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Abstract

In this paper, consensus-based Kalman filtering is extended to deal with the problem of joint
target tracking and sensor self-localization in a distributed wireless sensor network. The average
weighted Kullback-Leibler divergence, which is a function of the unknown drift parameters, is
employed as the cost to measure the discrepancy between the fused posterior distribution and the
local distribution at each sensor. Further, a reasonable approximation of the cost is proposed
and an online technique is introduced to minimize the approximated cost function with respect to
the drift parameters stored in each node. The remarkable features of the proposed algorithm are
that it needs no additional data exchanges, slightly increased memory space and computational
load comparable to the standard consensus-based Kalman filter. Finally, the effectiveness of the
proposed algorithm is demonstrated through simulation experiments on both a tree network and a
network with cycles as well as for both linear and nonlinear sensors.
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1 Introduction

Distributed target tracking (DTT) has recently attracted great attention due to the fast development
of wireless sensor networks (WSNs). The remarkable feature of a WSN is that there is no fusion
center, and the nearby nodes can freely exchange data. The goal of DTT is to achieve scalability and
comparable performance with respect to the centralised algorithms[1]. In the past, most work on DTT
assumed that all the sensors have been correctly localized with respect to a global coordinate system,
or at least that each sensor knows the positions of neighbours with respect to its own local coordinate
system[2, 3, 4, 5, 6]. In many practical scenarios, however, sensor self-localization is also an important
task to be jointly faced along with target tracking. Most of the existing work on sensor self-localization
relied on two approaches. In the first approach, called cooperative localization, each sensor is provided
with direct measurements relative to the positions of its neighbors [7, 8, 9, 10, 11, 12, 13, 14, 15]. The
second approach is based on exploiting some reference nodes of known positions (also called anchors)
in the global coordinate system [16, 17, 18, 19, 20]. The locations of anchors are assumed known a
priori or can be obtained by using global localization technology such as, e.g., GPS (Global Positioning
System). Undoubtedly both approaches have their limitations. The former requires additional devices
for measuring the positions of the neighboring nodes, and also that such devices have the capability of
distinguishing signals from different nodes, or otherwise a data association problem has to be solved.
The latter can only be used in some specific scenarios where either prior knowledge of the surveillance
area is available or signals from the global localization equipment can be received. In this paper, the
interest is for a technique that neither needs sensing the positions of neighbors nor the presence of
reference nodes.

In this respect, two interesting techniques for joint target tracking and sensor self-localization (JTTSL)
have been presented in [21] and [22]. In particular, [21] exploits online distributed maximum likelihood
(ML) and expectation-maximization (EM) methods. The nodes iteratively exchange the local likeli-
hoods based on the message passing (belief propagation) technique. This approach, however, suffers
from three major drawbacks. First, each node must store the data of all its neighbors and thus needs
much extra memory space. Secondly, at each sampling interval several iterations must be carried out
in order to exchange the data through the network. The third and most important drawback is that
the employed message passing method is well suited for networks with tree topology but suffers from
the problem of double counting in networks with cycles.

Conversely, [22] follows a Bayesian approach in order to compute in each node the posterior distribution
of the drift parameters (i.e., the relative positions of the neighbors). Specifically, a Monte Carlo method
is adopted to represent such a distribution. The disadvantage of [22] is, therefore, that it needs a
large amount of particles to approximate the drift parameter distribution, thus implying a heavy
computational load which may be unsuitable for sensor nodes with limited computing capabilities.

In this paper, we propose to solve the JTTSL problem exploiting consensus [23, 24, 25, 26, 27, 28].
An advantage of a consensus approach is that any individual node needs only to store the integrated
information resulting from the fusion with all its neighbors, and thus does not require significant extra
memory space. Furthermore, consensus-based algorithms avoid double counting of information for
any kind of network, also involving cycles. In the proposed algorithm, the weighted Kullback-Leibler
(WKL) divergence [29] is employed as optimal cost function to measure the discrepancy between
estimated and true drift parameters. An online optimization method is then used to update the drift
parameters at each sampling time. The advantages of the proposed algorithm are that it needs no
additional data exchanges, slight additional memory space and computational load compared to the
standard consensus Kalman filter (CSKF), which means that the proposed algorithm can be easily
implemented on low-cost sensor nodes and, thus, have wide potential application. The proposed
algorithm, named Joint Target Tracking and Sensor Localization CSKF (JTTSL-CSKF), can also be
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regarded as a generalized version of the CSKF.

