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Robust Stability of Time-varying Polytopic Systems
by the Attractive Ellipsoid Method

Pablo Garcı́a1 and Konstantinos Ampountolas2

Abstract— This paper concerns the robust stabilization of
continuous-time polytopic systems subject to unknown but
bounded perturbations. To tackle this problem, the attrac-
tive ellipsoid method (AEM) is employed. The AEM aims
to determine an asymptotically attractive (invariant) ellipsoid
such that the state trajectories of the system converge to a
small neighborhood of the origin despite the presence of non-
vanishing perturbations. An alternative form of the elimination
lemma is used to derive new LMI conditions, where the state-
space matrices are decoupled from the stabilizing Lyapunov
matrix. Then a robust state-feedback control law is obtained
by semi-definite convex optimization, which is numerically
tractable. Further, the gain-scheduled state-feedback control
problem is considered within the AEM framework. Numerical
examples are given to illustrate the proposed AEM and its
improvements over previous works. Precisely, it is demonstrated
that the minimal size ellipsoids obtained by the proposed AEM
are smaller compared to previous works, and thus the proposed
control design is less conservative.

I. INTRODUCTION

Robust stabilization and control of affine linear parameter
varying systems is an active area of research where stability,
H2, H1, gain-scheduling and multi-objective control are the
most important problems of study. One of the main goals is
to obtain less conservative linear matrix inequality (LMI)
conditions [1], [2], [3]. This can be achieved by decoupling
the state-space matrices and Lyapunov functions to establish
extended LMI conditions [4], [5], [6], [7]. The influence of
uncertainty (parametric type, unmodeled dynamics, external
perturbations) on the performance of dynamical systems has
been also extensively studied using different techniques such
as H1 [8], robust maximum principle [9], sliding-mode
control [10], and active disturbance rejection control [11].

Among these techniques, the invariant ellipsoid method
[12], [13] for linear systems and the more recently de-
veloped technique, the attractive ellipsoid method (AEM)
for nonlinear systems [14], [15], employ the concept of
the asymptotically attractive (invariant) ellipsoid. The AEM,
which is based on Lyapunov arguments, is a robust control
design technique that minimizes the effect of non-vanishing
perturbations in nonlinear systems. In the presence of non-
vanishing disturbances, it is well known that is not possible
to keep the state of the system at the origin. The goal of the
AEM is to find a control law and an asymptotically attractive
ellipsoid such that state trajectories of the system converge to

1P. Garcı́a is with CINVESTAV-IPN, Department of Automatic Control,
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a small (in a given sense) neighborhood of the origin. These
ellipsoidal regions characterise the effect of the exogenous
disturbances on systems trajectories of the dynamical system.

In this paper, we extend the AEM to the robust constrained
stabilization problem of linear continuous-time polytopic
systems subject to unknown but bounded perturbations. We
use an alternative form of the elimination lemma and derive
new parameterized LMI conditions for robust stability. The
obtained LMI conditions extend our previous work on the
robust stabilization of continuous-time and discrete-time
systems by the AEM [16], [17]. These conditions provide
the minimum size of the corresponding attractive ellipsoid,
solve the stabilization problem, and ensure covergence of
system state trajectories to a minimal ellipsoidal set.

The employed form of the elimination Lemma allows
to decouple the state-space matrices from the Lyapunov
matrix. Thus the optimization variables associated with the
controller are independent of the symmetric matrix that
defines the Lyapunov function to test stability. This feature
is of particular importance since it can be used to develop
Lyapunov functions to prove the stability of uncertain sys-
tems where the uncertainty is a bounded and convex polytope
or ellipsoid. Contrary, the AEM literature is dominated by
complex bi-linear matrix inequality (BMI) or LMI conditions
where matrices are not decoupled and the associated control
gain matrices depend on the Lyapunov matrix (see e.g., [18],
[19], [20]). In the proposed AEM, synthesis of the robust
control law is reduced to a semi-definite optimization prob-
lem (SDP), which can be readily solved using interior-point
algorithms [21], [22]. The search space of solutions for the
corresponding SDP problem is restricted by a non-negative
parameter which is determined by a Armijo-like step-size
reduction rule. Two numerical examples are presented to
illustrate the feasibility of the proposed approach.

