the controller from
minimizing Lρ.

State transition. The state transition is deterministic by the sys-
tem dynamics f . Given a fixed control interval Δt, it can be derived
as xt+1 = xt + f(xt, a

μ
t , a

ν
t )Δt.

Given the controller policy πμ, the goal of RL is to find the optimal
adversary policy π∗

ν that maximizes the following objective function:

π∗
ν = argmax

πν

Ea
μ
h
∼πμ,aν

h
∼πν ,xh∼P

[ ∞∑
h=0

γhr(xh, a
μ
h, a

ν
h)

]
,

(10)

which are the expected cumulative discounted reward starting from
initial state x0, following a certain distribution over the whole state
space. Provided with an appropriate adversary’s reward design, π∗

ν

can produce the worst-case perturbation sequence, which adversari-
ally destabilizes the system to the most extent.

4.3 Adversarially Robust Controller Learning

Given an adversary policy π∗
ν trained by RL that performs the worst-

case perturbation to the controller, we formulate the adversarially
robust controller learning problem as:

min
θ,θμ

Lρ(θ, θ
μ, θν),

s.t. ẋ = f(t, x, aμ, aν), aμ ∼ πμ,

aν ∼ π∗
ν = argmax

πν

V πμ(πν).

(11)

Note that formulations of the objective functions for neural
Lyapunov-controller and RL-adversary are totally different, hence
the adversarial learning problem here cannot be formulated as a two-
player zero-sum game. The proposed ARNLC in Algorithm 1 uses an
alternating procedure to solve this problem approximately, where we
summarize it for the case of unknown system dynamics f . Training

environment model: at each iteration e, we sample M1 transitions
in the environment with a random policy and update the environment
model by minimizing the error between its prediction Mη(x, a) and
the next state x′ on the transitions. Training controller’s and ad-

versary’s policies: at each outer iteration i, we perform a two-stage
optimization. i) We train the controller policy and Lyapunov function
while the adversary policy is fixed based on the Lyapunov theory. We
initialize a state dataset S by randomly sampling from X . At each in-
ner iteration jμ, we construct {xk, a

μ
k , a

ν
k, x

′
k}k on the state subset

of size M3 from S, and update πμ and Vθ by performing stochas-
tic gradient descent (SGD) w.r.t. Eq. (7). ii) We train the adversary
policy while the controller policy is fixed. At each inner iteration
jν , we generate transitions on learned environment model Mη with
the controller’s and adversary’s policies. We then perform the policy

Algorithm 1 Adversarially robust neural Lyapunov control
(ARNLC) for unknown dynamics
Require: unknown environment M and state space X
Ensure: learned policies πμ and πν

1: Initialize: η for environment model Mη , θμ for controller μ, θν

for adversary ν, θ for Lyapunov function Vθ , control interval Δt,
uniformly random policy πr

2: for e = 1, 2, . . . Ne do 
 train an environment model for the
system

3: Sample transitions {xi, ai, x
′
i}M1

i=1 from M using πr with
Δt

4: Update Mη by minimizing 1
M1

∑M1
i=1 |Mη(xi, ai) − x′

i|2
w.r.t. η

5: end for
6: for i = 1, 2, . . . Niter do 
 train controller
7: Randomly sample M2 states S = {xk}M2

k=1 from state space
X

8: for jμ = 1, 2, . . . Nμ do
9: aμ

k = πμ(xk), aν
k = πν(xk) and x′

k = Mη(xk, a
μ
k)+aν

k

on {xk}M3
k=1 sampled from S

10: πμ, Vθ ← min
θ,θμ

Lρ(θ, θ
μ, θν) on {xk, a

μ
k , a

ν
k, x

′
k}M3

k=1 


use SGD to update
11: Find counter-example set Ω of size M4 following crite-

rion in Eq. (9) and S ← S ∪ Ω
12: end for
13: for jν = 1, 2, . . . Nν do 
 train adversary
14: {xh, a

μ
h, a

ν
h, rh}Ntraj

h=1 ← generate(Mη, πμ, πν)

15: πν ← policyOptimize
(
{xh, a

μ
h, a

ν
h, rh}Ntraj

h=1 , πν

)
16: end for
17: end for

optimization method from RL to update πν on these generated tran-
sitions. For known system dynamics, learning of the environment
model at Lines 2-5 in Algorithm 1 is not required, and the transition
generation in the two stages follows the known system dynamics f .
Due to space limit, the proposed ARNLC for known system dynam-
ics is provided in Appendix [39].

