
HAL Id: hal-00385174
https://hal.science/hal-00385174v1

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STORAGE OPERATORS AND DIRECTED
LAMBDA-CALCULUS

René David, Karim Nour

To cite this version:
René David, Karim Nour. STORAGE OPERATORS AND DIRECTED LAMBDA-CALCULUS. The
Journal of Symbolic Logic, 1995, 64 (4), p 1054-1086. �hal-00385174�

https://hal.science/hal-00385174v1
https://hal.archives-ouvertes.fr

STORAGE OPERATORS
AND

DIRECTED LAMBDA-CALCULUS

René DAVID & Karim NOUR

LAMA - Equipe de Logique

Université de Savoie - Campus Scientifique

73376 Le Bourget du Lac cédex

email [david,nour]@univ-savoie.fr

Abstract

Storage operators have been introduced by J.L. Krivine in [5] ; they are closed l-terms

which, for a data type, allow to simulate a "call by value" while using the "call by

name" strategy. In this paper, we introduce the directed l-calculus and show that it has

the usual properties of the ordinary l-calculus. With this calculus we get an equivalent -

and simple - definition of the storage operators that allows to show some of their

properties :

- the stability of the set of storage operators under the b-equivalence (theorem 5.1.1) ;

- the undecidability (and its semi-decidability) of the problem "is a closed l-term t a

storage operator for a finite set of closed normal l-terms ? " (theorems 5.2.2 and 5.2.3) ;

- the existence of storage operators for every finite set of closed normal l-terms

(theorem 5.4.3) ;

- the computation time of the "storage operation" (theorem 5.5.2).

Résumé

Les opérateurs de mise en mémoire ont été introduits par J.L. Krivine dans [5] ; il s'agit

de l-termes clos qui, pour un type de données, permettent de simuler "l'appel par nom"

dans le cadre de "l'appel par valeur". Dans cet article, nous introduisons le l-calcul

dirigé et nous démontrons qu'il garde les propriétés usuelles du l-calcul ordinaire. Avec

ce calcul nous obtenons une définition équivalente - et simple - pour les opérateurs de

mise en mémoire qui permet de prouver plusieurs de leurs propriétés :

- la stabilité de l'ensemble des opérateurs de mise en mémoire par la b-équivalence

(théorème 5.1.1) ;

- l'indécidabilité (et sa semi-décidabilité) du problème "un terme clos t est il un

opérateur de mise en mémoire pour un ensemble fini de termes normaux clos ? "

(théorèmes 5.2.2 et 5.2.3) ;

- l'existence d'opérateurs de mise en mémoire pour chaque ensemble fini de termes

normaux clos (théorème 5.4.3) ;

- une inégalité controlant le temps calcul d'un opérateur de mise en mémoire (théorème

2

5.5.2).

Summary

§ 0. Introduction 4

§ 1. Basic notions of pure l-calculus 8

1.1. Notations 8

1.2. Properties of head reduction

10

§ 2. Storage operators

11

2.1. Definition of storage operators

11

2.2. General forms of the head normal form of a storage operator

12

2.3. Examples of storage operators

14

2.3.1. The projections

14

2.3.2. The Church integers

15

2.3.3. The recursive integers

16

2.3.4. The finite lists

17

§ 3. The directed l-calculus

19

3.1. The l[]-terms

19

3.2. The b[]-reduction

20

3

3.3. The b[]-left reduction

24

3.4. The b[]-head reduction

25

§ 4. An equivalent definition for storage operators

27

§ 5. Properties of storage operators

33

5.1. Storage operators and b-equivalence

33

5.2. Decidability

34

5.3. Storage operators and y-equivalence

35

5.4. Storage operators for a set of b-normal l-terms

37

5.5. Computation time of storage operators

38

References

40

§ 0. Introduction

0.1 Lambda-calculus as such is not a computational model. A reduction strategy is

needed. In this paper, we consider l-calculus with the left reduction (iteration of the

head reduction denoted by ∑). This strategy has some advantages : it always terminates

when applied to a normalizable l-term, and it seems more economic since we compute a

l-term only when we need it. But the major drawback of this strategy is that a function

must compute its argument every time it uses it. This is the reason why this strategy is

not really used. We would like a solution to this problem.

Let F be a l-term, D a set of closed normal l-terms, and tAD. During the computation,
by left reduction, of (F)ht (where ht:bt), ht may be computed several times (as many

4

times as F uses it). We would like to transform (F)ht to (F)t. We also want that this

transformation depends only on ht (and not F). In other words we look for some closed

l-term T which satisfies the following propreties :
- For every F, and for every tAD, (T)htF∑(F)t ;

- The computation time of (T)htF depends only on ht.

Definition (temporary) :

A closed l-term T is called a storage operator for D if and only if for every tAD, and
for every ht:bt, (T)htf∑(f)t (where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed,
- Since we have (T)htf∑(f)t, then the variable f never comes in head position during the

reduction, we cmay then replace f by any l-term.
- The computation time (T)htF depends only on ht.

K. Nour has shown (see [9]) that it is not always possible to get a normal form (it is the

case for the set of Church integers). We then change the definition.

Definition (temporary) :

A closed l-term T is called storage operator for D if and only if for every tAD, there is
a closed l-term tt:bt, such that for every ht:bt, (T)htf∑(f)tt (where f is a new variable).

J.L. Krivine has shown that, by using Gödel translation from classical to intuitionitic

logic, we can find, for every data type, a very simple type for the storage operators. But
the l-term tt obtained may contain variables substituted by l-terms depending on ht.

Since the l-term tt is by-equivalent to a closed l-term, the left reduction of tt[u1/x1,

…,un/xn] is equivalent to the left reduction of tt, the l-terms u1,…,un will therefore

never be evaluated during the reduction. We then modify again the definition.

Definition (final) :

A closed l-term T is called a storage operator for D if and only if for every tAD, there
is a l-term tt:byt, such that for every ht:bt, there is a substitution s, such that

(T)htf∑(f)s(tt) (where f is a new variable).

In the case where tt=t, we say that T is a strong storage operator, and in the case

where tt is closed, we say that T is a proper storage operator. These special operators

are studied in [9] and [12].

The previous definition is not well adapted to study these operators. Indeed, it is, a

5

priori, a Pstatement (Vt Ett Vht Es A(T,t,tt,ht,s)). We will show that it is in fact

equivalent to Pstatement (tt can be computed from t, and s from ht).

We now describe the intuitive meaning of the directed lambda calculus.

0.2 Consider the particular case of the set N of Church integers.

A closed l-term T is a storage operator for N if and only if for every n 0, there is a ≥ l-
term tn:byn, such that for every hn:bn, there is a substitution s, such that (T)hnf∑(f)s(tn).

Let's analyse the head reduction (T)hnf∑(f)s(tn), by replacing each l-term which comes

from hn by a new variable.

If hn:bn, then hn∑lglx(g)tn-1, tn-k∑(g)tn-k-1 1 k n-1, t≤ ≤ 0∑x, and tk:b(g)kx 0 k n-1. ≤ ≤

Let un be a new variable (un represents hn). (T)unf is solvable, and its head normal

form does not begin by l, therefore it is a variable applied to some arguments. The free
variables of (T)un f are un and f, we then have two possibilities for its head normal form

:
(f)d (in this case we stop) or (un)a1…am.

Assume we obtain (un)a1…am. The variable un represents hn, and hn∑lglx(g)tn-1,

therefore (hn)a1…am and ((a1)tn-1[a1/g,a2/x])a3…am have the same head normal form.

The l-term tn-1[a1/g,a2/x] comes from hn. Let un-1,a1,a2 be a new variable (un-1,a1,a2

represents tn-1[a1/g,a2/x]). The l-term ((a1)un-1,a1,a2)a3…am is solvable, and its head

normal form does not begin by l, therefore it is a variable applied to some arguments.
The free variables of ((a1)un-1,a1,a2)a3…am are among un-1,a1,a2, un, and f, we then

have three possibilities for its head normal form :
(f)d (in this case we stop) or (un)b1…br or (un-1,a1,a2)b1…br.

Assume we obtain (un-1,a1,a2)b1…br. The variable un-1,a1,a2 represents tn-1[a1/g,a2/x],

and tn-1∑(g)tn-2, therefore (tn-1[a1/g,a2/x])b1…br and ((a1)tn-2[a1/g,a2/x])b1…br have

the same head normal form. The l-term tn-1[a1/g,a2/x] comes from hn. Let un-2,a1,a2 be

a new variable (un-2,a1,a2 represents tn-2[a1/g,a2/x]). The l-term ((a1)un-2,a1,a2)b1…br is

solvable, and its head normal form does not begin by l, therefore it is a variable applied
to arguments. The free variables of ((a1)un-2,a1,a2)b1…br are among un-2,a1,a2, un-

1,a1,a2, un, and f, therefore we have four possibilities for its head normal form :

(f)d (in this case we stop) or (un)c1…cs or (un-1,a1,a2)c1…cs or (un-2,a1,a2)c1…cs

…and so on…

Assume we obtain (u0,d1,d2)e1…ek during the construction. The variable u0,d1,d2

6

represents t0[d1/g,d2/x], and t0∑x, therefore (t0[d1/g,d2/x])e1…ek and (d2)e1…ek have

the same head normal form ; we then follow the construction with the l-term (d2)e1…

ek.

The l-term (T)hnf is solvable, and has (f)s(t) as head normal form, so this construction

always stops on (f)d. We will prove later by a simple argument that d:byn.

According to the previous construction, the reduction (T)hnf∑(f)s(tn) can be divided

into two parts :

- A reduction that does not depend on n :
(T)unf∑(un)a1…am,

((a1)un-1,a1,a2)a3…am ∑(un-1,a1,a2)b1…br,

((a1)un-2,a1,a2)b1…br∑(un-2,a1,a2)b1…br,

…
- A reduction that depends on n (and not on hn) :

the reduction from (un)a1…am to ((a1)un-1,a1,a2)a3…am,

the reduction from (un-1,a1,a2)b1…br to ((a1)un-2,a1,a2)c1…cs,

…,
the reduction from (u0,d1,d2)e1…ek to (d2)e1…ek,

…

If we allow some new reduction rules to get the later reductions, (something as :
(un)a1a2∑(a1)un-1,a1,a2 ; ui+1,a1,a2∑(a1)ui,a1,a2 (for i>0) ; u0,a1,a2∑a2)

we obtain an equivalent -and easily expressed - definition for the storage operators for

N :
A closed l-term T is a storage operator for N if and only if for every n 0, ((T)≥ unf∑(f)dn,

and dn:byn.

0.3 The directed l-calculus is an extension of the ordinary l-calculus built for

tracing a normal l-term t during some head reduction. Assume u is some, non normal, l-

term having t as a subterm. We wish to trace the places where we really have to know

what t is, during the reduction of u. Assume we have for every normal l-term t with free
variables x1,…,xn, and any l-terms a1,…,an a "new" variable ut,a1,…,an.

We want the following rules :
if t=lxv, then (ut,a1,…,an)a∑uv,a1,…,an,a or ut,a1,…,an∑lxuv,a1,…,an,x ;

if t=(v)w, then ut,a1,…,an∑(uv,a1,…,an)uw,a1,…,an ;

if t=xi 1 i n, then ≤≤ ut,a1,…,an∑ai.