II. PRELIMINARIES

Notation. For matrices and vectors (·)T indicates transpose
and A† := A+AT denotes the Hermitian operator on A. For
matrix elements ? denotes the transposed symmetric element.
For symmetric matrices, X � 0 indicates that X is negative
definite and X � 0 indicates that X is negative semi-definite.
Sn denotes the space of square and symmetric real matrices
of dimension n. For square matrices trace(·) denotes the
trace of (·).
Problem formulation. Consider a continuous-time linear
time-invariant system

ẋ(t) = Ax(t) +Bu(t) +D!(t), x0 given, (1)
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where the pair (A,B) is controllable, A 2 Rn⇥n, B 2

Rn⇥m, D 2 Rn⇥p, x (t) 2 Rn is the system state, u (t) 2
Rm is the control input, and ! 2 Rp is an unknown but
bounded (at each time instant) perturbation expressed as,

! (t)T W! (t)  1, 8 t � 0, (2)

where the matrix W = WT
� 0 is given. No other

constraints are imposed on the perturbation ! (t), however it
is not considered to be random.

The main objective is to design a robust state-feedback
controller of the form u = Kx, where K 2 Rm⇥n is a
gain matrix, for the system (1) to compensate the influence
of external perturbations (2) on the system state such that
closed-loop system trajectories

ẋ(t) = (A+BK)x(t) +D!(t), (3)

converge asymptotically to a minimal size ellipsoid, which
includes the origin. This minimum size ellipsoid guarantees
that the state trajectories of the system will remain within
a neighborhood of the origin despite the presence of non-
vanishing perturbations (2).

The following definition characterizes this minimal region.
Definition 1 (Ellipsoidal set): An ellipsoid E(P, x̄) ⇢ Rn

with center x̄ and shape matrix P is a set of the form,

E (P, x̄) :=
�
x 2 Rn : (x� x̄)TP�1(x� x̄)  1

 
, (4)

where P 2 Sn is a positive definite matrix.
Definition 2 (Robustly controlled invariant set): The set

⌦ ✓ X , where X is the set of admissible states, is robustly
controlled invariant for the system (1) if for all x(t) 2 ⌦,
there exists a control value u(t) such that, for all !(t) in (2),
with W 2 Sn � 0,

ẋ(t) = Ax(t) +Bu(t) + !(t) 2 ⌦, 8 t � 0.
If the control value is constrained as u(t) 2 U , where U is
the set of admissible controls, such a control action is called
admissible. If x̄ = 0 then the ellipsoid can be written as
E (P ) :=

�
x 2 Rn : xTP�1x  1

 
, P 2 Sn � 0, and we

assume it is a robustly controlled invariant set of (1).
Also, consider the following distance metric from a point

x to a set E , kxkE := infy2E kx� yk , 8x 2 Rn.
Definition 3 (Asymptotically Attractive Ellipsoid): The

set E(P ) is an asymptotically attractive ellipsoid for the
system (1) if kx (t, x0)kE(P ) ! 0, as t ! 1, for any
x0 2 Rn, where x (t, x0) is a trajectory of the system for a
given admissible control.

For any initial condition x0, convergence of state trajec-
tories in (1) to a minimal size ellipsoid is guaranteed by the
asymptotic attractivity of the set E (P ).

III. MAIN RESULTS

A. Time-Invariant Continuous-time Linear Systems

Consider the continuous-time linear time-invariant system
(1) and the quadratic Lyapunov function V (x) = xTP�1x,

P � 0. The derivative of V along the trajectories of (3) is

V̇ (x,!) = ẋTP�1x+ xTP�1ẋ

= xT
⇥
(A+BK)T P�1 + P�1 (A+BK)

⇤
x

+ !TDTP�1x+ xTP�1D! (5)

We aim to prove that V̇ (x,!) < 0 for all (x,!) 6= 0 along
with !(t)TW!(t)  1, for all t � 0. Let zT =

⇥
xT !T

⇤
,

then V̇ (x) = zT⌦1z < 0, where

⌦1 :=


(A+BK)TP�1 + P�1(A+BK) P�1D

DTP�1 0

�
.

Adding and subtracting ↵xTP�1x and ↵!TW! in (5),
where ↵ > 0, yields

V̇ = zT⌦2z � ↵xTP�1x+ ↵!TW!

 zT⌦2z + ↵ (1� V ) ,

where1

⌦2 :=

(A+BK)TP�1 + P�1(A+BK) + ↵P�1 P�1D

? �↵W

�
.