5 Experiment

We evaluate our proposed ARNLC algorithm on several control
tasks, where the system dynamics are variable by external forces or
perturbations on environment parameters. We compare our ARNLC
with NLC [4], PNLC (perturbed NLC) in Section 4.1, RARL [29]
and Robust MPC [19, 21]. We use proximal policy optimization
(PPO) [31] as our baseline RL algorithm for the adversary training at
Line 15 in Algorithm 1. In NLC and PNLC, we build neural networks
for the controller policy and Lyapunov function, which are updated
by minimizing the Lyapunov risk in Eq. (4) and Perturbed Lyapunov
risk in Eq. (6), respectively. A uniformly random adversary policy
is applied to impose perturbations in PNLC. In ARNLC and RARL,
we build a neural network for the adversary policy and update it with
PPO. In ARNLC, the controller policy is optimized together with
the empirically perturbed Lyapunov function in Eq. (6), where the
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(a) Pendulum U (b) Pendulum W (c) Cart Pole U (d) Cart Pole W

(e) Car Tracking U (f) Car Tracking W (g) 2-link Pendulum U (h) 2-link Pendulum W

(i) Pendulum U (j) Pendulum W (k) Cart Pole U (l) Cart Pole W

(m) Car Tracking U (n) Car Tracking W (o) 2-link Pendulum U (p) 2-link Pendulum W

Figure 1. Control curves of Pendulum, Cart Pole, Car Tracking and 2-link Pendulum with different perturbation types under uniform perturbations (U) and
learned adversary’s worst-case (W) perturbations in testing. (a)-(h): known system dynamics; (i)-(p): unknown system dynamics.

controller policy is learned by PPO with the negative adversary re-
ward. Since the RL-based adversary and discrete-time predictor of
environment model are learned in ARNLC, we compute the differ-
ence of Lyapunov function V (xt+Δt) − V (xt) instead of the time
derivative V̇ (xt) (see Appendix [39] for a detailed explanation). In
robust MPC, a bounded perturbation is added to the system dynamics
where the controller takes actions by searching the optimal feedback
among all feasible horizons generated by the perturbed function. In
our experiments, we find that the computation time for Robust MPC
at each control step may exceed the control interval, which would
lead to the controller failure in practice. But we simply neglect this
and consider its simulation performance. For detail of the experi-

mental settings, please refer to Appendix [39]. Our experiments are
designed to answer the following questions.

• Can our proposed ARNLC still achieve asymptotic stability in
face of the worst-case perturbations? Will ARNLC reach the
stability faster than the other baseline algorithms?

• How will the controller’s performance of ARNLC degrade in
the entire perturbation space?

• Will ARNLC suffer from the issues of RL methods [35, 27],
i.e., being sensitive to control intervals?

L. Wei et al. / Adversarially Robust Neural Lyapunov Control 1963



(a) Pendulum (b) Cart Pole

(c) Car Tracking (d) 2-link Pendulum

(e) Pendulum (f) Cart Pole

(g) Car Tracking (h) 2-link Pendulum

Figure 2. Heatmap of averaged cumulative negative adversary’s reward with known and unkown system dynamics. In (d) and (h), RARL fails to converge.
(a)-(d): known system dynamics; (e)-(h): unknown system dynamics.

5.1 Control of Perturbed Nonlinear Systems
We consider four balancing tasks. 1) Pendulum: balance a pendu-
lum (one end attached to the ground by a joint) by applying a force
to a ball at the other end. The system has two state variables, angu-
lar position ϕ and angular velocity ϕ̇ of pendulum, and one control
input aμ on the ball; 2) Cart Pole: control a cart (attached to a pole
by a joint) by applying a force to prevent the pole from falling. State
variables of the system are cart position x, cart velocity ẋ, pendulum
angular position ϕ and pendulum angular velocity ϕ̇. Control input
is force aμ applied to the cart; 3) Car Trajectory Tracking: con-
trol a car to follow a target circular path. The system has two state
variables: the distance error xe and angle error ϕe between current
car position and the target path. The control input is force aμ on the
car; 4) 2-link Pendulum: control a two-joint pendulum system (two
pendulums are linked by a joint and one end is linked to ground by
another joint) to keep both pendulums upright. The system has four
state variables: the angular position ϕ1 and angular velocity ϕ̇1 of
the first pendulum, the angular position ϕ2 and angular velocity ϕ̇2

of the second pendulum. Two control inputs are forces aμ
1 and aμ

2 on
the two joints. We evaluate different comparison algorithms on these
tasks with perturbed environment parameters as shown in Table 1,
under both known and unknown system dynamics settings. For ex-
ample, in the pendulum task, the friction coefficient can be changed
at each time step. We set two test scenarios: i) perturbations are ran-

domly generated w.r.t. a uniform distribution at each control step,
which are larger than training ones; ii) perturbations are taken w.r.t.
the trained adversary policy of ARNLC.

