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Abstract. We propose Curriculum by Masking (CBM), a novel
state-of-the-art curriculum learning strategy that effectively creates
an easy-to-hard training schedule via patch (token) masking, offer-
ing significant accuracy improvements over the conventional train-
ing regime and previous curriculum learning (CL) methods. CBM
leverages gradient magnitudes to prioritize the masking of salient
image regions via a novel masking algorithm and a novel masking
block. Our approach enables controlling sample difficulty via the
patch masking ratio, generating an effective easy-to-hard curricu-
lum by gradually introducing harder samples as training progresses.
CBM operates with two easily configurable parameters, i.e. the num-
ber of patches and the curriculum schedule, making it a versatile
curriculum learning approach for object recognition and detection.
We conduct experiments with various neural architectures, ranging
from convolutional networks to vision transformers, on five bench-
mark data sets (CIFAR-10, CIFAR-100, ImageNet, Food-101 and
PASCAL VOC), to compare CBM with conventional as well as
curriculum-based training regimes. Our results reveal the superiority
of our strategy compared with the state-of-the-art curriculum learn-
ing regimes. We also observe improvements in transfer learning con-
texts, where CBM surpasses previous work by considerable margins
in terms of accuracy. We release our code for free non-commercial
use at https://github.com/CroitoruAlin/CBM.

1 Introduction

Humans learn by grasping the easier concepts before gradually mov-
ing to the more complex ones. Inspired by this observation, Bengio
et al. [3] proposed curriculum learning, a training regime that intro-
duces a structured order of the data samples to train neural models
from easy to hard. This method ensures that the examples are pre-
sented to the model in a logical and meaningful sequence, allow-
ing the model to effectively learn and develop its knowledge base.
The method has been employed in multiple scenarios yielding signif-
icant performance improvements [44]. Furthermore, over the course
of time, various methods have been developed to integrate curricu-
lum learning [3, 7, 9, 18, 24, 28, 34, 35, 37, 41, 42, 43]. While
many of these approaches involve different components of the train-
ing process, Soviany et al. [44] have classified them into four main
categories. The first category, known as data-level curriculum, in-
volves sorting the data samples based on certain difficulty criteria.
This approach aligns with the initial implementation of Bengio et
al. [3]. The second category, referred to as model-level curriculum,
includes methods that gradually increase the capacity of the model
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as the training progresses. The third category, represented by task-
level curriculum, aims to make the learning task more intricate over
time. Lastly, objective-level curriculum begins with a simplified ob-
jective, e.g. a convex objective, and transforms it during training until
it becomes the final target objective, which is usually non-convex.

The data-level curriculum learning approaches involve sorting the
training examples based on some difficulty metric [3, 22, 28, 36,
43, 46, 51, 57], before proceeding with the actual learning process.
However, this approach has a significant challenge associated with
it, namely the need to use a custom difficulty metric for each do-
main. The choice of the difficulty metric may vary depending on the
specific learning task, and, in certain cases, it can be very hard to
propose a useful difficulty metric [9]. Building on the success of self-
supervised approaches [21, 10] used to train deep learning models to
reconstruct masked information (tokens), we propose a novel data-
level curriculum learning approach, termed Curriculum by Masking
(CBM), that artificially raises the difficulty level of each training im-
age by masking a certain number of patches, where the number of
masked patches gradually increases during the training process, as il-
lustrated in Figure 1. Hence, our approach does not require the prior
sorting of data samples, as it enables full control over the complexity
of a data sample via the masking ratio. However, we conjecture that
randomly masking patches does not necessarily induce an easy-to-
hard curriculum. For example, if the masked patches happen to hide
most of the background in an image, leaving the foreground object
that needs to be recognized or detected visible, we will actually end
up with an easier example instead of a more difficult one. To this end,
we propose to sample the masked patches from a probability distri-
bution derived from image gradient magnitudes, essentially priori-
tizing the masking of salient image patches. Since salient regions are
more likely to contain discriminative patterns, masking patches with
larger gradient magnitudes reduces the number of visible discrimina-
tive patterns, thus increasing the difficulty of recognizing objects in
images.

We conduct experiments to determine the effectiveness of our ap-
proach in object recognition and object detection. We apply CBM
on different types of convolutional and transformer neural net-
works, e.g. ResNet-18 [20], Wide-ResNet-50 [55], CvT-13 [52], and
YOLOv5 [26]. Our empirical study is carried out on five data sets:
CIFAR-10 [29], CIFAR-100 [29], ImageNet [40], Food-101 [4] and
PASCAL VOC [13]. We compare our approach with four state-of-
the-art curriculum learning methods [9, 11, 42, 50], as well as two
more baseline training regimes. The first baseline is the vanilla train-
ing regime, while the second one employs the vanilla patch masking
technique proposed by He et al. [21]. Lastly, we present ablation re-
sults and a comprehensive comparison of masking ratio schedules,
identifying multiple successful configurations and parameter choices
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Figure 1: An overview of Curriculum by Masking. The training starts with fully visible images. During training, the patch masking ratio
is gradually increased to make the samples more difficult. The masking is predominantly focused on the more salient regions (with higher
gradient magnitudes), to reduce the likelihood of producing easier images by masking the background information. Best viewed in color.

for our method.
In summary, our contribution is threefold:

• We propose a novel curriculum learning method based on masking
an increasingly higher number of patches during training.

