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Abstract— In this paper, we consider the problem of feedback
stabilization of discrete-time systems with delays. The systems
under consideration are nonlinear and nonaffine. By using the
Lyapunov Razumikhin approach, we deduce general conditions
for stabilizing the closed-loop system. Moreover stabilizing state
feedback control laws are proposed.

I. INTRODUCTION
During the last decades, the problem of stabilizability of

control systems and the design of stabilizing feedback has
been the subject of many papers, for both continuous and
discrete time systems (see [1],[2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] and the references therein).

Very few works, however, have been performed to deal
with the stabilization of nonlinear systems with delays. In
the case of continuous systems, it is due to the difficulty
induced by the infinite dimensionality of the state combined
with the nonlinear structure (see [12],[13],[14]).

In [15] and [16], the problem of stabilization of continuous
nonlinear systems with delays has been addressed. The
approach developed is inspired by the classical result, well-
known as the Jurdjevic and Quinn method [7], dedicated to
the problem of stabilization of nonlinear systems. In [17], the
problem of stabilization in the case of discrete time systems
with delays was considered, but the study was restricted to
the class of non linear affine systems. Moreover, the systems
without the drift (i.e.,the input is equal to zero) was supposed
to contain no delays.

Recently, in [18], we proposed results of stabilization for
some nonlinear and nonaffine systems. However for a lot of
cases of nonlinear systems, the results and the structure of
control law that we proposed, cannot be applied.

In this paper, we propose a more general formulation
of the approach proposed in [18]. We develop results on
the state feedback stabilizability problem of equilibrium
positions of discrete time nonlinear systems with delay. The
system under consideration is nonaffine in control and the
system without the drift still involve delays. By combining
a suitable mathematical formalism and a Lyapunov Razu-
mikhin approach (see [19],[20],[21]), sufficient conditions
guaranteeing the stability of the closed loop system are
developed and feedback controllers for these systems are
proposed. The approach that is adopted in this paper allows
for considering a large class of non linear systems.
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In order to simplify the presentation, the single delay case
is treated before considering the case of multiple delays.

The organization of the paper is as follows. In Section 2
the class of systems considered is presented and some basic
notions are recalled . In Section 3, the main results are given
and proved. Finally, Section 4 gives conclusions.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

The system under consideration is of the form :
x(k + 1) = f(x(k), x(k − nd), u(k))

x(k) = x0, k = −nd, 0.

(1)

where x(k) ∈ IRn is the state vector, u(k) ∈ IR is the
input vector and nd ∈ IN, is the delay. IN is the set
of all nonnegative integers.The vector x0 represents the
initial delay condition. f is a smooth vector field such that
f(0, 0, 0) = 0.

Denote by f0 the vector field defined by :

f0(x(k), x(k − nd)) = f(x(k), x(k − nd), 0)

Suppose there exists a Lyapunov function V , i.e., a scalar
function at least of class C1 which is positive definite and
proper, such that :

V (f0(x(k), x(k − nd)))− V (x(k)) ≤ 0, ∀k ≥ 0,

assuming that

V (x(k + i)) ≤ V (x(k)), −nd ≤ i ≤ −1, k ≥ 0.
(2)

Resulting from the Lyapunov Razumikhin approach (see
[21], recalled in the following), this means that the system
without the drift is stable.

Now, we set the following notations, which will be used
throughout the paper.
Let (fk)k∈IN be the sequence of functions defined by :

f0(x) = x, ∀x ∈ IRn

and recursively by

fk(x) = f(fk−1(x)), ∀k ≥ 1.

fk is denoted the k-th multiple composition of the mapping
f .



Let δ be the delay operator given for any function a(.) by :

δa(k) = a(k − nd). (3)

For any function h : IRn × IRn → IR, define :

hδ(x(k)) = h(x(k), x(k − nd)), ∀k ∈ IN,

h0
δ(x) = x, ∀x ∈ IRn

and by induction,

hk
δ (x) = hδ(hk−1

δ (x)), ∀k ≥ 1.

Before proceeding further, we recall some preliminary results
(see [20],[21]).
Consider the nonlinear discrete-time delay systems of the
general form :

x(k + 1) = f(k, xk) (4)

where f : IN×CH 7→ IRn is continuous with respect to the

first argument, lipschitzian with respect to the second and
satisfy f(k, 0) = 0 for all k ∈ IN. C is the set of function

C = {φ : {−r,−r + 1, . . . ,−1, 0} → IRn}

with r for some integer r ≥ 0. For φ ∈ C, define the norm of
φ by ‖φ‖ = maxs∈J |φ(s)|. The Euclidean norm of φ(s) ∈
IRn is denoted by |φ(s)| and J = {−r,−r + 1, . . . ,−1, 0}.
For all α ≥ 0, we denote by Cα, the set defined by

Cα = {φ ∈ C : ‖φ‖ < α}.

For n0 ∈ IN, x(n0, φ)(k) will represent the solution of
(4) at time k with initial data φ, specified at time n0, i.e.,
x(n0, φ)(n0 + s) = φ(s), for s ∈ J .
For s ∈ J ,

xk(s) = x(k + s)

and represents the state of the delay system.

