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An MPC approach to individual pitch control of wind turbines using
uncertain LIDAR measurements

Mahmood Mirzaei, Mohsen Soltani, Niels K. Poulsen and Hans H. Niemann

Abstract— Spatial distribution of the wind field exerts un-
balanced loads on wind turbine structures and it is shown
these loads could be mitigated by controlling each blade’s
angle individually (individual pitch control). In this work the
problem of individual pitch control of a variable-speed variable-
pitch wind turbine in the full load region is considered. Model
predictive control (MPC) is used to solve the problem. A new
approach is proposed to simplify the optimization problem of
MPC. We linearize the obtained nonlinear model for different
operating points which are determined by the effective wind
speed on the rotor disc and take the wind speed as a scheduling
variable. The wind speed is measurable ahead of the turbine
using LIDARs, therefore the scheduling variable is known for
the entire prediction horizon. We consider uncertainty in the
wind propagation, which is the traveling time of wind from the
LIDAR measurement point to the rotor. An algorithm based on
wind speed estimation and measurements from the LIDAR is
devised to find an estimate of the delay and compensate for it
before it is used in the controller. Comparisons between the
MPC with error compensation, without error compensation
and a benchmark cyclic pitch PI controller are given. The
results show that with appropriate signal processing techniques,
LIDAR measurements improve the performance of the wind
turbine controller.

I. INTRODUCTION

In recent decades, there has been increasing interest in
green energies, of which wind energy is one of the most im-
portant. Horizontal axis wind turbines are the most common
wind energy conversion systems (WECS) and are hoped to
be able to compete with fossil fuel power plants on energy
price in near future. However, this demands better technology
to reduce the electricity production price. Control can play
an essential part in this context. This is because, on the
one hand improved control methods can decrease the cost
of energy by keeping the turbine close to its maximum
efficiency. On the other hand, they can reduce structural
fatigue and increase the lifetime of the wind turbine. There
are several methods of wind turbine control, ranging from
classical control methods, which are the most commonly
used methods in real applications [1], to advanced control
methods, which have been the focus of research in the past
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few years [2]. Gain scheduling [3], adaptive control [4],
MIMO methods [5], nonlinear control [6], robust control
[7], model predictive control [8], µ-Synthesis design [9]
and robust MPC [10] are just to mention a few. Advanced
model-based control methods are thought to be the future of
wind turbine control, as they can conveniently employ new
generations of sensors on wind turbines (e.g. LIDAR [11]),
new generation, of actuators (e.g. trailing edge flaps [12])
and they also treat the turbine as a MIMO system. Model
predictive control (MPC) has proved to be an effective tool
to deal with multivariable constrained control problems [13].
As wind turbines are MIMO systems [5] with constraints on
inputs and outputs, using MPC is reasonable. MPC has been
an active area of research and has been successfully applied
on different applications in the last decades [14].

In this work, we extend the idea of linear MPC to formu-
late a tractable predictive control of the nonlinear system
of wind turbines. To do so, we use future values of the
effective wind speed that acts as a scheduling variable in
the model. LIDAR measurements are used to calculate the
effective wind speed ahead of wind turbines [11]. Several
works have considered wind turbine control using LIDAR
measurements [15], [16] and [17]. However there are a
number of issues with LIDAR measurements that need to
be considered. Uncertainty in the measurements is one of
the important issues. Small errors in the calculations of the
wind propagation time can severely degrade the performance
of the controller.

The paper is organized as follows. In section II, modeling
of the wind turbine is explained, the nonlinear model is
derived and a linear model whose parameters vary as a
function of effective wind speed is given. In section III,
our proposed method for solving model predictive control
of the system is presented. Then, the control design is
explained, and control objectives are discussed. In section
IV, uncertainty in the LIDAR measurements are explained,
and a method is proposed to reduce this source of uncertainty.
Finally, in section V, simulation results are given.