• We introduce a patch selection strategy that prioritizes the mask-
ing of patches with larger gradient magnitudes, ensuring an easy-
to-hard curriculum.

• We empirically demonstrate the effectiveness of CBM in object
recognition and object detection for multiple neural architectures,
comparing it with several competing training regimes.

2 Related Work

Curriculum learning is a training technique introduced by Bengio
et al. [3], which provides the training examples in a meaningful
order, from easy to hard, to neural networks. The objective is to
enhance the performance of neural models, while also improving
the convergence speed of the training process. Since its introduc-
tion, curriculum learning has proven its effectiveness in various do-
mains, such as computer vision [3, 7, 9, 18, 24, 41, 42, 43], natu-
ral language processing [3, 9, 28, 34, 37, 45], and signal process-
ing [1, 9, 38]. The method has been very successful and has under-
gone extensive development, as illustrated in some recent surveys
[44, 49]. These developments range from strategies for measuring
data difficulty [3, 22, 28, 36, 41, 43, 46, 51, 57] to methods focusing
on other aspects of the training process [5, 9, 6, 27, 42]. A well-
known method to apply curriculum learning is by defining a metric
that evaluates the complexity of the data, and subsequently arrang-
ing the training examples from the simplest to the most challenging
ones based on the respective metric. Researchers have made signif-
icant strides in finding improved metrics for various domains and
tasks. For instance, images containing fewer and larger objects in
computer vision are deemed easier than other images [41, 43]. In
natural language processing, word frequency [3, 34] and sequence
length [8, 28, 46, 57] are utilized to assess the sample difficulty. In
some cases, researchers have also integrated human feedback into
their metric design [25, 36, 51].

The aforementioned curriculum strategies have proven to be ef-
fective. However, they have been found to lack practicality due to
their reliance on human expert input [25], which may not always
be available. Moreover, these methods remain fixed during train-
ing and may not adapt the curriculum to the changing needs of
the models. As a result, the research community developed new
curriculum-based approaches to overcome these limitations. For in-

stance, Kumar et al. [30] introduced self-paced learning, a method
that measures the difficulty of the training samples based on the
performance of the trained model. Thus, the order of the training
samples changes according to the model feedback during training,
and thanks to this property, several works adopted the approach
[14, 17, 23, 30, 31, 39, 58]. Moreover, it is possible to implement
a combination of self-paced learning and classic curriculum learn-
ing approaches. This approach has been previously utilized under
the name of self-paced curriculum learning [23, 44]. Another popu-
lar method is teacher-student curriculum learning [19, 53, 56], where
the teacher learns to supervise the student network via a curriculum.

Methods that fall under the model-level curriculum learning
paradigm [5, 9, 27, 42, 44] are closer to our work. In this setting, the
curriculum does not imply ordering the samples in ascending order of
their difficulty. Instead, the curriculum is implemented by increasing
the model capacity as the training progresses, or by adjusting the task
to become more accessible at the beginning of the training. Curricu-
lum by Smoothing (CBS), a technique developed by Sinha et al. [42],
blurs the activation maps resulting from convolutional layers during
the training process to let the model focus on the bigger picture. CBS
gradually reduces the amount of blur as the model improves. This
approach has been successful on various data sets and models. How-
ever, it does require extra processing steps during training, which can
make the learning process last longer. The work of Burduja et al. [5]
is an alternative to CBS, where the input images are blurred instead
of the intermediary activation maps. Another example is Learning
Rate Curriculum (LeRaC) [9]. This method assigns different learn-
ing rates to the network layers based on their proximity to the input.
Layers closer to the input have higher learning rates, while those far-
ther away have lower rates. Over time, the learning rates are adjusted
to converge to a consistent value. Similar to [5, 9, 42], our approach
does not require an external difficulty measure.

Different from other curriculum learning approaches, we propose
to induce a curriculum via a progressive masking of input patches.
To the best of our knowledge, we are the first to introduce a cur-
riculum learning method based on patch masking. Furthermore, we
go beyond a naive implementation and apply the masking operation
by taking into consideration the salience (gradient magnitude) of the
patches to create the premises for an easy-to-hard curriculum. This
differs significantly from other approaches [5, 42] which apply the
smoothing operation uniformly in space, using a single filter applied
at every location of the input via convolution. Another advantage in
favor of CBS [42] is that our approach does not include auxiliary op-
erations after each neural layer of the model, so the training time is
identical to that of the conventional training regime.