The rest of the paper is organized as follows. Section II deals with the JTTSL problem formulation.
Section III reviews the CSKF approach to target tracking whenever the locations of neighboring sensor
nodes are known. Then, section IV presents a novel consensus-based approach to JTTSL. Section V
provides simulation examples to demonstrate the effectiveness of the proposed approach. Section VI
ends the paper with concluding remarks as well as perspectives for future work.

2 Problem Formulation

This paper addresses the problem of target tracking by means of a distributed sensor network wherein
each sensor node gets measurements of the target relative to its local coordinate system. The sensor
network is denoted as (N ,A), where N is the set of sensor nodes and A ⊆ N×N the set of connections
such that (i, j) ∈ A if node j can receive data from node i. Let |N | denotes the cardinality of N .
Further, for each node i ⊆ N , N i will denote the set of its in-neighbor nodes (including itself). It is
further assumed that all sensors are time-synchronized.

The state vector of the target, in the local coordinates of node i, is denoted as xit = [ξit, ξ̇
i
t, η

i
t, η̇

i
t]
T where

(ξit, η
i
t) and (ξ̇it, η̇

i
t) denote the Cartesian coordinates of position and velocity at time t, respectively.

The motion of the target is modelled by

xit+1 = ft
(
xit
)

+ wt. (1)

Further, at each sensor i, measurements of the target are obtained according to

yit = hit
(
xit
)

+ vit, i ∈ N . (2)

It is assumed that wt, v
1
t , v

2
t , . . . are mutually uncorrelated zero-mean white noises with covariances

Qt = E[wtw
T
t ] > 0 and Rit = E[vit(v

i
t)
T ] > 0. It is also convenient to define the noise information

matrices Wt
∆
= Q−1

t and V i
t

∆
= (Rit)

−1. Without loss of generality, it is supposed that each node is
located at the origin of its local coordinate system. Let

(
ξi,j , ηi,j

)
denote the position of node j in the

local coordinates of node i and θi,j
∆
= [ξi,j , 0, ηi,j , 0]′ the drift parameter of sensor j with respect to i.

Then, assuming that the sensor nodes are motionless, the target states xit and xjt in nodes i and j are
related by

xit = xjt + θi,j (3)

Notice that θi,j= −θj,i and θi,i = 0. Due to the fact that each sensor can only communicate with its
neighbours, for self-localization purposes only θi,j for j ∈ N i\{i} are needed by node i. Let Θ denote
the vector of all drift parameters, i.e. Θ = col

(
θi,j , (i, j) ∈ A

)
. Hence, sensor i is only interested to

the sub-vector Θi = col
(
θi,j , j ∈ N i\{i}

)
. The objective of distributed JTTSL is therefore, for each

sensor node i, to jointly estimate the target state xit (in the local coordinates of node i) and the drift
parameter vector Θi.

3 Distributed state estimation based on consensus

Suppose preliminarily that all drift parameters θi,j , (i, j) ∈ A, are a priori known. Such an assumption
will be relaxed in the following section. Suppose further that in each node i of the network a probability
density function (PDF) pi is available representing the information at node i on the state vector x
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expressed in local coordinates. If no information on the correlation between the PDFs of different
sensors is available, when fusing the information of different sensors care must be taken in order to
avoid the data incest phenomenon, that is the double counting of common information. As well known,
fusion rules that are robust to double counting are Covariance Intersection (CI) and Exponential
Mixture Density (the generalization of CI for arbitrary densities). Specifically, if the PDFs of all
nodes are Gaussian with mean xi and covariance P i, then the fused PDF in the local coordinates of

node i is also Gaussian with mean xi and covariance P
i

given by(
P
i
)−1

=
∑
j∈N

πi,j
(
P j
)−1

(
P
i
)−1

xi =
∑
j∈N

πi,j
(
P j
)−1

(xj + θi,j)
(4)

where, for any i, the weights πi,j , j ∈ N , are such that
∑

j∈N π
i,j = 1 and πi,j > 0. From an

information theoretic point of view, such a fusion rule admits a meaningful interpretation in terms of
average with respect to the Kullback-Leibler (KL) divergence [29]. In fact, the PDF pi(·) is the one
minimizing the weighted Kullback-Leibler (WKL) divergence in that [29]

pi = arg min
p

∑
j∈N

πi,jDKL

(
p‖ pi,j

)
(5)

where pi,j denotes the PDF representing the information available at node j expressed in the local
coordinates of node i and DKL(p‖ q) denotes the KL divergence of q from p defined as