II. MODELING

A. Nonlinear model

The dominant dynamics of the wind turbine come from
its flexible structure. Several degrees of freedom could be
considered to model the flexible structure, but for control
design a few important degrees of freedom are considered.
In this work we consider three degrees of freedom, namely
the rotational degree of freedom (DOF), the drivetrain torsion
and the tower fore-aft displacement. Nonlinearity of the wind



turbine model mostly comes from its aerodynamics. Blade
element momentum (BEM) theory is used to numerically
calculate aerodynamic torque and thrust on the wind turbine
[18]. Having aerodynamic torque and modeling the drivetrain
and the tower fore-aft degrees of freedom with simple mass-
spring-damper, the whole system equation with 3 degrees of
freedom becomes:

JrΩ̇r = Qr − Cd(Ωr −
Ωg
Ng

)−Kdψ (1)

(NgJg)Ω̇g = Cd(Ωr −
Ωg
Ng

) +Kdψ −NgQg (2)

ψ̇ = Ωr −
Ωg
Ng

(3)

Mẍt = Qt − Ctẋt −Ktxt (4)
Pe = QgΩg (5)

In which Qr and Qt are aerodynamic torque and thrust,
Jr and Jg are rotor and generator moments of inertia, ψ
is the drivetrain torsion, Qg and Ωg are the generator torque
and rotational speed, Ng is the gearbox ration, Cd and Kd

are the drivetrain damping and stiffness factors, respectively,
lumped in the low speed side of the shaft. The tower mass,
damping and stiffness factors are represented by M , Ct and
Kt, respectively, and Pe and xt are the generated electrical
power and tower displacement, respectively. Values of the
parameters can be found in [19].

B. Linearized model

To get a linear model of the system we need to linearize
the model (1-5) around its operating points, which are
determined by wind speed averaged on the rotor area. Wind
speed changes along the blades and with the azimuth angle
(angular position) of the rotor. This is because of wind shear,
tower shadow and stochastic spatial distribution of the wind
field. Therefore a single wind speed does not exist to be
used and measured in order to find the operating point. We
bypass this problem by defining a fictitious variable called
effective wind speed (Ve), which shows the effect of wind
on the rotor disc of the wind turbine. Using the linearized
aerodynamic torque and thrust, state space matrices for the
3 DOFs linearized model become:

ω̇r =
α1(ve)− c

Jr
ωr +

c

Jr
ωg −

k

Jr
ψ (6)

+
β11(ve)

Jr
θ +

β12(ve)

Jr
(ve − vt) (7)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(8)

ψ̇ = ωr −
ωg
Ng

(9)

ẋt = vt (10)

v̇t =
α2(ve)

M
ωr +

β21(ve)

M
θ +

β22(ve)

M
(ve − vt) (11)

− Ct
M
vt −

Kt

M
xt (12)

Pe = Qg0ωg + ωg0Qg (13)

In which the lower-case variables are deviations away from
steady state of the upper-case variables given in the equations
(1-5). Consequently, the parameters of the linearized model
are functions of wind speed, which in our approach acts as a
scheduling variable. A detailed description of the model and
linearization is given in [9].

C. Pitch actuator

A second order model is used to model pitch actuator:

θ̇1 = θ2 (14)

θ̇2 = −2ζθωθθ2 − ω2
θθ1 + ω2

θθi (15)

In which θi is the input to the actuator, and ωθ and ζθ are
natural frequency and damping of the actuator, respectively.

D. Dynamics of the blades

Blade dynamics is simplified as a parameter varying
second order dynamical system with two inputs, which are
wind speed (ṽi) and pitch angle (θ̃i), and one output, which
is out-of-plane blade root bending moment (M̃i). The model
is considered to be:

M̃i(s) = H1,i(γ, s)θ̃i(s) +H2,i(γ, s)ṽi(s), i = 1, 2, 3
(16)

This model shows the identified transfer functions for each
of the blades, for which the state space matrices become:

A(γ) =

(
0 1

−ωn(γ)2 −2ζ(γ)ωn(γ)

)
C =

(
1 0

)
(17)

B(γ) =

(
0 0

b1(γ) b2(γ)

)
D =

(
0 0

)
(18)

The argument γ signifies that the linearized model depends
on the operating point. Different wind speeds, which result
in different operating points are used to identify the system.
Prediction error [20] method is used on the above greybox
model of the blade and parameters of the state space model
are identified. It was observed that ωn and ζ take almost
constant values of 6 (rad/s) and 0.6 (Ns/m) respectively.
Therefore, for the three blades, the dynamics of the whole
system could be written as:

A =

3⊕
i=1

A B(γ1, γ2, γ3) =

3⊕
i=1

B(γi) (19)

C =

3⊕
i=1

C D =

3⊕
i=1

D (20)

In B(γ1, γ2, γ3), the three variables γ1, γ2 and γ3 are de-
termined by the effective wind speed on the corresponding
blade.