A. Jarcă et al. / CBM: Curriculum by Masking 315



Algorithm 1 Salience-Based Masking Algorithm
Input: rk – the percentage of masked patches at iteration k;
Î – the input image;
n – the number of patches in an image;
p – an array of size n containing the masking probabilities for each
patch.
Output: Îmask - the masked image.
Computation:

1: nmask ← n · rk
2: Îmask ← Î
3: for i in 1 . . . nmask do

4: j ∼ Categorical(n,p)
5: Îmask[j] ← 0
6: end for

7: return Îmask

3 Method

Masking specific parts, e.g. patches or tokens, of input data sam-
ples has been demonstrated to be a successful technique to train deep
learning models in a self-supervised manner, in both natural language
processing [10, 32] and computer vision [2, 15, 16, 21, 32, 47] do-
mains. This method has been primarily used as a pre-training task
[10, 21], in which the model is tasked with reconstructing the masked
information. Through this approach, the model is able to learn and
recognize patterns in the data, leading to improved accuracy and
more effective performance in downstream tasks. In this work, we re-
design the masking procedure to create a curriculum learning method
based on masking patches according to their salience level. Our ap-
proach is able to artificially generate examples of various difficulty
levels. We name the resulting learning procedure Curriculum by
Masking (CBM).

Our curriculum learning procedure starts from the original sam-
ples and gradually creates more difficult images as the training pro-
gresses. We increase the image difficulty by masking a higher num-
ber of heterogeneous patches. We estimate the heterogeneity (or
salience) of a patch via the average gradient magnitude computed
on both horizontal and vertical axes. Such patches are likely to con-
tain regions of interest, such as object parts or other discriminative
patterns. Before the training starts, our approach creates a curricu-
lum schedule vector r ∈ R

N , where each element rk represents the
percentage of patches that are to be masked during the k-th training
iteration. We note that the maximum number of iterations is denoted
by N , and rN is equal to a maximum masking ratio, which is fixed
beforehand through validation. We empirically study various alter-
native functions to generate the curriculum schedule r and regulate
its growth rate. For details about the results obtained with different
curriculum schedules, please refer to Section 4.

Our salience-based masking procedure is described in Algo-
rithm 1. The algorithm operates on the input image Î , which is di-
vided into non-overlapping patches and represented as a tensor of
dimensions R

n×ĥ×ŵ×c, where n denotes the number of patches, ĥ
and ŵ refer to the height and width of each patch, and c represents
the number of color channels. In addition to the input image, the al-
gorithm also relies on the ratio of masked patches rk for the current
training iteration k, and an array of probabilities p ∈ [0, 1]n that
controls the likelihood of masking each patch.

First, the algorithm computes the number of patches to be masked,
denoted as nmask, based on the specified percentage rk. Then, at
each loop iteration i, the algorithm samples a patch index j from

Figure 2: The proposed curriculum schedules are based on masking a
certain number of image patches in each epoch. For illustration pur-
poses, the number of epochs is N = 200 and the maximum masking
ratio is rN = 0.5 for all schedules. Best viewed in color.

the set {1, . . . , n} according to a categorical distribution described
by the vector p. Then, the patch at index j is masked by setting its
pixels to zero in the output image Îmask.

As previously stated, the masking algorithm prioritizes salient re-
gions of the input image. This property is accomplished by control-
ling the probabilities in p, such that salient patches (likely to contain
discriminative patterns) are assigned with higher probabilities, thus
increasing their chances of being selected for masking. We hypoth-
esize that salient regions can be identified to a certain extent by an-
alyzing the magnitudes of the image gradients. We transform color
images to the grayscale, before computing the gradients. Formally,
given a grayscale image I ∈ R

h×w, where h = nh · ĥ, w = nw · ŵ
and n = nh · nw, we compute its gradient as follows:

ΔI =

[
∂I

∂x
,
∂I

∂y

]
. (1)

Then, we computed the magnitude M ∈ R
h×w of the gradient as

follows:

M = ‖ΔI‖ =

√
∂I

∂x

2

+
∂I

∂y

2

. (2)

Next, we split M into n patches and obtain the tensor denoted by
M̂ ∈ R

n×ĥ×ŵ. Finally, we compute the elements of p via the fol-
lowing equations:

mi =

∑ĥ
j=1

∑ŵ
l=1 M̂ [i, j, l]

ĥ · ŵ , ∀i ∈ {1, . . . , n}, (3)

pi =
mi∑n
j=1 mj

, i ∈ {1, . . . , n}, (4)

where mi is the unnormalized gradient magnitude of the i-th patch,
and pi is the probability of masking the i-th patch.