If ⌦2 � 0, this implies that zT⌦2z < 0 for all z 6= 0
and the corresponding Lyapunov function V (x) satisfies the
inequality zT⌦2z+↵ (1� V ) < ↵ (1� V ), while V̇ is upper
bounded by V̇ < �↵ (V � 1), and V > 1 guarantees that
E (P ) is an attractive ellipsoid of the closed-loop system
(3). Moreover, if x(0) 2 E (P ) then V (xt) = xT

t P
�1xt 

e�↵tV (x0) + 1� e�↵t
! 1, as t!1.

The following lemma [23], which is based on the elimi-
nation lemma, will allow us to derive the main result.

Lemma 1: Let us define a symmetric matrix � and matri-
ces N , M with appropriate dimensions. Then the following
conditions are equivalent:

1) � � 0 and �+NM
T +MN

T
� 0.

2) The LMI problem


� M+NF
M

T + FT
N

T
�F � FT

�
� 0,

is feasible with respect to F .
Proof: Proof is omitted; see [23].

The following LMI condition establishes that the ellipsoid
E (P ) is an attractive ellipsoid of the closed-loop system (3)
with gain matrix K = LF�1, where L and F are design
matrices of appropriate dimension.

Theorem 1: If there exists a positive definite matrix P 2
Sn, matrices F 2 Rn⇥n (non-singular) and L 2 Rm⇥n, and
a constant scalar ↵ > 0, such that:

2

4
�↵P D P +AF +BL+ ↵F
? �↵W 0
? ? �F � FT

3

5 � 0, (6)

then the ellipsoid E (P ) is an attractive ellipsoid of system
(3) with feedback gain matrix K = LF�1.

1Notation: ? denotes the transposed symmetric element.
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Proof: Using the congruence transformation T = diag (P, I)
pre-and post-multiplying both sides of ⌦2 by T , yields

⌦3 =


P (A+BK)T + (A+BK)P + ↵P D

? �↵W

�
.

To apply Lemma 1, ⌦3 is decomposed as

⌦3 =


�↵P D
DT

�↵W

�
+


A+BK + ↵I

0

� ⇥
P 0

⇤

+


P
0

� ⇥
AT +KTBT + ↵I 0

⇤
� 0.

The proof is concluded by using the following matrix as-
signments in Lemma 1:

� 


�↵P D
DT

�↵W

�
, N  


A+BK + ↵I

0

�

M 
⇥
P 0

⇤T
, F 2 Rn⇥n,

which results, after some algebra, in the LMI condition (6).
The control is obtained by applying the change of variables
L := KF and u(t) = LF�1x(t), for F non-singular.

In the LMI condition (6), observe that P � 0 is guaranteed
by the (1, 1)-block, �↵P � 0. Also, the (3, 3)-block, �F �
FT, implies that F is nonsingular.

An important feature of condition (6), in contrast to the
existing literature in AEM, is that the state-space matrices
and Lyapunov matrix are separated, and the feedback gain
K does not depend on the Lyapunov matrix P . This feature
is of particular importance since it can be used to develop
Lyapunov functions to prove the stability of time-variant un-
certain systems with polytopic uncertainty. The slack matrix
F can be seen as an additional degree of freedom.

Remark 1 (Line search subproblem): Due to the presence
of the decision variable ↵ > 0, condition (6) is not an LMI.
However, for fixed ↵, this condition actually becomes an
LMI. To find a suitable ↵, a line-search algorithm can be used
such that it keeps increasing the value of ↵ until the problem
becomes feasible, or stops when ↵ reaches a certain threshold
value. The Armijo rule is essentially a successive reduction
rule, suitable for this line-search subproblem. The idea here is
to find the maximum ↵ that minimizes the trace(P ) subject
to feasibility of (6) and ⌦2 � 0 (see e.g., [16], [17].