III. CONTROLLER DESIGN

Wind turbine control is a challenging problem as the
dynamics of the system changes based on wind speed which
has a stochastic nature. In this paper, we use the wind speed
as the scheduling variable. With the advances in the LIDAR
technology [11] it is possible to measure wind speed ahead
of the turbine and this enables us to have the scheduling



variable of the plant for the entire prediction horizon. As
it was mentioned in section II, wind turbines are nonlin-
ear dynamical systems and if we use the nonlinear model
directly in the MPC formulation, the optimization problem
associated with the MPC becomes non-convex. In general,
non-convex optimization problems are very complicated to
solve and there is no guarantee that we could achieve a
global optimum. One way to avoid complex and non-convex
optimization problems is to linearize the system around an
equilibrium point and use the obtained linearized model as
an approximation of the nonlinear model. However, for wind
turbines, assumption of the approximate linear model does
not hold for long prediction horizons. This is because the
operating point of the system changes as a function of wind
speed which, as mentioned, has a stochastic nature.

A. Problem formulation

Having the LPV model of the system we proceed to
compute state predictions using the approach proposed in
[21]. In our method the predicted state is a function of
the current state xk, the control inputs un, as well as the
scheduling variable Γn =

(
γk+1, γk+2, . . . γk+n

)T
for n =

1, 2, . . . , N − 1 and we assume that the scheduling variable
is known for the entire prediction. By stacking the states,
inputs and the affine term (λk) of the state space equations,
we can write down the stacked predicted state as:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (21)

After computing the state predictions as functions of control
inputs, it is straightforward to write down the optimization
problem similar to a linear MPC problem as a quadratic
program, more details can be found in [21].

B. Control objectives

The most basic control objective of a wind turbine is to
maximize captured power during the life time of the wind
turbine that is to maximize captured power when wind speed
is below its rated value. This is also called maximum power
point tracking (MPPT). However when wind speed is above
rated, control objective becomes regulation of the outputs
around their rated values while trying to minimize dynamic
loads on the structure. These objectives should be achieved
against fluctuations in wind speed which acts as a disturbance
to the system. In this work we have considered operation of
the wind turbine in above rated (full load region). Therefore,
we try to regulate rotational speed and generated power
around their rated values and remove the effect of wind speed
fluctuations.

C. Implementation

Two controllers are implemented in this work. One con-
troller determines the collective pitch and generator reac-
tion torque and regulates power and rotational speed. The
second controller determines ∆θi, i = 1, 2, 3 for fatigue
load reduction by adjusting individual blade pitch based
on the blade root bending moment measurements. The first
controller takes advantage of having the wind speed for the

entire prediction horizon, while the second controller uses
only measurements from sensors at the blades root.

1) Collective pitch controller: The first controller uses
the linearized model which was explained in section II-B
augmented with a second order system modeling actuator
dynamics. Measured outputs that are fed to this controller
are: 

ωr
Pe
at
θc
Vhh


Rotor rotational speed
Generated power
Tower top acceleration
Measured collective pitch
Hub height wind speed vector

(22)

More details about this controller can be found in [21].
2) Individual pitch controller: The objective of this con-

troller is to reduce fatigue loads on the blades by adjusting
pitch angle of each blade based on blade root bending
moment measurements. The method used here is similar to
the one used in [22], except that we have used MPC instead
of an LQG controller.

