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Abstract

Storage operators have been introduced by J.L. Krivine in [5] ; they are closed l-terms 

which,  for a data type, allow to simulate a "call  by value" while using the "call by 

name" strategy. In this paper, we introduce the directed l-calculus and show that it has 

the usual properties of the ordinary l-calculus. With this calculus we get an equivalent - 

and  simple  -  definition  of  the  storage  operators  that  allows  to  show some of  their 

properties  :

- the stability of the set of storage operators under the b-equivalence (theorem 5.1.1) ;

- the undecidability ( and its semi-decidability ) of the problem "is a closed l-term t a 

storage operator for a finite set of closed normal l-terms ? " (theorems 5.2.2 and 5.2.3) ; 

-  the  existence  of  storage  operators  for  every  finite  set  of  closed  normal  l-terms 

(theorem 5.4.3) ;

- the computation time of the "storage operation" (theorem 5.5.2).

Résumé 

Les opérateurs de mise en mémoire ont été introduits par J.L. Krivine dans [5] ; il s'agit 

de l-termes clos qui, pour un type de données, permettent de simuler "l'appel par nom" 

dans le cadre de "l'appel  par valeur".  Dans cet article,  nous introduisons le  l-calcul 

dirigé et nous démontrons qu'il garde les propriétés usuelles du l-calcul ordinaire. Avec 

ce calcul nous obtenons une définition équivalente - et simple - pour les opérateurs de 

mise en mémoire qui permet de prouver plusieurs de leurs propriétés : 

-  la stabilité de l'ensemble des opérateurs de mise en mémoire par la  b-équivalence 

(théorème 5.1.1) ;

-  l'indécidabilité  (et  sa  semi-décidabilité  )  du  problème  "un  terme  clos  t  est  il  un 

opérateur  de  mise  en  mémoire  pour  un  ensemble  fini  de  termes  normaux clos  ?  " 

(théorèmes 5.2.2 et 5.2.3) ;

-  l'existence d'opérateurs de mise en mémoire pour chaque ensemble fini  de termes 

normaux clos (théorème 5.4.3) ;

- une inégalité controlant le temps calcul d'un opérateur de mise en mémoire (théorème 
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5.5.2).
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§ 0. Introduction 

0.1 Lambda-calculus as such is not a computational model. A reduction strategy is 

needed. In this paper, we consider  l-calculus with the left reduction (iteration of the 

head reduction denoted by ∑). This strategy has some advantages : it always terminates 

when applied to a normalizable l-term, and it seems more economic since we compute a 

l-term only when we need it. But the major drawback of this strategy is that a function 

must compute its argument every time it uses it. This is the reason why this strategy is 

not really used. We would like a solution to this problem.

Let F be a l-term, D a set of closed normal l-terms, and tAD. During the computation, 
by left reduction, of (F)ht (where  ht:bt),  ht may be computed several times (as many 
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times as F uses it). We would like to transform (F)ht to (F)t. We also want that this 

transformation depends only on ht (and not F). In other words we look for some closed 

l-term T which satisfies the following propreties :
- For every F, and for every tAD, (T)htF∑(F)t ;

- The computation time of (T)htF depends only on ht. 

Definition (temporary) :

A closed l-term T is called a storage operator for D if and only if for every tAD, and 
for every ht:bt, (T)htf∑(f)t (where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed,
- Since we have (T)htf∑(f)t, then the variable f never comes in head position during the 

reduction,  we cmay then replace f by any l-term.
- The computation time (T)htF depends only on ht. 

K. Nour has shown (see [9]) that it is not always possible to get a normal form (it is the 

case for the set of Church integers). We then change the definition.

Definition (temporary) :

A closed l-term T is called storage operator for D if and only if for every tAD, there is 
a closed l-term tt:bt, such that for every ht:bt, (T)htf∑(f)tt (where f is a new variable).

J.L. Krivine has shown that, by using Gödel translation from classical to intuitionitic 

logic, we can find, for every data type, a very simple type for the storage operators. But 
the  l-term  tt  obtained may contain variables substituted by  l-terms depending on  ht. 

Since the  l-term  tt is  by-equivalent to a closed  l-term, the left  reduction of  tt[u1/x1,

…,un/xn] is  equivalent to the left reduction of  tt,  the  l-terms u1,…,un  will  therefore 

never be evaluated during the reduction. We then modify again the definition.

Definition (final) : 

A closed l-term T is called a storage operator for D if and only if for every tAD, there 
is  a  l-term  tt:byt,  such  that  for  every  ht:bt,  there  is  a  substitution  s,  such  that 

(T)htf∑(f)s(tt) (where f is a new variable).

In the case where  tt=t, we say that T is a  strong storage operator, and in the case 

where tt is closed, we say that T is a proper storage operator. These special operators 

are studied in [9] and [12].

The previous definition is not well adapted to study these operators. Indeed, it is, a 
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priori,  a  Pstatement  (Vt Ett Vht Es A(T,t,tt,ht,s)).  We  will  show  that  it  is  in  fact 

equivalent to Pstatement (tt can be computed from t, and s from ht). 

We now describe the intuitive meaning of the directed lambda calculus.

0.2 Consider the particular case of the set N of Church integers. 

A closed l-term T is a storage operator for N if and only if for every n 0, there is a ≥ l-
term tn:byn, such that for every hn:bn, there is a substitution s, such that (T)hnf∑(f)s(tn).

Let's analyse the head reduction (T)hnf∑(f)s(tn), by replacing each l-term which comes 

from hn by a new variable. 

If  hn:bn,  then hn∑lglx(g)tn-1,  tn-k∑(g)tn-k-1  1 k n-1,  t≤ ≤ 0∑x,  and  tk:b(g)kx 0 k n-1. ≤ ≤

Let  un be a new variable  (un represents  hn). (T)unf is solvable, and its head normal 

form does not begin by l, therefore it is a variable applied to some arguments. The free 
variables of (T)un f are un and f, we then have two possibilities for its head normal form 

: 
(f)d (in this case we stop) or (un)a1…am. 

Assume  we  obtain  (un)a1…am.  The  variable  un represents  hn, and  hn∑lglx(g)tn-1, 

therefore (hn)a1…am and ((a1)tn-1[a1/g,a2/x])a3…am have the same head normal form. 

The  l-term tn-1[a1/g,a2/x] comes from  hn. Let  un-1,a1,a2 be a new variable (un-1,a1,a2 

represents tn-1[a1/g,a2/x]).  The  l-term ((a1)un-1,a1,a2)a3…am is solvable, and its head 

normal form does not begin by l, therefore it is a variable applied to some arguments. 
The free variables of ((a1)un-1,a1,a2)a3…am are among  un-1,a1,a2,  un, and f,  we then 

have three possibilities for its head normal form : 
(f)d (in this case we stop) or (un)b1…br or (un-1,a1,a2)b1…br. 

Assume we obtain (un-1,a1,a2)b1…br. The variable  un-1,a1,a2 represents tn-1[a1/g,a2/x], 

and tn-1∑(g)tn-2,  therefore (tn-1[a1/g,a2/x])b1…br and ((a1)tn-2[a1/g,a2/x])b1…br  have 

the same head normal form. The l-term tn-1[a1/g,a2/x] comes from hn. Let un-2,a1,a2 be 

a new variable (un-2,a1,a2 represents tn-2[a1/g,a2/x]). The l-term ((a1)un-2,a1,a2)b1…br is 

solvable, and its head normal form does not begin by l, therefore it is a variable applied 
to  arguments.  The  free  variables  of  ((a1)un-2,a1,a2)b1…br are  among  un-2,a1,a2,  un-

1,a1,a2, un, and f, therefore we have four possibilities for its head normal form :

(f)d (in this case we stop) or (un)c1…cs or (un-1,a1,a2)c1…cs or (un-2,a1,a2)c1…cs 

…and so on… 

Assume  we  obtain  (u0,d1,d2)e1…ek during  the  construction.  The  variable  u0,d1,d2 
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represents t0[d1/g,d2/x], and t0∑x, therefore (t0[d1/g,d2/x])e1…ek and (d2)e1…ek  have 

the same head normal form ; we then follow the construction with the l-term (d2)e1…

ek.

The l-term (T)hnf is solvable, and has (f)s(t) as head normal form, so this construction 

always stops on (f)d. We will prove later by a simple argument that d:byn. 

According to the previous construction, the reduction (T)hnf∑(f)s(tn) can be divided 

into two parts : 

- A reduction that does not depend on n : 
(T)unf∑(un)a1…am, 

((a1)un-1,a1,a2)a3…am ∑(un-1,a1,a2)b1…br, 

((a1)un-2,a1,a2)b1…br∑(un-2,a1,a2)b1…br,

…
- A reduction that depends on n (and not on hn) : 

the reduction from (un)a1…am to ((a1)un-1,a1,a2)a3…am, 

the reduction from (un-1,a1,a2)b1…br to ((a1)un-2,a1,a2)c1…cs,

…, 
the reduction from (u0,d1,d2)e1…ek to (d2)e1…ek,

…

If  we allow some new reduction  rules  to  get  the  later  reductions,  (something  as  : 
(un)a1a2∑(a1)un-1,a1,a2 ; ui+1,a1,a2∑(a1)ui,a1,a2 (for i>0) ; u0,a1,a2∑a2)

we obtain an equivalent -and easily expressed - definition for the storage operators for 

N :
A closed l-term T is a storage operator for N if and only if for every n 0, ((T)≥ unf∑(f)dn, 

and dn:byn. 

0.3 The  directed  l-calculus is  an extension of  the ordinary  l-calculus  built  for 

tracing a normal l-term t during some head reduction. Assume u is some, non normal, l-

term having t as a subterm. We wish to trace the places where we really have to know 

what t is, during the reduction of u. Assume we have for every normal l-term t with free 
variables x1,…,xn, and any l-terms a1,…,an a "new" variable ut,a1,…,an. 

We want the following rules :
if t=lxv, then (ut,a1,…,an)a∑uv,a1,…,an,a    or    ut,a1,…,an∑lxuv,a1,…,an,x ;

if t=(v)w, then ut,a1,…,an∑(uv,a1,…,an)uw,a1,…,an ;

if t=xi 1 i n, then ≤≤ ut,a1,…,an∑ai.

We will prove later the following result (theorem 4-1) :

A closed l-term T is a storage operator for a set of closed normal l-terms D if and only 
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if for every tAD, (T)utf∑(f)dt, and dt:byt. 

0.4 By interpreting the variable ut,a1,…,an (that will be denoted by [t]<a1/x1,…,an/

xn> and called a box) by t[[a1/x1,…,an/xn]] (the  l-term t with an explicit substitution ), 

the new reduction rules are those that allow to really do the substitution. This kind of l-

calculus (l-calculus with explicit substitution) has been studied by P.L.Curien (see [1] 

and  [4])  ;  his  ls-calculus  contains  terms and substitutions  and is  intended to  better 

control the substitution process created by b-reduction, and then the implementation of 

the l-calculus. The main difference between the ls-calculus and the directed l-calculus is 

:

- The first one produces an explicit substitution after each b-reduction ;

- The second only " executes " the substitutions given in advance.

We can therefore consider the directed  l-calculus as a restriction (the interdiction of 

producing explicit substitutions) of ls-calculus ; a well adapted way to the study of the 

head reduction.