We will prove later the following result (theorem 4-1) :

A closed l-term T is a storage operator for a set of closed normal l-terms D if and only

7

if for every tAD, (T)utf∑(f)dt, and dt:byt.

0.4 By interpreting the variable ut,a1,…,an (that will be denoted by [t]<a1/x1,…,an/

xn> and called a box) by t[[a1/x1,…,an/xn]] (the l-term t with an explicit substitution),

the new reduction rules are those that allow to really do the substitution. This kind of l-

calculus (l-calculus with explicit substitution) has been studied by P.L.Curien (see [1]

and [4]) ; his ls-calculus contains terms and substitutions and is intended to better

control the substitution process created by b-reduction, and then the implementation of

the l-calculus. The main difference between the ls-calculus and the directed l-calculus is

:

- The first one produces an explicit substitution after each b-reduction ;

- The second only " executes " the substitutions given in advance.

We can therefore consider the directed l-calculus as a restriction (the interdiction of

producing explicit substitutions) of ls-calculus ; a well adapted way to the study of the

head reduction.

0.5 This paper studies some properties of storage operators. It is organized as

follows :

. The section 1 is devoted to preliminaries.

. In section 2, we define the storage operators, and we give the general form of their

head normal forms.

. In section 3, we introduce the directed l-calculus, and we prove that it has the main

properties of the ordinary l-calculus : the Church-Rosser theorem, the normalisation

theorem, the resolution theorem. We focus on the head reduction, and we will prove

that the reduction with the boxes represents correctly the reduction of terms where

boxes are replaced by b-equivalent l-terms.

. In section 4, we present an equivalent definition for the storage operators.

. In section 5, we give some properties of storage operators :

- If T is a storage operator for a set of closed normal l-terms, and if T:bT', then T' also is

a storage operator for this set.

- The problem " Let t be a closed l-term. Is it a storage operator for a set of closed

normal l-terms ?" is undecidable. It is semi-decidable in case of a finite set.

- Each finite set of closed normal l-terms has a storage operators.
- the number of b-reductions to go from (T)htf to (f)s(tt) is linear in the number of

reductions to normalize ht.

Note : The presentation made below hides some technical uninteresting difficulties.

Since we work with name for the variables, and modulo a-equivalence, there is a

8

problem to define precisely the notion of subterms.

- We suppose, for example, that the l-terms (x)x, (y)y, (z)z,… are subterms of the l-

term lx(x)x.

- A l-term may have equal subterms ; we assume that we can distinguish these

subterms.

 These problems could be solved by indexing subterms with the paths from the root of

the l-term and using de Bruijn notation. We will do not do that here.

Acknowledgements. We thank J.L. Krivine, S. Ronchi, and H. Barendregt for helpful

discussions.

§ 1. Basic notions of pure l-calculus

1.1. Notations

They are standard (see [2] and [6]).

- We shall denote by L the set of terms of pure l-calculus, also called l-terms.
- Let t,u,u1,…, unAL, the application of t to u is denoted by (t)u or simply tu. In the

same way we write (t)u1…un or tu1…un instead of (…((t)u1)…)un.

- The b (resp. y, resp. by) -reduction is denoted by t5bu (resp. t5yu, resp. t5byu).

- One step of b (resp. y) -reduction is denoted by t5b0u (resp. t5y0u).

- The b (resp. y, resp. by) -equivalence is denoted by t:bu (resp. t:yu, resp. t:byu).

- The set of free variables of a l-term t is denoted by Fv(t).
- The notation t[a1/x1,…,an/xn] represents the result of the simultaneous substitution of

l-terms a1,…,an to the free variables x1,…,xn of t (after a suitable renaming of the

bounded variables of t).

The notation s(t) represents the result of the simultaneous substitution s to the free

variables of t.

- The lenght of a l-term t (number of symbols used to write t) is denoted by lg(t).

- We denote by ST(t), the set of subterms of t.

- If t is b-normalizable, we denote by tb its b-normal form.

- If t is by-normalizable, we denote by tby its by-normal form.
- The notation t∑∑0t' (resp. t∑∑t') means that t' is obtained from t by one step of left

reduction (resp. by some left reductions).

Theorem 1.1.1 (normalization theorem). u is normalizable if and only if u is left

normalizable.

9

Proof. See [2] and [6]. ■

- If t is a normalizable l-term, then t∑∑tb. We denote by Tps(t), the number of steps

used to go from t to tb.
- The notation t∑0t' (resp. t∑t') means that t' is obtained from t by one step of head

reduction (resp. by some head reductions).
- A l-term t is said solvable if and only if for every l-term u, there are variables x1,

…,xk, and a l-terms u1,…,uk,v1,…,vl k,l 0, such that (t[u≥ 1/x1,…,uk/xk])v1…vl :bu.

Theorem 1.1.2 (resolution theorem). The following conditions are equivalent :

1) t is solvable ;

2) the head reduction of t terminates ;

3) t is b-equivalent to a head normal form.

Proof. See [6]. ■

- If t is a solvable l-term, then there is a term t' in head normal form, such that t∑t'.

We denote by tps(t), the number of step used to go from t to t'.

- For each l-term, we associate a set of l-terms denoted by STE(t), and called the set of

essential subterms of t, by induction :

- If t is unsolvable, then STE(t)={U}where U is a new symbol ;
- If t is solvable, and ly1…lym(y)t1…tr is its head normal form, then STE(t)={t}".

Theorem 1.1.3. If t is a normalizable l-term, then Tps(t)=tps(u).

Proof. Trivial. ■

1.2. Properties of head reduction

Definitions.

- We define an equivalence relation : on L by : u:v if and only if there is a t, such that

u∑t, and v∑t. In particular, if t is solvable, then u:t if and only if u is solvable, and has

the same head normal form of t. If u is in head normal form, then t:u means u is the

head normal form of t.

- If t∑t', we denote by n(t,t'), the number of steps to go from t to t'.

Theorem 1.2.1. If t∑t', then for every u1,…,urAL :

1) There is vAL, such that (t)u1…ur∑v, (t')u1…ur∑v, and n((t)u1…ur,v)= n((t')u1…ur,v)

10

+n(t,t').
2) t[u1/x1,…,ur/xr]∑t'[u1/x1,…,ur/xr], and n(t[u1/x1,…,ur/xr],t'[u1/x1,…,ur/xr])= n(t,t').

Proof. See [7]. ■

Remarks.
- 1) shows that to make the head reduction of (t)u1…un, it is equivalent (same result,

and same number of steps) to make some steps in the head reduction of t, and then
make the head reduction of (t')u1…un.

- 2) shows that to make the head reduction of t[u1/x1,…,un/xn], it is equivalent (same

result, and same number of steps) to make some steps in the head reduction of t, and
then make the head reduction of t'[u1/x1,…,un/xn].

This will be used everywhere without mention in the following.

Corollary 1.2.2. Let t,u1,…,un,v1,…,vmAL. If (t[u1/x1,…,un/xn])v1…vm is solvable, then

t is solvable.

Proof. Easy. ■

Corollary 1.2.3. If t:t', then for every u1,…,urAL :
1) (t)u1…ur:(t')u1…ur.

2) t[u1/x1,…,ur/xr]:t'[u1/x1,…,ur/xr].

Proof. See [7]. ■

Corollary 1.2.4. Let t:bu, and u does not contain the variables x1,…,xn, then the left

reduction of t[u1/x1,…,un/xn] is equivalent to the left reduction of t. This reduction is

independent of the l-terms u1,…,un which will never be evaluated.

Proof. See [7]. ■

§ 2. Storage operators

2.1 Definition of storage operators

Definitions.

- A l-term t is said essential if and only if it is b-equivalent to a b-normal closed l-term.

11

- Let T be a closed l-term, and t an essential l-term. We say that T is a storage operator

(shortened to o.m.m. for opérateur de mise en mémoire) for t if and only if there is
tt:byt, such that for every ht:bt, (T)ht∑lf(f)tt[h1/x1,…,hn/xn], where Fv(tt)={x1,…,xn,f},

and h1,…,hn are l-terms which depend on ht.

- Let T be a closed l-term, D a set of essential l-terms. We say that T is an o.m.m for D

if and only if it is an o.m.m. for every t in D.

Lemma 2.1.1. T is an o.m.m. for t if and only if there is a l-term tt:byt, such that for

every ht:bt, (T)htf:(f)tt[h1/x1,…,hn/xn], where Fv(tt)={x1,…,xn,f}, and h1,…,hn are l-

terms which depend on ht.

Proof.

11 Clear.
00 By corollary 1.2.2, (T)ht is solvable. Let T' be its head normal form.

- If T'=lfw, then w is the head normal form of (T)htf, therefore w=(f)tt[h1/x1,…,hn/xn],

therefore (T)ht∑lf(f)tt[h1/x1,…,hn/xn].

- If T'=(v)T1…Tr ; we can choose ht, such that fFv(ht), v f, therefore the head normal≠

form of (T)htf is (v)T1…Trf=(f)tt[h1/x1,…,hn/xn]. A contradiction. ■

Remark. Let F be any l-term, and ht a l-term b-equivalent to tAD. During the

computation of (F)ht, ht may be computed many times (for example, each time it comes

in head position). Insead of computing (F)ht, let us look at the head reduction of (T)htF.

Since it is (T)htf[F/f], by theorem 1.2.1, we shall first reduce (T)htf to its head normal

form, which is (f)tt[h1/x1,…,hn/xn], and then compute (F)tt[c1/x1,…,cn/xn, F/f] where

ci=hi[F/f]. By corollary 1.2.4, the computation has been decomposed into two parts, the

first being independent of F. This first part is essentially a computation of ht, the result

being tt, which is a kind of normal form of ht, because it only depends on the b-

equivalent class of ht : the substitutions made in tt have no computational importance,

since t is essential. So, in the computation of (T)htF, ht is computed first, and the result

is given to F as an argument, T has stored the result, before giving it, as many times as

needed, to any function.

2.2 General forms of head normal form of a storage
operator

Proposition 2.2.1. If T is an o.m.m. for t, then T is solvable, and its head normal form
T' has one of the following form : T'=ln(n)T1…Tr r 1, T'=≥ lnlf(n)T1…Tr r 1, or≥

12

T'=lnlf(f)T1 where T1:byt.

Corollary 2.2.3. If t is unsolvable, and T is an o.m.m. for t, then T∑lnlf(f)T1, and

T1:byt.

Proof. If T∑ln(n)T1…Tr r 1 or T≥ ∑lnlf(n)T1…Tr r 1, then (T)t is unsolvable.≥

Therefore, by proposition 2.2.1, T∑lnlf(f)T1, and T1:byt. ■

Proof of proposition 2.2.1. If T is an o.m.m. for t, then there is a l-term tt:byt, such that

for every ht:bt, (T)ht∑lf(f)tt[u1/y1,…,un/yn], with Fv(tt)={y1,…,yn,f}, and u1,…,un are l-

terms wich depend on ht. Therefore, by corollary 1.2.2, T is solvable. Let T' its head

normal form. Since T is closed, T' also is closed, and T'=lx1…lxm(xi)T1…Tr r 1. ≥

By theorem 1.2.1, (T')ht∑lf(f)tt[u1/y1,…,un/yn], therefore m =1 or 2.