DKL (p‖ q) =

∫
p(x) log

p(x)

q(x)
dx . (6)

While (4) and (5) require access to the PDFs of all the sensors, it was shown in [29] that actually
the average PDF can be computed in a distributed way (i.e. exchanging only information with the
neighbors) by using consensus. Combining this idea with local Kalman filters running in each network
node, it is possible to derive a consensus Kalman filter with guaranteed stability properties.

Specifically, let us denote the local target estimated state vector and covariance at node i and time t
as x̂it|t and P it|t. The local information matrices are denoted as

Ωi
t|t−1

∆
= (P it|t−1)−1, Ωi

t|t
∆
= (P it|t)

−1 (7)

and the local information vectors

qit|t−1
∆
= Ωi

t|t−1x̂it|t−1, qit|t
∆
= Ωi

t|tx̂
i
t|t (8)

In the context of distributed target tracking, each node uses the received measurements to first update
the local information, and then exchanges data with the neighbors so that information fusion is carried
out in order to improve the tracking performance of each node. In the information fusion step, the
consensus algorithm can be used to minimize (5). The CSKF is summarized in Table 1. Note that
the consensus weights πi,j should satisfy πi,j > 0 and

∑
j∈N i πi,j = 1. For the choice of the consensus

weights πi,j , which is outside the scope of this paper, please refer to [28].

In terms of KL average, each consensus step admits the following interpretation. Let pi,jt (x, `) denote
the PDF available at node j at consensus step ` of the t-th sample interval, expressed in the local
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Table 1: Consensus Kalman Filter (node i, time t)

Correction

Cit =
∂hit
∂xt

∣∣∣
xt=x̂i

t|t−1

Ωi
t|t(0) = Ωi

t|t−1 + (Cit)
TV i

t C
i
t

Sample the local measurement yit, then

ȳit = yit − ht
(

x̂it|t−1

)
+ Cit x̂

i
t|t−1

qit|t(0) = qit|t−1 + (Cit)
TV i

t ȳit
Consensus

For ` = 0, 1, . . . , L− 1 do
Exchange the information with its neighbors and

fuse the quantities qit(`) and Ωi
t(`) according to

qit(`+ 1) =
∑
j∈N i

πi,j [qjt|t(`) + Ωj
t|t(`)θ

i,j ]

Ωi
t(`+ 1) =

∑
j∈N i

πi,jΩj
t|t(`)

End for
x̂it|t = [Ωi

t|t(L)]−1qit(L), Ωi
t|t = Ωi

t(L)

Prediction

x̂it+1|t = ft

(
x̂it|t

)
, At = ∂ft

∂xt

∣∣∣
xt=x̂i

t|t

Ωi
t+1|t = Wt −WtAt

(
Ωi
t|t +ATt WtAt

)−1
ATt Wt

qit+1|t = Ωi
t+1|tx̂

i
t+1|t

coordinates of node i. Then, assuming Gaussian PDFs1, the new PDF pi,it (x, ` + 1) at node i is the
one minimizing the weighted KL divergence with respect to the neighbors in that

pi,it (x, `+ 1) = arg min
p

∑
j∈N i

πi,jDKL

(
p‖ pi,jt (·, `)

)
. (9)

4 Joint state estimation and online drift parameters calibration

In real applications, the drift parameters θi,j , (i, j) ∈ A, are not always a priori known and need,
therefore, be estimated together with the state vector xt. Notice preliminarily that a possible solution
would amount to considering the distributed estimation problem for a global state Xt consisting of
the target kinematic state xt and the overall drift parameter vector Θ containing the drifts parameters
of all links in the network. However, such an approach would not be scalable since the dimension of

the global state Xt =
[
xTt ,Θ

T
]T

would increase with the number of network links and further would
require the knowledge of the network topology. Hence, in this paper we follow a different approach in
which each node only estimates the drift parameters Θi pertaining to its neighbors j ∈ N i\{i}. This
is a suboptimal approach which, however, has the advantage of being scalable and does not require

1Clearly, the PDFs are Gaussian only when both the motion and measurement models are linear and both process
and measurement noises are Gaussian. Otherwise this amounts to approximating the true local PDF with a Gaussian
one having same mean and covariance.
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any global information on the network topology. Further, in order to keep the communication load
as low as possible, we propose an approach that does not require any additional data exchange with
respect to the Consensus Kalman Filter of Table I.