 

0.5 This  paper  studies  some properties  of  storage  operators.  It  is  organized  as 

follows :

. The section 1 is devoted to preliminaries.

. In section 2, we define the storage operators, and we give the general form of their 

head normal forms.

. In section 3, we introduce the directed l-calculus, and we prove that it has the main 

properties of the ordinary  l-calculus :  the Church-Rosser theorem, the normalisation 

theorem, the resolution theorem. We focus on the head reduction, and we will prove 

that  the reduction with the boxes represents  correctly  the reduction of  terms where 

boxes are replaced by b-equivalent l-terms.

. In section 4, we present an equivalent definition for the storage operators.

. In section 5, we give some properties of storage operators :

- If T is a storage operator for a set of closed normal l-terms, and if T:bT', then T' also is 

a storage operator for this set.

- The problem " Let t be a closed  l-term. Is it a storage operator for a set of closed 

normal l-terms ?" is undecidable. It is semi-decidable in case of a finite set.

- Each finite set of closed normal l-terms has a storage operators.
- the number of  b-reductions to go from (T)htf to (f)s(tt) is linear in the number of 

reductions to normalize ht.

Note : The presentation made below hides some technical uninteresting difficulties.

Since  we  work  with  name  for  the  variables,  and  modulo  a-equivalence,  there  is  a 
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problem to define precisely the notion of subterms. 

- We suppose, for example, that the l-terms (x)x, (y)y, (z)z,… are subterms of the l-

term lx(x)x. 

-  A  l-term may have  equal  subterms  ;  we assume that  we can  distinguish  these 

subterms. 

 These problems could be solved by indexing subterms with the paths from the root of 

the l-term and using de Bruijn notation. We will do not do that here.

Acknowledgements. We thank J.L. Krivine, S. Ronchi, and H. Barendregt for helpful 

discussions.

§ 1. Basic notions of pure l-calculus

1.1. Notations

They are standard (see [2] and [6]). 

- We shall denote by L the set of terms of pure l-calculus, also called l-terms.
- Let t,u,u1,…, unAL, the application of t to u is denoted by (t)u or simply tu. In the 

same way we write (t)u1…un or tu1…un instead of (…((t)u1)…)un.

- The b (resp. y, resp. by) -reduction is denoted by t5bu (resp. t5yu, resp. t5byu).

- One step of b (resp. y) -reduction is denoted by t5b0u (resp. t5y0u).

- The b (resp. y, resp. by) -equivalence is denoted by t:bu (resp. t:yu, resp. t:byu).

- The set of free variables of a l-term t is denoted by Fv(t).
- The notation t[a1/x1,…,an/xn] represents the result of the simultaneous substitution of 

l-terms a1,…,an to  the free variables x1,…,xn  of t  (after  a  suitable renaming of the 

bounded variables of t).

The notation  s(t) represents the result  of  the simultaneous substitution  s to  the free 

variables of t.

- The lenght of a l-term t (number of symbols used to write t) is denoted by lg(t).

- We denote by ST(t), the set of subterms of t.

- If t is b-normalizable, we denote by tb its b-normal form.

- If t is by-normalizable, we denote by tby its by-normal form.
- The notation t∑∑0t' (resp. t∑∑t') means that t' is obtained from t by one step of left 

reduction (resp. by some left reductions).

Theorem 1.1.1 (normalization theorem). u is  normalizable  if  and only  if  u  is  left  

normalizable.
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Proof. See [2] and [6]. ■

- If t is a normalizable l-term, then t∑∑tb. We denote by Tps(t), the number of steps 

used to go from t to tb.
- The notation  t∑0t' (resp. t∑t') means that t' is obtained from t by one step of head 

reduction (resp. by some head reductions).
- A  l-term t is said  solvable if and only if for every  l-term u, there are variables x1,

…,xk, and a l-terms u1,…,uk,v1,…,vl k,l 0, such that (t[u≥ 1/x1,…,uk/xk])v1…vl :bu.

Theorem 1.1.2 (resolution theorem). The following conditions are equivalent :

1) t is solvable ;

2) the head reduction of t terminates ;

3) t is b-equivalent to a head normal form.

Proof. See [6]. ■ 

- If t is a solvable  l-term, then there is a term t' in head normal form, such that t∑t'. 

We denote by tps(t), the number of step used to go from t to t'.

- For each l-term, we associate a set of l-terms denoted by STE(t), and called the set of 

essential subterms of t, by induction :

- If t is unsolvable, then STE(t)={U}where U is a new symbol ;
- If t is solvable, and ly1…lym(y)t1…tr is its head normal form, then STE(t)={t}".

Theorem 1.1.3. If t is a normalizable l-term, then Tps(t)=tps(u). 

Proof. Trivial. ■ 

1.2. Properties of head reduction

Definitions. 

- We define an equivalence relation : on L by : u:v if and only if there is a t, such that 

u∑t, and v∑t. In particular, if t is solvable, then u:t if and only if u is solvable, and has 

the same head normal form of t. If u is in head normal form, then t:u means u is the 

head normal form of t. 

- If t∑t', we denote by n(t,t'), the number of steps to go from t to t'.

Theorem 1.2.1. If t∑t', then for every u1,…,urAL :

1) There is vAL, such that (t)u1…ur∑v, (t')u1…ur∑v, and n((t)u1…ur,v)= n((t')u1…ur,v)
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+n(t,t').
2) t[u1/x1,…,ur/xr]∑t'[u1/x1,…,ur/xr], and n(t[u1/x1,…,ur/xr],t'[u1/x1,…,ur/xr])= n(t,t').

Proof. See [7]. ■

Remarks.
- 1) shows that to make the head reduction of (t)u1…un, it is equivalent (same result, 

and same number of steps) to make some steps in the head reduction of t, and then 
make the head reduction of (t')u1…un.

- 2) shows that to make the head reduction of t[u1/x1,…,un/xn], it is equivalent (same 

result, and same number of steps) to make some steps in the head reduction of t, and 
then make the head reduction of t'[u1/x1,…,un/xn]. 

This will be used everywhere without mention in the following.

Corollary 1.2.2. Let t,u1,…,un,v1,…,vmAL. If (t[u1/x1,…,un/xn])v1…vm is solvable, then 

t is solvable.

Proof. Easy. ■ 

Corollary 1.2.3. If t:t', then for every u1,…,urAL :
1) (t)u1…ur:(t')u1…ur.

2) t[u1/x1,…,ur/xr]:t'[u1/x1,…,ur/xr].

Proof. See [7]. ■

Corollary 1.2.4.  Let t:bu, and u does not contain the variables x1,…,xn, then the left  

reduction of t[u1/x1,…,un/xn] is equivalent to the left reduction of t. This reduction is  

independent of the l-terms u1,…,un which will never be evaluated.

Proof. See [7]. ■

 

§ 2. Storage operators

2.1 Definition of storage operators

Definitions.

- A l-term t is said essential if and only if it is b-equivalent to a b-normal closed l-term.
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- Let T be a closed l-term, and t an essential l-term. We say that T is a storage operator 

(shortened to  o.m.m.  for  opérateur de mise en mémoire)  for t  if and only if there is 
tt:byt, such that for every ht:bt, (T)ht∑lf(f)tt[h1/x1,…,hn/xn], where Fv(tt)={x1,…,xn,f}, 

and h1,…,hn are l-terms which depend on ht.

- Let T be a closed l-term, D a set of essential l-terms. We say that T is an o.m.m for D 

if and only if it is an o.m.m. for every t in D.

Lemma 2.1.1. T is an o.m.m. for t if and only if there is a  l-term tt:byt, such that for 

every  ht:bt,  (T)htf:(f)tt[h1/x1,…,hn/xn],  where  Fv(tt)={x1,…,xn,f},  and  h1,…,hn  are  l-

terms which depend on ht.

Proof. 

11 Clear.
00 By corollary 1.2.2, (T)ht is solvable. Let T' be its head normal form. 

- If T'=lfw, then w is the head normal form of (T)htf, therefore w=(f)tt[h1/x1,…,hn/xn], 

therefore (T)ht∑lf(f)tt[h1/x1,…,hn/xn]. 

- If T'=(v)T1…Tr ; we can choose ht, such that fFv(ht), v f, therefore the head normal≠  

form of (T)htf is (v)T1…Trf=(f)tt[h1/x1,…,hn/xn]. A contradiction. ■

Remark.  Let  F  be  any  l-term,  and  ht a  l-term  b-equivalent  to  tAD.  During  the 

computation of (F)ht, ht may be computed many times (for example, each time it comes 

in head position). Insead of computing (F)ht, let us look at the head reduction of (T)htF. 

Since it is (T)htf[F/f], by theorem 1.2.1, we shall first reduce (T)htf to its head normal 

form, which is (f)tt[h1/x1,…,hn/xn], and then compute (F)tt[c1/x1,…,cn/xn, F/f] where 

ci=hi[F/f]. By corollary 1.2.4, the computation has been decomposed into two parts, the 

first being independent of F. This first part is essentially a computation of ht, the result 

being  tt,  which  is  a  kind  of  normal  form of  ht,  because it  only depends on the  b-

equivalent class of ht : the substitutions made in tt have no computational importance, 

since t is essential. So, in the computation of (T)htF, ht is computed first, and the result 

is given to F as an argument, T has stored the result, before giving it, as many times as 

needed, to any function.

2.2 General forms of head normal form of a storage 
operator

Proposition 2.2.1. If T is an o.m.m. for t, then T is solvable, and its head normal form 
T'  has  one  of  the   following  form  :  T'=ln(n)T1…Tr  r 1, T'=≥ lnlf(n)T1…Tr  r 1, or≥  
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T'=lnlf(f)T1 where T1:byt.

Corollary 2.2.3.  If  t  is  unsolvable,  and T is  an o.m.m.  for t,  then T∑lnlf(f)T1,  and 

T1:byt.

Proof. If  T∑ln(n)T1…Tr  r 1 or  T≥ ∑lnlf(n)T1…Tr  r 1,  then  (T)t  is  unsolvable.≥  

Therefore, by proposition 2.2.1, T∑lnlf(f)T1, and T1:byt. ■

Proof of proposition 2.2.1. If T is an o.m.m. for t, then there is a l-term tt:byt, such that 

for every ht:bt, (T)ht∑lf(f)tt[u1/y1,…,un/yn], with Fv(tt)={y1,…,yn,f}, and u1,…,un are l-

terms wich depend on  ht. Therefore, by corollary 1.2.2, T is solvable. Let T' its head 

normal form. Since T is closed, T' also is closed, and T'=lx1…lxm(xi)T1…Tr r 1. ≥

By theorem 1.2.1, (T')ht∑lf(f)tt[u1/y1,…,un/yn], therefore m =1 or 2.

- If m=1, then T'=ln(n)T1…Tr r 1.≥

- If m=2 :
- If i=1, then T'=lnlf(n)T1…Tr r 1.≥

-  If  i=2,  then T'=lnlf(f)T1…Tr  r 1. Therefore  ≥ lf(f)T1[ht/n]…Tr[ht/n]=  lf(f)t'[u1/y1,

…,un/yn], therefore r=1, and T1[ht/n]=tt[u1/y1,…,un/yn]. 