- If m=1, then T'=ln(n)T1…Tr r 1.≥

- If m=2 :
- If i=1, then T'=lnlf(n)T1…Tr r 1.≥

- If i=2, then T'=lnlf(f)T1…Tr r 1. Therefore ≥ lf(f)T1[ht/n]…Tr[ht/n]= lf(f)t'[u1/y1,

…,un/yn], therefore r=1, and T1[ht/n]=tt[u1/y1,…,un/yn].

It remains to show that T1:byt.

Lemma 2.2.4. Let x,y be two variables of the l-calculus.
1) If t[(x)y/z]5b0u, then u=v[(x)y/z], and t5b0v.

2) If t is a closed l-term, and t[(x)y/z]5bt, then t5bt.

Proof.

1) By induction on t.

- If t is a variable, it is impossible.
- If t=lrw, then u=lra, and w[(x)y/z]5b0a. By induction hypothesis, we have a=b[(x)y/z],

and w5b0b. Therefore if we take v=lrb, we get u=v[(x)y/z], and t5b0v.

- If t=(a)b, and u=(c)b where a[(x)y/z]5b0c. By induction hypothesis, we have c=d[(x)y/

z], and a5b0d. Therefore if we take v=(d)b, we get u=v[(x)y/z], and t5b0v.

- If t=(a)b, and u=(a)c where b[(x)y/z]5b0c. By induction hypothesis, we have c=d[(x)y/

z], and b5b0d. Therefore if we take v=(a)d, we get u=v[(x)y/z], and t5b0v.

- If t=(lra)b, and u=a[(x)y/z][b[(x)y/z]/r]=a[b/r][(x)y/z], then, if we take v=a[b/r], we
get u=v[(x)y/z], and t5b0v.

2) By induction on the number of b0-reductions. We use 1) to prove t=u[(x)y/z], and

t5bu. Since t is closed, then t=u and t5bt. ■

13

By lemma 2.2.4, we may assume that tt does not contain a (yi)yj 1 i,j n as subterm.≤ ≤

Lemma 2.2.5. Let d,t,t1,…,tn be l-terms , and s1,…,sn substitutions, such that :

Fv(d)={x1,…,xn}"{a1,…,ar}, Fv(t)={y1,…,ym}"{b1,…,bk}, and for all 1 i,j m (y≤ ≤ i)yj is

not a subterm of t. If for all 1 i n and for every ≤≤ hi:bti, there are h1,…, hi-1,hi+1,

…hn,u1,…,um, such that d[s1(h1)/x1,…,sn(hn)/xn]=t[u1/y1,…,um/ym], then there are w1,

…,wm, such that d=t[w1/y1,…,wm/ym].

Proof. By induction on d and t.
It is clear that we may assume that any variable x1,…,xn (resp. y1,…,ym) appears at

most once in d (resp. t).
- If d=a1, then a1=t[u1/y1,…,um/ym], therefore t=y1, and u1=a1 or t=b1=a1.

- If d=x1, then s1(h1)=t[u1/y1,…,um/ym].

 - If t=b1, then s1(h1) is a variable, that is impossible if we take h1=(lxt1)x.

 - If t=y1, then d=t[x1/y1].

 - If t=lxt', then s1(h1) begins by l, that is impossible if we take h1=(lxt1)x.

 - If t=(u)v :
- If t=(…(((lxa)b)v1)…)vr, then s1(h1) begins with r+1 (, that is impossible if we

take h1=(…(((lx1lx2…lxn+2t1)x1)x2)…)vn+2.

- If t=(…((b1)v1)…)vr, then that is impossible if we take h1=(lxt1)x.

- If t=(…((y1)v1)…)vr and r 2, then ≥ s1(h1) begins by at least r (, that is impossible

if we take h1=(lxt1)x. Therefore r=1 and t=(y1)v1.

The l-term v1 can not begin by l. (it suffices to take h1=(lxt1)(lxx)x)

The l-term v1 can not begin by (. (it suffies to take h1=(lxt1)lxx)

Therefore v1 is a variable.

If v1=b1, then that is impossible if we take h1=(lxt1)(lxx)x.

If v1=y2, then that is impossible because in this case we have t=(y1)y2.

- If d=lxu, then :
 - If t=b1, then lg(d)=1, that is impossible.

 - If t=y1, then d=t[lxu/y1].

 - If t=lxt', then u[s1(h1)/x1,…,sn(hn)/xn]=t'[u1/y1,…,um/ym], and we use the

induction hypothesis

 - If t=(u)v, then d begins by (, that is impossible.

- If d=(u)v, then :
 - If t=b1, then lg(d)=1, that is impossible.

 - If t=y1, then d=t[(u)v/y1].

 - If t=lxt', then d begins by l, that is impossible.

14

- If t=(a)b, then u[s1(h1)/x1,…,sn(hn)/xn]=a[u1/y1,…,um/ym], and

v[s1(h1)/x1,…,sn(hn)/xn]=b[u1/y1,…,um/ym], and we use the induction hypothesis. ■

By lemma 2.2.5, there are w1,…,wm, such that T1=tt[w1/x1,…,wn/xn], we have

T1:byt. ■ (of proposition 2.2.1)

2.3 Examples of storage operators

2.3.1 The projections

For all 0 i n, let P=≤≤ lx1…lxnxi (the ith projection among n). Let Pn be the set of

projections.

Define T=ln(n) lf(f)Plf(f)P… lf(f)P, and T=lnlf(n) (f)PP… (f)P.

Tand Tare two o.m.m. for Pn.

Let h:bP1 i n, then ≤≤ h∑P.

Behaviour of T:

Thf:(h) lf(f)Plf(f)P… lf(f)Pf:(P) lf(f)Plf(f)P… lf(f)Pf:(lf(f)P)f:

(f)P.

It is easy to check that tps(Thf)=Tps(h)+n+2. ■

Behaviour of T:

Thf:(h) (f)PP… (f)Pf:(P) (f)PP… (f)Pf:(f)P.

It is easy to check that tps(Thf)=Tps(h)+n+2. ■

2.3.2 The Church integers

For n 0, we define the Church integer ≥ n=lflx(f)nx. Let N be the set of Church integers.

Let s=lnlflx(f)((n)f)x. It is easy to check that s is a l-term for the successor. Define

T=ln(n)Gd where G=lxly(x)lz(y)(s)z, and d=lf(f)0 ;

T=lnlf(n)F f 0 where F=lxly(x)(s)y.

Tand Tare o.m.m. for N.
Let hn:n, then hn∑lglx(g)tn-1, tn-k∑(g)tn-k-1 1 k n-1, t≤ ≤ 0∑x.

Behaviour of T:
(T)hnf:(hn)Gdf:(G)tn-1[G/g,d/x]f:(tn-1[G/g,d/x])lz(f)(s)z.

We define a sequence of l-terms (ti)1 i n≤≤ :

15

t1=lz(f)(s)z, and for all 1 k n-1 let ≤ ≤ tk+1=lz(tk)(s)z.

We prove (by induction on k) that for all 1 k n we have (T)≤ ≤ hnf:(tn-k[G/g,d/x])tk.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
(T)hnf:(tn-k[G/g,d/x])tk:(G)tn-k-1[G/g,d/x]tk:tn-k-1[G/g,d/x])lz(tk)(s)z=

(tn-k-1[G/g,d/x])tk+1.

Therefore, in particular, for k=n we have (T)hnf:(t0[G/g,d/x])tn=(d)tn:(tn)0.

We prove (by induction on k) that for all 1 k n we have ≤ ≤ tk:lz(f)(s)kz.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
tk+1=lz(tk)(s)z:lz(lz(f)(s)kz)(s)z:lz(f)(s)k+1z.

Therefore, in particular, for k=n we have tn:lz(f)(s)nz and (T)hnf:(lz(f)(s)nz)0: (f)(s)n0.

It is easy to check that tps((T)hnf)=Tps(hn)+3n+4. ■

Behaviour of T:
(T)hnf:(hn)Ff0:(F)tn-1[F/g,f/x]0:(tn-1[F/g,f/x])(s)0.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
(T)hnf:(tn-k[F/g,f/x])(s)k0.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
(T)hnf:(tn-k[F/g,f/x])(s)k0:(F)tn-k-1[F/g,f/x](s)k0:tn-k-1[F/g,f/x])(s)k+10.

Therefore, in particular, for k=n we have (T)hnf:(t0[F/g,f/x])(s)n0=(f)(s)n0.

It is easy to check that tps((T)hnf)=Tps(hn)+2n+4. ■

2.3.3 The recursive integers

For n 0, we define the recursive integer by :=≥ lflxx and =lflx(f). Let be the set of

recursive integers. Let =lnlflx(f)n. It is easy to check that is a l-term for the successor.

Define T=(Y)H where Y=(lxlf(f)(x)xf)lxlf(f)(x)xf, H=lxly((y)lz(G)(x)z)d,

G=lxly(x)lz(y)()z, and d=lf(f) ;

T=ln(n)rtr where t=ldlf(f) , and r=lylz(G)(y)ztz.

Tand Tare o.m.m. for .
Let hn:b, then :

if n=0, hn∑lglxx, and if n 0, ≠ hn∑lglx(g)hn-1 where hn-1:b.

Behaviour of T:
We prove (by induction on n) that ((Y)H)hn:lf(f)()n.

16

If n=0, then ((Y)H)h0:((H)(Y)H)h0:((h0)lz(G)((Y)H)z)d:d=lf(f) .

If n 0, then ((Y)H)≠ hn:((H)(Y)H)hn:((hn)lz(G)((Y)H)z)d:

(lz(G)((Y)H)z)hn-1[lz(G)((Y)H)z/g,d/x]:(G)((Y)H)hn-1[lz(G)((Y)H)z/g,d/x]:

lf(((Y)H)hn-1[lz(G)((Y)H)z/g,d/x])lz(f)()z.

Since hn-1:b, then hn-1[lz(G)((Y)H)z/g,d/x]:b, and, by induction hypothesis, ((Y)H)hn-

1:lf(f)()n-1.

Therefore ((Y)H)hn:lf(lf(f)()n-1)lz(f)()z:lf(f)()n.

It is easy to check that tps((T))hnf)=Tps(hn)+10n+7. ■

Behaviour of T:
We prove (by induction on n) that (hn)rtr:lf(f)()n.

If n=0, then (h0)rtr:(t)r:lf(f).

If n 0, then (≠ hn)rtr:(r)hn-1[r/g,t/x]r:(G)(hn-1[r/g,t/x])rtr:

lf((hn-1[r/g,t/x])rtr)lz(f)()z.

Since hn-1:b, then hn-1[r/g,t/x]:b, and, by induction hypothesis,

hn-1[r/g,t/x]rtr:lf(f)()n-1.

Therefore (hn)rtr:lf(lf(f)()n-1)lz(f)()z:lf(f)()n.

It is easy to check that tps((T))hnf)=Tps(hn)+7n+5. ■

2.3.4 The finite lists

Let U be a set of essential l-terms. We define the set of the finite lists of objects of U,
LU={lflx((f)u1)((f)u2)…((f)un)x where nAN, uiAU}.

Let nil=lxlyy, cons=lxlylfla((f)x)((y)f)a and cons'=lxlylfla((y)f)((f)x)a. It is easy to

check that cons and cons' are two l-terms for the concatenation.
Let TU be an o.m.m. for U.

Define T=ln(n)Hd where H=lxlylz((TU)x)lu(y)lv(z)((cons)u)v , and d=lf(f)nil ;

T=lnlf(n)K f nil where K=lxlylu((TU)x)lv(y)(cons')v)u.