We underline that CBM has two important hyperparameters,
namely the vector r and the number of patches n. Given that the im-
ages are divided into non-overlapping patches, the number of patches
n is directly determined by the patch dimensions. In our experiments,
we use square patches (having the same height and width). To gen-
erate r, we consider one of the various schedules depicted in Figure
2. The constant schedule emulates the framework proposed by He
et al. [21], which does not represent an actual curriculum, since it
generates equally difficult examples during training, i.e.:

rk = rN , ∀k ∈ {1, 2, ..., N}, (5)

where N is the number of training epochs. The constant schedule is
only added as a baseline.

We propose three curriculum schedules that generate a logarith-
mic, linear or exponential growth of the masking ratio. The log
schedule creates a more aggressive curriculum, increasing the mask-
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ing ratio much sooner:

rk = rN · log2
(
1 +

k

N

)
, ∀k ∈ {1, 2, ..., N}. (6)

In contrast, the exp schedule is the least aggressive curriculum, in-
troducing high masking ratios only at the very end:

rk = rN · ek−N , ∀k ∈ {1, 2, ..., N}. (7)

The linear schedule is between the log and exp schedule, its formula
being given by:

rk = rN · k

N
, ∀k ∈ {1, 2, ..., N}. (8)

While humans learn from easy to hard, reminding easy concepts
when trying to learn complex ones is generally helpful. To this end,
we consider an additional curriculum learning schedule called lin-
ear repeat, which repeats the easy-to-hard curriculum multiple times
during training. This schedule is depicted in Figure 2 along with the
other schedules. It is repeated 10 times, at every 20 epochs, just for il-
lustration purposes. On easy (unmasked) images, the model can learn
some generic patterns from the data. As the images get harder by in-
creasing the masking ratio, the model will try to identify new patterns
that are robust to the masking procedure. In this process, the model
can forget the initially learned patterns due to catastrophic forgetting.
The linear repeat scheduler helps to avoid the catastrophic forgetting
of the generic patterns learned on easy images, by reintroducing easy
images at various stages during the entire optimization process.

For all the aforementioned schedules, the maximum masking ratio
0 < rN < 1 is a hyperparameter that can be established via grid or
random search on the validation set. The rate of masking can be used
to control the trade-off between underfitting and overfitting. If there
is no masking, the classification task becomes easy and the model
can overfit the training data. In contrast, if the masking ratio is too
high, the classification task can become too hard, and the model will
be unable to learn from the masked data, leading to underfitting.

One of the curriculum schedules needs to be chosen before train-
ing begins. In the experiments, we present extensive results with the
proposed schedules, which generate more or less aggressive curricu-
lum learning strategies.

4 Experiments

4.1 Experimental Setup

Data sets. We evaluate our curriculum learning method on four ob-
ject recognition data sets (CIFAR-10 [29], CIFAR-100 [29], Ima-
geNet [40] and Food-101 [4]) and one object detection data set (PAS-
CAL VOC [13]). Each of the CIFAR-10 and CIFAR-100 data sets
consists of 50,000 training images and 10,000 test images with a res-
olution of 32 × 32 pixels. CIFAR-10 contains 10 object categories,
while CIFAR-100 contains 100 categories. ImageNet-1K [40] is the
most popular benchmark in computer vision. We use 200 ImageNet
categories in the evaluation. Food-101 [4] contains 75,750 training
images and 25,250 test images from 101 food categories. PASCAL
VOC 2007+2012 [13] is a well-known data set for object detection,
which consists of 21,503 images. Objects from 20 categories are an-
notated with bounding boxes.
Architectures. To evaluate the generalization capabilities of CBM
across different architectures, we perform object recognition exper-
iments with two convolutional neural networks and one transformer
model. More precisely, we employ ResNet-18 [20], Wide-ResNet-50
[55] and CvT-13 [52]. Being a transformer-based architecture, CvT
benefits significantly from pre-training. Thus, we use a checkpoint

Table 1: Optimal hyperparameter configurations of the ResNet-18,
Wide-ResNet-50 and CvT-13 models. For the conventional (vanilla)
training regime, we report the employed optimizer, number of epochs
(N ), learning rate (α) and mini-batch size. In addition, for the CBM
regime, we report the maximum patch masking ratio (rN ), the num-
ber of patches per image (nh × nw), and the curriculum schedule.
Note that the vector r is directly determined by rN and the schedule.