It remains to show that T1:byt.

Lemma 2.2.4. Let x,y be two variables of the l-calculus.
1) If t[(x)y/z]5b0u, then u=v[(x)y/z], and t5b0v.

2) If t is a closed l-term, and t[(x)y/z]5bt, then t5bt.

Proof. 

1) By induction on t.

- If t is a variable, it is impossible.
- If t=lrw, then u=lra, and w[(x)y/z]5b0a. By induction hypothesis, we have a=b[(x)y/z], 

and w5b0b. Therefore if we take v=lrb, we get u=v[(x)y/z], and t5b0v.

- If t=(a)b, and u=(c)b where a[(x)y/z]5b0c. By induction hypothesis, we have c=d[(x)y/

z], and a5b0d. Therefore if we take v=(d)b, we get u=v[(x)y/z], and t5b0v.

- If t=(a)b, and u=(a)c where b[(x)y/z]5b0c. By induction hypothesis, we have c=d[(x)y/

z], and b5b0d. Therefore if we take v=(a)d, we get u=v[(x)y/z], and t5b0v.

- If  t=(lra)b, and u=a[(x)y/z][b[(x)y/z]/r]=a[b/r][(x)y/z], then, if we take v=a[b/r], we 
get u=v[(x)y/z], and t5b0v.  

2) By induction on the number of  b0-reductions. We use 1) to prove t=u[(x)y/z], and 

t5bu. Since t is closed, then t=u and t5bt. ■ 
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By lemma 2.2.4, we may assume that tt does not contain  a (yi)yj 1 i,j n as subterm.≤ ≤

Lemma 2.2.5. Let d,t,t1,…,tn be l-terms , and s1,…,sn substitutions, such that :

Fv(d)={x1,…,xn}"{a1,…,ar}, Fv(t)={y1,…,ym}"{b1,…,bk}, and for all 1 i,j m (y≤ ≤ i)yj  is  

not a subterm of t. If for all 1 i n and for every ≤≤ hi:bti, there are h1,…,           hi-1,hi+1,

…hn,u1,…,um, such that d[s1(h1)/x1,…,sn(hn)/xn]=t[u1/y1,…,um/ym], then there are w1,

…,wm, such that d=t[w1/y1,…,wm/ym].

Proof. By induction on d and t.
It is clear that we may assume that any variable x1,…,xn  (resp. y1,…,ym) appears at 

most once in  d (resp. t).
- If d=a1, then a1=t[u1/y1,…,um/ym], therefore t=y1, and u1=a1 or t=b1=a1.

- If d=x1, then s1(h1)=t[u1/y1,…,um/ym]. 

    - If t=b1, then s1(h1) is a variable, that is impossible if we take h1=(lxt1)x. 

    - If t=y1, then d=t[x1/y1].

    - If t=lxt', then s1(h1) begins  by l, that is impossible if we take h1=(lxt1)x. 

    - If t=(u)v :
- If  t=(…(((lxa)b)v1)…)vr, then s1(h1) begins  with r+1 (, that is impossible if we 

take h1=(…(((lx1lx2…lxn+2t1)x1)x2)…)vn+2.

- If t=(…((b1)v1)…)vr, then that is impossible if we take h1=(lxt1)x.

- If t=(…((y1)v1)…)vr and r 2, then ≥ s1(h1) begins by at least r (, that is impossible 

if we take h1=(lxt1)x. Therefore r=1 and t=(y1)v1.

The l-term v1 can not begin by l. (it suffices to take h1=(lxt1)(lxx)x)

The l-term v1 can not begin by (. ( it suffies to take h1=(lxt1)lxx)

Therefore v1 is a variable.

If v1=b1, then that is impossible if we take h1=(lxt1)(lxx)x.

If v1=y2, then that is impossible because in this case we have t=(y1)y2.

- If d=lxu, then : 
    - If t=b1, then lg(d)=1, that is impossible.

    - If t=y1, then d=t[lxu/y1].

 -  If  t=lxt',  then  u[s1(h1)/x1,…,sn(hn)/xn]=t'[u1/y1,…,um/ym],  and  we  use  the 

induction hypothesis 

    - If t=(u)v, then d begins by (, that is impossible.

- If d=(u)v, then : 
    - If t=b1, then lg(d)=1, that is impossible.

    - If t=y1, then d=t[(u)v/y1].

    - If t=lxt', then d begins by l, that is impossible. 
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- If t=(a)b, then u[s1(h1)/x1,…,sn(hn)/xn]=a[u1/y1,…,um/ym], and 

v[s1(h1)/x1,…,sn(hn)/xn]=b[u1/y1,…,um/ym], and we use the induction hypothesis. ■ 

By  lemma  2.2.5,  there  are  w1,…,wm, such  that  T1=tt[w1/x1,…,wn/xn],  we  have 

T1:byt. ■ (of proposition 2.2.1)

2.3 Examples of storage operators

2.3.1 The projections

For  all  0 i n, let  P=≤≤ lx1…lxnxi  (the  ith projection  among  n).  Let  Pn be  the  set  of 

projections. 

Define T=ln(n) lf(f)Plf(f)P… lf(f)P, and T=lnlf(n) (f)PP…  (f)P. 

Tand Tare two o.m.m. for Pn.

Let h:bP1 i n, then ≤≤ h∑P.

Behaviour of T:

Thf:(h) lf(f)Plf(f)P… lf(f)Pf:(P) lf(f)Plf(f)P… lf(f)Pf:(lf(f)P)f:

(f)P.

It is easy to check that tps(Thf)=Tps(h)+n+2. ■ 

Behaviour of T:

Thf:(h) (f)PP… (f)Pf:(P) (f)PP… (f)Pf:(f)P.

It is easy to check that tps(Thf)=Tps(h)+n+2. ■ 

2.3.2 The Church integers

For n 0, we define the Church integer ≥ n=lflx(f)nx. Let N be the set of Church integers. 

Let  s=lnlflx(f)((n)f)x. It is easy to check that  s is a  l-term for the successor. Define 

T=ln(n)Gd where G=lxly(x)lz(y)(s)z, and d=lf(f)0 ; 

T=lnlf(n)F f 0 where F=lxly(x)(s)y.

Tand Tare o.m.m. for N.
Let hn:n, then hn∑lglx(g)tn-1, tn-k∑(g)tn-k-1 1 k n-1, t≤ ≤ 0∑x.

Behaviour of T:
(T)hnf:(hn)Gdf:(G)tn-1[G/g,d/x]f:(tn-1[G/g,d/x])lz(f)(s)z.

We define a sequence of l-terms (ti)1 i n≤≤  :
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t1=lz(f)(s)z, and for all 1 k n-1 let ≤ ≤ tk+1=lz(tk)(s)z. 

We prove (by induction on k) that for all 1 k n we have (T)≤ ≤ hnf:(tn-k[G/g,d/x])tk.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
(T)hnf:(tn-k[G/g,d/x])tk:(G)tn-k-1[G/g,d/x]tk:tn-k-1[G/g,d/x])lz(tk)(s)z=

(tn-k-1[G/g,d/x])tk+1.

Therefore, in particular, for k=n we have (T)hnf:(t0[G/g,d/x])tn=(d)tn:(tn)0.

We prove (by induction on k) that for all 1 k n we have ≤ ≤ tk:lz(f)(s)kz.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
tk+1=lz(tk)(s)z:lz(lz(f)(s)kz)(s)z:lz(f)(s)k+1z.

Therefore, in particular, for k=n we have tn:lz(f)(s)nz and (T)hnf:(lz(f)(s)nz)0: (f)(s)n0.

It is easy to check that tps((T)hnf)=Tps(hn)+3n+4. ■ 

Behaviour of T: 
(T)hnf:(hn)Ff0:(F)tn-1[F/g,f/x]0:(tn-1[F/g,f/x])(s)0.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
(T)hnf:(tn-k[F/g,f/x])(s)k0.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
(T)hnf:(tn-k[F/g,f/x])(s)k0:(F)tn-k-1[F/g,f/x](s)k0:tn-k-1[F/g,f/x])(s)k+10.

Therefore, in particular, for k=n we have (T)hnf:(t0[F/g,f/x])(s)n0=(f)(s)n0.

It is easy to check that tps((T)hnf)=Tps(hn)+2n+4. ■ 

2.3.3 The recursive integers

For  n 0, we define  the  recursive integer  by  :=≥ lflxx and =lflx(f).  Let  be  the  set  of 

recursive integers. Let =lnlflx(f)n. It is easy to check that is a l-term for the successor. 

Define  T=(Y)H where  Y=(lxlf(f)(x)xf)lxlf(f)(x)xf,  H=lxly((y)lz(G)(x)z)d, 

G=lxly(x)lz(y)()z, and d=lf(f) ;

T=ln(n)rtr where t=ldlf(f) , and r=lylz(G)(y)ztz.

Tand Tare o.m.m. for .
Let hn:b, then :

if n=0, hn∑lglxx, and if n 0, ≠ hn∑lglx(g)hn-1 where hn-1:b.

Behaviour of T:
We prove (by induction on n) that ((Y)H)hn:lf(f)()n.
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If n=0, then ((Y)H)h0:((H)(Y)H)h0:((h0)lz(G)((Y)H)z)d:d=lf(f) .

If n 0, then ((Y)H)≠ hn:((H)(Y)H)hn:((hn)lz(G)((Y)H)z)d:

(lz(G)((Y)H)z)hn-1[lz(G)((Y)H)z/g,d/x]:(G)((Y)H)hn-1[lz(G)((Y)H)z/g,d/x]:

lf(((Y)H)hn-1[lz(G)((Y)H)z/g,d/x])lz(f)( )z.

Since  hn-1:b, then  hn-1[lz(G)((Y)H)z/g,d/x]:b, and, by induction hypothesis, ((Y)H)hn-

1:lf(f)()n-1. 

Therefore ((Y)H)hn:lf(lf(f)()n-1)lz(f)( )z:lf(f)()n.

It is easy to check that tps((T))hnf)=Tps(hn)+10n+7. ■ 

Behaviour of T: 
We prove (by induction on n) that (hn)rtr:lf(f)()n.

If n=0, then (h0)rtr:(t)r:lf(f).

If n 0, then (≠ hn)rtr:(r)hn-1[r/g,t/x]r:(G)(hn-1[r/g,t/x])rtr:

lf((hn-1[r/g,t/x])rtr)lz(f)( )z.

Since hn-1:b, then hn-1[r/g,t/x]:b, and, by induction hypothesis,

hn-1[r/g,t/x]rtr:lf(f)()n-1. 

Therefore (hn)rtr:lf(lf(f)()n-1)lz(f)()z:lf(f)()n.

It is easy to check that tps((T))hnf)=Tps(hn)+7n+5. ■ 

2.3.4 The finite lists

Let U be a set of essential l-terms. We define the set of the finite lists of objects of U, 
LU={lflx((f)u1)((f)u2)…((f)un)x where nAN, uiAU}. 

Let  nil=lxlyy,  cons=lxlylfla((f)x)((y)f)a  and  cons'=lxlylfla((y)f)((f)x)a.  It  is  easy  to 

check that cons and cons' are two l-terms for the concatenation.
Let TU be an o.m.m. for U. 