Tand Tare o.m.m. for LU.

Let hn:blflx((f)u1)((f)u2)…((f)un)x, then :

hn∑lglx(g)v1t1, v1:bu1, ti∑(g)vi+1ti+1, vi+1:bui+1 1 i n-1, t≤≤ n∑x.

TU is an o.m.m. for U, therefore for all 1 i n, there is ≤≤ ti:bui, such that

(TU)vi[H/g,d/x]∑lf(f)si(ti).

Behaviour of T:
(T)hnf:(hn)Hdf:(H)v1[H/g,d/x]t1[H/g,d/x]f:

((TU)v1[H/g,d/x])lu(t1[H/g,d/x])lv(f)((cons))u)v:(lf(f)s1(t1))lu(t1[H/g,d/x])lv(f)

((cons))u)v:(t1[H/g,d/x])lv(f)((cons))s1(t1))v.

17

We define a sequence of l-terms (di)1 i n≤≤ : d1=lv(f)((cons))s1(t1))v, and for 1 k n-1≤ ≤

Let dk+1=lv(dk)((cons))sk+1(tk+1))v.

We prove (by induction on k) that for all 1 k n we have (T)≤ ≤ hnf:(tk[H/g,d/x])dk.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
(T)hnf:(tk[H/g,d/x])dk:(H)vk+1[H/g,d/x]tk+1[H/g,d/x]dk

((TU)vk+1[H/g,d/x])lu(tk+1[H/g,d/x])lv(dk)((cons))u)v:

(lf(f)sk+1(tk+1))lu(tk+1[H/g,d/x])lv(dk)((cons))u)v:

(tk+1[H/g,d/x])lv(dk)((cons))sk+1(tk+1))v=(tk+1[H/g,d/x])dk+1.

Therefore, in particular, for k=n we have (T)hnf:(tn[H/g,d/x])dn=(d)dn:(dn)nil.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
dk:lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
dk+1=lv(dk)((cons))sk+1(tk+1))v:

lz(lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v)(((cons))sk+1(tk+1))v:

lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sk(tk))v)(((cons))sk+1(tk+1))v.

Therefore, in particular, for k=n we have
dn:lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))v

and (T)hnf:(lv(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))nil:

(f)((cons)s1(t1))((cons)s2(t2))…((cons)sn(tn))nil=(f)s({((cons)t1)((cons)t2)…

((cons)tn)nil}).

It is easy to check that if tps(TUvi)=Tps(vi)+Di, then tps((T)hnf)=Tps(hn)+6n+4 +

Behaviour of T:
(T)hnf:(hn)K f nil:(K)v1[K/g,f/x]t1[K/g,f/x]nil:((TU)v1[K/g,f/x])lv(t1[K/g,f/x])

((cons')v)nil:(lf(f)s1(t1))lv(t1[K/g,f/x])((cons'))v)nil:

(t1[K/g,f/x])((cons'))s1(t1))nil.

We prove (by induction on k) that for all 1 k n we have ≤ ≤
(T)hnf:(tk[F/g,f/x])((cons')sk(tk))((cons')sk-1(tk-1))…((cons')s1(t1))nil.

For k=1 it is true.

Assume that is true for k, and prove it for k+1.
 (T)hnf:(tk[K/g,f/x])((cons')sk(tk))…((cons')s1(t1))nil:

(K)vk+1[K/g,f/x]tk+1[K/g,f/x]((cons')sk(tk))…((cons')s1(t1))nil:

((TU)vk+1[K/g,f/x])lv(tk+1[K/g,f/x])((cons'))v)((cons')sk(tk))…((cons')s1(t1))nil:

(lf(f)sk+1(tk+1))lv(tk+1[K/g,f/x])((cons'))v)((cons'))v)((cons')sk(tk))…

((cons')s1(t1))nil:(tk+1[F/g,f/x])((cons')sk+1(tk+1))…((cons')s1(t1))nil.

Therefore, in particular, for k=n we have

18

(T)hnf:(tn[K/g,f/x])((cons')sn(tn))…((cons')s1(t1))nil=

(f)((cons')sn(tn))…((cons')s1(t1))nil=(f)s({((cons')tn)…((cons')t1)nil}).

It is easy to check that if tps(TUvi)=Tps(vi)+Di, then tps((T)hnf)=Tps(hn)+5n+4 +

§ 3. The directed l-calculus

3.1 The l[]-terms

Definitions.

. If L is the set of simple l-terms (L without a-equivalence), having V as set of

variables, then the set of terms of simple directed l-calculus, denoted by L[], is

defined in the following way :

- If xAV, then xAL[] ;

- If xAV, and uAL[], then lxuAL[] ;

- If uAL[], and vAL[], then (u)vAL[] ;
- If tAL is a b-normal l-term, such that Fv(t)[{x1,…,xn}, and a1,…,anAL[], then [t]<a1/

x1,…,an/xn>AL[].

A l[]-term of the form [t]<a1/x1,…,an/xn> is said a box directed by t (we also say that t

is the director of the box).
This notation represents, intuitively, the l-term t where the free variables x1,…,xn will

be replaced by a1,…,an.

We extend the definition of the a-equivalence by :
[u]<a1/x1,…,an/xn>:a[v]<b1/y1,…,bm/ym> if and only if there are permutations Pn and

Pm, 0 r inf(n,m), and new variables z≤≤ 1,…,zr, such that :

- Fv(u)={x,…,x} and Fv(v)={y,…,y},
- u[z1/x,…,zr/x]:av[z1/y,…,zr/y].

- a:ab1 i r.≤≤

. The set of terms of the directed l-calculus, denoted by L[], and also called l[]-terms,

is defined by L[]=L[]/:a.

. We will note <a/x> the substitution <a1/x1,…,an/xn>. The substitution <a1/x1,…,an/

xn,b1/y1,…,bm/ym> is denoted by <a/x,b/y>, and the substitution <a1[u1/y1,…,um/ym]/

x1,…,an[u1/y1,…,um/ym]/xn> is denoted by <a[u1/y1,…,um/ym]/x>.

. For every u,u1,…,umAL[], we extend the definitions of Fv(u) and u[u1/y1,…,um/ym]

by :

- Fv([t]<a/x>)=Fv(a)=.
- [t]<a/x>[u1/y1,…,um/ym]=[t]<a[u1/y1,…,um/ym]/x>, after a suitable renaming of the

bounded variables of a1,…,an that are free in u1,…,um.

19

3.2 The b[]-reduction

Definitions.

. A l[]-term of the form (lxu)v is called b-redex ; u[v/x] is called its contractum.

A l[]-term of the form [t]<a/x> is called []-redex ; its contractum R is defined by

induction on t :
- If t=xi 1 i n, then R=≤≤ ai ;

- If t=lxu, then R=ly[u]<a,/x,y/x> where yFv(a) ;

- If t=(u)v, then R=([u]<a/x>)[v]<a/x>.

. We define a binary relation 5b0 by :
t5b0t' if and only if t' is obtained by contracting a b-redex of t.

More precisely :
- If t is a variable, t5b0t' is false for all t' ;

- If t=lxu, then t5b0t' if and only if t'=lxu', and u5b0u' ;

- If t=(v)u, then t5b0t' if and only if

t'=(v)u' with u5b0u' or

t'=(v')u with v5b0v' or

v=lxw, and t'=w[u/x] ;
- If t=[u]<a/x>, then t5b0t' if and only if

ai5b0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>.

. We define a binary relation 5[]0 by :

t5[]0t' if and only if t' is obtained by contracting a []-redex of t.

More precisely :
- If t is a variable, t5[]0t' is false for all t' ;

- If t=lxu, then t5[]0t' if and only if t'=lxu', and u5[]0u' ;

- If t=(v)u, then t5[]0t' if and only if

t'=(v)u' with u5[]0u' or

t'=(v')u with v5[]0v' ;

- If t =[u]<a/x>, then t5[]0t' if and only if

t' is the contractum of t or
ai5[]0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>

. We define a binary relation 5b[]0 on L[] by t5b0t' or t5[]0t'.

Therefore t5b[]0t' if anf only if t' is obtained by contracting a b[]-redex of t.

. We define the b-conversion (resp. the []-conversion, resp. the b[]-conversion) as the

reflexive and transitive closure of 5b0 (resp.5[]0, resp. 5b[]0).

20

We have therefore t5bt' (resp. t5[]t', resp. t5b[]t') if and only if there is a sequence

t0=t,t1,…,tn-1,tn=t', such that ti5b0ti+1 (resp. ti5[]0ti+1, resp. ti5b[]0ti+1) for 1 i n-1.≤≤

It is clear that if t5b[]t', then Fv(t')[Fv(t).

. A l[]-term t is said b[]-normal, if it does not contain any redex.

A l[]-term t is said b[]-normalizable, if there is a b[]-normal l[]-term t', such that t5b[]t'.

A l[]-term t is said b[]-strongly normalizable, if there is a no infinite sequence t0=t,t1,

…,tn,…, such that ti5b[]0ti+1 for i≥0.

Lemma 3.2.1. t is b[]-normal if and only if tAL, and t is b-normal.

Proof. Clear. ■

Lemme 3.2.2. A []-reduction always terminates.

Proof. Otherwise, there is an infinite sequence t0,t1,…,tn,…, such that ti5[]0ti+1 for i 0.≥

For each l[]-term t, we associate an integer b(t) by induction on t :

- If t=x, then b(t)=0 ;

- If t=lxu, then b(t)=b(u) ;

- If t=(u)v, then b(t)=b(u)+b(v) ;

- If t=[u]<a/x>, then :
 - If u=xi 1 i n, then b(t)=b(a≤≤ i)+1 ;

 - If u=lxv, then b(t)=b([v]<a/x,y/x>)+1 yFv(a) ;

 - If u=(v)w, then b(t)=b([v]<a/x>)+b([w]<a/x>)+1.

Lemma 3.2.3.

1) b(t)=0 if and only if tAL.
2) If b(ai)=b(a'i) 1 i n, then ≤≤

 b([u]<a/x>)=b([u]<a1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>).

3) If b(ai)>b(a'i), and xiAFv(u) 1 i n, then≤≤

 b([u]<a/x>)>b([u]<a1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>).

Proof. By induction on t. (resp. u) for 1) (resp 2), 3)). ■

Lemma 3.2.4. If t 5[]0t', then b(t)>b(t').

Proof. By induction on t. The only interesting case is t=[u]<a/x>. Then :
- If u=xi 1 i n, then t'=a≤≤ i, and b(t)=b(ai)+1>b(t').

- If u=lxv, then t'=[u]<a/x,y/x> yFv(a), therefore, by lemma 3.2.3,

21

b(t)=b([u]<a/x,y/x>)+1>b(t').

- If u=(v)w, then t'=([v]<a/x>)[w]<a/x>, and b(t)=b([v]<a/x>)+b([w]<a/x>)+1>b(t').
- If ai5[]0a'i, xiAFv(u) 1 i n, and t'=[u]<a≤≤ 1/x1,…,ai-1/xi-1,a'i/xi,ai+1/xi+1,…,an/xn>). By

induction hypothesis, we have b(ai)>b(a'i), therefore, by lemma 3.2.3, b(t)>b(t'). ■

Therefore, by lemma 3.2.4, there is an infinite sequence b(t0),b(t1),…,b(tn),…, such that

b(ti)>b(ti+1) for i 0. A contradiction. ≥ ■ (of lemma 3.2.2)

Definition. For each l[]-term t, we associate a l-term l(t) by induction on t :

- If t=x, then l(t)=x ;

- If t=lxu, then l(t)=lxl(u) ;

- If t=(u)v, then l(t)=(l(u))l(v) ;
- If t=[u]<a/x>, then l(t)=u[l(a1)/x1,…,l(an)/xn].