R
eg

im
e Model ResNet-18, Wide-ResNet-50 CvT-13

Data set
CIFAR-10

ImageNet AllCIFAR-100
Food-101

V
an

ill
a

optimizer SGD SGD AdaMax
weight decay 10−4/5·10−4 10−4 -

N 200 100 40
α 10−1 10−1 5·10−4

mini-batch 64 64 64

C
B

M

rN 0.4/0.6 0.4/0.6 0.4/0.6
schedule Lin repeat Lin repeat Lin repeat
nh × nw 4× 4 4× 4 4× 4

pre-trained on ImageNet-21K in our experiments. As such, we ap-
ply CBM in both “training from scratch” and fine-tuning scenarios.
Furthermore, we employ an object detection pipeline, YOLOv5 [26],
to evaluate the benefits of CBM in object detection. We specifically
choose the YOLOv5s [26] model, which is pre-trained on the MS
COCO data set [33].
Baselines. We compare CBM with the conventional training regime,
which uses the optimal hyperparameters (learning rate, batch size,
weight decay, and so on) specific to each of the subsequent exper-
iments. Moreover, we compare our curriculum learning approach
with four competing curriculum learning methods, namely Curricu-
lum by Smoothing (CBS) [42], Label-Similarity Curriculum Learn-
ing (LSCL) [11], Learning Rate Curriculum (LeRaC) [9] and Ef-
ficientTrain [50]. In the ablation study, we also compare with the
framework of He et al. [21], which can be seen as an ablated version
of CBM.
Hyperparameter tuning. The optimal hyperparameter configura-
tions of the ResNet-18, Wide-ResNet-50 and CvT-13 models are
shown in Table 1. Regardless of the training regime, ResNet-18 and
Wide-ResNet-50 are trained with SGD for 200 epochs on the CIFAR-
10, CIFAR-100 and Food-101 data sets, and 100 epochs on Ima-
geNet. Since CvT-13 is pre-trained on ImageNet, it only requires 40
epochs of fine-tuning to converge. The SGD optimizer is used along-
side an annealing learning rate scheduler for ResNet-18 and Wide-
ResNet-50, requiring a large initial learning rate of 10−1. In contrast,
AdaMax does not require a scheduler, as it adjusts its learning rate
based on data characteristics. We optimize all models with the cross-
entropy loss. The maximum masking ratio for each model is found
through grid search on the validation set, considering values between
0.1 and 0.8. The optimal maximum masking ratio for CIFAR-10 is
0.4, while ImageNet seems to benefit from a higher ratio of 0.6 when
using ResNet-18 or CvT-13. Among the proposed curriculum sched-
ules, we select the masking ratio at each epoch based on a linear
schedule, which is repeated every 5 epochs. We present results with
various curriculum schedules later. The number of patches is chosen
between 2 × 2 and 16 × 16. The optimal choice for all models is
4× 4.

We perform the object detection experiments with a YOLOv5s
instance that uses the CSPDarknet53 [48] backbone. The model is
trained for 100 epochs, using SGD with momentum. We set the learn-
ing rate to 0.01 in all experiments and use a weight decay of 5 ·10−4,
with a warm-up stage of 3 epochs, where the learning rate is increas-
ing from 3 · 10−6 to 10−2. For the LeRaC experiments, we replace
the warm-up stage with the actual curriculum method. The momen-
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Table 2: Average accuracy rates (in %) over five runs on CIFAR-10, CIFAR-100, ImageNet and Food-101 with various neural models based
on different training regimes: conventional, CBS [42], LSCL [11], LeRaC [9], EfficientTrain [50], and CBM (ours). The accuracy of the best
training regime in each experiment is highlighted in bold.

Model Training regime CIFAR-10 CIFAR-100 ImageNet Food-101

ResNet-18

conventional 89.20± 0.43 65.28± 0.16 57.41± 0.05 68.31± 0.09
CBS [42] 89.53± 0.22 66.41± 0.21 55.49± 0.20 65.09± 0.47
LSCL [11] 88.28± 0.14 67.59± 0.25 57.27± 0.36 69.47± 0.30
LeRaC [9] 89.56± 0.16 66.02± 0.17 57.86± 0.20 69.57± 0.07
EfficientTrain [50] 89.51± 0.13 68.13± 0.12 57.77± 0.17 67.96± 0, 66
CBM (ours) 90.48± 0.12 67.90± 0.08 59.50± 0.30 70.77± 0.23

Wide-ResNet-50

conventional 91.22± 0.24 68.14± 0.16 60.97± 0.30 67.54± 0.66
CBS [42] 89.05± 1.00 65.73± 0.36 53.30± 1.53 58.95± 1.80
LSCL [11] 91.24± 0.13 68.34± 0.49 62.70± 0.23 69.20± 0.48
LeRaC [9] 91.58± 0.16 69.38± 0.26 61.98± 0.42 67.96± 0.35
EfficientTrain [50] 91.03± 0.28 69.14± 0.20 62.44± 0.11 70.33± 0.54
CBM (ours) 92.67± 0.09 70.90± 0.31 63.30± 0.54 72.09± 0.14