Define T=ln(n)Hd where H=lxlylz((TU)x)lu(y)lv(z)((cons)u)v , and d=lf(f)nil ; 

T=lnlf(n)K f nil where K=lxlylu((TU)x)lv(y)(cons')v)u. 

Tand Tare o.m.m. for LU.

Let hn:blflx((f)u1)((f)u2)…((f)un)x, then : 

hn∑lglx(g)v1t1, v1:bu1, ti∑(g)vi+1ti+1, vi+1:bui+1 1 i n-1, t≤≤ n∑x.

TU is  an  o.m.m.  for  U,  therefore  for  all  1 i n, there  is  ≤≤ ti:bui, such  that 

(TU)vi[H/g,d/x]∑lf(f)si(ti).

Behaviour of T:
(T)hnf:(hn)Hdf:(H)v1[H/g,d/x]t1[H/g,d/x]f:

((TU)v1[H/g,d/x])lu(t1[H/g,d/x])lv(f)((cons))u)v:(lf(f)s1(t1))lu(t1[H/g,d/x])lv(f)

((cons))u)v:(t1[H/g,d/x])lv(f)((cons))s1(t1))v.
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We define a sequence of  l-terms (di)1 i n≤≤  :  d1=lv(f)((cons))s1(t1))v, and for 1 k n-1≤ ≤  

Let dk+1=lv(dk)((cons))sk+1(tk+1))v. 

We prove (by induction on k) that for all 1 k n we have (T)≤ ≤ hnf:(tk[H/g,d/x])dk.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
(T)hnf:(tk[H/g,d/x])dk:(H)vk+1[H/g,d/x]tk+1[H/g,d/x]dk

((TU)vk+1[H/g,d/x])lu(tk+1[H/g,d/x])lv(dk)((cons))u)v:

(lf(f)sk+1(tk+1))lu(tk+1[H/g,d/x])lv(dk)((cons))u)v:

(tk+1[H/g,d/x])lv(dk)((cons))sk+1(tk+1))v=(tk+1[H/g,d/x])dk+1.

Therefore, in particular, for k=n we have (T)hnf:(tn[H/g,d/x])dn=(d)dn:(dn)nil.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
dk:lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
dk+1=lv(dk)((cons))sk+1(tk+1))v:

lz(lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v)(((cons))sk+1(tk+1))v:

lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v)(((cons))sk+1(tk+1))v.

Therefore, in particular, for k=n we have
dn:lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))v 

and (T)hnf:(lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))nil:

(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))nil=(f)s({((cons)t1)((cons)t2)… 

((cons)tn)nil}).

It is easy to check that if tps(TUvi)=Tps(vi)+Di, then tps((T)hnf)=Tps(hn)+6n+4      +

Behaviour of T:
(T)hnf:(hn)K  f  nil:(K)v1[K/g,f/x]t1[K/g,f/x]nil:((TU)v1[K/g,f/x])lv(t1[K/g,f/x])   

((cons')v)nil:(lf(f)s1(t1))lv(t1[K/g,f/x])((cons'))v)nil:

(t1[K/g,f/x])((cons'))s1(t1))nil.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
(T)hnf:(tk[F/g,f/x])((cons')sk(tk))((cons')sk-1(tk-1))…((cons')s1(t1))nil.

For k=1 it is true.

Assume that is true for k, and prove it for k+1. 
 (T)hnf:(tk[K/g,f/x])((cons')sk(tk))…((cons')s1(t1))nil:

(K)vk+1[K/g,f/x]tk+1[K/g,f/x]((cons')sk(tk))…((cons')s1(t1))nil:

((TU)vk+1[K/g,f/x])lv(tk+1[K/g,f/x])((cons'))v)((cons')sk(tk))…((cons')s1(t1))nil:

(lf(f)sk+1(tk+1))lv(tk+1[K/g,f/x])((cons'))v)((cons'))v)((cons')sk(tk))…

((cons')s1(t1))nil:(tk+1[F/g,f/x])((cons')sk+1(tk+1))…((cons')s1(t1))nil.

Therefore, in particular, for k=n we have 
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(T)hnf:(tn[K/g,f/x])((cons')sn(tn))…((cons')s1(t1))nil=

(f)((cons')sn(tn))…((cons')s1(t1))nil=(f)s({((cons')tn)…((cons')t1)nil}).

It is easy to check that if tps(TUvi)=Tps(vi)+Di, then tps((T)hnf)=Tps(hn)+5n+4      +

§ 3. The directed l-calculus

3.1 The l[]-terms

Definitions. 

.  If  L  is  the  set  of  simple  l-terms  (L without  a-equivalence),  having  V  as  set  of 

variables,  then  the  set  of  terms  of  simple  directed  l-calculus, denoted  by L[], is 

defined in the following way : 

- If xAV, then xAL[] ;

- If xAV, and uAL[], then lxuAL[] ;

- If uAL[], and vAL[], then (u)vAL[] ;
- If tAL is a b-normal l-term, such that Fv(t)[{x1,…,xn}, and a1,…,anAL[], then [t]<a1/

x1,…,an/xn>AL[].

A l[]-term of the form [t]<a1/x1,…,an/xn> is said a box directed by t (we also say that t 

is the director of the box). 
This notation represents, intuitively, the l-term t where the free variables x1,…,xn will 

be replaced by a1,…,an. 

We extend the definition of the a-equivalence by :
[u]<a1/x1,…,an/xn>:a[v]<b1/y1,…,bm/ym> if and only if there are permutations Pn and 

Pm, 0 r inf(n,m), and new variables z≤≤ 1,…,zr, such that : 

- Fv(u)={x,…,x} and Fv(v)={y,…,y}, 
- u[z1/x,…,zr/x]:av[z1/y,…,zr/y].

- a:ab1 i r.≤≤

. The set of terms of the directed l-calculus, denoted by L[], and also called l[]-terms, 

is defined by L[]=L[]/:a.

. We will note <a/x> the substitution <a1/x1,…,an/xn>. The substitution <a1/x1,…,an/

xn,b1/y1,…,bm/ym> is denoted by <a/x,b/y>, and the substitution <a1[u1/y1,…,um/ym]/

x1,…,an[u1/y1,…,um/ym]/xn> is denoted by <a[u1/y1,…,um/ym]/x>. 

. For every u,u1,…,umAL[], we extend the definitions of Fv(u) and u[u1/y1,…,um/ym] 

by :

- Fv([t]<a/x>)=Fv(a)=.
- [t]<a/x>[u1/y1,…,um/ym]=[t]<a[u1/y1,…,um/ym]/x>, after a suitable renaming of the 

bounded variables of a1,…,an that are free in u1,…,um. 
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3.2 The b[]-reduction

Definitions.

. A l[]-term of the form (lxu)v is called b-redex ; u[v/x] is called its contractum.

A  l[]-term of the form [t]<a/x> is called []-redex  ;  its  contractum R is defined by 

induction on t :
- If t=xi 1 i n, then R=≤≤ ai ;

- If t=lxu, then R=ly[u]<a,/x,y/x> where yFv(a) ;

- If t=(u)v, then R=([u]<a/x>)[v]<a/x>.

. We define a binary relation 5b0 by :
t5b0t' if and only if t' is obtained by contracting a b-redex of t.

More precisely :
- If t is a variable, t5b0t' is false for all t' ;

- If t=lxu, then t5b0t' if and only if t'=lxu', and u5b0u' ;

- If t=(v)u, then t5b0t' if and only if 

t'=(v)u' with u5b0u' or

t'=(v')u with v5b0v' or

v=lxw, and t'=w[u/x] ;
- If t=[u]<a/x>, then t5b0t' if and only if 

ai5b0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>.

. We define a binary relation 5[]0 by :

t5[]0t' if and only if t' is obtained by contracting  a []-redex of t.

More precisely :
- If t is a variable, t5[]0t' is false for all t' ;

- If t=lxu, then t5[]0t' if and only if t'=lxu', and u5[]0u' ;

- If t=(v)u, then t5[]0t' if and only if 

t'=(v)u' with u5[]0u' or 

t'=(v')u with v5[]0v' ;

- If t =[u]<a/x>, then t5[]0t' if and only if

t' is the contractum of t or 
ai5[]0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>

. We define a binary relation 5b[]0 on L[] by t5b0t' or t5[]0t'.

Therefore t5b[]0t' if anf only if t' is obtained by contracting a b[]-redex of t.

. We define the b-conversion (resp. the []-conversion, resp. the b[]-conversion) as the 

reflexive and transitive closure of  5b0 (resp.5[]0, resp. 5b[]0). 
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We have therefore  t5bt' (resp.  t5[]t',  resp.  t5b[]t') if  and only if there is a sequence 

t0=t,t1,…,tn-1,tn=t', such that ti5b0ti+1 (resp. ti5[]0ti+1, resp. ti5b[]0ti+1) for 1 i n-1.≤≤

It is clear that if t5b[]t', then Fv(t')[Fv(t).

. A l[]-term t is said b[]-normal, if it does not contain any redex.

A l[]-term t is said b[]-normalizable, if there is a b[]-normal l[]-term t', such that t5b[]t'.

A l[]-term t is said b[]-strongly normalizable, if there is a no infinite sequence t0=t,t1,

…,tn,…, such that ti5b[]0ti+1 for i≥0.

Lemma 3.2.1. t is b[]-normal if and only if tAL, and t is b-normal.

Proof. Clear. ■

Lemme 3.2.2. A []-reduction always terminates.

Proof. Otherwise, there is an infinite sequence t0,t1,…,tn,…, such that ti5[]0ti+1 for i 0.≥

For each l[]-term t, we associate an integer b(t) by induction on t :

- If t=x, then b(t)=0 ;

- If t=lxu, then b(t)=b(u) ;

- If t=(u)v, then b(t)=b(u)+b(v) ;

- If t=[u]<a/x>, then :  
       - If u=xi 1 i n, then b(t)=b(a≤≤ i)+1 ;

       - If u=lxv, then b(t)=b([v]<a/x,y/x>)+1 yFv(a) ; 

       - If u=(v)w, then b(t)=b([v]<a/x>)+b([w]<a/x>)+1.

Lemma 3.2.3.

1) b(t)=0 if and only if tAL.
2) If b(ai)=b(a'i) 1 i n, then ≤≤

    b([u]<a/x>)=b([u]<a1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>).

3) If b(ai)>b(a'i), and xiAFv(u) 1 i n, then≤≤

    b([u]<a/x>)>b([u]<a1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>).

Proof. By induction on t. (resp. u ) for 1) (resp 2), 3)). ■

Lemma 3.2.4. If t 5[]0t', then b(t)>b(t').

Proof. By induction on t. The only interesting case is t=[u]<a/x>. Then :
- If u=xi 1 i n, then t'=a≤≤ i, and b(t)=b(ai)+1>b(t').

- If u=lxv, then t'=[u]<a/x,y/x> yFv(a), therefore, by lemma 3.2.3, 
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b(t)=b([u]<a/x,y/x>)+1>b(t').