The idea is to exploit the information theoretic interpretation of the consensus step (9) in order to
define a suitable loss function which can be used for estimation of the drift parameters. In fact, since
the transformation from the local coordinates of node j to those of node i is a function of the drift
parameter θi,j , it is possible to define the loss function

J it (Θ
i, `) = min

p

∑
j∈N i

πi,jDKL

(
p‖ pi,jt (·, `)

)
(10)

where the vector Θi contains all drift parameters relative to the neighbors of node i. The rationale for
such a choice is that, when all the local filters perform well, then all the local PDFs should provide
a reasonably accurate estimate of the target state in local coordinates. In this case, the discrepancy
between the PDFs in two neighboring nodes i and j is mainly due to the different coordinates. Hence,
it is reasonable to take as estimate of the drift parameter θi,j the value which minimizes such a
discrepancy. In turn, the estimates of the drift parameters are used for the distributed state estimator.

Assuming Gaussian PDFs, the loss function (10) turns out to be a quadratic function of Θi. In fact,
for two Gaussian distributions pi(·), pj(·) with means xi, xj ∈ Rd and covariance matrices P i, P j , their
KL divergence in the coordinates of node i can be written as

DKL(pi‖ pj) = 1
2

[(
xi −

(
xj + θi,j

))T (
P j
)−1 (

xi −
(
xj + θi,j

))
−d+ tr

((
P j
)−1

P i
)

+ ln
(

detP j

detP i

)]
.

(11)
Then, the PDF minimizing the WKL in (10) is again Gaussian with mean

x̃it(Θ
i, `+ 1) = [Ωi

t(`+ 1)]−1
∑
j∈N i

πi,jΩj
t (`)[x̂

j
t (`) + θi,j ] , (12)

x̂jt (`) = [Ωj
t (`)]

−1qjt (`), and inverse covariance Ωi
t(`+ 1) independent of Θi.

In view of (11) and (12), it is an easy matter to see that the loss function J it (Θ
i, `) can be written as

the quadratic form
J it (Θ

i, `) = (Θi)TΦi
t(`)Θ

i + 2(Θi)Tϕit(`) + cit(`) (13)

for suitable Φi
t(`), ϕ

i
t(`), c

i
t(`) independent of Θi. In particular, it can be checked that

Φi
t (`) =

1

2

[
Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1(
Ei
)T

Ψi
t (`)−Ψi

t (`)
]

(14)

ϕit (`) = Φi
t (`)

[
xit (`)− Eix̂it (`)

]
(15)

where

Ψi
t (`) = block − diag

(
πi,jΩj

t (`) , j ∈ N i\ {i}
)

(16)

Ei = col (I4, · · · , I4)︸ ︷︷ ︸
|N i|−1 times

(17)

xit (`) = col
(

x̂jt (`) , j ∈ N i\ {i}
)

(18)
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and block − diag denotes the block diagonal matrix obtained from its arguments.

Proof: According to the definitions of (16) to (18), we have

Ωi
t (`+ 1) =

(
Ei
)T

Ψi
t (`)Ei + πi,iΩi

t (`)

x̃it
(
Θi, `+ 1

)
=
(
Ωi
t (`+ 1)

)−1
[(
Ei
)T

Ψi
t (`)

(
xit (`) + Θi

)
+ πi,iΩi

t (`) x̂it (`)
]

Then the cost J it (Θ
i, `) is computed as

J it (Θ
i, `)

=
∑
j∈N i

πi,jDKL

(
p̃it (·, `+ 1)

∥∥ pi,jt (·, `)
)

=
1

2

∑
j∈N i

[(
x̃it
(
Θi, `+ 1

)
−
(

x̂jt (`) + θi,j
))T

πi,jΩj
t (`)

(
x̃it
(
Θi, `+ 1

)
−
(

x̂jt (`) + θi,j
))]

=
1

2

{(
x̃it
(
Θi, `+ 1

))T
Ωi
t (`+ 1)

(
x̃it
(
Θi, `+ 1

))
−

∑
j∈N i\{i}

((
x̂jt (`) + θi,j

))T
πi,jΩj

t (`)
(

x̂jt (`) + θi,j
)