CvT-13

conventional 93.56± 0.05 77.80± 0.16 70.71± 0.35 85.22± 0.11
CBS [42] 85.85± 0.15 62.35± 0.48 68.41± 0.13 81.41± 0.42
LSCL [11] 93.91± 0.20 78.63± 0.12 70.96± 0.30 82.49± 0.10
LeRaC [9] 94.15± 0.03 78.93± 0.05 71.34± 0.08 86.05± 0.08
EfficientTrain [50] 94.50± 0.17 78.20± 0.34 71.64± 0.33 85.53± 0.14
CBM (ours) 95.00± 0.10 81.14± 0.21 71.82± 0.20 87.96± 0.08

tum is set to 0.8 during warm-up, and 0.94 afterwards. The masking
schedule is the same as the one employed for the recognition models,
but the maximum masking ratio is 0.3 and the number of patches is
16× 16.
Environment. The experiments are conducted on a server with two
Intel Xeon v4 3.0GHz CPUs, 256GB of RAM, and four Nvidia
GeForce GTX 1080 GPUs, each with 11GB of VRAM.
Evaluation. The object recognition models are evaluated in terms of
the classification accuracy. We repeat each experiment five times and
report the average accuracy and the standard deviation.

For the object detection models, we compute the Average Preci-
sion (AP) on each class and report the performance over all classes,
i.e. the mean Average Precision (mAP). Following standard evalu-
ation protocols, we consider that an object is correctly detected if
the intersection over union (IoU) between the predicted and ground-
truth bounding boxes is at least 0.5. Hence, the reported measure is
mAP@IoU=0.5.

4.2 Results

Object recognition. In Table 2, we report the object recognition re-
sults with six training regimes (conventional, CBS, LSCL, LeRaC,
EfficientTrain and CBM) on CIFAR-10, CIFAR-100, ImageNet and
Food-101. We report the average accuracy rates and the standard de-
viations over five runs with each model and training regime.

On CIFAR-10, the only training regime that makes ResNet-18 sur-
pass the 90% threshold is CBM, boosting the performance by 1.28%
over the baseline. We observe similar gains brought by our method
(CBM) to the Wide-ResNet-50 (+1.45%) and CvT-13 (+1.44%) ar-
chitectures. In contrast, CBS is only able to bring improvements for
ResNet-18, and LSCL is only able to improve CvT-13. EfficientTrain
seems to be slightly better than CBS and LSCL, although it degrades
the performance of Wide-ResNet-50. LeRaC is the top competitor,
being consistent across all architectures, but its accuracy gains are
always below 1% on CIFAR-10.

On CIFAR-100, we observe that the CBS regime is not helpful for
Wide-ResNet-50 and CvT-13, degrading their performance rates by
significant margins. LeRaC proves to be a worthy competitor, always
boosting the accuracy rate of the baseline. Its performance boosts are

Table 3: Mean Average Precision (mAP) at an IoU threshold of 0.5
on PASCAL VOC 2007+2012 for the YOLOv5 [26] model based
on different training regimes: conventional, CBS [42], LSCL [11],
LeRaC [9], EfficientTrain [50], and CBM (ours). The best result is
highlighted in bold.

Training regime mAP@0.5
conventional 0.832± 0.006
CBS [42] 0.829± 0.003
LSCL [11] 0.833± 0.005
LeRac [9] 0.846± 0.004
EfficientTrain [50] 0.839± 0.003
CBM (ours) 0.847± 0.001

above 1% for Wide-ResNet-50 and CvT-13. EfficientTrain is the best
regime for ResNet-18, but it only ranks third and fourth for Wide-
ResNet-50 and CvT-13. In contrast, CBM brings the highest accuracy
gains for Wide-ResNet-50 and CvT-13, remarkably surpassing all its
competitors by more than 1.52% for Wide-ResNet-50 and 2.21% for
CvT-13, respectively.

ImageNet is the most challenging benchmark included in our ex-
periments. Still, the trends observed on CIFAR-10 and CIFAR-100
also apply to ImageNet. For example, CBS degrades the perfor-
mance, just as before. In contrast, LSCL, LeRaC and EfficientTrain
outperform the conventional training regime, regardless of the under-
lying architecture. Yet, CBM stands out as the best training regime,
outperforming all competitors by more than 1.64% for ResNet-18.

The results reported on Food-101 are mostly consistent with the
results reported on ImageNet. CBS is often harmful, while LSCL,
LeRaC and EfficientTrain are usually able to increase performance.
Still, CBM exhibits the highest gains for all three architectures,
showing significant differences with respect to its competitors. For
instance, CBM surpasses the second-best regime for CvT-13 by
1.91%.

In summary, the object recognition experiments point towards
some generic conclusions. The CBS [42] training regime is only
useful in some cases. LSCL [11] and EfficientTrain [50] are usu-
ally helpful, although they sometimes reduce performance. LeRaC
[9] brings consistent accuracy gains, but the improvements are often
below 1%. In contrast, the proposed regime, CBM, outperforms the
other training regimes on all four data sets and for all three architec-
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Table 4: Average accuracy rates (in %) over five runs on CIFAR-10,
CIFAR-100 and ImageNet with various curriculum schedules. The
accuracy of the best regime for each model and data set pair is high-
lighted in bold.