- If u=(v)w, then t'=([v]<a/x>)[w]<a/x>, and b(t)=b([v]<a/x>)+b([w]<a/x>)+1>b(t').
- If ai5[]0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>). By 

induction hypothesis, we have b(ai)>b(a'i), therefore, by lemma 3.2.3, b(t)>b(t'). ■

Therefore, by lemma 3.2.4, there is an infinite sequence b(t0),b(t1),…,b(tn),…, such that 

b(ti)>b(ti+1) for i 0. A contradiction. ≥ ■ (of lemma 3.2.2)

Definition. For each l[]-term t, we associate a l-term l(t) by induction on t :

- If t=x, then l(t)=x ;

- If t=lxu, then l(t)=lxl(u) ;

- If t=(u)v, then l(t)=(l(u))l(v) ;
- If t=[u]<a/x>, then l(t)=u[l(a1)/x1,…,l(an)/xn].

It is clear that for tAL[], Fv(t)=Fv(l(t)).

Theorem 3.2.5. t  is  b[]-strongly  normalizable  if  and  only  if  l(t)  is  strongly  

normalizable.

Theorem 3.2.6 (Church-Rosser theorem). Assume t05b[]t1, and t05b[]t2, then there is a  

t3, such that t15b[]t3 and t25b[]t3.

Proof of theorem 3.2.5.
11  If l(t) is not strongly normalizable, then there is an infinite sequence t0=l(t),t1,…,tn, 

…, such that ti5b0ti+1 for all i 0. ≥

Lemma 3.2.7. If t5[]t', then l(t)=l(t').

Proof. By induction on t. ■

Lemma 3.2.8. 
1) [u]<a/x>5[]u[a1/x1,…,an/xn].

2) If ui5[]vi 1 i n, then≤≤  u[u1/x1,…,un/xn]5[]u[v1/x1,…,vn/xn].

Proof. By induction on u. ■

Lemma 3.2.9. If t is a l[]-term, then t5[]l(t).

Proof. By induction on t. The only interesting case is t=[u]<a/x>.  
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By  lemma  3.2.8,  [u]<a/x>5[]u[a1/x1,…,an/xn].  By  induction  hypothesis,  we have 

ai5[]l(ai) 1 i n, therefore, by lemma 3.2.8, t≤≤ 5[]u[l(a1)/x1,…,l(an)/xn]=l(t). ■

By lemma 3.2.9, t5[]l(t), therefore t is not  b[]-strongly normalizable. A contradiction. 

■ (of 11 theorem 3.2.5).

00 (theorem 3.2.5) If t is not b[]-strongly normalizable then there is an infinite sequence 
t0=t,t1,…,tn,…, such that ti5b0ti+1 or ti5[]0ti+1 for i 0. ≥

Lemma 3.2.10. l(u[v/x])=l(u)[l(v)/x].

Proof. By induction on u. ■

Lemma 3.2.11. If u5b0v, then l(u)5b0l(v).

Proof.  By  induction  on  u.  The  only  non-trivial  case  is  u=(lxt)w  :  we  then  have 
v=t[w/x], therefore, by lemma 3.2.10, l(u)=(lxl(t))l(w)5b0 l(t)[l(w)/x]=l(v). ■

Corollary 3.2.12. If u5b[]v, then l(u)5bl(v). 

Proof. Use lemmas 3.2.7 and 3.2.11. ■

By lemma 3.2.2, and lemma 3.2.11, tthere is an infinite sequence t'0=l(t),t'1,…,t'n,…, 

such  that  t'i5b0t'i+1  for  all  i 0,  therefore  l(t)  is  not  strongly  normalizable.≥  

A contradiction. ■ (of 00 theorem 3.2.5)

Proof of theorem 3.2.6. If t05b[]t1, and t05b[]t2, then, by corollary 3.2.12, l(t0)5bl(t1), and 

l(t0)5bl(t2). Therefore, by the Church-Rosser theorem of  l-calculus, there is a t3, such 

that l(t1)5bt3, and l(t2)5bt3, therefore, by lemma 3.2.9, t15b[]t3, and t25b[]t3. ■

Remarks.

- By the Church-Rosser theorem, the b[]-normal form is unique.
- We define the b[]-equivalence (denoted by :b[]), as the symetric closure of 5b[] ; In 

other words : t:b[]t' if there are t0=t,t1,…,tn=t' with ti5b[]0ti+1  or ti+15b[]0ti  0 i n-1. By≤≤  

the Church-Rosser theorem : t:b[]t' if and only if there is a l[]-term u, such that t5b[]u and 

t'5b[]u, and a l[]-term t is b[]-normalizable if and only if there is a b[]-normal l[]-term u 

such that t:b[]u. 
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3.3 The b[]-left reduction

Definitions. 

- A sequence  of symbols of the form (l or [ corresponds to a redex. We may then define 

the  leftmost  b-redex and the  leftmost []-redex of t. If t' is the  l[]-term obtained by 

contracting this redex, we say that :
t gives t' by b0-left reduction (resp. by []0-left reduction, resp. by b[]0-left reduction), 

and write by t∑∑b0t' (resp. t∑∑[]0t', resp. t∑∑b[]0t'), if it is a b-redex (resp. a []-redex, 

resp. a b-redex or a []-redex ).

- We say that t reduces to t' by b-left reduction (resp. []-left reduction, resp. b[]-left 
reduction),  and  we  write  t∑∑bt' (resp. t∑∑[]t',  resp.  t∑∑b[]t')  if  and  only  if  t'  is 

obtained from t by a sequence of b0-left reductions (resp. of []0-left reductions, resp. of 

b[]0-left reductions).

- A l[]-term t is said b[]-left normalizable if and only if there is a b[]-normal l[]-term t', 
such that t∑∑b[]t'.

Theorem 3.3.1. u is b[]-left normalizable if and only if l(u) is left normalizable.

Theorem 3.3.2 (normalization theorem). u is b[]-normalizable if and only if u is b[]-

left normalizable.

Proof of theorem 3.3.1.

11 Use lemmas 3.2.7 and 3.3.3.

Lemma 3.3.3. 

1) If R is the leftmost b-redex of u, then l(R) is the leftmost redex of l(u).
2) If u∑∑b0v, then l(u)∑∑0l(v).

Proof. 

1) Clear.

2) By induction on u. The only non-trivial case is u=(lxt)w : then we have v=t[w/x], 
then, by lemma 3.2.10, l(u)=(lxl(t))l(w)∑∑0l(t)[l(w)/x]= l(t[w/x]). ■

00 If  not,  there  is  an  infinite  sequence  of  l[]-terms  u0=u,u1,…,un,…,  such  that 

ui∑∑b0ui+1 or ui∑∑[]0ui+1 for i 0. Therefore, by lemmas 3.2.2, 3.2.7, and 3.3.3, there is≥  

an  infinite  sequence  of  l[]-terms  v0=l(u),v1,…,vn,…,  such  that  vi∑∑0vi+1  for  i 0,≥  

therefore l(u) is not left normalizable. A contradiction. ■
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Proof of theorem 3.3.2.

00 Clear.

11 If u is b[]-normalizable, then l(u) is normalizable (same proof as theorem 3.3.1 11). By 

the normalization theorem of l-calculus, l(u) is left normalizable, therefore, by theorem 

3.3.1, u is b[]-left normalizable. ■  

3.4 The b[]-head reduction

Proposition 3.4.1. Every  l[]-term t  can be -  uniquely -  written as  lx1…lxn(R)t1…tm 

n,m 0, R≥   being  a variable or a redex

Proof. By induction on t. ■  

 

Definitions.
- Let t be a l[]-term, then, by proposition 3.4.1, t=lx1…lxn(R)t1…tm.

If R is a variable, we say that t is a b[]-head normal form.

If R is a redex, we say that R is the head redex of t.

If t' is the l[]-term obtained from t  by contracting its head redex, we say that :
t  gives  t'  by  b0-head  reduction (resp.  by  []0-head  reduction, resp.  by  b[]0-head 

reduction), and we write  t∑b0t' (resp.  t∑[]0t', resp. t∑b[]0t'), if the head redex is a b-

redex (resp. a []-redex, resp. a b-redex or a []-redex).

- We say that t reduces to t'  by b-head reduction (resp. []-head reduction, resp. b[]-
head reduction),  and we write  t∑bt' (resp.  t∑[]t',  resp.  t∑b[]t')  if  and only if  t'  is 

obtained from t by a sequence of b0-head reduction (resp. []0-head reduction, resp. b[]0-

head reduction).

A b[]-head reduction is, in particular, a b[]-left reduction.
- If t∑b[]t', we denote by n(t,t'), the number of steps to go from t to t'.

- A l[]-term t is said b[]-solvable if and only if for every l[]-term u, there are variables 
x1,…,xk, and l[]-terms u1,…,uk,v1,…,vl k,l 0, such that (t[u≥ 1/x1,…,uk/xk])v1…vl :b[]u.

Theorem 3.4.2. If t∑b[]t', then for every u1,…,urAL[] :

1) There is vAL, such that (t)u1…ur∑b[]v, (t')u1…ur∑b[]v, and n((t)u1…ur,v)= n((t')u1…

ur,v)+n(t,t').

2)  t[u1/x1,…,ur/xr]∑b[]t'[u1/x1,…,ur/xr],  and  n(t[u1/x1,…,ur/xr],t'[u1/x1,…,ur/xr])= 

n(t,t').

Remarks.
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-  1) shows that  to make the  b[]-head reduction of (t)u1…un, it  is equivalent  (same 

result, and same number of steps) to make some steps in the b[]-head reduction of t, and 
then make the b[]-head reduction of (t')u1…un.

-  2)  shows that to make the  b[]-head reduction of t[u1/x1,…,un/xn], it  is equivalent 

(same result, and same number of steps) to make some steps in the b[]-head reduction 
of t, and then make the b[]-head reduction of t'[u1/x1,…,un/xn]. 

Corollary 3.4.3. Let t,u1,…,un,v1,…,vmAL[]. If the b[]-head reduction of (t[u1/x1,…,un/

xn])v1…vm terminates, then the b[]-head reduction of t terminates. 

Proof. Use theorem 3.4.2. ■

Theorem 3.4.4 (resolution theorem). The following conditions are equivalent :

1) t is b[]-solvable ;

2) the b[]-head reduction of t terminates ;

3) t is b[]-equivalent to a b[]-head normal form.

Proof of theorem 3.4.2. It is enough to do the proof for one step of reduction.
1) By induction on r ; it is enough to do the proof for r=1. Then t=lx1…lxn(R)t1…tm, 

and t'=lx1…lxn(R')t1…tm where R' is the contractum of R.

If n=0, then (t)u=(R)t1…tmu, and (t')u=(R')t1…tmu, therefore (t)u∑b[]v, where v=(t')u.

If  n 1, then one step  of  ≥ b[]-head reduction of  (t)u  gives  lx2…lxn(R)t1…tm (where 

w=w[u/x1]  for  every  wAL[]).  One  step  of  b[]-head  reduction  of  (t')u  gives  lx2…

lxn(R')t1…tm. 

Lemma 3.4.5.  If R a redex, R' its contractum, and u1,…,umAL[], then R[u1/y1,…,um/

ym] is a redex, and R'[u1/y1,…,um/ym] is its contractum.

Proof. If R is a b-redex, then R=(lxu)v, and R'=u[v/x]. 
R[u1/y1,…,um/ym]=(lxu[u1/y1,…,um/ym])v[u1/y1,…,um/ym]  is  a  b-redex,  and  its 

contractum is u[u1/y1,…,um/ym][v[u1/y1,…,um/ym]/x]=R'[u1/y1,…,um/ym].