DEFINITION 1: The equilibrium solution, x ≡ 0 of the
delay difference system (4) is said to be :

1) stable, if for any n0 ∈ IN, ε > 0, there is a δ = δ(ε, n0)
such that φ ∈ Cδ implies xk(n0, φ) ∈ Cε for k ≥ n0.

2) uniformly stable if the number δ in the definition is
independent of n0.

DEFINITION 2: The equilibrium solution, x ≡ 0 of
the delay difference system (4) is said to be asymptotically
stable, if it is stable and there exists b0 = b0(n0) > 0 such
that φ ∈ Cb0 implies xk(n0, φ) → 0 as k →∞.

To prove the stability of the zero solution of the system, the
following result can be used.

THEOREM 1:
Suppose u, v, w : IR+ → IR+ are continuous, nondecreasing
functions, u(x), v(x) positive for x > 0, u(0) = v(0) = 0,

v strictly increasing. If there is a continous function V :
IN× IRn → IR such that

u(|x|) ≤ V (k, x) ≤ v(|x|)

and

∆V (k, x(.)) ≡ V (k + 1, x(k + 1))− V (k, x(k))

≡ V (k + 1, f(k, xk))− V (k, x(k))

≤ −w(|x(k)|)

if V (k + s, x(k + s)) ≤ V (k + 1, x(k + 1)) for s ∈ J

then the zero solution of (4) is uniformly stable.

Now, the main results can be stated and proved.

III. MAIN RESULTS

Consider the system (1) where the vector field f is
rewritten as :

f(x, δx, u) = f0(x, δx) + g(x, δx, u),

with :
g(x, δx, u) = f(x, δx, u)− f0(x, δx).

For simplicity, k is dropped. The vector field f0 has been
introduced in the previous section. It corresponds to the case
where the control u = 0.

With the notations introduced previously, the vector field
f0,δ correspond to f0,δ(x) = f0(x, δx).

Let Fδ and Ṽ be the functions defined by :

Fδ(x, u) = f(x, δx, u)

and
Ṽ (x, u) = V (Fδ(x, u)),

We suppose that the integer α ∈ IN? defined by :

α = inf {k ∈ IN/
∂kṼ

∂uk
(x, 0) 6= 0} (5)

is odd.

Then we have the following result :

THEOREM 2:
If the intersection of the sets

W1 = {x∈ IRn/V (fk+1
0,δ (x)) − V (fk

0,δ(x)) = 0;

∀k ∈ IN}
and

W2 = {x ∈ IRn/
∂αṼ

∂uα
(fk

0,δ(x), 0) = 0;∀k ∈ IN}

(6)

is reduced to the origin, then the system (1) can be made
globally asymptotically stable at the origin.



Proof
Consider the difference of the Lyapunov function V along
trajectories of (1) :

∆V (x) = V (f(x, δx, u))− V (x).

With the notations introduced previously, this turns out to
write that :

∆V (x) = Ṽ (x, u)− V (x).

According to assumption (5), we obtain the following Taylor
expansion :

Ṽ (x, u) = Ṽ (x, 0) +
uα

α!
∂αṼ

∂uα
(x, 0) + uα+1h(x, u) (7)

where h is a function of C∞(IRn, IR).

Note that :

Ṽ (x, 0) = V (f0,δ(x)).

Let θ ∈ C∞(IRn × IRn; ]0,∞)), a function satisfying :

θ(x, δx)≤ 1

sup
|u|≤1

|α! h(x, u)|2+|∂
αṼ

∂uα
(x, 0)|2+2

. (8)

We define the control law u by :

u(x, δx) = −θ(x, δx)
∂αṼ

∂uα
(x, 0) (9)

It is easy to check that, with condition (8), the control law
verify the following inequalities :

u(x, δx)
∂αṼ

∂uα
(x, 0) ≤ 0,

|u(x, δx)| ≤ 1
2
,

and |α! θ(x, δx)h(x, u)| ≤ 1
2
, ∀x ∈ IR.

(10)

By using (7), we find that :

∆V (x) = V (f(x, δx, u))− V (x)

=
(
Ṽ (x, 0)− V (x)

)
+

uα

α!
∂αṼ

∂uα
(x, 0)

+uα+1h(x, u)

By substituting the control u by its expression (9) we get :

∆V (x) =
(
V (f0,δ(x))− V (x)

)
−θδ(x)α{∂αṼ

∂uα
(x, 0)}α+1.

.{ 1
α!
− θδ(x)h(x, u)}

By taking into account the fact that the control u satisfy
(10) and by using and the assumption (2) (related to the
Lyapunov-Razumikhin approach), we obtain :

∆V (x) ≤
(
V (f0,δ(x))− V (x)

)
−θδ(x)α

2
{∂αṼ

∂uα
(x, 0)}α+1,

≤ 0.

Then the closed-loop system formed by (1) and (9) is stable.

By the LaSalle’s invariance principle for difference system
(see [22]), all solution of the closed-loop system converges
to the largest invariant set I contained in

Ω = {x ∈ IRn/ ∆V (x) = 0}.