Data Curriculum Model
set schedule ResNet-18 WResNet-50 CvT-13

C
IF

A
R

-1
0

- 89.20±0.43 91.22±0.24 93.56±0.05
Constant 89.41±0.08 92.08±0.06 94.36±0.09
Linear 90.24±0.05 92.39±0.11 94.71±0.05
Log 90.31±0.09 92.61±0.08 94.49±0.07
Exp 90.35±0.06 91.80±0.15 94.43±0.12
Lin repeat 90.48±0.12 92.67± 0.09 95.00±0.10

C
IF

A
R

-1
00

- 65.28±0.16 68.14±0.16 77.80±0.16
Constant 66.58±0.22 68.64±0.16 77.37±0.32
Linear 66.46±0.28 70.51±0.20 78.94±0.25
Log 67.51±0.12 70.75±0.30 79.22±0.13
Exp 67.27±0.07 68.82±0.23 79.11±0.11
Lin repeat 67.90±0.08 70.90±0.31 81.14±0.21

Im
ag

eN
et

- 57.41±0.05 60.97±0.30 70.71±0.35
Constant 57.82±0.13 61.25±0.22 70.14±0.07
Linear 58.93±0.18 63.61±0.97 70.92±0.08
Log 59.17±0.14 62.82±0.29 70.78±0.13
Exp 58.02±0.23 62.10±0.05 71.35±0.14
Lin repeat 59.50±0.30 63.30±0.54 71.82±0.20

tures. We performed Cochran’s Q statistical testing for conventional
training versus CBM. The statistical tests indicate that our perfor-
mance gains (on all data sets and architectures) are significant, at a
p-value of 0.001.
Object detection. We explore the applicability of the curriculum
learning methods on the object detection task, reporting the mAP
scores of YOLOv5s on PASCAL VOC [13], while alternating be-
tween the six training regimes. The corresponding results are re-
ported in Table 3. The object detection results indicate that LeRaC,
EfficientTrain and CBM lead to sizeable improvements, while CBS
seems to degrade performance. Our method obtains an mAP of
0.847, outperforming all other regimes. Hence, the object detection
results confirm that our approach is a viable curriculum learning
strategy.

4.3 Ablation Results

Curriculum schedules. We present additional results with various
curriculum schedules in Table 4. We include the vanilla training
regime as a baseline. The constant schedule makes our framework
equivalent to that of He et al. [21]. Although He et al. [21] showed
that masked auto-encoders reach optimal results in self-supervised
learning, we observe that their training regime leads to marginal
improvements in supervised learning. However, there are multiple
curriculum learning schedules that bring significant performance im-
provements over the vanilla training regime and the constant sched-
ule, for each combination of model and data set. Thus, the lower
accuracy rates of the constant schedule can be attributed to the lack
of easy-to-hard curriculum in this type of schedule. Among the con-
sidered schedules, the linear, log and linear repeat schedules exhibit
the highest performance gains, but the best choice is clearly linear re-
peat. This observation motivates our use of the linear repeat schedule
in the experiments presented in Tables 2 and 3.
Ablation of gradient masking and curriculum. We first study the
effect of our gradient-based masking procedure, replacing it with
masking based on the uniform distribution of the patches. We jointly
assess the influence of the curriculum schedule, as opposed to using a
constant masking ratio during the whole training process. We present
these experiments on CIFAR-100 in Table 5. Without the curriculum,
the gradient-based masking brings accuracy gains for ResNet-18 and

Table 5: Ablation study of the gradient-based masking and the cur-
riculum schedule on CIFAR-100. We alternatively deactivate the
gradient-based masking and the curriculum to determine their indi-
vidual benefits.

Model Gradient Curriculum Accuracymasking

ResNet-18

� � 65.28± 0.16
� � 66.58± 0.22
� � 67.75± 0.17
� � 67.90± 0.08

Wide-ResNet-50

� � 68.14± 0.16
� � 68.64± 0.16
� � 70.45± 0.11
� � 70.90± 0.31

CvT-13

� � 77.80± 0.16
� � 78.37± 0.32
� � 80.02± 0.16
� � 81.14± 0.21

Figure 3: Varying the number of masking patches of the linear repeat
schedule, for CvT-13 on CIFAR-100. There are multiple configura-
tions that surpass the baseline.

Figure 4: Varying the maximum masking ratio of the linear repeat
schedule, for CvT-13 on CIFAR-100. All hyperparameter choices
outperform the baseline.

Figure 5: Varying the number of repetitions of the linear repeat sched-
ule, for CvT-13 on CIFAR-100. All hyperparameter values lead to
better results than the baseline.