It is clear that for tAL[], Fv(t)=Fv(l(t)).

Theorem 3.2.5. t is b[]-strongly normalizable if and only if l(t) is strongly

normalizable.

Theorem 3.2.6 (Church-Rosser theorem). Assume t05b[]t1, and t05b[]t2, then there is a

t3, such that t15b[]t3 and t25b[]t3.

Proof of theorem 3.2.5.
11 If l(t) is not strongly normalizable, then there is an infinite sequence t0=l(t),t1,…,tn,

…, such that ti5b0ti+1 for all i 0. ≥

Lemma 3.2.7. If t5[]t', then l(t)=l(t').

Proof. By induction on t. ■

Lemma 3.2.8.
1) [u]<a/x>5[]u[a1/x1,…,an/xn].

2) If ui5[]vi 1 i n, then≤≤ u[u1/x1,…,un/xn]5[]u[v1/x1,…,vn/xn].

Proof. By induction on u. ■

Lemma 3.2.9. If t is a l[]-term, then t5[]l(t).

Proof. By induction on t. The only interesting case is t=[u]<a/x>.

22

By lemma 3.2.8, [u]<a/x>5[]u[a1/x1,…,an/xn]. By induction hypothesis, we have

ai5[]l(ai) 1 i n, therefore, by lemma 3.2.8, t≤≤ 5[]u[l(a1)/x1,…,l(an)/xn]=l(t). ■

By lemma 3.2.9, t5[]l(t), therefore t is not b[]-strongly normalizable. A contradiction.

■ (of 11 theorem 3.2.5).

00 (theorem 3.2.5) If t is not b[]-strongly normalizable then there is an infinite sequence
t0=t,t1,…,tn,…, such that ti5b0ti+1 or ti5[]0ti+1 for i 0. ≥

Lemma 3.2.10. l(u[v/x])=l(u)[l(v)/x].

Proof. By induction on u. ■

Lemma 3.2.11. If u5b0v, then l(u)5b0l(v).

Proof. By induction on u. The only non-trivial case is u=(lxt)w : we then have
v=t[w/x], therefore, by lemma 3.2.10, l(u)=(lxl(t))l(w)5b0 l(t)[l(w)/x]=l(v). ■

Corollary 3.2.12. If u5b[]v, then l(u)5bl(v).

Proof. Use lemmas 3.2.7 and 3.2.11. ■

By lemma 3.2.2, and lemma 3.2.11, tthere is an infinite sequence t'0=l(t),t'1,…,t'n,…,

such that t'i5b0t'i+1 for all i 0, therefore l(t) is not strongly normalizable.≥

A contradiction. ■ (of 00 theorem 3.2.5)

Proof of theorem 3.2.6. If t05b[]t1, and t05b[]t2, then, by corollary 3.2.12, l(t0)5bl(t1), and

l(t0)5bl(t2). Therefore, by the Church-Rosser theorem of l-calculus, there is a t3, such

that l(t1)5bt3, and l(t2)5bt3, therefore, by lemma 3.2.9, t15b[]t3, and t25b[]t3. ■

Remarks.

- By the Church-Rosser theorem, the b[]-normal form is unique.
- We define the b[]-equivalence (denoted by :b[]), as the symetric closure of 5b[] ; In

other words : t:b[]t' if there are t0=t,t1,…,tn=t' with ti5b[]0ti+1 or ti+15b[]0ti 0 i n-1. By≤≤

the Church-Rosser theorem : t:b[]t' if and only if there is a l[]-term u, such that t5b[]u and

t'5b[]u, and a l[]-term t is b[]-normalizable if and only if there is a b[]-normal l[]-term u

such that t:b[]u.

23

3.3 The b[]-left reduction

Definitions.

- A sequence of symbols of the form (l or [corresponds to a redex. We may then define

the leftmost b-redex and the leftmost []-redex of t. If t' is the l[]-term obtained by

contracting this redex, we say that :
t gives t' by b0-left reduction (resp. by []0-left reduction, resp. by b[]0-left reduction),

and write by t∑∑b0t' (resp. t∑∑[]0t', resp. t∑∑b[]0t'), if it is a b-redex (resp. a []-redex,

resp. a b-redex or a []-redex).

- We say that t reduces to t' by b-left reduction (resp. []-left reduction, resp. b[]-left
reduction), and we write t∑∑bt' (resp. t∑∑[]t', resp. t∑∑b[]t') if and only if t' is

obtained from t by a sequence of b0-left reductions (resp. of []0-left reductions, resp. of

b[]0-left reductions).

- A l[]-term t is said b[]-left normalizable if and only if there is a b[]-normal l[]-term t',
such that t∑∑b[]t'.

Theorem 3.3.1. u is b[]-left normalizable if and only if l(u) is left normalizable.

Theorem 3.3.2 (normalization theorem). u is b[]-normalizable if and only if u is b[]-

left normalizable.

Proof of theorem 3.3.1.

11 Use lemmas 3.2.7 and 3.3.3.

Lemma 3.3.3.

1) If R is the leftmost b-redex of u, then l(R) is the leftmost redex of l(u).
2) If u∑∑b0v, then l(u)∑∑0l(v).

Proof.

1) Clear.

2) By induction on u. The only non-trivial case is u=(lxt)w : then we have v=t[w/x],
then, by lemma 3.2.10, l(u)=(lxl(t))l(w)∑∑0l(t)[l(w)/x]= l(t[w/x]). ■

00 If not, there is an infinite sequence of l[]-terms u0=u,u1,…,un,…, such that

ui∑∑b0ui+1 or ui∑∑[]0ui+1 for i 0. Therefore, by lemmas 3.2.2, 3.2.7, and 3.3.3, there is≥

an infinite sequence of l[]-terms v0=l(u),v1,…,vn,…, such that vi∑∑0vi+1 for i 0,≥

therefore l(u) is not left normalizable. A contradiction. ■

24

Proof of theorem 3.3.2.

00 Clear.

11 If u is b[]-normalizable, then l(u) is normalizable (same proof as theorem 3.3.1 11). By

the normalization theorem of l-calculus, l(u) is left normalizable, therefore, by theorem

3.3.1, u is b[]-left normalizable. ■

3.4 The b[]-head reduction

Proposition 3.4.1. Every l[]-term t can be - uniquely - written as lx1…lxn(R)t1…tm

n,m 0, R≥ being a variable or a redex

Proof. By induction on t. ■

Definitions.
- Let t be a l[]-term, then, by proposition 3.4.1, t=lx1…lxn(R)t1…tm.

If R is a variable, we say that t is a b[]-head normal form.

If R is a redex, we say that R is the head redex of t.

If t' is the l[]-term obtained from t by contracting its head redex, we say that :
t gives t' by b0-head reduction (resp. by []0-head reduction, resp. by b[]0-head

reduction), and we write t∑b0t' (resp. t∑[]0t', resp. t∑b[]0t'), if the head redex is a b-

redex (resp. a []-redex, resp. a b-redex or a []-redex).

- We say that t reduces to t' by b-head reduction (resp. []-head reduction, resp. b[]-
head reduction), and we write t∑bt' (resp. t∑[]t', resp. t∑b[]t') if and only if t' is

obtained from t by a sequence of b0-head reduction (resp. []0-head reduction, resp. b[]0-

head reduction).

A b[]-head reduction is, in particular, a b[]-left reduction.
- If t∑b[]t', we denote by n(t,t'), the number of steps to go from t to t'.

- A l[]-term t is said b[]-solvable if and only if for every l[]-term u, there are variables
x1,…,xk, and l[]-terms u1,…,uk,v1,…,vl k,l 0, such that (t[u≥ 1/x1,…,uk/xk])v1…vl :b[]u.

Theorem 3.4.2. If t∑b[]t', then for every u1,…,urAL[] :

1) There is vAL, such that (t)u1…ur∑b[]v, (t')u1…ur∑b[]v, and n((t)u1…ur,v)= n((t')u1…

ur,v)+n(t,t').

2) t[u1/x1,…,ur/xr]∑b[]t'[u1/x1,…,ur/xr], and n(t[u1/x1,…,ur/xr],t'[u1/x1,…,ur/xr])=

n(t,t').

Remarks.

25

- 1) shows that to make the b[]-head reduction of (t)u1…un, it is equivalent (same

result, and same number of steps) to make some steps in the b[]-head reduction of t, and
then make the b[]-head reduction of (t')u1…un.

- 2) shows that to make the b[]-head reduction of t[u1/x1,…,un/xn], it is equivalent

(same result, and same number of steps) to make some steps in the b[]-head reduction
of t, and then make the b[]-head reduction of t'[u1/x1,…,un/xn].

Corollary 3.4.3. Let t,u1,…,un,v1,…,vmAL[]. If the b[]-head reduction of (t[u1/x1,…,un/

xn])v1…vm terminates, then the b[]-head reduction of t terminates.

Proof. Use theorem 3.4.2. ■

Theorem 3.4.4 (resolution theorem). The following conditions are equivalent :

1) t is b[]-solvable ;

2) the b[]-head reduction of t terminates ;

3) t is b[]-equivalent to a b[]-head normal form.

Proof of theorem 3.4.2. It is enough to do the proof for one step of reduction.
1) By induction on r ; it is enough to do the proof for r=1. Then t=lx1…lxn(R)t1…tm,

and t'=lx1…lxn(R')t1…tm where R' is the contractum of R.

If n=0, then (t)u=(R)t1…tmu, and (t')u=(R')t1…tmu, therefore (t)u∑b[]v, where v=(t')u.

If n 1, then one step of ≥ b[]-head reduction of (t)u gives lx2…lxn(R)t1…tm (where

w=w[u/x1] for every wAL[]). One step of b[]-head reduction of (t')u gives lx2…

lxn(R')t1…tm.

Lemma 3.4.5. If R a redex, R' its contractum, and u1,…,umAL[], then R[u1/y1,…,um/

ym] is a redex, and R'[u1/y1,…,um/ym] is its contractum.

Proof. If R is a b-redex, then R=(lxu)v, and R'=u[v/x].
R[u1/y1,…,um/ym]=(lxu[u1/y1,…,um/ym])v[u1/y1,…,um/ym] is a b-redex, and its

contractum is u[u1/y1,…,um/ym][v[u1/y1,…,um/ym]/x]=R'[u1/y1,…,um/ym].

 If R is a []-redex, then R=[t]<a/x> :
- If t=xi 1 i n,≤≤ then R'=ai. R[u1/y1,…,um/ym]=[t]<a[u1/y1,…,um/ym]/x> is a []-redex,

and its contractum is ai[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym].

- If t=lxu, then R'=ly[u]<a/x,y/x> where yFv(a).
 R[u1/y1,…,um/ym]=[lxu]<a[u1/y1,…,um/ym]/x> is a []-redex, and its contractum is

ly[u]<a/x,y/x>[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym] where yFv(a)"

- If t=(u)v, then R'=([u]<a/x>)[v]<a/x>.