We run the training process of learning-based algorithms, i.e.,
ARNLC, NLC, PNLC and RARL on these tasks until the conver-
gence. Here, we slightly modify and improve the original NLC and
PNLC to make them compatible with the setting of unknown system
dynamics. We then deploy the trained policies and robust MPC in
the two test scenarios. For known system dynamics, control curves
under uniform (U) perturbations are shown in Figs. 1(a), 1(c), 1(e)
and 1(g), while control curves under worst-case (W) perturbations
learned by the adversary are illustrated in Figs. 1(b), 1(d), 1(f) and
1(h). For unknown system dynamics, control curves under uniform
(U) perturbations are shown in Figs. 1(i), 1(k), 1(m) and 1(o), while
control curves under worst-case (W) perturbations learned by the
adversary are illustrated in Figs. 1(j), 1(l), 1(n) and 1(p). The ini-
tial state is separately and randomly chosen under uniform (U) and
worst-case (W) perturbations, hence they are different. Since we aim
to study the comparison of all the algorithms separately under U and
W, we keep the initial state the same for the algorithms inside U
and W to remove the impact of different initial state. The horizontal
axis is the control time, while the vertical axis is the system state.
Here we set the fixed control interval to 0.01s, and state zero as the
equilibrium point. We observe that by incorporating an RL-based ad-
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(a) 0.1s U (b) 0.1s W (c) 0.005s U (d) 0.005s W

(e) 0.001s U (f) 0.001s W (g) Inverted Pendulum

Figure 3. (a)-(f) Control curves of Pendulum with control interval set to 0.1s, 0.005s and 0.001s, respectively; (g) heatmap of averaged cumulative negative
adversary’s reward with unknown system dynamics.

versary during training, our ARNLC can achieve asymptotic stability
under both test scenarios in all the tasks, while it reaches the stabil-
ity the fastest compared to the other baselines under both conditions
of known and unknown system dynamics. Though NLC reaches the
stability in some tasks, it fails to reach the equilibrium point in Car
Tracking W, 2-link Pendulum U and W with known system dynamics
and Car Tracking U and W, 2-link Pendulum W with unknown sys-
tem dynamics. PNLC trained under uniform sampled perturbations
outperforms NLC in some tasks (e.g., Pendulum and Cart Pole), but
is worse in Cart Tracking U and 2-link Pendulum W and U with
known system dynamics and 2-link Pendulum U with unknown sys-
tem dynamics. RARL and robust MPC fail to reach the stability in
the 2-link Pendulum task.

5.2 Generalization in Perturbation Space
We further evaluate the generalization capability of trained policies
of learning-based algorithms in the entire perturbation space. We ex-
clude the evaluation of robust MPC here, since it requires to know
system dynamics under each perturbation setting, which is an unfair
comparison. Besides, we additionally evaluate ARNLC and RARL
for unknown system dynamics in the Inverted Pendulum task pro-
vided by MuJoCo [37], which controls a cart (attached to a pendu-
lum) to balance the whole system and keep the pendulum upright.
While NLC and PNLC are not compared, since they require known
system dynamics during training and cannot be trained in the In-
verted Pendulum task. We use the cumulative negative reward of ad-
versary to evaluate the performance of controller policy in the envi-
ronment with a certain perturbation, where a higher negative reward
indicates the better performance of controller.

The performance heatmaps of these five tasks achieved by differ-
ent algorithms are shown and compared in Fig. 2 with both known
and unknown system dynamics, and 3(g) with unknown system dy-
namics, where the performance is averaged on ten equal-length runs.
We observe that ARNLC achieves the best generalization perfor-
mance under both conditions of known and unknown system dynam-

ics except for Car Tracking with unknown system dynamics. PNLC
generalizes better than NLC in Pendulum and CartPole with known
system dynamics, while showing similar or even worse performance
in other tasks. RARL presents the worst performance in all the tasks
except for Pendulum.

5.3 Impact of Control Intervals
Eventually, we evaluate the impact of different control intervals to
our ARNLC, which are set to 0.01s, 0.1s, 0.005s and 0.001s, respec-
tively. The resulting control curves obtained for Pendulum are shown
in Figs. 1(a)-1(b) and 3(a)-3(f). We observe that ARNLC and other
Lyapunov-based baselines can achieve asymptotic stability with all
different control intervals, while RARL is sensitive to the change of
control intervals as also verified in [35] and fails to reach the equilib-
rium state. Note that here we report the most important results in the
main text, please also see Appendix [39] for additional results.

6 Conclusions and Future Work
We have proposed ARNLC to improve the robustness and gener-
alization in stability control tasks for nonlinear dynamical systems.
Specifically, we formulated a perturbed Lyapunov risk stemmed from
Lyapunov theorem to jointly update the controller and candidate
Lyapunov function under perturbations generated by an adversary
during training, where the adversary was trained by RL method to
destabilize the system. We adopted an alternative training procedure
to update the controller and adversary. We have empirically evalu-
ated ARNLC in several stability control tasks, demonstrating its ro-
bustness under different perturbations and better generalization than
state of the art approaches in entire perturbation space. An excit-
ing future research direction could be to extend our ARNLC to non-
stability control tasks for the dynamical systems that are not required
to achieve an equilibrium point, where the reward function for the
adversary can alternatively be designed based on the imitation error,
like in the imitation learning. We hope to revisit this in our future
works.
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