A multi-blade coordinate (MBC) transformation (also
known as Coleman transformation) [23] is used to map
fluctuations of the blade root bending moments (Mi, i =
1, 2, 3) into a fixed coordinate system (Mmbc

i , i = 1, 2, 3).
Using the blades models derived in section II, an MPC is
designed to reduce fluctuations on Mmbc

i , i = 1, 2, 3. The
model predictive controller produces input signals which are
then using inverse of MBC transformation transformed to
pitch of the blades (∆θi, i = 1, 2, 3).

D. Benchmark controller

The benchmark controller used in this work generates
θi = θc + ∆θi, i = 1, 2, 3, and consists of a collective pitch
controller that generates θc and an individual controller that
generates ∆θi, i = 1, 2, 3. The collective pitch controller is
based on the one found in [19]. The controller has a gain-
scheduled feedback from rotor speed to collective pitch angle
and controls the generator torque to achieve constant power.
The individual pitch control (IPC) system uses the flapwise
blade root bending moments via the Coleman transform to
determine cyclic behavior of the pitch angles. The cyclic
pitch terms are then added to the collective pitch angle.
Details regarding the tuning and implementation of the IPC
can be found in [24].

IV. UNCERTAIN LIDAR MEASUREMENTS

LIDAR measurements are used to have a preview of the
wind speed [11], however these measurements are erroneous
and uncertain. In this work, we have considered the uncer-
tainties to be the measurement noise and uncertainty in the
estimation of the wind propagation time. The propagation
time is the time that it takes for the wind to travel from the
LIDAR measurement points to the rotor disc. Lead or lag
errors in the calculations of the propagation time severely
reduce the performance of the controller. In order to bypass
this problem, in this work, we have proposed a method
to estimate these errors. To do so, we have designed an
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Fig. 1: Wind speed estimation (red-dashed line is the esti-
mated wind speed and solid-blue line is the effective wind
speed)

Extended Kalman filter which estimates the effective wind
speed on the rotor plane. Then this estimate is compared
against the filtered information that comes from the LIDAR
measurements. Cross-covariance of the estimated wind speed
and the LIDAR measurements are used to get an estimate
of the delay between the two signals. Subsequently, the
estimated delay is compensated for in LIDAR measurements
and the resulting wind speed information is fed to the
controller.

A. Wind speed estimation

Wind speed estimation is essential in our control algo-
rithm. A one DOF model of the wind turbine, including
only rotor rotational degree of freedom is used for wind
speed estimation. This model is augmented with a linear
model of the effective wind speed. The effective wind
speed can be modeled as a complicated nonlinear stochastic
process. However, for practical control purposes, it could be
approximated by a linear model [25]. In this model, the wind
has two elements, mean value term (vm) and turbulent term
(vt). The mean wind speed varies relatively slowly and could
be considered constant during one simulation. The turbulent
term could be modeled by the following transfer function:

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1) (23)

The parameters p1, p2 and k which depend on the mean wind
speed vm could be found by second order approximation
of the wind power spectrum [25]. This state space model
is augmented with the following model to be used in the
extended Kalman filter:

Ω̇ =
1

Jr
Qr(Ω,Θ,Ve)−

1

Jr
Qg (24)

y =
(
Ω Pe

)T
(25)

Figure 1 shows wind speed and its estimate.

B. Lead-lag error estimation and compensation

For lead-lag error estimation, cross covariance of the
estimated wind speed and measurements from the LIDAR
for a window of size m-seconds is found. The result is
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Fig. 2: Effective wind speed and LIDAR measurement with
lead-lag errors (solid-blue is the effective wind speed, dotted-
red is the LIDAR measurement)

a sequence which has (2m − 1) elements. By finding the
maximum of the cross covariance, an estimate of the lead-
lag error can be found. The window size is important as it
should be long enough to avoid erroneous results. The errors
especially emerge when the window of effective wind speed
signal has big autocorrelation values. By choosing a window
with sufficiently large size this problem could be avoided.
However, choosing a too big window size will result in slow
delay detection which reduces performance of the controller.
Cross covariance of the estimated wind speed and LIDAR
measurements, can be found using the following formula:

φv̂v(t) = E{(v̂n+t − µv̂)(vn − µv)T } (26)

in which v̂ is the estimated wind speed and v is the LIDAR
measurements. Having the sequence of φv̂v(t), one can
calculate lead-lag error by the following formula:

te = arg max
t
φv̂v(t) (27)

in which te = tmeasurment − tactual wind speed. te is then passed
through a low pass filter to remove fluctuations due to
numerical errors and possible autocorrelations. Then it is
used to shift LIDAR measurements. Afterwards the shifted
signal is used in the controller. Figure 2 shows a comparison
of the effective wind speed and the wind speed measured
by LIDAR. There is a 4 seconds lead error at time 100s
(in which the measurement is lead) and then at time 300s
the same amount of lag error. Figure 3 shows a comparison
between the introduced delay in the measurements and its
estimation. The lead-lag error estimation is delayed, how-
ever it follows the shape of the actual delay. In the worst
cases, when the LIDAR measurements does not give a good
correlation with the wind speed estimation on the turbine,
the measurements could be discarded and the turbine can
operate without LIDAR measurements.

V. SIMULATIONS

In this section, simulation results for the obtained con-
trollers are presented. The controllers are implemented in
MATLAB and tested on a high fidelity wind turbine simula-
tion software FAST [26] using the model of the reference
wind turbine [19]. The results of the proposed approach
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TABLE I: Performance comparison (SD stands for standard
deviation)

Parameters MPC+LIDAR+ MPC+ Cyclic
Compensation LIDAR pitch PI

SD of ωr (RPM) 0.398 1.22 0.703
SD of Pe (k Watts) 76.5 215 89.0
Pitch travel (degrees) 525.4 562.5 484.5
SD of shaft moment (k N.M.) 1.21 3.78 2.30
SD of tower acc. (m/s2) 0.229 0.284 0.254

with lead-lag error estimation are compared against two
controllers. One of them is an MPC with the same tunings
and with the same LIDAR measurements but without error
compensation. The other controller is a benchmark cyclic
pitch PI controller [22]. Simulations are done using turbulent
wind speed, with Kaimal model [27]. And TurbSim [28] is
used to generate the wind profile. In order to stay in the full
load region, a realization of turbulent wind speed is used
from category C of the turbulence categories of the IEC
61400-1 [27] with the mean wind speed of 18m/s. Wind
shear is included with 0.2 as the value for the power-law
exponent. Control inputs are individual pitch of the blades
θi, i = 1, 2, 3 and generator reaction torque Qg . System
outputs are rotor rotational speed ωr, electrical power Pe,
tower fore-aft acceleration ẍt and out-of-plane blade root
bending moments which are plotted in figures 4-8. Table
I shows a comparison of the results between the proposed
approach with lead-lag error estimation, the linear MPC
with LIDAR measurements and without compensation and
finally the cyclic pitch PI controller. For comparisons, we
have used pitch travel (

∫
|dθ/dt|dt) to take into account an

approximation of the damage on the pitch actuator. Standard
deviations (SD) of the rotational speed and generated power
are also compared. To compare fluctuations of the blade
root bending moments, we have used power spectral density
(PSD) of the signals and compared them in figure 9. As it can
be seen in the table I and figures 4-9, the proposed approach
gives better regulation on rotational speed and generated
power (smaller standard deviations) and less fluctuations on
the tower fore-aft and blade root bending moments, while
maintaining less drivetrain torsion. However the pitch travel
is slightly more than the cyclic PI controller which could be
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Fig. 4: Blade-pitch (blue line is MPC with LIDAR and delay
compensation, red line is MPC with LIDAR without delay
compensation and green line is PI-cyclic pitch)
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Fig. 5: Generator-torque (blue line is MPC with LIDAR and
delay compensation, red line is MPC with LIDAR without
delay compensation and green line is PI-cyclic pitch)

reduced by tuning.

VI. CONCLUSIONS

LIDAR measurements improve performance of wind tur-
bines. However, errors in the calculation of the wind propaga-
tion time severely degrade the performance of the controller.
In this work, we have shown that using appropriate signal
processing techniques, these errors can be removed form the
measurements and even in the worst cases, when LIDAR
measurements are not reliable, the turbine can operate with-
out using the data from the LIDAR.
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