    If R is a []-redex, then R=[t]<a/x> :
- If t=xi  1 i n,≤≤  then R'=ai. R[u1/y1,…,um/ym]=[t]<a[u1/y1,…,um/ym]/x> is a []-redex, 

and its contractum is ai[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym].

- If t=lxu, then R'=ly[u]<a/x,y/x> where yFv(a).
 R[u1/y1,…,um/ym]=[lxu]<a[u1/y1,…,um/ym]/x> is  a  []-redex,  and  its  contractum is 

ly[u]<a/x,y/x>[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym] where yFv(a)"

- If t=(u)v, then R'=([u]<a/x>)[v]<a/x>.
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 R[u1/y1,…,um/ym]=([u]<a/x>)[v]<a[u1/y1,…,um/ym]/x>  is  a  []-redex,  and  its 

contractum is ([u]<a/x>)[v]<a/x>[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym]. ■

By lemma 3.4.5, (t)u∑b[]v, and (t')u∑b[]v where v=lx2…lxn(R')t1…tm.

2) Same proof as 1). ■ 

Proof of theorem 3.4.4.
1)1)112)2) If t is b[]-solvable, then there are variables x1,…,xk, and terms u1,…,uk,v1,…,vl 

(k,l 0), such  that  (t[u≥ 1/x1,…,uk/xk])v1…vl:b[]lxx,  therefore,  by  the  Church-Rosser 

theorem,  (t[u1/x1,…,uk/xk])v1…vl∑b[]lxx, therefore,  by  corollary  3.4.3,  the  b[]-head 

reduction of t terminates.

2)2)113)3) Clear.
3)3)111)1)  Assume t:b[]lx1…lxn(y )t1…tm, and let u be a l[]-term :
- If y=xi 1 i n, then (((t)x≤≤ 1…xi-1)ly1…lymu)xi+1…xn:b[]u where yjFv(u) 1 j m.≤≤

- If y x≠ i 1 i n, then (t[≤≤ ly1…lymu/y])x1…xn:b[]u where yjFv(u) 1 j m.≤≤

Therefore t is b[]-solvable. ■ 

Lemma 3.4.6. If u∑b0v, then l(u)∑0l(v).

Proof. Same proof as lemma 3.4.5. ■

Theoreme 3.4.7. u is b[]-solvable if and only if l(u) is solvable.

Proof.

11 Use lemmas 3.2.7 and 3.4.6.
00 Otherwise  there  is  an  infinite  sequence  of  l[]-terms  u0=u,u1,…,un,…,  such  that 

ui∑b0ui+1 or ui∑[]0ui+1 for i 0. Therefore, by lemmas 3.2.7, 3.4.6, and 3.2.2, there is an≥  

infinite sequence of l[]-terms v0=l(u),v1,…,vn,…, such that vi∑0vi+1 for i 0, therefore≥  

l(u) is unsolvable. A contradiction. ■

§ 4. An equivalent definition for storage operators

Theorem 4.1. Let t be a closed b-normal l-term, and T a closed l-term. T is an o.m.m.  
for t if and only if there is a l-term tt:byt, such that

T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym].

To prove this theorem we need some definitions
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Definition. Let t be a b-normal l-term, and u a l[]-term. We say that u is directed by t 

if and only if the  directors of boxes of u are subterms of t. 

More precisely u is directed by t if and only if : 

- If u=x, then u is directed by t ;

- If u=lxv, then u is directed by t if and only if v is directed by t ;

- If u=(v)w, then u is directed by t if and only if v and w are directed by t ;

- If u=[v]<a/x>, then u is directed by t if and only if v is a subterm de t, and for all 
1 i n a≤≤ i is directed by t.

Lemma 4.2. 

1) If u and v are directed by t, then u[v/x] is directed by t.
2) If u is directed by t, and u5b[]v, then v is directed by t.

Proof. By induction on u. ■  

 

Definition.  Let t be a  b-normal  l-term. A  t-special application  h  is a function from 

ST(t) to L which satisfies the following properties :

- h(x)∑x ;

- h(lxu)∑lxh(u) ;

- h((u)v)∑(h(u))h(v).

Lemma 4.3. If h is a t-special application, then, for every uAST(t), h(u):bu.

Proof. by induction on u. ■ 

 
Lemma 4.4. Let t be a  b-normal  l-term, and uAST(t). For every  hu:bu, there is a t-

special application h, such that h(u)=hu.

Proof. Let vAST(t) ; we define h(v) as follows :

-  If  vAST(u),  h(v)  is  defined  by  induction  on  li(v)=lg(u)-lg(v),  and  we  check  that 
h(v):bv.

- If li(v)=0, then v=u. Take h(v)=hu, we have h(v):bv.

- If li(v) 1, then v is a proper subterm of u :≥

-  If  there  is  an  x,  such  that  lxvAST(u)  then  by  induction  hypothesis,  we  have 
h(lxv):blxv, therefore h(lxv)∑lxhv where hv:bv. Take h(v)=hv, we have h(v):bv.

- If there is wAST(t), such that (v)wAST(t) then by induction hypothesis, we have 
h((v)w):b(v)w. Since t is  b-normal, then  h((v)w)∑(hv)hw  where  hv:bv and  hw:bw. 
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Take h(v)=hv, we have h(v):bv.

- If there is wAST(t), such that (w)vAST(t) then by induction hypothesis, we have 
h((w)v):b(w)v. Since t is  b-normal, then  h((w)v)∑(hw)hv  where  hv:bv, and  hw:bw. 

Take h(v)=hv, we have h(v):bv.

- If uAST(v)\{v}, take h(v) the l-term v where u is replaced by h(u), we have h(v):bv.

- Otherwise, we put h(v)=v.

By construction, h is a t-special application. ■  

Definition.  Let t  be a  b-normal  l-term,  and  h a  t-special  application.  The  t-special 
substitution Sh is the function from the set of l[]-terms directed by t into L defined by 

induction :
- If u=x, then Sh(u)=x ;

- If u=lxv, then Sh(u)=lySh(v[y/x]) where yFv(h(t)) ;

- If u=(v)w, then Sh(u)=(Sh(v))Sh(w) ;

- If u=[v]<a/x>, then Sh(u)=h(v)[Sh(a1)/x1,…,Sh(an)/xn].

A t-special substitution is the function Sh associated to a b-normal l-term t, and some t-

special application h.
It is easy to see that if u does not contain boxes, then Sh(u)=u.

Lemma 4.5. If y1,…,ymFv(h(t)), then 

Sh(u[v1/y1,…,vm/ym]) =Sh(u)[Sh(v1)/y1,…,Sh(vm)/ym].

Proof. By induction on u. ■

 
Lemma 4.6. Sh(u):b l(u).  

Proof. By induction on u. ■  

Lemma 4.7. If u∑b[] v, then Sh(u):Sh(v).

Proof. It is enough to do the proof for one step of reduction.
Let u=lx1…lxn(R)u1…um,  and v=lx1…lxn(R')u1…um where R'  is the contractum of 

redex R :

If R=(lxa)b, then R'=a[b/x]. 
Sh((lxa)b)=(lySh(a[y/x]))Sh(b)∑Sh(a[y/x])[Sh(b)/y]=Sh(a)[y/x][Sh(b)/y]

=Sh(a)[Sh(b)/x], therefore, by lemma 4.5, Sh((lxa)b)∑Sh(a[b/x]).

If R=[u]<a/x> :
- If u=xi 1 i n,≤≤  then R'=ai, and Sh(R)=Sh(R').
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- If u=lxv, then R'=ly[v]<a/x,y/x> where yFv(a). 
Sh(R)=h(u[Sh(a1)/x1,…,Sh(an)/xn]∑lxh(v)[Sh(a1)/x1,…,Sh(an)/xn]=

lzh(v)[Sh(a1)/x1,…,Sh(an)/xn,z/x] where zFv(h(t))"Fv(a), therefore 

Sh(R)∑Sh(R').

- If u=(c)d, then R'=([c]<a/x>)[d]<a/x> 
Sh(R)=h(u)[Sh(a1)/x1,…,Sh(an)/xn]∑(h(c))h(d)[Sh(a1)/x1,…,Sh(an)/xn]=

(h(c)[Sh(a1)/x1,…,Sh(an)/xn])h(d)[Sh(a1)/x1,…,Sh(an)/xn], 

therefore Sh(R)∑Sh(R'). ■

 
Corollary 4.8. u is b[]-solvable if and only if Sh(u) is solvable.

Proof.

11 Use lemma 4.7.
00 Sh(u) is solvable,  therefore,  by lemma 4.6,  l(u) is solvable,  therefore,  by theorem 

3.4.7, u is b[]-solvable. ■

Definition. We say that a l[]-term t is good if and only if there is a l-term u, such that 
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if  ≤≤ ai=a1,i,…,ani,i, then aj,i is 

good 1 j n≤≤ i.

It is clear that we have :

- x is good ;

- If lxt is good, then t is good ;

- (u)v is good if and only if u and v are good ;
- [w]<a/x> is good if and only if ai is good 1 i n.≤≤

Example. The l[]-term [x1]<x/x1> is good, but the l[]-term lx[x1]<x/x1> is not. Indeed, 

the variable x becomes bounded, and so we can not find a l-term u, such that lx[x1]<x/

x1>= u[[t]<a/x>/y].

Lemma 4.9. If t,v1,…,vr are good, then t[v1/y1,…,vr/yr] is good.

Proof. By induction on t. ■ 

 

Definitions.
- A []'-redex is a l[]-term of the form ([ly1…lym(y)u1…ur]<a/x>)v1…vm.             Its 

contractum R is defined by :  R=(b)[u1]<a/x,v/y>…[ur]<a/x,v/y> where b=vi  if  y=yi 

1 i m, and b=a≤≤ i if y=xi 1 i n.≤≤

It is easy to see that if R is a []'-redex, and R' its contractum, then R∑b[]R'.
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Let t=lx1…lxn(R)t1…tm where R is a []'-redex. If t' is the l[]-term obtained from t  by 

contracting the []'-redex R, we say that t gives t' by a []'0-head reduction, and we write 

t∑[]'0t'. 

We say that t reduces to t' by []'-head reduction, and we write t∑[]'t' if and only if t' is 

obtained  from  t by a sequence of []'0-head reductions.

- If t' is the l[]-term obtained from t  by contracting its head redex (b-redex or []'-redex), 
we say that t gives t' by b[]'0-head reduction, and we write t∑b[]'0t'.

We say that t reduces to t'  by b[]'-head reduction, and we write t∑b[]'t' if and only if t' 

is obtained from t by a sequence of b[]'0-head reductions.

- A head reduction t∑bt' is said complete if and only if for every l[]-term u, if t'∑bu, 

then t'=u.