Since α is odd, we can remark that if x ∈ Ω then:

V (f0,δ(x))− V (x) = 0

and

∂αṼ

∂uα
(x, 0) = 0.

Let x(k) be a solution of the closed-loop system with x(0) =
x ∈ I. By invariance of I :

x(k) ∈ I ∀k ≥ 0.

Since u = 0 on the set I , it follows that :

x(k) = fk
0,δ(x).

Then, the invariance of I implies that :

V (fk+1
0,δ (x)) − V (fk

0,δ(x)) = 0

and
∂αṼ

∂uα
(fk

0,δ(x), 0) = 0.

Note that

∂αṼ

∂uα
(fk

0,δ(x), 0) =
∂V

∂x
(fk+1

0,δ (x))
∂αgδ

∂uα
(fk

0,δ(x), 0)

if gδ(x, 0) = g(x, δx, 0).

Then x is an element of W1 ∩ W2 defined by (6). Since
by assumption W1 ∩ W2 = {0}, we can conclude that the
attractivity of the origin is proved.
This finishes the proof of the Theorem.

Let us consider now the nonlinear system with delay of
the general form :

x(k + 1)= f0(x(k), x(k − nd)) + uµf1(x(k), x(k − nd))

+uµ+1f2(x(k), x(k − nd), u(k))

x(k) = x0, k = −nd, 0.
(11)



where µ > 1 and µ is odd.
For a smooth vector field f , this correspond to a Taylor
expansion of order µ for which the first terms of the
expansion (except the first one), are equal to zero .
Then we can derive the following result :

COROLLARY 1:
If the set

W = {x∈ IRn / V (fk+1
0,δ (x)) − V (fk

0,δ(x)) =

∂V

∂x
(fk+1

0,δ (x))f1,δ(fk
0,δ(x)) = 0;

∀k ∈ IN}
(12)

is reduced to the origin, then the system (1) is globally
asymptotically stabilizable.

This result is a consequence of Theorem 2 applied to system
(11). We can check easily that

∂pṼ

∂up
(fk

0,δ(x), 0) = 0, for 1 ≤ p < µ,

and

∂µṼ

∂uµ
(fk

0,δ(x), 0) = µ!
∂V

∂x
(f0,δ(x))f1,δ(x)

Then, the system is stabilizable by means of a feedback of
the form :

u(x, δx) = −Ψ(x, δx)
∂V

∂x
(f0,δ(x)) f1,δ(x) . (13)

where Ψ ∈ C∞(IRn×IRn; ]0,∞)) is an appropriate function.

REMARK 1: In the particular case where µ = 1, this result
is still valid and we can then recover a result establish in [18].

REMARK 2: We can note that Theorem 2, can be extended
to the case of multiple commensurate delays.

Consider the system of the form :
x(k+1)=f(x(k), x(k − nd1), ..., x(k − ndm), u(k))

x(k) =x0, k = −nd1, . . . ,−ndm, 0.
(14)

where f is a smooth vector field satisfying f(0, . . . , 0) = 0.

Let us now introduce the delay operators, δi, (i ∈ IN) defined
by :

δix(k) = x(k − ndi)

We can define the delay operator τp by:

τp = (δ1, .., δp).

Let F be a function mapping IRn×(p+1) into IRn and
Fτp

(x(t)) the function defined by

Fτp(x(k)) = F (x(k), x(k − nd1), . . . , x(k − ndp))

= F (x(k), τp(x(k)).

We define the sequence of function F k
τp

for k ∈ IN as follows:

F 0
τp

(x) = x, ∀x ∈ IRn,

and by recurrence

F k
τp

(x) = Fτp(F k−1
τp

(x)), ∀k ≥ 1.

By setting f0(x(k), x(k − nd1), ..., x(k − ndm)) =
f(x(k), x(k − nd1), ..., x(k − ndm), 0) and thus

f0,τm(x(k)) = f0(x(k), x(k − nd1), ..., x(k − ndm)),

we can state the following result:

THEOREM 3:
If the intersection of the sets

W̃1 = {x∈ IRn/ V (fk+1
0,τm

(x)) − V (fk
0,τm

(x)) = 0;

∀k ∈ IN}
and

W̃2 = {x ∈ IRn/
∂αṼ

∂uα
(fk

0,τm
(x), 0) = 0;

∀k ∈ IN}
(15)

with τm = (δ1, .., δm), is reduced to the origin, then the
system with multiple delays (14) is globally asymptotically
stabilizable at the origin.

Proof :
The proof of this result is similar to the proof of Theorem

2. We replace the delay operator δ given in (3) by the delay
operator τ = (δ1, .., δm).

IV. CONCLUSIONS

In this paper, we have presented results on stabilization
of discrete time nonlinear systems with time delay. More
precisely, we have used the Invariance Principle of LaSalle
dedicated to difference systems combined with a Lyapunov
Razumikhin type approach. We obtained sufficient condi-
tions, for guaranteeing the asymptotic stability of the closed-
loop system and stabilizing state feedback control laws have
been derived.
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