Wide-ResNet-50, but not for CvT-13. We performed Cochran’s Q
statistical tests to assess the significance of gradient-based masking.
For ResNet-18 and Wide-ResNet-50, the gains are significant, at p-
values of 0.001 and 0.01, respectively. Replacing the constant sched-
ule with the proposed curriculum schedule (linear repeat) improves
the accuracy rates of all models. When the easy-to-hard curriculum is
activated, the gradient-based masking increases the accuracy, but the
improvements seem low. While the results indicate that both our con-
tributions are effective, our curriculum approach has a much higher
positive impact on performance. We report the highest gains when
combining the gradient-based masking with our curriculum learning
schedule, confirming the effectiveness of our joint design. From a
practical point of view, we thus judge our contributions as relevant.
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Table 6: Results for CvT-13 on CIFAR-100 with CutMix, Masking and CutMix+Masking.

Augmentation Baseline Constant Linear Lin Repeat
No augmentation 77.80± 0.16 - - -
CutMix - 74.94± 0.52 79.58± 0.17 80.87± 0.63
Masking - 77.37± 0.32 78.94± 0.25 81.14± 0.21
CutMix+Masking - 79.56± 0.12 79.78± 0.26 81.34± 0.25

Table 7: Accuracy rates (in %) on CIFAR-10 with the ViT model
based on two training regimes: conventional and CBM.

Data set ViT (conventional) ViT (CBM)
CIFAR-10 94.55± 0.16 95.32± 0.21

Ablation of the linear repeat schedule. We conduct additional ab-
lation studies for our best schedule, namely linear repeat. In Figure 3,
we present results with CvT-13 [52] on CIFAR-100 [29] while vary-
ing the number of patches for the linear repeat schedule. We observe
that any number of patches between 2 × 2 and 8 × 8 leads to bet-
ter results than the baseline. This confirms that our approach is fairly
robust to suboptimal configurations of the number of patches. In Fig-
ure 4, we show results with CvT-13 [52] on CIFAR-100 [29] while
varying the maximum masking ratio for the linear repeat schedule.
Remarkably, all configurations produce better results than the base-
line. However, we generally observe larger improvements for higher
maximum masking ratios. In Figure 5, we present additional results
on CIFAR-100 [29] with linear repeat, using different repeat inter-
vals. Once again, we notice that all hyperparameter choices outper-
form the baseline. In summary, the ablation results show that CBM
based on linear repeat is very robust to suboptimal hyperparameter
choices.

4.4 Additional Results

Augmentation versus curriculum. We underline that the constant
schedule is equivalent to simple data augmentation via masking
patches. As shown in Table 4 from the main article, the differences
between the baseline and the constant schedule (which correspond
to data augmentation) and the differences between the constant and
linear repeat schedules show that curriculum learning brings higher
improvements on CIFAR-100 and ImageNet. Moreover, simple data
augmentation degrades performance for CvT-13 on CIFAR-100 and
ImageNet. This confirms that the reported improvements are mostly
due to curriculum learning.

To further show that our curriculum strategy can be applied to
other data augmentations, we conduct experiments with CutMix [54]
and curriculum learning for CvT-13 on CIFAR-100. As shown in Ta-
ble 6, the CutMix augmentation does not work at all without the cur-
riculum learning strategies, namely linear and linear repeat. Notably,
combining CutMix and masking with the linear repeat curriculum
leads to additional gains. These results support our previous obser-
vation, namely that the performance gains are rather the effect of
employing curriculum learning.
Compatibility with vision transformers. In Table 2, we report re-
sults with CvT for a direct comparison with LeRaC [9], one of our
main competitors, which also uses CvT. However, our method is not
tied to a certain architecture. To demonstrate this, we conduct addi-
tional experiments with ViT [12] on CIFAR-10. The results shown in
Table 7 confirm that CBM is also useful for ViT.
Qualitative results. In Figure 6, we include a few examples to illus-
trate the benefits brought by our curriculum learning method on the
classification task. We can see that the model trained with our strat-
egy is able to better discriminate between similar classes. Indeed, the
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Figure 6: Qualitative results for the image recognition task, compar-
ing the vanilla regime with CBS [42], LeRaC [9], and CBM (ours).
The samples are taken from ImageNet [40]. In the illustrated exam-
ples, we can observe that our curriculum learning method helps the
model to better distinguish between similar classes. Best viewed in
color.

first three image samples show that our method outperforms the other
ones in the shown cases. As for the last example in Figure 6, CBM
aligns with the other curriculum learning strategies and predicts the
correct class for the corresponding image.

5 Conclusion

In this paper, we proposed a new curriculum learning method based
on masking input patches. Our method uses a gradient-based mask-
ing procedure in conjunction with a gradually increasing masking
ratio to create an easy-to-hard curriculum without having to estimate
the difficulty of training samples. To demonstrate the effectiveness
of CBM, we carried out a comprehensive set of experiments, con-
sidering multiple neural architectures and data sets. Our empirical
results show that CBM surpasses the vanilla training regime, as well
as four state-of-the-art curriculum learning strategies [9, 11, 42, 50].
Moreover, we performed ablation experiments to justify our design
integrating the gradient-based masking and the easy-to-hard curricu-
lum.
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