Lemma 4.10. 
1) If f is a variable, and t∑b[](f)u1,…ur, then there is a sequence t0=t,t1,…,tn= (f)u1,…

ur, such that ti∑bti+1 is complete or ti∑[]'ti+1 0 i n-1.≤≤

2) If moreover t is directed by u, then every director of ti 0 i n is an element of STE(u).≤≤  

Proof. 
1) If t∑b[](f)u1,…ur, then there is a sequence t=(v0)w0,(v1)w1,…,(vm)wm=(f)u1,…ur, 

such that (vi)wi∑b0(vi+1)wi+1  or (vi)wi∑[]0(vi+1)wi+1  0 i m-1. If (v≤≤ i)wi∑[]0(vi+1)wi+1 

0 i m-1,≤≤  then (vi)wi=([ly1…lyp(y)d1…dq]<a/x>)b1…bp c1…cs. Therefore there is j>i, 

such  that  (vi)wi∑[]'0(vj)wj, therefore  there  is  a  sequence  t=(v'0)w'0,(v'1)w'1,  …, 

(v'k)w'k=(f)u1,…ur, such that (v'i)w'i∑b(v'i+1)w'i+1  or (v'i)w'i ∑[]'(v'i+1)w'i+1  0 i k-1.≤≤  

Gathering consecutive b-reductions, it is clear that we can suppose that the b-reductions 
(v'i)w'i∑b(v'i+1)w'i+1 are complete.  

2) Easy. ■

Lemma 4.11. Let t be a good l[]-term.
1) If t∑bt' then, t' is good.

2) If t∑[]'(a)b, then (a)b is good.

3) If t∑b[](f)u1…ur, then u1,…,ur are good.

Proof. If t is good, then there is a l-term u, such that 
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if  ≤≤ ai=a1,i,…,ani,i, then aj,i is 

good 1 j n≤≤ i. 

1) It is enough to do the proof for one step of reduction. If t∑b0t', then t'=u'[[t1]<a1/x1>/

y1,…,[tm]<am/xm>/ym] where u∑0u', therefore t' is good. 

2) It is enough do the proof for one step of reduction. For every l[]-term u, denote by u" 
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the l[]-term u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym]. 

It is clear that we may suppose that yiFv(aj) 1 i,j m.≤ ≤  

If t∑[]'0(a)b, then u=(yi)v1…vqw1…ws 1 i m, t≤≤ i =lf1…lfq(y)u1…ur, and 

(a)b={(c)z1…zrw1…ws}[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym,[u1]<ai/xi,v"/f>/y1,…,

[ur]<ai/xi,v"/f>/zr] where c=vi if y=fi 1 i q, and c=a≤≤ j,i if y=xj,i 1 i m, 1 j n≤≤ ≤≤ i, and

z1,…,zr are a new variables, therefore, by lemma 4.9, (a)b is good. 

3) Use lemma 4.10, and 1) and 2). ■

 

Proof of theorem 4.1. 
11 If  T  is  an  o.m.m.  for  t,  then  there  is  dt:byt, such  that  for  every  ht:bt,  there  is  a 

substitution  s,  such that Thtf∑(f)s(dt).  l(T[t]f)=Ttf is solvable, therefore,  by theorem 

3.4.7,  T[t]f  is  b[]-solvable,  and  T[t]f∑b[](f)t'.  By  lemma  4.4,  let  h be  a  t-special 

application, such that  h(t)=ht. Then Sh(t')=s(dt). T[t]f is a good l[]-term, therefore, by 

lemma 4.11, t' is good, therefore t'=tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where tt is a 

l-term. Therefore Sh(t')=tt[h1/y1,…,hm/ym] where hi=h(ti)[Sh(ai,1)/xi,1,…,Sh(ai,mi)/xi,mi] 

1 i m, therefore, by lemmas 2.2.4, 2-6, and 4.3, ≤≤ tt=s'(dt), therefore tt:byt.

00 Assume that T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. Let ht:bt. By 

lemma 4.4, let  h be a t-special application, such that  h(t)=ht. By lemma 4.7, we have 

Sh(T[t]f)=Thtf ∑(f)tt[h1/y1,…,hm/ym]. Therefore T is an o.m.m. for t. ■  

 

Examples.
- Tis an o.m.m. for Pn. Indeed,

T[P)]f∑b0([P])lf(f)P.…lf(f)Pf∑[]'0(lf(f)P)f∑b0(f)P1 i n.≤≤

- Tis an o.m.m. for N. Indeed,
T[n]f∑b0([n])Ff0∑[]'0((F)[(x1)n-1x2]<F/x1,f/x2>)0∑b([(x1)n-1x2]<F/x1,f/x2>)(s)0 

∑[]'0((F)[(x1)n-2x2]<F/x1,f/x2>)(s)0∑b([(x1)n-2x2]<F/x1,f/x2>)(s)20∑[]'0…∑b ([x2]<F/

x1,f/x2>)(s)n0∑[]'0(f)(s)n0.

§ 5. Properties of storage operators

5.1 Storage operators and b-equivalence
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Theorem 5.1.1. Let t be a closed b-normal l-term, T and T' be closed l-terms.           If  
T is an o.m.m. for t, and T':bT, then T' also is an o.m.m. for t.

Proof. On the set of good l[]-terms, we define an equivalence relation g by : 
If t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where u is a  l-term, then tgt' if and only if 

t'=u'[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym]  where  u:bu',  and  for  all  1 i m if  ≤≤ ai=a1,i,

…,ani,i, then a'i=a'1,i,…,a'ni,i, and aj,iga'j,i 1 j n≤≤ i.

It is clear that if lx1…lxn(f)u1…umgt (f is a variable), then t=lx1…lxn(f)u'1…u'm where 

uigu'i 0 i m.≤≤

Lemma 5.1.2. If tgt', and vigv'i 1 i r, then t[v≤≤ 1/y1,…,vr/yr]gt'[v'1/y1,…,v'r/yr].

Proof. By induction on t. ■  

 

Lemma 5.1.3. Let t be a good l[]-term.
1) If t∑bt' is complete, and tgT, then for someT' : t'gT', and T∑bT' is complete.

2) If t∑[]'0(c)d, and tgT, then tor someT' with the same b[]-head normal form as T :  

(c)dgT'.
3) If t∑b[](f)u1…ur, and tgT, then tor someT' : (f)u1…urgT', and T∑b[]T'.

Proof. If t is good, then there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where ai=a1,i,…,ani,i 1 i n. ≤≤

1) If t∑bt'  is complete, then t'=u'[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where u'  is the 

head normal form of u. If tgT, then T=U[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym] where 

u:bU, a'i=a'1,i,…,a'ni,i, and aj,iga'j,i 1 j n≤≤ i. Let U' be the head normal form of U. 

Let  T'=U'[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym].  It  is  clear  that  we  have  t'gT',  and 

T∑bT' is complete.

2) For every l[]-term u, we denote by u" the l[]-term u[[t1]<a1/x1>/y1,…, [tm]<am/xm>/

ym].

It is clear that mat suppose that yiFv(aj) 1 i,j m.≤ ≤  

If t∑[]'0(c)d, then u=(yi)v1…vqw1…ws 1 i m, t≤≤ i =lf1…lfq(y)u1…ur, and 

(c)d={(b)z1…zrw1…ws}[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym,[u1]<ai/xi,v"/f>/z1,…,

[ur]<ai/xi,v"/f>/zr] where b=vi if y=fi 1 i q, and b=a≤≤ j,i if y=xj,i 1 i m, and 1 j n≤≤ ≤≤ i, and 

z1,…,zr are a new variables. 

If tgT, then T=U[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym] where u:bU, a'i=a'1,i,…,a'ni,i  and 

aj,iga'j,i 1 j n≤≤ i.  Since u:bU, then U∑(yi)c1…cqd1…ds  where vi:bci 1 i q, and w≤≤ j:bdj 

1 j s. ≤≤
For every  l[]-term u, we denote by u''' the  l[]-term [[t1]<a'1/x1>/y1,…, [tm]<a'm/xm>/
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ym].

Let T'={(b)z1…zrd1…ds}[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym,[u1]<a'i/xi,c'''/f> /z1,…,

[ur]<a'i/xi,c'''/f>/zr] where b'=ci if y=fi 1 i q, and b'=a'≤≤ j,i if y=xj,i 1 i m, and 1 j n≤≤ ≤≤ i. 

It is clear that T and T' have the same b[]-head normal form, and, by lemma 5.1.2, t'gT'. 

3) Use 1), 2), and lemma 4.10. ■  

If T is an o.m.m. for t, then, by theorem 4.1, 
T[t]f ∑b[]  (f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. If T':bT, then T'[t]fgT[t]f, 

therefore, by 3) of lemma 5.1.3, 
T'[t]f  ∑b[]  (f)t't[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym],  and  t't:btt:byt.  Therefore,  by 

theorem 4.1, T' is an o.m.m. for t. ■ (of theorem 5.1.1)

5.2 Decidability

Theorem 5.2.1. If X is a non trivial set of closed l-terms stable by b-equivalence, then 

X is not recursive.

Proof. See [2], [5], and [14]. ■

Theorem 5.2.2. The set of o.m.m. for a set of closed b-normal l-terms is not recursive.

Proof.  Use theorems 5.1.1 and 5.2.1. ■

Theorem  5.2.3. The  set  of  o.m.m.  for  a  finite  set  of  closed  b-normal  l-terms  is  

recursively enumerable.

  

Proof. Use theorem 4.1. ■

5.3 Storage operators and y-equivalence

Theorem 5.3.1. Let t be a closed b-normal l-term, and T be closed l-term. 

If T is an o.m.m. for t, and t5yt', then T  also is an o.m.m. for t'.

Remark. The theorem 5.3.1 is no more true if we replace t5yt' by t:yt'. Indeed,
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if we take  t=lxx, t'=lxlylz((x)y)z, and T=ln(n)lf(f)lxx, then :
- t'5yt, therefore t:yt'.

- For every l-term u such that u:bt, (T)u∑lf(f)lxx, therefore T is an o.m.m. for t.

- (T)t'f∑lz((f)lxx)z, therefore T is not an o.m.m. for t'.

Proof of theorem 5.3.1.  On the set  L[],  we define the  binary relation  c as the least 

relation satisfying : 

- tct ;

- If tct', then lxtclxt';

- If ucu', and vcv', then (u)vc(u')v';
- If t5yxi, and aica'i 1 i n, then [t]<≤≤ a/x>ca'i ;
- If t5yt', and aica'i 1 i n, then [t]<≤≤ a/x>c[t']<a'/x>.

It is clear that :
- If lx1…lxn(u0)u1…umct, then t=lx1…lxn(u'0)u'1…u'm where uicu'i 0 i m.≤≤

- Let t be a good l[]-term, therefore there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if  ≤≤ ai=a1,i,…,ani,i,  then aj,i is 

good 1 j n≤≤ i. If tct', then it is easy to check that t'=u[c1/y1,…,cn/ym] where ci=[t'i]<a'i/

xi> with ti5yt'i, aj,ica'j,i  1 i m, 1 j n≤≤ ≤≤ i, or ci=a'j,i  1 j n with t≤≤ i5yxj,i  and aj,ica'j,i  1 i m,≤≤  

1 j n≤≤ i.

Lemma 5.3.2. If ucu', and vicv'i 1 i n, then :≤≤

u[v1/x1,…,vn/xn]c u'[v'1/x1,…,v'n/xn].