26

 R[u1/y1,…,um/ym]=([u]<a/x>)[v]<a[u1/y1,…,um/ym]/x> is a []-redex, and its

contractum is ([u]<a/x>)[v]<a/x>[u1/y1,…,um/ym]=R'[u1/y1,…,um/ym]. ■

By lemma 3.4.5, (t)u∑b[]v, and (t')u∑b[]v where v=lx2…lxn(R')t1…tm.

2) Same proof as 1). ■

Proof of theorem 3.4.4.
1)1)112)2) If t is b[]-solvable, then there are variables x1,…,xk, and terms u1,…,uk,v1,…,vl

(k,l 0), such that (t[u≥ 1/x1,…,uk/xk])v1…vl:b[]lxx, therefore, by the Church-Rosser

theorem, (t[u1/x1,…,uk/xk])v1…vl∑b[]lxx, therefore, by corollary 3.4.3, the b[]-head

reduction of t terminates.

2)2)113)3) Clear.
3)3)111)1) Assume t:b[]lx1…lxn(y)t1…tm, and let u be a l[]-term :
- If y=xi 1 i n, then (((t)x≤≤ 1…xi-1)ly1…lymu)xi+1…xn:b[]u where yjFv(u) 1 j m.≤≤

- If y x≠ i 1 i n, then (t[≤≤ ly1…lymu/y])x1…xn:b[]u where yjFv(u) 1 j m.≤≤

Therefore t is b[]-solvable. ■

Lemma 3.4.6. If u∑b0v, then l(u)∑0l(v).

Proof. Same proof as lemma 3.4.5. ■

Theoreme 3.4.7. u is b[]-solvable if and only if l(u) is solvable.

Proof.

11 Use lemmas 3.2.7 and 3.4.6.
00 Otherwise there is an infinite sequence of l[]-terms u0=u,u1,…,un,…, such that

ui∑b0ui+1 or ui∑[]0ui+1 for i 0. Therefore, by lemmas 3.2.7, 3.4.6, and 3.2.2, there is an≥

infinite sequence of l[]-terms v0=l(u),v1,…,vn,…, such that vi∑0vi+1 for i 0, therefore≥

l(u) is unsolvable. A contradiction. ■

§ 4. An equivalent definition for storage operators

Theorem 4.1. Let t be a closed b-normal l-term, and T a closed l-term. T is an o.m.m.
for t if and only if there is a l-term tt:byt, such that

T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym].

To prove this theorem we need some definitions

27

Definition. Let t be a b-normal l-term, and u a l[]-term. We say that u is directed by t

if and only if the directors of boxes of u are subterms of t.

More precisely u is directed by t if and only if :

- If u=x, then u is directed by t ;

- If u=lxv, then u is directed by t if and only if v is directed by t ;

- If u=(v)w, then u is directed by t if and only if v and w are directed by t ;

- If u=[v]<a/x>, then u is directed by t if and only if v is a subterm de t, and for all
1 i n a≤≤ i is directed by t.

Lemma 4.2.

1) If u and v are directed by t, then u[v/x] is directed by t.
2) If u is directed by t, and u5b[]v, then v is directed by t.

Proof. By induction on u. ■

Definition. Let t be a b-normal l-term. A t-special application h is a function from

ST(t) to L which satisfies the following properties :

- h(x)∑x ;

- h(lxu)∑lxh(u) ;

- h((u)v)∑(h(u))h(v).

Lemma 4.3. If h is a t-special application, then, for every uAST(t), h(u):bu.

Proof. by induction on u. ■

Lemma 4.4. Let t be a b-normal l-term, and uAST(t). For every hu:bu, there is a t-

special application h, such that h(u)=hu.

Proof. Let vAST(t) ; we define h(v) as follows :

- If vAST(u), h(v) is defined by induction on li(v)=lg(u)-lg(v), and we check that
h(v):bv.

- If li(v)=0, then v=u. Take h(v)=hu, we have h(v):bv.

- If li(v) 1, then v is a proper subterm of u :≥

- If there is an x, such that lxvAST(u) then by induction hypothesis, we have
h(lxv):blxv, therefore h(lxv)∑lxhv where hv:bv. Take h(v)=hv, we have h(v):bv.

- If there is wAST(t), such that (v)wAST(t) then by induction hypothesis, we have
h((v)w):b(v)w. Since t is b-normal, then h((v)w)∑(hv)hw where hv:bv and hw:bw.

28

Take h(v)=hv, we have h(v):bv.

- If there is wAST(t), such that (w)vAST(t) then by induction hypothesis, we have
h((w)v):b(w)v. Since t is b-normal, then h((w)v)∑(hw)hv where hv:bv, and hw:bw.

Take h(v)=hv, we have h(v):bv.

- If uAST(v)\{v}, take h(v) the l-term v where u is replaced by h(u), we have h(v):bv.

- Otherwise, we put h(v)=v.

By construction, h is a t-special application. ■

Definition. Let t be a b-normal l-term, and h a t-special application. The t-special
substitution Sh is the function from the set of l[]-terms directed by t into L defined by

induction :
- If u=x, then Sh(u)=x ;

- If u=lxv, then Sh(u)=lySh(v[y/x]) where yFv(h(t)) ;

- If u=(v)w, then Sh(u)=(Sh(v))Sh(w) ;

- If u=[v]<a/x>, then Sh(u)=h(v)[Sh(a1)/x1,…,Sh(an)/xn].

A t-special substitution is the function Sh associated to a b-normal l-term t, and some t-

special application h.
It is easy to see that if u does not contain boxes, then Sh(u)=u.

Lemma 4.5. If y1,…,ymFv(h(t)), then

Sh(u[v1/y1,…,vm/ym]) =Sh(u)[Sh(v1)/y1,…,Sh(vm)/ym].

Proof. By induction on u. ■

Lemma 4.6. Sh(u):b l(u).

Proof. By induction on u. ■

Lemma 4.7. If u∑b[] v, then Sh(u):Sh(v).

Proof. It is enough to do the proof for one step of reduction.
Let u=lx1…lxn(R)u1…um, and v=lx1…lxn(R')u1…um where R' is the contractum of

redex R :

If R=(lxa)b, then R'=a[b/x].
Sh((lxa)b)=(lySh(a[y/x]))Sh(b)∑Sh(a[y/x])[Sh(b)/y]=Sh(a)[y/x][Sh(b)/y]

=Sh(a)[Sh(b)/x], therefore, by lemma 4.5, Sh((lxa)b)∑Sh(a[b/x]).

If R=[u]<a/x> :
- If u=xi 1 i n,≤≤ then R'=ai, and Sh(R)=Sh(R').

29

- If u=lxv, then R'=ly[v]<a/x,y/x> where yFv(a).
Sh(R)=h(u[Sh(a1)/x1,…,Sh(an)/xn]∑lxh(v)[Sh(a1)/x1,…,Sh(an)/xn]=

lzh(v)[Sh(a1)/x1,…,Sh(an)/xn,z/x] where zFv(h(t))"Fv(a), therefore

Sh(R)∑Sh(R').

- If u=(c)d, then R'=([c]<a/x>)[d]<a/x>
Sh(R)=h(u)[Sh(a1)/x1,…,Sh(an)/xn]∑(h(c))h(d)[Sh(a1)/x1,…,Sh(an)/xn]=

(h(c)[Sh(a1)/x1,…,Sh(an)/xn])h(d)[Sh(a1)/x1,…,Sh(an)/xn],

therefore Sh(R)∑Sh(R'). ■

Corollary 4.8. u is b[]-solvable if and only if Sh(u) is solvable.

Proof.

11 Use lemma 4.7.
00 Sh(u) is solvable, therefore, by lemma 4.6, l(u) is solvable, therefore, by theorem

3.4.7, u is b[]-solvable. ■

Definition. We say that a l[]-term t is good if and only if there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if ≤≤ ai=a1,i,…,ani,i, then aj,i is

good 1 j n≤≤ i.

It is clear that we have :

- x is good ;

- If lxt is good, then t is good ;

- (u)v is good if and only if u and v are good ;
- [w]<a/x> is good if and only if ai is good 1 i n.≤≤

Example. The l[]-term [x1]<x/x1> is good, but the l[]-term lx[x1]<x/x1> is not. Indeed,

the variable x becomes bounded, and so we can not find a l-term u, such that lx[x1]<x/

x1>= u[[t]<a/x>/y].

Lemma 4.9. If t,v1,…,vr are good, then t[v1/y1,…,vr/yr] is good.

Proof. By induction on t. ■

Definitions.
- A []'-redex is a l[]-term of the form ([ly1…lym(y)u1…ur]<a/x>)v1…vm. Its

contractum R is defined by : R=(b)[u1]<a/x,v/y>…[ur]<a/x,v/y> where b=vi if y=yi

1 i m, and b=a≤≤ i if y=xi 1 i n.≤≤

It is easy to see that if R is a []'-redex, and R' its contractum, then R∑b[]R'.

30

Let t=lx1…lxn(R)t1…tm where R is a []'-redex. If t' is the l[]-term obtained from t by

contracting the []'-redex R, we say that t gives t' by a []'0-head reduction, and we write

t∑[]'0t'.

We say that t reduces to t' by []'-head reduction, and we write t∑[]'t' if and only if t' is

obtained from t by a sequence of []'0-head reductions.

- If t' is the l[]-term obtained from t by contracting its head redex (b-redex or []'-redex),
we say that t gives t' by b[]'0-head reduction, and we write t∑b[]'0t'.

We say that t reduces to t' by b[]'-head reduction, and we write t∑b[]'t' if and only if t'

is obtained from t by a sequence of b[]'0-head reductions.

- A head reduction t∑bt' is said complete if and only if for every l[]-term u, if t'∑bu,

then t'=u.

Lemma 4.10.
1) If f is a variable, and t∑b[](f)u1,…ur, then there is a sequence t0=t,t1,…,tn= (f)u1,…

ur, such that ti∑bti+1 is complete or ti∑[]'ti+1 0 i n-1.≤≤

2) If moreover t is directed by u, then every director of ti 0 i n is an element of STE(u).≤≤

Proof.
1) If t∑b[](f)u1,…ur, then there is a sequence t=(v0)w0,(v1)w1,…,(vm)wm=(f)u1,…ur,

such that (vi)wi∑b0(vi+1)wi+1 or (vi)wi∑[]0(vi+1)wi+1 0 i m-1. If (v≤≤ i)wi∑[]0(vi+1)wi+1

0 i m-1,≤≤ then (vi)wi=([ly1…lyp(y)d1…dq]<a/x>)b1…bp c1…cs. Therefore there is j>i,

such that (vi)wi∑[]'0(vj)wj, therefore there is a sequence t=(v'0)w'0,(v'1)w'1, …,

(v'k)w'k=(f)u1,…ur, such that (v'i)w'i∑b(v'i+1)w'i+1 or (v'i)w'i ∑[]'(v'i+1)w'i+1 0 i k-1.≤≤

Gathering consecutive b-reductions, it is clear that we can suppose that the b-reductions
(v'i)w'i∑b(v'i+1)w'i+1 are complete.

2) Easy. ■

Lemma 4.11. Let t be a good l[]-term.
1) If t∑bt' then, t' is good.

2) If t∑[]'(a)b, then (a)b is good.

3) If t∑b[](f)u1…ur, then u1,…,ur are good.