Remark 2 (Handling control and state contraints):
Linear polyhedral state and control constraints can be
readily handled using ellipsoidal sets dealing with control
and state constraints directly, where the LMI condition of
Theorem 1 and additional LMI conditions are combined
to a coupled system of LMIs, and can be formulated as
a Semi-definite Programming (SDP) problem. Suppose
that the magnitude of the control signal u(t) = Kx(t) is
constrained inside an ellipsoid E (⌦u) ✓ U and the state
constraints are satisfied if E(⌦x) ✓ X . We can then impose
that ⌦x,⌦u ⌫ P . In this case, the attractive ellipsoid
corresponding to P is nested inside the bigger ellipsoids ⌦x

and ⌦u (see e.g. [21], [16]).
An optimal attractive ellipsoid with minimal size can be

found using the trace criterion due to linearity of the trace

function. The following SDP (with fixed ↵) problem provides
LMI-based conditions for optimal robust stabilization,

min
P,L,F,⌦u,⌦x

trace (P )

subject to: (6), LMIx, LMIu,
(7)

where LMIx and LMIu (omitted here due to space limita-
tions, see e.g., [16]) are LMI conditions satisfying E(⌦x) ✓
X and E(⌦u) ✓ U , respectively. Then the linear feedback
gain K = LF�1 minimizes the size of the attractive ellipsoid
of the closed-loop system (3).

B. Time-varying Continuous-time Polytopic Systems

The aim of this section is to derive a finite-dimensional
set of LMI conditions for the design of static feedback
controllers of linear parameter varying polytopic systems.
Consider the class of continuous-time linear parameter vary-
ing (LPV) systems of the form

ẋ(t) = A (�)x(t) +B (�)u(t) +D (�)!(t), t � 0, (8)

where matrices A (�), B (�) and D (�) depend affinely
on the unknown but measurable time-invariant vector of
parameters �. The vector � takes values in the unit simplex
⇤N , � 2 ⇤N ⇢ RN , N 2 N, N � 2, where N is the number
of vertices and ⇤N may be expressed as,

⇤N =

(
� 2 RN :

NX

i=1

�i = 1,�i � 0

)
. (9)

The affine assumption implies that matrices A (�), B (�) and
D (�) are matrix polytopes and can be written as

(A,B,D) =
NX

i=1

�i (Ai, Bi, Di) . (10)

It should be noted that �i might be time-varying. Using state-
feedback control, the closed loop system reads:

ẋ(t) = (A (�) +B (�)K)x(t) +D (�)!(t). (11)

Assume that E (P (�)) given by (4) with x̄ = 0 and,

P (✓)�1 :=

 
NX

i=1

�iPi

!�1

, (12)

is a robustly controlled invariant set of (11).
The following theorem summarises the main result.
Theorem 2: The ellipsoid E (P ) is the attractive ellipsoid

of the closed-loop system (11) with feedback gain matrix
K = LF�1 if and only if there exist positive definite
matrices Pi 2 Sn, i = 1, . . . , N , matrices F 2 Rn⇥n

and L 2 Rm⇥n, and constant scalar ↵ > 0, such that the
following LMI conditions are satisfied
2

4
�↵Pi Di P +AiF +BiL+ ↵F
? �↵W 0
? ? �F � FT

3

5 � 0, (13)
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for all vertices, i = 1, . . . , N .
Proof: The necessity of this condition is directly obtained
from Theorem 1 and (6). Indeed, if we satisfy
2

4
�↵P D (�) P +A (�)F +B (�)L+ ↵F
? �↵W 0
? ? �F � FT

3

5 � 0,

for all � 2 ⇤N , then this implies that the LMI must hold on
the vertices. Now suppose that (13) hold for all Ai, Bi, and
Di, i = 1, . . . , N . Multiplying each inequality matrix by �i

and summing for all i = 1, . . . , N , by convexity of the sets,
we conclude that (13) must hold for all � 2 ⇤N .

Minimization of trace P (�) can be equivalently expressed
as the minimization of a parameter ⌘ > 0, subject to,

trace(Pi)  ⌘, 8 i = 1, . . . , N (14)

The following SDP problem (for given ↵ > 0) summarises,

min
Pi,L,F

⌘

subject to: (13), (14).
(15)

C. Gain-scheduled Dynamic Feedback Control
This section studies the problem of designing gain-

scheduled dynamic feedback controllers in the special case
where Bi = B, for all i = 1, 2, . . . , N . Assume gain-
scheduled controllers of the form

u (x(t)) = K (�)x(t), K (�) =
NX

i=1

�iKi, (16)

where Ki, i = 1, . . . , N , are gain matrices, such that the
closed-loop system

ẋ(t) = [A(�) +BK(�)]x(t) +D(�)!(t) (17)

converges asymptotically to a minimal size ellipsoid, which
includes the origin for all � 2 �N ✓ RN in (9).