+
(
x̂it (`)

)T
πi,iΩi

t (`) x̂it (`)

+ C

=
1

2

{[(
Ei
)T

Ψi
t (`)

(
xit (`) + Θi

)
+ πi,iΩi

t (`) x̂it (`)
]T (

Ωi
t (`+ 1)

)−1

×
[(
Ei
)T

Ψi
t (`)

(
xit (`) + Θi

)
+ πi,iΩi

t (`) x̂it (`)
]
−
[(
xit (`) + Θi

)]T
Ψi
t

[(
xit (`) + Θi

)]
−
(
x̂it (`)

)T
πi,iΩi

t (`) x̂it (`)
}

+ C

=
(
Θi + xit (`)

)T
Φi
t (`)

(
Θi + xit (`)

)
+ 2
(
Θi + xit (`)

)T 1

2
Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`) + C

=

[
Θi + xit (`) +

1

2

(
Φi
t (`)

)−1

Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)

]T
Φi
t (`)

×
[
Θi + xit (`) +

1

2

(
Φi
t (`)

)−1

Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)

]
+ C (19)

According to the Matrix Inversion Lemma, we have

(
Φi
t (`)

)−1
= 2
[
Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1(
Ei
)T

Ψi
t (`)−Ψi

t (`)
]−1

= −2
{(

Ψi
t (`)

)−1
+ Ei

[
Ωi
t (`+ 1)−

(
Ei
)T

Ψi
t (`)Ei

] (
Ei
)T}

= −2
{(

Ψi
t (`)

)−1
+ Ei

(
πi,iΩi

t (`)
)−1(

Ei
)T}

(20)

And
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(
Φi
t (`)

)−1
Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)

= −2
{(

Ψi
t (`)

)−1
+ Ei

(
πi,iΩi

t (`)
)−1(

Ei
)T}

Ψi
t (`)Ei

(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)

= −2
{
Ei
(
Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)

+ Ei
(
πi,iΩi

t (`)
)−1 [(

Ωi
t (`+ 1)

)
− πi,iΩi

t (`)
] (

Ωi
t (`+ 1)

)−1
πi,iΩi

t (`) x̂it (`)
}

= −2Eix̂it (`) (21)

Consequently, (19) can be rewritten as

J it
(
Θi, `

)
=
[
Θi + xit (`)− Eix̂it (`)

]T
Φi
t (`)

[
Θi + xit (`)− Eix̂it (`)

]
= (Θi)TΦi

t(`)Θ
i + 2(Θi)Tϕit(`) + cit(`) (22)

As the result, (14) and (15) are proved.

In order to obtain a reliable estimate of the drift parameters, we follow the strategy usually adopted
in recursive parameter estimation and consider a total loss function up to the current time in-
stant/consensus step defined recursively as

J̄ it (Θ
i, `+ 1) = λJ̄ it (Θ

i, `) + J it (Θ
i, `)

where, in accordance with the algorithm of Table I, we have J̄ it+1(Θi, 0) = J̄ it (Θ
i, L) and the scalar

λ ∈ (0, 1) is a forgetting factor used to discount the past (since the quality of the local estimate of
the state vector improves with time, it is reasonable to weight less the past loss functions). As it can
be easily checked, recursive minimization of J̄ it (Θ

i, `) gives rise to a standard recursive least squares
(RLS) algorithm of the form

Θ̂i
t(`+ 1) = Θ̂i

t(`)− [Φ̄i
t(`+ 1)]−1[ϕit(`) + Φi

t(`)Θ̂
i
t(`)]

Φ̄i
t(`+ 1) = λΦ̄i

t(`) + Φi
t(`) . (23)

Combining the recursive drift parameter estimation algorithm (23) with the consensus Kalman filter
of Table I, we get the JTTSL-CSKF algorithm reported in Table 2.