Proof. If t is good, then there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if ≤≤ ai=a1,i,…,ani,i, then aj,i is

good 1 j n≤≤ i.

1) It is enough to do the proof for one step of reduction. If t∑b0t', then t'=u'[[t1]<a1/x1>/

y1,…,[tm]<am/xm>/ym] where u∑0u', therefore t' is good.

2) It is enough do the proof for one step of reduction. For every l[]-term u, denote by u"

31

the l[]-term u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym].

It is clear that we may suppose that yiFv(aj) 1 i,j m.≤ ≤

If t∑[]'0(a)b, then u=(yi)v1…vqw1…ws 1 i m, t≤≤ i =lf1…lfq(y)u1…ur, and

(a)b={(c)z1…zrw1…ws}[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym,[u1]<ai/xi,v"/f>/y1,…,

[ur]<ai/xi,v"/f>/zr] where c=vi if y=fi 1 i q, and c=a≤≤ j,i if y=xj,i 1 i m, 1 j n≤≤ ≤≤ i, and

z1,…,zr are a new variables, therefore, by lemma 4.9, (a)b is good.

3) Use lemma 4.10, and 1) and 2). ■

Proof of theorem 4.1.
11 If T is an o.m.m. for t, then there is dt:byt, such that for every ht:bt, there is a

substitution s, such that Thtf∑(f)s(dt). l(T[t]f)=Ttf is solvable, therefore, by theorem

3.4.7, T[t]f is b[]-solvable, and T[t]f∑b[](f)t'. By lemma 4.4, let h be a t-special

application, such that h(t)=ht. Then Sh(t')=s(dt). T[t]f is a good l[]-term, therefore, by

lemma 4.11, t' is good, therefore t'=tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where tt is a

l-term. Therefore Sh(t')=tt[h1/y1,…,hm/ym] where hi=h(ti)[Sh(ai,1)/xi,1,…,Sh(ai,mi)/xi,mi]

1 i m, therefore, by lemmas 2.2.4, 2-6, and 4.3, ≤≤ tt=s'(dt), therefore tt:byt.

00 Assume that T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. Let ht:bt. By

lemma 4.4, let h be a t-special application, such that h(t)=ht. By lemma 4.7, we have

Sh(T[t]f)=Thtf ∑(f)tt[h1/y1,…,hm/ym]. Therefore T is an o.m.m. for t. ■

Examples.
- Tis an o.m.m. for Pn. Indeed,

T[P)]f∑b0([P])lf(f)P.…lf(f)Pf∑[]'0(lf(f)P)f∑b0(f)P1 i n.≤≤

- Tis an o.m.m. for N. Indeed,
T[n]f∑b0([n])Ff0∑[]'0((F)[(x1)n-1x2]<F/x1,f/x2>)0∑b([(x1)n-1x2]<F/x1,f/x2>)(s)0

∑[]'0((F)[(x1)n-2x2]<F/x1,f/x2>)(s)0∑b([(x1)n-2x2]<F/x1,f/x2>)(s)20∑[]'0…∑b ([x2]<F/

x1,f/x2>)(s)n0∑[]'0(f)(s)n0.

§ 5. Properties of storage operators

5.1 Storage operators and b-equivalence

32

Theorem 5.1.1. Let t be a closed b-normal l-term, T and T' be closed l-terms. If
T is an o.m.m. for t, and T':bT, then T' also is an o.m.m. for t.

Proof. On the set of good l[]-terms, we define an equivalence relation g by :
If t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where u is a l-term, then tgt' if and only if

t'=u'[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym] where u:bu', and for all 1 i m if ≤≤ ai=a1,i,

…,ani,i, then a'i=a'1,i,…,a'ni,i, and aj,iga'j,i 1 j n≤≤ i.

It is clear that if lx1…lxn(f)u1…umgt (f is a variable), then t=lx1…lxn(f)u'1…u'm where

uigu'i 0 i m.≤≤

Lemma 5.1.2. If tgt', and vigv'i 1 i r, then t[v≤≤ 1/y1,…,vr/yr]gt'[v'1/y1,…,v'r/yr].

Proof. By induction on t. ■

Lemma 5.1.3. Let t be a good l[]-term.
1) If t∑bt' is complete, and tgT, then for someT' : t'gT', and T∑bT' is complete.

2) If t∑[]'0(c)d, and tgT, then tor someT' with the same b[]-head normal form as T :

(c)dgT'.
3) If t∑b[](f)u1…ur, and tgT, then tor someT' : (f)u1…urgT', and T∑b[]T'.

Proof. If t is good, then there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where ai=a1,i,…,ani,i 1 i n. ≤≤

1) If t∑bt' is complete, then t'=u'[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym] where u' is the

head normal form of u. If tgT, then T=U[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym] where

u:bU, a'i=a'1,i,…,a'ni,i, and aj,iga'j,i 1 j n≤≤ i. Let U' be the head normal form of U.

Let T'=U'[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym]. It is clear that we have t'gT', and

T∑bT' is complete.

2) For every l[]-term u, we denote by u" the l[]-term u[[t1]<a1/x1>/y1,…, [tm]<am/xm>/

ym].

It is clear that mat suppose that yiFv(aj) 1 i,j m.≤ ≤

If t∑[]'0(c)d, then u=(yi)v1…vqw1…ws 1 i m, t≤≤ i =lf1…lfq(y)u1…ur, and

(c)d={(b)z1…zrw1…ws}[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym,[u1]<ai/xi,v"/f>/z1,…,

[ur]<ai/xi,v"/f>/zr] where b=vi if y=fi 1 i q, and b=a≤≤ j,i if y=xj,i 1 i m, and 1 j n≤≤ ≤≤ i, and

z1,…,zr are a new variables.

If tgT, then T=U[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym] where u:bU, a'i=a'1,i,…,a'ni,i and

aj,iga'j,i 1 j n≤≤ i. Since u:bU, then U∑(yi)c1…cqd1…ds where vi:bci 1 i q, and w≤≤ j:bdj

1 j s. ≤≤
For every l[]-term u, we denote by u''' the l[]-term [[t1]<a'1/x1>/y1,…, [tm]<a'm/xm>/

33

ym].

Let T'={(b)z1…zrd1…ds}[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym,[u1]<a'i/xi,c'''/f> /z1,…,

[ur]<a'i/xi,c'''/f>/zr] where b'=ci if y=fi 1 i q, and b'=a'≤≤ j,i if y=xj,i 1 i m, and 1 j n≤≤ ≤≤ i.

It is clear that T and T' have the same b[]-head normal form, and, by lemma 5.1.2, t'gT'.

3) Use 1), 2), and lemma 4.10. ■

If T is an o.m.m. for t, then, by theorem 4.1,
T[t]f ∑b[] (f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. If T':bT, then T'[t]fgT[t]f,

therefore, by 3) of lemma 5.1.3,
T'[t]f ∑b[] (f)t't[[t1]<a'1/x1>/y1,…,[tm]<a'm/xm>/ym], and t't:btt:byt. Therefore, by

theorem 4.1, T' is an o.m.m. for t. ■ (of theorem 5.1.1)

5.2 Decidability

Theorem 5.2.1. If X is a non trivial set of closed l-terms stable by b-equivalence, then

X is not recursive.

Proof. See [2], [5], and [14]. ■

Theorem 5.2.2. The set of o.m.m. for a set of closed b-normal l-terms is not recursive.

Proof. Use theorems 5.1.1 and 5.2.1. ■

Theorem 5.2.3. The set of o.m.m. for a finite set of closed b-normal l-terms is

recursively enumerable.

Proof. Use theorem 4.1. ■

5.3 Storage operators and y-equivalence

Theorem 5.3.1. Let t be a closed b-normal l-term, and T be closed l-term.

If T is an o.m.m. for t, and t5yt', then T also is an o.m.m. for t'.

Remark. The theorem 5.3.1 is no more true if we replace t5yt' by t:yt'. Indeed,

34

if we take t=lxx, t'=lxlylz((x)y)z, and T=ln(n)lf(f)lxx, then :
- t'5yt, therefore t:yt'.

- For every l-term u such that u:bt, (T)u∑lf(f)lxx, therefore T is an o.m.m. for t.

- (T)t'f∑lz((f)lxx)z, therefore T is not an o.m.m. for t'.

Proof of theorem 5.3.1. On the set L[], we define the binary relation c as the least

relation satisfying :

- tct ;

- If tct', then lxtclxt';

- If ucu', and vcv', then (u)vc(u')v';
- If t5yxi, and aica'i 1 i n, then [t]<≤≤ a/x>ca'i ;
- If t5yt', and aica'i 1 i n, then [t]<≤≤ a/x>c[t']<a'/x>.

It is clear that :
- If lx1…lxn(u0)u1…umct, then t=lx1…lxn(u'0)u'1…u'm where uicu'i 0 i m.≤≤

- Let t be a good l[]-term, therefore there is a l-term u, such that
t=u[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and for all 1 i m if ≤≤ ai=a1,i,…,ani,i, then aj,i is

good 1 j n≤≤ i. If tct', then it is easy to check that t'=u[c1/y1,…,cn/ym] where ci=[t'i]<a'i/

xi> with ti5yt'i, aj,ica'j,i 1 i m, 1 j n≤≤ ≤≤ i, or ci=a'j,i 1 j n with t≤≤ i5yxj,i and aj,ica'j,i 1 i m,≤≤

1 j n≤≤ i.

Lemma 5.3.2. If ucu', and vicv'i 1 i n, then :≤≤

u[v1/x1,…,vn/xn]c u'[v'1/x1,…,v'n/xn].

Proof. By induction on u. ■

Lemma 5.3.3. If u=lx1…lxn(y)u1…um5yv, then v=lx1…lxn-r(y)u'1…u'm-r where uj5yu'j

1 j m-r,≤≤ um-s5yxn-s 0 s r-1, and x≤≤ n-s y≠ does not appear in u1,…um-r.

Proof. By induction on the number n of y0-reductions to go from u to v.

n=0 : clear.
If n≥1, then u5yw5y0v, therefore w=lx1…lxn-r(y)u'1…u'm-r where uj5yu'j 1 j m-r, u≤≤ m-

s5yxn-s 0 s r-1, and x≤≤ n-s y does not appear in the u≠ 1,…um-r. Since w5y0v, then v=lx1…

lxn-r(y)u'1…u"k…u'm-r where u'k5yu"k, or u'm-r=xn-r, xn-r y≠ does not appear in the u1,

…,um-r-1, and v=lx1…lxn-r-1(y)u'1…u'm-r-1 as required. ■

 Lemma 5.3.4.
1) If t∑b0t', and tcT, then for some t' : t'cT', and T∑b0T'.

2) If t∑[]'0t', and tcT, then for some t' : t'cT', and T∑[]'0T'.

35

3) If t∑b[]'t', and tcT, then for some t' : t'cT', and T∑b[]'T'.

Proof.
1) If t∑b0t', then t=lx1…lxn(lxu)vt1…tm, and t'=lx1…lxn(u[v/x])t1…tm. If tcT, then

T=lx1…lxn(lxu')v't'1…t'm where ucu', vcv', and tict'i 1 i m. ≤≤

Let T'=lx1…lxn(u'[v'/x])t'1…t'm. It is clear that T∑b0T ', and, by lemma 5.3.2, t'cT'.