Theorem 3: The ellipsoid E (P ) is the attractive ellipsoid
of the closed-loop system (11) with gain-scheduled con-
trollers (16) and feedback gains Ki = LiF�1, i = 1, . . . , N ,

u(t) =

 
NX

i=1

�iLi

!
F�1x(t), t � 0, (18)

if and only if there exist positive definite matrices Pi 2 Sn,
matrices Li 2 Rm⇥n, i = 1, . . . , N , F 2 Rn⇥n and constant
scalar ↵ > 0, such that:
2

4
�↵Pi Di Pi +AiF +BLi + ↵F
? �↵W 0
? ? �F � FT

3

5 � 0, (19)

for all vertices, i = 1, . . . , N .
Proof: Proof omitted since it is a direct application of
Theorems 1 and 2.

Finally, we obtain the following SDP problem (given ↵),

min
Pi,Li,F

⌘

subject to: (14) , (19) .
(20)

The feedback gain-scheduled controllers Li := KiF
minimize the size of the attractive ellipsoid of the closed-
loop system (17).

IV. NUMERICAL EXAMPLES
This section presents two numerical examples to demon-

strate the efficiency of the proposed AEM approach when
compared to the AEM in [15]. The first example involves a
continuous-time linear time-invariant system with unknown
but bounded perturbations. The second concerns the robust
stabilization of an LPV system by gain-scheduled control.

A. Example 1
Consider the system (1) with the following matrices

A =

2

4
2 0 1
2 2 1
�1 1 �2

3

5 , B =

2

4
1
0
�1

3

5 ,

W =

2

4
2.2 0 0
0 0.04 0
0 0 0.0004

3

5⇥ 105, D = R = I.

Let the exogenous disturbance input ! (t) be

! (t) = 0.2+0.5 sin (50t)+0.4 sin (100t) (0.001, 0.01, 0.1)T .

The system with u (t) = 0 is unstable.
Suppose that the magnitude of the control signal u(t) =

Kx(t) is constrained as,

kuk2R := xTKTR�1Kx < µ2, 8x : xT⌦�1
u x  1, (21)

where µ2 = 100 and R = 1. The linear feedback gain K, the
ellipsoidal matrix P and its size resulting from the solution
of the SDP problem (7) derived from Theorem 1 are:

K =
⇥
�24.36 �36.24 �10.69

⇤
,

P =

2

4
0.015 �0.0017 �0.0217
�0.0017 0.0006 0.0010
�0.0217 0.0010 0.0400

3

5 ,

with tr (P ) = 0.0556. To assess the performance of the
proposed AEM, we compare its results with the results
obtained by the AEM in [15]. For the AEM in [15], the
feedback gain K, the ellipsoidal matrix P and its size are:

K =
⇥
�29.83 �37.94 �9.28

⇤
,

P =

2

4
0.1285 �0.0402 �0.1099
�0.0402 0.0258 0.0226
�0.1099 0.0226 0.1525

3

5 ,

with tr (P ) = 0.3068. To compare the two AEM approaches,
consider the initial condition x0 =

⇥
�1 1 �2

⇤T. Figs 1
and 2 compare the proposed AEM with the AEM in [15],
denoted as AEM⇤. As can be seen, the proposed approach
indicates smooth and fast convergence of the system states
to the origin (cf. Fig 1(a) with Fig. 1(b)) compared to the
AEM in [15]. Also it needs less control effort to stabilise the
system (cf. Fig. 1(c) with Fig. 1(d)).

Fig 2 illustrates the projection onto the subspaces (x1, x2)
and (x2, x3) and minimal ellipsoids. As can be seen, the
obtained minimal size ellipsoid with Theorem 1 and SDP (7)
is substantially smaller than the one in [15] (cf. Fig 2(a) with
Fig. 2(b) and Fig 2(c) with Fig. 2(d)). This demonstrates that
the proposed AEM approach is less conservative (compared
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Fig. 1. Example 1: State and control trajectories.

to previous works) given that the feedback parameters of
control design should be such that making the attractive
ellipsoid of a smaller size. Note that every state in state space
can be taken inside P (red ellipsoid). In this example, ⌦u is
equal to P but can be taken as ⌦u � P and any state inside
⌦u will satisfy the control constraint (21). State constraints
can be also imposed as discussed in Remark 2.