Remark 4.1 When the computational capabilities of each single sensor are low, several simplifications
of the proposed solution are possible. For instance, instead of using an RLS algorithm for updating the
estimate which requires the storage of a possibly large matrix, we can simply use an online optimization
technique of the form

Θ̂i
t(`+ 1) = Θ̂i

t(`)− γt(`) ∇ΘiJ it (Θ
i, `)
∣∣
Θi=Θ̂i

t(`)
(24)

where γt(`) is a suitable stepsize. Another possible simplification in order to alleviate the computational
burden amounts to updating the estimates of the drift parameters only once at each sampling interval,
for instance ofter the last consensus step L. This approximated solution has been employed in the
simulation results of the following section.
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Table 2: JTTSL-CSKF ( node i, time t )

Correction

Perform the correction step as in table I

Consensus and calibration

Set Θ̂i
t(0) = Θ̂i

t−1(L)
Set Φ̄i

t(0) = Φ̄i
t−1(L)

For ` = 0, 1, . . . , L− 1 do
Exchange the information with its neighbors and

compute Θ̂i
t(`+ 1) and Φ̄i

t(`+ 1) as in (23)
Fuse the quantities qit(`) and Ωi

t(`) according to

qit(`+ 1) =
∑
j∈N i

πi,j [qjt|t(`) + Ωj
t|t(`) θ̂

i,j
t (`+ 1)]

Ωi
t(`+ 1) =

∑
j∈N i

πi,jΩj
t|t(`)

End for
x̂it|t = [Ωi

t|t(L)]−1qit(L), Ωi
t|t = Ωi

t(L)

Prediction

Perform the prediction step as in table I

5 Simulation examples

In this section, the performance of the proposed JTTSL-CSKF algorithm is evaluated by means of
simulation experiments. The target motion obeys the constant velocity model, which means that
ft
(
xit
)

= Axit in (1) and matrices A,Q are given by

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Q = σ2
xI4 (25)

where σx = 10 [m], T = 1 [s], and xi
t represents the target state with respect to a coordinate system

with origin at the location of node i. The algorithm is tested on both linear and nonlinear sensors
with measurement functions in (2) given as follows

Linear sensor: hit
(
xit
)

= Cixit where

Ci = αi
(

1 0 0 0
0 0 1 0

)
, Ri = σ2

yI2 (26)

Nonlinear sensor:

hit
(
xit
)

=

( √(
ξit
)2

+
(
ηit
)2

atan(ηit
/
ξit)

)
, Ri = diag(σ2

r , σ
2
β) (27)

where αi are randomly selected for each node within the interval [0.75, 1.25], σy = 30 [m], σr = 15 [m],
and σβ = 0.5 [o]. The proposed algorithm is also tested on two different types of networks: one with a
tree topology and the other with cycles, both consisting of 9 nodes as shown in Fig. 1. The initial drift
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parameter estimates are set to θ̂i,j0 = 0, (i, j) ∈ A, in both networks. The stepsize is set as γt = 1.2 for
the linear sensor case and, respectively, γt = 20 for the nonlinear sensor case.
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Figure 1: Tree network and network with cycles.

Figs. 2-5 analyse the self-localization performance by displaying the time evolution, in single typical

realizations, of the drift parameter estimation errors θ̃i,jt
∆
= θi,j − θ̂i,jt =

[
ξ̃i,jt , 0, η̃

i,j
t , 0

]T
for the two

considered networks of Fig. 1 and the two types of sensors in (26) and (27). It can be seen that in all
cases the estimated drift parameters converge to their true values. Further, the effect of the stepsize
γt on the speed of convergence is shown in Fig. 6 in the case of tree network and linear sensors for
L = 1. It can be seen that the speed of self-localization of JTTSL-CSKF can be controlled by tuning
γt, thus providing robustness in real applications.

Next, Figs. 7 and 8 analyse the target tracking performance by showing the time evolution of the
target state Root Mean Square Error (RMSE), averaged over 200 independent Monte Carlo trials, in
the two cases of linear (26) and, respectively, nonlinear sensors (27). In both figures, the RMSEs of
the centralized (Extended) KF and the single-sensor (Extended) KF are also reported as reference
lower and upper bounds for the performance of the JTTSL-CSKF algorithm. Further, performance of
JTTSL-CSKF is also reported for the two network scenarios of Fig. 1 as well as for a single (L = 1)
and multiple (L = 10) consensus steps. It can be seen that, at convergence, the performance of the
proposed method stays in between the centralized and single sensor (E)KF for any L. Further, as
expected, the RMSE of the proposed method is getting closer to the centralized (E)KF when the
number L of consensus steps is increased. It can also be seen that the proposed method has wide
potential applications, being immune to the type of network.