Proof. By induction on u. ■  

Lemma 5.3.3.  If u=lx1…lxn(y)u1…um5yv, then v=lx1…lxn-r(y)u'1…u'm-r  where uj5yu'j  

1 j m-r,≤≤  um-s5yxn-s 0 s r-1, and x≤≤ n-s y≠  does not appear in u1,…um-r.

Proof. By induction on the number n of y0-reductions to go from u to v. 

n=0 : clear.
If n≥1, then u5yw5y0v, therefore w=lx1…lxn-r(y)u'1…u'm-r where uj5yu'j  1 j m-r, u≤≤ m-

s5yxn-s 0 s r-1, and x≤≤ n-s y does not appear in the u≠ 1,…um-r. Since w5y0v, then v=lx1…

lxn-r(y)u'1…u"k…u'm-r where u'k5yu"k, or u'm-r=xn-r, xn-r y≠  does not appear in the u1,

…,um-r-1, and v=lx1…lxn-r-1(y)u'1…u'm-r-1 as required. ■ 

 Lemma 5.3.4. 
1) If t∑b0t', and tcT, then for some t' : t'cT', and T∑b0T'.

2) If t∑[]'0t', and tcT, then for some t' :  t'cT', and T∑[]'0T'.

35



3) If t∑b[]'t', and tcT, then for some t' : t'cT', and T∑b[]'T'.

Proof.
1)  If  t∑b0t',  then  t=lx1…lxn(lxu)vt1…tm, and t'=lx1…lxn(u[v/x])t1…tm.  If  tcT,  then 

T=lx1…lxn(lxu')v't'1…t'm where ucu', vcv', and tict'i 1 i m. ≤≤

Let T'=lx1…lxn(u'[v'/x])t'1…t'm. It is clear that T∑b0T ', and, by lemma 5.3.2, t'cT'.

2) If t∑[]'0t', then t=ly1…lym([lz1…lzk(y)u1…ur]<a/x>v1…vkw1…ws, and

t'=ly1…lym(b)[u1]<a/x,v/z>…[ur]<a/x,v/z>w1…ws where b=vi if y=yi 1 i m, and b=a≤≤ i 

if y=xj 1 j n. Assume t≤≤ cT.

-  If  lz1…lzk(y)u1…ur5yy,  then  k=r,  ui5yzi  1 i m, and  z≤≤ i y=x≠ j  1 j n, then≤≤  

T=ly1…lym(a'j)v'1…v'kw'1…w's  where ajca'j,  vicv'i  1 i k, and w≤≤ icw'i  1 i s.     Let≤≤  

T'=T. It is clear that t'cT', and T∑[]'0T'.

- If lz1…lzk(y)u1…ur5ylz1…lzk-l(y)u'1…u'r-l where uj5yu'j 1 j r-l,        ≤≤  ur-s5yzk-s 

0 s l-1,  and  z≤≤ k-s y≠  does  not  appear  in  the  u1,…ur-l,  then  T=ly1…lym([lz1…lzk-

l(y)u'1…  u'r-l]<a'/x>v'1…v'kw'1…w's  where  vicv'i  1 i k, and  w≤≤ icw'i  1 i s. Let≤≤  

T'=ly1…lym(bi)[u1]<a'/x,v'1/z1,…,v'k-l/zk-l>  …[ur]<a'/x,v'1/z1,…,v'k-l/zk-l>  v'm-l+1…

v'k w'1…w's where b=v'i if y=yi 1 i m, and b=a≤≤ i if y=xj 1 j n. It is clear that t'≤≤ cT', and 

T∑[]'0T'.

3) Use 1) and 2). ■  

 
If T is an o.m.m. for t, then, by theorem 4.1, there is a l-term tt:byt, such that T[t]f∑b[]

(f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym]. 

If t5yt', then T[t]fcT[t']f, therefore, by lemma 5.3.4, T[t']f∑b[](f)t', and tt[[t1]<a1/x1>/y1,

…,[tm]<am/xm>/ym]ct'.  Therefore  there  is  a  l-term  t"t,  such  that  t"t:btt:byt,  and 

t'=t"t[[u1]<b1/z1>/y1,…,[um]<br/zr>/yr]. Therefore, by theorem 4.1, T is an o.m.m. for 

t'. ■ (of theorem 5.3.1)

5.4. Storage operators for a set of b-normal l-terms

Theorem 5.4.1. Let u1,…,un,v1,…,vm be closed l-terms. Assume uibyuj for i<j, there is a  

closed l-term T, such that (T)ui:bvi 1 i n.≤≤
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Proof. See [3]. ■

 

Theorem 5.4.2. Every finite set of b-normal l-terms having all distinct by-normal forms 

has an o.m.m..

Proof.  Let D={t1,…,tn} be  such a set. By theorem 5.4.1, there is a closed  l-term T', 

such  that  T'ti:bP1 i n, therefore  for  every  ≤≤ hi:bti, T'hi:bP, therefore  T'hi∑P.   Let 

T=ln((T')n)lf(f)t1…lf(f)tn. It is easy to check that T is an o.m.m. for D. ■

Theorem 5.4.3. Every finite set of b-normal l-terms has an o.m.m..

Remarks.

- The theorem 5.4.3 is no more true if we remove the hypothesis "the l-terms of D are 
b-normal". If we take t1=lxx, and t2=(lx(x)x)lx(x)x, then D={t1,t2} have no o.m.m.. 

Indeed, if T is an o.m.m. for t2, then, by corollary 2.2.3, T =lnlf(f)u2 where u2:byt2, 

therefore T is not an o.m.m. for t1.

- The theorem 5.4.3 is no more true if we remove the hypothesis "D is finite". If we take 

D the set of all Pi 1, then D have no o.m.m.. Indeed, if T is an o.m.m. for D, let T' its≥  
head normal form. By proposition 2.2.1, T'=lx1…lxe(xi)t1…tn where e=1 or 2, and, by 

theorem 5.1.1, T' also is an o.m.m. for D. It is easy to prove that T' is not an o.m.m. for 

the l-term P.

Proof of theorem 5.4.3. Let D={t1,…,tn} be a finite set of b-normal l-terms. Gathering 

the l-terms having the same by-normal form, we can write D=where Di={t,…,t}1 i m,≤≤  

for all 1 i m, and 1 j,j' m≤≤ ≤ ≤ i, tby=tby, and for all 1 i,i' m, t≤ ≤ by t≠by.

Lemma 5.4.4. Let t,t' be  b-normal  l-terms. If t:yt', then there is a  b-normal  l-term u,  

such that u5yt, and u5yt'.

Proof. By induction on t and t'. If t:yt', then there is a b-normal l-term v, such that t5yv, 

and t'5yv. If v=lx1…lxn(y)v1…vm, then, by lemma 5.3.3, 

t=lx1…lxnly1…lyk(y)v'1…v'mu1…uk, and  t'=lx1…lxnly1…lyr(y)v"1…v"m  w1…wr 

where v'i5yvi,  v"i5yvi  1 i m, u≤≤ j5yyj  1 j k, y≤≤ j y≠  does not appear in v1,…vm,  wj5yyj 

1 j r, and y≤≤ j y≠  does not appear in v1,…vm. Assume that k r. By induction hypothesis,≤  

let ai be a b-normal l-term, such that ai5yv'i, and ai5yv"i 1 i m, and b≤≤ j be a b-normal l-

term,  such  that  bj5yuj, and  bj5ywi  1 j k. Let  u=≤≤ lx1…lxnly1…lyr(y)a1…amb1…

bkwk+1…wr. It is clear that u is a b-normal l-term, and that u5yt, and u5yt'. ■  

 

37



An y-bound for a set B={u1,…,um} is a b-normal l-term u, such that u5yui 1 i m.≤≤

Corollary 5.4.5. Every finite set B of b-normal l- terms having all the same y-normal 

form has an y-bound.

Proof. By induction on the number of l-terms of B using lemma 5.4.4. ■ 

By corollary 5.4.4, let ui be a  y-bound for Di  1 i m. By theorem 5.4.2, the set {u≤≤ 1,

…,um} has an o.m.m., therefore, by theorem 5.3.1, D has an o.m.m..  ■ (of theorem 

5.4.3)

5.5 Computation time of a storage operator

Lemma 5.5.1. Let (ti)1 i n≤≤  and (t'i)1 i n≤≤  be sequences of l-terms, such that :

1) For all 1 i n, t≤≤ i∑t'i.

2) For all 1 i n-1, t≤≤ i=(ui)vi,1…vi,ri, t'i=(u'i)vi,1…vi,ri, and u'i∑ui+1.

3) t'n=(f)v1…vr where f is a variable.

Then t1∑t'n, and tps(t1)=n(t1,t'n)=+.

Proof. By induction on n.

n=1: trivial
for n>2 : Let ni=n(ti,t'i) and mi=n(u'i,ui+1). By induction hypothesis, we have t2∑t'n, and 

n(t2,t'n)=+.

u'1∑u2,  therefore,  by  theorem  1.2.1,  for  some  w,  (u'1)v1,1…v1,r1∑w,  (u2)v1,1…

v1,r1∑w,  and  n((u'1)v1,1…v1,r1,w)=n((u2)v1,1…v1,r1,w)+n(u'1,u2)=  n((u2)v1,1…

v1,r1,w)+m1. 

Therefore t'1∑t'n, and n(t'1,t'n)=n(t'1,w)+n(w,t'n). Therefore t1∑t'n, and 

tps(t1)=n(t1,t'n)=n(t1,t'1)+n(t'1,w)+n(w,t'n)=n1+m1++=+. ■ 

Theorem 5.5.2. Let t be a closed b-normal l-term, and T a closed l-term. 
If T is an o.m.m. for t,  there are constants AT,t and BT,t, such that for every  ht:bt,  

tps(Thtf) A≤ T,tTps(ht)+BT,t.

Proof. 
If t∑b[]t', denote by b(t,t'), the number of b0-reductions used in this reduction.

For every vAL[], we define D(v) by induction on v :

- If [u]<a/x> is the head redex of v, then D(v)=u ;
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- If not, D(v)=o where o is a constant.
Let h be a t-special application. For every uAST(t)"{o}, we define the integer nh(u) by :

- nh(x)=nh(o)=0 ;

- nh(lxu)=n(h(lxu),lxh(u)) ;

- nh((u)v)=n(h((u)v),(h(u))h(v)).

If T is an o.m.m. for t, then 
T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. There is a sequence of l[]-

terms t0=T[t]f,t1,…,tn=(f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], such that ti-1∑b0ti or ti-

1∑[]0ti 1 i n. ≤≤

Let AT,t=Max{number of boxes directed by u and appearing  in  head position of ti 
0 i n, u≤≤ AST(t)}, and BT,t=b(t0,tn).

Let ht:bt. By lemma 4.4, let h be a t-special application, such that h(t)=ht. 

By the proof of lemma 4.7, and by lemma 5.5.1, we have 
tps(Thtf)=b(t0,tn)+ .

By theorem 1-3, Tps(ht)=nh(u), and then tps(Thtf) A≤ T,tTps(ht)+BT,t. ■ 

 
Remark.  By the proof of theorem 5.5.2, we have tps(Thtf)=AT,tTps(ht)+BT,t if  and 

only if, for all uAST(t), AT,t=the number of boxes directed by u and appearing  in head 

position of ti 0 i n.≤≤
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