2) If t∑[]'0t', then t=ly1…lym([lz1…lzk(y)u1…ur]<a/x>v1…vkw1…ws, and

t'=ly1…lym(b)[u1]<a/x,v/z>…[ur]<a/x,v/z>w1…ws where b=vi if y=yi 1 i m, and b=a≤≤ i

if y=xj 1 j n. Assume t≤≤ cT.

- If lz1…lzk(y)u1…ur5yy, then k=r, ui5yzi 1 i m, and z≤≤ i y=x≠ j 1 j n, then≤≤

T=ly1…lym(a'j)v'1…v'kw'1…w's where ajca'j, vicv'i 1 i k, and w≤≤ icw'i 1 i s. Let≤≤

T'=T. It is clear that t'cT', and T∑[]'0T'.

- If lz1…lzk(y)u1…ur5ylz1…lzk-l(y)u'1…u'r-l where uj5yu'j 1 j r-l, ≤≤ ur-s5yzk-s

0 s l-1, and z≤≤ k-s y≠ does not appear in the u1,…ur-l, then T=ly1…lym([lz1…lzk-

l(y)u'1… u'r-l]<a'/x>v'1…v'kw'1…w's where vicv'i 1 i k, and w≤≤ icw'i 1 i s. Let≤≤

T'=ly1…lym(bi)[u1]<a'/x,v'1/z1,…,v'k-l/zk-l> …[ur]<a'/x,v'1/z1,…,v'k-l/zk-l> v'm-l+1…

v'k w'1…w's where b=v'i if y=yi 1 i m, and b=a≤≤ i if y=xj 1 j n. It is clear that t'≤≤ cT', and

T∑[]'0T'.

3) Use 1) and 2). ■

If T is an o.m.m. for t, then, by theorem 4.1, there is a l-term tt:byt, such that T[t]f∑b[]

(f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym].

If t5yt', then T[t]fcT[t']f, therefore, by lemma 5.3.4, T[t']f∑b[](f)t', and tt[[t1]<a1/x1>/y1,

…,[tm]<am/xm>/ym]ct'. Therefore there is a l-term t"t, such that t"t:btt:byt, and

t'=t"t[[u1]<b1/z1>/y1,…,[um]<br/zr>/yr]. Therefore, by theorem 4.1, T is an o.m.m. for

t'. ■ (of theorem 5.3.1)

5.4. Storage operators for a set of b-normal l-terms

Theorem 5.4.1. Let u1,…,un,v1,…,vm be closed l-terms. Assume uibyuj for i<j, there is a

closed l-term T, such that (T)ui:bvi 1 i n.≤≤

36

Proof. See [3]. ■

Theorem 5.4.2. Every finite set of b-normal l-terms having all distinct by-normal forms

has an o.m.m..

Proof. Let D={t1,…,tn} be such a set. By theorem 5.4.1, there is a closed l-term T',

such that T'ti:bP1 i n, therefore for every ≤≤ hi:bti, T'hi:bP, therefore T'hi∑P. Let

T=ln((T')n)lf(f)t1…lf(f)tn. It is easy to check that T is an o.m.m. for D. ■

Theorem 5.4.3. Every finite set of b-normal l-terms has an o.m.m..

Remarks.

- The theorem 5.4.3 is no more true if we remove the hypothesis "the l-terms of D are
b-normal". If we take t1=lxx, and t2=(lx(x)x)lx(x)x, then D={t1,t2} have no o.m.m..

Indeed, if T is an o.m.m. for t2, then, by corollary 2.2.3, T =lnlf(f)u2 where u2:byt2,

therefore T is not an o.m.m. for t1.

- The theorem 5.4.3 is no more true if we remove the hypothesis "D is finite". If we take

D the set of all Pi 1, then D have no o.m.m.. Indeed, if T is an o.m.m. for D, let T' its≥
head normal form. By proposition 2.2.1, T'=lx1…lxe(xi)t1…tn where e=1 or 2, and, by

theorem 5.1.1, T' also is an o.m.m. for D. It is easy to prove that T' is not an o.m.m. for

the l-term P.

Proof of theorem 5.4.3. Let D={t1,…,tn} be a finite set of b-normal l-terms. Gathering

the l-terms having the same by-normal form, we can write D=where Di={t,…,t}1 i m,≤≤

for all 1 i m, and 1 j,j' m≤≤ ≤ ≤ i, tby=tby, and for all 1 i,i' m, t≤ ≤ by t≠by.

Lemma 5.4.4. Let t,t' be b-normal l-terms. If t:yt', then there is a b-normal l-term u,

such that u5yt, and u5yt'.

Proof. By induction on t and t'. If t:yt', then there is a b-normal l-term v, such that t5yv,

and t'5yv. If v=lx1…lxn(y)v1…vm, then, by lemma 5.3.3,

t=lx1…lxnly1…lyk(y)v'1…v'mu1…uk, and t'=lx1…lxnly1…lyr(y)v"1…v"m w1…wr

where v'i5yvi, v"i5yvi 1 i m, u≤≤ j5yyj 1 j k, y≤≤ j y≠ does not appear in v1,…vm, wj5yyj

1 j r, and y≤≤ j y≠ does not appear in v1,…vm. Assume that k r. By induction hypothesis,≤

let ai be a b-normal l-term, such that ai5yv'i, and ai5yv"i 1 i m, and b≤≤ j be a b-normal l-

term, such that bj5yuj, and bj5ywi 1 j k. Let u=≤≤ lx1…lxnly1…lyr(y)a1…amb1…

bkwk+1…wr. It is clear that u is a b-normal l-term, and that u5yt, and u5yt'. ■

37

An y-bound for a set B={u1,…,um} is a b-normal l-term u, such that u5yui 1 i m.≤≤

Corollary 5.4.5. Every finite set B of b-normal l- terms having all the same y-normal

form has an y-bound.

Proof. By induction on the number of l-terms of B using lemma 5.4.4. ■

By corollary 5.4.4, let ui be a y-bound for Di 1 i m. By theorem 5.4.2, the set {u≤≤ 1,

…,um} has an o.m.m., therefore, by theorem 5.3.1, D has an o.m.m.. ■ (of theorem

5.4.3)

5.5 Computation time of a storage operator

Lemma 5.5.1. Let (ti)1 i n≤≤ and (t'i)1 i n≤≤ be sequences of l-terms, such that :

1) For all 1 i n, t≤≤ i∑t'i.

2) For all 1 i n-1, t≤≤ i=(ui)vi,1…vi,ri, t'i=(u'i)vi,1…vi,ri, and u'i∑ui+1.

3) t'n=(f)v1…vr where f is a variable.

Then t1∑t'n, and tps(t1)=n(t1,t'n)=+.

Proof. By induction on n.

n=1: trivial
for n>2 : Let ni=n(ti,t'i) and mi=n(u'i,ui+1). By induction hypothesis, we have t2∑t'n, and

n(t2,t'n)=+.

u'1∑u2, therefore, by theorem 1.2.1, for some w, (u'1)v1,1…v1,r1∑w, (u2)v1,1…

v1,r1∑w, and n((u'1)v1,1…v1,r1,w)=n((u2)v1,1…v1,r1,w)+n(u'1,u2)= n((u2)v1,1…

v1,r1,w)+m1.

Therefore t'1∑t'n, and n(t'1,t'n)=n(t'1,w)+n(w,t'n). Therefore t1∑t'n, and

tps(t1)=n(t1,t'n)=n(t1,t'1)+n(t'1,w)+n(w,t'n)=n1+m1++=+. ■

Theorem 5.5.2. Let t be a closed b-normal l-term, and T a closed l-term.
If T is an o.m.m. for t, there are constants AT,t and BT,t, such that for every ht:bt,

tps(Thtf) A≤ T,tTps(ht)+BT,t.

Proof.
If t∑b[]t', denote by b(t,t'), the number of b0-reductions used in this reduction.

For every vAL[], we define D(v) by induction on v :

- If [u]<a/x> is the head redex of v, then D(v)=u ;

38

- If not, D(v)=o where o is a constant.
Let h be a t-special application. For every uAST(t)"{o}, we define the integer nh(u) by :

- nh(x)=nh(o)=0 ;

- nh(lxu)=n(h(lxu),lxh(u)) ;

- nh((u)v)=n(h((u)v),(h(u))h(v)).

If T is an o.m.m. for t, then
T[t]f∑b[](f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], and tt:byt. There is a sequence of l[]-

terms t0=T[t]f,t1,…,tn=(f)tt[[t1]<a1/x1>/y1,…,[tm]<am/xm>/ym], such that ti-1∑b0ti or ti-

1∑[]0ti 1 i n. ≤≤

Let AT,t=Max{number of boxes directed by u and appearing in head position of ti
0 i n, u≤≤ AST(t)}, and BT,t=b(t0,tn).

Let ht:bt. By lemma 4.4, let h be a t-special application, such that h(t)=ht.

By the proof of lemma 4.7, and by lemma 5.5.1, we have
tps(Thtf)=b(t0,tn)+ .

By theorem 1-3, Tps(ht)=nh(u), and then tps(Thtf) A≤ T,tTps(ht)+BT,t. ■

Remark. By the proof of theorem 5.5.2, we have tps(Thtf)=AT,tTps(ht)+BT,t if and

only if, for all uAST(t), AT,t=the number of boxes directed by u and appearing in head

position of ti 0 i n.≤≤

References

[1] M. Abadi, L. Cardelli, P.L. Curien, and J.L. Levy.

Explicit Substitutions. Technical report 1176, INRIA, 1990.

To appear in Journal of Functional Programming.

[2] H. Barendregt.

The lambda calculus : Its Syntax and Semantics.

North Holland, 1984.

[3] C. Böhm, M. Dezani Ciancaglini, A. Peretti & S. Ronchi Della Rocca.

39

A discriminator algorithm inside l-b-calculus.

Theorical Computer Science 8, (271-291), 1979.

[4] P.L. Curien.

The lr-calculi : an abstract framework for closures.

Technical report, LIENS - Ecole Normale Supérieure, 1988.

[5] J.L. Krivine.

Lambda calcul, évaluation paresseuse et mise en mémoire.

Theorical Informatics and Applications (R.A.I.R.O.), Vol. 25,1, p. 67-84,

1991.

[6] J.L. Krivine.

Lambda calcul, types et modèle.

Masson, Paris, 1990.

[7] J.L. Krivine.

Opérateurs de mise en mémoire et traduction de Gödel.

Arch. Math. Logic 30. (241-267), 1990.

[8] K. Nour.

Opérateurs de mise en mémoire en lambda-calcul pur et typé.

Thèse de doctorat, Université de Savoie, 1993.

[9] K. Nour.

Strong storage operators and data types.

Preprint of LAMA, 1993.

[10] K. Nour.

Opérateurs de mise en mémoire et typesV-positifs.

Submitted to Theorical Informatics and Applications, 1993.

[11] K. Nour.

Storage operators and V-positive types in system TTR.

Preprint of LAMA, 1993.

[12] K. Nour.

Opérateurs propres de mise en mémoire.

CRAS Paris, t. 317, Série I, p. 1.-.6, 1993.

40

[13] K. Nour.

Preuve syntaxique d'un théorème de J.L. Krivine sur les opérateurs de

mise en

mémoire.

CRAS Paris, t. 318, Série I, p. 201-204, 1994.

[14] D.S. Scott.

A systeme of functional abstraction.

Unpublished, 1963.

❇ ❇ ❇ ❇ ❇

41