B. Example 2

Consider a continuous-time LPV system with the follow-
ing affine parameter-dependent matrices

A (✓) =

2

4
�1.6 + 0.4✓ 2 ✓
�2 + ✓ �2✓ ✓
�✓ 1 �2✓

3

5 ,

B (✓) =

2

4
0.9
�0.81
�0.8

3

5 , W =

2

4
2 0 0
0 0.05 0
0 0 0.0005

3

5⇥ 105,

and D (✓) = I where ✓ is a time-invariant parameter with
|✓|  1. Matrix A (✓) is unstable for all ✓  0. Let the
exogenous disturbance input ! (t) be

! (t) = 0.5+0.2 sin (80t)+0.2 sin (100t) (0.001, 0.01, 0.1)T .

To solve the stabilization problem, we consider a gain-
scheduled feedback controller of the form (16) and express
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Fig. 2. Example 1: Projection onto the subspaces (x1, x2) and (x2, x3)
and minimal ellipsoids.

the LPV system into the polytopic form (8). The state matrix
A (✓) can be expressed as in (10) with N = 2 vertices

A1 =

2

4
�2 2 �1
�3 2 �1
1 1 2

3

5 , A2 =

2

4
�1.2 2 1
�1 �2 1
�1 1 �2

3

5 ,

�1 =
✓max � ✓

✓max � ✓min
, �2 =

✓ � ✓min

✓max � ✓min
,

with ✓min = �1 and ✓max = 1. The convex coordinates �i,
i = 1, 2, satisfy 0  �i  1, and �1 + �2 = 1. The linear
feedback gains K1, K2, the ellipsoidal matrix P and its size
resulting from the solution of the SDP problem (20) are

K1 =
⇥
335.94 �19.77 626.08

⇤
,

K2 =
⇥
321.65 �13.91 602.15

⇤
,

P =

2

4
0.1314 �0.0162 �0.0780
�0.0162 0.0356 0.0162
�0.0780 0.0162 0.0486

3

5 ,

with tr (P ) = 0.2156. To illustrate the approach, consider
an unstable system with �1 = 0.98, �2 = 0.02 and initial
condition x0 =

⇥
2 4.5 �0.5

⇤T. Fig. 3 shows the obtained
results. As can be seen, the proposed method provides fast
and smooth convergence to the origin. It should be noted
that the AEM in [15], when applied to the system above
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Fig. 3. Example 2: (a) state trajectories; (b) and (c) projection onto the
subspaces (x1, x2) and (x2, x3), respectivly, and minimal ellipsoids.

with �1 = 0.98 and �2 = 0.02, resulted in a state-feedback
matrix K with gain values of the order of 106.

V. CONCLUSIONS

This paper presented new LMI conditions for the robust
stabilization of continuous-time polytopic linear systems
with unknown but bounded perturbations via the AEM.
These LMI conditions can be used to derive state-feedback
control laws via convex optimization. The proposed control
laws ensure robust stabilization and convergence of state
trajectories of the system to a minimal size ellipsoidal set

(by the trace criterion). Importantly, the derived stabiliza-
tion conditions are less conservative compared to previous
works (for example compared to [15]) and can simplify the
complexity of other approaches presented in the literature
(e.g. by employing the elimination Lemma 1). On going
work extends the current results to the robust constrained
stabilization of discrete-time linear systems [17].
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[10] V. I. Utkin, G. Jürgen, and J. Shi, Sliding mode control in electro-
mechanical systems. Boca Raton, FL: CRC Press, 2009.

[11] B. Z. Guo and Z. L. Zhao, Active disturbance rejection control for
nonlinear systems: an introduction. Singapore: Wiley, 2016.

[12] S. A. Nazin, B. T. Polyak, and M. V. Topunov, “Rejection of bounded
exogenous disturbances by the method of invariant ellipsoids,” Au-
tomation and Remote Control, vol. 68, no. 3, pp. 467–486, 2007.

[13] B. Polyak, P. Shcherbakov, and M. Topunov, “Invariant ellipsoids
approach to robust rejection of persistent disturbances,” IFAC Pro-
ceedings Volumes, vol. 41, no. 2, pp. 3976–3981, 2008.

[14] S. Gonzalez-Garcia, A. Polyakov, and A. Poznyak, “Output linear
controller for a class of nonlinear systems using the invariant ellipsoid
technique,” in 2009 American Control Conf., 2009, pp. 1160–1165.

[15] A. Poznyak, A. Polyakov, and V. Azhmyakov, Attractive Ellipsoids in
Robust Control, ser. Systems & Control: Foundations & Applications.
Switzerland: Birkhäuser Basel, 2014.
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