A final consideration is important. By looking at the simulation results, it is evident that during the
initial learning phase the JTTSL-CSKF performs worse than the single-sensor filter. This is due to
the fact that, at the beginning, the estimates of the drift parameters are not accurate enough and
hence the fusion is not reliable. This drawback can be easily avoided with a slight modification of
the proposed approach in which the fusion is performed at each time instant in order to update the
estimates of the drift parameters, but the local estimates of the target state are replaced with the
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Figure 2: Time-behavior of θ̃i,j(t), (i, j) ∈ A, in a tree network with linear sensors, for L = 1 (a), (b)
and L = 10 (c), (d) consensus steps.

fused ones only when the drift parameter estimates are reliable enough (for example, when the loss
function J it (Θ

i, `) is below a given threshold).

6 Conclusion

The paper has addressed the important practical issue of fusing, in a distributed way, target tracking
information over a sensor network with sensor nodes that get target measurements in their own local
coordinate system and do not know their relative positions. The problem, referred to as Joint Target
Tracking and Sensor self-Localization (JTTSL), has been solved by exploiting a novel computationally
efficient consensus Kalman filtering approach by which each node is able to self-localize with respect to
neighbors and thus correctly fuse target-state information. The effectiveness of the proposed approach
has been successfully tested via simulation experiments concerning both networks with tree topology
and networks with cycles as well as both linear and nonlinear sensors. Future developments of this
work will possibly regard a theoretical convergence analysis as well as extensions in several directions
like, e.g., multitarget scenario, mobile sensors, the case of unknown relative orientations among sensors
and cooperative multirobot simultaneous localization and mapping.
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[7] S. Čapkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in mobile ad hoc networks”,
Cluster Computing, vol. 5, no. 2, pp. 157–167, 2002.

[8] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization techniques”, Com-
puter Networks, vol. 51, no. 10, pp. 2529–2553, 2007.

[9] K. D. Frampton, “Acoustic self-localization in a distributed sensor network”, IEEE Sensors Jour-
nal, vol. 6, no. 1, pp. 166–172, 2006.

[10] F. Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous distributed sensor self-
localization and target tracking using belief propagation and likelihood consensus,” in Proc. 46th
Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1212–1216, Pacific
Grove, CA, USA, 2012.

[11] M. Sun, L. Yang, and K. Ho, “Accurate sequential self-localization of sensor nodes in closed-form”,
Signal Processing, vol. 92, no. 12, pp. 2940–2951, 2012.

12



Figure 5: Time-behavior of θ̃i,j(t), (i, j) ∈ A, in a network with cycles and nonlinear sensors, for L = 1
(a), (b) and L = 10 (c), (d) consensus steps.

[12] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric belief propagation for
self-localization of sensor networks”, IEEE Journal on Selected Areas in Communications, vol. 23,
no. 4, pp. 809–819, 2005.

[13] R. L. Moses, D. Krishnamurthy, and R. M. Patterson, “A self-localization method for wireless
sensor networks”, EURASIP Journal on Advances in Signal Processing, vol. 2003, no. 4, pp.
839–843, 2003.

[14] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the
nodes: cooperative localization in wireless sensor networks”, IEEE Signal Processing Magazine,
vol. 22, no. 4, pp. 54–69, 2005.

[15] H.-J. Shao, X.-P. Zhang, and Z. Wang, “Efficient closed-form algorithms for AOA based self-
localization of sensor nodes using auxiliary variables”, IEEE Trans. on Signal Processing, vol. 62,
no. 10, pp. 2580–2594, 2014.

[16] U. A. Khan, S. Kar, and J. M. Moura, “Distributed sensor localization in random environments
using minimal number of anchor nodes”, IEEE Trans. on Signal Processing, vol. 57, no. 5, pp.
2000–2016, 2009.

13



time (s)
0 2000 4000 6000

ξ̃
i,
j
(t
)
(m

)

-4000

-2000

0

2000

4000
(a)

time (s)

0 2000 4000 6000

η̃
i,
j
(t
)
(m

)

-4000

-2000

0

2000

4000
(b)

time (s)

0 2000 4000 6000

ξ̃
i,
j
(t
)
(m

)

-4000

-2000

0

2000

4000
(c)

time (s)

0 2000 4000 6000

η̃
i,
j
(t
)
(m

)

-4000

-2000

0

2000

4000
(d)

Figure 6: Stepsize affections of the speed of convergence, for γt = 0.6 (a),(b) and γt = 4.8 (c),(d).
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